Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4c38e0a4 | 4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009, |
7b6bb8da | 5 | 2010, 2011 Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
0378c332 | 39 | #include "source.h" |
a7fdf62f | 40 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 41 | #include "objc-lang.h" |
6aecb9c2 | 42 | #include "d-lang.h" |
1f8173e6 | 43 | #include "ada-lang.h" |
cd6c7346 | 44 | #include "p-lang.h" |
ff013f42 | 45 | #include "addrmap.h" |
c906108c | 46 | |
2de7ced7 DJ |
47 | #include "hashtab.h" |
48 | ||
04ea0df1 | 49 | #include "gdb_obstack.h" |
fe898f56 | 50 | #include "block.h" |
de4f826b | 51 | #include "dictionary.h" |
c906108c SS |
52 | |
53 | #include <sys/types.h> | |
54 | #include <fcntl.h> | |
55 | #include "gdb_string.h" | |
56 | #include "gdb_stat.h" | |
57 | #include <ctype.h> | |
015a42b4 | 58 | #include "cp-abi.h" |
71c25dea | 59 | #include "cp-support.h" |
ea53e89f | 60 | #include "observer.h" |
94277a38 | 61 | #include "gdb_assert.h" |
3a40aaa0 | 62 | #include "solist.h" |
9a044a89 TT |
63 | #include "macrotab.h" |
64 | #include "macroscope.h" | |
c906108c | 65 | |
ccefe4c4 TT |
66 | #include "psymtab.h" |
67 | ||
c906108c SS |
68 | /* Prototypes for local functions */ |
69 | ||
a14ed312 | 70 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 71 | |
a14ed312 | 72 | static void rbreak_command (char *, int); |
c906108c | 73 | |
a14ed312 | 74 | static void types_info (char *, int); |
c906108c | 75 | |
a14ed312 | 76 | static void functions_info (char *, int); |
c906108c | 77 | |
a14ed312 | 78 | static void variables_info (char *, int); |
c906108c | 79 | |
a14ed312 | 80 | static void sources_info (char *, int); |
c906108c | 81 | |
d092d1a2 | 82 | static void output_source_filename (const char *, int *); |
c906108c | 83 | |
a14ed312 | 84 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 85 | |
50641945 FN |
86 | /* This one is used by linespec.c */ |
87 | ||
88 | char *operator_chars (char *p, char **end); | |
89 | ||
3121eff0 | 90 | static struct symbol *lookup_symbol_aux (const char *name, |
3121eff0 | 91 | const struct block *block, |
176620f1 | 92 | const domain_enum domain, |
53c5240f | 93 | enum language language, |
774b6a14 | 94 | int *is_a_field_of_this); |
fba7f19c | 95 | |
e4051eeb DC |
96 | static |
97 | struct symbol *lookup_symbol_aux_local (const char *name, | |
e4051eeb | 98 | const struct block *block, |
13387711 SW |
99 | const domain_enum domain, |
100 | enum language language); | |
8155455b DC |
101 | |
102 | static | |
103 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
104 | const char *name, | |
21b556f4 | 105 | const domain_enum domain); |
8155455b DC |
106 | |
107 | static | |
ccefe4c4 TT |
108 | struct symbol *lookup_symbol_aux_quick (struct objfile *objfile, |
109 | int block_index, | |
110 | const char *name, | |
111 | const domain_enum domain); | |
c906108c | 112 | |
176620f1 | 113 | static void print_symbol_info (domain_enum, |
a14ed312 | 114 | struct symtab *, struct symbol *, int, char *); |
c906108c | 115 | |
a14ed312 | 116 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 117 | |
176620f1 | 118 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 119 | |
a14ed312 | 120 | void _initialize_symtab (void); |
c906108c SS |
121 | |
122 | /* */ | |
123 | ||
717d2f5a JB |
124 | /* Allow the user to configure the debugger behavior with respect |
125 | to multiple-choice menus when more than one symbol matches during | |
126 | a symbol lookup. */ | |
127 | ||
7fc830e2 MK |
128 | const char multiple_symbols_ask[] = "ask"; |
129 | const char multiple_symbols_all[] = "all"; | |
130 | const char multiple_symbols_cancel[] = "cancel"; | |
717d2f5a JB |
131 | static const char *multiple_symbols_modes[] = |
132 | { | |
133 | multiple_symbols_ask, | |
134 | multiple_symbols_all, | |
135 | multiple_symbols_cancel, | |
136 | NULL | |
137 | }; | |
138 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
139 | ||
140 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
141 | ||
142 | const char * | |
143 | multiple_symbols_select_mode (void) | |
144 | { | |
145 | return multiple_symbols_mode; | |
146 | } | |
147 | ||
c906108c | 148 | /* Block in which the most recently searched-for symbol was found. |
9af17804 | 149 | Might be better to make this a parameter to lookup_symbol and |
c378eb4e | 150 | value_of_this. */ |
c906108c SS |
151 | |
152 | const struct block *block_found; | |
153 | ||
c906108c SS |
154 | /* Check for a symtab of a specific name; first in symtabs, then in |
155 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
156 | in the symtab filename will also work. */ | |
157 | ||
1b15f1fa TT |
158 | struct symtab * |
159 | lookup_symtab (const char *name) | |
c906108c | 160 | { |
ccefe4c4 TT |
161 | int found; |
162 | struct symtab *s = NULL; | |
52f0bd74 | 163 | struct objfile *objfile; |
58d370e0 | 164 | char *real_path = NULL; |
f079a2e5 | 165 | char *full_path = NULL; |
58d370e0 TT |
166 | |
167 | /* Here we are interested in canonicalizing an absolute path, not | |
168 | absolutizing a relative path. */ | |
169 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
170 | { |
171 | full_path = xfullpath (name); | |
172 | make_cleanup (xfree, full_path); | |
173 | real_path = gdb_realpath (name); | |
174 | make_cleanup (xfree, real_path); | |
175 | } | |
c906108c | 176 | |
c5aa993b | 177 | got_symtab: |
c906108c | 178 | |
c378eb4e | 179 | /* First, search for an exact match. */ |
c906108c SS |
180 | |
181 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 182 | { |
a7fdf62f | 183 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 184 | { |
58d370e0 TT |
185 | return s; |
186 | } | |
9af17804 | 187 | |
58d370e0 TT |
188 | /* If the user gave us an absolute path, try to find the file in |
189 | this symtab and use its absolute path. */ | |
9af17804 | 190 | |
f079a2e5 JB |
191 | if (full_path != NULL) |
192 | { | |
09bcec80 | 193 | const char *fp = symtab_to_fullname (s); |
433759f7 | 194 | |
09bcec80 BR |
195 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) |
196 | { | |
197 | return s; | |
198 | } | |
f079a2e5 JB |
199 | } |
200 | ||
58d370e0 TT |
201 | if (real_path != NULL) |
202 | { | |
09bcec80 | 203 | char *fullname = symtab_to_fullname (s); |
433759f7 | 204 | |
09bcec80 BR |
205 | if (fullname != NULL) |
206 | { | |
207 | char *rp = gdb_realpath (fullname); | |
433759f7 | 208 | |
09bcec80 BR |
209 | make_cleanup (xfree, rp); |
210 | if (FILENAME_CMP (real_path, rp) == 0) | |
211 | { | |
212 | return s; | |
213 | } | |
214 | } | |
58d370e0 TT |
215 | } |
216 | } | |
217 | ||
c378eb4e | 218 | /* Now, search for a matching tail (only if name doesn't have any dirs). */ |
c906108c | 219 | |
caadab2c | 220 | if (lbasename (name) == name) |
c906108c | 221 | ALL_SYMTABS (objfile, s) |
c5aa993b | 222 | { |
31889e00 | 223 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
224 | return s; |
225 | } | |
c906108c SS |
226 | |
227 | /* Same search rules as above apply here, but now we look thru the | |
228 | psymtabs. */ | |
229 | ||
ccefe4c4 TT |
230 | found = 0; |
231 | ALL_OBJFILES (objfile) | |
232 | { | |
233 | if (objfile->sf | |
234 | && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path, | |
235 | &s)) | |
236 | { | |
237 | found = 1; | |
238 | break; | |
239 | } | |
240 | } | |
c906108c | 241 | |
ccefe4c4 | 242 | if (s != NULL) |
c906108c | 243 | return s; |
ccefe4c4 TT |
244 | if (!found) |
245 | return NULL; | |
c906108c SS |
246 | |
247 | /* At this point, we have located the psymtab for this file, but | |
248 | the conversion to a symtab has failed. This usually happens | |
249 | when we are looking up an include file. In this case, | |
250 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
251 | been created. So, we need to run through the symtabs again in | |
252 | order to find the file. | |
253 | XXX - This is a crock, and should be fixed inside of the the | |
c378eb4e | 254 | symbol parsing routines. */ |
c906108c SS |
255 | goto got_symtab; |
256 | } | |
c906108c SS |
257 | \f |
258 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
259 | full method name, which consist of the class name (from T), the unadorned | |
260 | method name from METHOD_ID, and the signature for the specific overload, | |
c378eb4e | 261 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ |
c906108c SS |
262 | |
263 | char * | |
fba45db2 | 264 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
265 | { |
266 | int mangled_name_len; | |
267 | char *mangled_name; | |
268 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
269 | struct fn_field *method = &f[signature_id]; | |
270 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
271 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
272 | char *newname = type_name_no_tag (type); | |
273 | ||
274 | /* Does the form of physname indicate that it is the full mangled name | |
275 | of a constructor (not just the args)? */ | |
276 | int is_full_physname_constructor; | |
277 | ||
278 | int is_constructor; | |
015a42b4 | 279 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
280 | /* Need a new type prefix. */ |
281 | char *const_prefix = method->is_const ? "C" : ""; | |
282 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
283 | char buf[20]; | |
284 | int len = (newname == NULL ? 0 : strlen (newname)); | |
285 | ||
43630227 PS |
286 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
287 | or an operator name. */ | |
288 | if ((physname[0] == '_' && physname[1] == 'Z') | |
289 | || is_operator_name (field_name)) | |
235d1e03 EZ |
290 | return xstrdup (physname); |
291 | ||
015a42b4 | 292 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c | 293 | |
3e43a32a MS |
294 | is_constructor = is_full_physname_constructor |
295 | || (newname && strcmp (field_name, newname) == 0); | |
c906108c SS |
296 | |
297 | if (!is_destructor) | |
c5aa993b | 298 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
299 | |
300 | if (is_destructor || is_full_physname_constructor) | |
301 | { | |
c5aa993b JM |
302 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
303 | strcpy (mangled_name, physname); | |
c906108c SS |
304 | return mangled_name; |
305 | } | |
306 | ||
307 | if (len == 0) | |
308 | { | |
309 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
310 | } | |
311 | else if (physname[0] == 't' || physname[0] == 'Q') | |
312 | { | |
313 | /* The physname for template and qualified methods already includes | |
c5aa993b | 314 | the class name. */ |
c906108c SS |
315 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
316 | newname = NULL; | |
317 | len = 0; | |
318 | } | |
319 | else | |
320 | { | |
321 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
322 | } | |
323 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 324 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 325 | |
433759f7 MS |
326 | mangled_name = (char *) xmalloc (mangled_name_len); |
327 | if (is_constructor) | |
328 | mangled_name[0] = '\0'; | |
329 | else | |
330 | strcpy (mangled_name, field_name); | |
331 | ||
c906108c SS |
332 | strcat (mangled_name, buf); |
333 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
334 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c378eb4e | 335 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
336 | if (newname != NULL) |
337 | strcat (mangled_name, newname); | |
338 | ||
339 | strcat (mangled_name, physname); | |
340 | return (mangled_name); | |
341 | } | |
12af6855 | 342 | |
29df156d SW |
343 | /* Initialize the cplus_specific structure. 'cplus_specific' should |
344 | only be allocated for use with cplus symbols. */ | |
345 | ||
346 | static void | |
347 | symbol_init_cplus_specific (struct general_symbol_info *gsymbol, | |
348 | struct objfile *objfile) | |
349 | { | |
350 | /* A language_specific structure should not have been previously | |
351 | initialized. */ | |
352 | gdb_assert (gsymbol->language_specific.cplus_specific == NULL); | |
353 | gdb_assert (objfile != NULL); | |
354 | ||
355 | gsymbol->language_specific.cplus_specific = | |
356 | OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific); | |
357 | } | |
358 | ||
b250c185 | 359 | /* Set the demangled name of GSYMBOL to NAME. NAME must be already |
29df156d | 360 | correctly allocated. For C++ symbols a cplus_specific struct is |
c378eb4e | 361 | allocated so OBJFILE must not be NULL. If this is a non C++ symbol |
29df156d | 362 | OBJFILE can be NULL. */ |
b250c185 SW |
363 | void |
364 | symbol_set_demangled_name (struct general_symbol_info *gsymbol, | |
29df156d SW |
365 | char *name, |
366 | struct objfile *objfile) | |
b250c185 | 367 | { |
29df156d SW |
368 | if (gsymbol->language == language_cplus) |
369 | { | |
370 | if (gsymbol->language_specific.cplus_specific == NULL) | |
371 | symbol_init_cplus_specific (gsymbol, objfile); | |
372 | ||
373 | gsymbol->language_specific.cplus_specific->demangled_name = name; | |
374 | } | |
375 | else | |
376 | gsymbol->language_specific.mangled_lang.demangled_name = name; | |
b250c185 SW |
377 | } |
378 | ||
379 | /* Return the demangled name of GSYMBOL. */ | |
380 | char * | |
381 | symbol_get_demangled_name (const struct general_symbol_info *gsymbol) | |
382 | { | |
29df156d SW |
383 | if (gsymbol->language == language_cplus) |
384 | { | |
45c58896 SW |
385 | if (gsymbol->language_specific.cplus_specific != NULL) |
386 | return gsymbol->language_specific.cplus_specific->demangled_name; | |
387 | else | |
388 | return NULL; | |
29df156d SW |
389 | } |
390 | else | |
391 | return gsymbol->language_specific.mangled_lang.demangled_name; | |
b250c185 SW |
392 | } |
393 | ||
12af6855 | 394 | \f |
89aad1f9 | 395 | /* Initialize the language dependent portion of a symbol |
c378eb4e | 396 | depending upon the language for the symbol. */ |
89aad1f9 | 397 | void |
33e5013e SW |
398 | symbol_set_language (struct general_symbol_info *gsymbol, |
399 | enum language language) | |
89aad1f9 EZ |
400 | { |
401 | gsymbol->language = language; | |
33e5013e | 402 | if (gsymbol->language == language_d |
5784d15e | 403 | || gsymbol->language == language_java |
f55ee35c JK |
404 | || gsymbol->language == language_objc |
405 | || gsymbol->language == language_fortran) | |
89aad1f9 | 406 | { |
29df156d | 407 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
89aad1f9 | 408 | } |
29df156d SW |
409 | else if (gsymbol->language == language_cplus) |
410 | gsymbol->language_specific.cplus_specific = NULL; | |
89aad1f9 EZ |
411 | else |
412 | { | |
413 | memset (&gsymbol->language_specific, 0, | |
414 | sizeof (gsymbol->language_specific)); | |
415 | } | |
416 | } | |
417 | ||
2de7ced7 DJ |
418 | /* Functions to initialize a symbol's mangled name. */ |
419 | ||
04a679b8 TT |
420 | /* Objects of this type are stored in the demangled name hash table. */ |
421 | struct demangled_name_entry | |
422 | { | |
423 | char *mangled; | |
424 | char demangled[1]; | |
425 | }; | |
426 | ||
427 | /* Hash function for the demangled name hash. */ | |
428 | static hashval_t | |
429 | hash_demangled_name_entry (const void *data) | |
430 | { | |
431 | const struct demangled_name_entry *e = data; | |
433759f7 | 432 | |
04a679b8 TT |
433 | return htab_hash_string (e->mangled); |
434 | } | |
435 | ||
436 | /* Equality function for the demangled name hash. */ | |
437 | static int | |
438 | eq_demangled_name_entry (const void *a, const void *b) | |
439 | { | |
440 | const struct demangled_name_entry *da = a; | |
441 | const struct demangled_name_entry *db = b; | |
433759f7 | 442 | |
04a679b8 TT |
443 | return strcmp (da->mangled, db->mangled) == 0; |
444 | } | |
445 | ||
2de7ced7 DJ |
446 | /* Create the hash table used for demangled names. Each hash entry is |
447 | a pair of strings; one for the mangled name and one for the demangled | |
448 | name. The entry is hashed via just the mangled name. */ | |
449 | ||
450 | static void | |
451 | create_demangled_names_hash (struct objfile *objfile) | |
452 | { | |
453 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 454 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
455 | Choosing a much larger table size wastes memory, and saves only about |
456 | 1% in symbol reading. */ | |
457 | ||
aa2ee5f6 | 458 | objfile->demangled_names_hash = htab_create_alloc |
04a679b8 | 459 | (256, hash_demangled_name_entry, eq_demangled_name_entry, |
aa2ee5f6 | 460 | NULL, xcalloc, xfree); |
2de7ced7 | 461 | } |
12af6855 | 462 | |
2de7ced7 | 463 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
464 | language of that symbol. If the language is set to language_auto, |
465 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
466 | then set the language appropriately. The returned name is allocated |
467 | by the demangler and should be xfree'd. */ | |
12af6855 | 468 | |
2de7ced7 DJ |
469 | static char * |
470 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
471 | const char *mangled) | |
12af6855 | 472 | { |
12af6855 JB |
473 | char *demangled = NULL; |
474 | ||
475 | if (gsymbol->language == language_unknown) | |
476 | gsymbol->language = language_auto; | |
1bae87b9 AF |
477 | |
478 | if (gsymbol->language == language_objc | |
479 | || gsymbol->language == language_auto) | |
480 | { | |
481 | demangled = | |
482 | objc_demangle (mangled, 0); | |
483 | if (demangled != NULL) | |
484 | { | |
485 | gsymbol->language = language_objc; | |
486 | return demangled; | |
487 | } | |
488 | } | |
12af6855 JB |
489 | if (gsymbol->language == language_cplus |
490 | || gsymbol->language == language_auto) | |
491 | { | |
492 | demangled = | |
94af9270 | 493 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE); |
12af6855 | 494 | if (demangled != NULL) |
2de7ced7 DJ |
495 | { |
496 | gsymbol->language = language_cplus; | |
497 | return demangled; | |
498 | } | |
12af6855 JB |
499 | } |
500 | if (gsymbol->language == language_java) | |
501 | { | |
502 | demangled = | |
2de7ced7 | 503 | cplus_demangle (mangled, |
12af6855 JB |
504 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
505 | if (demangled != NULL) | |
2de7ced7 DJ |
506 | { |
507 | gsymbol->language = language_java; | |
508 | return demangled; | |
509 | } | |
510 | } | |
6aecb9c2 JB |
511 | if (gsymbol->language == language_d |
512 | || gsymbol->language == language_auto) | |
513 | { | |
514 | demangled = d_demangle(mangled, 0); | |
515 | if (demangled != NULL) | |
516 | { | |
517 | gsymbol->language = language_d; | |
518 | return demangled; | |
519 | } | |
520 | } | |
f55ee35c JK |
521 | /* We could support `gsymbol->language == language_fortran' here to provide |
522 | module namespaces also for inferiors with only minimal symbol table (ELF | |
523 | symbols). Just the mangling standard is not standardized across compilers | |
524 | and there is no DW_AT_producer available for inferiors with only the ELF | |
525 | symbols to check the mangling kind. */ | |
2de7ced7 DJ |
526 | return NULL; |
527 | } | |
528 | ||
980cae7a | 529 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
04a679b8 TT |
530 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
531 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
532 | NUL-terminated, then this function assumes that NAME is already | |
533 | correctly saved (either permanently or with a lifetime tied to the | |
534 | objfile), and it will not be copied. | |
535 | ||
536 | The hash table corresponding to OBJFILE is used, and the memory | |
537 | comes from that objfile's objfile_obstack. LINKAGE_NAME is copied, | |
538 | so the pointer can be discarded after calling this function. */ | |
2de7ced7 | 539 | |
d2a52b27 DC |
540 | /* We have to be careful when dealing with Java names: when we run |
541 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
542 | gets demangled as a C++ name. This is unfortunate, but there's not | |
543 | much we can do about it: but when demangling partial symbols and | |
544 | regular symbols, we'd better not reuse the wrong demangled name. | |
545 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
546 | on Java names when storing them in the hash table. */ | |
547 | ||
548 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
549 | don't mind the Java prefix so much: different languages have | |
550 | different demangling requirements, so it's only natural that we | |
551 | need to keep language data around in our demangling cache. But | |
552 | it's not good that the minimal symbol has the wrong demangled name. | |
553 | Unfortunately, I can't think of any easy solution to that | |
554 | problem. */ | |
555 | ||
556 | #define JAVA_PREFIX "##JAVA$$" | |
557 | #define JAVA_PREFIX_LEN 8 | |
558 | ||
2de7ced7 DJ |
559 | void |
560 | symbol_set_names (struct general_symbol_info *gsymbol, | |
04a679b8 TT |
561 | const char *linkage_name, int len, int copy_name, |
562 | struct objfile *objfile) | |
2de7ced7 | 563 | { |
04a679b8 | 564 | struct demangled_name_entry **slot; |
980cae7a DC |
565 | /* A 0-terminated copy of the linkage name. */ |
566 | const char *linkage_name_copy; | |
d2a52b27 DC |
567 | /* A copy of the linkage name that might have a special Java prefix |
568 | added to it, for use when looking names up in the hash table. */ | |
569 | const char *lookup_name; | |
570 | /* The length of lookup_name. */ | |
571 | int lookup_len; | |
04a679b8 | 572 | struct demangled_name_entry entry; |
2de7ced7 | 573 | |
b06ead72 JB |
574 | if (gsymbol->language == language_ada) |
575 | { | |
576 | /* In Ada, we do the symbol lookups using the mangled name, so | |
577 | we can save some space by not storing the demangled name. | |
578 | ||
579 | As a side note, we have also observed some overlap between | |
580 | the C++ mangling and Ada mangling, similarly to what has | |
581 | been observed with Java. Because we don't store the demangled | |
582 | name with the symbol, we don't need to use the same trick | |
583 | as Java. */ | |
04a679b8 TT |
584 | if (!copy_name) |
585 | gsymbol->name = (char *) linkage_name; | |
586 | else | |
587 | { | |
588 | gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1); | |
589 | memcpy (gsymbol->name, linkage_name, len); | |
590 | gsymbol->name[len] = '\0'; | |
591 | } | |
29df156d | 592 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
b06ead72 JB |
593 | |
594 | return; | |
595 | } | |
596 | ||
04a679b8 TT |
597 | if (objfile->demangled_names_hash == NULL) |
598 | create_demangled_names_hash (objfile); | |
599 | ||
980cae7a DC |
600 | /* The stabs reader generally provides names that are not |
601 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
602 | can just use the given copy, unless we're in the Java case. */ |
603 | if (gsymbol->language == language_java) | |
604 | { | |
605 | char *alloc_name; | |
d2a52b27 | 606 | |
433759f7 | 607 | lookup_len = len + JAVA_PREFIX_LEN; |
d2a52b27 DC |
608 | alloc_name = alloca (lookup_len + 1); |
609 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
610 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
611 | alloc_name[lookup_len] = '\0'; | |
612 | ||
613 | lookup_name = alloc_name; | |
614 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
615 | } | |
616 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 617 | { |
980cae7a DC |
618 | char *alloc_name; |
619 | ||
433759f7 | 620 | lookup_len = len; |
d2a52b27 | 621 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 622 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 623 | alloc_name[lookup_len] = '\0'; |
980cae7a | 624 | |
d2a52b27 | 625 | lookup_name = alloc_name; |
980cae7a | 626 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
627 | } |
628 | else | |
980cae7a | 629 | { |
d2a52b27 DC |
630 | lookup_len = len; |
631 | lookup_name = linkage_name; | |
980cae7a DC |
632 | linkage_name_copy = linkage_name; |
633 | } | |
2de7ced7 | 634 | |
04a679b8 TT |
635 | entry.mangled = (char *) lookup_name; |
636 | slot = ((struct demangled_name_entry **) | |
637 | htab_find_slot (objfile->demangled_names_hash, | |
638 | &entry, INSERT)); | |
2de7ced7 DJ |
639 | |
640 | /* If this name is not in the hash table, add it. */ | |
641 | if (*slot == NULL) | |
642 | { | |
980cae7a DC |
643 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
644 | linkage_name_copy); | |
2de7ced7 DJ |
645 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
646 | ||
04a679b8 TT |
647 | /* Suppose we have demangled_name==NULL, copy_name==0, and |
648 | lookup_name==linkage_name. In this case, we already have the | |
649 | mangled name saved, and we don't have a demangled name. So, | |
650 | you might think we could save a little space by not recording | |
651 | this in the hash table at all. | |
652 | ||
653 | It turns out that it is actually important to still save such | |
654 | an entry in the hash table, because storing this name gives | |
705b5767 | 655 | us better bcache hit rates for partial symbols. */ |
04a679b8 TT |
656 | if (!copy_name && lookup_name == linkage_name) |
657 | { | |
658 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
659 | offsetof (struct demangled_name_entry, | |
660 | demangled) | |
661 | + demangled_len + 1); | |
662 | (*slot)->mangled = (char *) lookup_name; | |
663 | } | |
664 | else | |
665 | { | |
666 | /* If we must copy the mangled name, put it directly after | |
667 | the demangled name so we can have a single | |
668 | allocation. */ | |
669 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
670 | offsetof (struct demangled_name_entry, | |
671 | demangled) | |
672 | + lookup_len + demangled_len + 2); | |
673 | (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]); | |
674 | strcpy ((*slot)->mangled, lookup_name); | |
675 | } | |
676 | ||
980cae7a | 677 | if (demangled_name != NULL) |
2de7ced7 | 678 | { |
04a679b8 | 679 | strcpy ((*slot)->demangled, demangled_name); |
2de7ced7 DJ |
680 | xfree (demangled_name); |
681 | } | |
682 | else | |
04a679b8 | 683 | (*slot)->demangled[0] = '\0'; |
2de7ced7 DJ |
684 | } |
685 | ||
72dcaf82 | 686 | gsymbol->name = (*slot)->mangled + lookup_len - len; |
04a679b8 | 687 | if ((*slot)->demangled[0] != '\0') |
29df156d | 688 | symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile); |
2de7ced7 | 689 | else |
29df156d | 690 | symbol_set_demangled_name (gsymbol, NULL, objfile); |
2de7ced7 DJ |
691 | } |
692 | ||
22abf04a DC |
693 | /* Return the source code name of a symbol. In languages where |
694 | demangling is necessary, this is the demangled name. */ | |
695 | ||
696 | char * | |
697 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
698 | { | |
9af17804 | 699 | switch (gsymbol->language) |
22abf04a | 700 | { |
1f8173e6 | 701 | case language_cplus: |
6aecb9c2 | 702 | case language_d: |
1f8173e6 PH |
703 | case language_java: |
704 | case language_objc: | |
f55ee35c | 705 | case language_fortran: |
b250c185 SW |
706 | if (symbol_get_demangled_name (gsymbol) != NULL) |
707 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
708 | break; |
709 | case language_ada: | |
b250c185 SW |
710 | if (symbol_get_demangled_name (gsymbol) != NULL) |
711 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
712 | else |
713 | return ada_decode_symbol (gsymbol); | |
714 | break; | |
715 | default: | |
716 | break; | |
22abf04a | 717 | } |
1f8173e6 | 718 | return gsymbol->name; |
22abf04a DC |
719 | } |
720 | ||
9cc0d196 | 721 | /* Return the demangled name for a symbol based on the language for |
c378eb4e | 722 | that symbol. If no demangled name exists, return NULL. */ |
9cc0d196 | 723 | char * |
df8a16a1 | 724 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 725 | { |
9af17804 | 726 | switch (gsymbol->language) |
1f8173e6 PH |
727 | { |
728 | case language_cplus: | |
6aecb9c2 | 729 | case language_d: |
1f8173e6 PH |
730 | case language_java: |
731 | case language_objc: | |
f55ee35c | 732 | case language_fortran: |
b250c185 SW |
733 | if (symbol_get_demangled_name (gsymbol) != NULL) |
734 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
735 | break; |
736 | case language_ada: | |
b250c185 SW |
737 | if (symbol_get_demangled_name (gsymbol) != NULL) |
738 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
739 | else |
740 | return ada_decode_symbol (gsymbol); | |
741 | break; | |
742 | default: | |
743 | break; | |
744 | } | |
745 | return NULL; | |
9cc0d196 | 746 | } |
fe39c653 | 747 | |
4725b721 PH |
748 | /* Return the search name of a symbol---generally the demangled or |
749 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 750 | If there is no distinct demangled name, then returns the same value |
c378eb4e | 751 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
fc062ac6 JB |
752 | char * |
753 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
754 | { | |
1f8173e6 PH |
755 | if (gsymbol->language == language_ada) |
756 | return gsymbol->name; | |
757 | else | |
758 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
759 | } |
760 | ||
fe39c653 EZ |
761 | /* Initialize the structure fields to zero values. */ |
762 | void | |
763 | init_sal (struct symtab_and_line *sal) | |
764 | { | |
6c95b8df | 765 | sal->pspace = NULL; |
fe39c653 EZ |
766 | sal->symtab = 0; |
767 | sal->section = 0; | |
768 | sal->line = 0; | |
769 | sal->pc = 0; | |
770 | sal->end = 0; | |
ed0616c6 VP |
771 | sal->explicit_pc = 0; |
772 | sal->explicit_line = 0; | |
fe39c653 | 773 | } |
c906108c SS |
774 | \f |
775 | ||
94277a38 DJ |
776 | /* Return 1 if the two sections are the same, or if they could |
777 | plausibly be copies of each other, one in an original object | |
778 | file and another in a separated debug file. */ | |
779 | ||
780 | int | |
714835d5 UW |
781 | matching_obj_sections (struct obj_section *obj_first, |
782 | struct obj_section *obj_second) | |
94277a38 | 783 | { |
714835d5 UW |
784 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
785 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
786 | struct objfile *obj; |
787 | ||
788 | /* If they're the same section, then they match. */ | |
789 | if (first == second) | |
790 | return 1; | |
791 | ||
792 | /* If either is NULL, give up. */ | |
793 | if (first == NULL || second == NULL) | |
794 | return 0; | |
795 | ||
796 | /* This doesn't apply to absolute symbols. */ | |
797 | if (first->owner == NULL || second->owner == NULL) | |
798 | return 0; | |
799 | ||
800 | /* If they're in the same object file, they must be different sections. */ | |
801 | if (first->owner == second->owner) | |
802 | return 0; | |
803 | ||
804 | /* Check whether the two sections are potentially corresponding. They must | |
805 | have the same size, address, and name. We can't compare section indexes, | |
806 | which would be more reliable, because some sections may have been | |
807 | stripped. */ | |
808 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
809 | return 0; | |
810 | ||
818f79f6 | 811 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 812 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
813 | - bfd_get_start_address (first->owner) |
814 | != bfd_get_section_vma (second->owner, second) | |
815 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
816 | return 0; |
817 | ||
818 | if (bfd_get_section_name (first->owner, first) == NULL | |
819 | || bfd_get_section_name (second->owner, second) == NULL | |
820 | || strcmp (bfd_get_section_name (first->owner, first), | |
821 | bfd_get_section_name (second->owner, second)) != 0) | |
822 | return 0; | |
823 | ||
824 | /* Otherwise check that they are in corresponding objfiles. */ | |
825 | ||
826 | ALL_OBJFILES (obj) | |
827 | if (obj->obfd == first->owner) | |
828 | break; | |
829 | gdb_assert (obj != NULL); | |
830 | ||
831 | if (obj->separate_debug_objfile != NULL | |
832 | && obj->separate_debug_objfile->obfd == second->owner) | |
833 | return 1; | |
834 | if (obj->separate_debug_objfile_backlink != NULL | |
835 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
836 | return 1; | |
837 | ||
838 | return 0; | |
839 | } | |
c5aa993b | 840 | |
ccefe4c4 TT |
841 | struct symtab * |
842 | find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section) | |
c906108c | 843 | { |
52f0bd74 | 844 | struct objfile *objfile; |
8a48e967 DJ |
845 | struct minimal_symbol *msymbol; |
846 | ||
847 | /* If we know that this is not a text address, return failure. This is | |
848 | necessary because we loop based on texthigh and textlow, which do | |
849 | not include the data ranges. */ | |
850 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
851 | if (msymbol | |
712f90be TT |
852 | && (MSYMBOL_TYPE (msymbol) == mst_data |
853 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
854 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
855 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
856 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 857 | return NULL; |
c906108c | 858 | |
ff013f42 | 859 | ALL_OBJFILES (objfile) |
ccefe4c4 TT |
860 | { |
861 | struct symtab *result = NULL; | |
433759f7 | 862 | |
ccefe4c4 TT |
863 | if (objfile->sf) |
864 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol, | |
865 | pc, section, 0); | |
866 | if (result) | |
867 | return result; | |
868 | } | |
ff013f42 JK |
869 | |
870 | return NULL; | |
c906108c | 871 | } |
c906108c SS |
872 | \f |
873 | /* Debug symbols usually don't have section information. We need to dig that | |
874 | out of the minimal symbols and stash that in the debug symbol. */ | |
875 | ||
ccefe4c4 | 876 | void |
907fc202 UW |
877 | fixup_section (struct general_symbol_info *ginfo, |
878 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
879 | { |
880 | struct minimal_symbol *msym; | |
c906108c | 881 | |
bccdca4a UW |
882 | /* First, check whether a minimal symbol with the same name exists |
883 | and points to the same address. The address check is required | |
884 | e.g. on PowerPC64, where the minimal symbol for a function will | |
885 | point to the function descriptor, while the debug symbol will | |
886 | point to the actual function code. */ | |
907fc202 UW |
887 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
888 | if (msym) | |
7a78d0ee | 889 | { |
714835d5 | 890 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
891 | ginfo->section = SYMBOL_SECTION (msym); |
892 | } | |
907fc202 | 893 | else |
19e2d14b KB |
894 | { |
895 | /* Static, function-local variables do appear in the linker | |
896 | (minimal) symbols, but are frequently given names that won't | |
897 | be found via lookup_minimal_symbol(). E.g., it has been | |
898 | observed in frv-uclinux (ELF) executables that a static, | |
899 | function-local variable named "foo" might appear in the | |
900 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
901 | point in attempting to extend the lookup-by-name mechanism to | |
902 | handle this case due to the fact that there can be multiple | |
903 | names. | |
9af17804 | 904 | |
19e2d14b KB |
905 | So, instead, search the section table when lookup by name has |
906 | failed. The ``addr'' and ``endaddr'' fields may have already | |
907 | been relocated. If so, the relocation offset (i.e. the | |
908 | ANOFFSET value) needs to be subtracted from these values when | |
909 | performing the comparison. We unconditionally subtract it, | |
910 | because, when no relocation has been performed, the ANOFFSET | |
911 | value will simply be zero. | |
9af17804 | 912 | |
19e2d14b KB |
913 | The address of the symbol whose section we're fixing up HAS |
914 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
915 | the section isn't yet known and knowing the section is | |
916 | necessary in order to add the correct relocation value. In | |
917 | other words, we wouldn't even be in this function (attempting | |
918 | to compute the section) if it were already known. | |
919 | ||
920 | Note that it is possible to search the minimal symbols | |
921 | (subtracting the relocation value if necessary) to find the | |
922 | matching minimal symbol, but this is overkill and much less | |
923 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
924 | symbol, only its section. |
925 | ||
19e2d14b KB |
926 | Note that this technique (of doing a section table search) |
927 | can fail when unrelocated section addresses overlap. For | |
928 | this reason, we still attempt a lookup by name prior to doing | |
929 | a search of the section table. */ | |
9af17804 | 930 | |
19e2d14b | 931 | struct obj_section *s; |
433759f7 | 932 | |
19e2d14b KB |
933 | ALL_OBJFILE_OSECTIONS (objfile, s) |
934 | { | |
935 | int idx = s->the_bfd_section->index; | |
936 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
937 | ||
f1f6aadf PA |
938 | if (obj_section_addr (s) - offset <= addr |
939 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 940 | { |
714835d5 | 941 | ginfo->obj_section = s; |
19e2d14b KB |
942 | ginfo->section = idx; |
943 | return; | |
944 | } | |
945 | } | |
946 | } | |
c906108c SS |
947 | } |
948 | ||
949 | struct symbol * | |
fba45db2 | 950 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 951 | { |
907fc202 UW |
952 | CORE_ADDR addr; |
953 | ||
c906108c SS |
954 | if (!sym) |
955 | return NULL; | |
956 | ||
714835d5 | 957 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
958 | return sym; |
959 | ||
907fc202 UW |
960 | /* We either have an OBJFILE, or we can get at it from the sym's |
961 | symtab. Anything else is a bug. */ | |
962 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
963 | ||
964 | if (objfile == NULL) | |
965 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
966 | ||
967 | /* We should have an objfile by now. */ | |
968 | gdb_assert (objfile); | |
969 | ||
970 | switch (SYMBOL_CLASS (sym)) | |
971 | { | |
972 | case LOC_STATIC: | |
973 | case LOC_LABEL: | |
907fc202 UW |
974 | addr = SYMBOL_VALUE_ADDRESS (sym); |
975 | break; | |
976 | case LOC_BLOCK: | |
977 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
978 | break; | |
979 | ||
980 | default: | |
981 | /* Nothing else will be listed in the minsyms -- no use looking | |
982 | it up. */ | |
983 | return sym; | |
984 | } | |
985 | ||
986 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
987 | |
988 | return sym; | |
989 | } | |
990 | ||
c906108c | 991 | /* Find the definition for a specified symbol name NAME |
176620f1 | 992 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c | 993 | Returns the struct symbol pointer, or zero if no symbol is found. |
c906108c SS |
994 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if |
995 | NAME is a field of the current implied argument `this'. If so set | |
9af17804 | 996 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. |
c906108c | 997 | BLOCK_FOUND is set to the block in which NAME is found (in the case of |
c378eb4e | 998 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ |
c906108c SS |
999 | |
1000 | /* This function has a bunch of loops in it and it would seem to be | |
1001 | attractive to put in some QUIT's (though I'm not really sure | |
1002 | whether it can run long enough to be really important). But there | |
1003 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1004 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1005 | that there is C++ code below which can error(), but that probably | |
1006 | doesn't affect these calls since they are looking for a known | |
1007 | variable and thus can probably assume it will never hit the C++ | |
1008 | code). */ | |
c906108c | 1009 | |
774b6a14 TT |
1010 | struct symbol * |
1011 | lookup_symbol_in_language (const char *name, const struct block *block, | |
1012 | const domain_enum domain, enum language lang, | |
1013 | int *is_a_field_of_this) | |
c906108c | 1014 | { |
729051e6 DJ |
1015 | char *demangled_name = NULL; |
1016 | const char *modified_name = NULL; | |
fba7f19c | 1017 | struct symbol *returnval; |
9ee6bb93 | 1018 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1019 | |
729051e6 DJ |
1020 | modified_name = name; |
1021 | ||
433759f7 | 1022 | /* If we are using C++, D, or Java, demangle the name before doing a |
c378eb4e | 1023 | lookup, so we can always binary search. */ |
53c5240f | 1024 | if (lang == language_cplus) |
729051e6 DJ |
1025 | { |
1026 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1027 | if (demangled_name) | |
1028 | { | |
729051e6 | 1029 | modified_name = demangled_name; |
9ee6bb93 | 1030 | make_cleanup (xfree, demangled_name); |
729051e6 | 1031 | } |
71c25dea TT |
1032 | else |
1033 | { | |
1034 | /* If we were given a non-mangled name, canonicalize it | |
1035 | according to the language (so far only for C++). */ | |
1036 | demangled_name = cp_canonicalize_string (name); | |
1037 | if (demangled_name) | |
1038 | { | |
1039 | modified_name = demangled_name; | |
1040 | make_cleanup (xfree, demangled_name); | |
1041 | } | |
1042 | } | |
729051e6 | 1043 | } |
53c5240f | 1044 | else if (lang == language_java) |
987504bb | 1045 | { |
9af17804 | 1046 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1047 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1048 | if (demangled_name) | |
1049 | { | |
987504bb | 1050 | modified_name = demangled_name; |
9ee6bb93 | 1051 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1052 | } |
1053 | } | |
6aecb9c2 JB |
1054 | else if (lang == language_d) |
1055 | { | |
1056 | demangled_name = d_demangle (name, 0); | |
1057 | if (demangled_name) | |
1058 | { | |
1059 | modified_name = demangled_name; | |
1060 | make_cleanup (xfree, demangled_name); | |
1061 | } | |
1062 | } | |
729051e6 | 1063 | |
63872f9d JG |
1064 | if (case_sensitivity == case_sensitive_off) |
1065 | { | |
1066 | char *copy; | |
1067 | int len, i; | |
1068 | ||
1069 | len = strlen (name); | |
1070 | copy = (char *) alloca (len + 1); | |
1071 | for (i= 0; i < len; i++) | |
1072 | copy[i] = tolower (name[i]); | |
1073 | copy[len] = 0; | |
fba7f19c | 1074 | modified_name = copy; |
63872f9d | 1075 | } |
fba7f19c | 1076 | |
94af9270 | 1077 | returnval = lookup_symbol_aux (modified_name, block, domain, lang, |
774b6a14 | 1078 | is_a_field_of_this); |
9ee6bb93 | 1079 | do_cleanups (cleanup); |
fba7f19c | 1080 | |
9af17804 | 1081 | return returnval; |
fba7f19c EZ |
1082 | } |
1083 | ||
53c5240f PA |
1084 | /* Behave like lookup_symbol_in_language, but performed with the |
1085 | current language. */ | |
1086 | ||
1087 | struct symbol * | |
1088 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1089 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1090 | { |
1091 | return lookup_symbol_in_language (name, block, domain, | |
1092 | current_language->la_language, | |
2570f2b7 | 1093 | is_a_field_of_this); |
53c5240f PA |
1094 | } |
1095 | ||
1096 | /* Behave like lookup_symbol except that NAME is the natural name | |
5ad1c190 DC |
1097 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1098 | non-NULL, ensure that the symbol's linkage name matches as | |
1099 | well. */ | |
1100 | ||
fba7f19c | 1101 | static struct symbol * |
94af9270 KS |
1102 | lookup_symbol_aux (const char *name, const struct block *block, |
1103 | const domain_enum domain, enum language language, | |
774b6a14 | 1104 | int *is_a_field_of_this) |
fba7f19c | 1105 | { |
8155455b | 1106 | struct symbol *sym; |
53c5240f | 1107 | const struct language_defn *langdef; |
406bc4de | 1108 | |
9a146a11 EZ |
1109 | /* Make sure we do something sensible with is_a_field_of_this, since |
1110 | the callers that set this parameter to some non-null value will | |
1111 | certainly use it later and expect it to be either 0 or 1. | |
1112 | If we don't set it, the contents of is_a_field_of_this are | |
1113 | undefined. */ | |
1114 | if (is_a_field_of_this != NULL) | |
1115 | *is_a_field_of_this = 0; | |
1116 | ||
e4051eeb DC |
1117 | /* Search specified block and its superiors. Don't search |
1118 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1119 | |
13387711 | 1120 | sym = lookup_symbol_aux_local (name, block, domain, language); |
8155455b DC |
1121 | if (sym != NULL) |
1122 | return sym; | |
c906108c | 1123 | |
53c5240f | 1124 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
13387711 | 1125 | check to see if NAME is a field of `this'. */ |
53c5240f PA |
1126 | |
1127 | langdef = language_def (language); | |
5f9a71c3 | 1128 | |
2b2d9e11 VP |
1129 | if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL |
1130 | && block != NULL) | |
c906108c | 1131 | { |
2b2d9e11 | 1132 | struct symbol *sym = NULL; |
8540c487 | 1133 | const struct block *function_block = block; |
433759f7 | 1134 | |
2b2d9e11 VP |
1135 | /* 'this' is only defined in the function's block, so find the |
1136 | enclosing function block. */ | |
8540c487 SW |
1137 | for (; function_block && !BLOCK_FUNCTION (function_block); |
1138 | function_block = BLOCK_SUPERBLOCK (function_block)); | |
2b2d9e11 | 1139 | |
8540c487 SW |
1140 | if (function_block && !dict_empty (BLOCK_DICT (function_block))) |
1141 | sym = lookup_block_symbol (function_block, langdef->la_name_of_this, | |
94af9270 | 1142 | VAR_DOMAIN); |
2b2d9e11 | 1143 | if (sym) |
c906108c | 1144 | { |
2b2d9e11 | 1145 | struct type *t = sym->type; |
9af17804 | 1146 | |
2b2d9e11 VP |
1147 | /* I'm not really sure that type of this can ever |
1148 | be typedefed; just be safe. */ | |
1149 | CHECK_TYPEDEF (t); | |
1150 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1151 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1152 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1153 | |
2b2d9e11 VP |
1154 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1155 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1156 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1157 | langdef->la_name_of_this); |
9af17804 | 1158 | |
2b2d9e11 VP |
1159 | if (check_field (t, name)) |
1160 | { | |
1161 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1162 | return NULL; |
1163 | } | |
c906108c SS |
1164 | } |
1165 | } | |
1166 | ||
53c5240f | 1167 | /* Now do whatever is appropriate for LANGUAGE to look |
774b6a14 | 1168 | up static and global variables. */ |
c906108c | 1169 | |
774b6a14 TT |
1170 | sym = langdef->la_lookup_symbol_nonlocal (name, block, domain); |
1171 | if (sym != NULL) | |
1172 | return sym; | |
c906108c | 1173 | |
774b6a14 TT |
1174 | /* Now search all static file-level symbols. Not strictly correct, |
1175 | but more useful than an error. */ | |
41f62f39 JK |
1176 | |
1177 | return lookup_static_symbol_aux (name, domain); | |
1178 | } | |
1179 | ||
1180 | /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs | |
1181 | first, then check the psymtabs. If a psymtab indicates the existence of the | |
1182 | desired name as a file-level static, then do psymtab-to-symtab conversion on | |
c378eb4e | 1183 | the fly and return the found symbol. */ |
41f62f39 JK |
1184 | |
1185 | struct symbol * | |
1186 | lookup_static_symbol_aux (const char *name, const domain_enum domain) | |
1187 | { | |
1188 | struct objfile *objfile; | |
1189 | struct symbol *sym; | |
c906108c | 1190 | |
94af9270 | 1191 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain); |
8155455b DC |
1192 | if (sym != NULL) |
1193 | return sym; | |
9af17804 | 1194 | |
ccefe4c4 TT |
1195 | ALL_OBJFILES (objfile) |
1196 | { | |
1197 | sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain); | |
1198 | if (sym != NULL) | |
1199 | return sym; | |
1200 | } | |
c906108c | 1201 | |
8155455b | 1202 | return NULL; |
c906108c | 1203 | } |
8155455b | 1204 | |
e4051eeb | 1205 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1206 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1207 | |
1208 | static struct symbol * | |
94af9270 | 1209 | lookup_symbol_aux_local (const char *name, const struct block *block, |
13387711 SW |
1210 | const domain_enum domain, |
1211 | enum language language) | |
8155455b DC |
1212 | { |
1213 | struct symbol *sym; | |
89a9d1b1 | 1214 | const struct block *static_block = block_static_block (block); |
13387711 SW |
1215 | const char *scope = block_scope (block); |
1216 | ||
e4051eeb DC |
1217 | /* Check if either no block is specified or it's a global block. */ |
1218 | ||
89a9d1b1 DC |
1219 | if (static_block == NULL) |
1220 | return NULL; | |
e4051eeb | 1221 | |
89a9d1b1 | 1222 | while (block != static_block) |
f61e8913 | 1223 | { |
94af9270 | 1224 | sym = lookup_symbol_aux_block (name, block, domain); |
f61e8913 DC |
1225 | if (sym != NULL) |
1226 | return sym; | |
edb3359d | 1227 | |
f55ee35c | 1228 | if (language == language_cplus || language == language_fortran) |
13387711 | 1229 | { |
34eaf542 TT |
1230 | sym = cp_lookup_symbol_imports_or_template (scope, name, block, |
1231 | domain); | |
13387711 SW |
1232 | if (sym != NULL) |
1233 | return sym; | |
1234 | } | |
1235 | ||
edb3359d DJ |
1236 | if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) |
1237 | break; | |
f61e8913 DC |
1238 | block = BLOCK_SUPERBLOCK (block); |
1239 | } | |
1240 | ||
edb3359d | 1241 | /* We've reached the edge of the function without finding a result. */ |
e4051eeb | 1242 | |
f61e8913 DC |
1243 | return NULL; |
1244 | } | |
1245 | ||
3a40aaa0 UW |
1246 | /* Look up OBJFILE to BLOCK. */ |
1247 | ||
c0201579 | 1248 | struct objfile * |
3a40aaa0 UW |
1249 | lookup_objfile_from_block (const struct block *block) |
1250 | { | |
1251 | struct objfile *obj; | |
1252 | struct symtab *s; | |
1253 | ||
1254 | if (block == NULL) | |
1255 | return NULL; | |
1256 | ||
1257 | block = block_global_block (block); | |
1258 | /* Go through SYMTABS. */ | |
1259 | ALL_SYMTABS (obj, s) | |
1260 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
61f0d762 JK |
1261 | { |
1262 | if (obj->separate_debug_objfile_backlink) | |
1263 | obj = obj->separate_debug_objfile_backlink; | |
1264 | ||
1265 | return obj; | |
1266 | } | |
3a40aaa0 UW |
1267 | |
1268 | return NULL; | |
1269 | } | |
1270 | ||
6c9353d3 PA |
1271 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1272 | block_found appropriately. */ | |
f61e8913 | 1273 | |
5f9a71c3 | 1274 | struct symbol * |
94af9270 | 1275 | lookup_symbol_aux_block (const char *name, const struct block *block, |
21b556f4 | 1276 | const domain_enum domain) |
f61e8913 DC |
1277 | { |
1278 | struct symbol *sym; | |
f61e8913 | 1279 | |
94af9270 | 1280 | sym = lookup_block_symbol (block, name, domain); |
f61e8913 | 1281 | if (sym) |
8155455b | 1282 | { |
f61e8913 | 1283 | block_found = block; |
21b556f4 | 1284 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1285 | } |
1286 | ||
1287 | return NULL; | |
1288 | } | |
1289 | ||
3a40aaa0 UW |
1290 | /* Check all global symbols in OBJFILE in symtabs and |
1291 | psymtabs. */ | |
1292 | ||
1293 | struct symbol * | |
15d123c9 | 1294 | lookup_global_symbol_from_objfile (const struct objfile *main_objfile, |
3a40aaa0 | 1295 | const char *name, |
21b556f4 | 1296 | const domain_enum domain) |
3a40aaa0 | 1297 | { |
15d123c9 | 1298 | const struct objfile *objfile; |
3a40aaa0 UW |
1299 | struct symbol *sym; |
1300 | struct blockvector *bv; | |
1301 | const struct block *block; | |
1302 | struct symtab *s; | |
3a40aaa0 | 1303 | |
15d123c9 TG |
1304 | for (objfile = main_objfile; |
1305 | objfile; | |
1306 | objfile = objfile_separate_debug_iterate (main_objfile, objfile)) | |
1307 | { | |
1308 | /* Go through symtabs. */ | |
1309 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1310 | { | |
1311 | bv = BLOCKVECTOR (s); | |
1312 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
94af9270 | 1313 | sym = lookup_block_symbol (block, name, domain); |
15d123c9 TG |
1314 | if (sym) |
1315 | { | |
1316 | block_found = block; | |
1317 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1318 | } | |
1319 | } | |
1320 | ||
ccefe4c4 TT |
1321 | sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK, |
1322 | name, domain); | |
1323 | if (sym) | |
1324 | return sym; | |
15d123c9 | 1325 | } |
56e3f43c | 1326 | |
3a40aaa0 UW |
1327 | return NULL; |
1328 | } | |
1329 | ||
8155455b DC |
1330 | /* Check to see if the symbol is defined in one of the symtabs. |
1331 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1332 | depending on whether or not we want to search global symbols or | |
1333 | static symbols. */ | |
1334 | ||
1335 | static struct symbol * | |
94af9270 | 1336 | lookup_symbol_aux_symtabs (int block_index, const char *name, |
21b556f4 | 1337 | const domain_enum domain) |
8155455b DC |
1338 | { |
1339 | struct symbol *sym; | |
1340 | struct objfile *objfile; | |
1341 | struct blockvector *bv; | |
1342 | const struct block *block; | |
1343 | struct symtab *s; | |
1344 | ||
58b6ab13 | 1345 | ALL_OBJFILES (objfile) |
8155455b | 1346 | { |
774b6a14 TT |
1347 | if (objfile->sf) |
1348 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, | |
1349 | block_index, | |
1350 | name, domain); | |
1351 | ||
58b6ab13 TT |
1352 | ALL_OBJFILE_SYMTABS (objfile, s) |
1353 | if (s->primary) | |
1354 | { | |
1355 | bv = BLOCKVECTOR (s); | |
1356 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
1357 | sym = lookup_block_symbol (block, name, domain); | |
1358 | if (sym) | |
1359 | { | |
1360 | block_found = block; | |
1361 | return fixup_symbol_section (sym, objfile); | |
1362 | } | |
1363 | } | |
8155455b DC |
1364 | } |
1365 | ||
1366 | return NULL; | |
1367 | } | |
1368 | ||
ccefe4c4 TT |
1369 | /* A helper function for lookup_symbol_aux that interfaces with the |
1370 | "quick" symbol table functions. */ | |
8155455b DC |
1371 | |
1372 | static struct symbol * | |
ccefe4c4 TT |
1373 | lookup_symbol_aux_quick (struct objfile *objfile, int kind, |
1374 | const char *name, const domain_enum domain) | |
8155455b | 1375 | { |
ccefe4c4 | 1376 | struct symtab *symtab; |
8155455b DC |
1377 | struct blockvector *bv; |
1378 | const struct block *block; | |
ccefe4c4 | 1379 | struct symbol *sym; |
8155455b | 1380 | |
ccefe4c4 TT |
1381 | if (!objfile->sf) |
1382 | return NULL; | |
1383 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain); | |
1384 | if (!symtab) | |
1385 | return NULL; | |
8155455b | 1386 | |
ccefe4c4 TT |
1387 | bv = BLOCKVECTOR (symtab); |
1388 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1389 | sym = lookup_block_symbol (block, name, domain); | |
1390 | if (!sym) | |
1391 | { | |
1392 | /* This shouldn't be necessary, but as a last resort try | |
1393 | looking in the statics even though the psymtab claimed | |
c378eb4e | 1394 | the symbol was global, or vice-versa. It's possible |
ccefe4c4 TT |
1395 | that the psymtab gets it wrong in some cases. */ |
1396 | ||
1397 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1398 | If that happens, isn't it likely to be a GDB error, in | |
1399 | which case we should fix the GDB error rather than | |
1400 | silently dealing with it here? So I'd vote for | |
1401 | removing the check for the symbol in the other | |
1402 | block. */ | |
1403 | block = BLOCKVECTOR_BLOCK (bv, | |
1404 | kind == GLOBAL_BLOCK ? | |
1405 | STATIC_BLOCK : GLOBAL_BLOCK); | |
1406 | sym = lookup_block_symbol (block, name, domain); | |
1407 | if (!sym) | |
3e43a32a MS |
1408 | error (_("\ |
1409 | Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ | |
1410 | %s may be an inlined function, or may be a template function\n\ | |
1411 | (if a template, try specifying an instantiation: %s<type>)."), | |
ccefe4c4 TT |
1412 | kind == GLOBAL_BLOCK ? "global" : "static", |
1413 | name, symtab->filename, name, name); | |
1414 | } | |
1415 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1416 | } |
1417 | ||
5f9a71c3 DC |
1418 | /* A default version of lookup_symbol_nonlocal for use by languages |
1419 | that can't think of anything better to do. This implements the C | |
1420 | lookup rules. */ | |
1421 | ||
1422 | struct symbol * | |
1423 | basic_lookup_symbol_nonlocal (const char *name, | |
5f9a71c3 | 1424 | const struct block *block, |
21b556f4 | 1425 | const domain_enum domain) |
5f9a71c3 DC |
1426 | { |
1427 | struct symbol *sym; | |
1428 | ||
1429 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1430 | this (or what turned into this) was part of lookup_symbol_aux; | |
1431 | I'm much less worried about these questions now, since these | |
1432 | decisions have turned out well, but I leave these comments here | |
1433 | for posterity. */ | |
1434 | ||
1435 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1436 | not it would be appropriate to search the current global block | |
1437 | here as well. (That's what this code used to do before the | |
1438 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1439 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1440 | next. On the other hand, if decode_line_1 is passed an argument | |
1441 | like filename:var, then the user presumably wants 'var' to be | |
1442 | searched for in filename. On the third hand, there shouldn't be | |
1443 | multiple global variables all of which are named 'var', and it's | |
1444 | not like decode_line_1 has ever restricted its search to only | |
1445 | global variables in a single filename. All in all, only | |
1446 | searching the static block here seems best: it's correct and it's | |
1447 | cleanest. */ | |
1448 | ||
1449 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1450 | issue here: if you usually search for global symbols in the | |
1451 | current file, then it would be slightly better to search the | |
1452 | current global block before searching all the symtabs. But there | |
1453 | are other factors that have a much greater effect on performance | |
1454 | than that one, so I don't think we should worry about that for | |
1455 | now. */ | |
1456 | ||
94af9270 | 1457 | sym = lookup_symbol_static (name, block, domain); |
5f9a71c3 DC |
1458 | if (sym != NULL) |
1459 | return sym; | |
1460 | ||
94af9270 | 1461 | return lookup_symbol_global (name, block, domain); |
5f9a71c3 DC |
1462 | } |
1463 | ||
1464 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1465 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1466 | ||
1467 | struct symbol * | |
1468 | lookup_symbol_static (const char *name, | |
5f9a71c3 | 1469 | const struct block *block, |
21b556f4 | 1470 | const domain_enum domain) |
5f9a71c3 DC |
1471 | { |
1472 | const struct block *static_block = block_static_block (block); | |
1473 | ||
1474 | if (static_block != NULL) | |
94af9270 | 1475 | return lookup_symbol_aux_block (name, static_block, domain); |
5f9a71c3 DC |
1476 | else |
1477 | return NULL; | |
1478 | } | |
1479 | ||
1480 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1481 | necessary). */ | |
1482 | ||
1483 | struct symbol * | |
1484 | lookup_symbol_global (const char *name, | |
3a40aaa0 | 1485 | const struct block *block, |
21b556f4 | 1486 | const domain_enum domain) |
5f9a71c3 | 1487 | { |
3a40aaa0 UW |
1488 | struct symbol *sym = NULL; |
1489 | struct objfile *objfile = NULL; | |
1490 | ||
1491 | /* Call library-specific lookup procedure. */ | |
1492 | objfile = lookup_objfile_from_block (block); | |
1493 | if (objfile != NULL) | |
94af9270 | 1494 | sym = solib_global_lookup (objfile, name, domain); |
3a40aaa0 UW |
1495 | if (sym != NULL) |
1496 | return sym; | |
5f9a71c3 | 1497 | |
94af9270 | 1498 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain); |
5f9a71c3 DC |
1499 | if (sym != NULL) |
1500 | return sym; | |
1501 | ||
ccefe4c4 TT |
1502 | ALL_OBJFILES (objfile) |
1503 | { | |
1504 | sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain); | |
1505 | if (sym) | |
1506 | return sym; | |
1507 | } | |
1508 | ||
1509 | return NULL; | |
5f9a71c3 DC |
1510 | } |
1511 | ||
5eeb2539 | 1512 | int |
9af17804 | 1513 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1514 | domain_enum symbol_domain, |
1515 | domain_enum domain) | |
1516 | { | |
9af17804 | 1517 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1518 | A Java class declaration also defines a typedef for the class. |
1519 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1520 | if (symbol_language == language_cplus | |
6aecb9c2 | 1521 | || symbol_language == language_d |
5eeb2539 AR |
1522 | || symbol_language == language_java |
1523 | || symbol_language == language_ada) | |
1524 | { | |
1525 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1526 | && symbol_domain == STRUCT_DOMAIN) | |
1527 | return 1; | |
1528 | } | |
1529 | /* For all other languages, strict match is required. */ | |
1530 | return (symbol_domain == domain); | |
1531 | } | |
1532 | ||
ccefe4c4 TT |
1533 | /* Look up a type named NAME in the struct_domain. The type returned |
1534 | must not be opaque -- i.e., must have at least one field | |
1535 | defined. */ | |
c906108c | 1536 | |
ccefe4c4 TT |
1537 | struct type * |
1538 | lookup_transparent_type (const char *name) | |
c906108c | 1539 | { |
ccefe4c4 TT |
1540 | return current_language->la_lookup_transparent_type (name); |
1541 | } | |
9af17804 | 1542 | |
ccefe4c4 TT |
1543 | /* A helper for basic_lookup_transparent_type that interfaces with the |
1544 | "quick" symbol table functions. */ | |
357e46e7 | 1545 | |
ccefe4c4 TT |
1546 | static struct type * |
1547 | basic_lookup_transparent_type_quick (struct objfile *objfile, int kind, | |
1548 | const char *name) | |
1549 | { | |
1550 | struct symtab *symtab; | |
1551 | struct blockvector *bv; | |
1552 | struct block *block; | |
1553 | struct symbol *sym; | |
c906108c | 1554 | |
ccefe4c4 TT |
1555 | if (!objfile->sf) |
1556 | return NULL; | |
1557 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN); | |
1558 | if (!symtab) | |
1559 | return NULL; | |
c906108c | 1560 | |
ccefe4c4 TT |
1561 | bv = BLOCKVECTOR (symtab); |
1562 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1563 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1564 | if (!sym) | |
9af17804 | 1565 | { |
ccefe4c4 TT |
1566 | int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK; |
1567 | ||
1568 | /* This shouldn't be necessary, but as a last resort | |
1569 | * try looking in the 'other kind' even though the psymtab | |
c378eb4e | 1570 | * claimed the symbol was one thing. It's possible that |
ccefe4c4 TT |
1571 | * the psymtab gets it wrong in some cases. |
1572 | */ | |
1573 | block = BLOCKVECTOR_BLOCK (bv, other_kind); | |
1574 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1575 | if (!sym) | |
c378eb4e | 1576 | /* FIXME; error is wrong in one case. */ |
3e43a32a MS |
1577 | error (_("\ |
1578 | Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
ccefe4c4 TT |
1579 | %s may be an inlined function, or may be a template function\n\ |
1580 | (if a template, try specifying an instantiation: %s<type>)."), | |
1581 | name, symtab->filename, name, name); | |
c906108c | 1582 | } |
ccefe4c4 TT |
1583 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1584 | return SYMBOL_TYPE (sym); | |
c906108c | 1585 | |
ccefe4c4 | 1586 | return NULL; |
b368761e | 1587 | } |
c906108c | 1588 | |
b368761e DC |
1589 | /* The standard implementation of lookup_transparent_type. This code |
1590 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1591 | up types were just left out. In particular it's assumed here that | |
1592 | types are available in struct_domain and only at file-static or | |
1593 | global blocks. */ | |
c906108c SS |
1594 | |
1595 | struct type * | |
b368761e | 1596 | basic_lookup_transparent_type (const char *name) |
c906108c | 1597 | { |
52f0bd74 AC |
1598 | struct symbol *sym; |
1599 | struct symtab *s = NULL; | |
c906108c | 1600 | struct blockvector *bv; |
52f0bd74 AC |
1601 | struct objfile *objfile; |
1602 | struct block *block; | |
ccefe4c4 | 1603 | struct type *t; |
c906108c SS |
1604 | |
1605 | /* Now search all the global symbols. Do the symtab's first, then | |
c378eb4e | 1606 | check the psymtab's. If a psymtab indicates the existence |
c906108c SS |
1607 | of the desired name as a global, then do psymtab-to-symtab |
1608 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1609 | |
58b6ab13 | 1610 | ALL_OBJFILES (objfile) |
c5aa993b | 1611 | { |
774b6a14 TT |
1612 | if (objfile->sf) |
1613 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, | |
1614 | GLOBAL_BLOCK, | |
1615 | name, STRUCT_DOMAIN); | |
1616 | ||
58b6ab13 TT |
1617 | ALL_OBJFILE_SYMTABS (objfile, s) |
1618 | if (s->primary) | |
1619 | { | |
1620 | bv = BLOCKVECTOR (s); | |
1621 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1622 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1623 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1624 | { | |
1625 | return SYMBOL_TYPE (sym); | |
1626 | } | |
1627 | } | |
c5aa993b | 1628 | } |
c906108c | 1629 | |
ccefe4c4 | 1630 | ALL_OBJFILES (objfile) |
c5aa993b | 1631 | { |
ccefe4c4 TT |
1632 | t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); |
1633 | if (t) | |
1634 | return t; | |
c5aa993b | 1635 | } |
c906108c SS |
1636 | |
1637 | /* Now search the static file-level symbols. | |
1638 | Not strictly correct, but more useful than an error. | |
1639 | Do the symtab's first, then | |
c378eb4e | 1640 | check the psymtab's. If a psymtab indicates the existence |
c906108c | 1641 | of the desired name as a file-level static, then do psymtab-to-symtab |
c378eb4e | 1642 | conversion on the fly and return the found symbol. */ |
c906108c | 1643 | |
54ec275a | 1644 | ALL_OBJFILES (objfile) |
c5aa993b | 1645 | { |
774b6a14 TT |
1646 | if (objfile->sf) |
1647 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK, | |
1648 | name, STRUCT_DOMAIN); | |
1649 | ||
54ec275a | 1650 | ALL_OBJFILE_SYMTABS (objfile, s) |
c5aa993b | 1651 | { |
54ec275a KS |
1652 | bv = BLOCKVECTOR (s); |
1653 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1654 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1655 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1656 | { | |
1657 | return SYMBOL_TYPE (sym); | |
1658 | } | |
c5aa993b JM |
1659 | } |
1660 | } | |
c906108c | 1661 | |
ccefe4c4 | 1662 | ALL_OBJFILES (objfile) |
c5aa993b | 1663 | { |
ccefe4c4 TT |
1664 | t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); |
1665 | if (t) | |
1666 | return t; | |
c5aa993b | 1667 | } |
ccefe4c4 | 1668 | |
c906108c SS |
1669 | return (struct type *) 0; |
1670 | } | |
1671 | ||
1672 | ||
c378eb4e | 1673 | /* Find the name of the file containing main(). */ |
c906108c | 1674 | /* FIXME: What about languages without main() or specially linked |
c378eb4e | 1675 | executables that have no main() ? */ |
c906108c | 1676 | |
dd786858 | 1677 | const char * |
ccefe4c4 | 1678 | find_main_filename (void) |
c906108c | 1679 | { |
52f0bd74 | 1680 | struct objfile *objfile; |
dd786858 | 1681 | char *name = main_name (); |
c906108c | 1682 | |
ccefe4c4 | 1683 | ALL_OBJFILES (objfile) |
c5aa993b | 1684 | { |
dd786858 TT |
1685 | const char *result; |
1686 | ||
ccefe4c4 TT |
1687 | if (!objfile->sf) |
1688 | continue; | |
1689 | result = objfile->sf->qf->find_symbol_file (objfile, name); | |
1690 | if (result) | |
1691 | return result; | |
c5aa993b | 1692 | } |
c906108c SS |
1693 | return (NULL); |
1694 | } | |
1695 | ||
176620f1 | 1696 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1697 | |
1698 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1699 | to find a match during the binary search of the non-encoded names, but | |
1700 | for now we don't worry about the slight inefficiency of looking for | |
1701 | a match we'll never find, since it will go pretty quick. Once the | |
1702 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1703 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1704 | symbol (language_cplus or language_objc set) has both the encoded and |
c378eb4e | 1705 | non-encoded names tested for a match. */ |
c906108c SS |
1706 | |
1707 | struct symbol * | |
aa1ee363 | 1708 | lookup_block_symbol (const struct block *block, const char *name, |
176620f1 | 1709 | const domain_enum domain) |
c906108c | 1710 | { |
de4f826b DC |
1711 | struct dict_iterator iter; |
1712 | struct symbol *sym; | |
c906108c | 1713 | |
de4f826b | 1714 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1715 | { |
de4f826b DC |
1716 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1717 | sym != NULL; | |
1718 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1719 | { |
5eeb2539 | 1720 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1721 | SYMBOL_DOMAIN (sym), domain)) |
261397f8 DJ |
1722 | return sym; |
1723 | } | |
1724 | return NULL; | |
1725 | } | |
526e70c0 | 1726 | else |
c906108c | 1727 | { |
526e70c0 DC |
1728 | /* Note that parameter symbols do not always show up last in the |
1729 | list; this loop makes sure to take anything else other than | |
1730 | parameter symbols first; it only uses parameter symbols as a | |
1731 | last resort. Note that this only takes up extra computation | |
1732 | time on a match. */ | |
de4f826b DC |
1733 | |
1734 | struct symbol *sym_found = NULL; | |
1735 | ||
1736 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1737 | sym != NULL; | |
1738 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1739 | { |
5eeb2539 | 1740 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1741 | SYMBOL_DOMAIN (sym), domain)) |
c906108c | 1742 | { |
c906108c | 1743 | sym_found = sym; |
2a2d4dc3 | 1744 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
1745 | { |
1746 | break; | |
1747 | } | |
1748 | } | |
c906108c | 1749 | } |
c378eb4e | 1750 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1751 | } |
c906108c SS |
1752 | } |
1753 | ||
c906108c | 1754 | /* Find the symtab associated with PC and SECTION. Look through the |
c378eb4e | 1755 | psymtabs and read in another symtab if necessary. */ |
c906108c SS |
1756 | |
1757 | struct symtab * | |
714835d5 | 1758 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 1759 | { |
52f0bd74 | 1760 | struct block *b; |
c906108c | 1761 | struct blockvector *bv; |
52f0bd74 AC |
1762 | struct symtab *s = NULL; |
1763 | struct symtab *best_s = NULL; | |
52f0bd74 | 1764 | struct objfile *objfile; |
6c95b8df | 1765 | struct program_space *pspace; |
c906108c | 1766 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1767 | struct minimal_symbol *msymbol; |
1768 | ||
6c95b8df PA |
1769 | pspace = current_program_space; |
1770 | ||
8a48e967 DJ |
1771 | /* If we know that this is not a text address, return failure. This is |
1772 | necessary because we loop based on the block's high and low code | |
1773 | addresses, which do not include the data ranges, and because | |
1774 | we call find_pc_sect_psymtab which has a similar restriction based | |
1775 | on the partial_symtab's texthigh and textlow. */ | |
1776 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1777 | if (msymbol | |
712f90be TT |
1778 | && (MSYMBOL_TYPE (msymbol) == mst_data |
1779 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
1780 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
1781 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
1782 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 1783 | return NULL; |
c906108c SS |
1784 | |
1785 | /* Search all symtabs for the one whose file contains our address, and which | |
1786 | is the smallest of all the ones containing the address. This is designed | |
1787 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1788 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1789 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1790 | ||
1791 | This happens for native ecoff format, where code from included files | |
c378eb4e | 1792 | gets its own symtab. The symtab for the included file should have |
c906108c SS |
1793 | been read in already via the dependency mechanism. |
1794 | It might be swifter to create several symtabs with the same name | |
1795 | like xcoff does (I'm not sure). | |
1796 | ||
1797 | It also happens for objfiles that have their functions reordered. | |
1798 | For these, the symtab we are looking for is not necessarily read in. */ | |
1799 | ||
11309657 | 1800 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1801 | { |
1802 | bv = BLOCKVECTOR (s); | |
1803 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1804 | |
c5aa993b | 1805 | if (BLOCK_START (b) <= pc |
c5aa993b | 1806 | && BLOCK_END (b) > pc |
c5aa993b JM |
1807 | && (distance == 0 |
1808 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1809 | { | |
1810 | /* For an objfile that has its functions reordered, | |
1811 | find_pc_psymtab will find the proper partial symbol table | |
1812 | and we simply return its corresponding symtab. */ | |
1813 | /* In order to better support objfiles that contain both | |
1814 | stabs and coff debugging info, we continue on if a psymtab | |
c378eb4e | 1815 | can't be found. */ |
ccefe4c4 | 1816 | if ((objfile->flags & OBJF_REORDERED) && objfile->sf) |
c5aa993b | 1817 | { |
ccefe4c4 | 1818 | struct symtab *result; |
433759f7 | 1819 | |
ccefe4c4 TT |
1820 | result |
1821 | = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
1822 | msymbol, | |
1823 | pc, section, | |
1824 | 0); | |
1825 | if (result) | |
1826 | return result; | |
c5aa993b JM |
1827 | } |
1828 | if (section != 0) | |
1829 | { | |
de4f826b | 1830 | struct dict_iterator iter; |
261397f8 | 1831 | struct symbol *sym = NULL; |
c906108c | 1832 | |
de4f826b | 1833 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 1834 | { |
261397f8 | 1835 | fixup_symbol_section (sym, objfile); |
714835d5 | 1836 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
1837 | break; |
1838 | } | |
de4f826b | 1839 | if (sym == NULL) |
c378eb4e MS |
1840 | continue; /* No symbol in this symtab matches |
1841 | section. */ | |
c5aa993b JM |
1842 | } |
1843 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1844 | best_s = s; | |
1845 | } | |
1846 | } | |
c906108c SS |
1847 | |
1848 | if (best_s != NULL) | |
c5aa993b | 1849 | return (best_s); |
c906108c | 1850 | |
ccefe4c4 TT |
1851 | ALL_OBJFILES (objfile) |
1852 | { | |
1853 | struct symtab *result; | |
433759f7 | 1854 | |
ccefe4c4 TT |
1855 | if (!objfile->sf) |
1856 | continue; | |
1857 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
1858 | msymbol, | |
1859 | pc, section, | |
1860 | 1); | |
1861 | if (result) | |
1862 | return result; | |
1863 | } | |
1864 | ||
1865 | return NULL; | |
c906108c SS |
1866 | } |
1867 | ||
c378eb4e MS |
1868 | /* Find the symtab associated with PC. Look through the psymtabs and read |
1869 | in another symtab if necessary. Backward compatibility, no section. */ | |
c906108c SS |
1870 | |
1871 | struct symtab * | |
fba45db2 | 1872 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
1873 | { |
1874 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1875 | } | |
c906108c | 1876 | \f |
c5aa993b | 1877 | |
7e73cedf | 1878 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
1879 | Return a structure containing a symtab pointer, a line number, |
1880 | and a pc range for the entire source line. | |
1881 | The value's .pc field is NOT the specified pc. | |
1882 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1883 | use the line that ends there. Otherwise, in that case, the line | |
1884 | that begins there is used. */ | |
1885 | ||
1886 | /* The big complication here is that a line may start in one file, and end just | |
1887 | before the start of another file. This usually occurs when you #include | |
1888 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1889 | range, we must search all symtabs associated with this compilation unit, and | |
1890 | find the one whose first PC is closer than that of the next line in this | |
1891 | symtab. */ | |
1892 | ||
1893 | /* If it's worth the effort, we could be using a binary search. */ | |
1894 | ||
1895 | struct symtab_and_line | |
714835d5 | 1896 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
1897 | { |
1898 | struct symtab *s; | |
52f0bd74 AC |
1899 | struct linetable *l; |
1900 | int len; | |
1901 | int i; | |
1902 | struct linetable_entry *item; | |
c906108c SS |
1903 | struct symtab_and_line val; |
1904 | struct blockvector *bv; | |
1905 | struct minimal_symbol *msymbol; | |
1906 | struct minimal_symbol *mfunsym; | |
1907 | ||
1908 | /* Info on best line seen so far, and where it starts, and its file. */ | |
1909 | ||
1910 | struct linetable_entry *best = NULL; | |
1911 | CORE_ADDR best_end = 0; | |
1912 | struct symtab *best_symtab = 0; | |
1913 | ||
1914 | /* Store here the first line number | |
1915 | of a file which contains the line at the smallest pc after PC. | |
1916 | If we don't find a line whose range contains PC, | |
1917 | we will use a line one less than this, | |
1918 | with a range from the start of that file to the first line's pc. */ | |
1919 | struct linetable_entry *alt = NULL; | |
1920 | struct symtab *alt_symtab = 0; | |
1921 | ||
1922 | /* Info on best line seen in this file. */ | |
1923 | ||
1924 | struct linetable_entry *prev; | |
1925 | ||
1926 | /* If this pc is not from the current frame, | |
1927 | it is the address of the end of a call instruction. | |
1928 | Quite likely that is the start of the following statement. | |
1929 | But what we want is the statement containing the instruction. | |
1930 | Fudge the pc to make sure we get that. */ | |
1931 | ||
fe39c653 | 1932 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 1933 | |
6c95b8df PA |
1934 | val.pspace = current_program_space; |
1935 | ||
b77b1eb7 JB |
1936 | /* It's tempting to assume that, if we can't find debugging info for |
1937 | any function enclosing PC, that we shouldn't search for line | |
1938 | number info, either. However, GAS can emit line number info for | |
1939 | assembly files --- very helpful when debugging hand-written | |
1940 | assembly code. In such a case, we'd have no debug info for the | |
1941 | function, but we would have line info. */ | |
648f4f79 | 1942 | |
c906108c SS |
1943 | if (notcurrent) |
1944 | pc -= 1; | |
1945 | ||
c5aa993b | 1946 | /* elz: added this because this function returned the wrong |
c906108c | 1947 | information if the pc belongs to a stub (import/export) |
c378eb4e | 1948 | to call a shlib function. This stub would be anywhere between |
9af17804 | 1949 | two functions in the target, and the line info was erroneously |
c378eb4e MS |
1950 | taken to be the one of the line before the pc. */ |
1951 | ||
c906108c | 1952 | /* RT: Further explanation: |
c5aa993b | 1953 | |
c906108c SS |
1954 | * We have stubs (trampolines) inserted between procedures. |
1955 | * | |
1956 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
1957 | * exists in the main image. | |
1958 | * | |
1959 | * In the minimal symbol table, we have a bunch of symbols | |
c378eb4e | 1960 | * sorted by start address. The stubs are marked as "trampoline", |
c906108c SS |
1961 | * the others appear as text. E.g.: |
1962 | * | |
9af17804 | 1963 | * Minimal symbol table for main image |
c906108c SS |
1964 | * main: code for main (text symbol) |
1965 | * shr1: stub (trampoline symbol) | |
1966 | * foo: code for foo (text symbol) | |
1967 | * ... | |
1968 | * Minimal symbol table for "shr1" image: | |
1969 | * ... | |
1970 | * shr1: code for shr1 (text symbol) | |
1971 | * ... | |
1972 | * | |
1973 | * So the code below is trying to detect if we are in the stub | |
1974 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
1975 | * and if found, do the symbolization from the real-code address | |
1976 | * rather than the stub address. | |
1977 | * | |
1978 | * Assumptions being made about the minimal symbol table: | |
1979 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
c378eb4e | 1980 | * if we're really in the trampoline.s If we're beyond it (say |
9af17804 | 1981 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
1982 | * symbol (the "foo" text symbol for example) and will not |
1983 | * return the trampoline. | |
1984 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
1985 | * corresponding to the trampoline, and whose address will | |
c378eb4e | 1986 | * be different than the trampoline address. I put in a sanity |
c906108c SS |
1987 | * check for the address being the same, to avoid an |
1988 | * infinite recursion. | |
1989 | */ | |
c5aa993b JM |
1990 | msymbol = lookup_minimal_symbol_by_pc (pc); |
1991 | if (msymbol != NULL) | |
c906108c | 1992 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 1993 | { |
2335f48e | 1994 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 1995 | NULL); |
c5aa993b JM |
1996 | if (mfunsym == NULL) |
1997 | /* I eliminated this warning since it is coming out | |
1998 | * in the following situation: | |
1999 | * gdb shmain // test program with shared libraries | |
2000 | * (gdb) break shr1 // function in shared lib | |
2001 | * Warning: In stub for ... | |
9af17804 | 2002 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2003 | * so of course we can't find the real func/line info, |
2004 | * but the "break" still works, and the warning is annoying. | |
c378eb4e | 2005 | * So I commented out the warning. RT */ |
3e43a32a | 2006 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2007 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2008 | ; | |
c5aa993b | 2009 | /* fall through */ |
3e43a32a MS |
2010 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) |
2011 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
c5aa993b | 2012 | /* Avoid infinite recursion */ |
c378eb4e | 2013 | /* See above comment about why warning is commented out. */ |
3e43a32a | 2014 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2015 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2016 | ; | |
c5aa993b JM |
2017 | /* fall through */ |
2018 | else | |
82cf6c60 | 2019 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2020 | } |
c906108c SS |
2021 | |
2022 | ||
2023 | s = find_pc_sect_symtab (pc, section); | |
2024 | if (!s) | |
2025 | { | |
c378eb4e | 2026 | /* If no symbol information, return previous pc. */ |
c906108c SS |
2027 | if (notcurrent) |
2028 | pc++; | |
2029 | val.pc = pc; | |
2030 | return val; | |
2031 | } | |
2032 | ||
2033 | bv = BLOCKVECTOR (s); | |
2034 | ||
2035 | /* Look at all the symtabs that share this blockvector. | |
2036 | They all have the same apriori range, that we found was right; | |
2037 | but they have different line tables. */ | |
2038 | ||
2039 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2040 | { | |
2041 | /* Find the best line in this symtab. */ | |
2042 | l = LINETABLE (s); | |
2043 | if (!l) | |
c5aa993b | 2044 | continue; |
c906108c SS |
2045 | len = l->nitems; |
2046 | if (len <= 0) | |
2047 | { | |
2048 | /* I think len can be zero if the symtab lacks line numbers | |
2049 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2050 | I'm not sure which, and maybe it depends on the symbol | |
2051 | reader). */ | |
2052 | continue; | |
2053 | } | |
2054 | ||
2055 | prev = NULL; | |
c378eb4e | 2056 | item = l->item; /* Get first line info. */ |
c906108c SS |
2057 | |
2058 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2059 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2060 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2061 | { | |
2062 | alt = item; | |
2063 | alt_symtab = s; | |
2064 | } | |
2065 | ||
2066 | for (i = 0; i < len; i++, item++) | |
2067 | { | |
2068 | /* Leave prev pointing to the linetable entry for the last line | |
2069 | that started at or before PC. */ | |
2070 | if (item->pc > pc) | |
2071 | break; | |
2072 | ||
2073 | prev = item; | |
2074 | } | |
2075 | ||
2076 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2077 | item points at the next line. If we ran off the end of the linetable |
2078 | (pc >= start of the last line), then prev == item. If pc < start of | |
2079 | the first line, prev will not be set. */ | |
c906108c SS |
2080 | |
2081 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2082 | If so, record this file, and its best line, as best so far. Don't |
2083 | save prev if it represents the end of a function (i.e. line number | |
2084 | 0) instead of a real line. */ | |
c906108c | 2085 | |
083ae935 | 2086 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2087 | { |
2088 | best = prev; | |
2089 | best_symtab = s; | |
25d53da1 KB |
2090 | |
2091 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2092 | if (best_end <= best->pc) | |
2093 | best_end = 0; | |
c906108c | 2094 | } |
25d53da1 KB |
2095 | |
2096 | /* If another line (denoted by ITEM) is in the linetable and its | |
2097 | PC is after BEST's PC, but before the current BEST_END, then | |
2098 | use ITEM's PC as the new best_end. */ | |
2099 | if (best && i < len && item->pc > best->pc | |
2100 | && (best_end == 0 || best_end > item->pc)) | |
2101 | best_end = item->pc; | |
c906108c SS |
2102 | } |
2103 | ||
2104 | if (!best_symtab) | |
2105 | { | |
e86e87f7 DJ |
2106 | /* If we didn't find any line number info, just return zeros. |
2107 | We used to return alt->line - 1 here, but that could be | |
2108 | anywhere; if we don't have line number info for this PC, | |
2109 | don't make some up. */ | |
2110 | val.pc = pc; | |
c906108c | 2111 | } |
e8717518 FF |
2112 | else if (best->line == 0) |
2113 | { | |
2114 | /* If our best fit is in a range of PC's for which no line | |
2115 | number info is available (line number is zero) then we didn't | |
c378eb4e | 2116 | find any valid line information. */ |
e8717518 FF |
2117 | val.pc = pc; |
2118 | } | |
c906108c SS |
2119 | else |
2120 | { | |
2121 | val.symtab = best_symtab; | |
2122 | val.line = best->line; | |
2123 | val.pc = best->pc; | |
2124 | if (best_end && (!alt || best_end < alt->pc)) | |
2125 | val.end = best_end; | |
2126 | else if (alt) | |
2127 | val.end = alt->pc; | |
2128 | else | |
2129 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2130 | } | |
2131 | val.section = section; | |
2132 | return val; | |
2133 | } | |
2134 | ||
c378eb4e | 2135 | /* Backward compatibility (no section). */ |
c906108c SS |
2136 | |
2137 | struct symtab_and_line | |
fba45db2 | 2138 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2139 | { |
714835d5 | 2140 | struct obj_section *section; |
c906108c SS |
2141 | |
2142 | section = find_pc_overlay (pc); | |
2143 | if (pc_in_unmapped_range (pc, section)) | |
2144 | pc = overlay_mapped_address (pc, section); | |
2145 | return find_pc_sect_line (pc, section, notcurrent); | |
2146 | } | |
c906108c | 2147 | \f |
c906108c SS |
2148 | /* Find line number LINE in any symtab whose name is the same as |
2149 | SYMTAB. | |
2150 | ||
2151 | If found, return the symtab that contains the linetable in which it was | |
2152 | found, set *INDEX to the index in the linetable of the best entry | |
2153 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2154 | exact match. | |
2155 | ||
2156 | If not found, return NULL. */ | |
2157 | ||
50641945 | 2158 | struct symtab * |
433759f7 MS |
2159 | find_line_symtab (struct symtab *symtab, int line, |
2160 | int *index, int *exact_match) | |
c906108c | 2161 | { |
6f43c46f | 2162 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2163 | |
2164 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2165 | so far seen. */ | |
2166 | ||
2167 | int best_index; | |
2168 | struct linetable *best_linetable; | |
2169 | struct symtab *best_symtab; | |
2170 | ||
2171 | /* First try looking it up in the given symtab. */ | |
2172 | best_linetable = LINETABLE (symtab); | |
2173 | best_symtab = symtab; | |
2174 | best_index = find_line_common (best_linetable, line, &exact); | |
2175 | if (best_index < 0 || !exact) | |
2176 | { | |
2177 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2178 | another symtab with the same name. In the case of xcoff, |
2179 | multiple csects for one source file (produced by IBM's FORTRAN | |
2180 | compiler) produce multiple symtabs (this is unavoidable | |
2181 | assuming csects can be at arbitrary places in memory and that | |
2182 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2183 | |
2184 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2185 | or 0 if none has been seen so far. |
2186 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2187 | int best; |
2188 | ||
2189 | struct objfile *objfile; | |
2190 | struct symtab *s; | |
2191 | ||
2192 | if (best_index >= 0) | |
2193 | best = best_linetable->item[best_index].line; | |
2194 | else | |
2195 | best = 0; | |
2196 | ||
ccefe4c4 | 2197 | ALL_OBJFILES (objfile) |
51432cca | 2198 | { |
ccefe4c4 TT |
2199 | if (objfile->sf) |
2200 | objfile->sf->qf->expand_symtabs_with_filename (objfile, | |
2201 | symtab->filename); | |
51432cca CES |
2202 | } |
2203 | ||
3ffc00b8 JB |
2204 | /* Get symbol full file name if possible. */ |
2205 | symtab_to_fullname (symtab); | |
2206 | ||
c906108c | 2207 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2208 | { |
2209 | struct linetable *l; | |
2210 | int ind; | |
c906108c | 2211 | |
3ffc00b8 | 2212 | if (FILENAME_CMP (symtab->filename, s->filename) != 0) |
c5aa993b | 2213 | continue; |
3ffc00b8 JB |
2214 | if (symtab->fullname != NULL |
2215 | && symtab_to_fullname (s) != NULL | |
2216 | && FILENAME_CMP (symtab->fullname, s->fullname) != 0) | |
2217 | continue; | |
c5aa993b JM |
2218 | l = LINETABLE (s); |
2219 | ind = find_line_common (l, line, &exact); | |
2220 | if (ind >= 0) | |
2221 | { | |
2222 | if (exact) | |
2223 | { | |
2224 | best_index = ind; | |
2225 | best_linetable = l; | |
2226 | best_symtab = s; | |
2227 | goto done; | |
2228 | } | |
2229 | if (best == 0 || l->item[ind].line < best) | |
2230 | { | |
2231 | best = l->item[ind].line; | |
2232 | best_index = ind; | |
2233 | best_linetable = l; | |
2234 | best_symtab = s; | |
2235 | } | |
2236 | } | |
2237 | } | |
c906108c | 2238 | } |
c5aa993b | 2239 | done: |
c906108c SS |
2240 | if (best_index < 0) |
2241 | return NULL; | |
2242 | ||
2243 | if (index) | |
2244 | *index = best_index; | |
2245 | if (exact_match) | |
2246 | *exact_match = exact; | |
2247 | ||
2248 | return best_symtab; | |
2249 | } | |
2250 | \f | |
2251 | /* Set the PC value for a given source file and line number and return true. | |
2252 | Returns zero for invalid line number (and sets the PC to 0). | |
2253 | The source file is specified with a struct symtab. */ | |
2254 | ||
2255 | int | |
fba45db2 | 2256 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2257 | { |
2258 | struct linetable *l; | |
2259 | int ind; | |
2260 | ||
2261 | *pc = 0; | |
2262 | if (symtab == 0) | |
2263 | return 0; | |
2264 | ||
2265 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2266 | if (symtab != NULL) | |
2267 | { | |
2268 | l = LINETABLE (symtab); | |
2269 | *pc = l->item[ind].pc; | |
2270 | return 1; | |
2271 | } | |
2272 | else | |
2273 | return 0; | |
2274 | } | |
2275 | ||
2276 | /* Find the range of pc values in a line. | |
2277 | Store the starting pc of the line into *STARTPTR | |
2278 | and the ending pc (start of next line) into *ENDPTR. | |
2279 | Returns 1 to indicate success. | |
2280 | Returns 0 if could not find the specified line. */ | |
2281 | ||
2282 | int | |
fba45db2 KB |
2283 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2284 | CORE_ADDR *endptr) | |
c906108c SS |
2285 | { |
2286 | CORE_ADDR startaddr; | |
2287 | struct symtab_and_line found_sal; | |
2288 | ||
2289 | startaddr = sal.pc; | |
c5aa993b | 2290 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2291 | return 0; |
2292 | ||
2293 | /* This whole function is based on address. For example, if line 10 has | |
2294 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2295 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2296 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2297 | This also insures that we never give a range like "starts at 0x134 | |
2298 | and ends at 0x12c". */ | |
2299 | ||
2300 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2301 | if (found_sal.line != sal.line) | |
2302 | { | |
2303 | /* The specified line (sal) has zero bytes. */ | |
2304 | *startptr = found_sal.pc; | |
2305 | *endptr = found_sal.pc; | |
2306 | } | |
2307 | else | |
2308 | { | |
2309 | *startptr = found_sal.pc; | |
2310 | *endptr = found_sal.end; | |
2311 | } | |
2312 | return 1; | |
2313 | } | |
2314 | ||
2315 | /* Given a line table and a line number, return the index into the line | |
2316 | table for the pc of the nearest line whose number is >= the specified one. | |
2317 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2318 | ||
2319 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2320 | ||
2321 | static int | |
aa1ee363 | 2322 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2323 | int *exact_match) |
c906108c | 2324 | { |
52f0bd74 AC |
2325 | int i; |
2326 | int len; | |
c906108c SS |
2327 | |
2328 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2329 | or 0 if none has been seen so far. | |
2330 | BEST_INDEX identifies the item for it. */ | |
2331 | ||
2332 | int best_index = -1; | |
2333 | int best = 0; | |
2334 | ||
b7589f7d DJ |
2335 | *exact_match = 0; |
2336 | ||
c906108c SS |
2337 | if (lineno <= 0) |
2338 | return -1; | |
2339 | if (l == 0) | |
2340 | return -1; | |
2341 | ||
2342 | len = l->nitems; | |
2343 | for (i = 0; i < len; i++) | |
2344 | { | |
aa1ee363 | 2345 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2346 | |
2347 | if (item->line == lineno) | |
2348 | { | |
2349 | /* Return the first (lowest address) entry which matches. */ | |
2350 | *exact_match = 1; | |
2351 | return i; | |
2352 | } | |
2353 | ||
2354 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2355 | { | |
2356 | best = item->line; | |
2357 | best_index = i; | |
2358 | } | |
2359 | } | |
2360 | ||
2361 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2362 | return best_index; |
2363 | } | |
2364 | ||
2365 | int | |
fba45db2 | 2366 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2367 | { |
2368 | struct symtab_and_line sal; | |
433759f7 | 2369 | |
c906108c SS |
2370 | sal = find_pc_line (pc, 0); |
2371 | *startptr = sal.pc; | |
2372 | *endptr = sal.end; | |
2373 | return sal.symtab != 0; | |
2374 | } | |
2375 | ||
8c7a1ee8 EZ |
2376 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
2377 | address for that function that has an entry in SYMTAB's line info | |
2378 | table. If such an entry cannot be found, return FUNC_ADDR | |
2379 | unaltered. */ | |
2380 | CORE_ADDR | |
2381 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) | |
2382 | { | |
2383 | CORE_ADDR func_start, func_end; | |
2384 | struct linetable *l; | |
952a6d41 | 2385 | int i; |
8c7a1ee8 EZ |
2386 | |
2387 | /* Give up if this symbol has no lineinfo table. */ | |
2388 | l = LINETABLE (symtab); | |
2389 | if (l == NULL) | |
2390 | return func_addr; | |
2391 | ||
2392 | /* Get the range for the function's PC values, or give up if we | |
2393 | cannot, for some reason. */ | |
2394 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
2395 | return func_addr; | |
2396 | ||
2397 | /* Linetable entries are ordered by PC values, see the commentary in | |
2398 | symtab.h where `struct linetable' is defined. Thus, the first | |
2399 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
2400 | address we are looking for. */ | |
2401 | for (i = 0; i < l->nitems; i++) | |
2402 | { | |
2403 | struct linetable_entry *item = &(l->item[i]); | |
2404 | ||
2405 | /* Don't use line numbers of zero, they mark special entries in | |
2406 | the table. See the commentary on symtab.h before the | |
2407 | definition of struct linetable. */ | |
2408 | if (item->line > 0 && func_start <= item->pc && item->pc < func_end) | |
2409 | return item->pc; | |
2410 | } | |
2411 | ||
2412 | return func_addr; | |
2413 | } | |
2414 | ||
c906108c SS |
2415 | /* Given a function symbol SYM, find the symtab and line for the start |
2416 | of the function. | |
2417 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2418 | of real code inside the function. */ | |
2419 | ||
50641945 | 2420 | struct symtab_and_line |
fba45db2 | 2421 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2422 | { |
059acae7 UW |
2423 | struct symtab_and_line sal; |
2424 | ||
2425 | fixup_symbol_section (sym, NULL); | |
2426 | sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), | |
2427 | SYMBOL_OBJ_SECTION (sym), 0); | |
2428 | ||
86da934b UW |
2429 | /* We always should have a line for the function start address. |
2430 | If we don't, something is odd. Create a plain SAL refering | |
2431 | just the PC and hope that skip_prologue_sal (if requested) | |
2432 | can find a line number for after the prologue. */ | |
2433 | if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym))) | |
2434 | { | |
2435 | init_sal (&sal); | |
2436 | sal.pspace = current_program_space; | |
2437 | sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2438 | sal.section = SYMBOL_OBJ_SECTION (sym); | |
2439 | } | |
2440 | ||
059acae7 UW |
2441 | if (funfirstline) |
2442 | skip_prologue_sal (&sal); | |
bccdca4a | 2443 | |
059acae7 UW |
2444 | return sal; |
2445 | } | |
2446 | ||
2447 | /* Adjust SAL to the first instruction past the function prologue. | |
2448 | If the PC was explicitly specified, the SAL is not changed. | |
2449 | If the line number was explicitly specified, at most the SAL's PC | |
2450 | is updated. If SAL is already past the prologue, then do nothing. */ | |
2451 | void | |
2452 | skip_prologue_sal (struct symtab_and_line *sal) | |
2453 | { | |
2454 | struct symbol *sym; | |
2455 | struct symtab_and_line start_sal; | |
2456 | struct cleanup *old_chain; | |
c906108c | 2457 | CORE_ADDR pc; |
059acae7 UW |
2458 | struct obj_section *section; |
2459 | const char *name; | |
2460 | struct objfile *objfile; | |
2461 | struct gdbarch *gdbarch; | |
edb3359d | 2462 | struct block *b, *function_block; |
c906108c | 2463 | |
059acae7 UW |
2464 | /* Do not change the SAL is PC was specified explicitly. */ |
2465 | if (sal->explicit_pc) | |
2466 | return; | |
6c95b8df PA |
2467 | |
2468 | old_chain = save_current_space_and_thread (); | |
059acae7 | 2469 | switch_to_program_space_and_thread (sal->pspace); |
6c95b8df | 2470 | |
059acae7 UW |
2471 | sym = find_pc_sect_function (sal->pc, sal->section); |
2472 | if (sym != NULL) | |
bccdca4a | 2473 | { |
059acae7 UW |
2474 | fixup_symbol_section (sym, NULL); |
2475 | ||
2476 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2477 | section = SYMBOL_OBJ_SECTION (sym); | |
2478 | name = SYMBOL_LINKAGE_NAME (sym); | |
2479 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
c906108c | 2480 | } |
059acae7 UW |
2481 | else |
2482 | { | |
2483 | struct minimal_symbol *msymbol | |
2484 | = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); | |
433759f7 | 2485 | |
059acae7 UW |
2486 | if (msymbol == NULL) |
2487 | { | |
2488 | do_cleanups (old_chain); | |
2489 | return; | |
2490 | } | |
2491 | ||
2492 | pc = SYMBOL_VALUE_ADDRESS (msymbol); | |
2493 | section = SYMBOL_OBJ_SECTION (msymbol); | |
2494 | name = SYMBOL_LINKAGE_NAME (msymbol); | |
2495 | objfile = msymbol_objfile (msymbol); | |
2496 | } | |
2497 | ||
2498 | gdbarch = get_objfile_arch (objfile); | |
2499 | ||
2500 | /* If the function is in an unmapped overlay, use its unmapped LMA address, | |
2501 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2502 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2503 | pc = overlay_unmapped_address (pc, section); | |
2504 | ||
2505 | /* Skip "first line" of function (which is actually its prologue). */ | |
2506 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2507 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2508 | ||
2509 | /* For overlays, map pc back into its mapped VMA range. */ | |
2510 | pc = overlay_mapped_address (pc, section); | |
2511 | ||
2512 | /* Calculate line number. */ | |
2513 | start_sal = find_pc_sect_line (pc, section, 0); | |
c906108c | 2514 | |
a433963d | 2515 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
c906108c | 2516 | line is still part of the same function. */ |
059acae7 UW |
2517 | if (start_sal.pc != pc |
2518 | && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end | |
2519 | && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2520 | : (lookup_minimal_symbol_by_pc_section (start_sal.end, section) | |
2521 | == lookup_minimal_symbol_by_pc_section (pc, section)))) | |
c906108c SS |
2522 | { |
2523 | /* First pc of next line */ | |
059acae7 | 2524 | pc = start_sal.end; |
c906108c | 2525 | /* Recalculate the line number (might not be N+1). */ |
059acae7 | 2526 | start_sal = find_pc_sect_line (pc, section, 0); |
c906108c | 2527 | } |
4309257c PM |
2528 | |
2529 | /* On targets with executable formats that don't have a concept of | |
2530 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2531 | to `__main' in `main' between the prologue and before user | |
2532 | code. */ | |
059acae7 UW |
2533 | if (gdbarch_skip_main_prologue_p (gdbarch) |
2534 | && name && strcmp (name, "main") == 0) | |
4309257c | 2535 | { |
d80b854b | 2536 | pc = gdbarch_skip_main_prologue (gdbarch, pc); |
4309257c | 2537 | /* Recalculate the line number (might not be N+1). */ |
059acae7 | 2538 | start_sal = find_pc_sect_line (pc, section, 0); |
4309257c PM |
2539 | } |
2540 | ||
8c7a1ee8 EZ |
2541 | /* If we still don't have a valid source line, try to find the first |
2542 | PC in the lineinfo table that belongs to the same function. This | |
2543 | happens with COFF debug info, which does not seem to have an | |
2544 | entry in lineinfo table for the code after the prologue which has | |
2545 | no direct relation to source. For example, this was found to be | |
2546 | the case with the DJGPP target using "gcc -gcoff" when the | |
2547 | compiler inserted code after the prologue to make sure the stack | |
2548 | is aligned. */ | |
059acae7 | 2549 | if (sym && start_sal.symtab == NULL) |
8c7a1ee8 EZ |
2550 | { |
2551 | pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym)); | |
2552 | /* Recalculate the line number. */ | |
059acae7 | 2553 | start_sal = find_pc_sect_line (pc, section, 0); |
8c7a1ee8 EZ |
2554 | } |
2555 | ||
059acae7 UW |
2556 | do_cleanups (old_chain); |
2557 | ||
2558 | /* If we're already past the prologue, leave SAL unchanged. Otherwise | |
2559 | forward SAL to the end of the prologue. */ | |
2560 | if (sal->pc >= pc) | |
2561 | return; | |
2562 | ||
2563 | sal->pc = pc; | |
2564 | sal->section = section; | |
2565 | ||
2566 | /* Unless the explicit_line flag was set, update the SAL line | |
2567 | and symtab to correspond to the modified PC location. */ | |
2568 | if (sal->explicit_line) | |
2569 | return; | |
2570 | ||
2571 | sal->symtab = start_sal.symtab; | |
2572 | sal->line = start_sal.line; | |
2573 | sal->end = start_sal.end; | |
c906108c | 2574 | |
edb3359d DJ |
2575 | /* Check if we are now inside an inlined function. If we can, |
2576 | use the call site of the function instead. */ | |
059acae7 | 2577 | b = block_for_pc_sect (sal->pc, sal->section); |
edb3359d DJ |
2578 | function_block = NULL; |
2579 | while (b != NULL) | |
2580 | { | |
2581 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
2582 | function_block = b; | |
2583 | else if (BLOCK_FUNCTION (b) != NULL) | |
2584 | break; | |
2585 | b = BLOCK_SUPERBLOCK (b); | |
2586 | } | |
2587 | if (function_block != NULL | |
2588 | && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) | |
2589 | { | |
059acae7 UW |
2590 | sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); |
2591 | sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block)); | |
edb3359d | 2592 | } |
c906108c | 2593 | } |
50641945 | 2594 | |
c906108c SS |
2595 | /* If P is of the form "operator[ \t]+..." where `...' is |
2596 | some legitimate operator text, return a pointer to the | |
2597 | beginning of the substring of the operator text. | |
2598 | Otherwise, return "". */ | |
2599 | char * | |
fba45db2 | 2600 | operator_chars (char *p, char **end) |
c906108c SS |
2601 | { |
2602 | *end = ""; | |
2603 | if (strncmp (p, "operator", 8)) | |
2604 | return *end; | |
2605 | p += 8; | |
2606 | ||
2607 | /* Don't get faked out by `operator' being part of a longer | |
2608 | identifier. */ | |
c5aa993b | 2609 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2610 | return *end; |
2611 | ||
2612 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2613 | while (*p == ' ' || *p == '\t') | |
2614 | p++; | |
2615 | ||
c378eb4e | 2616 | /* Recognize 'operator TYPENAME'. */ |
c906108c | 2617 | |
c5aa993b | 2618 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2619 | { |
aa1ee363 | 2620 | char *q = p + 1; |
433759f7 | 2621 | |
c5aa993b | 2622 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2623 | q++; |
2624 | *end = q; | |
2625 | return p; | |
2626 | } | |
2627 | ||
53e8ad3d MS |
2628 | while (*p) |
2629 | switch (*p) | |
2630 | { | |
2631 | case '\\': /* regexp quoting */ | |
2632 | if (p[1] == '*') | |
2633 | { | |
3e43a32a | 2634 | if (p[2] == '=') /* 'operator\*=' */ |
53e8ad3d MS |
2635 | *end = p + 3; |
2636 | else /* 'operator\*' */ | |
2637 | *end = p + 2; | |
2638 | return p; | |
2639 | } | |
2640 | else if (p[1] == '[') | |
2641 | { | |
2642 | if (p[2] == ']') | |
3e43a32a MS |
2643 | error (_("mismatched quoting on brackets, " |
2644 | "try 'operator\\[\\]'")); | |
53e8ad3d MS |
2645 | else if (p[2] == '\\' && p[3] == ']') |
2646 | { | |
2647 | *end = p + 4; /* 'operator\[\]' */ | |
2648 | return p; | |
2649 | } | |
2650 | else | |
8a3fe4f8 | 2651 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 2652 | } |
9af17804 | 2653 | else |
53e8ad3d | 2654 | { |
c378eb4e | 2655 | /* Gratuitous qoute: skip it and move on. */ |
53e8ad3d MS |
2656 | p++; |
2657 | continue; | |
2658 | } | |
2659 | break; | |
2660 | case '!': | |
2661 | case '=': | |
2662 | case '*': | |
2663 | case '/': | |
2664 | case '%': | |
2665 | case '^': | |
2666 | if (p[1] == '=') | |
2667 | *end = p + 2; | |
2668 | else | |
2669 | *end = p + 1; | |
2670 | return p; | |
2671 | case '<': | |
2672 | case '>': | |
2673 | case '+': | |
2674 | case '-': | |
2675 | case '&': | |
2676 | case '|': | |
2677 | if (p[0] == '-' && p[1] == '>') | |
2678 | { | |
c378eb4e | 2679 | /* Struct pointer member operator 'operator->'. */ |
53e8ad3d MS |
2680 | if (p[2] == '*') |
2681 | { | |
2682 | *end = p + 3; /* 'operator->*' */ | |
2683 | return p; | |
2684 | } | |
2685 | else if (p[2] == '\\') | |
2686 | { | |
2687 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2688 | return p; | |
2689 | } | |
2690 | else | |
2691 | { | |
2692 | *end = p + 2; /* 'operator->' */ | |
2693 | return p; | |
2694 | } | |
2695 | } | |
2696 | if (p[1] == '=' || p[1] == p[0]) | |
2697 | *end = p + 2; | |
2698 | else | |
2699 | *end = p + 1; | |
2700 | return p; | |
2701 | case '~': | |
2702 | case ',': | |
c5aa993b | 2703 | *end = p + 1; |
53e8ad3d MS |
2704 | return p; |
2705 | case '(': | |
2706 | if (p[1] != ')') | |
3e43a32a MS |
2707 | error (_("`operator ()' must be specified " |
2708 | "without whitespace in `()'")); | |
c5aa993b | 2709 | *end = p + 2; |
53e8ad3d MS |
2710 | return p; |
2711 | case '?': | |
2712 | if (p[1] != ':') | |
3e43a32a MS |
2713 | error (_("`operator ?:' must be specified " |
2714 | "without whitespace in `?:'")); | |
53e8ad3d MS |
2715 | *end = p + 2; |
2716 | return p; | |
2717 | case '[': | |
2718 | if (p[1] != ']') | |
3e43a32a MS |
2719 | error (_("`operator []' must be specified " |
2720 | "without whitespace in `[]'")); | |
53e8ad3d MS |
2721 | *end = p + 2; |
2722 | return p; | |
2723 | default: | |
8a3fe4f8 | 2724 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2725 | break; |
2726 | } | |
2727 | ||
c906108c SS |
2728 | *end = ""; |
2729 | return *end; | |
2730 | } | |
c906108c | 2731 | \f |
c5aa993b | 2732 | |
c94fdfd0 EZ |
2733 | /* If FILE is not already in the table of files, return zero; |
2734 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2735 | is non-zero. If *FIRST is non-zero, forget the old table | |
2736 | contents. */ | |
2737 | static int | |
2738 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2739 | { |
c94fdfd0 EZ |
2740 | /* Table of files seen so far. */ |
2741 | static const char **tab = NULL; | |
c906108c SS |
2742 | /* Allocated size of tab in elements. |
2743 | Start with one 256-byte block (when using GNU malloc.c). | |
2744 | 24 is the malloc overhead when range checking is in effect. */ | |
2745 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2746 | /* Current size of tab in elements. */ | |
2747 | static int tab_cur_size; | |
c94fdfd0 | 2748 | const char **p; |
c906108c SS |
2749 | |
2750 | if (*first) | |
2751 | { | |
2752 | if (tab == NULL) | |
c94fdfd0 | 2753 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2754 | tab_cur_size = 0; |
2755 | } | |
2756 | ||
c94fdfd0 | 2757 | /* Is FILE in tab? */ |
c906108c | 2758 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2759 | if (strcmp (*p, file) == 0) |
2760 | return 1; | |
2761 | ||
2762 | /* No; maybe add it to tab. */ | |
2763 | if (add) | |
c906108c | 2764 | { |
c94fdfd0 EZ |
2765 | if (tab_cur_size == tab_alloc_size) |
2766 | { | |
2767 | tab_alloc_size *= 2; | |
2768 | tab = (const char **) xrealloc ((char *) tab, | |
2769 | tab_alloc_size * sizeof (*tab)); | |
2770 | } | |
2771 | tab[tab_cur_size++] = file; | |
c906108c | 2772 | } |
c906108c | 2773 | |
c94fdfd0 EZ |
2774 | return 0; |
2775 | } | |
2776 | ||
2777 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2778 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2779 | name printed. Set *FIRST to zero. */ | |
2780 | static void | |
d092d1a2 | 2781 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2782 | { |
2783 | /* Since a single source file can result in several partial symbol | |
2784 | tables, we need to avoid printing it more than once. Note: if | |
2785 | some of the psymtabs are read in and some are not, it gets | |
2786 | printed both under "Source files for which symbols have been | |
2787 | read" and "Source files for which symbols will be read in on | |
2788 | demand". I consider this a reasonable way to deal with the | |
2789 | situation. I'm not sure whether this can also happen for | |
2790 | symtabs; it doesn't hurt to check. */ | |
2791 | ||
2792 | /* Was NAME already seen? */ | |
2793 | if (filename_seen (name, 1, first)) | |
2794 | { | |
2795 | /* Yes; don't print it again. */ | |
2796 | return; | |
2797 | } | |
2798 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2799 | if (*first) |
2800 | { | |
2801 | *first = 0; | |
2802 | } | |
2803 | else | |
2804 | { | |
2805 | printf_filtered (", "); | |
2806 | } | |
2807 | ||
2808 | wrap_here (""); | |
2809 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2810 | } |
c906108c | 2811 | |
ccefe4c4 TT |
2812 | /* A callback for map_partial_symbol_filenames. */ |
2813 | static void | |
2814 | output_partial_symbol_filename (const char *fullname, const char *filename, | |
2815 | void *data) | |
2816 | { | |
2817 | output_source_filename (fullname ? fullname : filename, data); | |
2818 | } | |
2819 | ||
c906108c | 2820 | static void |
fba45db2 | 2821 | sources_info (char *ignore, int from_tty) |
c906108c | 2822 | { |
52f0bd74 | 2823 | struct symtab *s; |
52f0bd74 | 2824 | struct objfile *objfile; |
c906108c | 2825 | int first; |
c5aa993b | 2826 | |
c906108c SS |
2827 | if (!have_full_symbols () && !have_partial_symbols ()) |
2828 | { | |
8a3fe4f8 | 2829 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 2830 | } |
c5aa993b | 2831 | |
c906108c SS |
2832 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2833 | ||
2834 | first = 1; | |
2835 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 2836 | { |
d092d1a2 | 2837 | const char *fullname = symtab_to_fullname (s); |
433759f7 | 2838 | |
d092d1a2 | 2839 | output_source_filename (fullname ? fullname : s->filename, &first); |
c5aa993b | 2840 | } |
c906108c | 2841 | printf_filtered ("\n\n"); |
c5aa993b | 2842 | |
3e43a32a MS |
2843 | printf_filtered ("Source files for which symbols " |
2844 | "will be read in on demand:\n\n"); | |
c906108c SS |
2845 | |
2846 | first = 1; | |
ccefe4c4 | 2847 | map_partial_symbol_filenames (output_partial_symbol_filename, &first); |
c906108c SS |
2848 | printf_filtered ("\n"); |
2849 | } | |
2850 | ||
2851 | static int | |
ccefe4c4 | 2852 | file_matches (const char *file, char *files[], int nfiles) |
c906108c SS |
2853 | { |
2854 | int i; | |
2855 | ||
2856 | if (file != NULL && nfiles != 0) | |
2857 | { | |
2858 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2859 | { |
31889e00 | 2860 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2861 | return 1; |
2862 | } | |
c906108c SS |
2863 | } |
2864 | else if (nfiles == 0) | |
2865 | return 1; | |
2866 | return 0; | |
2867 | } | |
2868 | ||
c378eb4e | 2869 | /* Free any memory associated with a search. */ |
c906108c | 2870 | void |
fba45db2 | 2871 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2872 | { |
2873 | struct symbol_search *p; | |
2874 | struct symbol_search *next; | |
2875 | ||
2876 | for (p = symbols; p != NULL; p = next) | |
2877 | { | |
2878 | next = p->next; | |
b8c9b27d | 2879 | xfree (p); |
c906108c SS |
2880 | } |
2881 | } | |
2882 | ||
5bd98722 AC |
2883 | static void |
2884 | do_free_search_symbols_cleanup (void *symbols) | |
2885 | { | |
2886 | free_search_symbols (symbols); | |
2887 | } | |
2888 | ||
2889 | struct cleanup * | |
2890 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2891 | { | |
2892 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2893 | } | |
2894 | ||
434d2d4f DJ |
2895 | /* Helper function for sort_search_symbols and qsort. Can only |
2896 | sort symbols, not minimal symbols. */ | |
2897 | static int | |
2898 | compare_search_syms (const void *sa, const void *sb) | |
2899 | { | |
2900 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2901 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2902 | ||
de5ad195 DC |
2903 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2904 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2905 | } |
2906 | ||
2907 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2908 | prevtail where it is, but update its next pointer to point to | |
2909 | the first of the sorted symbols. */ | |
2910 | static struct symbol_search * | |
2911 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2912 | { | |
2913 | struct symbol_search **symbols, *symp, *old_next; | |
2914 | int i; | |
2915 | ||
2916 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2917 | * nfound); | |
2918 | symp = prevtail->next; | |
2919 | for (i = 0; i < nfound; i++) | |
2920 | { | |
2921 | symbols[i] = symp; | |
2922 | symp = symp->next; | |
2923 | } | |
2924 | /* Generally NULL. */ | |
2925 | old_next = symp; | |
2926 | ||
2927 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2928 | compare_search_syms); | |
2929 | ||
2930 | symp = prevtail; | |
2931 | for (i = 0; i < nfound; i++) | |
2932 | { | |
2933 | symp->next = symbols[i]; | |
2934 | symp = symp->next; | |
2935 | } | |
2936 | symp->next = old_next; | |
2937 | ||
8ed32cc0 | 2938 | xfree (symbols); |
434d2d4f DJ |
2939 | return symp; |
2940 | } | |
5bd98722 | 2941 | |
ccefe4c4 TT |
2942 | /* An object of this type is passed as the user_data to the |
2943 | expand_symtabs_matching method. */ | |
2944 | struct search_symbols_data | |
2945 | { | |
2946 | int nfiles; | |
2947 | char **files; | |
2948 | char *regexp; | |
2949 | }; | |
2950 | ||
2951 | /* A callback for expand_symtabs_matching. */ | |
2952 | static int | |
2953 | search_symbols_file_matches (const char *filename, void *user_data) | |
2954 | { | |
2955 | struct search_symbols_data *data = user_data; | |
433759f7 | 2956 | |
ccefe4c4 TT |
2957 | return file_matches (filename, data->files, data->nfiles); |
2958 | } | |
2959 | ||
2960 | /* A callback for expand_symtabs_matching. */ | |
2961 | static int | |
2962 | search_symbols_name_matches (const char *symname, void *user_data) | |
2963 | { | |
2964 | struct search_symbols_data *data = user_data; | |
433759f7 | 2965 | |
ccefe4c4 TT |
2966 | return data->regexp == NULL || re_exec (symname); |
2967 | } | |
2968 | ||
c906108c SS |
2969 | /* Search the symbol table for matches to the regular expression REGEXP, |
2970 | returning the results in *MATCHES. | |
2971 | ||
2972 | Only symbols of KIND are searched: | |
176620f1 EZ |
2973 | FUNCTIONS_DOMAIN - search all functions |
2974 | TYPES_DOMAIN - search all type names | |
176620f1 | 2975 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
c5aa993b | 2976 | and constants (enums) |
c906108c SS |
2977 | |
2978 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2979 | |
2980 | The results are sorted locally; each symtab's global and static blocks are | |
c378eb4e MS |
2981 | separately alphabetized. */ |
2982 | ||
c906108c | 2983 | void |
176620f1 | 2984 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 2985 | struct symbol_search **matches) |
c906108c | 2986 | { |
52f0bd74 | 2987 | struct symtab *s; |
52f0bd74 | 2988 | struct blockvector *bv; |
52f0bd74 AC |
2989 | struct block *b; |
2990 | int i = 0; | |
de4f826b | 2991 | struct dict_iterator iter; |
52f0bd74 | 2992 | struct symbol *sym; |
c906108c SS |
2993 | struct objfile *objfile; |
2994 | struct minimal_symbol *msymbol; | |
2995 | char *val; | |
2996 | int found_misc = 0; | |
bc043ef3 | 2997 | static const enum minimal_symbol_type types[] |
433759f7 | 2998 | = {mst_data, mst_text, mst_abs, mst_unknown}; |
bc043ef3 | 2999 | static const enum minimal_symbol_type types2[] |
433759f7 | 3000 | = {mst_bss, mst_file_text, mst_abs, mst_unknown}; |
bc043ef3 | 3001 | static const enum minimal_symbol_type types3[] |
433759f7 | 3002 | = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; |
bc043ef3 | 3003 | static const enum minimal_symbol_type types4[] |
433759f7 | 3004 | = {mst_file_bss, mst_text, mst_abs, mst_unknown}; |
c906108c SS |
3005 | enum minimal_symbol_type ourtype; |
3006 | enum minimal_symbol_type ourtype2; | |
3007 | enum minimal_symbol_type ourtype3; | |
3008 | enum minimal_symbol_type ourtype4; | |
3009 | struct symbol_search *sr; | |
3010 | struct symbol_search *psr; | |
3011 | struct symbol_search *tail; | |
3012 | struct cleanup *old_chain = NULL; | |
ccefe4c4 | 3013 | struct search_symbols_data datum; |
c906108c | 3014 | |
176620f1 | 3015 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 3016 | error (_("must search on specific domain")); |
c906108c | 3017 | |
176620f1 EZ |
3018 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
3019 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
3020 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
3021 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
3022 | |
3023 | sr = *matches = NULL; | |
3024 | tail = NULL; | |
3025 | ||
3026 | if (regexp != NULL) | |
3027 | { | |
3028 | /* Make sure spacing is right for C++ operators. | |
3029 | This is just a courtesy to make the matching less sensitive | |
3030 | to how many spaces the user leaves between 'operator' | |
c378eb4e | 3031 | and <TYPENAME> or <OPERATOR>. */ |
c906108c SS |
3032 | char *opend; |
3033 | char *opname = operator_chars (regexp, &opend); | |
433759f7 | 3034 | |
c906108c | 3035 | if (*opname) |
c5aa993b | 3036 | { |
3e43a32a MS |
3037 | int fix = -1; /* -1 means ok; otherwise number of |
3038 | spaces needed. */ | |
433759f7 | 3039 | |
c5aa993b JM |
3040 | if (isalpha (*opname) || *opname == '_' || *opname == '$') |
3041 | { | |
c378eb4e | 3042 | /* There should 1 space between 'operator' and 'TYPENAME'. */ |
c5aa993b JM |
3043 | if (opname[-1] != ' ' || opname[-2] == ' ') |
3044 | fix = 1; | |
3045 | } | |
3046 | else | |
3047 | { | |
c378eb4e | 3048 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ |
c5aa993b JM |
3049 | if (opname[-1] == ' ') |
3050 | fix = 0; | |
3051 | } | |
c378eb4e | 3052 | /* If wrong number of spaces, fix it. */ |
c5aa993b JM |
3053 | if (fix >= 0) |
3054 | { | |
045f55a6 | 3055 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
433759f7 | 3056 | |
c5aa993b JM |
3057 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3058 | regexp = tmp; | |
3059 | } | |
3060 | } | |
3061 | ||
c906108c | 3062 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 3063 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
3064 | } |
3065 | ||
3066 | /* Search through the partial symtabs *first* for all symbols | |
3067 | matching the regexp. That way we don't have to reproduce all of | |
c378eb4e | 3068 | the machinery below. */ |
c906108c | 3069 | |
ccefe4c4 TT |
3070 | datum.nfiles = nfiles; |
3071 | datum.files = files; | |
3072 | datum.regexp = regexp; | |
3073 | ALL_OBJFILES (objfile) | |
c5aa993b | 3074 | { |
ccefe4c4 TT |
3075 | if (objfile->sf) |
3076 | objfile->sf->qf->expand_symtabs_matching (objfile, | |
3077 | search_symbols_file_matches, | |
3078 | search_symbols_name_matches, | |
3079 | kind, | |
3080 | &datum); | |
c5aa993b | 3081 | } |
c906108c SS |
3082 | |
3083 | /* Here, we search through the minimal symbol tables for functions | |
3084 | and variables that match, and force their symbols to be read. | |
3085 | This is in particular necessary for demangled variable names, | |
3086 | which are no longer put into the partial symbol tables. | |
3087 | The symbol will then be found during the scan of symtabs below. | |
3088 | ||
3089 | For functions, find_pc_symtab should succeed if we have debug info | |
3090 | for the function, for variables we have to call lookup_symbol | |
3091 | to determine if the variable has debug info. | |
3092 | If the lookup fails, set found_misc so that we will rescan to print | |
c378eb4e | 3093 | any matching symbols without debug info. */ |
c906108c | 3094 | |
176620f1 | 3095 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3096 | { |
3097 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3098 | { |
89295b4d PP |
3099 | QUIT; |
3100 | ||
c5aa993b JM |
3101 | if (MSYMBOL_TYPE (msymbol) == ourtype || |
3102 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3103 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3104 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3105 | { | |
25120b0d DC |
3106 | if (regexp == NULL |
3107 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3108 | { |
3109 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3110 | { | |
b1262a02 DC |
3111 | /* FIXME: carlton/2003-02-04: Given that the |
3112 | semantics of lookup_symbol keeps on changing | |
3113 | slightly, it would be a nice idea if we had a | |
3114 | function lookup_symbol_minsym that found the | |
3115 | symbol associated to a given minimal symbol (if | |
3116 | any). */ | |
176620f1 | 3117 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3118 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3119 | (struct block *) NULL, |
2570f2b7 | 3120 | VAR_DOMAIN, 0) |
53c5240f | 3121 | == NULL) |
b1262a02 | 3122 | found_misc = 1; |
c5aa993b JM |
3123 | } |
3124 | } | |
3125 | } | |
3126 | } | |
c906108c SS |
3127 | } |
3128 | ||
11309657 | 3129 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3130 | { |
3131 | bv = BLOCKVECTOR (s); | |
c5aa993b JM |
3132 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3133 | { | |
434d2d4f DJ |
3134 | struct symbol_search *prevtail = tail; |
3135 | int nfound = 0; | |
433759f7 | 3136 | |
c5aa993b | 3137 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3138 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3139 | { |
cb1df416 | 3140 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); |
433759f7 | 3141 | |
c5aa993b | 3142 | QUIT; |
cb1df416 DJ |
3143 | |
3144 | if (file_matches (real_symtab->filename, files, nfiles) | |
25120b0d DC |
3145 | && ((regexp == NULL |
3146 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
254e6b9e DE |
3147 | && ((kind == VARIABLES_DOMAIN |
3148 | && SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
0fe7935b | 3149 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED |
c5aa993b | 3150 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
254e6b9e DE |
3151 | /* LOC_CONST can be used for more than just enums, |
3152 | e.g., c++ static const members. | |
3153 | We only want to skip enums here. */ | |
3154 | && !(SYMBOL_CLASS (sym) == LOC_CONST | |
3e43a32a MS |
3155 | && TYPE_CODE (SYMBOL_TYPE (sym)) |
3156 | == TYPE_CODE_ENUM)) | |
3157 | || (kind == FUNCTIONS_DOMAIN | |
3158 | && SYMBOL_CLASS (sym) == LOC_BLOCK) | |
3159 | || (kind == TYPES_DOMAIN | |
3160 | && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) | |
c5aa993b JM |
3161 | { |
3162 | /* match */ | |
3e43a32a MS |
3163 | psr = (struct symbol_search *) |
3164 | xmalloc (sizeof (struct symbol_search)); | |
c5aa993b | 3165 | psr->block = i; |
cb1df416 | 3166 | psr->symtab = real_symtab; |
c5aa993b JM |
3167 | psr->symbol = sym; |
3168 | psr->msymbol = NULL; | |
3169 | psr->next = NULL; | |
3170 | if (tail == NULL) | |
434d2d4f | 3171 | sr = psr; |
c5aa993b JM |
3172 | else |
3173 | tail->next = psr; | |
3174 | tail = psr; | |
434d2d4f DJ |
3175 | nfound ++; |
3176 | } | |
3177 | } | |
3178 | if (nfound > 0) | |
3179 | { | |
3180 | if (prevtail == NULL) | |
3181 | { | |
3182 | struct symbol_search dummy; | |
3183 | ||
3184 | dummy.next = sr; | |
3185 | tail = sort_search_symbols (&dummy, nfound); | |
3186 | sr = dummy.next; | |
3187 | ||
3188 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3189 | } |
434d2d4f DJ |
3190 | else |
3191 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3192 | } |
3193 | } | |
c5aa993b | 3194 | } |
c906108c SS |
3195 | |
3196 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3197 | no debug symbols, then print directly from the msymbol_vector. */ | |
3198 | ||
176620f1 | 3199 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3200 | { |
3201 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3202 | { |
89295b4d PP |
3203 | QUIT; |
3204 | ||
c5aa993b JM |
3205 | if (MSYMBOL_TYPE (msymbol) == ourtype || |
3206 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3207 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3208 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3209 | { | |
25120b0d DC |
3210 | if (regexp == NULL |
3211 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b | 3212 | { |
c378eb4e | 3213 | /* Functions: Look up by address. */ |
176620f1 | 3214 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3215 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3216 | { | |
c378eb4e | 3217 | /* Variables/Absolutes: Look up by name. */ |
2335f48e | 3218 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
2570f2b7 UW |
3219 | (struct block *) NULL, VAR_DOMAIN, 0) |
3220 | == NULL) | |
c5aa993b JM |
3221 | { |
3222 | /* match */ | |
3e43a32a MS |
3223 | psr = (struct symbol_search *) |
3224 | xmalloc (sizeof (struct symbol_search)); | |
c5aa993b JM |
3225 | psr->block = i; |
3226 | psr->msymbol = msymbol; | |
3227 | psr->symtab = NULL; | |
3228 | psr->symbol = NULL; | |
3229 | psr->next = NULL; | |
3230 | if (tail == NULL) | |
3231 | { | |
3232 | sr = psr; | |
5bd98722 | 3233 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3234 | } |
3235 | else | |
3236 | tail->next = psr; | |
3237 | tail = psr; | |
3238 | } | |
3239 | } | |
3240 | } | |
3241 | } | |
3242 | } | |
c906108c SS |
3243 | } |
3244 | ||
3245 | *matches = sr; | |
3246 | if (sr != NULL) | |
3247 | discard_cleanups (old_chain); | |
3248 | } | |
3249 | ||
3250 | /* Helper function for symtab_symbol_info, this function uses | |
3251 | the data returned from search_symbols() to print information | |
c378eb4e MS |
3252 | regarding the match to gdb_stdout. */ |
3253 | ||
c906108c | 3254 | static void |
176620f1 | 3255 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3256 | int block, char *last) |
c906108c SS |
3257 | { |
3258 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3259 | { | |
3260 | fputs_filtered ("\nFile ", gdb_stdout); | |
3261 | fputs_filtered (s->filename, gdb_stdout); | |
3262 | fputs_filtered (":\n", gdb_stdout); | |
3263 | } | |
3264 | ||
176620f1 | 3265 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3266 | printf_filtered ("static "); |
c5aa993b | 3267 | |
c378eb4e | 3268 | /* Typedef that is not a C++ class. */ |
176620f1 EZ |
3269 | if (kind == TYPES_DOMAIN |
3270 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3271 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c378eb4e | 3272 | /* variable, func, or typedef-that-is-c++-class. */ |
176620f1 EZ |
3273 | else if (kind < TYPES_DOMAIN || |
3274 | (kind == TYPES_DOMAIN && | |
3275 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3276 | { |
3277 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3278 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3279 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3280 | gdb_stdout, 0); |
c906108c SS |
3281 | |
3282 | printf_filtered (";\n"); | |
3283 | } | |
c906108c SS |
3284 | } |
3285 | ||
3286 | /* This help function for symtab_symbol_info() prints information | |
c378eb4e MS |
3287 | for non-debugging symbols to gdb_stdout. */ |
3288 | ||
c906108c | 3289 | static void |
fba45db2 | 3290 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3291 | { |
d80b854b | 3292 | struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol)); |
3ac4495a MS |
3293 | char *tmp; |
3294 | ||
d80b854b | 3295 | if (gdbarch_addr_bit (gdbarch) <= 32) |
bb599908 PH |
3296 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3297 | & (CORE_ADDR) 0xffffffff, | |
3298 | 8); | |
3ac4495a | 3299 | else |
bb599908 PH |
3300 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3301 | 16); | |
3ac4495a | 3302 | printf_filtered ("%s %s\n", |
de5ad195 | 3303 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3304 | } |
3305 | ||
3306 | /* This is the guts of the commands "info functions", "info types", and | |
c378eb4e | 3307 | "info variables". It calls search_symbols to find all matches and then |
c906108c | 3308 | print_[m]symbol_info to print out some useful information about the |
c378eb4e MS |
3309 | matches. */ |
3310 | ||
c906108c | 3311 | static void |
176620f1 | 3312 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c | 3313 | { |
bc043ef3 DE |
3314 | static const char * const classnames[] = |
3315 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3316 | struct symbol_search *symbols; |
3317 | struct symbol_search *p; | |
3318 | struct cleanup *old_chain; | |
3319 | char *last_filename = NULL; | |
3320 | int first = 1; | |
3321 | ||
c378eb4e | 3322 | /* Must make sure that if we're interrupted, symbols gets freed. */ |
c906108c | 3323 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); |
5bd98722 | 3324 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3325 | |
3326 | printf_filtered (regexp | |
c5aa993b JM |
3327 | ? "All %ss matching regular expression \"%s\":\n" |
3328 | : "All defined %ss:\n", | |
176620f1 | 3329 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3330 | |
3331 | for (p = symbols; p != NULL; p = p->next) | |
3332 | { | |
3333 | QUIT; | |
3334 | ||
3335 | if (p->msymbol != NULL) | |
c5aa993b JM |
3336 | { |
3337 | if (first) | |
3338 | { | |
3339 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3340 | first = 0; | |
3341 | } | |
3342 | print_msymbol_info (p->msymbol); | |
3343 | } | |
c906108c | 3344 | else |
c5aa993b JM |
3345 | { |
3346 | print_symbol_info (kind, | |
3347 | p->symtab, | |
3348 | p->symbol, | |
3349 | p->block, | |
3350 | last_filename); | |
3351 | last_filename = p->symtab->filename; | |
3352 | } | |
c906108c SS |
3353 | } |
3354 | ||
3355 | do_cleanups (old_chain); | |
3356 | } | |
3357 | ||
3358 | static void | |
fba45db2 | 3359 | variables_info (char *regexp, int from_tty) |
c906108c | 3360 | { |
176620f1 | 3361 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3362 | } |
3363 | ||
3364 | static void | |
fba45db2 | 3365 | functions_info (char *regexp, int from_tty) |
c906108c | 3366 | { |
176620f1 | 3367 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3368 | } |
3369 | ||
357e46e7 | 3370 | |
c906108c | 3371 | static void |
fba45db2 | 3372 | types_info (char *regexp, int from_tty) |
c906108c | 3373 | { |
176620f1 | 3374 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3375 | } |
3376 | ||
c378eb4e | 3377 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3378 | |
8b93c638 | 3379 | void |
fba45db2 | 3380 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3381 | { |
3382 | rbreak_command (regexp, from_tty); | |
3383 | } | |
8926118c | 3384 | |
95a42b64 TT |
3385 | /* A cleanup function that calls end_rbreak_breakpoints. */ |
3386 | ||
3387 | static void | |
3388 | do_end_rbreak_breakpoints (void *ignore) | |
3389 | { | |
3390 | end_rbreak_breakpoints (); | |
3391 | } | |
3392 | ||
c906108c | 3393 | static void |
fba45db2 | 3394 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3395 | { |
3396 | struct symbol_search *ss; | |
3397 | struct symbol_search *p; | |
3398 | struct cleanup *old_chain; | |
95a42b64 TT |
3399 | char *string = NULL; |
3400 | int len = 0; | |
8bd10a10 CM |
3401 | char **files = NULL; |
3402 | int nfiles = 0; | |
c906108c | 3403 | |
8bd10a10 CM |
3404 | if (regexp) |
3405 | { | |
3406 | char *colon = strchr (regexp, ':'); | |
433759f7 | 3407 | |
8bd10a10 CM |
3408 | if (colon && *(colon + 1) != ':') |
3409 | { | |
3410 | int colon_index; | |
3411 | char * file_name; | |
3412 | ||
3413 | colon_index = colon - regexp; | |
3414 | file_name = alloca (colon_index + 1); | |
3415 | memcpy (file_name, regexp, colon_index); | |
3416 | file_name[colon_index--] = 0; | |
3417 | while (isspace (file_name[colon_index])) | |
3418 | file_name[colon_index--] = 0; | |
3419 | files = &file_name; | |
3420 | nfiles = 1; | |
3421 | regexp = colon + 1; | |
3422 | while (isspace (*regexp)) regexp++; | |
3423 | } | |
3424 | } | |
3425 | ||
3426 | search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss); | |
5bd98722 | 3427 | old_chain = make_cleanup_free_search_symbols (ss); |
95a42b64 | 3428 | make_cleanup (free_current_contents, &string); |
c906108c | 3429 | |
95a42b64 TT |
3430 | start_rbreak_breakpoints (); |
3431 | make_cleanup (do_end_rbreak_breakpoints, NULL); | |
c906108c SS |
3432 | for (p = ss; p != NULL; p = p->next) |
3433 | { | |
3434 | if (p->msymbol == NULL) | |
c5aa993b | 3435 | { |
95a42b64 TT |
3436 | int newlen = (strlen (p->symtab->filename) |
3437 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3438 | + 4); | |
433759f7 | 3439 | |
95a42b64 TT |
3440 | if (newlen > len) |
3441 | { | |
3442 | string = xrealloc (string, newlen); | |
3443 | len = newlen; | |
3444 | } | |
c5aa993b JM |
3445 | strcpy (string, p->symtab->filename); |
3446 | strcat (string, ":'"); | |
2335f48e | 3447 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3448 | strcat (string, "'"); |
3449 | break_command (string, from_tty); | |
176620f1 | 3450 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3451 | p->symtab, |
3452 | p->symbol, | |
3453 | p->block, | |
3454 | p->symtab->filename); | |
3455 | } | |
c906108c | 3456 | else |
c5aa993b | 3457 | { |
433759f7 MS |
3458 | int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3); |
3459 | ||
95a42b64 TT |
3460 | if (newlen > len) |
3461 | { | |
3462 | string = xrealloc (string, newlen); | |
3463 | len = newlen; | |
3464 | } | |
6214f497 DJ |
3465 | strcpy (string, "'"); |
3466 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3467 | strcat (string, "'"); | |
3468 | ||
3469 | break_command (string, from_tty); | |
c5aa993b | 3470 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3471 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3472 | } |
c906108c SS |
3473 | } |
3474 | ||
3475 | do_cleanups (old_chain); | |
3476 | } | |
c906108c | 3477 | \f |
c5aa993b | 3478 | |
c906108c SS |
3479 | /* Helper routine for make_symbol_completion_list. */ |
3480 | ||
3481 | static int return_val_size; | |
3482 | static int return_val_index; | |
3483 | static char **return_val; | |
3484 | ||
3485 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3486 | completion_list_add_name \ |
2335f48e | 3487 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3488 | |
3489 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b | 3490 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
c378eb4e | 3491 | characters. If so, add it to the current completion list. */ |
c906108c SS |
3492 | |
3493 | static void | |
fba45db2 KB |
3494 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3495 | char *text, char *word) | |
c906108c SS |
3496 | { |
3497 | int newsize; | |
c906108c | 3498 | |
c378eb4e | 3499 | /* Clip symbols that cannot match. */ |
c906108c SS |
3500 | |
3501 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3502 | { | |
3503 | return; | |
3504 | } | |
3505 | ||
c906108c | 3506 | /* We have a match for a completion, so add SYMNAME to the current list |
c378eb4e | 3507 | of matches. Note that the name is moved to freshly malloc'd space. */ |
c906108c SS |
3508 | |
3509 | { | |
3510 | char *new; | |
433759f7 | 3511 | |
c906108c SS |
3512 | if (word == sym_text) |
3513 | { | |
3514 | new = xmalloc (strlen (symname) + 5); | |
3515 | strcpy (new, symname); | |
3516 | } | |
3517 | else if (word > sym_text) | |
3518 | { | |
3519 | /* Return some portion of symname. */ | |
3520 | new = xmalloc (strlen (symname) + 5); | |
3521 | strcpy (new, symname + (word - sym_text)); | |
3522 | } | |
3523 | else | |
3524 | { | |
3525 | /* Return some of SYM_TEXT plus symname. */ | |
3526 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3527 | strncpy (new, word, sym_text - word); | |
3528 | new[sym_text - word] = '\0'; | |
3529 | strcat (new, symname); | |
3530 | } | |
3531 | ||
c906108c SS |
3532 | if (return_val_index + 3 > return_val_size) |
3533 | { | |
3534 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3535 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3536 | } | |
3537 | return_val[return_val_index++] = new; | |
3538 | return_val[return_val_index] = NULL; | |
3539 | } | |
3540 | } | |
3541 | ||
69636828 AF |
3542 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3543 | again and feed all the selectors into the mill. */ | |
3544 | ||
3545 | static void | |
3546 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3547 | int sym_text_len, char *text, char *word) | |
3548 | { | |
3549 | static char *tmp = NULL; | |
3550 | static unsigned int tmplen = 0; | |
9af17804 | 3551 | |
69636828 AF |
3552 | char *method, *category, *selector; |
3553 | char *tmp2 = NULL; | |
9af17804 | 3554 | |
69636828 AF |
3555 | method = SYMBOL_NATURAL_NAME (msymbol); |
3556 | ||
3557 | /* Is it a method? */ | |
3558 | if ((method[0] != '-') && (method[0] != '+')) | |
3559 | return; | |
3560 | ||
3561 | if (sym_text[0] == '[') | |
3562 | /* Complete on shortened method method. */ | |
3563 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 3564 | |
69636828 AF |
3565 | while ((strlen (method) + 1) >= tmplen) |
3566 | { | |
3567 | if (tmplen == 0) | |
3568 | tmplen = 1024; | |
3569 | else | |
3570 | tmplen *= 2; | |
3571 | tmp = xrealloc (tmp, tmplen); | |
3572 | } | |
3573 | selector = strchr (method, ' '); | |
3574 | if (selector != NULL) | |
3575 | selector++; | |
9af17804 | 3576 | |
69636828 | 3577 | category = strchr (method, '('); |
9af17804 | 3578 | |
69636828 AF |
3579 | if ((category != NULL) && (selector != NULL)) |
3580 | { | |
3581 | memcpy (tmp, method, (category - method)); | |
3582 | tmp[category - method] = ' '; | |
3583 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3584 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3585 | if (sym_text[0] == '[') | |
3586 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3587 | } | |
9af17804 | 3588 | |
69636828 AF |
3589 | if (selector != NULL) |
3590 | { | |
3591 | /* Complete on selector only. */ | |
3592 | strcpy (tmp, selector); | |
3593 | tmp2 = strchr (tmp, ']'); | |
3594 | if (tmp2 != NULL) | |
3595 | *tmp2 = '\0'; | |
9af17804 | 3596 | |
69636828 AF |
3597 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3598 | } | |
3599 | } | |
3600 | ||
3601 | /* Break the non-quoted text based on the characters which are in | |
c378eb4e | 3602 | symbols. FIXME: This should probably be language-specific. */ |
69636828 AF |
3603 | |
3604 | static char * | |
3605 | language_search_unquoted_string (char *text, char *p) | |
3606 | { | |
3607 | for (; p > text; --p) | |
3608 | { | |
3609 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3610 | continue; | |
3611 | else | |
3612 | { | |
3613 | if ((current_language->la_language == language_objc)) | |
3614 | { | |
c378eb4e | 3615 | if (p[-1] == ':') /* Might be part of a method name. */ |
69636828 AF |
3616 | continue; |
3617 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
c378eb4e | 3618 | p -= 2; /* Beginning of a method name. */ |
69636828 | 3619 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') |
c378eb4e | 3620 | { /* Might be part of a method name. */ |
69636828 AF |
3621 | char *t = p; |
3622 | ||
3623 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3624 | that we are in the middle of a method name. However, | |
3625 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3626 | Unfortunately we have to find it now to decide. */ | |
3627 | ||
3628 | while (t > text) | |
3629 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3630 | t[-1] == ' ' || t[-1] == ':' || | |
3631 | t[-1] == '(' || t[-1] == ')') | |
3632 | --t; | |
3633 | else | |
3634 | break; | |
3635 | ||
3636 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
c378eb4e MS |
3637 | p = t - 2; /* Method name detected. */ |
3638 | /* Else we leave with p unchanged. */ | |
69636828 AF |
3639 | } |
3640 | } | |
3641 | break; | |
3642 | } | |
3643 | } | |
3644 | return p; | |
3645 | } | |
3646 | ||
edb3359d DJ |
3647 | static void |
3648 | completion_list_add_fields (struct symbol *sym, char *sym_text, | |
3649 | int sym_text_len, char *text, char *word) | |
3650 | { | |
3651 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3652 | { | |
3653 | struct type *t = SYMBOL_TYPE (sym); | |
3654 | enum type_code c = TYPE_CODE (t); | |
3655 | int j; | |
3656 | ||
3657 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3658 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3659 | if (TYPE_FIELD_NAME (t, j)) | |
3660 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
3661 | sym_text, sym_text_len, text, word); | |
3662 | } | |
3663 | } | |
3664 | ||
ccefe4c4 TT |
3665 | /* Type of the user_data argument passed to add_macro_name or |
3666 | add_partial_symbol_name. The contents are simply whatever is | |
3667 | needed by completion_list_add_name. */ | |
3668 | struct add_name_data | |
9a044a89 TT |
3669 | { |
3670 | char *sym_text; | |
3671 | int sym_text_len; | |
3672 | char *text; | |
3673 | char *word; | |
3674 | }; | |
3675 | ||
3676 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
3677 | This adds a macro's name to the current completion list. */ | |
3678 | static void | |
3679 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
3680 | void *user_data) | |
3681 | { | |
ccefe4c4 | 3682 | struct add_name_data *datum = (struct add_name_data *) user_data; |
433759f7 | 3683 | |
ccefe4c4 TT |
3684 | completion_list_add_name ((char *) name, |
3685 | datum->sym_text, datum->sym_text_len, | |
3686 | datum->text, datum->word); | |
3687 | } | |
3688 | ||
3689 | /* A callback for map_partial_symbol_names. */ | |
3690 | static void | |
3691 | add_partial_symbol_name (const char *name, void *user_data) | |
3692 | { | |
3693 | struct add_name_data *datum = (struct add_name_data *) user_data; | |
433759f7 | 3694 | |
9a044a89 TT |
3695 | completion_list_add_name ((char *) name, |
3696 | datum->sym_text, datum->sym_text_len, | |
3697 | datum->text, datum->word); | |
3698 | } | |
3699 | ||
c906108c | 3700 | char ** |
f55ee35c JK |
3701 | default_make_symbol_completion_list_break_on (char *text, char *word, |
3702 | const char *break_on) | |
c906108c | 3703 | { |
41d27058 JB |
3704 | /* Problem: All of the symbols have to be copied because readline |
3705 | frees them. I'm not going to worry about this; hopefully there | |
3706 | won't be that many. */ | |
3707 | ||
de4f826b DC |
3708 | struct symbol *sym; |
3709 | struct symtab *s; | |
de4f826b DC |
3710 | struct minimal_symbol *msymbol; |
3711 | struct objfile *objfile; | |
edb3359d DJ |
3712 | struct block *b; |
3713 | const struct block *surrounding_static_block, *surrounding_global_block; | |
de4f826b | 3714 | struct dict_iterator iter; |
c906108c SS |
3715 | /* The symbol we are completing on. Points in same buffer as text. */ |
3716 | char *sym_text; | |
3717 | /* Length of sym_text. */ | |
3718 | int sym_text_len; | |
ccefe4c4 | 3719 | struct add_name_data datum; |
c906108c | 3720 | |
41d27058 | 3721 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
3722 | { |
3723 | char *p; | |
3724 | char quote_found; | |
3725 | char *quote_pos = NULL; | |
3726 | ||
3727 | /* First see if this is a quoted string. */ | |
3728 | quote_found = '\0'; | |
3729 | for (p = text; *p != '\0'; ++p) | |
3730 | { | |
3731 | if (quote_found != '\0') | |
3732 | { | |
3733 | if (*p == quote_found) | |
3734 | /* Found close quote. */ | |
3735 | quote_found = '\0'; | |
3736 | else if (*p == '\\' && p[1] == quote_found) | |
3737 | /* A backslash followed by the quote character | |
c5aa993b | 3738 | doesn't end the string. */ |
c906108c SS |
3739 | ++p; |
3740 | } | |
3741 | else if (*p == '\'' || *p == '"') | |
3742 | { | |
3743 | quote_found = *p; | |
3744 | quote_pos = p; | |
3745 | } | |
3746 | } | |
3747 | if (quote_found == '\'') | |
3748 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3749 | sym_text = quote_pos + 1; | |
3750 | else if (quote_found == '"') | |
3751 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3752 | to complete it any other way. */ |
c94fdfd0 EZ |
3753 | { |
3754 | return_val = (char **) xmalloc (sizeof (char *)); | |
3755 | return_val[0] = NULL; | |
3756 | return return_val; | |
3757 | } | |
c906108c SS |
3758 | else |
3759 | { | |
3760 | /* It is not a quoted string. Break it based on the characters | |
3761 | which are in symbols. */ | |
3762 | while (p > text) | |
3763 | { | |
95699ff0 | 3764 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
f55ee35c | 3765 | || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) |
c906108c SS |
3766 | --p; |
3767 | else | |
3768 | break; | |
3769 | } | |
3770 | sym_text = p; | |
3771 | } | |
3772 | } | |
3773 | ||
3774 | sym_text_len = strlen (sym_text); | |
3775 | ||
3776 | return_val_size = 100; | |
3777 | return_val_index = 0; | |
3778 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3779 | return_val[0] = NULL; | |
3780 | ||
ccefe4c4 TT |
3781 | datum.sym_text = sym_text; |
3782 | datum.sym_text_len = sym_text_len; | |
3783 | datum.text = text; | |
3784 | datum.word = word; | |
3785 | ||
c906108c SS |
3786 | /* Look through the partial symtabs for all symbols which begin |
3787 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
ccefe4c4 | 3788 | map_partial_symbol_names (add_partial_symbol_name, &datum); |
c906108c SS |
3789 | |
3790 | /* At this point scan through the misc symbol vectors and add each | |
3791 | symbol you find to the list. Eventually we want to ignore | |
3792 | anything that isn't a text symbol (everything else will be | |
3793 | handled by the psymtab code above). */ | |
3794 | ||
3795 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3796 | { |
3797 | QUIT; | |
3798 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 3799 | |
69636828 | 3800 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 3801 | } |
c906108c SS |
3802 | |
3803 | /* Search upwards from currently selected frame (so that we can | |
edb3359d DJ |
3804 | complete on local vars). Also catch fields of types defined in |
3805 | this places which match our text string. Only complete on types | |
c378eb4e | 3806 | visible from current context. */ |
edb3359d DJ |
3807 | |
3808 | b = get_selected_block (0); | |
3809 | surrounding_static_block = block_static_block (b); | |
3810 | surrounding_global_block = block_global_block (b); | |
3811 | if (surrounding_static_block != NULL) | |
3812 | while (b != surrounding_static_block) | |
3813 | { | |
3814 | QUIT; | |
c906108c | 3815 | |
edb3359d DJ |
3816 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
3817 | { | |
3818 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
3819 | word); | |
3820 | completion_list_add_fields (sym, sym_text, sym_text_len, text, | |
3821 | word); | |
3822 | } | |
c5aa993b | 3823 | |
edb3359d DJ |
3824 | /* Stop when we encounter an enclosing function. Do not stop for |
3825 | non-inlined functions - the locals of the enclosing function | |
3826 | are in scope for a nested function. */ | |
3827 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
3828 | break; | |
3829 | b = BLOCK_SUPERBLOCK (b); | |
3830 | } | |
c906108c | 3831 | |
edb3359d | 3832 | /* Add fields from the file's types; symbols will be added below. */ |
c906108c | 3833 | |
edb3359d DJ |
3834 | if (surrounding_static_block != NULL) |
3835 | ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) | |
3836 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
3837 | ||
3838 | if (surrounding_global_block != NULL) | |
3839 | ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) | |
3840 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
c906108c SS |
3841 | |
3842 | /* Go through the symtabs and check the externs and statics for | |
3843 | symbols which match. */ | |
3844 | ||
11309657 | 3845 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3846 | { |
3847 | QUIT; | |
3848 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3849 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3850 | { |
c5aa993b JM |
3851 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3852 | } | |
3853 | } | |
c906108c | 3854 | |
11309657 | 3855 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3856 | { |
3857 | QUIT; | |
3858 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3859 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3860 | { |
c5aa993b JM |
3861 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3862 | } | |
3863 | } | |
c906108c | 3864 | |
9a044a89 TT |
3865 | if (current_language->la_macro_expansion == macro_expansion_c) |
3866 | { | |
3867 | struct macro_scope *scope; | |
9a044a89 TT |
3868 | |
3869 | /* Add any macros visible in the default scope. Note that this | |
3870 | may yield the occasional wrong result, because an expression | |
3871 | might be evaluated in a scope other than the default. For | |
3872 | example, if the user types "break file:line if <TAB>", the | |
3873 | resulting expression will be evaluated at "file:line" -- but | |
3874 | at there does not seem to be a way to detect this at | |
3875 | completion time. */ | |
3876 | scope = default_macro_scope (); | |
3877 | if (scope) | |
3878 | { | |
3879 | macro_for_each_in_scope (scope->file, scope->line, | |
3880 | add_macro_name, &datum); | |
3881 | xfree (scope); | |
3882 | } | |
3883 | ||
3884 | /* User-defined macros are always visible. */ | |
3885 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
3886 | } | |
3887 | ||
c906108c SS |
3888 | return (return_val); |
3889 | } | |
3890 | ||
f55ee35c JK |
3891 | char ** |
3892 | default_make_symbol_completion_list (char *text, char *word) | |
3893 | { | |
3894 | return default_make_symbol_completion_list_break_on (text, word, ""); | |
3895 | } | |
3896 | ||
41d27058 JB |
3897 | /* Return a NULL terminated array of all symbols (regardless of class) |
3898 | which begin by matching TEXT. If the answer is no symbols, then | |
3899 | the return value is an array which contains only a NULL pointer. */ | |
3900 | ||
3901 | char ** | |
3902 | make_symbol_completion_list (char *text, char *word) | |
3903 | { | |
3904 | return current_language->la_make_symbol_completion_list (text, word); | |
3905 | } | |
3906 | ||
d8906c6f TJB |
3907 | /* Like make_symbol_completion_list, but suitable for use as a |
3908 | completion function. */ | |
3909 | ||
3910 | char ** | |
3911 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, | |
3912 | char *text, char *word) | |
3913 | { | |
3914 | return make_symbol_completion_list (text, word); | |
3915 | } | |
3916 | ||
c94fdfd0 EZ |
3917 | /* Like make_symbol_completion_list, but returns a list of symbols |
3918 | defined in a source file FILE. */ | |
3919 | ||
3920 | char ** | |
3921 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3922 | { | |
52f0bd74 AC |
3923 | struct symbol *sym; |
3924 | struct symtab *s; | |
3925 | struct block *b; | |
de4f826b | 3926 | struct dict_iterator iter; |
c94fdfd0 EZ |
3927 | /* The symbol we are completing on. Points in same buffer as text. */ |
3928 | char *sym_text; | |
3929 | /* Length of sym_text. */ | |
3930 | int sym_text_len; | |
3931 | ||
3932 | /* Now look for the symbol we are supposed to complete on. | |
3933 | FIXME: This should be language-specific. */ | |
3934 | { | |
3935 | char *p; | |
3936 | char quote_found; | |
3937 | char *quote_pos = NULL; | |
3938 | ||
3939 | /* First see if this is a quoted string. */ | |
3940 | quote_found = '\0'; | |
3941 | for (p = text; *p != '\0'; ++p) | |
3942 | { | |
3943 | if (quote_found != '\0') | |
3944 | { | |
3945 | if (*p == quote_found) | |
3946 | /* Found close quote. */ | |
3947 | quote_found = '\0'; | |
3948 | else if (*p == '\\' && p[1] == quote_found) | |
3949 | /* A backslash followed by the quote character | |
3950 | doesn't end the string. */ | |
3951 | ++p; | |
3952 | } | |
3953 | else if (*p == '\'' || *p == '"') | |
3954 | { | |
3955 | quote_found = *p; | |
3956 | quote_pos = p; | |
3957 | } | |
3958 | } | |
3959 | if (quote_found == '\'') | |
3960 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3961 | sym_text = quote_pos + 1; | |
3962 | else if (quote_found == '"') | |
3963 | /* A double-quoted string is never a symbol, nor does it make sense | |
3964 | to complete it any other way. */ | |
3965 | { | |
3966 | return_val = (char **) xmalloc (sizeof (char *)); | |
3967 | return_val[0] = NULL; | |
3968 | return return_val; | |
3969 | } | |
3970 | else | |
3971 | { | |
69636828 AF |
3972 | /* Not a quoted string. */ |
3973 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3974 | } |
3975 | } | |
3976 | ||
3977 | sym_text_len = strlen (sym_text); | |
3978 | ||
3979 | return_val_size = 10; | |
3980 | return_val_index = 0; | |
3981 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3982 | return_val[0] = NULL; | |
3983 | ||
3984 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3985 | in). */ | |
3986 | s = lookup_symtab (srcfile); | |
3987 | if (s == NULL) | |
3988 | { | |
3989 | /* Maybe they typed the file with leading directories, while the | |
3990 | symbol tables record only its basename. */ | |
31889e00 | 3991 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3992 | |
3993 | if (tail > srcfile) | |
3994 | s = lookup_symtab (tail); | |
3995 | } | |
3996 | ||
3997 | /* If we have no symtab for that file, return an empty list. */ | |
3998 | if (s == NULL) | |
3999 | return (return_val); | |
4000 | ||
4001 | /* Go through this symtab and check the externs and statics for | |
4002 | symbols which match. */ | |
4003 | ||
4004 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4005 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4006 | { |
c94fdfd0 EZ |
4007 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4008 | } | |
4009 | ||
4010 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4011 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4012 | { |
c94fdfd0 EZ |
4013 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4014 | } | |
4015 | ||
4016 | return (return_val); | |
4017 | } | |
4018 | ||
4019 | /* A helper function for make_source_files_completion_list. It adds | |
4020 | another file name to a list of possible completions, growing the | |
4021 | list as necessary. */ | |
4022 | ||
4023 | static void | |
4024 | add_filename_to_list (const char *fname, char *text, char *word, | |
4025 | char ***list, int *list_used, int *list_alloced) | |
4026 | { | |
4027 | char *new; | |
4028 | size_t fnlen = strlen (fname); | |
4029 | ||
4030 | if (*list_used + 1 >= *list_alloced) | |
4031 | { | |
4032 | *list_alloced *= 2; | |
4033 | *list = (char **) xrealloc ((char *) *list, | |
4034 | *list_alloced * sizeof (char *)); | |
4035 | } | |
4036 | ||
4037 | if (word == text) | |
4038 | { | |
4039 | /* Return exactly fname. */ | |
4040 | new = xmalloc (fnlen + 5); | |
4041 | strcpy (new, fname); | |
4042 | } | |
4043 | else if (word > text) | |
4044 | { | |
4045 | /* Return some portion of fname. */ | |
4046 | new = xmalloc (fnlen + 5); | |
4047 | strcpy (new, fname + (word - text)); | |
4048 | } | |
4049 | else | |
4050 | { | |
4051 | /* Return some of TEXT plus fname. */ | |
4052 | new = xmalloc (fnlen + (text - word) + 5); | |
4053 | strncpy (new, word, text - word); | |
4054 | new[text - word] = '\0'; | |
4055 | strcat (new, fname); | |
4056 | } | |
4057 | (*list)[*list_used] = new; | |
4058 | (*list)[++*list_used] = NULL; | |
4059 | } | |
4060 | ||
4061 | static int | |
4062 | not_interesting_fname (const char *fname) | |
4063 | { | |
4064 | static const char *illegal_aliens[] = { | |
4065 | "_globals_", /* inserted by coff_symtab_read */ | |
4066 | NULL | |
4067 | }; | |
4068 | int i; | |
4069 | ||
4070 | for (i = 0; illegal_aliens[i]; i++) | |
4071 | { | |
4072 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
4073 | return 1; | |
4074 | } | |
4075 | return 0; | |
4076 | } | |
4077 | ||
ccefe4c4 TT |
4078 | /* An object of this type is passed as the user_data argument to |
4079 | map_partial_symbol_filenames. */ | |
4080 | struct add_partial_filename_data | |
4081 | { | |
4082 | int *first; | |
4083 | char *text; | |
4084 | char *word; | |
4085 | int text_len; | |
4086 | char ***list; | |
4087 | int *list_used; | |
4088 | int *list_alloced; | |
4089 | }; | |
4090 | ||
4091 | /* A callback for map_partial_symbol_filenames. */ | |
4092 | static void | |
2837d59e | 4093 | maybe_add_partial_symtab_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
4094 | void *user_data) |
4095 | { | |
4096 | struct add_partial_filename_data *data = user_data; | |
4097 | ||
4098 | if (not_interesting_fname (filename)) | |
4099 | return; | |
4100 | if (!filename_seen (filename, 1, data->first) | |
4101 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4102 | && strncasecmp (filename, data->text, data->text_len) == 0 | |
4103 | #else | |
4104 | && strncmp (filename, data->text, data->text_len) == 0 | |
4105 | #endif | |
4106 | ) | |
4107 | { | |
4108 | /* This file matches for a completion; add it to the | |
4109 | current list of matches. */ | |
4110 | add_filename_to_list (filename, data->text, data->word, | |
4111 | data->list, data->list_used, data->list_alloced); | |
4112 | } | |
4113 | else | |
4114 | { | |
4115 | const char *base_name = lbasename (filename); | |
433759f7 | 4116 | |
ccefe4c4 TT |
4117 | if (base_name != filename |
4118 | && !filename_seen (base_name, 1, data->first) | |
4119 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4120 | && strncasecmp (base_name, data->text, data->text_len) == 0 | |
4121 | #else | |
4122 | && strncmp (base_name, data->text, data->text_len) == 0 | |
4123 | #endif | |
4124 | ) | |
4125 | add_filename_to_list (base_name, data->text, data->word, | |
4126 | data->list, data->list_used, data->list_alloced); | |
4127 | } | |
4128 | } | |
4129 | ||
c94fdfd0 EZ |
4130 | /* Return a NULL terminated array of all source files whose names |
4131 | begin with matching TEXT. The file names are looked up in the | |
4132 | symbol tables of this program. If the answer is no matchess, then | |
4133 | the return value is an array which contains only a NULL pointer. */ | |
4134 | ||
4135 | char ** | |
4136 | make_source_files_completion_list (char *text, char *word) | |
4137 | { | |
52f0bd74 | 4138 | struct symtab *s; |
52f0bd74 | 4139 | struct objfile *objfile; |
c94fdfd0 EZ |
4140 | int first = 1; |
4141 | int list_alloced = 1; | |
4142 | int list_used = 0; | |
4143 | size_t text_len = strlen (text); | |
4144 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 4145 | const char *base_name; |
ccefe4c4 | 4146 | struct add_partial_filename_data datum; |
c94fdfd0 EZ |
4147 | |
4148 | list[0] = NULL; | |
4149 | ||
4150 | if (!have_full_symbols () && !have_partial_symbols ()) | |
4151 | return list; | |
4152 | ||
4153 | ALL_SYMTABS (objfile, s) | |
4154 | { | |
4155 | if (not_interesting_fname (s->filename)) | |
4156 | continue; | |
4157 | if (!filename_seen (s->filename, 1, &first) | |
4158 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4159 | && strncasecmp (s->filename, text, text_len) == 0 | |
4160 | #else | |
4161 | && strncmp (s->filename, text, text_len) == 0 | |
4162 | #endif | |
4163 | ) | |
4164 | { | |
4165 | /* This file matches for a completion; add it to the current | |
4166 | list of matches. */ | |
4167 | add_filename_to_list (s->filename, text, word, | |
4168 | &list, &list_used, &list_alloced); | |
4169 | } | |
4170 | else | |
4171 | { | |
4172 | /* NOTE: We allow the user to type a base name when the | |
4173 | debug info records leading directories, but not the other | |
4174 | way around. This is what subroutines of breakpoint | |
4175 | command do when they parse file names. */ | |
31889e00 | 4176 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4177 | if (base_name != s->filename |
4178 | && !filename_seen (base_name, 1, &first) | |
4179 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4180 | && strncasecmp (base_name, text, text_len) == 0 | |
4181 | #else | |
4182 | && strncmp (base_name, text, text_len) == 0 | |
4183 | #endif | |
4184 | ) | |
4185 | add_filename_to_list (base_name, text, word, | |
4186 | &list, &list_used, &list_alloced); | |
4187 | } | |
4188 | } | |
4189 | ||
ccefe4c4 TT |
4190 | datum.first = &first; |
4191 | datum.text = text; | |
4192 | datum.word = word; | |
4193 | datum.text_len = text_len; | |
4194 | datum.list = &list; | |
4195 | datum.list_used = &list_used; | |
4196 | datum.list_alloced = &list_alloced; | |
4197 | map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum); | |
c94fdfd0 EZ |
4198 | |
4199 | return list; | |
4200 | } | |
4201 | ||
c906108c SS |
4202 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4203 | between the first instruction of a function, and the first executable line. | |
4204 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4205 | ||
4206 | If non-zero, func_start is where we think the prologue starts, possibly | |
c378eb4e | 4207 | by previous examination of symbol table information. */ |
c906108c SS |
4208 | |
4209 | int | |
d80b854b | 4210 | in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4211 | { |
4212 | struct symtab_and_line sal; | |
4213 | CORE_ADDR func_addr, func_end; | |
4214 | ||
54cf9c03 EZ |
4215 | /* We have several sources of information we can consult to figure |
4216 | this out. | |
4217 | - Compilers usually emit line number info that marks the prologue | |
4218 | as its own "source line". So the ending address of that "line" | |
4219 | is the end of the prologue. If available, this is the most | |
4220 | reliable method. | |
4221 | - The minimal symbols and partial symbols, which can usually tell | |
4222 | us the starting and ending addresses of a function. | |
4223 | - If we know the function's start address, we can call the | |
a433963d | 4224 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4225 | instruction stream and guess where the prologue ends. |
4226 | - Our `func_start' argument; if non-zero, this is the caller's | |
4227 | best guess as to the function's entry point. At the time of | |
4228 | this writing, handle_inferior_event doesn't get this right, so | |
4229 | it should be our last resort. */ | |
4230 | ||
4231 | /* Consult the partial symbol table, to find which function | |
4232 | the PC is in. */ | |
4233 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4234 | { | |
4235 | CORE_ADDR prologue_end; | |
c906108c | 4236 | |
54cf9c03 EZ |
4237 | /* We don't even have minsym information, so fall back to using |
4238 | func_start, if given. */ | |
4239 | if (! func_start) | |
4240 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4241 | |
d80b854b | 4242 | prologue_end = gdbarch_skip_prologue (gdbarch, func_start); |
c906108c | 4243 | |
54cf9c03 EZ |
4244 | return func_start <= pc && pc < prologue_end; |
4245 | } | |
c906108c | 4246 | |
54cf9c03 EZ |
4247 | /* If we have line number information for the function, that's |
4248 | usually pretty reliable. */ | |
4249 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4250 | |
54cf9c03 EZ |
4251 | /* Now sal describes the source line at the function's entry point, |
4252 | which (by convention) is the prologue. The end of that "line", | |
4253 | sal.end, is the end of the prologue. | |
4254 | ||
4255 | Note that, for functions whose source code is all on a single | |
4256 | line, the line number information doesn't always end up this way. | |
4257 | So we must verify that our purported end-of-prologue address is | |
4258 | *within* the function, not at its start or end. */ | |
4259 | if (sal.line == 0 | |
4260 | || sal.end <= func_addr | |
4261 | || func_end <= sal.end) | |
4262 | { | |
4263 | /* We don't have any good line number info, so use the minsym | |
4264 | information, together with the architecture-specific prologue | |
4265 | scanning code. */ | |
d80b854b | 4266 | CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); |
c906108c | 4267 | |
54cf9c03 EZ |
4268 | return func_addr <= pc && pc < prologue_end; |
4269 | } | |
c906108c | 4270 | |
54cf9c03 EZ |
4271 | /* We have line number info, and it looks good. */ |
4272 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4273 | } |
4274 | ||
634aa483 AC |
4275 | /* Given PC at the function's start address, attempt to find the |
4276 | prologue end using SAL information. Return zero if the skip fails. | |
4277 | ||
4278 | A non-optimized prologue traditionally has one SAL for the function | |
4279 | and a second for the function body. A single line function has | |
4280 | them both pointing at the same line. | |
4281 | ||
4282 | An optimized prologue is similar but the prologue may contain | |
4283 | instructions (SALs) from the instruction body. Need to skip those | |
4284 | while not getting into the function body. | |
4285 | ||
4286 | The functions end point and an increasing SAL line are used as | |
4287 | indicators of the prologue's endpoint. | |
4288 | ||
4289 | This code is based on the function refine_prologue_limit (versions | |
4290 | found in both ia64 and ppc). */ | |
4291 | ||
4292 | CORE_ADDR | |
d80b854b | 4293 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
634aa483 AC |
4294 | { |
4295 | struct symtab_and_line prologue_sal; | |
4296 | CORE_ADDR start_pc; | |
4297 | CORE_ADDR end_pc; | |
d54be744 | 4298 | struct block *bl; |
634aa483 AC |
4299 | |
4300 | /* Get an initial range for the function. */ | |
4301 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
d80b854b | 4302 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
634aa483 AC |
4303 | |
4304 | prologue_sal = find_pc_line (start_pc, 0); | |
4305 | if (prologue_sal.line != 0) | |
4306 | { | |
d54be744 DJ |
4307 | /* For langauges other than assembly, treat two consecutive line |
4308 | entries at the same address as a zero-instruction prologue. | |
4309 | The GNU assembler emits separate line notes for each instruction | |
4310 | in a multi-instruction macro, but compilers generally will not | |
4311 | do this. */ | |
4312 | if (prologue_sal.symtab->language != language_asm) | |
4313 | { | |
4314 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
d54be744 DJ |
4315 | int idx = 0; |
4316 | ||
4317 | /* Skip any earlier lines, and any end-of-sequence marker | |
4318 | from a previous function. */ | |
4319 | while (linetable->item[idx].pc != prologue_sal.pc | |
4320 | || linetable->item[idx].line == 0) | |
4321 | idx++; | |
4322 | ||
4323 | if (idx+1 < linetable->nitems | |
4324 | && linetable->item[idx+1].line != 0 | |
4325 | && linetable->item[idx+1].pc == start_pc) | |
4326 | return start_pc; | |
4327 | } | |
4328 | ||
576c2025 FF |
4329 | /* If there is only one sal that covers the entire function, |
4330 | then it is probably a single line function, like | |
c378eb4e | 4331 | "foo(){}". */ |
91934273 | 4332 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4333 | return 0; |
d54be744 | 4334 | |
634aa483 AC |
4335 | while (prologue_sal.end < end_pc) |
4336 | { | |
4337 | struct symtab_and_line sal; | |
4338 | ||
4339 | sal = find_pc_line (prologue_sal.end, 0); | |
4340 | if (sal.line == 0) | |
4341 | break; | |
4342 | /* Assume that a consecutive SAL for the same (or larger) | |
4343 | line mark the prologue -> body transition. */ | |
4344 | if (sal.line >= prologue_sal.line) | |
4345 | break; | |
edb3359d DJ |
4346 | |
4347 | /* The line number is smaller. Check that it's from the | |
4348 | same function, not something inlined. If it's inlined, | |
4349 | then there is no point comparing the line numbers. */ | |
4350 | bl = block_for_pc (prologue_sal.end); | |
4351 | while (bl) | |
4352 | { | |
4353 | if (block_inlined_p (bl)) | |
4354 | break; | |
4355 | if (BLOCK_FUNCTION (bl)) | |
4356 | { | |
4357 | bl = NULL; | |
4358 | break; | |
4359 | } | |
4360 | bl = BLOCK_SUPERBLOCK (bl); | |
4361 | } | |
4362 | if (bl != NULL) | |
4363 | break; | |
4364 | ||
634aa483 AC |
4365 | /* The case in which compiler's optimizer/scheduler has |
4366 | moved instructions into the prologue. We look ahead in | |
4367 | the function looking for address ranges whose | |
4368 | corresponding line number is less the first one that we | |
4369 | found for the function. This is more conservative then | |
4370 | refine_prologue_limit which scans a large number of SALs | |
c378eb4e | 4371 | looking for any in the prologue. */ |
634aa483 AC |
4372 | prologue_sal = sal; |
4373 | } | |
4374 | } | |
d54be744 DJ |
4375 | |
4376 | if (prologue_sal.end < end_pc) | |
4377 | /* Return the end of this line, or zero if we could not find a | |
4378 | line. */ | |
4379 | return prologue_sal.end; | |
4380 | else | |
4381 | /* Don't return END_PC, which is past the end of the function. */ | |
4382 | return prologue_sal.pc; | |
634aa483 | 4383 | } |
c906108c | 4384 | \f |
50641945 FN |
4385 | struct symtabs_and_lines |
4386 | decode_line_spec (char *string, int funfirstline) | |
4387 | { | |
4388 | struct symtabs_and_lines sals; | |
0378c332 | 4389 | struct symtab_and_line cursal; |
9af17804 | 4390 | |
50641945 | 4391 | if (string == 0) |
8a3fe4f8 | 4392 | error (_("Empty line specification.")); |
9af17804 | 4393 | |
c378eb4e MS |
4394 | /* We use whatever is set as the current source line. We do not try |
4395 | and get a default or it will recursively call us! */ | |
0378c332 | 4396 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4397 | |
50641945 | 4398 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4399 | cursal.symtab, cursal.line, |
bffe1ece | 4400 | (char ***) NULL, NULL); |
0378c332 | 4401 | |
50641945 | 4402 | if (*string) |
8a3fe4f8 | 4403 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4404 | return sals; |
4405 | } | |
c5aa993b | 4406 | |
51cc5b07 AC |
4407 | /* Track MAIN */ |
4408 | static char *name_of_main; | |
01f8c46d | 4409 | enum language language_of_main = language_unknown; |
51cc5b07 AC |
4410 | |
4411 | void | |
4412 | set_main_name (const char *name) | |
4413 | { | |
4414 | if (name_of_main != NULL) | |
4415 | { | |
4416 | xfree (name_of_main); | |
4417 | name_of_main = NULL; | |
01f8c46d | 4418 | language_of_main = language_unknown; |
51cc5b07 AC |
4419 | } |
4420 | if (name != NULL) | |
4421 | { | |
4422 | name_of_main = xstrdup (name); | |
01f8c46d | 4423 | language_of_main = language_unknown; |
51cc5b07 AC |
4424 | } |
4425 | } | |
4426 | ||
ea53e89f JB |
4427 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4428 | accordingly. */ | |
4429 | ||
4430 | static void | |
4431 | find_main_name (void) | |
4432 | { | |
cd6c7346 | 4433 | const char *new_main_name; |
ea53e89f JB |
4434 | |
4435 | /* Try to see if the main procedure is in Ada. */ | |
4436 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4437 | be to add a new method in the language vector, and call this | |
4438 | method for each language until one of them returns a non-empty | |
4439 | name. This would allow us to remove this hard-coded call to | |
4440 | an Ada function. It is not clear that this is a better approach | |
4441 | at this point, because all methods need to be written in a way | |
c378eb4e | 4442 | such that false positives never be returned. For instance, it is |
ea53e89f JB |
4443 | important that a method does not return a wrong name for the main |
4444 | procedure if the main procedure is actually written in a different | |
4445 | language. It is easy to guaranty this with Ada, since we use a | |
4446 | special symbol generated only when the main in Ada to find the name | |
c378eb4e | 4447 | of the main procedure. It is difficult however to see how this can |
ea53e89f JB |
4448 | be guarantied for languages such as C, for instance. This suggests |
4449 | that order of call for these methods becomes important, which means | |
4450 | a more complicated approach. */ | |
4451 | new_main_name = ada_main_name (); | |
4452 | if (new_main_name != NULL) | |
9af17804 | 4453 | { |
ea53e89f JB |
4454 | set_main_name (new_main_name); |
4455 | return; | |
4456 | } | |
4457 | ||
cd6c7346 PM |
4458 | new_main_name = pascal_main_name (); |
4459 | if (new_main_name != NULL) | |
9af17804 | 4460 | { |
cd6c7346 PM |
4461 | set_main_name (new_main_name); |
4462 | return; | |
4463 | } | |
4464 | ||
ea53e89f JB |
4465 | /* The languages above didn't identify the name of the main procedure. |
4466 | Fallback to "main". */ | |
4467 | set_main_name ("main"); | |
4468 | } | |
4469 | ||
51cc5b07 AC |
4470 | char * |
4471 | main_name (void) | |
4472 | { | |
ea53e89f JB |
4473 | if (name_of_main == NULL) |
4474 | find_main_name (); | |
4475 | ||
4476 | return name_of_main; | |
51cc5b07 AC |
4477 | } |
4478 | ||
ea53e89f JB |
4479 | /* Handle ``executable_changed'' events for the symtab module. */ |
4480 | ||
4481 | static void | |
781b42b0 | 4482 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4483 | { |
4484 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4485 | set_main_name (NULL); | |
4486 | } | |
51cc5b07 | 4487 | |
ed0616c6 VP |
4488 | /* Helper to expand_line_sal below. Appends new sal to SAL, |
4489 | initializing it from SYMTAB, LINENO and PC. */ | |
4490 | static void | |
4491 | append_expanded_sal (struct symtabs_and_lines *sal, | |
6c95b8df | 4492 | struct program_space *pspace, |
ed0616c6 VP |
4493 | struct symtab *symtab, |
4494 | int lineno, CORE_ADDR pc) | |
4495 | { | |
9af17804 DE |
4496 | sal->sals = xrealloc (sal->sals, |
4497 | sizeof (sal->sals[0]) | |
ed0616c6 VP |
4498 | * (sal->nelts + 1)); |
4499 | init_sal (sal->sals + sal->nelts); | |
6c95b8df | 4500 | sal->sals[sal->nelts].pspace = pspace; |
ed0616c6 VP |
4501 | sal->sals[sal->nelts].symtab = symtab; |
4502 | sal->sals[sal->nelts].section = NULL; | |
4503 | sal->sals[sal->nelts].end = 0; | |
9af17804 | 4504 | sal->sals[sal->nelts].line = lineno; |
ed0616c6 | 4505 | sal->sals[sal->nelts].pc = pc; |
9af17804 | 4506 | ++sal->nelts; |
ed0616c6 VP |
4507 | } |
4508 | ||
aad80b26 | 4509 | /* Helper to expand_line_sal below. Search in the symtabs for any |
3ffc00b8 JB |
4510 | linetable entry that exactly matches FULLNAME and LINENO and append |
4511 | them to RET. If FULLNAME is NULL or if a symtab has no full name, | |
4512 | use FILENAME and LINENO instead. If there is at least one match, | |
4513 | return 1; otherwise, return 0, and return the best choice in BEST_ITEM | |
4514 | and BEST_SYMTAB. */ | |
aad80b26 JG |
4515 | |
4516 | static int | |
3ffc00b8 | 4517 | append_exact_match_to_sals (char *filename, char *fullname, int lineno, |
aad80b26 JG |
4518 | struct symtabs_and_lines *ret, |
4519 | struct linetable_entry **best_item, | |
4520 | struct symtab **best_symtab) | |
4521 | { | |
6c95b8df | 4522 | struct program_space *pspace; |
aad80b26 JG |
4523 | struct objfile *objfile; |
4524 | struct symtab *symtab; | |
4525 | int exact = 0; | |
4526 | int j; | |
4527 | *best_item = 0; | |
4528 | *best_symtab = 0; | |
6c95b8df PA |
4529 | |
4530 | ALL_PSPACES (pspace) | |
4531 | ALL_PSPACE_SYMTABS (pspace, objfile, symtab) | |
aad80b26 | 4532 | { |
3ffc00b8 | 4533 | if (FILENAME_CMP (filename, symtab->filename) == 0) |
aad80b26 JG |
4534 | { |
4535 | struct linetable *l; | |
4536 | int len; | |
433759f7 | 4537 | |
3ffc00b8 JB |
4538 | if (fullname != NULL |
4539 | && symtab_to_fullname (symtab) != NULL | |
4540 | && FILENAME_CMP (fullname, symtab->fullname) != 0) | |
4541 | continue; | |
aad80b26 JG |
4542 | l = LINETABLE (symtab); |
4543 | if (!l) | |
4544 | continue; | |
4545 | len = l->nitems; | |
4546 | ||
4547 | for (j = 0; j < len; j++) | |
4548 | { | |
4549 | struct linetable_entry *item = &(l->item[j]); | |
4550 | ||
4551 | if (item->line == lineno) | |
4552 | { | |
4553 | exact = 1; | |
6c95b8df PA |
4554 | append_expanded_sal (ret, objfile->pspace, |
4555 | symtab, lineno, item->pc); | |
aad80b26 JG |
4556 | } |
4557 | else if (!exact && item->line > lineno | |
4558 | && (*best_item == NULL | |
4559 | || item->line < (*best_item)->line)) | |
4560 | { | |
4561 | *best_item = item; | |
4562 | *best_symtab = symtab; | |
4563 | } | |
4564 | } | |
4565 | } | |
4566 | } | |
4567 | return exact; | |
4568 | } | |
4569 | ||
6c95b8df PA |
4570 | /* Compute a set of all sals in all program spaces that correspond to |
4571 | same file and line as SAL and return those. If there are several | |
4572 | sals that belong to the same block, only one sal for the block is | |
4573 | included in results. */ | |
9af17804 | 4574 | |
ed0616c6 VP |
4575 | struct symtabs_and_lines |
4576 | expand_line_sal (struct symtab_and_line sal) | |
4577 | { | |
952a6d41 | 4578 | struct symtabs_and_lines ret; |
ed0616c6 VP |
4579 | int i, j; |
4580 | struct objfile *objfile; | |
ed0616c6 VP |
4581 | int lineno; |
4582 | int deleted = 0; | |
4583 | struct block **blocks = NULL; | |
4584 | int *filter; | |
6c95b8df | 4585 | struct cleanup *old_chain; |
ed0616c6 VP |
4586 | |
4587 | ret.nelts = 0; | |
4588 | ret.sals = NULL; | |
4589 | ||
6c95b8df | 4590 | /* Only expand sals that represent file.c:line. */ |
ed0616c6 VP |
4591 | if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0) |
4592 | { | |
4593 | ret.sals = xmalloc (sizeof (struct symtab_and_line)); | |
4594 | ret.sals[0] = sal; | |
4595 | ret.nelts = 1; | |
4596 | return ret; | |
4597 | } | |
4598 | else | |
4599 | { | |
6c95b8df | 4600 | struct program_space *pspace; |
ed0616c6 VP |
4601 | struct linetable_entry *best_item = 0; |
4602 | struct symtab *best_symtab = 0; | |
4603 | int exact = 0; | |
6c95b8df | 4604 | char *match_filename; |
ed0616c6 VP |
4605 | |
4606 | lineno = sal.line; | |
6c95b8df | 4607 | match_filename = sal.symtab->filename; |
ed0616c6 | 4608 | |
9af17804 DE |
4609 | /* We need to find all symtabs for a file which name |
4610 | is described by sal. We cannot just directly | |
ed0616c6 | 4611 | iterate over symtabs, since a symtab might not be |
9af17804 | 4612 | yet created. We also cannot iterate over psymtabs, |
ed0616c6 VP |
4613 | calling PSYMTAB_TO_SYMTAB and working on that symtab, |
4614 | since PSYMTAB_TO_SYMTAB will return NULL for psymtab | |
9af17804 | 4615 | corresponding to an included file. Therefore, we do |
ed0616c6 VP |
4616 | first pass over psymtabs, reading in those with |
4617 | the right name. Then, we iterate over symtabs, knowing | |
4618 | that all symtabs we're interested in are loaded. */ | |
4619 | ||
6c95b8df PA |
4620 | old_chain = save_current_program_space (); |
4621 | ALL_PSPACES (pspace) | |
ccefe4c4 TT |
4622 | { |
4623 | set_current_program_space (pspace); | |
4624 | ALL_PSPACE_OBJFILES (pspace, objfile) | |
ed0616c6 | 4625 | { |
ccefe4c4 TT |
4626 | if (objfile->sf) |
4627 | objfile->sf->qf->expand_symtabs_with_filename (objfile, | |
4628 | sal.symtab->filename); | |
ed0616c6 | 4629 | } |
ccefe4c4 | 4630 | } |
6c95b8df | 4631 | do_cleanups (old_chain); |
ed0616c6 | 4632 | |
aad80b26 JG |
4633 | /* Now search the symtab for exact matches and append them. If |
4634 | none is found, append the best_item and all its exact | |
4635 | matches. */ | |
3ffc00b8 JB |
4636 | symtab_to_fullname (sal.symtab); |
4637 | exact = append_exact_match_to_sals (sal.symtab->filename, | |
4638 | sal.symtab->fullname, lineno, | |
aad80b26 | 4639 | &ret, &best_item, &best_symtab); |
ed0616c6 | 4640 | if (!exact && best_item) |
3ffc00b8 JB |
4641 | append_exact_match_to_sals (best_symtab->filename, |
4642 | best_symtab->fullname, best_item->line, | |
aad80b26 | 4643 | &ret, &best_item, &best_symtab); |
ed0616c6 VP |
4644 | } |
4645 | ||
4646 | /* For optimized code, compiler can scatter one source line accross | |
4647 | disjoint ranges of PC values, even when no duplicate functions | |
4648 | or inline functions are involved. For example, 'for (;;)' inside | |
4649 | non-template non-inline non-ctor-or-dtor function can result | |
4650 | in two PC ranges. In this case, we don't want to set breakpoint | |
4651 | on first PC of each range. To filter such cases, we use containing | |
4652 | blocks -- for each PC found above we see if there are other PCs | |
9af17804 | 4653 | that are in the same block. If yes, the other PCs are filtered out. */ |
ed0616c6 | 4654 | |
6c95b8df | 4655 | old_chain = save_current_program_space (); |
db009c8a JB |
4656 | filter = alloca (ret.nelts * sizeof (int)); |
4657 | blocks = alloca (ret.nelts * sizeof (struct block *)); | |
ed0616c6 VP |
4658 | for (i = 0; i < ret.nelts; ++i) |
4659 | { | |
6c95b8df PA |
4660 | set_current_program_space (ret.sals[i].pspace); |
4661 | ||
ed0616c6 | 4662 | filter[i] = 1; |
6c95b8df PA |
4663 | blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section); |
4664 | ||
ed0616c6 | 4665 | } |
6c95b8df | 4666 | do_cleanups (old_chain); |
ed0616c6 VP |
4667 | |
4668 | for (i = 0; i < ret.nelts; ++i) | |
4669 | if (blocks[i] != NULL) | |
4670 | for (j = i+1; j < ret.nelts; ++j) | |
4671 | if (blocks[j] == blocks[i]) | |
4672 | { | |
4673 | filter[j] = 0; | |
4674 | ++deleted; | |
4675 | break; | |
4676 | } | |
9af17804 | 4677 | |
ed0616c6 | 4678 | { |
9af17804 | 4679 | struct symtab_and_line *final = |
ed0616c6 | 4680 | xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted)); |
9af17804 | 4681 | |
ed0616c6 VP |
4682 | for (i = 0, j = 0; i < ret.nelts; ++i) |
4683 | if (filter[i]) | |
4684 | final[j++] = ret.sals[i]; | |
9af17804 | 4685 | |
ed0616c6 VP |
4686 | ret.nelts -= deleted; |
4687 | xfree (ret.sals); | |
4688 | ret.sals = final; | |
4689 | } | |
4690 | ||
4691 | return ret; | |
4692 | } | |
4693 | ||
a6c727b2 DJ |
4694 | /* Return 1 if the supplied producer string matches the ARM RealView |
4695 | compiler (armcc). */ | |
4696 | ||
4697 | int | |
4698 | producer_is_realview (const char *producer) | |
4699 | { | |
4700 | static const char *const arm_idents[] = { | |
4701 | "ARM C Compiler, ADS", | |
4702 | "Thumb C Compiler, ADS", | |
4703 | "ARM C++ Compiler, ADS", | |
4704 | "Thumb C++ Compiler, ADS", | |
4705 | "ARM/Thumb C/C++ Compiler, RVCT", | |
4706 | "ARM C/C++ Compiler, RVCT" | |
4707 | }; | |
4708 | int i; | |
4709 | ||
4710 | if (producer == NULL) | |
4711 | return 0; | |
4712 | ||
4713 | for (i = 0; i < ARRAY_SIZE (arm_idents); i++) | |
4714 | if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0) | |
4715 | return 1; | |
4716 | ||
4717 | return 0; | |
4718 | } | |
ed0616c6 | 4719 | |
c906108c | 4720 | void |
fba45db2 | 4721 | _initialize_symtab (void) |
c906108c | 4722 | { |
1bedd215 AC |
4723 | add_info ("variables", variables_info, _("\ |
4724 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4725 | if (dbx_commands) |
1bedd215 AC |
4726 | add_com ("whereis", class_info, variables_info, _("\ |
4727 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4728 | |
4729 | add_info ("functions", functions_info, | |
1bedd215 | 4730 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4731 | |
4732 | /* FIXME: This command has at least the following problems: | |
4733 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4734 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4735 | typedef struct foo *FOO |
4736 | type_print prints "FOO" when we want to make it (in this situation) | |
4737 | print "struct foo *". | |
c906108c SS |
4738 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4739 | there is much disagreement "info types" can be fixed). */ | |
4740 | add_info ("types", types_info, | |
1bedd215 | 4741 | _("All type names, or those matching REGEXP.")); |
c906108c | 4742 | |
c906108c | 4743 | add_info ("sources", sources_info, |
1bedd215 | 4744 | _("Source files in the program.")); |
c906108c SS |
4745 | |
4746 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4747 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4748 | |
4749 | if (xdb_commands) | |
4750 | { | |
1bedd215 AC |
4751 | add_com ("lf", class_info, sources_info, |
4752 | _("Source files in the program")); | |
4753 | add_com ("lg", class_info, variables_info, _("\ | |
4754 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4755 | } |
4756 | ||
717d2f5a JB |
4757 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4758 | multiple_symbols_modes, &multiple_symbols_mode, | |
4759 | _("\ | |
4760 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4761 | in an expression."), _("\ | |
4762 | Show how the debugger handles ambiguities in expressions."), _("\ | |
4763 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
4764 | NULL, NULL, &setlist, &showlist); | |
4765 | ||
ea53e89f | 4766 | observer_attach_executable_changed (symtab_observer_executable_changed); |
c906108c | 4767 | } |