Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4c38e0a4 JB |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009, |
5 | 2010 Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
0378c332 | 39 | #include "source.h" |
a7fdf62f | 40 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 41 | #include "objc-lang.h" |
6aecb9c2 | 42 | #include "d-lang.h" |
1f8173e6 | 43 | #include "ada-lang.h" |
cd6c7346 | 44 | #include "p-lang.h" |
ff013f42 | 45 | #include "addrmap.h" |
c906108c | 46 | |
2de7ced7 DJ |
47 | #include "hashtab.h" |
48 | ||
04ea0df1 | 49 | #include "gdb_obstack.h" |
fe898f56 | 50 | #include "block.h" |
de4f826b | 51 | #include "dictionary.h" |
c906108c SS |
52 | |
53 | #include <sys/types.h> | |
54 | #include <fcntl.h> | |
55 | #include "gdb_string.h" | |
56 | #include "gdb_stat.h" | |
57 | #include <ctype.h> | |
015a42b4 | 58 | #include "cp-abi.h" |
71c25dea | 59 | #include "cp-support.h" |
ea53e89f | 60 | #include "observer.h" |
94277a38 | 61 | #include "gdb_assert.h" |
3a40aaa0 | 62 | #include "solist.h" |
9a044a89 TT |
63 | #include "macrotab.h" |
64 | #include "macroscope.h" | |
c906108c | 65 | |
ccefe4c4 TT |
66 | #include "psymtab.h" |
67 | ||
c906108c SS |
68 | /* Prototypes for local functions */ |
69 | ||
a14ed312 | 70 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 71 | |
a14ed312 | 72 | static void rbreak_command (char *, int); |
c906108c | 73 | |
a14ed312 | 74 | static void types_info (char *, int); |
c906108c | 75 | |
a14ed312 | 76 | static void functions_info (char *, int); |
c906108c | 77 | |
a14ed312 | 78 | static void variables_info (char *, int); |
c906108c | 79 | |
a14ed312 | 80 | static void sources_info (char *, int); |
c906108c | 81 | |
d092d1a2 | 82 | static void output_source_filename (const char *, int *); |
c906108c | 83 | |
a14ed312 | 84 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 85 | |
50641945 FN |
86 | /* This one is used by linespec.c */ |
87 | ||
88 | char *operator_chars (char *p, char **end); | |
89 | ||
3121eff0 | 90 | static struct symbol *lookup_symbol_aux (const char *name, |
3121eff0 | 91 | const struct block *block, |
176620f1 | 92 | const domain_enum domain, |
53c5240f | 93 | enum language language, |
774b6a14 | 94 | int *is_a_field_of_this); |
fba7f19c | 95 | |
e4051eeb DC |
96 | static |
97 | struct symbol *lookup_symbol_aux_local (const char *name, | |
e4051eeb | 98 | const struct block *block, |
13387711 SW |
99 | const domain_enum domain, |
100 | enum language language); | |
8155455b DC |
101 | |
102 | static | |
103 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
104 | const char *name, | |
21b556f4 | 105 | const domain_enum domain); |
8155455b DC |
106 | |
107 | static | |
ccefe4c4 TT |
108 | struct symbol *lookup_symbol_aux_quick (struct objfile *objfile, |
109 | int block_index, | |
110 | const char *name, | |
111 | const domain_enum domain); | |
c906108c | 112 | |
176620f1 | 113 | static void print_symbol_info (domain_enum, |
a14ed312 | 114 | struct symtab *, struct symbol *, int, char *); |
c906108c | 115 | |
a14ed312 | 116 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 117 | |
176620f1 | 118 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 119 | |
a14ed312 | 120 | void _initialize_symtab (void); |
c906108c SS |
121 | |
122 | /* */ | |
123 | ||
717d2f5a JB |
124 | /* Allow the user to configure the debugger behavior with respect |
125 | to multiple-choice menus when more than one symbol matches during | |
126 | a symbol lookup. */ | |
127 | ||
7fc830e2 MK |
128 | const char multiple_symbols_ask[] = "ask"; |
129 | const char multiple_symbols_all[] = "all"; | |
130 | const char multiple_symbols_cancel[] = "cancel"; | |
717d2f5a JB |
131 | static const char *multiple_symbols_modes[] = |
132 | { | |
133 | multiple_symbols_ask, | |
134 | multiple_symbols_all, | |
135 | multiple_symbols_cancel, | |
136 | NULL | |
137 | }; | |
138 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
139 | ||
140 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
141 | ||
142 | const char * | |
143 | multiple_symbols_select_mode (void) | |
144 | { | |
145 | return multiple_symbols_mode; | |
146 | } | |
147 | ||
c906108c | 148 | /* Block in which the most recently searched-for symbol was found. |
9af17804 | 149 | Might be better to make this a parameter to lookup_symbol and |
c906108c SS |
150 | value_of_this. */ |
151 | ||
152 | const struct block *block_found; | |
153 | ||
c906108c SS |
154 | /* Check for a symtab of a specific name; first in symtabs, then in |
155 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
156 | in the symtab filename will also work. */ | |
157 | ||
1b15f1fa TT |
158 | struct symtab * |
159 | lookup_symtab (const char *name) | |
c906108c | 160 | { |
ccefe4c4 TT |
161 | int found; |
162 | struct symtab *s = NULL; | |
52f0bd74 | 163 | struct objfile *objfile; |
58d370e0 | 164 | char *real_path = NULL; |
f079a2e5 | 165 | char *full_path = NULL; |
58d370e0 TT |
166 | |
167 | /* Here we are interested in canonicalizing an absolute path, not | |
168 | absolutizing a relative path. */ | |
169 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
170 | { |
171 | full_path = xfullpath (name); | |
172 | make_cleanup (xfree, full_path); | |
173 | real_path = gdb_realpath (name); | |
174 | make_cleanup (xfree, real_path); | |
175 | } | |
c906108c | 176 | |
c5aa993b | 177 | got_symtab: |
c906108c SS |
178 | |
179 | /* First, search for an exact match */ | |
180 | ||
181 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 182 | { |
a7fdf62f | 183 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 184 | { |
58d370e0 TT |
185 | return s; |
186 | } | |
9af17804 | 187 | |
58d370e0 TT |
188 | /* If the user gave us an absolute path, try to find the file in |
189 | this symtab and use its absolute path. */ | |
9af17804 | 190 | |
f079a2e5 JB |
191 | if (full_path != NULL) |
192 | { | |
09bcec80 | 193 | const char *fp = symtab_to_fullname (s); |
433759f7 | 194 | |
09bcec80 BR |
195 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) |
196 | { | |
197 | return s; | |
198 | } | |
f079a2e5 JB |
199 | } |
200 | ||
58d370e0 TT |
201 | if (real_path != NULL) |
202 | { | |
09bcec80 | 203 | char *fullname = symtab_to_fullname (s); |
433759f7 | 204 | |
09bcec80 BR |
205 | if (fullname != NULL) |
206 | { | |
207 | char *rp = gdb_realpath (fullname); | |
433759f7 | 208 | |
09bcec80 BR |
209 | make_cleanup (xfree, rp); |
210 | if (FILENAME_CMP (real_path, rp) == 0) | |
211 | { | |
212 | return s; | |
213 | } | |
214 | } | |
58d370e0 TT |
215 | } |
216 | } | |
217 | ||
c906108c SS |
218 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
219 | ||
caadab2c | 220 | if (lbasename (name) == name) |
c906108c | 221 | ALL_SYMTABS (objfile, s) |
c5aa993b | 222 | { |
31889e00 | 223 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
224 | return s; |
225 | } | |
c906108c SS |
226 | |
227 | /* Same search rules as above apply here, but now we look thru the | |
228 | psymtabs. */ | |
229 | ||
ccefe4c4 TT |
230 | found = 0; |
231 | ALL_OBJFILES (objfile) | |
232 | { | |
233 | if (objfile->sf | |
234 | && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path, | |
235 | &s)) | |
236 | { | |
237 | found = 1; | |
238 | break; | |
239 | } | |
240 | } | |
c906108c | 241 | |
ccefe4c4 | 242 | if (s != NULL) |
c906108c | 243 | return s; |
ccefe4c4 TT |
244 | if (!found) |
245 | return NULL; | |
c906108c SS |
246 | |
247 | /* At this point, we have located the psymtab for this file, but | |
248 | the conversion to a symtab has failed. This usually happens | |
249 | when we are looking up an include file. In this case, | |
250 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
251 | been created. So, we need to run through the symtabs again in | |
252 | order to find the file. | |
253 | XXX - This is a crock, and should be fixed inside of the the | |
254 | symbol parsing routines. */ | |
255 | goto got_symtab; | |
256 | } | |
c906108c SS |
257 | \f |
258 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
259 | full method name, which consist of the class name (from T), the unadorned | |
260 | method name from METHOD_ID, and the signature for the specific overload, | |
261 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
262 | ||
263 | char * | |
fba45db2 | 264 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
265 | { |
266 | int mangled_name_len; | |
267 | char *mangled_name; | |
268 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
269 | struct fn_field *method = &f[signature_id]; | |
270 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
271 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
272 | char *newname = type_name_no_tag (type); | |
273 | ||
274 | /* Does the form of physname indicate that it is the full mangled name | |
275 | of a constructor (not just the args)? */ | |
276 | int is_full_physname_constructor; | |
277 | ||
278 | int is_constructor; | |
015a42b4 | 279 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
280 | /* Need a new type prefix. */ |
281 | char *const_prefix = method->is_const ? "C" : ""; | |
282 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
283 | char buf[20]; | |
284 | int len = (newname == NULL ? 0 : strlen (newname)); | |
285 | ||
43630227 PS |
286 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
287 | or an operator name. */ | |
288 | if ((physname[0] == '_' && physname[1] == 'Z') | |
289 | || is_operator_name (field_name)) | |
235d1e03 EZ |
290 | return xstrdup (physname); |
291 | ||
015a42b4 | 292 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
293 | |
294 | is_constructor = | |
6314a349 | 295 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
296 | |
297 | if (!is_destructor) | |
c5aa993b | 298 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
299 | |
300 | if (is_destructor || is_full_physname_constructor) | |
301 | { | |
c5aa993b JM |
302 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
303 | strcpy (mangled_name, physname); | |
c906108c SS |
304 | return mangled_name; |
305 | } | |
306 | ||
307 | if (len == 0) | |
308 | { | |
309 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
310 | } | |
311 | else if (physname[0] == 't' || physname[0] == 'Q') | |
312 | { | |
313 | /* The physname for template and qualified methods already includes | |
c5aa993b | 314 | the class name. */ |
c906108c SS |
315 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
316 | newname = NULL; | |
317 | len = 0; | |
318 | } | |
319 | else | |
320 | { | |
321 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
322 | } | |
323 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 324 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 325 | |
433759f7 MS |
326 | mangled_name = (char *) xmalloc (mangled_name_len); |
327 | if (is_constructor) | |
328 | mangled_name[0] = '\0'; | |
329 | else | |
330 | strcpy (mangled_name, field_name); | |
331 | ||
c906108c SS |
332 | strcat (mangled_name, buf); |
333 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
334 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 335 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
336 | if (newname != NULL) |
337 | strcat (mangled_name, newname); | |
338 | ||
339 | strcat (mangled_name, physname); | |
340 | return (mangled_name); | |
341 | } | |
12af6855 | 342 | |
29df156d SW |
343 | /* Initialize the cplus_specific structure. 'cplus_specific' should |
344 | only be allocated for use with cplus symbols. */ | |
345 | ||
346 | static void | |
347 | symbol_init_cplus_specific (struct general_symbol_info *gsymbol, | |
348 | struct objfile *objfile) | |
349 | { | |
350 | /* A language_specific structure should not have been previously | |
351 | initialized. */ | |
352 | gdb_assert (gsymbol->language_specific.cplus_specific == NULL); | |
353 | gdb_assert (objfile != NULL); | |
354 | ||
355 | gsymbol->language_specific.cplus_specific = | |
356 | OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific); | |
357 | } | |
358 | ||
b250c185 | 359 | /* Set the demangled name of GSYMBOL to NAME. NAME must be already |
29df156d SW |
360 | correctly allocated. For C++ symbols a cplus_specific struct is |
361 | allocated so OBJFILE must not be NULL. If this is a non C++ symbol | |
362 | OBJFILE can be NULL. */ | |
b250c185 SW |
363 | void |
364 | symbol_set_demangled_name (struct general_symbol_info *gsymbol, | |
29df156d SW |
365 | char *name, |
366 | struct objfile *objfile) | |
b250c185 | 367 | { |
29df156d SW |
368 | if (gsymbol->language == language_cplus) |
369 | { | |
370 | if (gsymbol->language_specific.cplus_specific == NULL) | |
371 | symbol_init_cplus_specific (gsymbol, objfile); | |
372 | ||
373 | gsymbol->language_specific.cplus_specific->demangled_name = name; | |
374 | } | |
375 | else | |
376 | gsymbol->language_specific.mangled_lang.demangled_name = name; | |
b250c185 SW |
377 | } |
378 | ||
379 | /* Return the demangled name of GSYMBOL. */ | |
380 | char * | |
381 | symbol_get_demangled_name (const struct general_symbol_info *gsymbol) | |
382 | { | |
29df156d SW |
383 | if (gsymbol->language == language_cplus) |
384 | { | |
45c58896 SW |
385 | if (gsymbol->language_specific.cplus_specific != NULL) |
386 | return gsymbol->language_specific.cplus_specific->demangled_name; | |
387 | else | |
388 | return NULL; | |
29df156d SW |
389 | } |
390 | else | |
391 | return gsymbol->language_specific.mangled_lang.demangled_name; | |
b250c185 SW |
392 | } |
393 | ||
12af6855 | 394 | \f |
89aad1f9 EZ |
395 | /* Initialize the language dependent portion of a symbol |
396 | depending upon the language for the symbol. */ | |
397 | void | |
33e5013e SW |
398 | symbol_set_language (struct general_symbol_info *gsymbol, |
399 | enum language language) | |
89aad1f9 EZ |
400 | { |
401 | gsymbol->language = language; | |
33e5013e | 402 | if (gsymbol->language == language_d |
5784d15e | 403 | || gsymbol->language == language_java |
f55ee35c JK |
404 | || gsymbol->language == language_objc |
405 | || gsymbol->language == language_fortran) | |
89aad1f9 | 406 | { |
29df156d | 407 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
89aad1f9 | 408 | } |
29df156d SW |
409 | else if (gsymbol->language == language_cplus) |
410 | gsymbol->language_specific.cplus_specific = NULL; | |
89aad1f9 EZ |
411 | else |
412 | { | |
413 | memset (&gsymbol->language_specific, 0, | |
414 | sizeof (gsymbol->language_specific)); | |
415 | } | |
416 | } | |
417 | ||
2de7ced7 DJ |
418 | /* Functions to initialize a symbol's mangled name. */ |
419 | ||
04a679b8 TT |
420 | /* Objects of this type are stored in the demangled name hash table. */ |
421 | struct demangled_name_entry | |
422 | { | |
423 | char *mangled; | |
424 | char demangled[1]; | |
425 | }; | |
426 | ||
427 | /* Hash function for the demangled name hash. */ | |
428 | static hashval_t | |
429 | hash_demangled_name_entry (const void *data) | |
430 | { | |
431 | const struct demangled_name_entry *e = data; | |
433759f7 | 432 | |
04a679b8 TT |
433 | return htab_hash_string (e->mangled); |
434 | } | |
435 | ||
436 | /* Equality function for the demangled name hash. */ | |
437 | static int | |
438 | eq_demangled_name_entry (const void *a, const void *b) | |
439 | { | |
440 | const struct demangled_name_entry *da = a; | |
441 | const struct demangled_name_entry *db = b; | |
433759f7 | 442 | |
04a679b8 TT |
443 | return strcmp (da->mangled, db->mangled) == 0; |
444 | } | |
445 | ||
2de7ced7 DJ |
446 | /* Create the hash table used for demangled names. Each hash entry is |
447 | a pair of strings; one for the mangled name and one for the demangled | |
448 | name. The entry is hashed via just the mangled name. */ | |
449 | ||
450 | static void | |
451 | create_demangled_names_hash (struct objfile *objfile) | |
452 | { | |
453 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 454 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
455 | Choosing a much larger table size wastes memory, and saves only about |
456 | 1% in symbol reading. */ | |
457 | ||
aa2ee5f6 | 458 | objfile->demangled_names_hash = htab_create_alloc |
04a679b8 | 459 | (256, hash_demangled_name_entry, eq_demangled_name_entry, |
aa2ee5f6 | 460 | NULL, xcalloc, xfree); |
2de7ced7 | 461 | } |
12af6855 | 462 | |
2de7ced7 | 463 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
464 | language of that symbol. If the language is set to language_auto, |
465 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
466 | then set the language appropriately. The returned name is allocated |
467 | by the demangler and should be xfree'd. */ | |
12af6855 | 468 | |
2de7ced7 DJ |
469 | static char * |
470 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
471 | const char *mangled) | |
12af6855 | 472 | { |
12af6855 JB |
473 | char *demangled = NULL; |
474 | ||
475 | if (gsymbol->language == language_unknown) | |
476 | gsymbol->language = language_auto; | |
1bae87b9 AF |
477 | |
478 | if (gsymbol->language == language_objc | |
479 | || gsymbol->language == language_auto) | |
480 | { | |
481 | demangled = | |
482 | objc_demangle (mangled, 0); | |
483 | if (demangled != NULL) | |
484 | { | |
485 | gsymbol->language = language_objc; | |
486 | return demangled; | |
487 | } | |
488 | } | |
12af6855 JB |
489 | if (gsymbol->language == language_cplus |
490 | || gsymbol->language == language_auto) | |
491 | { | |
492 | demangled = | |
94af9270 | 493 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE); |
12af6855 | 494 | if (demangled != NULL) |
2de7ced7 DJ |
495 | { |
496 | gsymbol->language = language_cplus; | |
497 | return demangled; | |
498 | } | |
12af6855 JB |
499 | } |
500 | if (gsymbol->language == language_java) | |
501 | { | |
502 | demangled = | |
2de7ced7 | 503 | cplus_demangle (mangled, |
12af6855 JB |
504 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
505 | if (demangled != NULL) | |
2de7ced7 DJ |
506 | { |
507 | gsymbol->language = language_java; | |
508 | return demangled; | |
509 | } | |
510 | } | |
6aecb9c2 JB |
511 | if (gsymbol->language == language_d |
512 | || gsymbol->language == language_auto) | |
513 | { | |
514 | demangled = d_demangle(mangled, 0); | |
515 | if (demangled != NULL) | |
516 | { | |
517 | gsymbol->language = language_d; | |
518 | return demangled; | |
519 | } | |
520 | } | |
f55ee35c JK |
521 | /* We could support `gsymbol->language == language_fortran' here to provide |
522 | module namespaces also for inferiors with only minimal symbol table (ELF | |
523 | symbols). Just the mangling standard is not standardized across compilers | |
524 | and there is no DW_AT_producer available for inferiors with only the ELF | |
525 | symbols to check the mangling kind. */ | |
2de7ced7 DJ |
526 | return NULL; |
527 | } | |
528 | ||
980cae7a | 529 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
04a679b8 TT |
530 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
531 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
532 | NUL-terminated, then this function assumes that NAME is already | |
533 | correctly saved (either permanently or with a lifetime tied to the | |
534 | objfile), and it will not be copied. | |
535 | ||
536 | The hash table corresponding to OBJFILE is used, and the memory | |
537 | comes from that objfile's objfile_obstack. LINKAGE_NAME is copied, | |
538 | so the pointer can be discarded after calling this function. */ | |
2de7ced7 | 539 | |
d2a52b27 DC |
540 | /* We have to be careful when dealing with Java names: when we run |
541 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
542 | gets demangled as a C++ name. This is unfortunate, but there's not | |
543 | much we can do about it: but when demangling partial symbols and | |
544 | regular symbols, we'd better not reuse the wrong demangled name. | |
545 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
546 | on Java names when storing them in the hash table. */ | |
547 | ||
548 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
549 | don't mind the Java prefix so much: different languages have | |
550 | different demangling requirements, so it's only natural that we | |
551 | need to keep language data around in our demangling cache. But | |
552 | it's not good that the minimal symbol has the wrong demangled name. | |
553 | Unfortunately, I can't think of any easy solution to that | |
554 | problem. */ | |
555 | ||
556 | #define JAVA_PREFIX "##JAVA$$" | |
557 | #define JAVA_PREFIX_LEN 8 | |
558 | ||
2de7ced7 DJ |
559 | void |
560 | symbol_set_names (struct general_symbol_info *gsymbol, | |
04a679b8 TT |
561 | const char *linkage_name, int len, int copy_name, |
562 | struct objfile *objfile) | |
2de7ced7 | 563 | { |
04a679b8 | 564 | struct demangled_name_entry **slot; |
980cae7a DC |
565 | /* A 0-terminated copy of the linkage name. */ |
566 | const char *linkage_name_copy; | |
d2a52b27 DC |
567 | /* A copy of the linkage name that might have a special Java prefix |
568 | added to it, for use when looking names up in the hash table. */ | |
569 | const char *lookup_name; | |
570 | /* The length of lookup_name. */ | |
571 | int lookup_len; | |
04a679b8 | 572 | struct demangled_name_entry entry; |
2de7ced7 | 573 | |
b06ead72 JB |
574 | if (gsymbol->language == language_ada) |
575 | { | |
576 | /* In Ada, we do the symbol lookups using the mangled name, so | |
577 | we can save some space by not storing the demangled name. | |
578 | ||
579 | As a side note, we have also observed some overlap between | |
580 | the C++ mangling and Ada mangling, similarly to what has | |
581 | been observed with Java. Because we don't store the demangled | |
582 | name with the symbol, we don't need to use the same trick | |
583 | as Java. */ | |
04a679b8 TT |
584 | if (!copy_name) |
585 | gsymbol->name = (char *) linkage_name; | |
586 | else | |
587 | { | |
588 | gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1); | |
589 | memcpy (gsymbol->name, linkage_name, len); | |
590 | gsymbol->name[len] = '\0'; | |
591 | } | |
29df156d | 592 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
b06ead72 JB |
593 | |
594 | return; | |
595 | } | |
596 | ||
04a679b8 TT |
597 | if (objfile->demangled_names_hash == NULL) |
598 | create_demangled_names_hash (objfile); | |
599 | ||
980cae7a DC |
600 | /* The stabs reader generally provides names that are not |
601 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
602 | can just use the given copy, unless we're in the Java case. */ |
603 | if (gsymbol->language == language_java) | |
604 | { | |
605 | char *alloc_name; | |
d2a52b27 | 606 | |
433759f7 | 607 | lookup_len = len + JAVA_PREFIX_LEN; |
d2a52b27 DC |
608 | alloc_name = alloca (lookup_len + 1); |
609 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
610 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
611 | alloc_name[lookup_len] = '\0'; | |
612 | ||
613 | lookup_name = alloc_name; | |
614 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
615 | } | |
616 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 617 | { |
980cae7a DC |
618 | char *alloc_name; |
619 | ||
433759f7 | 620 | lookup_len = len; |
d2a52b27 | 621 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 622 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 623 | alloc_name[lookup_len] = '\0'; |
980cae7a | 624 | |
d2a52b27 | 625 | lookup_name = alloc_name; |
980cae7a | 626 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
627 | } |
628 | else | |
980cae7a | 629 | { |
d2a52b27 DC |
630 | lookup_len = len; |
631 | lookup_name = linkage_name; | |
980cae7a DC |
632 | linkage_name_copy = linkage_name; |
633 | } | |
2de7ced7 | 634 | |
04a679b8 TT |
635 | entry.mangled = (char *) lookup_name; |
636 | slot = ((struct demangled_name_entry **) | |
637 | htab_find_slot (objfile->demangled_names_hash, | |
638 | &entry, INSERT)); | |
2de7ced7 DJ |
639 | |
640 | /* If this name is not in the hash table, add it. */ | |
641 | if (*slot == NULL) | |
642 | { | |
980cae7a DC |
643 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
644 | linkage_name_copy); | |
2de7ced7 DJ |
645 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
646 | ||
04a679b8 TT |
647 | /* Suppose we have demangled_name==NULL, copy_name==0, and |
648 | lookup_name==linkage_name. In this case, we already have the | |
649 | mangled name saved, and we don't have a demangled name. So, | |
650 | you might think we could save a little space by not recording | |
651 | this in the hash table at all. | |
652 | ||
653 | It turns out that it is actually important to still save such | |
654 | an entry in the hash table, because storing this name gives | |
705b5767 | 655 | us better bcache hit rates for partial symbols. */ |
04a679b8 TT |
656 | if (!copy_name && lookup_name == linkage_name) |
657 | { | |
658 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
659 | offsetof (struct demangled_name_entry, | |
660 | demangled) | |
661 | + demangled_len + 1); | |
662 | (*slot)->mangled = (char *) lookup_name; | |
663 | } | |
664 | else | |
665 | { | |
666 | /* If we must copy the mangled name, put it directly after | |
667 | the demangled name so we can have a single | |
668 | allocation. */ | |
669 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
670 | offsetof (struct demangled_name_entry, | |
671 | demangled) | |
672 | + lookup_len + demangled_len + 2); | |
673 | (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]); | |
674 | strcpy ((*slot)->mangled, lookup_name); | |
675 | } | |
676 | ||
980cae7a | 677 | if (demangled_name != NULL) |
2de7ced7 | 678 | { |
04a679b8 | 679 | strcpy ((*slot)->demangled, demangled_name); |
2de7ced7 DJ |
680 | xfree (demangled_name); |
681 | } | |
682 | else | |
04a679b8 | 683 | (*slot)->demangled[0] = '\0'; |
2de7ced7 DJ |
684 | } |
685 | ||
72dcaf82 | 686 | gsymbol->name = (*slot)->mangled + lookup_len - len; |
04a679b8 | 687 | if ((*slot)->demangled[0] != '\0') |
29df156d | 688 | symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile); |
2de7ced7 | 689 | else |
29df156d | 690 | symbol_set_demangled_name (gsymbol, NULL, objfile); |
2de7ced7 DJ |
691 | } |
692 | ||
22abf04a DC |
693 | /* Return the source code name of a symbol. In languages where |
694 | demangling is necessary, this is the demangled name. */ | |
695 | ||
696 | char * | |
697 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
698 | { | |
9af17804 | 699 | switch (gsymbol->language) |
22abf04a | 700 | { |
1f8173e6 | 701 | case language_cplus: |
6aecb9c2 | 702 | case language_d: |
1f8173e6 PH |
703 | case language_java: |
704 | case language_objc: | |
f55ee35c | 705 | case language_fortran: |
b250c185 SW |
706 | if (symbol_get_demangled_name (gsymbol) != NULL) |
707 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
708 | break; |
709 | case language_ada: | |
b250c185 SW |
710 | if (symbol_get_demangled_name (gsymbol) != NULL) |
711 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
712 | else |
713 | return ada_decode_symbol (gsymbol); | |
714 | break; | |
715 | default: | |
716 | break; | |
22abf04a | 717 | } |
1f8173e6 | 718 | return gsymbol->name; |
22abf04a DC |
719 | } |
720 | ||
9cc0d196 EZ |
721 | /* Return the demangled name for a symbol based on the language for |
722 | that symbol. If no demangled name exists, return NULL. */ | |
723 | char * | |
df8a16a1 | 724 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 725 | { |
9af17804 | 726 | switch (gsymbol->language) |
1f8173e6 PH |
727 | { |
728 | case language_cplus: | |
6aecb9c2 | 729 | case language_d: |
1f8173e6 PH |
730 | case language_java: |
731 | case language_objc: | |
f55ee35c | 732 | case language_fortran: |
b250c185 SW |
733 | if (symbol_get_demangled_name (gsymbol) != NULL) |
734 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
735 | break; |
736 | case language_ada: | |
b250c185 SW |
737 | if (symbol_get_demangled_name (gsymbol) != NULL) |
738 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
739 | else |
740 | return ada_decode_symbol (gsymbol); | |
741 | break; | |
742 | default: | |
743 | break; | |
744 | } | |
745 | return NULL; | |
9cc0d196 | 746 | } |
fe39c653 | 747 | |
4725b721 PH |
748 | /* Return the search name of a symbol---generally the demangled or |
749 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 750 | If there is no distinct demangled name, then returns the same value |
4725b721 | 751 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
fc062ac6 JB |
752 | char * |
753 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
754 | { | |
1f8173e6 PH |
755 | if (gsymbol->language == language_ada) |
756 | return gsymbol->name; | |
757 | else | |
758 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
759 | } |
760 | ||
fe39c653 EZ |
761 | /* Initialize the structure fields to zero values. */ |
762 | void | |
763 | init_sal (struct symtab_and_line *sal) | |
764 | { | |
6c95b8df | 765 | sal->pspace = NULL; |
fe39c653 EZ |
766 | sal->symtab = 0; |
767 | sal->section = 0; | |
768 | sal->line = 0; | |
769 | sal->pc = 0; | |
770 | sal->end = 0; | |
ed0616c6 VP |
771 | sal->explicit_pc = 0; |
772 | sal->explicit_line = 0; | |
fe39c653 | 773 | } |
c906108c SS |
774 | \f |
775 | ||
94277a38 DJ |
776 | /* Return 1 if the two sections are the same, or if they could |
777 | plausibly be copies of each other, one in an original object | |
778 | file and another in a separated debug file. */ | |
779 | ||
780 | int | |
714835d5 UW |
781 | matching_obj_sections (struct obj_section *obj_first, |
782 | struct obj_section *obj_second) | |
94277a38 | 783 | { |
714835d5 UW |
784 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
785 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
786 | struct objfile *obj; |
787 | ||
788 | /* If they're the same section, then they match. */ | |
789 | if (first == second) | |
790 | return 1; | |
791 | ||
792 | /* If either is NULL, give up. */ | |
793 | if (first == NULL || second == NULL) | |
794 | return 0; | |
795 | ||
796 | /* This doesn't apply to absolute symbols. */ | |
797 | if (first->owner == NULL || second->owner == NULL) | |
798 | return 0; | |
799 | ||
800 | /* If they're in the same object file, they must be different sections. */ | |
801 | if (first->owner == second->owner) | |
802 | return 0; | |
803 | ||
804 | /* Check whether the two sections are potentially corresponding. They must | |
805 | have the same size, address, and name. We can't compare section indexes, | |
806 | which would be more reliable, because some sections may have been | |
807 | stripped. */ | |
808 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
809 | return 0; | |
810 | ||
818f79f6 | 811 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 812 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
813 | - bfd_get_start_address (first->owner) |
814 | != bfd_get_section_vma (second->owner, second) | |
815 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
816 | return 0; |
817 | ||
818 | if (bfd_get_section_name (first->owner, first) == NULL | |
819 | || bfd_get_section_name (second->owner, second) == NULL | |
820 | || strcmp (bfd_get_section_name (first->owner, first), | |
821 | bfd_get_section_name (second->owner, second)) != 0) | |
822 | return 0; | |
823 | ||
824 | /* Otherwise check that they are in corresponding objfiles. */ | |
825 | ||
826 | ALL_OBJFILES (obj) | |
827 | if (obj->obfd == first->owner) | |
828 | break; | |
829 | gdb_assert (obj != NULL); | |
830 | ||
831 | if (obj->separate_debug_objfile != NULL | |
832 | && obj->separate_debug_objfile->obfd == second->owner) | |
833 | return 1; | |
834 | if (obj->separate_debug_objfile_backlink != NULL | |
835 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
836 | return 1; | |
837 | ||
838 | return 0; | |
839 | } | |
c5aa993b | 840 | |
ccefe4c4 TT |
841 | struct symtab * |
842 | find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section) | |
c906108c | 843 | { |
52f0bd74 | 844 | struct objfile *objfile; |
8a48e967 DJ |
845 | struct minimal_symbol *msymbol; |
846 | ||
847 | /* If we know that this is not a text address, return failure. This is | |
848 | necessary because we loop based on texthigh and textlow, which do | |
849 | not include the data ranges. */ | |
850 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
851 | if (msymbol | |
712f90be TT |
852 | && (MSYMBOL_TYPE (msymbol) == mst_data |
853 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
854 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
855 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
856 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 857 | return NULL; |
c906108c | 858 | |
ff013f42 | 859 | ALL_OBJFILES (objfile) |
ccefe4c4 TT |
860 | { |
861 | struct symtab *result = NULL; | |
433759f7 | 862 | |
ccefe4c4 TT |
863 | if (objfile->sf) |
864 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol, | |
865 | pc, section, 0); | |
866 | if (result) | |
867 | return result; | |
868 | } | |
ff013f42 JK |
869 | |
870 | return NULL; | |
c906108c | 871 | } |
c906108c SS |
872 | \f |
873 | /* Debug symbols usually don't have section information. We need to dig that | |
874 | out of the minimal symbols and stash that in the debug symbol. */ | |
875 | ||
ccefe4c4 | 876 | void |
907fc202 UW |
877 | fixup_section (struct general_symbol_info *ginfo, |
878 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
879 | { |
880 | struct minimal_symbol *msym; | |
c906108c | 881 | |
bccdca4a UW |
882 | /* First, check whether a minimal symbol with the same name exists |
883 | and points to the same address. The address check is required | |
884 | e.g. on PowerPC64, where the minimal symbol for a function will | |
885 | point to the function descriptor, while the debug symbol will | |
886 | point to the actual function code. */ | |
907fc202 UW |
887 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
888 | if (msym) | |
7a78d0ee | 889 | { |
714835d5 | 890 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
891 | ginfo->section = SYMBOL_SECTION (msym); |
892 | } | |
907fc202 | 893 | else |
19e2d14b KB |
894 | { |
895 | /* Static, function-local variables do appear in the linker | |
896 | (minimal) symbols, but are frequently given names that won't | |
897 | be found via lookup_minimal_symbol(). E.g., it has been | |
898 | observed in frv-uclinux (ELF) executables that a static, | |
899 | function-local variable named "foo" might appear in the | |
900 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
901 | point in attempting to extend the lookup-by-name mechanism to | |
902 | handle this case due to the fact that there can be multiple | |
903 | names. | |
9af17804 | 904 | |
19e2d14b KB |
905 | So, instead, search the section table when lookup by name has |
906 | failed. The ``addr'' and ``endaddr'' fields may have already | |
907 | been relocated. If so, the relocation offset (i.e. the | |
908 | ANOFFSET value) needs to be subtracted from these values when | |
909 | performing the comparison. We unconditionally subtract it, | |
910 | because, when no relocation has been performed, the ANOFFSET | |
911 | value will simply be zero. | |
9af17804 | 912 | |
19e2d14b KB |
913 | The address of the symbol whose section we're fixing up HAS |
914 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
915 | the section isn't yet known and knowing the section is | |
916 | necessary in order to add the correct relocation value. In | |
917 | other words, we wouldn't even be in this function (attempting | |
918 | to compute the section) if it were already known. | |
919 | ||
920 | Note that it is possible to search the minimal symbols | |
921 | (subtracting the relocation value if necessary) to find the | |
922 | matching minimal symbol, but this is overkill and much less | |
923 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
924 | symbol, only its section. |
925 | ||
19e2d14b KB |
926 | Note that this technique (of doing a section table search) |
927 | can fail when unrelocated section addresses overlap. For | |
928 | this reason, we still attempt a lookup by name prior to doing | |
929 | a search of the section table. */ | |
9af17804 | 930 | |
19e2d14b | 931 | struct obj_section *s; |
433759f7 | 932 | |
19e2d14b KB |
933 | ALL_OBJFILE_OSECTIONS (objfile, s) |
934 | { | |
935 | int idx = s->the_bfd_section->index; | |
936 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
937 | ||
f1f6aadf PA |
938 | if (obj_section_addr (s) - offset <= addr |
939 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 940 | { |
714835d5 | 941 | ginfo->obj_section = s; |
19e2d14b KB |
942 | ginfo->section = idx; |
943 | return; | |
944 | } | |
945 | } | |
946 | } | |
c906108c SS |
947 | } |
948 | ||
949 | struct symbol * | |
fba45db2 | 950 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 951 | { |
907fc202 UW |
952 | CORE_ADDR addr; |
953 | ||
c906108c SS |
954 | if (!sym) |
955 | return NULL; | |
956 | ||
714835d5 | 957 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
958 | return sym; |
959 | ||
907fc202 UW |
960 | /* We either have an OBJFILE, or we can get at it from the sym's |
961 | symtab. Anything else is a bug. */ | |
962 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
963 | ||
964 | if (objfile == NULL) | |
965 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
966 | ||
967 | /* We should have an objfile by now. */ | |
968 | gdb_assert (objfile); | |
969 | ||
970 | switch (SYMBOL_CLASS (sym)) | |
971 | { | |
972 | case LOC_STATIC: | |
973 | case LOC_LABEL: | |
907fc202 UW |
974 | addr = SYMBOL_VALUE_ADDRESS (sym); |
975 | break; | |
976 | case LOC_BLOCK: | |
977 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
978 | break; | |
979 | ||
980 | default: | |
981 | /* Nothing else will be listed in the minsyms -- no use looking | |
982 | it up. */ | |
983 | return sym; | |
984 | } | |
985 | ||
986 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
987 | |
988 | return sym; | |
989 | } | |
990 | ||
c906108c | 991 | /* Find the definition for a specified symbol name NAME |
176620f1 | 992 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c | 993 | Returns the struct symbol pointer, or zero if no symbol is found. |
c906108c SS |
994 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if |
995 | NAME is a field of the current implied argument `this'. If so set | |
9af17804 | 996 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. |
c906108c SS |
997 | BLOCK_FOUND is set to the block in which NAME is found (in the case of |
998 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
999 | ||
1000 | /* This function has a bunch of loops in it and it would seem to be | |
1001 | attractive to put in some QUIT's (though I'm not really sure | |
1002 | whether it can run long enough to be really important). But there | |
1003 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1004 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1005 | that there is C++ code below which can error(), but that probably | |
1006 | doesn't affect these calls since they are looking for a known | |
1007 | variable and thus can probably assume it will never hit the C++ | |
1008 | code). */ | |
c906108c | 1009 | |
774b6a14 TT |
1010 | struct symbol * |
1011 | lookup_symbol_in_language (const char *name, const struct block *block, | |
1012 | const domain_enum domain, enum language lang, | |
1013 | int *is_a_field_of_this) | |
c906108c | 1014 | { |
729051e6 DJ |
1015 | char *demangled_name = NULL; |
1016 | const char *modified_name = NULL; | |
fba7f19c | 1017 | struct symbol *returnval; |
9ee6bb93 | 1018 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1019 | |
729051e6 DJ |
1020 | modified_name = name; |
1021 | ||
433759f7 MS |
1022 | /* If we are using C++, D, or Java, demangle the name before doing a |
1023 | lookup, so we can always binary search. */ | |
53c5240f | 1024 | if (lang == language_cplus) |
729051e6 DJ |
1025 | { |
1026 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1027 | if (demangled_name) | |
1028 | { | |
729051e6 | 1029 | modified_name = demangled_name; |
9ee6bb93 | 1030 | make_cleanup (xfree, demangled_name); |
729051e6 | 1031 | } |
71c25dea TT |
1032 | else |
1033 | { | |
1034 | /* If we were given a non-mangled name, canonicalize it | |
1035 | according to the language (so far only for C++). */ | |
1036 | demangled_name = cp_canonicalize_string (name); | |
1037 | if (demangled_name) | |
1038 | { | |
1039 | modified_name = demangled_name; | |
1040 | make_cleanup (xfree, demangled_name); | |
1041 | } | |
1042 | } | |
729051e6 | 1043 | } |
53c5240f | 1044 | else if (lang == language_java) |
987504bb | 1045 | { |
9af17804 | 1046 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1047 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1048 | if (demangled_name) | |
1049 | { | |
987504bb | 1050 | modified_name = demangled_name; |
9ee6bb93 | 1051 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1052 | } |
1053 | } | |
6aecb9c2 JB |
1054 | else if (lang == language_d) |
1055 | { | |
1056 | demangled_name = d_demangle (name, 0); | |
1057 | if (demangled_name) | |
1058 | { | |
1059 | modified_name = demangled_name; | |
1060 | make_cleanup (xfree, demangled_name); | |
1061 | } | |
1062 | } | |
729051e6 | 1063 | |
63872f9d JG |
1064 | if (case_sensitivity == case_sensitive_off) |
1065 | { | |
1066 | char *copy; | |
1067 | int len, i; | |
1068 | ||
1069 | len = strlen (name); | |
1070 | copy = (char *) alloca (len + 1); | |
1071 | for (i= 0; i < len; i++) | |
1072 | copy[i] = tolower (name[i]); | |
1073 | copy[len] = 0; | |
fba7f19c | 1074 | modified_name = copy; |
63872f9d | 1075 | } |
fba7f19c | 1076 | |
94af9270 | 1077 | returnval = lookup_symbol_aux (modified_name, block, domain, lang, |
774b6a14 | 1078 | is_a_field_of_this); |
9ee6bb93 | 1079 | do_cleanups (cleanup); |
fba7f19c | 1080 | |
9af17804 | 1081 | return returnval; |
fba7f19c EZ |
1082 | } |
1083 | ||
53c5240f PA |
1084 | /* Behave like lookup_symbol_in_language, but performed with the |
1085 | current language. */ | |
1086 | ||
1087 | struct symbol * | |
1088 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1089 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1090 | { |
1091 | return lookup_symbol_in_language (name, block, domain, | |
1092 | current_language->la_language, | |
2570f2b7 | 1093 | is_a_field_of_this); |
53c5240f PA |
1094 | } |
1095 | ||
1096 | /* Behave like lookup_symbol except that NAME is the natural name | |
5ad1c190 DC |
1097 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1098 | non-NULL, ensure that the symbol's linkage name matches as | |
1099 | well. */ | |
1100 | ||
fba7f19c | 1101 | static struct symbol * |
94af9270 KS |
1102 | lookup_symbol_aux (const char *name, const struct block *block, |
1103 | const domain_enum domain, enum language language, | |
774b6a14 | 1104 | int *is_a_field_of_this) |
fba7f19c | 1105 | { |
8155455b | 1106 | struct symbol *sym; |
53c5240f | 1107 | const struct language_defn *langdef; |
406bc4de | 1108 | |
9a146a11 EZ |
1109 | /* Make sure we do something sensible with is_a_field_of_this, since |
1110 | the callers that set this parameter to some non-null value will | |
1111 | certainly use it later and expect it to be either 0 or 1. | |
1112 | If we don't set it, the contents of is_a_field_of_this are | |
1113 | undefined. */ | |
1114 | if (is_a_field_of_this != NULL) | |
1115 | *is_a_field_of_this = 0; | |
1116 | ||
e4051eeb DC |
1117 | /* Search specified block and its superiors. Don't search |
1118 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1119 | |
13387711 | 1120 | sym = lookup_symbol_aux_local (name, block, domain, language); |
8155455b DC |
1121 | if (sym != NULL) |
1122 | return sym; | |
c906108c | 1123 | |
53c5240f | 1124 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
13387711 | 1125 | check to see if NAME is a field of `this'. */ |
53c5240f PA |
1126 | |
1127 | langdef = language_def (language); | |
5f9a71c3 | 1128 | |
2b2d9e11 VP |
1129 | if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL |
1130 | && block != NULL) | |
c906108c | 1131 | { |
2b2d9e11 | 1132 | struct symbol *sym = NULL; |
8540c487 | 1133 | const struct block *function_block = block; |
433759f7 | 1134 | |
2b2d9e11 VP |
1135 | /* 'this' is only defined in the function's block, so find the |
1136 | enclosing function block. */ | |
8540c487 SW |
1137 | for (; function_block && !BLOCK_FUNCTION (function_block); |
1138 | function_block = BLOCK_SUPERBLOCK (function_block)); | |
2b2d9e11 | 1139 | |
8540c487 SW |
1140 | if (function_block && !dict_empty (BLOCK_DICT (function_block))) |
1141 | sym = lookup_block_symbol (function_block, langdef->la_name_of_this, | |
94af9270 | 1142 | VAR_DOMAIN); |
2b2d9e11 | 1143 | if (sym) |
c906108c | 1144 | { |
2b2d9e11 | 1145 | struct type *t = sym->type; |
9af17804 | 1146 | |
2b2d9e11 VP |
1147 | /* I'm not really sure that type of this can ever |
1148 | be typedefed; just be safe. */ | |
1149 | CHECK_TYPEDEF (t); | |
1150 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1151 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1152 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1153 | |
2b2d9e11 VP |
1154 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1155 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1156 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1157 | langdef->la_name_of_this); |
9af17804 | 1158 | |
2b2d9e11 VP |
1159 | if (check_field (t, name)) |
1160 | { | |
1161 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1162 | return NULL; |
1163 | } | |
c906108c SS |
1164 | } |
1165 | } | |
1166 | ||
53c5240f | 1167 | /* Now do whatever is appropriate for LANGUAGE to look |
774b6a14 | 1168 | up static and global variables. */ |
c906108c | 1169 | |
774b6a14 TT |
1170 | sym = langdef->la_lookup_symbol_nonlocal (name, block, domain); |
1171 | if (sym != NULL) | |
1172 | return sym; | |
c906108c | 1173 | |
774b6a14 TT |
1174 | /* Now search all static file-level symbols. Not strictly correct, |
1175 | but more useful than an error. */ | |
41f62f39 JK |
1176 | |
1177 | return lookup_static_symbol_aux (name, domain); | |
1178 | } | |
1179 | ||
1180 | /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs | |
1181 | first, then check the psymtabs. If a psymtab indicates the existence of the | |
1182 | desired name as a file-level static, then do psymtab-to-symtab conversion on | |
1183 | the fly and return the found symbol. */ | |
1184 | ||
1185 | struct symbol * | |
1186 | lookup_static_symbol_aux (const char *name, const domain_enum domain) | |
1187 | { | |
1188 | struct objfile *objfile; | |
1189 | struct symbol *sym; | |
c906108c | 1190 | |
94af9270 | 1191 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain); |
8155455b DC |
1192 | if (sym != NULL) |
1193 | return sym; | |
9af17804 | 1194 | |
ccefe4c4 TT |
1195 | ALL_OBJFILES (objfile) |
1196 | { | |
1197 | sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain); | |
1198 | if (sym != NULL) | |
1199 | return sym; | |
1200 | } | |
c906108c | 1201 | |
8155455b | 1202 | return NULL; |
c906108c | 1203 | } |
8155455b | 1204 | |
e4051eeb | 1205 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1206 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1207 | |
1208 | static struct symbol * | |
94af9270 | 1209 | lookup_symbol_aux_local (const char *name, const struct block *block, |
13387711 SW |
1210 | const domain_enum domain, |
1211 | enum language language) | |
8155455b DC |
1212 | { |
1213 | struct symbol *sym; | |
89a9d1b1 | 1214 | const struct block *static_block = block_static_block (block); |
13387711 SW |
1215 | const char *scope = block_scope (block); |
1216 | ||
e4051eeb DC |
1217 | /* Check if either no block is specified or it's a global block. */ |
1218 | ||
89a9d1b1 DC |
1219 | if (static_block == NULL) |
1220 | return NULL; | |
e4051eeb | 1221 | |
89a9d1b1 | 1222 | while (block != static_block) |
f61e8913 | 1223 | { |
94af9270 | 1224 | sym = lookup_symbol_aux_block (name, block, domain); |
f61e8913 DC |
1225 | if (sym != NULL) |
1226 | return sym; | |
edb3359d | 1227 | |
f55ee35c | 1228 | if (language == language_cplus || language == language_fortran) |
13387711 | 1229 | { |
34eaf542 TT |
1230 | sym = cp_lookup_symbol_imports_or_template (scope, name, block, |
1231 | domain); | |
13387711 SW |
1232 | if (sym != NULL) |
1233 | return sym; | |
1234 | } | |
1235 | ||
edb3359d DJ |
1236 | if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) |
1237 | break; | |
f61e8913 DC |
1238 | block = BLOCK_SUPERBLOCK (block); |
1239 | } | |
1240 | ||
edb3359d | 1241 | /* We've reached the edge of the function without finding a result. */ |
e4051eeb | 1242 | |
f61e8913 DC |
1243 | return NULL; |
1244 | } | |
1245 | ||
3a40aaa0 UW |
1246 | /* Look up OBJFILE to BLOCK. */ |
1247 | ||
c0201579 | 1248 | struct objfile * |
3a40aaa0 UW |
1249 | lookup_objfile_from_block (const struct block *block) |
1250 | { | |
1251 | struct objfile *obj; | |
1252 | struct symtab *s; | |
1253 | ||
1254 | if (block == NULL) | |
1255 | return NULL; | |
1256 | ||
1257 | block = block_global_block (block); | |
1258 | /* Go through SYMTABS. */ | |
1259 | ALL_SYMTABS (obj, s) | |
1260 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
61f0d762 JK |
1261 | { |
1262 | if (obj->separate_debug_objfile_backlink) | |
1263 | obj = obj->separate_debug_objfile_backlink; | |
1264 | ||
1265 | return obj; | |
1266 | } | |
3a40aaa0 UW |
1267 | |
1268 | return NULL; | |
1269 | } | |
1270 | ||
6c9353d3 PA |
1271 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1272 | block_found appropriately. */ | |
f61e8913 | 1273 | |
5f9a71c3 | 1274 | struct symbol * |
94af9270 | 1275 | lookup_symbol_aux_block (const char *name, const struct block *block, |
21b556f4 | 1276 | const domain_enum domain) |
f61e8913 DC |
1277 | { |
1278 | struct symbol *sym; | |
f61e8913 | 1279 | |
94af9270 | 1280 | sym = lookup_block_symbol (block, name, domain); |
f61e8913 | 1281 | if (sym) |
8155455b | 1282 | { |
f61e8913 | 1283 | block_found = block; |
21b556f4 | 1284 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1285 | } |
1286 | ||
1287 | return NULL; | |
1288 | } | |
1289 | ||
3a40aaa0 UW |
1290 | /* Check all global symbols in OBJFILE in symtabs and |
1291 | psymtabs. */ | |
1292 | ||
1293 | struct symbol * | |
15d123c9 | 1294 | lookup_global_symbol_from_objfile (const struct objfile *main_objfile, |
3a40aaa0 | 1295 | const char *name, |
21b556f4 | 1296 | const domain_enum domain) |
3a40aaa0 | 1297 | { |
15d123c9 | 1298 | const struct objfile *objfile; |
3a40aaa0 UW |
1299 | struct symbol *sym; |
1300 | struct blockvector *bv; | |
1301 | const struct block *block; | |
1302 | struct symtab *s; | |
3a40aaa0 | 1303 | |
15d123c9 TG |
1304 | for (objfile = main_objfile; |
1305 | objfile; | |
1306 | objfile = objfile_separate_debug_iterate (main_objfile, objfile)) | |
1307 | { | |
1308 | /* Go through symtabs. */ | |
1309 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1310 | { | |
1311 | bv = BLOCKVECTOR (s); | |
1312 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
94af9270 | 1313 | sym = lookup_block_symbol (block, name, domain); |
15d123c9 TG |
1314 | if (sym) |
1315 | { | |
1316 | block_found = block; | |
1317 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1318 | } | |
1319 | } | |
1320 | ||
ccefe4c4 TT |
1321 | sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK, |
1322 | name, domain); | |
1323 | if (sym) | |
1324 | return sym; | |
15d123c9 | 1325 | } |
56e3f43c | 1326 | |
3a40aaa0 UW |
1327 | return NULL; |
1328 | } | |
1329 | ||
8155455b DC |
1330 | /* Check to see if the symbol is defined in one of the symtabs. |
1331 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1332 | depending on whether or not we want to search global symbols or | |
1333 | static symbols. */ | |
1334 | ||
1335 | static struct symbol * | |
94af9270 | 1336 | lookup_symbol_aux_symtabs (int block_index, const char *name, |
21b556f4 | 1337 | const domain_enum domain) |
8155455b DC |
1338 | { |
1339 | struct symbol *sym; | |
1340 | struct objfile *objfile; | |
1341 | struct blockvector *bv; | |
1342 | const struct block *block; | |
1343 | struct symtab *s; | |
1344 | ||
58b6ab13 | 1345 | ALL_OBJFILES (objfile) |
8155455b | 1346 | { |
774b6a14 TT |
1347 | if (objfile->sf) |
1348 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, | |
1349 | block_index, | |
1350 | name, domain); | |
1351 | ||
58b6ab13 TT |
1352 | ALL_OBJFILE_SYMTABS (objfile, s) |
1353 | if (s->primary) | |
1354 | { | |
1355 | bv = BLOCKVECTOR (s); | |
1356 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
1357 | sym = lookup_block_symbol (block, name, domain); | |
1358 | if (sym) | |
1359 | { | |
1360 | block_found = block; | |
1361 | return fixup_symbol_section (sym, objfile); | |
1362 | } | |
1363 | } | |
8155455b DC |
1364 | } |
1365 | ||
1366 | return NULL; | |
1367 | } | |
1368 | ||
ccefe4c4 TT |
1369 | /* A helper function for lookup_symbol_aux that interfaces with the |
1370 | "quick" symbol table functions. */ | |
8155455b DC |
1371 | |
1372 | static struct symbol * | |
ccefe4c4 TT |
1373 | lookup_symbol_aux_quick (struct objfile *objfile, int kind, |
1374 | const char *name, const domain_enum domain) | |
8155455b | 1375 | { |
ccefe4c4 | 1376 | struct symtab *symtab; |
8155455b DC |
1377 | struct blockvector *bv; |
1378 | const struct block *block; | |
ccefe4c4 | 1379 | struct symbol *sym; |
8155455b | 1380 | |
ccefe4c4 TT |
1381 | if (!objfile->sf) |
1382 | return NULL; | |
1383 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain); | |
1384 | if (!symtab) | |
1385 | return NULL; | |
8155455b | 1386 | |
ccefe4c4 TT |
1387 | bv = BLOCKVECTOR (symtab); |
1388 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1389 | sym = lookup_block_symbol (block, name, domain); | |
1390 | if (!sym) | |
1391 | { | |
1392 | /* This shouldn't be necessary, but as a last resort try | |
1393 | looking in the statics even though the psymtab claimed | |
1394 | the symbol was global, or vice-versa. It's possible | |
1395 | that the psymtab gets it wrong in some cases. */ | |
1396 | ||
1397 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1398 | If that happens, isn't it likely to be a GDB error, in | |
1399 | which case we should fix the GDB error rather than | |
1400 | silently dealing with it here? So I'd vote for | |
1401 | removing the check for the symbol in the other | |
1402 | block. */ | |
1403 | block = BLOCKVECTOR_BLOCK (bv, | |
1404 | kind == GLOBAL_BLOCK ? | |
1405 | STATIC_BLOCK : GLOBAL_BLOCK); | |
1406 | sym = lookup_block_symbol (block, name, domain); | |
1407 | if (!sym) | |
1408 | error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."), | |
1409 | kind == GLOBAL_BLOCK ? "global" : "static", | |
1410 | name, symtab->filename, name, name); | |
1411 | } | |
1412 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1413 | } |
1414 | ||
5f9a71c3 DC |
1415 | /* A default version of lookup_symbol_nonlocal for use by languages |
1416 | that can't think of anything better to do. This implements the C | |
1417 | lookup rules. */ | |
1418 | ||
1419 | struct symbol * | |
1420 | basic_lookup_symbol_nonlocal (const char *name, | |
5f9a71c3 | 1421 | const struct block *block, |
21b556f4 | 1422 | const domain_enum domain) |
5f9a71c3 DC |
1423 | { |
1424 | struct symbol *sym; | |
1425 | ||
1426 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1427 | this (or what turned into this) was part of lookup_symbol_aux; | |
1428 | I'm much less worried about these questions now, since these | |
1429 | decisions have turned out well, but I leave these comments here | |
1430 | for posterity. */ | |
1431 | ||
1432 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1433 | not it would be appropriate to search the current global block | |
1434 | here as well. (That's what this code used to do before the | |
1435 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1436 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1437 | next. On the other hand, if decode_line_1 is passed an argument | |
1438 | like filename:var, then the user presumably wants 'var' to be | |
1439 | searched for in filename. On the third hand, there shouldn't be | |
1440 | multiple global variables all of which are named 'var', and it's | |
1441 | not like decode_line_1 has ever restricted its search to only | |
1442 | global variables in a single filename. All in all, only | |
1443 | searching the static block here seems best: it's correct and it's | |
1444 | cleanest. */ | |
1445 | ||
1446 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1447 | issue here: if you usually search for global symbols in the | |
1448 | current file, then it would be slightly better to search the | |
1449 | current global block before searching all the symtabs. But there | |
1450 | are other factors that have a much greater effect on performance | |
1451 | than that one, so I don't think we should worry about that for | |
1452 | now. */ | |
1453 | ||
94af9270 | 1454 | sym = lookup_symbol_static (name, block, domain); |
5f9a71c3 DC |
1455 | if (sym != NULL) |
1456 | return sym; | |
1457 | ||
94af9270 | 1458 | return lookup_symbol_global (name, block, domain); |
5f9a71c3 DC |
1459 | } |
1460 | ||
1461 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1462 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1463 | ||
1464 | struct symbol * | |
1465 | lookup_symbol_static (const char *name, | |
5f9a71c3 | 1466 | const struct block *block, |
21b556f4 | 1467 | const domain_enum domain) |
5f9a71c3 DC |
1468 | { |
1469 | const struct block *static_block = block_static_block (block); | |
1470 | ||
1471 | if (static_block != NULL) | |
94af9270 | 1472 | return lookup_symbol_aux_block (name, static_block, domain); |
5f9a71c3 DC |
1473 | else |
1474 | return NULL; | |
1475 | } | |
1476 | ||
1477 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1478 | necessary). */ | |
1479 | ||
1480 | struct symbol * | |
1481 | lookup_symbol_global (const char *name, | |
3a40aaa0 | 1482 | const struct block *block, |
21b556f4 | 1483 | const domain_enum domain) |
5f9a71c3 | 1484 | { |
3a40aaa0 UW |
1485 | struct symbol *sym = NULL; |
1486 | struct objfile *objfile = NULL; | |
1487 | ||
1488 | /* Call library-specific lookup procedure. */ | |
1489 | objfile = lookup_objfile_from_block (block); | |
1490 | if (objfile != NULL) | |
94af9270 | 1491 | sym = solib_global_lookup (objfile, name, domain); |
3a40aaa0 UW |
1492 | if (sym != NULL) |
1493 | return sym; | |
5f9a71c3 | 1494 | |
94af9270 | 1495 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain); |
5f9a71c3 DC |
1496 | if (sym != NULL) |
1497 | return sym; | |
1498 | ||
ccefe4c4 TT |
1499 | ALL_OBJFILES (objfile) |
1500 | { | |
1501 | sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain); | |
1502 | if (sym) | |
1503 | return sym; | |
1504 | } | |
1505 | ||
1506 | return NULL; | |
5f9a71c3 DC |
1507 | } |
1508 | ||
5eeb2539 | 1509 | int |
9af17804 | 1510 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1511 | domain_enum symbol_domain, |
1512 | domain_enum domain) | |
1513 | { | |
9af17804 | 1514 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1515 | A Java class declaration also defines a typedef for the class. |
1516 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1517 | if (symbol_language == language_cplus | |
6aecb9c2 | 1518 | || symbol_language == language_d |
5eeb2539 AR |
1519 | || symbol_language == language_java |
1520 | || symbol_language == language_ada) | |
1521 | { | |
1522 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1523 | && symbol_domain == STRUCT_DOMAIN) | |
1524 | return 1; | |
1525 | } | |
1526 | /* For all other languages, strict match is required. */ | |
1527 | return (symbol_domain == domain); | |
1528 | } | |
1529 | ||
ccefe4c4 TT |
1530 | /* Look up a type named NAME in the struct_domain. The type returned |
1531 | must not be opaque -- i.e., must have at least one field | |
1532 | defined. */ | |
c906108c | 1533 | |
ccefe4c4 TT |
1534 | struct type * |
1535 | lookup_transparent_type (const char *name) | |
c906108c | 1536 | { |
ccefe4c4 TT |
1537 | return current_language->la_lookup_transparent_type (name); |
1538 | } | |
9af17804 | 1539 | |
ccefe4c4 TT |
1540 | /* A helper for basic_lookup_transparent_type that interfaces with the |
1541 | "quick" symbol table functions. */ | |
357e46e7 | 1542 | |
ccefe4c4 TT |
1543 | static struct type * |
1544 | basic_lookup_transparent_type_quick (struct objfile *objfile, int kind, | |
1545 | const char *name) | |
1546 | { | |
1547 | struct symtab *symtab; | |
1548 | struct blockvector *bv; | |
1549 | struct block *block; | |
1550 | struct symbol *sym; | |
c906108c | 1551 | |
ccefe4c4 TT |
1552 | if (!objfile->sf) |
1553 | return NULL; | |
1554 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN); | |
1555 | if (!symtab) | |
1556 | return NULL; | |
c906108c | 1557 | |
ccefe4c4 TT |
1558 | bv = BLOCKVECTOR (symtab); |
1559 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1560 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1561 | if (!sym) | |
9af17804 | 1562 | { |
ccefe4c4 TT |
1563 | int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK; |
1564 | ||
1565 | /* This shouldn't be necessary, but as a last resort | |
1566 | * try looking in the 'other kind' even though the psymtab | |
1567 | * claimed the symbol was one thing. It's possible that | |
1568 | * the psymtab gets it wrong in some cases. | |
1569 | */ | |
1570 | block = BLOCKVECTOR_BLOCK (bv, other_kind); | |
1571 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1572 | if (!sym) | |
1573 | /* FIXME; error is wrong in one case */ | |
1574 | error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
1575 | %s may be an inlined function, or may be a template function\n\ | |
1576 | (if a template, try specifying an instantiation: %s<type>)."), | |
1577 | name, symtab->filename, name, name); | |
c906108c | 1578 | } |
ccefe4c4 TT |
1579 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1580 | return SYMBOL_TYPE (sym); | |
c906108c | 1581 | |
ccefe4c4 | 1582 | return NULL; |
b368761e | 1583 | } |
c906108c | 1584 | |
b368761e DC |
1585 | /* The standard implementation of lookup_transparent_type. This code |
1586 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1587 | up types were just left out. In particular it's assumed here that | |
1588 | types are available in struct_domain and only at file-static or | |
1589 | global blocks. */ | |
c906108c SS |
1590 | |
1591 | struct type * | |
b368761e | 1592 | basic_lookup_transparent_type (const char *name) |
c906108c | 1593 | { |
52f0bd74 AC |
1594 | struct symbol *sym; |
1595 | struct symtab *s = NULL; | |
c906108c | 1596 | struct blockvector *bv; |
52f0bd74 AC |
1597 | struct objfile *objfile; |
1598 | struct block *block; | |
ccefe4c4 | 1599 | struct type *t; |
c906108c SS |
1600 | |
1601 | /* Now search all the global symbols. Do the symtab's first, then | |
1602 | check the psymtab's. If a psymtab indicates the existence | |
1603 | of the desired name as a global, then do psymtab-to-symtab | |
1604 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1605 | |
58b6ab13 | 1606 | ALL_OBJFILES (objfile) |
c5aa993b | 1607 | { |
774b6a14 TT |
1608 | if (objfile->sf) |
1609 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, | |
1610 | GLOBAL_BLOCK, | |
1611 | name, STRUCT_DOMAIN); | |
1612 | ||
58b6ab13 TT |
1613 | ALL_OBJFILE_SYMTABS (objfile, s) |
1614 | if (s->primary) | |
1615 | { | |
1616 | bv = BLOCKVECTOR (s); | |
1617 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1618 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1619 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1620 | { | |
1621 | return SYMBOL_TYPE (sym); | |
1622 | } | |
1623 | } | |
c5aa993b | 1624 | } |
c906108c | 1625 | |
ccefe4c4 | 1626 | ALL_OBJFILES (objfile) |
c5aa993b | 1627 | { |
ccefe4c4 TT |
1628 | t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); |
1629 | if (t) | |
1630 | return t; | |
c5aa993b | 1631 | } |
c906108c SS |
1632 | |
1633 | /* Now search the static file-level symbols. | |
1634 | Not strictly correct, but more useful than an error. | |
1635 | Do the symtab's first, then | |
1636 | check the psymtab's. If a psymtab indicates the existence | |
1637 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1638 | conversion on the fly and return the found symbol. | |
1639 | */ | |
1640 | ||
54ec275a | 1641 | ALL_OBJFILES (objfile) |
c5aa993b | 1642 | { |
774b6a14 TT |
1643 | if (objfile->sf) |
1644 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK, | |
1645 | name, STRUCT_DOMAIN); | |
1646 | ||
54ec275a | 1647 | ALL_OBJFILE_SYMTABS (objfile, s) |
c5aa993b | 1648 | { |
54ec275a KS |
1649 | bv = BLOCKVECTOR (s); |
1650 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1651 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1652 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1653 | { | |
1654 | return SYMBOL_TYPE (sym); | |
1655 | } | |
c5aa993b JM |
1656 | } |
1657 | } | |
c906108c | 1658 | |
ccefe4c4 | 1659 | ALL_OBJFILES (objfile) |
c5aa993b | 1660 | { |
ccefe4c4 TT |
1661 | t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); |
1662 | if (t) | |
1663 | return t; | |
c5aa993b | 1664 | } |
ccefe4c4 | 1665 | |
c906108c SS |
1666 | return (struct type *) 0; |
1667 | } | |
1668 | ||
1669 | ||
ccefe4c4 | 1670 | /* Find the name of the file containing main(). */ |
c906108c SS |
1671 | /* FIXME: What about languages without main() or specially linked |
1672 | executables that have no main() ? */ | |
1673 | ||
dd786858 | 1674 | const char * |
ccefe4c4 | 1675 | find_main_filename (void) |
c906108c | 1676 | { |
52f0bd74 | 1677 | struct objfile *objfile; |
dd786858 | 1678 | char *name = main_name (); |
c906108c | 1679 | |
ccefe4c4 | 1680 | ALL_OBJFILES (objfile) |
c5aa993b | 1681 | { |
dd786858 TT |
1682 | const char *result; |
1683 | ||
ccefe4c4 TT |
1684 | if (!objfile->sf) |
1685 | continue; | |
1686 | result = objfile->sf->qf->find_symbol_file (objfile, name); | |
1687 | if (result) | |
1688 | return result; | |
c5aa993b | 1689 | } |
c906108c SS |
1690 | return (NULL); |
1691 | } | |
1692 | ||
176620f1 | 1693 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1694 | |
1695 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1696 | to find a match during the binary search of the non-encoded names, but | |
1697 | for now we don't worry about the slight inefficiency of looking for | |
1698 | a match we'll never find, since it will go pretty quick. Once the | |
1699 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1700 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1701 | symbol (language_cplus or language_objc set) has both the encoded and |
1bae87b9 | 1702 | non-encoded names tested for a match. |
3121eff0 | 1703 | */ |
c906108c SS |
1704 | |
1705 | struct symbol * | |
aa1ee363 | 1706 | lookup_block_symbol (const struct block *block, const char *name, |
176620f1 | 1707 | const domain_enum domain) |
c906108c | 1708 | { |
de4f826b DC |
1709 | struct dict_iterator iter; |
1710 | struct symbol *sym; | |
c906108c | 1711 | |
de4f826b | 1712 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1713 | { |
de4f826b DC |
1714 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1715 | sym != NULL; | |
1716 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1717 | { |
5eeb2539 | 1718 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1719 | SYMBOL_DOMAIN (sym), domain)) |
261397f8 DJ |
1720 | return sym; |
1721 | } | |
1722 | return NULL; | |
1723 | } | |
526e70c0 | 1724 | else |
c906108c | 1725 | { |
526e70c0 DC |
1726 | /* Note that parameter symbols do not always show up last in the |
1727 | list; this loop makes sure to take anything else other than | |
1728 | parameter symbols first; it only uses parameter symbols as a | |
1729 | last resort. Note that this only takes up extra computation | |
1730 | time on a match. */ | |
de4f826b DC |
1731 | |
1732 | struct symbol *sym_found = NULL; | |
1733 | ||
1734 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1735 | sym != NULL; | |
1736 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1737 | { |
5eeb2539 | 1738 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1739 | SYMBOL_DOMAIN (sym), domain)) |
c906108c | 1740 | { |
c906108c | 1741 | sym_found = sym; |
2a2d4dc3 | 1742 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
1743 | { |
1744 | break; | |
1745 | } | |
1746 | } | |
c906108c | 1747 | } |
de4f826b | 1748 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1749 | } |
c906108c SS |
1750 | } |
1751 | ||
c906108c SS |
1752 | /* Find the symtab associated with PC and SECTION. Look through the |
1753 | psymtabs and read in another symtab if necessary. */ | |
1754 | ||
1755 | struct symtab * | |
714835d5 | 1756 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 1757 | { |
52f0bd74 | 1758 | struct block *b; |
c906108c | 1759 | struct blockvector *bv; |
52f0bd74 AC |
1760 | struct symtab *s = NULL; |
1761 | struct symtab *best_s = NULL; | |
52f0bd74 | 1762 | struct objfile *objfile; |
6c95b8df | 1763 | struct program_space *pspace; |
c906108c | 1764 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1765 | struct minimal_symbol *msymbol; |
1766 | ||
6c95b8df PA |
1767 | pspace = current_program_space; |
1768 | ||
8a48e967 DJ |
1769 | /* If we know that this is not a text address, return failure. This is |
1770 | necessary because we loop based on the block's high and low code | |
1771 | addresses, which do not include the data ranges, and because | |
1772 | we call find_pc_sect_psymtab which has a similar restriction based | |
1773 | on the partial_symtab's texthigh and textlow. */ | |
1774 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1775 | if (msymbol | |
712f90be TT |
1776 | && (MSYMBOL_TYPE (msymbol) == mst_data |
1777 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
1778 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
1779 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
1780 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 1781 | return NULL; |
c906108c SS |
1782 | |
1783 | /* Search all symtabs for the one whose file contains our address, and which | |
1784 | is the smallest of all the ones containing the address. This is designed | |
1785 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1786 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1787 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1788 | ||
1789 | This happens for native ecoff format, where code from included files | |
1790 | gets its own symtab. The symtab for the included file should have | |
1791 | been read in already via the dependency mechanism. | |
1792 | It might be swifter to create several symtabs with the same name | |
1793 | like xcoff does (I'm not sure). | |
1794 | ||
1795 | It also happens for objfiles that have their functions reordered. | |
1796 | For these, the symtab we are looking for is not necessarily read in. */ | |
1797 | ||
11309657 | 1798 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1799 | { |
1800 | bv = BLOCKVECTOR (s); | |
1801 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1802 | |
c5aa993b | 1803 | if (BLOCK_START (b) <= pc |
c5aa993b | 1804 | && BLOCK_END (b) > pc |
c5aa993b JM |
1805 | && (distance == 0 |
1806 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1807 | { | |
1808 | /* For an objfile that has its functions reordered, | |
1809 | find_pc_psymtab will find the proper partial symbol table | |
1810 | and we simply return its corresponding symtab. */ | |
1811 | /* In order to better support objfiles that contain both | |
1812 | stabs and coff debugging info, we continue on if a psymtab | |
1813 | can't be found. */ | |
ccefe4c4 | 1814 | if ((objfile->flags & OBJF_REORDERED) && objfile->sf) |
c5aa993b | 1815 | { |
ccefe4c4 | 1816 | struct symtab *result; |
433759f7 | 1817 | |
ccefe4c4 TT |
1818 | result |
1819 | = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
1820 | msymbol, | |
1821 | pc, section, | |
1822 | 0); | |
1823 | if (result) | |
1824 | return result; | |
c5aa993b JM |
1825 | } |
1826 | if (section != 0) | |
1827 | { | |
de4f826b | 1828 | struct dict_iterator iter; |
261397f8 | 1829 | struct symbol *sym = NULL; |
c906108c | 1830 | |
de4f826b | 1831 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 1832 | { |
261397f8 | 1833 | fixup_symbol_section (sym, objfile); |
714835d5 | 1834 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
1835 | break; |
1836 | } | |
de4f826b | 1837 | if (sym == NULL) |
c5aa993b JM |
1838 | continue; /* no symbol in this symtab matches section */ |
1839 | } | |
1840 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1841 | best_s = s; | |
1842 | } | |
1843 | } | |
c906108c SS |
1844 | |
1845 | if (best_s != NULL) | |
c5aa993b | 1846 | return (best_s); |
c906108c | 1847 | |
ccefe4c4 TT |
1848 | ALL_OBJFILES (objfile) |
1849 | { | |
1850 | struct symtab *result; | |
433759f7 | 1851 | |
ccefe4c4 TT |
1852 | if (!objfile->sf) |
1853 | continue; | |
1854 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
1855 | msymbol, | |
1856 | pc, section, | |
1857 | 1); | |
1858 | if (result) | |
1859 | return result; | |
1860 | } | |
1861 | ||
1862 | return NULL; | |
c906108c SS |
1863 | } |
1864 | ||
1865 | /* Find the symtab associated with PC. Look through the psymtabs and | |
1866 | read in another symtab if necessary. Backward compatibility, no section */ | |
1867 | ||
1868 | struct symtab * | |
fba45db2 | 1869 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
1870 | { |
1871 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1872 | } | |
c906108c | 1873 | \f |
c5aa993b | 1874 | |
7e73cedf | 1875 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
1876 | Return a structure containing a symtab pointer, a line number, |
1877 | and a pc range for the entire source line. | |
1878 | The value's .pc field is NOT the specified pc. | |
1879 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1880 | use the line that ends there. Otherwise, in that case, the line | |
1881 | that begins there is used. */ | |
1882 | ||
1883 | /* The big complication here is that a line may start in one file, and end just | |
1884 | before the start of another file. This usually occurs when you #include | |
1885 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1886 | range, we must search all symtabs associated with this compilation unit, and | |
1887 | find the one whose first PC is closer than that of the next line in this | |
1888 | symtab. */ | |
1889 | ||
1890 | /* If it's worth the effort, we could be using a binary search. */ | |
1891 | ||
1892 | struct symtab_and_line | |
714835d5 | 1893 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
1894 | { |
1895 | struct symtab *s; | |
52f0bd74 AC |
1896 | struct linetable *l; |
1897 | int len; | |
1898 | int i; | |
1899 | struct linetable_entry *item; | |
c906108c SS |
1900 | struct symtab_and_line val; |
1901 | struct blockvector *bv; | |
1902 | struct minimal_symbol *msymbol; | |
1903 | struct minimal_symbol *mfunsym; | |
1904 | ||
1905 | /* Info on best line seen so far, and where it starts, and its file. */ | |
1906 | ||
1907 | struct linetable_entry *best = NULL; | |
1908 | CORE_ADDR best_end = 0; | |
1909 | struct symtab *best_symtab = 0; | |
1910 | ||
1911 | /* Store here the first line number | |
1912 | of a file which contains the line at the smallest pc after PC. | |
1913 | If we don't find a line whose range contains PC, | |
1914 | we will use a line one less than this, | |
1915 | with a range from the start of that file to the first line's pc. */ | |
1916 | struct linetable_entry *alt = NULL; | |
1917 | struct symtab *alt_symtab = 0; | |
1918 | ||
1919 | /* Info on best line seen in this file. */ | |
1920 | ||
1921 | struct linetable_entry *prev; | |
1922 | ||
1923 | /* If this pc is not from the current frame, | |
1924 | it is the address of the end of a call instruction. | |
1925 | Quite likely that is the start of the following statement. | |
1926 | But what we want is the statement containing the instruction. | |
1927 | Fudge the pc to make sure we get that. */ | |
1928 | ||
fe39c653 | 1929 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 1930 | |
6c95b8df PA |
1931 | val.pspace = current_program_space; |
1932 | ||
b77b1eb7 JB |
1933 | /* It's tempting to assume that, if we can't find debugging info for |
1934 | any function enclosing PC, that we shouldn't search for line | |
1935 | number info, either. However, GAS can emit line number info for | |
1936 | assembly files --- very helpful when debugging hand-written | |
1937 | assembly code. In such a case, we'd have no debug info for the | |
1938 | function, but we would have line info. */ | |
648f4f79 | 1939 | |
c906108c SS |
1940 | if (notcurrent) |
1941 | pc -= 1; | |
1942 | ||
c5aa993b | 1943 | /* elz: added this because this function returned the wrong |
c906108c SS |
1944 | information if the pc belongs to a stub (import/export) |
1945 | to call a shlib function. This stub would be anywhere between | |
9af17804 DE |
1946 | two functions in the target, and the line info was erroneously |
1947 | taken to be the one of the line before the pc. | |
c5aa993b | 1948 | */ |
c906108c | 1949 | /* RT: Further explanation: |
c5aa993b | 1950 | |
c906108c SS |
1951 | * We have stubs (trampolines) inserted between procedures. |
1952 | * | |
1953 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
1954 | * exists in the main image. | |
1955 | * | |
1956 | * In the minimal symbol table, we have a bunch of symbols | |
1957 | * sorted by start address. The stubs are marked as "trampoline", | |
1958 | * the others appear as text. E.g.: | |
1959 | * | |
9af17804 | 1960 | * Minimal symbol table for main image |
c906108c SS |
1961 | * main: code for main (text symbol) |
1962 | * shr1: stub (trampoline symbol) | |
1963 | * foo: code for foo (text symbol) | |
1964 | * ... | |
1965 | * Minimal symbol table for "shr1" image: | |
1966 | * ... | |
1967 | * shr1: code for shr1 (text symbol) | |
1968 | * ... | |
1969 | * | |
1970 | * So the code below is trying to detect if we are in the stub | |
1971 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
1972 | * and if found, do the symbolization from the real-code address | |
1973 | * rather than the stub address. | |
1974 | * | |
1975 | * Assumptions being made about the minimal symbol table: | |
1976 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
1977 | * if we're really in the trampoline. If we're beyond it (say | |
9af17804 | 1978 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
1979 | * symbol (the "foo" text symbol for example) and will not |
1980 | * return the trampoline. | |
1981 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
1982 | * corresponding to the trampoline, and whose address will | |
1983 | * be different than the trampoline address. I put in a sanity | |
1984 | * check for the address being the same, to avoid an | |
1985 | * infinite recursion. | |
1986 | */ | |
c5aa993b JM |
1987 | msymbol = lookup_minimal_symbol_by_pc (pc); |
1988 | if (msymbol != NULL) | |
c906108c | 1989 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 1990 | { |
2335f48e | 1991 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 1992 | NULL); |
c5aa993b JM |
1993 | if (mfunsym == NULL) |
1994 | /* I eliminated this warning since it is coming out | |
1995 | * in the following situation: | |
1996 | * gdb shmain // test program with shared libraries | |
1997 | * (gdb) break shr1 // function in shared lib | |
1998 | * Warning: In stub for ... | |
9af17804 | 1999 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2000 | * so of course we can't find the real func/line info, |
2001 | * but the "break" still works, and the warning is annoying. | |
2002 | * So I commented out the warning. RT */ | |
2335f48e | 2003 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b | 2004 | /* fall through */ |
82cf6c60 | 2005 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol)) |
c5aa993b JM |
2006 | /* Avoid infinite recursion */ |
2007 | /* See above comment about why warning is commented out */ | |
2335f48e | 2008 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2009 | /* fall through */ |
2010 | else | |
82cf6c60 | 2011 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2012 | } |
c906108c SS |
2013 | |
2014 | ||
2015 | s = find_pc_sect_symtab (pc, section); | |
2016 | if (!s) | |
2017 | { | |
2018 | /* if no symbol information, return previous pc */ | |
2019 | if (notcurrent) | |
2020 | pc++; | |
2021 | val.pc = pc; | |
2022 | return val; | |
2023 | } | |
2024 | ||
2025 | bv = BLOCKVECTOR (s); | |
2026 | ||
2027 | /* Look at all the symtabs that share this blockvector. | |
2028 | They all have the same apriori range, that we found was right; | |
2029 | but they have different line tables. */ | |
2030 | ||
2031 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2032 | { | |
2033 | /* Find the best line in this symtab. */ | |
2034 | l = LINETABLE (s); | |
2035 | if (!l) | |
c5aa993b | 2036 | continue; |
c906108c SS |
2037 | len = l->nitems; |
2038 | if (len <= 0) | |
2039 | { | |
2040 | /* I think len can be zero if the symtab lacks line numbers | |
2041 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2042 | I'm not sure which, and maybe it depends on the symbol | |
2043 | reader). */ | |
2044 | continue; | |
2045 | } | |
2046 | ||
2047 | prev = NULL; | |
2048 | item = l->item; /* Get first line info */ | |
2049 | ||
2050 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2051 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2052 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2053 | { | |
2054 | alt = item; | |
2055 | alt_symtab = s; | |
2056 | } | |
2057 | ||
2058 | for (i = 0; i < len; i++, item++) | |
2059 | { | |
2060 | /* Leave prev pointing to the linetable entry for the last line | |
2061 | that started at or before PC. */ | |
2062 | if (item->pc > pc) | |
2063 | break; | |
2064 | ||
2065 | prev = item; | |
2066 | } | |
2067 | ||
2068 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2069 | item points at the next line. If we ran off the end of the linetable |
2070 | (pc >= start of the last line), then prev == item. If pc < start of | |
2071 | the first line, prev will not be set. */ | |
c906108c SS |
2072 | |
2073 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2074 | If so, record this file, and its best line, as best so far. Don't |
2075 | save prev if it represents the end of a function (i.e. line number | |
2076 | 0) instead of a real line. */ | |
c906108c | 2077 | |
083ae935 | 2078 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2079 | { |
2080 | best = prev; | |
2081 | best_symtab = s; | |
25d53da1 KB |
2082 | |
2083 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2084 | if (best_end <= best->pc) | |
2085 | best_end = 0; | |
c906108c | 2086 | } |
25d53da1 KB |
2087 | |
2088 | /* If another line (denoted by ITEM) is in the linetable and its | |
2089 | PC is after BEST's PC, but before the current BEST_END, then | |
2090 | use ITEM's PC as the new best_end. */ | |
2091 | if (best && i < len && item->pc > best->pc | |
2092 | && (best_end == 0 || best_end > item->pc)) | |
2093 | best_end = item->pc; | |
c906108c SS |
2094 | } |
2095 | ||
2096 | if (!best_symtab) | |
2097 | { | |
e86e87f7 DJ |
2098 | /* If we didn't find any line number info, just return zeros. |
2099 | We used to return alt->line - 1 here, but that could be | |
2100 | anywhere; if we don't have line number info for this PC, | |
2101 | don't make some up. */ | |
2102 | val.pc = pc; | |
c906108c | 2103 | } |
e8717518 FF |
2104 | else if (best->line == 0) |
2105 | { | |
2106 | /* If our best fit is in a range of PC's for which no line | |
2107 | number info is available (line number is zero) then we didn't | |
2108 | find any valid line information. */ | |
2109 | val.pc = pc; | |
2110 | } | |
c906108c SS |
2111 | else |
2112 | { | |
2113 | val.symtab = best_symtab; | |
2114 | val.line = best->line; | |
2115 | val.pc = best->pc; | |
2116 | if (best_end && (!alt || best_end < alt->pc)) | |
2117 | val.end = best_end; | |
2118 | else if (alt) | |
2119 | val.end = alt->pc; | |
2120 | else | |
2121 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2122 | } | |
2123 | val.section = section; | |
2124 | return val; | |
2125 | } | |
2126 | ||
2127 | /* Backward compatibility (no section) */ | |
2128 | ||
2129 | struct symtab_and_line | |
fba45db2 | 2130 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2131 | { |
714835d5 | 2132 | struct obj_section *section; |
c906108c SS |
2133 | |
2134 | section = find_pc_overlay (pc); | |
2135 | if (pc_in_unmapped_range (pc, section)) | |
2136 | pc = overlay_mapped_address (pc, section); | |
2137 | return find_pc_sect_line (pc, section, notcurrent); | |
2138 | } | |
c906108c | 2139 | \f |
c906108c SS |
2140 | /* Find line number LINE in any symtab whose name is the same as |
2141 | SYMTAB. | |
2142 | ||
2143 | If found, return the symtab that contains the linetable in which it was | |
2144 | found, set *INDEX to the index in the linetable of the best entry | |
2145 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2146 | exact match. | |
2147 | ||
2148 | If not found, return NULL. */ | |
2149 | ||
50641945 | 2150 | struct symtab * |
433759f7 MS |
2151 | find_line_symtab (struct symtab *symtab, int line, |
2152 | int *index, int *exact_match) | |
c906108c | 2153 | { |
6f43c46f | 2154 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2155 | |
2156 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2157 | so far seen. */ | |
2158 | ||
2159 | int best_index; | |
2160 | struct linetable *best_linetable; | |
2161 | struct symtab *best_symtab; | |
2162 | ||
2163 | /* First try looking it up in the given symtab. */ | |
2164 | best_linetable = LINETABLE (symtab); | |
2165 | best_symtab = symtab; | |
2166 | best_index = find_line_common (best_linetable, line, &exact); | |
2167 | if (best_index < 0 || !exact) | |
2168 | { | |
2169 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2170 | another symtab with the same name. In the case of xcoff, |
2171 | multiple csects for one source file (produced by IBM's FORTRAN | |
2172 | compiler) produce multiple symtabs (this is unavoidable | |
2173 | assuming csects can be at arbitrary places in memory and that | |
2174 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2175 | |
2176 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2177 | or 0 if none has been seen so far. |
2178 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2179 | int best; |
2180 | ||
2181 | struct objfile *objfile; | |
2182 | struct symtab *s; | |
2183 | ||
2184 | if (best_index >= 0) | |
2185 | best = best_linetable->item[best_index].line; | |
2186 | else | |
2187 | best = 0; | |
2188 | ||
ccefe4c4 | 2189 | ALL_OBJFILES (objfile) |
51432cca | 2190 | { |
ccefe4c4 TT |
2191 | if (objfile->sf) |
2192 | objfile->sf->qf->expand_symtabs_with_filename (objfile, | |
2193 | symtab->filename); | |
51432cca CES |
2194 | } |
2195 | ||
3ffc00b8 JB |
2196 | /* Get symbol full file name if possible. */ |
2197 | symtab_to_fullname (symtab); | |
2198 | ||
c906108c | 2199 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2200 | { |
2201 | struct linetable *l; | |
2202 | int ind; | |
c906108c | 2203 | |
3ffc00b8 | 2204 | if (FILENAME_CMP (symtab->filename, s->filename) != 0) |
c5aa993b | 2205 | continue; |
3ffc00b8 JB |
2206 | if (symtab->fullname != NULL |
2207 | && symtab_to_fullname (s) != NULL | |
2208 | && FILENAME_CMP (symtab->fullname, s->fullname) != 0) | |
2209 | continue; | |
c5aa993b JM |
2210 | l = LINETABLE (s); |
2211 | ind = find_line_common (l, line, &exact); | |
2212 | if (ind >= 0) | |
2213 | { | |
2214 | if (exact) | |
2215 | { | |
2216 | best_index = ind; | |
2217 | best_linetable = l; | |
2218 | best_symtab = s; | |
2219 | goto done; | |
2220 | } | |
2221 | if (best == 0 || l->item[ind].line < best) | |
2222 | { | |
2223 | best = l->item[ind].line; | |
2224 | best_index = ind; | |
2225 | best_linetable = l; | |
2226 | best_symtab = s; | |
2227 | } | |
2228 | } | |
2229 | } | |
c906108c | 2230 | } |
c5aa993b | 2231 | done: |
c906108c SS |
2232 | if (best_index < 0) |
2233 | return NULL; | |
2234 | ||
2235 | if (index) | |
2236 | *index = best_index; | |
2237 | if (exact_match) | |
2238 | *exact_match = exact; | |
2239 | ||
2240 | return best_symtab; | |
2241 | } | |
2242 | \f | |
2243 | /* Set the PC value for a given source file and line number and return true. | |
2244 | Returns zero for invalid line number (and sets the PC to 0). | |
2245 | The source file is specified with a struct symtab. */ | |
2246 | ||
2247 | int | |
fba45db2 | 2248 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2249 | { |
2250 | struct linetable *l; | |
2251 | int ind; | |
2252 | ||
2253 | *pc = 0; | |
2254 | if (symtab == 0) | |
2255 | return 0; | |
2256 | ||
2257 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2258 | if (symtab != NULL) | |
2259 | { | |
2260 | l = LINETABLE (symtab); | |
2261 | *pc = l->item[ind].pc; | |
2262 | return 1; | |
2263 | } | |
2264 | else | |
2265 | return 0; | |
2266 | } | |
2267 | ||
2268 | /* Find the range of pc values in a line. | |
2269 | Store the starting pc of the line into *STARTPTR | |
2270 | and the ending pc (start of next line) into *ENDPTR. | |
2271 | Returns 1 to indicate success. | |
2272 | Returns 0 if could not find the specified line. */ | |
2273 | ||
2274 | int | |
fba45db2 KB |
2275 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2276 | CORE_ADDR *endptr) | |
c906108c SS |
2277 | { |
2278 | CORE_ADDR startaddr; | |
2279 | struct symtab_and_line found_sal; | |
2280 | ||
2281 | startaddr = sal.pc; | |
c5aa993b | 2282 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2283 | return 0; |
2284 | ||
2285 | /* This whole function is based on address. For example, if line 10 has | |
2286 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2287 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2288 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2289 | This also insures that we never give a range like "starts at 0x134 | |
2290 | and ends at 0x12c". */ | |
2291 | ||
2292 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2293 | if (found_sal.line != sal.line) | |
2294 | { | |
2295 | /* The specified line (sal) has zero bytes. */ | |
2296 | *startptr = found_sal.pc; | |
2297 | *endptr = found_sal.pc; | |
2298 | } | |
2299 | else | |
2300 | { | |
2301 | *startptr = found_sal.pc; | |
2302 | *endptr = found_sal.end; | |
2303 | } | |
2304 | return 1; | |
2305 | } | |
2306 | ||
2307 | /* Given a line table and a line number, return the index into the line | |
2308 | table for the pc of the nearest line whose number is >= the specified one. | |
2309 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2310 | ||
2311 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2312 | ||
2313 | static int | |
aa1ee363 | 2314 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2315 | int *exact_match) |
c906108c | 2316 | { |
52f0bd74 AC |
2317 | int i; |
2318 | int len; | |
c906108c SS |
2319 | |
2320 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2321 | or 0 if none has been seen so far. | |
2322 | BEST_INDEX identifies the item for it. */ | |
2323 | ||
2324 | int best_index = -1; | |
2325 | int best = 0; | |
2326 | ||
b7589f7d DJ |
2327 | *exact_match = 0; |
2328 | ||
c906108c SS |
2329 | if (lineno <= 0) |
2330 | return -1; | |
2331 | if (l == 0) | |
2332 | return -1; | |
2333 | ||
2334 | len = l->nitems; | |
2335 | for (i = 0; i < len; i++) | |
2336 | { | |
aa1ee363 | 2337 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2338 | |
2339 | if (item->line == lineno) | |
2340 | { | |
2341 | /* Return the first (lowest address) entry which matches. */ | |
2342 | *exact_match = 1; | |
2343 | return i; | |
2344 | } | |
2345 | ||
2346 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2347 | { | |
2348 | best = item->line; | |
2349 | best_index = i; | |
2350 | } | |
2351 | } | |
2352 | ||
2353 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2354 | return best_index; |
2355 | } | |
2356 | ||
2357 | int | |
fba45db2 | 2358 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2359 | { |
2360 | struct symtab_and_line sal; | |
433759f7 | 2361 | |
c906108c SS |
2362 | sal = find_pc_line (pc, 0); |
2363 | *startptr = sal.pc; | |
2364 | *endptr = sal.end; | |
2365 | return sal.symtab != 0; | |
2366 | } | |
2367 | ||
8c7a1ee8 EZ |
2368 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
2369 | address for that function that has an entry in SYMTAB's line info | |
2370 | table. If such an entry cannot be found, return FUNC_ADDR | |
2371 | unaltered. */ | |
2372 | CORE_ADDR | |
2373 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) | |
2374 | { | |
2375 | CORE_ADDR func_start, func_end; | |
2376 | struct linetable *l; | |
952a6d41 | 2377 | int i; |
8c7a1ee8 EZ |
2378 | |
2379 | /* Give up if this symbol has no lineinfo table. */ | |
2380 | l = LINETABLE (symtab); | |
2381 | if (l == NULL) | |
2382 | return func_addr; | |
2383 | ||
2384 | /* Get the range for the function's PC values, or give up if we | |
2385 | cannot, for some reason. */ | |
2386 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
2387 | return func_addr; | |
2388 | ||
2389 | /* Linetable entries are ordered by PC values, see the commentary in | |
2390 | symtab.h where `struct linetable' is defined. Thus, the first | |
2391 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
2392 | address we are looking for. */ | |
2393 | for (i = 0; i < l->nitems; i++) | |
2394 | { | |
2395 | struct linetable_entry *item = &(l->item[i]); | |
2396 | ||
2397 | /* Don't use line numbers of zero, they mark special entries in | |
2398 | the table. See the commentary on symtab.h before the | |
2399 | definition of struct linetable. */ | |
2400 | if (item->line > 0 && func_start <= item->pc && item->pc < func_end) | |
2401 | return item->pc; | |
2402 | } | |
2403 | ||
2404 | return func_addr; | |
2405 | } | |
2406 | ||
c906108c SS |
2407 | /* Given a function symbol SYM, find the symtab and line for the start |
2408 | of the function. | |
2409 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2410 | of real code inside the function. */ | |
2411 | ||
50641945 | 2412 | struct symtab_and_line |
fba45db2 | 2413 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2414 | { |
059acae7 UW |
2415 | struct symtab_and_line sal; |
2416 | ||
2417 | fixup_symbol_section (sym, NULL); | |
2418 | sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), | |
2419 | SYMBOL_OBJ_SECTION (sym), 0); | |
2420 | ||
86da934b UW |
2421 | /* We always should have a line for the function start address. |
2422 | If we don't, something is odd. Create a plain SAL refering | |
2423 | just the PC and hope that skip_prologue_sal (if requested) | |
2424 | can find a line number for after the prologue. */ | |
2425 | if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym))) | |
2426 | { | |
2427 | init_sal (&sal); | |
2428 | sal.pspace = current_program_space; | |
2429 | sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2430 | sal.section = SYMBOL_OBJ_SECTION (sym); | |
2431 | } | |
2432 | ||
059acae7 UW |
2433 | if (funfirstline) |
2434 | skip_prologue_sal (&sal); | |
bccdca4a | 2435 | |
059acae7 UW |
2436 | return sal; |
2437 | } | |
2438 | ||
2439 | /* Adjust SAL to the first instruction past the function prologue. | |
2440 | If the PC was explicitly specified, the SAL is not changed. | |
2441 | If the line number was explicitly specified, at most the SAL's PC | |
2442 | is updated. If SAL is already past the prologue, then do nothing. */ | |
2443 | void | |
2444 | skip_prologue_sal (struct symtab_and_line *sal) | |
2445 | { | |
2446 | struct symbol *sym; | |
2447 | struct symtab_and_line start_sal; | |
2448 | struct cleanup *old_chain; | |
c906108c | 2449 | CORE_ADDR pc; |
059acae7 UW |
2450 | struct obj_section *section; |
2451 | const char *name; | |
2452 | struct objfile *objfile; | |
2453 | struct gdbarch *gdbarch; | |
edb3359d | 2454 | struct block *b, *function_block; |
c906108c | 2455 | |
059acae7 UW |
2456 | /* Do not change the SAL is PC was specified explicitly. */ |
2457 | if (sal->explicit_pc) | |
2458 | return; | |
6c95b8df PA |
2459 | |
2460 | old_chain = save_current_space_and_thread (); | |
059acae7 | 2461 | switch_to_program_space_and_thread (sal->pspace); |
6c95b8df | 2462 | |
059acae7 UW |
2463 | sym = find_pc_sect_function (sal->pc, sal->section); |
2464 | if (sym != NULL) | |
bccdca4a | 2465 | { |
059acae7 UW |
2466 | fixup_symbol_section (sym, NULL); |
2467 | ||
2468 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2469 | section = SYMBOL_OBJ_SECTION (sym); | |
2470 | name = SYMBOL_LINKAGE_NAME (sym); | |
2471 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
c906108c | 2472 | } |
059acae7 UW |
2473 | else |
2474 | { | |
2475 | struct minimal_symbol *msymbol | |
2476 | = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); | |
433759f7 | 2477 | |
059acae7 UW |
2478 | if (msymbol == NULL) |
2479 | { | |
2480 | do_cleanups (old_chain); | |
2481 | return; | |
2482 | } | |
2483 | ||
2484 | pc = SYMBOL_VALUE_ADDRESS (msymbol); | |
2485 | section = SYMBOL_OBJ_SECTION (msymbol); | |
2486 | name = SYMBOL_LINKAGE_NAME (msymbol); | |
2487 | objfile = msymbol_objfile (msymbol); | |
2488 | } | |
2489 | ||
2490 | gdbarch = get_objfile_arch (objfile); | |
2491 | ||
2492 | /* If the function is in an unmapped overlay, use its unmapped LMA address, | |
2493 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2494 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2495 | pc = overlay_unmapped_address (pc, section); | |
2496 | ||
2497 | /* Skip "first line" of function (which is actually its prologue). */ | |
2498 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2499 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2500 | ||
2501 | /* For overlays, map pc back into its mapped VMA range. */ | |
2502 | pc = overlay_mapped_address (pc, section); | |
2503 | ||
2504 | /* Calculate line number. */ | |
2505 | start_sal = find_pc_sect_line (pc, section, 0); | |
c906108c | 2506 | |
a433963d | 2507 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
c906108c | 2508 | line is still part of the same function. */ |
059acae7 UW |
2509 | if (start_sal.pc != pc |
2510 | && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end | |
2511 | && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2512 | : (lookup_minimal_symbol_by_pc_section (start_sal.end, section) | |
2513 | == lookup_minimal_symbol_by_pc_section (pc, section)))) | |
c906108c SS |
2514 | { |
2515 | /* First pc of next line */ | |
059acae7 | 2516 | pc = start_sal.end; |
c906108c | 2517 | /* Recalculate the line number (might not be N+1). */ |
059acae7 | 2518 | start_sal = find_pc_sect_line (pc, section, 0); |
c906108c | 2519 | } |
4309257c PM |
2520 | |
2521 | /* On targets with executable formats that don't have a concept of | |
2522 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2523 | to `__main' in `main' between the prologue and before user | |
2524 | code. */ | |
059acae7 UW |
2525 | if (gdbarch_skip_main_prologue_p (gdbarch) |
2526 | && name && strcmp (name, "main") == 0) | |
4309257c | 2527 | { |
d80b854b | 2528 | pc = gdbarch_skip_main_prologue (gdbarch, pc); |
4309257c | 2529 | /* Recalculate the line number (might not be N+1). */ |
059acae7 | 2530 | start_sal = find_pc_sect_line (pc, section, 0); |
4309257c PM |
2531 | } |
2532 | ||
8c7a1ee8 EZ |
2533 | /* If we still don't have a valid source line, try to find the first |
2534 | PC in the lineinfo table that belongs to the same function. This | |
2535 | happens with COFF debug info, which does not seem to have an | |
2536 | entry in lineinfo table for the code after the prologue which has | |
2537 | no direct relation to source. For example, this was found to be | |
2538 | the case with the DJGPP target using "gcc -gcoff" when the | |
2539 | compiler inserted code after the prologue to make sure the stack | |
2540 | is aligned. */ | |
059acae7 | 2541 | if (sym && start_sal.symtab == NULL) |
8c7a1ee8 EZ |
2542 | { |
2543 | pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym)); | |
2544 | /* Recalculate the line number. */ | |
059acae7 | 2545 | start_sal = find_pc_sect_line (pc, section, 0); |
8c7a1ee8 EZ |
2546 | } |
2547 | ||
059acae7 UW |
2548 | do_cleanups (old_chain); |
2549 | ||
2550 | /* If we're already past the prologue, leave SAL unchanged. Otherwise | |
2551 | forward SAL to the end of the prologue. */ | |
2552 | if (sal->pc >= pc) | |
2553 | return; | |
2554 | ||
2555 | sal->pc = pc; | |
2556 | sal->section = section; | |
2557 | ||
2558 | /* Unless the explicit_line flag was set, update the SAL line | |
2559 | and symtab to correspond to the modified PC location. */ | |
2560 | if (sal->explicit_line) | |
2561 | return; | |
2562 | ||
2563 | sal->symtab = start_sal.symtab; | |
2564 | sal->line = start_sal.line; | |
2565 | sal->end = start_sal.end; | |
c906108c | 2566 | |
edb3359d DJ |
2567 | /* Check if we are now inside an inlined function. If we can, |
2568 | use the call site of the function instead. */ | |
059acae7 | 2569 | b = block_for_pc_sect (sal->pc, sal->section); |
edb3359d DJ |
2570 | function_block = NULL; |
2571 | while (b != NULL) | |
2572 | { | |
2573 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
2574 | function_block = b; | |
2575 | else if (BLOCK_FUNCTION (b) != NULL) | |
2576 | break; | |
2577 | b = BLOCK_SUPERBLOCK (b); | |
2578 | } | |
2579 | if (function_block != NULL | |
2580 | && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) | |
2581 | { | |
059acae7 UW |
2582 | sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); |
2583 | sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block)); | |
edb3359d | 2584 | } |
c906108c | 2585 | } |
50641945 | 2586 | |
c906108c SS |
2587 | /* If P is of the form "operator[ \t]+..." where `...' is |
2588 | some legitimate operator text, return a pointer to the | |
2589 | beginning of the substring of the operator text. | |
2590 | Otherwise, return "". */ | |
2591 | char * | |
fba45db2 | 2592 | operator_chars (char *p, char **end) |
c906108c SS |
2593 | { |
2594 | *end = ""; | |
2595 | if (strncmp (p, "operator", 8)) | |
2596 | return *end; | |
2597 | p += 8; | |
2598 | ||
2599 | /* Don't get faked out by `operator' being part of a longer | |
2600 | identifier. */ | |
c5aa993b | 2601 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2602 | return *end; |
2603 | ||
2604 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2605 | while (*p == ' ' || *p == '\t') | |
2606 | p++; | |
2607 | ||
2608 | /* Recognize 'operator TYPENAME'. */ | |
2609 | ||
c5aa993b | 2610 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2611 | { |
aa1ee363 | 2612 | char *q = p + 1; |
433759f7 | 2613 | |
c5aa993b | 2614 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2615 | q++; |
2616 | *end = q; | |
2617 | return p; | |
2618 | } | |
2619 | ||
53e8ad3d MS |
2620 | while (*p) |
2621 | switch (*p) | |
2622 | { | |
2623 | case '\\': /* regexp quoting */ | |
2624 | if (p[1] == '*') | |
2625 | { | |
2626 | if (p[2] == '=') /* 'operator\*=' */ | |
2627 | *end = p + 3; | |
2628 | else /* 'operator\*' */ | |
2629 | *end = p + 2; | |
2630 | return p; | |
2631 | } | |
2632 | else if (p[1] == '[') | |
2633 | { | |
2634 | if (p[2] == ']') | |
8a3fe4f8 | 2635 | error (_("mismatched quoting on brackets, try 'operator\\[\\]'")); |
53e8ad3d MS |
2636 | else if (p[2] == '\\' && p[3] == ']') |
2637 | { | |
2638 | *end = p + 4; /* 'operator\[\]' */ | |
2639 | return p; | |
2640 | } | |
2641 | else | |
8a3fe4f8 | 2642 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 2643 | } |
9af17804 | 2644 | else |
53e8ad3d MS |
2645 | { |
2646 | /* Gratuitous qoute: skip it and move on. */ | |
2647 | p++; | |
2648 | continue; | |
2649 | } | |
2650 | break; | |
2651 | case '!': | |
2652 | case '=': | |
2653 | case '*': | |
2654 | case '/': | |
2655 | case '%': | |
2656 | case '^': | |
2657 | if (p[1] == '=') | |
2658 | *end = p + 2; | |
2659 | else | |
2660 | *end = p + 1; | |
2661 | return p; | |
2662 | case '<': | |
2663 | case '>': | |
2664 | case '+': | |
2665 | case '-': | |
2666 | case '&': | |
2667 | case '|': | |
2668 | if (p[0] == '-' && p[1] == '>') | |
2669 | { | |
2670 | /* Struct pointer member operator 'operator->'. */ | |
2671 | if (p[2] == '*') | |
2672 | { | |
2673 | *end = p + 3; /* 'operator->*' */ | |
2674 | return p; | |
2675 | } | |
2676 | else if (p[2] == '\\') | |
2677 | { | |
2678 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2679 | return p; | |
2680 | } | |
2681 | else | |
2682 | { | |
2683 | *end = p + 2; /* 'operator->' */ | |
2684 | return p; | |
2685 | } | |
2686 | } | |
2687 | if (p[1] == '=' || p[1] == p[0]) | |
2688 | *end = p + 2; | |
2689 | else | |
2690 | *end = p + 1; | |
2691 | return p; | |
2692 | case '~': | |
2693 | case ',': | |
c5aa993b | 2694 | *end = p + 1; |
53e8ad3d MS |
2695 | return p; |
2696 | case '(': | |
2697 | if (p[1] != ')') | |
8a3fe4f8 | 2698 | error (_("`operator ()' must be specified without whitespace in `()'")); |
c5aa993b | 2699 | *end = p + 2; |
53e8ad3d MS |
2700 | return p; |
2701 | case '?': | |
2702 | if (p[1] != ':') | |
8a3fe4f8 | 2703 | error (_("`operator ?:' must be specified without whitespace in `?:'")); |
53e8ad3d MS |
2704 | *end = p + 2; |
2705 | return p; | |
2706 | case '[': | |
2707 | if (p[1] != ']') | |
8a3fe4f8 | 2708 | error (_("`operator []' must be specified without whitespace in `[]'")); |
53e8ad3d MS |
2709 | *end = p + 2; |
2710 | return p; | |
2711 | default: | |
8a3fe4f8 | 2712 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2713 | break; |
2714 | } | |
2715 | ||
c906108c SS |
2716 | *end = ""; |
2717 | return *end; | |
2718 | } | |
c906108c | 2719 | \f |
c5aa993b | 2720 | |
c94fdfd0 EZ |
2721 | /* If FILE is not already in the table of files, return zero; |
2722 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2723 | is non-zero. If *FIRST is non-zero, forget the old table | |
2724 | contents. */ | |
2725 | static int | |
2726 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2727 | { |
c94fdfd0 EZ |
2728 | /* Table of files seen so far. */ |
2729 | static const char **tab = NULL; | |
c906108c SS |
2730 | /* Allocated size of tab in elements. |
2731 | Start with one 256-byte block (when using GNU malloc.c). | |
2732 | 24 is the malloc overhead when range checking is in effect. */ | |
2733 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2734 | /* Current size of tab in elements. */ | |
2735 | static int tab_cur_size; | |
c94fdfd0 | 2736 | const char **p; |
c906108c SS |
2737 | |
2738 | if (*first) | |
2739 | { | |
2740 | if (tab == NULL) | |
c94fdfd0 | 2741 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2742 | tab_cur_size = 0; |
2743 | } | |
2744 | ||
c94fdfd0 | 2745 | /* Is FILE in tab? */ |
c906108c | 2746 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2747 | if (strcmp (*p, file) == 0) |
2748 | return 1; | |
2749 | ||
2750 | /* No; maybe add it to tab. */ | |
2751 | if (add) | |
c906108c | 2752 | { |
c94fdfd0 EZ |
2753 | if (tab_cur_size == tab_alloc_size) |
2754 | { | |
2755 | tab_alloc_size *= 2; | |
2756 | tab = (const char **) xrealloc ((char *) tab, | |
2757 | tab_alloc_size * sizeof (*tab)); | |
2758 | } | |
2759 | tab[tab_cur_size++] = file; | |
c906108c | 2760 | } |
c906108c | 2761 | |
c94fdfd0 EZ |
2762 | return 0; |
2763 | } | |
2764 | ||
2765 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2766 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2767 | name printed. Set *FIRST to zero. */ | |
2768 | static void | |
d092d1a2 | 2769 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2770 | { |
2771 | /* Since a single source file can result in several partial symbol | |
2772 | tables, we need to avoid printing it more than once. Note: if | |
2773 | some of the psymtabs are read in and some are not, it gets | |
2774 | printed both under "Source files for which symbols have been | |
2775 | read" and "Source files for which symbols will be read in on | |
2776 | demand". I consider this a reasonable way to deal with the | |
2777 | situation. I'm not sure whether this can also happen for | |
2778 | symtabs; it doesn't hurt to check. */ | |
2779 | ||
2780 | /* Was NAME already seen? */ | |
2781 | if (filename_seen (name, 1, first)) | |
2782 | { | |
2783 | /* Yes; don't print it again. */ | |
2784 | return; | |
2785 | } | |
2786 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2787 | if (*first) |
2788 | { | |
2789 | *first = 0; | |
2790 | } | |
2791 | else | |
2792 | { | |
2793 | printf_filtered (", "); | |
2794 | } | |
2795 | ||
2796 | wrap_here (""); | |
2797 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2798 | } |
c906108c | 2799 | |
ccefe4c4 TT |
2800 | /* A callback for map_partial_symbol_filenames. */ |
2801 | static void | |
2802 | output_partial_symbol_filename (const char *fullname, const char *filename, | |
2803 | void *data) | |
2804 | { | |
2805 | output_source_filename (fullname ? fullname : filename, data); | |
2806 | } | |
2807 | ||
c906108c | 2808 | static void |
fba45db2 | 2809 | sources_info (char *ignore, int from_tty) |
c906108c | 2810 | { |
52f0bd74 | 2811 | struct symtab *s; |
52f0bd74 | 2812 | struct objfile *objfile; |
c906108c | 2813 | int first; |
c5aa993b | 2814 | |
c906108c SS |
2815 | if (!have_full_symbols () && !have_partial_symbols ()) |
2816 | { | |
8a3fe4f8 | 2817 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 2818 | } |
c5aa993b | 2819 | |
c906108c SS |
2820 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2821 | ||
2822 | first = 1; | |
2823 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 2824 | { |
d092d1a2 | 2825 | const char *fullname = symtab_to_fullname (s); |
433759f7 | 2826 | |
d092d1a2 | 2827 | output_source_filename (fullname ? fullname : s->filename, &first); |
c5aa993b | 2828 | } |
c906108c | 2829 | printf_filtered ("\n\n"); |
c5aa993b | 2830 | |
c906108c SS |
2831 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2832 | ||
2833 | first = 1; | |
ccefe4c4 | 2834 | map_partial_symbol_filenames (output_partial_symbol_filename, &first); |
c906108c SS |
2835 | printf_filtered ("\n"); |
2836 | } | |
2837 | ||
2838 | static int | |
ccefe4c4 | 2839 | file_matches (const char *file, char *files[], int nfiles) |
c906108c SS |
2840 | { |
2841 | int i; | |
2842 | ||
2843 | if (file != NULL && nfiles != 0) | |
2844 | { | |
2845 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2846 | { |
31889e00 | 2847 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2848 | return 1; |
2849 | } | |
c906108c SS |
2850 | } |
2851 | else if (nfiles == 0) | |
2852 | return 1; | |
2853 | return 0; | |
2854 | } | |
2855 | ||
2856 | /* Free any memory associated with a search. */ | |
2857 | void | |
fba45db2 | 2858 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2859 | { |
2860 | struct symbol_search *p; | |
2861 | struct symbol_search *next; | |
2862 | ||
2863 | for (p = symbols; p != NULL; p = next) | |
2864 | { | |
2865 | next = p->next; | |
b8c9b27d | 2866 | xfree (p); |
c906108c SS |
2867 | } |
2868 | } | |
2869 | ||
5bd98722 AC |
2870 | static void |
2871 | do_free_search_symbols_cleanup (void *symbols) | |
2872 | { | |
2873 | free_search_symbols (symbols); | |
2874 | } | |
2875 | ||
2876 | struct cleanup * | |
2877 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2878 | { | |
2879 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2880 | } | |
2881 | ||
434d2d4f DJ |
2882 | /* Helper function for sort_search_symbols and qsort. Can only |
2883 | sort symbols, not minimal symbols. */ | |
2884 | static int | |
2885 | compare_search_syms (const void *sa, const void *sb) | |
2886 | { | |
2887 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2888 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2889 | ||
de5ad195 DC |
2890 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2891 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2892 | } |
2893 | ||
2894 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2895 | prevtail where it is, but update its next pointer to point to | |
2896 | the first of the sorted symbols. */ | |
2897 | static struct symbol_search * | |
2898 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2899 | { | |
2900 | struct symbol_search **symbols, *symp, *old_next; | |
2901 | int i; | |
2902 | ||
2903 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2904 | * nfound); | |
2905 | symp = prevtail->next; | |
2906 | for (i = 0; i < nfound; i++) | |
2907 | { | |
2908 | symbols[i] = symp; | |
2909 | symp = symp->next; | |
2910 | } | |
2911 | /* Generally NULL. */ | |
2912 | old_next = symp; | |
2913 | ||
2914 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2915 | compare_search_syms); | |
2916 | ||
2917 | symp = prevtail; | |
2918 | for (i = 0; i < nfound; i++) | |
2919 | { | |
2920 | symp->next = symbols[i]; | |
2921 | symp = symp->next; | |
2922 | } | |
2923 | symp->next = old_next; | |
2924 | ||
8ed32cc0 | 2925 | xfree (symbols); |
434d2d4f DJ |
2926 | return symp; |
2927 | } | |
5bd98722 | 2928 | |
ccefe4c4 TT |
2929 | /* An object of this type is passed as the user_data to the |
2930 | expand_symtabs_matching method. */ | |
2931 | struct search_symbols_data | |
2932 | { | |
2933 | int nfiles; | |
2934 | char **files; | |
2935 | char *regexp; | |
2936 | }; | |
2937 | ||
2938 | /* A callback for expand_symtabs_matching. */ | |
2939 | static int | |
2940 | search_symbols_file_matches (const char *filename, void *user_data) | |
2941 | { | |
2942 | struct search_symbols_data *data = user_data; | |
433759f7 | 2943 | |
ccefe4c4 TT |
2944 | return file_matches (filename, data->files, data->nfiles); |
2945 | } | |
2946 | ||
2947 | /* A callback for expand_symtabs_matching. */ | |
2948 | static int | |
2949 | search_symbols_name_matches (const char *symname, void *user_data) | |
2950 | { | |
2951 | struct search_symbols_data *data = user_data; | |
433759f7 | 2952 | |
ccefe4c4 TT |
2953 | return data->regexp == NULL || re_exec (symname); |
2954 | } | |
2955 | ||
c906108c SS |
2956 | /* Search the symbol table for matches to the regular expression REGEXP, |
2957 | returning the results in *MATCHES. | |
2958 | ||
2959 | Only symbols of KIND are searched: | |
176620f1 EZ |
2960 | FUNCTIONS_DOMAIN - search all functions |
2961 | TYPES_DOMAIN - search all type names | |
176620f1 | 2962 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
c5aa993b | 2963 | and constants (enums) |
c906108c SS |
2964 | |
2965 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2966 | |
2967 | The results are sorted locally; each symtab's global and static blocks are | |
2968 | separately alphabetized. | |
c5aa993b | 2969 | */ |
c906108c | 2970 | void |
176620f1 | 2971 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 2972 | struct symbol_search **matches) |
c906108c | 2973 | { |
52f0bd74 | 2974 | struct symtab *s; |
52f0bd74 | 2975 | struct blockvector *bv; |
52f0bd74 AC |
2976 | struct block *b; |
2977 | int i = 0; | |
de4f826b | 2978 | struct dict_iterator iter; |
52f0bd74 | 2979 | struct symbol *sym; |
c906108c SS |
2980 | struct objfile *objfile; |
2981 | struct minimal_symbol *msymbol; | |
2982 | char *val; | |
2983 | int found_misc = 0; | |
bc043ef3 | 2984 | static const enum minimal_symbol_type types[] |
433759f7 | 2985 | = {mst_data, mst_text, mst_abs, mst_unknown}; |
bc043ef3 | 2986 | static const enum minimal_symbol_type types2[] |
433759f7 | 2987 | = {mst_bss, mst_file_text, mst_abs, mst_unknown}; |
bc043ef3 | 2988 | static const enum minimal_symbol_type types3[] |
433759f7 | 2989 | = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; |
bc043ef3 | 2990 | static const enum minimal_symbol_type types4[] |
433759f7 | 2991 | = {mst_file_bss, mst_text, mst_abs, mst_unknown}; |
c906108c SS |
2992 | enum minimal_symbol_type ourtype; |
2993 | enum minimal_symbol_type ourtype2; | |
2994 | enum minimal_symbol_type ourtype3; | |
2995 | enum minimal_symbol_type ourtype4; | |
2996 | struct symbol_search *sr; | |
2997 | struct symbol_search *psr; | |
2998 | struct symbol_search *tail; | |
2999 | struct cleanup *old_chain = NULL; | |
ccefe4c4 | 3000 | struct search_symbols_data datum; |
c906108c | 3001 | |
176620f1 | 3002 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 3003 | error (_("must search on specific domain")); |
c906108c | 3004 | |
176620f1 EZ |
3005 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
3006 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
3007 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
3008 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
3009 | |
3010 | sr = *matches = NULL; | |
3011 | tail = NULL; | |
3012 | ||
3013 | if (regexp != NULL) | |
3014 | { | |
3015 | /* Make sure spacing is right for C++ operators. | |
3016 | This is just a courtesy to make the matching less sensitive | |
3017 | to how many spaces the user leaves between 'operator' | |
3018 | and <TYPENAME> or <OPERATOR>. */ | |
3019 | char *opend; | |
3020 | char *opname = operator_chars (regexp, &opend); | |
433759f7 | 3021 | |
c906108c | 3022 | if (*opname) |
c5aa993b JM |
3023 | { |
3024 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
433759f7 | 3025 | |
c5aa993b JM |
3026 | if (isalpha (*opname) || *opname == '_' || *opname == '$') |
3027 | { | |
3028 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
3029 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
3030 | fix = 1; | |
3031 | } | |
3032 | else | |
3033 | { | |
3034 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
3035 | if (opname[-1] == ' ') | |
3036 | fix = 0; | |
3037 | } | |
3038 | /* If wrong number of spaces, fix it. */ | |
3039 | if (fix >= 0) | |
3040 | { | |
045f55a6 | 3041 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
433759f7 | 3042 | |
c5aa993b JM |
3043 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3044 | regexp = tmp; | |
3045 | } | |
3046 | } | |
3047 | ||
c906108c | 3048 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 3049 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
3050 | } |
3051 | ||
3052 | /* Search through the partial symtabs *first* for all symbols | |
3053 | matching the regexp. That way we don't have to reproduce all of | |
3054 | the machinery below. */ | |
3055 | ||
ccefe4c4 TT |
3056 | datum.nfiles = nfiles; |
3057 | datum.files = files; | |
3058 | datum.regexp = regexp; | |
3059 | ALL_OBJFILES (objfile) | |
c5aa993b | 3060 | { |
ccefe4c4 TT |
3061 | if (objfile->sf) |
3062 | objfile->sf->qf->expand_symtabs_matching (objfile, | |
3063 | search_symbols_file_matches, | |
3064 | search_symbols_name_matches, | |
3065 | kind, | |
3066 | &datum); | |
c5aa993b | 3067 | } |
c906108c SS |
3068 | |
3069 | /* Here, we search through the minimal symbol tables for functions | |
3070 | and variables that match, and force their symbols to be read. | |
3071 | This is in particular necessary for demangled variable names, | |
3072 | which are no longer put into the partial symbol tables. | |
3073 | The symbol will then be found during the scan of symtabs below. | |
3074 | ||
3075 | For functions, find_pc_symtab should succeed if we have debug info | |
3076 | for the function, for variables we have to call lookup_symbol | |
3077 | to determine if the variable has debug info. | |
3078 | If the lookup fails, set found_misc so that we will rescan to print | |
3079 | any matching symbols without debug info. | |
c5aa993b | 3080 | */ |
c906108c | 3081 | |
176620f1 | 3082 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3083 | { |
3084 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3085 | { |
89295b4d PP |
3086 | QUIT; |
3087 | ||
c5aa993b JM |
3088 | if (MSYMBOL_TYPE (msymbol) == ourtype || |
3089 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3090 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3091 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3092 | { | |
25120b0d DC |
3093 | if (regexp == NULL |
3094 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3095 | { |
3096 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3097 | { | |
b1262a02 DC |
3098 | /* FIXME: carlton/2003-02-04: Given that the |
3099 | semantics of lookup_symbol keeps on changing | |
3100 | slightly, it would be a nice idea if we had a | |
3101 | function lookup_symbol_minsym that found the | |
3102 | symbol associated to a given minimal symbol (if | |
3103 | any). */ | |
176620f1 | 3104 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3105 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3106 | (struct block *) NULL, |
2570f2b7 | 3107 | VAR_DOMAIN, 0) |
53c5240f | 3108 | == NULL) |
b1262a02 | 3109 | found_misc = 1; |
c5aa993b JM |
3110 | } |
3111 | } | |
3112 | } | |
3113 | } | |
c906108c SS |
3114 | } |
3115 | ||
11309657 | 3116 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3117 | { |
3118 | bv = BLOCKVECTOR (s); | |
c5aa993b JM |
3119 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3120 | { | |
434d2d4f DJ |
3121 | struct symbol_search *prevtail = tail; |
3122 | int nfound = 0; | |
433759f7 | 3123 | |
c5aa993b | 3124 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3125 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3126 | { |
cb1df416 | 3127 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); |
433759f7 | 3128 | |
c5aa993b | 3129 | QUIT; |
cb1df416 DJ |
3130 | |
3131 | if (file_matches (real_symtab->filename, files, nfiles) | |
25120b0d DC |
3132 | && ((regexp == NULL |
3133 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
254e6b9e DE |
3134 | && ((kind == VARIABLES_DOMAIN |
3135 | && SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
0fe7935b | 3136 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED |
c5aa993b | 3137 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
254e6b9e DE |
3138 | /* LOC_CONST can be used for more than just enums, |
3139 | e.g., c++ static const members. | |
3140 | We only want to skip enums here. */ | |
3141 | && !(SYMBOL_CLASS (sym) == LOC_CONST | |
3142 | && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM)) | |
176620f1 | 3143 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
bd2e94ce | 3144 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3145 | { |
3146 | /* match */ | |
3147 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3148 | psr->block = i; | |
cb1df416 | 3149 | psr->symtab = real_symtab; |
c5aa993b JM |
3150 | psr->symbol = sym; |
3151 | psr->msymbol = NULL; | |
3152 | psr->next = NULL; | |
3153 | if (tail == NULL) | |
434d2d4f | 3154 | sr = psr; |
c5aa993b JM |
3155 | else |
3156 | tail->next = psr; | |
3157 | tail = psr; | |
434d2d4f DJ |
3158 | nfound ++; |
3159 | } | |
3160 | } | |
3161 | if (nfound > 0) | |
3162 | { | |
3163 | if (prevtail == NULL) | |
3164 | { | |
3165 | struct symbol_search dummy; | |
3166 | ||
3167 | dummy.next = sr; | |
3168 | tail = sort_search_symbols (&dummy, nfound); | |
3169 | sr = dummy.next; | |
3170 | ||
3171 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3172 | } |
434d2d4f DJ |
3173 | else |
3174 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3175 | } |
3176 | } | |
c5aa993b | 3177 | } |
c906108c SS |
3178 | |
3179 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3180 | no debug symbols, then print directly from the msymbol_vector. */ | |
3181 | ||
176620f1 | 3182 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3183 | { |
3184 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3185 | { |
89295b4d PP |
3186 | QUIT; |
3187 | ||
c5aa993b JM |
3188 | if (MSYMBOL_TYPE (msymbol) == ourtype || |
3189 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3190 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3191 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3192 | { | |
25120b0d DC |
3193 | if (regexp == NULL |
3194 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3195 | { |
3196 | /* Functions: Look up by address. */ | |
176620f1 | 3197 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3198 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3199 | { | |
3200 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3201 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
2570f2b7 UW |
3202 | (struct block *) NULL, VAR_DOMAIN, 0) |
3203 | == NULL) | |
c5aa993b JM |
3204 | { |
3205 | /* match */ | |
3206 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3207 | psr->block = i; | |
3208 | psr->msymbol = msymbol; | |
3209 | psr->symtab = NULL; | |
3210 | psr->symbol = NULL; | |
3211 | psr->next = NULL; | |
3212 | if (tail == NULL) | |
3213 | { | |
3214 | sr = psr; | |
5bd98722 | 3215 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3216 | } |
3217 | else | |
3218 | tail->next = psr; | |
3219 | tail = psr; | |
3220 | } | |
3221 | } | |
3222 | } | |
3223 | } | |
3224 | } | |
c906108c SS |
3225 | } |
3226 | ||
3227 | *matches = sr; | |
3228 | if (sr != NULL) | |
3229 | discard_cleanups (old_chain); | |
3230 | } | |
3231 | ||
3232 | /* Helper function for symtab_symbol_info, this function uses | |
3233 | the data returned from search_symbols() to print information | |
3234 | regarding the match to gdb_stdout. | |
c5aa993b | 3235 | */ |
c906108c | 3236 | static void |
176620f1 | 3237 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3238 | int block, char *last) |
c906108c SS |
3239 | { |
3240 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3241 | { | |
3242 | fputs_filtered ("\nFile ", gdb_stdout); | |
3243 | fputs_filtered (s->filename, gdb_stdout); | |
3244 | fputs_filtered (":\n", gdb_stdout); | |
3245 | } | |
3246 | ||
176620f1 | 3247 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3248 | printf_filtered ("static "); |
c5aa993b | 3249 | |
c906108c | 3250 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3251 | if (kind == TYPES_DOMAIN |
3252 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3253 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3254 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3255 | else if (kind < TYPES_DOMAIN || |
3256 | (kind == TYPES_DOMAIN && | |
3257 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3258 | { |
3259 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3260 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3261 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3262 | gdb_stdout, 0); |
c906108c SS |
3263 | |
3264 | printf_filtered (";\n"); | |
3265 | } | |
c906108c SS |
3266 | } |
3267 | ||
3268 | /* This help function for symtab_symbol_info() prints information | |
3269 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3270 | */ |
c906108c | 3271 | static void |
fba45db2 | 3272 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3273 | { |
d80b854b | 3274 | struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol)); |
3ac4495a MS |
3275 | char *tmp; |
3276 | ||
d80b854b | 3277 | if (gdbarch_addr_bit (gdbarch) <= 32) |
bb599908 PH |
3278 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3279 | & (CORE_ADDR) 0xffffffff, | |
3280 | 8); | |
3ac4495a | 3281 | else |
bb599908 PH |
3282 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3283 | 16); | |
3ac4495a | 3284 | printf_filtered ("%s %s\n", |
de5ad195 | 3285 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3286 | } |
3287 | ||
3288 | /* This is the guts of the commands "info functions", "info types", and | |
3289 | "info variables". It calls search_symbols to find all matches and then | |
3290 | print_[m]symbol_info to print out some useful information about the | |
3291 | matches. | |
c5aa993b | 3292 | */ |
c906108c | 3293 | static void |
176620f1 | 3294 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c | 3295 | { |
bc043ef3 DE |
3296 | static const char * const classnames[] = |
3297 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3298 | struct symbol_search *symbols; |
3299 | struct symbol_search *p; | |
3300 | struct cleanup *old_chain; | |
3301 | char *last_filename = NULL; | |
3302 | int first = 1; | |
3303 | ||
3304 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3305 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3306 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3307 | |
3308 | printf_filtered (regexp | |
c5aa993b JM |
3309 | ? "All %ss matching regular expression \"%s\":\n" |
3310 | : "All defined %ss:\n", | |
176620f1 | 3311 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3312 | |
3313 | for (p = symbols; p != NULL; p = p->next) | |
3314 | { | |
3315 | QUIT; | |
3316 | ||
3317 | if (p->msymbol != NULL) | |
c5aa993b JM |
3318 | { |
3319 | if (first) | |
3320 | { | |
3321 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3322 | first = 0; | |
3323 | } | |
3324 | print_msymbol_info (p->msymbol); | |
3325 | } | |
c906108c | 3326 | else |
c5aa993b JM |
3327 | { |
3328 | print_symbol_info (kind, | |
3329 | p->symtab, | |
3330 | p->symbol, | |
3331 | p->block, | |
3332 | last_filename); | |
3333 | last_filename = p->symtab->filename; | |
3334 | } | |
c906108c SS |
3335 | } |
3336 | ||
3337 | do_cleanups (old_chain); | |
3338 | } | |
3339 | ||
3340 | static void | |
fba45db2 | 3341 | variables_info (char *regexp, int from_tty) |
c906108c | 3342 | { |
176620f1 | 3343 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3344 | } |
3345 | ||
3346 | static void | |
fba45db2 | 3347 | functions_info (char *regexp, int from_tty) |
c906108c | 3348 | { |
176620f1 | 3349 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3350 | } |
3351 | ||
357e46e7 | 3352 | |
c906108c | 3353 | static void |
fba45db2 | 3354 | types_info (char *regexp, int from_tty) |
c906108c | 3355 | { |
176620f1 | 3356 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3357 | } |
3358 | ||
c906108c | 3359 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3360 | |
8b93c638 | 3361 | void |
fba45db2 | 3362 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3363 | { |
3364 | rbreak_command (regexp, from_tty); | |
3365 | } | |
8926118c | 3366 | |
95a42b64 TT |
3367 | /* A cleanup function that calls end_rbreak_breakpoints. */ |
3368 | ||
3369 | static void | |
3370 | do_end_rbreak_breakpoints (void *ignore) | |
3371 | { | |
3372 | end_rbreak_breakpoints (); | |
3373 | } | |
3374 | ||
c906108c | 3375 | static void |
fba45db2 | 3376 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3377 | { |
3378 | struct symbol_search *ss; | |
3379 | struct symbol_search *p; | |
3380 | struct cleanup *old_chain; | |
95a42b64 TT |
3381 | char *string = NULL; |
3382 | int len = 0; | |
8bd10a10 CM |
3383 | char **files = NULL; |
3384 | int nfiles = 0; | |
c906108c | 3385 | |
8bd10a10 CM |
3386 | if (regexp) |
3387 | { | |
3388 | char *colon = strchr (regexp, ':'); | |
433759f7 | 3389 | |
8bd10a10 CM |
3390 | if (colon && *(colon + 1) != ':') |
3391 | { | |
3392 | int colon_index; | |
3393 | char * file_name; | |
3394 | ||
3395 | colon_index = colon - regexp; | |
3396 | file_name = alloca (colon_index + 1); | |
3397 | memcpy (file_name, regexp, colon_index); | |
3398 | file_name[colon_index--] = 0; | |
3399 | while (isspace (file_name[colon_index])) | |
3400 | file_name[colon_index--] = 0; | |
3401 | files = &file_name; | |
3402 | nfiles = 1; | |
3403 | regexp = colon + 1; | |
3404 | while (isspace (*regexp)) regexp++; | |
3405 | } | |
3406 | } | |
3407 | ||
3408 | search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss); | |
5bd98722 | 3409 | old_chain = make_cleanup_free_search_symbols (ss); |
95a42b64 | 3410 | make_cleanup (free_current_contents, &string); |
c906108c | 3411 | |
95a42b64 TT |
3412 | start_rbreak_breakpoints (); |
3413 | make_cleanup (do_end_rbreak_breakpoints, NULL); | |
c906108c SS |
3414 | for (p = ss; p != NULL; p = p->next) |
3415 | { | |
3416 | if (p->msymbol == NULL) | |
c5aa993b | 3417 | { |
95a42b64 TT |
3418 | int newlen = (strlen (p->symtab->filename) |
3419 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3420 | + 4); | |
433759f7 | 3421 | |
95a42b64 TT |
3422 | if (newlen > len) |
3423 | { | |
3424 | string = xrealloc (string, newlen); | |
3425 | len = newlen; | |
3426 | } | |
c5aa993b JM |
3427 | strcpy (string, p->symtab->filename); |
3428 | strcat (string, ":'"); | |
2335f48e | 3429 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3430 | strcat (string, "'"); |
3431 | break_command (string, from_tty); | |
176620f1 | 3432 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3433 | p->symtab, |
3434 | p->symbol, | |
3435 | p->block, | |
3436 | p->symtab->filename); | |
3437 | } | |
c906108c | 3438 | else |
c5aa993b | 3439 | { |
433759f7 MS |
3440 | int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3); |
3441 | ||
95a42b64 TT |
3442 | if (newlen > len) |
3443 | { | |
3444 | string = xrealloc (string, newlen); | |
3445 | len = newlen; | |
3446 | } | |
6214f497 DJ |
3447 | strcpy (string, "'"); |
3448 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3449 | strcat (string, "'"); | |
3450 | ||
3451 | break_command (string, from_tty); | |
c5aa993b | 3452 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3453 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3454 | } |
c906108c SS |
3455 | } |
3456 | ||
3457 | do_cleanups (old_chain); | |
3458 | } | |
c906108c | 3459 | \f |
c5aa993b | 3460 | |
c906108c SS |
3461 | /* Helper routine for make_symbol_completion_list. */ |
3462 | ||
3463 | static int return_val_size; | |
3464 | static int return_val_index; | |
3465 | static char **return_val; | |
3466 | ||
3467 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3468 | completion_list_add_name \ |
2335f48e | 3469 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3470 | |
3471 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3472 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3473 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3474 | |
3475 | static void | |
fba45db2 KB |
3476 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3477 | char *text, char *word) | |
c906108c SS |
3478 | { |
3479 | int newsize; | |
c906108c SS |
3480 | |
3481 | /* clip symbols that cannot match */ | |
3482 | ||
3483 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3484 | { | |
3485 | return; | |
3486 | } | |
3487 | ||
c906108c SS |
3488 | /* We have a match for a completion, so add SYMNAME to the current list |
3489 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3490 | ||
3491 | { | |
3492 | char *new; | |
433759f7 | 3493 | |
c906108c SS |
3494 | if (word == sym_text) |
3495 | { | |
3496 | new = xmalloc (strlen (symname) + 5); | |
3497 | strcpy (new, symname); | |
3498 | } | |
3499 | else if (word > sym_text) | |
3500 | { | |
3501 | /* Return some portion of symname. */ | |
3502 | new = xmalloc (strlen (symname) + 5); | |
3503 | strcpy (new, symname + (word - sym_text)); | |
3504 | } | |
3505 | else | |
3506 | { | |
3507 | /* Return some of SYM_TEXT plus symname. */ | |
3508 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3509 | strncpy (new, word, sym_text - word); | |
3510 | new[sym_text - word] = '\0'; | |
3511 | strcat (new, symname); | |
3512 | } | |
3513 | ||
c906108c SS |
3514 | if (return_val_index + 3 > return_val_size) |
3515 | { | |
3516 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3517 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3518 | } | |
3519 | return_val[return_val_index++] = new; | |
3520 | return_val[return_val_index] = NULL; | |
3521 | } | |
3522 | } | |
3523 | ||
69636828 AF |
3524 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3525 | again and feed all the selectors into the mill. */ | |
3526 | ||
3527 | static void | |
3528 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3529 | int sym_text_len, char *text, char *word) | |
3530 | { | |
3531 | static char *tmp = NULL; | |
3532 | static unsigned int tmplen = 0; | |
9af17804 | 3533 | |
69636828 AF |
3534 | char *method, *category, *selector; |
3535 | char *tmp2 = NULL; | |
9af17804 | 3536 | |
69636828 AF |
3537 | method = SYMBOL_NATURAL_NAME (msymbol); |
3538 | ||
3539 | /* Is it a method? */ | |
3540 | if ((method[0] != '-') && (method[0] != '+')) | |
3541 | return; | |
3542 | ||
3543 | if (sym_text[0] == '[') | |
3544 | /* Complete on shortened method method. */ | |
3545 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 3546 | |
69636828 AF |
3547 | while ((strlen (method) + 1) >= tmplen) |
3548 | { | |
3549 | if (tmplen == 0) | |
3550 | tmplen = 1024; | |
3551 | else | |
3552 | tmplen *= 2; | |
3553 | tmp = xrealloc (tmp, tmplen); | |
3554 | } | |
3555 | selector = strchr (method, ' '); | |
3556 | if (selector != NULL) | |
3557 | selector++; | |
9af17804 | 3558 | |
69636828 | 3559 | category = strchr (method, '('); |
9af17804 | 3560 | |
69636828 AF |
3561 | if ((category != NULL) && (selector != NULL)) |
3562 | { | |
3563 | memcpy (tmp, method, (category - method)); | |
3564 | tmp[category - method] = ' '; | |
3565 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3566 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3567 | if (sym_text[0] == '[') | |
3568 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3569 | } | |
9af17804 | 3570 | |
69636828 AF |
3571 | if (selector != NULL) |
3572 | { | |
3573 | /* Complete on selector only. */ | |
3574 | strcpy (tmp, selector); | |
3575 | tmp2 = strchr (tmp, ']'); | |
3576 | if (tmp2 != NULL) | |
3577 | *tmp2 = '\0'; | |
9af17804 | 3578 | |
69636828 AF |
3579 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3580 | } | |
3581 | } | |
3582 | ||
3583 | /* Break the non-quoted text based on the characters which are in | |
3584 | symbols. FIXME: This should probably be language-specific. */ | |
3585 | ||
3586 | static char * | |
3587 | language_search_unquoted_string (char *text, char *p) | |
3588 | { | |
3589 | for (; p > text; --p) | |
3590 | { | |
3591 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3592 | continue; | |
3593 | else | |
3594 | { | |
3595 | if ((current_language->la_language == language_objc)) | |
3596 | { | |
3597 | if (p[-1] == ':') /* might be part of a method name */ | |
3598 | continue; | |
3599 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3600 | p -= 2; /* beginning of a method name */ | |
3601 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3602 | { /* might be part of a method name */ | |
3603 | char *t = p; | |
3604 | ||
3605 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3606 | that we are in the middle of a method name. However, | |
3607 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3608 | Unfortunately we have to find it now to decide. */ | |
3609 | ||
3610 | while (t > text) | |
3611 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3612 | t[-1] == ' ' || t[-1] == ':' || | |
3613 | t[-1] == '(' || t[-1] == ')') | |
3614 | --t; | |
3615 | else | |
3616 | break; | |
3617 | ||
3618 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3619 | p = t - 2; /* method name detected */ | |
3620 | /* else we leave with p unchanged */ | |
3621 | } | |
3622 | } | |
3623 | break; | |
3624 | } | |
3625 | } | |
3626 | return p; | |
3627 | } | |
3628 | ||
edb3359d DJ |
3629 | static void |
3630 | completion_list_add_fields (struct symbol *sym, char *sym_text, | |
3631 | int sym_text_len, char *text, char *word) | |
3632 | { | |
3633 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3634 | { | |
3635 | struct type *t = SYMBOL_TYPE (sym); | |
3636 | enum type_code c = TYPE_CODE (t); | |
3637 | int j; | |
3638 | ||
3639 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3640 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3641 | if (TYPE_FIELD_NAME (t, j)) | |
3642 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
3643 | sym_text, sym_text_len, text, word); | |
3644 | } | |
3645 | } | |
3646 | ||
ccefe4c4 TT |
3647 | /* Type of the user_data argument passed to add_macro_name or |
3648 | add_partial_symbol_name. The contents are simply whatever is | |
3649 | needed by completion_list_add_name. */ | |
3650 | struct add_name_data | |
9a044a89 TT |
3651 | { |
3652 | char *sym_text; | |
3653 | int sym_text_len; | |
3654 | char *text; | |
3655 | char *word; | |
3656 | }; | |
3657 | ||
3658 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
3659 | This adds a macro's name to the current completion list. */ | |
3660 | static void | |
3661 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
3662 | void *user_data) | |
3663 | { | |
ccefe4c4 | 3664 | struct add_name_data *datum = (struct add_name_data *) user_data; |
433759f7 | 3665 | |
ccefe4c4 TT |
3666 | completion_list_add_name ((char *) name, |
3667 | datum->sym_text, datum->sym_text_len, | |
3668 | datum->text, datum->word); | |
3669 | } | |
3670 | ||
3671 | /* A callback for map_partial_symbol_names. */ | |
3672 | static void | |
3673 | add_partial_symbol_name (const char *name, void *user_data) | |
3674 | { | |
3675 | struct add_name_data *datum = (struct add_name_data *) user_data; | |
433759f7 | 3676 | |
9a044a89 TT |
3677 | completion_list_add_name ((char *) name, |
3678 | datum->sym_text, datum->sym_text_len, | |
3679 | datum->text, datum->word); | |
3680 | } | |
3681 | ||
c906108c | 3682 | char ** |
f55ee35c JK |
3683 | default_make_symbol_completion_list_break_on (char *text, char *word, |
3684 | const char *break_on) | |
c906108c | 3685 | { |
41d27058 JB |
3686 | /* Problem: All of the symbols have to be copied because readline |
3687 | frees them. I'm not going to worry about this; hopefully there | |
3688 | won't be that many. */ | |
3689 | ||
de4f826b DC |
3690 | struct symbol *sym; |
3691 | struct symtab *s; | |
de4f826b DC |
3692 | struct minimal_symbol *msymbol; |
3693 | struct objfile *objfile; | |
edb3359d DJ |
3694 | struct block *b; |
3695 | const struct block *surrounding_static_block, *surrounding_global_block; | |
de4f826b | 3696 | struct dict_iterator iter; |
c906108c SS |
3697 | /* The symbol we are completing on. Points in same buffer as text. */ |
3698 | char *sym_text; | |
3699 | /* Length of sym_text. */ | |
3700 | int sym_text_len; | |
ccefe4c4 | 3701 | struct add_name_data datum; |
c906108c | 3702 | |
41d27058 | 3703 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
3704 | { |
3705 | char *p; | |
3706 | char quote_found; | |
3707 | char *quote_pos = NULL; | |
3708 | ||
3709 | /* First see if this is a quoted string. */ | |
3710 | quote_found = '\0'; | |
3711 | for (p = text; *p != '\0'; ++p) | |
3712 | { | |
3713 | if (quote_found != '\0') | |
3714 | { | |
3715 | if (*p == quote_found) | |
3716 | /* Found close quote. */ | |
3717 | quote_found = '\0'; | |
3718 | else if (*p == '\\' && p[1] == quote_found) | |
3719 | /* A backslash followed by the quote character | |
c5aa993b | 3720 | doesn't end the string. */ |
c906108c SS |
3721 | ++p; |
3722 | } | |
3723 | else if (*p == '\'' || *p == '"') | |
3724 | { | |
3725 | quote_found = *p; | |
3726 | quote_pos = p; | |
3727 | } | |
3728 | } | |
3729 | if (quote_found == '\'') | |
3730 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3731 | sym_text = quote_pos + 1; | |
3732 | else if (quote_found == '"') | |
3733 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3734 | to complete it any other way. */ |
c94fdfd0 EZ |
3735 | { |
3736 | return_val = (char **) xmalloc (sizeof (char *)); | |
3737 | return_val[0] = NULL; | |
3738 | return return_val; | |
3739 | } | |
c906108c SS |
3740 | else |
3741 | { | |
3742 | /* It is not a quoted string. Break it based on the characters | |
3743 | which are in symbols. */ | |
3744 | while (p > text) | |
3745 | { | |
95699ff0 | 3746 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
f55ee35c | 3747 | || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) |
c906108c SS |
3748 | --p; |
3749 | else | |
3750 | break; | |
3751 | } | |
3752 | sym_text = p; | |
3753 | } | |
3754 | } | |
3755 | ||
3756 | sym_text_len = strlen (sym_text); | |
3757 | ||
3758 | return_val_size = 100; | |
3759 | return_val_index = 0; | |
3760 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3761 | return_val[0] = NULL; | |
3762 | ||
ccefe4c4 TT |
3763 | datum.sym_text = sym_text; |
3764 | datum.sym_text_len = sym_text_len; | |
3765 | datum.text = text; | |
3766 | datum.word = word; | |
3767 | ||
c906108c SS |
3768 | /* Look through the partial symtabs for all symbols which begin |
3769 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
ccefe4c4 | 3770 | map_partial_symbol_names (add_partial_symbol_name, &datum); |
c906108c SS |
3771 | |
3772 | /* At this point scan through the misc symbol vectors and add each | |
3773 | symbol you find to the list. Eventually we want to ignore | |
3774 | anything that isn't a text symbol (everything else will be | |
3775 | handled by the psymtab code above). */ | |
3776 | ||
3777 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3778 | { |
3779 | QUIT; | |
3780 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 3781 | |
69636828 | 3782 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 3783 | } |
c906108c SS |
3784 | |
3785 | /* Search upwards from currently selected frame (so that we can | |
edb3359d DJ |
3786 | complete on local vars). Also catch fields of types defined in |
3787 | this places which match our text string. Only complete on types | |
3788 | visible from current context. */ | |
3789 | ||
3790 | b = get_selected_block (0); | |
3791 | surrounding_static_block = block_static_block (b); | |
3792 | surrounding_global_block = block_global_block (b); | |
3793 | if (surrounding_static_block != NULL) | |
3794 | while (b != surrounding_static_block) | |
3795 | { | |
3796 | QUIT; | |
c906108c | 3797 | |
edb3359d DJ |
3798 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
3799 | { | |
3800 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
3801 | word); | |
3802 | completion_list_add_fields (sym, sym_text, sym_text_len, text, | |
3803 | word); | |
3804 | } | |
c5aa993b | 3805 | |
edb3359d DJ |
3806 | /* Stop when we encounter an enclosing function. Do not stop for |
3807 | non-inlined functions - the locals of the enclosing function | |
3808 | are in scope for a nested function. */ | |
3809 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
3810 | break; | |
3811 | b = BLOCK_SUPERBLOCK (b); | |
3812 | } | |
c906108c | 3813 | |
edb3359d | 3814 | /* Add fields from the file's types; symbols will be added below. */ |
c906108c | 3815 | |
edb3359d DJ |
3816 | if (surrounding_static_block != NULL) |
3817 | ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) | |
3818 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
3819 | ||
3820 | if (surrounding_global_block != NULL) | |
3821 | ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) | |
3822 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
c906108c SS |
3823 | |
3824 | /* Go through the symtabs and check the externs and statics for | |
3825 | symbols which match. */ | |
3826 | ||
11309657 | 3827 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3828 | { |
3829 | QUIT; | |
3830 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3831 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3832 | { |
c5aa993b JM |
3833 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3834 | } | |
3835 | } | |
c906108c | 3836 | |
11309657 | 3837 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3838 | { |
3839 | QUIT; | |
3840 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3841 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3842 | { |
c5aa993b JM |
3843 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3844 | } | |
3845 | } | |
c906108c | 3846 | |
9a044a89 TT |
3847 | if (current_language->la_macro_expansion == macro_expansion_c) |
3848 | { | |
3849 | struct macro_scope *scope; | |
9a044a89 TT |
3850 | |
3851 | /* Add any macros visible in the default scope. Note that this | |
3852 | may yield the occasional wrong result, because an expression | |
3853 | might be evaluated in a scope other than the default. For | |
3854 | example, if the user types "break file:line if <TAB>", the | |
3855 | resulting expression will be evaluated at "file:line" -- but | |
3856 | at there does not seem to be a way to detect this at | |
3857 | completion time. */ | |
3858 | scope = default_macro_scope (); | |
3859 | if (scope) | |
3860 | { | |
3861 | macro_for_each_in_scope (scope->file, scope->line, | |
3862 | add_macro_name, &datum); | |
3863 | xfree (scope); | |
3864 | } | |
3865 | ||
3866 | /* User-defined macros are always visible. */ | |
3867 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
3868 | } | |
3869 | ||
c906108c SS |
3870 | return (return_val); |
3871 | } | |
3872 | ||
f55ee35c JK |
3873 | char ** |
3874 | default_make_symbol_completion_list (char *text, char *word) | |
3875 | { | |
3876 | return default_make_symbol_completion_list_break_on (text, word, ""); | |
3877 | } | |
3878 | ||
41d27058 JB |
3879 | /* Return a NULL terminated array of all symbols (regardless of class) |
3880 | which begin by matching TEXT. If the answer is no symbols, then | |
3881 | the return value is an array which contains only a NULL pointer. */ | |
3882 | ||
3883 | char ** | |
3884 | make_symbol_completion_list (char *text, char *word) | |
3885 | { | |
3886 | return current_language->la_make_symbol_completion_list (text, word); | |
3887 | } | |
3888 | ||
d8906c6f TJB |
3889 | /* Like make_symbol_completion_list, but suitable for use as a |
3890 | completion function. */ | |
3891 | ||
3892 | char ** | |
3893 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, | |
3894 | char *text, char *word) | |
3895 | { | |
3896 | return make_symbol_completion_list (text, word); | |
3897 | } | |
3898 | ||
c94fdfd0 EZ |
3899 | /* Like make_symbol_completion_list, but returns a list of symbols |
3900 | defined in a source file FILE. */ | |
3901 | ||
3902 | char ** | |
3903 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3904 | { | |
52f0bd74 AC |
3905 | struct symbol *sym; |
3906 | struct symtab *s; | |
3907 | struct block *b; | |
de4f826b | 3908 | struct dict_iterator iter; |
c94fdfd0 EZ |
3909 | /* The symbol we are completing on. Points in same buffer as text. */ |
3910 | char *sym_text; | |
3911 | /* Length of sym_text. */ | |
3912 | int sym_text_len; | |
3913 | ||
3914 | /* Now look for the symbol we are supposed to complete on. | |
3915 | FIXME: This should be language-specific. */ | |
3916 | { | |
3917 | char *p; | |
3918 | char quote_found; | |
3919 | char *quote_pos = NULL; | |
3920 | ||
3921 | /* First see if this is a quoted string. */ | |
3922 | quote_found = '\0'; | |
3923 | for (p = text; *p != '\0'; ++p) | |
3924 | { | |
3925 | if (quote_found != '\0') | |
3926 | { | |
3927 | if (*p == quote_found) | |
3928 | /* Found close quote. */ | |
3929 | quote_found = '\0'; | |
3930 | else if (*p == '\\' && p[1] == quote_found) | |
3931 | /* A backslash followed by the quote character | |
3932 | doesn't end the string. */ | |
3933 | ++p; | |
3934 | } | |
3935 | else if (*p == '\'' || *p == '"') | |
3936 | { | |
3937 | quote_found = *p; | |
3938 | quote_pos = p; | |
3939 | } | |
3940 | } | |
3941 | if (quote_found == '\'') | |
3942 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3943 | sym_text = quote_pos + 1; | |
3944 | else if (quote_found == '"') | |
3945 | /* A double-quoted string is never a symbol, nor does it make sense | |
3946 | to complete it any other way. */ | |
3947 | { | |
3948 | return_val = (char **) xmalloc (sizeof (char *)); | |
3949 | return_val[0] = NULL; | |
3950 | return return_val; | |
3951 | } | |
3952 | else | |
3953 | { | |
69636828 AF |
3954 | /* Not a quoted string. */ |
3955 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3956 | } |
3957 | } | |
3958 | ||
3959 | sym_text_len = strlen (sym_text); | |
3960 | ||
3961 | return_val_size = 10; | |
3962 | return_val_index = 0; | |
3963 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3964 | return_val[0] = NULL; | |
3965 | ||
3966 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3967 | in). */ | |
3968 | s = lookup_symtab (srcfile); | |
3969 | if (s == NULL) | |
3970 | { | |
3971 | /* Maybe they typed the file with leading directories, while the | |
3972 | symbol tables record only its basename. */ | |
31889e00 | 3973 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3974 | |
3975 | if (tail > srcfile) | |
3976 | s = lookup_symtab (tail); | |
3977 | } | |
3978 | ||
3979 | /* If we have no symtab for that file, return an empty list. */ | |
3980 | if (s == NULL) | |
3981 | return (return_val); | |
3982 | ||
3983 | /* Go through this symtab and check the externs and statics for | |
3984 | symbols which match. */ | |
3985 | ||
3986 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3987 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3988 | { |
c94fdfd0 EZ |
3989 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3990 | } | |
3991 | ||
3992 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3993 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3994 | { |
c94fdfd0 EZ |
3995 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3996 | } | |
3997 | ||
3998 | return (return_val); | |
3999 | } | |
4000 | ||
4001 | /* A helper function for make_source_files_completion_list. It adds | |
4002 | another file name to a list of possible completions, growing the | |
4003 | list as necessary. */ | |
4004 | ||
4005 | static void | |
4006 | add_filename_to_list (const char *fname, char *text, char *word, | |
4007 | char ***list, int *list_used, int *list_alloced) | |
4008 | { | |
4009 | char *new; | |
4010 | size_t fnlen = strlen (fname); | |
4011 | ||
4012 | if (*list_used + 1 >= *list_alloced) | |
4013 | { | |
4014 | *list_alloced *= 2; | |
4015 | *list = (char **) xrealloc ((char *) *list, | |
4016 | *list_alloced * sizeof (char *)); | |
4017 | } | |
4018 | ||
4019 | if (word == text) | |
4020 | { | |
4021 | /* Return exactly fname. */ | |
4022 | new = xmalloc (fnlen + 5); | |
4023 | strcpy (new, fname); | |
4024 | } | |
4025 | else if (word > text) | |
4026 | { | |
4027 | /* Return some portion of fname. */ | |
4028 | new = xmalloc (fnlen + 5); | |
4029 | strcpy (new, fname + (word - text)); | |
4030 | } | |
4031 | else | |
4032 | { | |
4033 | /* Return some of TEXT plus fname. */ | |
4034 | new = xmalloc (fnlen + (text - word) + 5); | |
4035 | strncpy (new, word, text - word); | |
4036 | new[text - word] = '\0'; | |
4037 | strcat (new, fname); | |
4038 | } | |
4039 | (*list)[*list_used] = new; | |
4040 | (*list)[++*list_used] = NULL; | |
4041 | } | |
4042 | ||
4043 | static int | |
4044 | not_interesting_fname (const char *fname) | |
4045 | { | |
4046 | static const char *illegal_aliens[] = { | |
4047 | "_globals_", /* inserted by coff_symtab_read */ | |
4048 | NULL | |
4049 | }; | |
4050 | int i; | |
4051 | ||
4052 | for (i = 0; illegal_aliens[i]; i++) | |
4053 | { | |
4054 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
4055 | return 1; | |
4056 | } | |
4057 | return 0; | |
4058 | } | |
4059 | ||
ccefe4c4 TT |
4060 | /* An object of this type is passed as the user_data argument to |
4061 | map_partial_symbol_filenames. */ | |
4062 | struct add_partial_filename_data | |
4063 | { | |
4064 | int *first; | |
4065 | char *text; | |
4066 | char *word; | |
4067 | int text_len; | |
4068 | char ***list; | |
4069 | int *list_used; | |
4070 | int *list_alloced; | |
4071 | }; | |
4072 | ||
4073 | /* A callback for map_partial_symbol_filenames. */ | |
4074 | static void | |
2837d59e | 4075 | maybe_add_partial_symtab_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
4076 | void *user_data) |
4077 | { | |
4078 | struct add_partial_filename_data *data = user_data; | |
4079 | ||
4080 | if (not_interesting_fname (filename)) | |
4081 | return; | |
4082 | if (!filename_seen (filename, 1, data->first) | |
4083 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4084 | && strncasecmp (filename, data->text, data->text_len) == 0 | |
4085 | #else | |
4086 | && strncmp (filename, data->text, data->text_len) == 0 | |
4087 | #endif | |
4088 | ) | |
4089 | { | |
4090 | /* This file matches for a completion; add it to the | |
4091 | current list of matches. */ | |
4092 | add_filename_to_list (filename, data->text, data->word, | |
4093 | data->list, data->list_used, data->list_alloced); | |
4094 | } | |
4095 | else | |
4096 | { | |
4097 | const char *base_name = lbasename (filename); | |
433759f7 | 4098 | |
ccefe4c4 TT |
4099 | if (base_name != filename |
4100 | && !filename_seen (base_name, 1, data->first) | |
4101 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4102 | && strncasecmp (base_name, data->text, data->text_len) == 0 | |
4103 | #else | |
4104 | && strncmp (base_name, data->text, data->text_len) == 0 | |
4105 | #endif | |
4106 | ) | |
4107 | add_filename_to_list (base_name, data->text, data->word, | |
4108 | data->list, data->list_used, data->list_alloced); | |
4109 | } | |
4110 | } | |
4111 | ||
c94fdfd0 EZ |
4112 | /* Return a NULL terminated array of all source files whose names |
4113 | begin with matching TEXT. The file names are looked up in the | |
4114 | symbol tables of this program. If the answer is no matchess, then | |
4115 | the return value is an array which contains only a NULL pointer. */ | |
4116 | ||
4117 | char ** | |
4118 | make_source_files_completion_list (char *text, char *word) | |
4119 | { | |
52f0bd74 | 4120 | struct symtab *s; |
52f0bd74 | 4121 | struct objfile *objfile; |
c94fdfd0 EZ |
4122 | int first = 1; |
4123 | int list_alloced = 1; | |
4124 | int list_used = 0; | |
4125 | size_t text_len = strlen (text); | |
4126 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 4127 | const char *base_name; |
ccefe4c4 | 4128 | struct add_partial_filename_data datum; |
c94fdfd0 EZ |
4129 | |
4130 | list[0] = NULL; | |
4131 | ||
4132 | if (!have_full_symbols () && !have_partial_symbols ()) | |
4133 | return list; | |
4134 | ||
4135 | ALL_SYMTABS (objfile, s) | |
4136 | { | |
4137 | if (not_interesting_fname (s->filename)) | |
4138 | continue; | |
4139 | if (!filename_seen (s->filename, 1, &first) | |
4140 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4141 | && strncasecmp (s->filename, text, text_len) == 0 | |
4142 | #else | |
4143 | && strncmp (s->filename, text, text_len) == 0 | |
4144 | #endif | |
4145 | ) | |
4146 | { | |
4147 | /* This file matches for a completion; add it to the current | |
4148 | list of matches. */ | |
4149 | add_filename_to_list (s->filename, text, word, | |
4150 | &list, &list_used, &list_alloced); | |
4151 | } | |
4152 | else | |
4153 | { | |
4154 | /* NOTE: We allow the user to type a base name when the | |
4155 | debug info records leading directories, but not the other | |
4156 | way around. This is what subroutines of breakpoint | |
4157 | command do when they parse file names. */ | |
31889e00 | 4158 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4159 | if (base_name != s->filename |
4160 | && !filename_seen (base_name, 1, &first) | |
4161 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4162 | && strncasecmp (base_name, text, text_len) == 0 | |
4163 | #else | |
4164 | && strncmp (base_name, text, text_len) == 0 | |
4165 | #endif | |
4166 | ) | |
4167 | add_filename_to_list (base_name, text, word, | |
4168 | &list, &list_used, &list_alloced); | |
4169 | } | |
4170 | } | |
4171 | ||
ccefe4c4 TT |
4172 | datum.first = &first; |
4173 | datum.text = text; | |
4174 | datum.word = word; | |
4175 | datum.text_len = text_len; | |
4176 | datum.list = &list; | |
4177 | datum.list_used = &list_used; | |
4178 | datum.list_alloced = &list_alloced; | |
4179 | map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum); | |
c94fdfd0 EZ |
4180 | |
4181 | return list; | |
4182 | } | |
4183 | ||
c906108c SS |
4184 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4185 | between the first instruction of a function, and the first executable line. | |
4186 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4187 | ||
4188 | If non-zero, func_start is where we think the prologue starts, possibly | |
4189 | by previous examination of symbol table information. | |
4190 | */ | |
4191 | ||
4192 | int | |
d80b854b | 4193 | in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4194 | { |
4195 | struct symtab_and_line sal; | |
4196 | CORE_ADDR func_addr, func_end; | |
4197 | ||
54cf9c03 EZ |
4198 | /* We have several sources of information we can consult to figure |
4199 | this out. | |
4200 | - Compilers usually emit line number info that marks the prologue | |
4201 | as its own "source line". So the ending address of that "line" | |
4202 | is the end of the prologue. If available, this is the most | |
4203 | reliable method. | |
4204 | - The minimal symbols and partial symbols, which can usually tell | |
4205 | us the starting and ending addresses of a function. | |
4206 | - If we know the function's start address, we can call the | |
a433963d | 4207 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4208 | instruction stream and guess where the prologue ends. |
4209 | - Our `func_start' argument; if non-zero, this is the caller's | |
4210 | best guess as to the function's entry point. At the time of | |
4211 | this writing, handle_inferior_event doesn't get this right, so | |
4212 | it should be our last resort. */ | |
4213 | ||
4214 | /* Consult the partial symbol table, to find which function | |
4215 | the PC is in. */ | |
4216 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4217 | { | |
4218 | CORE_ADDR prologue_end; | |
c906108c | 4219 | |
54cf9c03 EZ |
4220 | /* We don't even have minsym information, so fall back to using |
4221 | func_start, if given. */ | |
4222 | if (! func_start) | |
4223 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4224 | |
d80b854b | 4225 | prologue_end = gdbarch_skip_prologue (gdbarch, func_start); |
c906108c | 4226 | |
54cf9c03 EZ |
4227 | return func_start <= pc && pc < prologue_end; |
4228 | } | |
c906108c | 4229 | |
54cf9c03 EZ |
4230 | /* If we have line number information for the function, that's |
4231 | usually pretty reliable. */ | |
4232 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4233 | |
54cf9c03 EZ |
4234 | /* Now sal describes the source line at the function's entry point, |
4235 | which (by convention) is the prologue. The end of that "line", | |
4236 | sal.end, is the end of the prologue. | |
4237 | ||
4238 | Note that, for functions whose source code is all on a single | |
4239 | line, the line number information doesn't always end up this way. | |
4240 | So we must verify that our purported end-of-prologue address is | |
4241 | *within* the function, not at its start or end. */ | |
4242 | if (sal.line == 0 | |
4243 | || sal.end <= func_addr | |
4244 | || func_end <= sal.end) | |
4245 | { | |
4246 | /* We don't have any good line number info, so use the minsym | |
4247 | information, together with the architecture-specific prologue | |
4248 | scanning code. */ | |
d80b854b | 4249 | CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); |
c906108c | 4250 | |
54cf9c03 EZ |
4251 | return func_addr <= pc && pc < prologue_end; |
4252 | } | |
c906108c | 4253 | |
54cf9c03 EZ |
4254 | /* We have line number info, and it looks good. */ |
4255 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4256 | } |
4257 | ||
634aa483 AC |
4258 | /* Given PC at the function's start address, attempt to find the |
4259 | prologue end using SAL information. Return zero if the skip fails. | |
4260 | ||
4261 | A non-optimized prologue traditionally has one SAL for the function | |
4262 | and a second for the function body. A single line function has | |
4263 | them both pointing at the same line. | |
4264 | ||
4265 | An optimized prologue is similar but the prologue may contain | |
4266 | instructions (SALs) from the instruction body. Need to skip those | |
4267 | while not getting into the function body. | |
4268 | ||
4269 | The functions end point and an increasing SAL line are used as | |
4270 | indicators of the prologue's endpoint. | |
4271 | ||
4272 | This code is based on the function refine_prologue_limit (versions | |
4273 | found in both ia64 and ppc). */ | |
4274 | ||
4275 | CORE_ADDR | |
d80b854b | 4276 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
634aa483 AC |
4277 | { |
4278 | struct symtab_and_line prologue_sal; | |
4279 | CORE_ADDR start_pc; | |
4280 | CORE_ADDR end_pc; | |
d54be744 | 4281 | struct block *bl; |
634aa483 AC |
4282 | |
4283 | /* Get an initial range for the function. */ | |
4284 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
d80b854b | 4285 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
634aa483 AC |
4286 | |
4287 | prologue_sal = find_pc_line (start_pc, 0); | |
4288 | if (prologue_sal.line != 0) | |
4289 | { | |
d54be744 DJ |
4290 | /* For langauges other than assembly, treat two consecutive line |
4291 | entries at the same address as a zero-instruction prologue. | |
4292 | The GNU assembler emits separate line notes for each instruction | |
4293 | in a multi-instruction macro, but compilers generally will not | |
4294 | do this. */ | |
4295 | if (prologue_sal.symtab->language != language_asm) | |
4296 | { | |
4297 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
d54be744 DJ |
4298 | int idx = 0; |
4299 | ||
4300 | /* Skip any earlier lines, and any end-of-sequence marker | |
4301 | from a previous function. */ | |
4302 | while (linetable->item[idx].pc != prologue_sal.pc | |
4303 | || linetable->item[idx].line == 0) | |
4304 | idx++; | |
4305 | ||
4306 | if (idx+1 < linetable->nitems | |
4307 | && linetable->item[idx+1].line != 0 | |
4308 | && linetable->item[idx+1].pc == start_pc) | |
4309 | return start_pc; | |
4310 | } | |
4311 | ||
576c2025 FF |
4312 | /* If there is only one sal that covers the entire function, |
4313 | then it is probably a single line function, like | |
4314 | "foo(){}". */ | |
91934273 | 4315 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4316 | return 0; |
d54be744 | 4317 | |
634aa483 AC |
4318 | while (prologue_sal.end < end_pc) |
4319 | { | |
4320 | struct symtab_and_line sal; | |
4321 | ||
4322 | sal = find_pc_line (prologue_sal.end, 0); | |
4323 | if (sal.line == 0) | |
4324 | break; | |
4325 | /* Assume that a consecutive SAL for the same (or larger) | |
4326 | line mark the prologue -> body transition. */ | |
4327 | if (sal.line >= prologue_sal.line) | |
4328 | break; | |
edb3359d DJ |
4329 | |
4330 | /* The line number is smaller. Check that it's from the | |
4331 | same function, not something inlined. If it's inlined, | |
4332 | then there is no point comparing the line numbers. */ | |
4333 | bl = block_for_pc (prologue_sal.end); | |
4334 | while (bl) | |
4335 | { | |
4336 | if (block_inlined_p (bl)) | |
4337 | break; | |
4338 | if (BLOCK_FUNCTION (bl)) | |
4339 | { | |
4340 | bl = NULL; | |
4341 | break; | |
4342 | } | |
4343 | bl = BLOCK_SUPERBLOCK (bl); | |
4344 | } | |
4345 | if (bl != NULL) | |
4346 | break; | |
4347 | ||
634aa483 AC |
4348 | /* The case in which compiler's optimizer/scheduler has |
4349 | moved instructions into the prologue. We look ahead in | |
4350 | the function looking for address ranges whose | |
4351 | corresponding line number is less the first one that we | |
4352 | found for the function. This is more conservative then | |
4353 | refine_prologue_limit which scans a large number of SALs | |
4354 | looking for any in the prologue */ | |
4355 | prologue_sal = sal; | |
4356 | } | |
4357 | } | |
d54be744 DJ |
4358 | |
4359 | if (prologue_sal.end < end_pc) | |
4360 | /* Return the end of this line, or zero if we could not find a | |
4361 | line. */ | |
4362 | return prologue_sal.end; | |
4363 | else | |
4364 | /* Don't return END_PC, which is past the end of the function. */ | |
4365 | return prologue_sal.pc; | |
634aa483 | 4366 | } |
c906108c | 4367 | \f |
50641945 FN |
4368 | struct symtabs_and_lines |
4369 | decode_line_spec (char *string, int funfirstline) | |
4370 | { | |
4371 | struct symtabs_and_lines sals; | |
0378c332 | 4372 | struct symtab_and_line cursal; |
9af17804 | 4373 | |
50641945 | 4374 | if (string == 0) |
8a3fe4f8 | 4375 | error (_("Empty line specification.")); |
9af17804 | 4376 | |
0378c332 | 4377 | /* We use whatever is set as the current source line. We do not try |
9af17804 | 4378 | and get a default or it will recursively call us! */ |
0378c332 | 4379 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4380 | |
50641945 | 4381 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4382 | cursal.symtab, cursal.line, |
bffe1ece | 4383 | (char ***) NULL, NULL); |
0378c332 | 4384 | |
50641945 | 4385 | if (*string) |
8a3fe4f8 | 4386 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4387 | return sals; |
4388 | } | |
c5aa993b | 4389 | |
51cc5b07 AC |
4390 | /* Track MAIN */ |
4391 | static char *name_of_main; | |
01f8c46d | 4392 | enum language language_of_main = language_unknown; |
51cc5b07 AC |
4393 | |
4394 | void | |
4395 | set_main_name (const char *name) | |
4396 | { | |
4397 | if (name_of_main != NULL) | |
4398 | { | |
4399 | xfree (name_of_main); | |
4400 | name_of_main = NULL; | |
01f8c46d | 4401 | language_of_main = language_unknown; |
51cc5b07 AC |
4402 | } |
4403 | if (name != NULL) | |
4404 | { | |
4405 | name_of_main = xstrdup (name); | |
01f8c46d | 4406 | language_of_main = language_unknown; |
51cc5b07 AC |
4407 | } |
4408 | } | |
4409 | ||
ea53e89f JB |
4410 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4411 | accordingly. */ | |
4412 | ||
4413 | static void | |
4414 | find_main_name (void) | |
4415 | { | |
cd6c7346 | 4416 | const char *new_main_name; |
ea53e89f JB |
4417 | |
4418 | /* Try to see if the main procedure is in Ada. */ | |
4419 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4420 | be to add a new method in the language vector, and call this | |
4421 | method for each language until one of them returns a non-empty | |
4422 | name. This would allow us to remove this hard-coded call to | |
4423 | an Ada function. It is not clear that this is a better approach | |
4424 | at this point, because all methods need to be written in a way | |
4425 | such that false positives never be returned. For instance, it is | |
4426 | important that a method does not return a wrong name for the main | |
4427 | procedure if the main procedure is actually written in a different | |
4428 | language. It is easy to guaranty this with Ada, since we use a | |
4429 | special symbol generated only when the main in Ada to find the name | |
4430 | of the main procedure. It is difficult however to see how this can | |
4431 | be guarantied for languages such as C, for instance. This suggests | |
4432 | that order of call for these methods becomes important, which means | |
4433 | a more complicated approach. */ | |
4434 | new_main_name = ada_main_name (); | |
4435 | if (new_main_name != NULL) | |
9af17804 | 4436 | { |
ea53e89f JB |
4437 | set_main_name (new_main_name); |
4438 | return; | |
4439 | } | |
4440 | ||
cd6c7346 PM |
4441 | new_main_name = pascal_main_name (); |
4442 | if (new_main_name != NULL) | |
9af17804 | 4443 | { |
cd6c7346 PM |
4444 | set_main_name (new_main_name); |
4445 | return; | |
4446 | } | |
4447 | ||
ea53e89f JB |
4448 | /* The languages above didn't identify the name of the main procedure. |
4449 | Fallback to "main". */ | |
4450 | set_main_name ("main"); | |
4451 | } | |
4452 | ||
51cc5b07 AC |
4453 | char * |
4454 | main_name (void) | |
4455 | { | |
ea53e89f JB |
4456 | if (name_of_main == NULL) |
4457 | find_main_name (); | |
4458 | ||
4459 | return name_of_main; | |
51cc5b07 AC |
4460 | } |
4461 | ||
ea53e89f JB |
4462 | /* Handle ``executable_changed'' events for the symtab module. */ |
4463 | ||
4464 | static void | |
781b42b0 | 4465 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4466 | { |
4467 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4468 | set_main_name (NULL); | |
4469 | } | |
51cc5b07 | 4470 | |
ed0616c6 VP |
4471 | /* Helper to expand_line_sal below. Appends new sal to SAL, |
4472 | initializing it from SYMTAB, LINENO and PC. */ | |
4473 | static void | |
4474 | append_expanded_sal (struct symtabs_and_lines *sal, | |
6c95b8df | 4475 | struct program_space *pspace, |
ed0616c6 VP |
4476 | struct symtab *symtab, |
4477 | int lineno, CORE_ADDR pc) | |
4478 | { | |
9af17804 DE |
4479 | sal->sals = xrealloc (sal->sals, |
4480 | sizeof (sal->sals[0]) | |
ed0616c6 VP |
4481 | * (sal->nelts + 1)); |
4482 | init_sal (sal->sals + sal->nelts); | |
6c95b8df | 4483 | sal->sals[sal->nelts].pspace = pspace; |
ed0616c6 VP |
4484 | sal->sals[sal->nelts].symtab = symtab; |
4485 | sal->sals[sal->nelts].section = NULL; | |
4486 | sal->sals[sal->nelts].end = 0; | |
9af17804 | 4487 | sal->sals[sal->nelts].line = lineno; |
ed0616c6 | 4488 | sal->sals[sal->nelts].pc = pc; |
9af17804 | 4489 | ++sal->nelts; |
ed0616c6 VP |
4490 | } |
4491 | ||
aad80b26 | 4492 | /* Helper to expand_line_sal below. Search in the symtabs for any |
3ffc00b8 JB |
4493 | linetable entry that exactly matches FULLNAME and LINENO and append |
4494 | them to RET. If FULLNAME is NULL or if a symtab has no full name, | |
4495 | use FILENAME and LINENO instead. If there is at least one match, | |
4496 | return 1; otherwise, return 0, and return the best choice in BEST_ITEM | |
4497 | and BEST_SYMTAB. */ | |
aad80b26 JG |
4498 | |
4499 | static int | |
3ffc00b8 | 4500 | append_exact_match_to_sals (char *filename, char *fullname, int lineno, |
aad80b26 JG |
4501 | struct symtabs_and_lines *ret, |
4502 | struct linetable_entry **best_item, | |
4503 | struct symtab **best_symtab) | |
4504 | { | |
6c95b8df | 4505 | struct program_space *pspace; |
aad80b26 JG |
4506 | struct objfile *objfile; |
4507 | struct symtab *symtab; | |
4508 | int exact = 0; | |
4509 | int j; | |
4510 | *best_item = 0; | |
4511 | *best_symtab = 0; | |
6c95b8df PA |
4512 | |
4513 | ALL_PSPACES (pspace) | |
4514 | ALL_PSPACE_SYMTABS (pspace, objfile, symtab) | |
aad80b26 | 4515 | { |
3ffc00b8 | 4516 | if (FILENAME_CMP (filename, symtab->filename) == 0) |
aad80b26 JG |
4517 | { |
4518 | struct linetable *l; | |
4519 | int len; | |
433759f7 | 4520 | |
3ffc00b8 JB |
4521 | if (fullname != NULL |
4522 | && symtab_to_fullname (symtab) != NULL | |
4523 | && FILENAME_CMP (fullname, symtab->fullname) != 0) | |
4524 | continue; | |
aad80b26 JG |
4525 | l = LINETABLE (symtab); |
4526 | if (!l) | |
4527 | continue; | |
4528 | len = l->nitems; | |
4529 | ||
4530 | for (j = 0; j < len; j++) | |
4531 | { | |
4532 | struct linetable_entry *item = &(l->item[j]); | |
4533 | ||
4534 | if (item->line == lineno) | |
4535 | { | |
4536 | exact = 1; | |
6c95b8df PA |
4537 | append_expanded_sal (ret, objfile->pspace, |
4538 | symtab, lineno, item->pc); | |
aad80b26 JG |
4539 | } |
4540 | else if (!exact && item->line > lineno | |
4541 | && (*best_item == NULL | |
4542 | || item->line < (*best_item)->line)) | |
4543 | { | |
4544 | *best_item = item; | |
4545 | *best_symtab = symtab; | |
4546 | } | |
4547 | } | |
4548 | } | |
4549 | } | |
4550 | return exact; | |
4551 | } | |
4552 | ||
6c95b8df PA |
4553 | /* Compute a set of all sals in all program spaces that correspond to |
4554 | same file and line as SAL and return those. If there are several | |
4555 | sals that belong to the same block, only one sal for the block is | |
4556 | included in results. */ | |
9af17804 | 4557 | |
ed0616c6 VP |
4558 | struct symtabs_and_lines |
4559 | expand_line_sal (struct symtab_and_line sal) | |
4560 | { | |
952a6d41 | 4561 | struct symtabs_and_lines ret; |
ed0616c6 VP |
4562 | int i, j; |
4563 | struct objfile *objfile; | |
ed0616c6 VP |
4564 | int lineno; |
4565 | int deleted = 0; | |
4566 | struct block **blocks = NULL; | |
4567 | int *filter; | |
6c95b8df | 4568 | struct cleanup *old_chain; |
ed0616c6 VP |
4569 | |
4570 | ret.nelts = 0; | |
4571 | ret.sals = NULL; | |
4572 | ||
6c95b8df | 4573 | /* Only expand sals that represent file.c:line. */ |
ed0616c6 VP |
4574 | if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0) |
4575 | { | |
4576 | ret.sals = xmalloc (sizeof (struct symtab_and_line)); | |
4577 | ret.sals[0] = sal; | |
4578 | ret.nelts = 1; | |
4579 | return ret; | |
4580 | } | |
4581 | else | |
4582 | { | |
6c95b8df | 4583 | struct program_space *pspace; |
ed0616c6 VP |
4584 | struct linetable_entry *best_item = 0; |
4585 | struct symtab *best_symtab = 0; | |
4586 | int exact = 0; | |
6c95b8df | 4587 | char *match_filename; |
ed0616c6 VP |
4588 | |
4589 | lineno = sal.line; | |
6c95b8df | 4590 | match_filename = sal.symtab->filename; |
ed0616c6 | 4591 | |
9af17804 DE |
4592 | /* We need to find all symtabs for a file which name |
4593 | is described by sal. We cannot just directly | |
ed0616c6 | 4594 | iterate over symtabs, since a symtab might not be |
9af17804 | 4595 | yet created. We also cannot iterate over psymtabs, |
ed0616c6 VP |
4596 | calling PSYMTAB_TO_SYMTAB and working on that symtab, |
4597 | since PSYMTAB_TO_SYMTAB will return NULL for psymtab | |
9af17804 | 4598 | corresponding to an included file. Therefore, we do |
ed0616c6 VP |
4599 | first pass over psymtabs, reading in those with |
4600 | the right name. Then, we iterate over symtabs, knowing | |
4601 | that all symtabs we're interested in are loaded. */ | |
4602 | ||
6c95b8df PA |
4603 | old_chain = save_current_program_space (); |
4604 | ALL_PSPACES (pspace) | |
ccefe4c4 TT |
4605 | { |
4606 | set_current_program_space (pspace); | |
4607 | ALL_PSPACE_OBJFILES (pspace, objfile) | |
ed0616c6 | 4608 | { |
ccefe4c4 TT |
4609 | if (objfile->sf) |
4610 | objfile->sf->qf->expand_symtabs_with_filename (objfile, | |
4611 | sal.symtab->filename); | |
ed0616c6 | 4612 | } |
ccefe4c4 | 4613 | } |
6c95b8df | 4614 | do_cleanups (old_chain); |
ed0616c6 | 4615 | |
aad80b26 JG |
4616 | /* Now search the symtab for exact matches and append them. If |
4617 | none is found, append the best_item and all its exact | |
4618 | matches. */ | |
3ffc00b8 JB |
4619 | symtab_to_fullname (sal.symtab); |
4620 | exact = append_exact_match_to_sals (sal.symtab->filename, | |
4621 | sal.symtab->fullname, lineno, | |
aad80b26 | 4622 | &ret, &best_item, &best_symtab); |
ed0616c6 | 4623 | if (!exact && best_item) |
3ffc00b8 JB |
4624 | append_exact_match_to_sals (best_symtab->filename, |
4625 | best_symtab->fullname, best_item->line, | |
aad80b26 | 4626 | &ret, &best_item, &best_symtab); |
ed0616c6 VP |
4627 | } |
4628 | ||
4629 | /* For optimized code, compiler can scatter one source line accross | |
4630 | disjoint ranges of PC values, even when no duplicate functions | |
4631 | or inline functions are involved. For example, 'for (;;)' inside | |
4632 | non-template non-inline non-ctor-or-dtor function can result | |
4633 | in two PC ranges. In this case, we don't want to set breakpoint | |
4634 | on first PC of each range. To filter such cases, we use containing | |
4635 | blocks -- for each PC found above we see if there are other PCs | |
9af17804 | 4636 | that are in the same block. If yes, the other PCs are filtered out. */ |
ed0616c6 | 4637 | |
6c95b8df | 4638 | old_chain = save_current_program_space (); |
db009c8a JB |
4639 | filter = alloca (ret.nelts * sizeof (int)); |
4640 | blocks = alloca (ret.nelts * sizeof (struct block *)); | |
ed0616c6 VP |
4641 | for (i = 0; i < ret.nelts; ++i) |
4642 | { | |
6c95b8df PA |
4643 | set_current_program_space (ret.sals[i].pspace); |
4644 | ||
ed0616c6 | 4645 | filter[i] = 1; |
6c95b8df PA |
4646 | blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section); |
4647 | ||
ed0616c6 | 4648 | } |
6c95b8df | 4649 | do_cleanups (old_chain); |
ed0616c6 VP |
4650 | |
4651 | for (i = 0; i < ret.nelts; ++i) | |
4652 | if (blocks[i] != NULL) | |
4653 | for (j = i+1; j < ret.nelts; ++j) | |
4654 | if (blocks[j] == blocks[i]) | |
4655 | { | |
4656 | filter[j] = 0; | |
4657 | ++deleted; | |
4658 | break; | |
4659 | } | |
9af17804 | 4660 | |
ed0616c6 | 4661 | { |
9af17804 | 4662 | struct symtab_and_line *final = |
ed0616c6 | 4663 | xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted)); |
9af17804 | 4664 | |
ed0616c6 VP |
4665 | for (i = 0, j = 0; i < ret.nelts; ++i) |
4666 | if (filter[i]) | |
4667 | final[j++] = ret.sals[i]; | |
9af17804 | 4668 | |
ed0616c6 VP |
4669 | ret.nelts -= deleted; |
4670 | xfree (ret.sals); | |
4671 | ret.sals = final; | |
4672 | } | |
4673 | ||
4674 | return ret; | |
4675 | } | |
4676 | ||
a6c727b2 DJ |
4677 | /* Return 1 if the supplied producer string matches the ARM RealView |
4678 | compiler (armcc). */ | |
4679 | ||
4680 | int | |
4681 | producer_is_realview (const char *producer) | |
4682 | { | |
4683 | static const char *const arm_idents[] = { | |
4684 | "ARM C Compiler, ADS", | |
4685 | "Thumb C Compiler, ADS", | |
4686 | "ARM C++ Compiler, ADS", | |
4687 | "Thumb C++ Compiler, ADS", | |
4688 | "ARM/Thumb C/C++ Compiler, RVCT", | |
4689 | "ARM C/C++ Compiler, RVCT" | |
4690 | }; | |
4691 | int i; | |
4692 | ||
4693 | if (producer == NULL) | |
4694 | return 0; | |
4695 | ||
4696 | for (i = 0; i < ARRAY_SIZE (arm_idents); i++) | |
4697 | if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0) | |
4698 | return 1; | |
4699 | ||
4700 | return 0; | |
4701 | } | |
ed0616c6 | 4702 | |
c906108c | 4703 | void |
fba45db2 | 4704 | _initialize_symtab (void) |
c906108c | 4705 | { |
1bedd215 AC |
4706 | add_info ("variables", variables_info, _("\ |
4707 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4708 | if (dbx_commands) |
1bedd215 AC |
4709 | add_com ("whereis", class_info, variables_info, _("\ |
4710 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4711 | |
4712 | add_info ("functions", functions_info, | |
1bedd215 | 4713 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4714 | |
4715 | /* FIXME: This command has at least the following problems: | |
4716 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4717 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4718 | typedef struct foo *FOO |
4719 | type_print prints "FOO" when we want to make it (in this situation) | |
4720 | print "struct foo *". | |
c906108c SS |
4721 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4722 | there is much disagreement "info types" can be fixed). */ | |
4723 | add_info ("types", types_info, | |
1bedd215 | 4724 | _("All type names, or those matching REGEXP.")); |
c906108c | 4725 | |
c906108c | 4726 | add_info ("sources", sources_info, |
1bedd215 | 4727 | _("Source files in the program.")); |
c906108c SS |
4728 | |
4729 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4730 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4731 | |
4732 | if (xdb_commands) | |
4733 | { | |
1bedd215 AC |
4734 | add_com ("lf", class_info, sources_info, |
4735 | _("Source files in the program")); | |
4736 | add_com ("lg", class_info, variables_info, _("\ | |
4737 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4738 | } |
4739 | ||
717d2f5a JB |
4740 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4741 | multiple_symbols_modes, &multiple_symbols_mode, | |
4742 | _("\ | |
4743 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4744 | in an expression."), _("\ | |
4745 | Show how the debugger handles ambiguities in expressions."), _("\ | |
4746 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
4747 | NULL, NULL, &setlist, &showlist); | |
4748 | ||
ea53e89f | 4749 | observer_attach_executable_changed (symtab_observer_executable_changed); |
c906108c | 4750 | } |