Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
c0eca49f
TT
108static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
110
a7068b60
TT
111static struct target_ops debug_target;
112
1101cb7b
TT
113#include "target-delegates.c"
114
a14ed312 115static void init_dummy_target (void);
c906108c 116
3cecbbbe
TT
117static void update_current_target (void);
118
89a1c21a
SM
119/* Vector of existing target structures. */
120typedef struct target_ops *target_ops_p;
121DEF_VEC_P (target_ops_p);
122static VEC (target_ops_p) *target_structs;
c906108c
SS
123
124/* The initial current target, so that there is always a semi-valid
125 current target. */
126
127static struct target_ops dummy_target;
128
129/* Top of target stack. */
130
258b763a 131static struct target_ops *target_stack;
c906108c
SS
132
133/* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136struct target_ops current_target;
137
138/* Command list for target. */
139
140static struct cmd_list_element *targetlist = NULL;
141
cf7a04e8
DJ
142/* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145static int trust_readonly = 0;
146
8defab1a
DJ
147/* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150static int show_memory_breakpoints = 0;
151
d914c394
SS
152/* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156int may_write_registers = 1;
157
158int may_write_memory = 1;
159
160int may_insert_breakpoints = 1;
161
162int may_insert_tracepoints = 1;
163
164int may_insert_fast_tracepoints = 1;
165
166int may_stop = 1;
167
c906108c
SS
168/* Non-zero if we want to see trace of target level stuff. */
169
ccce17b0 170static unsigned int targetdebug = 0;
3cecbbbe
TT
171
172static void
173set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174{
175 update_current_target ();
176}
177
920d2a44
AC
178static void
179show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183}
c906108c 184
a14ed312 185static void setup_target_debug (void);
c906108c 186
c906108c
SS
187/* The user just typed 'target' without the name of a target. */
188
c906108c 189static void
fba45db2 190target_command (char *arg, int from_tty)
c906108c
SS
191{
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194}
195
c35b1492
PA
196/* Default target_has_* methods for process_stratum targets. */
197
198int
199default_child_has_all_memory (struct target_ops *ops)
200{
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206}
207
208int
209default_child_has_memory (struct target_ops *ops)
210{
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216}
217
218int
219default_child_has_stack (struct target_ops *ops)
220{
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226}
227
228int
229default_child_has_registers (struct target_ops *ops)
230{
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236}
237
238int
aeaec162 239default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
240{
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
aeaec162 243 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
244 return 0;
245
246 return 1;
247}
248
249
250int
251target_has_all_memory_1 (void)
252{
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260}
261
262int
263target_has_memory_1 (void)
264{
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272}
273
274int
275target_has_stack_1 (void)
276{
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284}
285
286int
287target_has_registers_1 (void)
288{
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296}
297
298int
aeaec162 299target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
300{
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 304 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
305 return 1;
306
307 return 0;
308}
309
aeaec162
TT
310int
311target_has_execution_current (void)
312{
313 return target_has_execution_1 (inferior_ptid);
314}
315
c22a2b88
TT
316/* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
c906108c
SS
318
319void
c22a2b88 320complete_target_initialization (struct target_ops *t)
c906108c 321{
0088c768 322 /* Provide default values for all "must have" methods. */
0088c768 323
c35b1492 324 if (t->to_has_all_memory == NULL)
555bbdeb 325 t->to_has_all_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_memory == NULL)
555bbdeb 328 t->to_has_memory = return_zero;
c35b1492
PA
329
330 if (t->to_has_stack == NULL)
555bbdeb 331 t->to_has_stack = return_zero;
c35b1492
PA
332
333 if (t->to_has_registers == NULL)
555bbdeb 334 t->to_has_registers = return_zero;
c35b1492
PA
335
336 if (t->to_has_execution == NULL)
555bbdeb 337 t->to_has_execution = return_zero_has_execution;
1101cb7b 338
b3ccfe11
TT
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
1101cb7b 345 install_delegators (t);
c22a2b88
TT
346}
347
8981c758
TT
348/* This is used to implement the various target commands. */
349
350static void
351open_target (char *args, int from_tty, struct cmd_list_element *command)
352{
353 struct target_ops *ops = get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364}
365
c22a2b88
TT
366/* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370void
371add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373{
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
c35b1492 377
89a1c21a 378 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
379
380 if (targetlist == NULL)
1bedd215
AC
381 add_prefix_cmd ("target", class_run, target_command, _("\
382Connect to a target machine or process.\n\
c906108c
SS
383The first argument is the type or protocol of the target machine.\n\
384Remaining arguments are interpreted by the target protocol. For more\n\
385information on the arguments for a particular protocol, type\n\
1bedd215 386`help target ' followed by the protocol name."),
c906108c 387 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
9852c492
YQ
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393}
394
395/* Add a possible target architecture to the list. */
396
397void
398add_target (struct target_ops *t)
399{
400 add_target_with_completer (t, NULL);
c906108c
SS
401}
402
b48d48eb
MM
403/* See target.h. */
404
405void
406add_deprecated_target_alias (struct target_ops *t, char *alias)
407{
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
8981c758
TT
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
b48d48eb
MM
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418}
419
c906108c
SS
420/* Stub functions */
421
7d85a9c0
JB
422void
423target_kill (void)
424{
423a4807 425 current_target.to_kill (&current_target);
7d85a9c0
JB
426}
427
11cf8741 428void
9cbe5fff 429target_load (const char *arg, int from_tty)
11cf8741 430{
4e5d721f 431 target_dcache_invalidate ();
71a9f134 432 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
433}
434
5842f62a
PA
435/* Possible terminal states. */
436
437enum terminal_state
438 {
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
441
442 /* Some of our terminal settings are in effect, enough to get
443 proper output. */
444 terminal_is_ours_for_output = 1,
445
446 /* Our terminal settings are in effect, for output and input. */
447 terminal_is_ours = 2
448 };
449
450static enum terminal_state terminal_state;
451
452/* See target.h. */
453
454void
455target_terminal_init (void)
456{
457 (*current_target.to_terminal_init) (&current_target);
458
459 terminal_state = terminal_is_ours;
460}
461
462/* See target.h. */
463
6fdebc3d
PA
464int
465target_terminal_is_inferior (void)
466{
467 return (terminal_state == terminal_is_inferior);
468}
469
470/* See target.h. */
471
d9d2d8b6
PA
472void
473target_terminal_inferior (void)
474{
475 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 476 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
477 this point the target is not async yet. However, if sync_execution
478 is not set, we know it will become async prior to resume. */
479 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
480 return;
481
5842f62a
PA
482 if (terminal_state == terminal_is_inferior)
483 return;
484
d9d2d8b6
PA
485 /* If GDB is resuming the inferior in the foreground, install
486 inferior's terminal modes. */
d2f640d4 487 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
488 terminal_state = terminal_is_inferior;
489}
490
491/* See target.h. */
492
493void
494target_terminal_ours (void)
495{
496 if (terminal_state == terminal_is_ours)
497 return;
498
499 (*current_target.to_terminal_ours) (&current_target);
500 terminal_state = terminal_is_ours;
501}
502
503/* See target.h. */
504
505void
506target_terminal_ours_for_output (void)
507{
508 if (terminal_state != terminal_is_inferior)
509 return;
510 (*current_target.to_terminal_ours_for_output) (&current_target);
511 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 512}
136d6dae 513
b0ed115f
TT
514/* See target.h. */
515
516int
517target_supports_terminal_ours (void)
518{
519 struct target_ops *t;
520
521 for (t = current_target.beneath; t != NULL; t = t->beneath)
522 {
523 if (t->to_terminal_ours != delegate_terminal_ours
524 && t->to_terminal_ours != tdefault_terminal_ours)
525 return 1;
526 }
527
528 return 0;
529}
530
c906108c 531static void
fba45db2 532tcomplain (void)
c906108c 533{
8a3fe4f8 534 error (_("You can't do that when your target is `%s'"),
c906108c
SS
535 current_target.to_shortname);
536}
537
538void
fba45db2 539noprocess (void)
c906108c 540{
8a3fe4f8 541 error (_("You can't do that without a process to debug."));
c906108c
SS
542}
543
c906108c 544static void
0a4f40a2 545default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 546{
a3f17187 547 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
548}
549
0ef643c8
JB
550/* A default implementation for the to_get_ada_task_ptid target method.
551
552 This function builds the PTID by using both LWP and TID as part of
553 the PTID lwp and tid elements. The pid used is the pid of the
554 inferior_ptid. */
555
2c0b251b 556static ptid_t
1e6b91a4 557default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
558{
559 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
560}
561
32231432 562static enum exec_direction_kind
4c612759 563default_execution_direction (struct target_ops *self)
32231432
PA
564{
565 if (!target_can_execute_reverse)
566 return EXEC_FORWARD;
567 else if (!target_can_async_p ())
568 return EXEC_FORWARD;
569 else
570 gdb_assert_not_reached ("\
571to_execution_direction must be implemented for reverse async");
572}
573
7998dfc3
AC
574/* Go through the target stack from top to bottom, copying over zero
575 entries in current_target, then filling in still empty entries. In
576 effect, we are doing class inheritance through the pushed target
577 vectors.
578
579 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
580 is currently implemented, is that it discards any knowledge of
581 which target an inherited method originally belonged to.
582 Consequently, new new target methods should instead explicitly and
583 locally search the target stack for the target that can handle the
584 request. */
c906108c
SS
585
586static void
7998dfc3 587update_current_target (void)
c906108c 588{
7998dfc3
AC
589 struct target_ops *t;
590
08d8bcd7 591 /* First, reset current's contents. */
7998dfc3
AC
592 memset (&current_target, 0, sizeof (current_target));
593
1101cb7b
TT
594 /* Install the delegators. */
595 install_delegators (&current_target);
596
be4ddd36
TT
597 current_target.to_stratum = target_stack->to_stratum;
598
7998dfc3
AC
599#define INHERIT(FIELD, TARGET) \
600 if (!current_target.FIELD) \
601 current_target.FIELD = (TARGET)->FIELD
602
be4ddd36
TT
603 /* Do not add any new INHERITs here. Instead, use the delegation
604 mechanism provided by make-target-delegates. */
7998dfc3
AC
605 for (t = target_stack; t; t = t->beneath)
606 {
607 INHERIT (to_shortname, t);
608 INHERIT (to_longname, t);
dc177b7a 609 INHERIT (to_attach_no_wait, t);
74174d2e 610 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 611 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 612 INHERIT (to_has_thread_control, t);
7998dfc3
AC
613 }
614#undef INHERIT
615
7998dfc3
AC
616 /* Finally, position the target-stack beneath the squashed
617 "current_target". That way code looking for a non-inherited
618 target method can quickly and simply find it. */
619 current_target.beneath = target_stack;
b4b61fdb
DJ
620
621 if (targetdebug)
622 setup_target_debug ();
c906108c
SS
623}
624
625/* Push a new target type into the stack of the existing target accessors,
626 possibly superseding some of the existing accessors.
627
c906108c
SS
628 Rather than allow an empty stack, we always have the dummy target at
629 the bottom stratum, so we can call the function vectors without
630 checking them. */
631
b26a4dcb 632void
fba45db2 633push_target (struct target_ops *t)
c906108c 634{
258b763a 635 struct target_ops **cur;
c906108c
SS
636
637 /* Check magic number. If wrong, it probably means someone changed
638 the struct definition, but not all the places that initialize one. */
639 if (t->to_magic != OPS_MAGIC)
640 {
c5aa993b
JM
641 fprintf_unfiltered (gdb_stderr,
642 "Magic number of %s target struct wrong\n",
643 t->to_shortname);
3e43a32a
MS
644 internal_error (__FILE__, __LINE__,
645 _("failed internal consistency check"));
c906108c
SS
646 }
647
258b763a
AC
648 /* Find the proper stratum to install this target in. */
649 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 650 {
258b763a 651 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
652 break;
653 }
654
258b763a 655 /* If there's already targets at this stratum, remove them. */
88c231eb 656 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
657 targets to CUR, and not just those at this stratum level. */
658 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
659 {
660 /* There's already something at this stratum level. Close it,
661 and un-hook it from the stack. */
662 struct target_ops *tmp = (*cur);
5d502164 663
258b763a
AC
664 (*cur) = (*cur)->beneath;
665 tmp->beneath = NULL;
460014f5 666 target_close (tmp);
258b763a 667 }
c906108c
SS
668
669 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
670 t->beneath = (*cur);
671 (*cur) = t;
c906108c
SS
672
673 update_current_target ();
c906108c
SS
674}
675
2bc416ba 676/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
677 Return how many times it was removed (0 or 1). */
678
679int
fba45db2 680unpush_target (struct target_ops *t)
c906108c 681{
258b763a
AC
682 struct target_ops **cur;
683 struct target_ops *tmp;
c906108c 684
c8d104ad
PA
685 if (t->to_stratum == dummy_stratum)
686 internal_error (__FILE__, __LINE__,
9b20d036 687 _("Attempt to unpush the dummy target"));
c8d104ad 688
c906108c 689 /* Look for the specified target. Note that we assume that a target
c378eb4e 690 can only occur once in the target stack. */
c906108c 691
258b763a
AC
692 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
693 {
694 if ((*cur) == t)
695 break;
696 }
c906108c 697
305436e0
PA
698 /* If we don't find target_ops, quit. Only open targets should be
699 closed. */
258b763a 700 if ((*cur) == NULL)
305436e0 701 return 0;
5269965e 702
c378eb4e 703 /* Unchain the target. */
258b763a
AC
704 tmp = (*cur);
705 (*cur) = (*cur)->beneath;
706 tmp->beneath = NULL;
c906108c
SS
707
708 update_current_target ();
c906108c 709
305436e0
PA
710 /* Finally close the target. Note we do this after unchaining, so
711 any target method calls from within the target_close
712 implementation don't end up in T anymore. */
460014f5 713 target_close (t);
305436e0 714
c906108c
SS
715 return 1;
716}
717
aa76d38d 718void
460014f5 719pop_all_targets_above (enum strata above_stratum)
aa76d38d 720{
87ab71f0 721 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 722 {
aa76d38d
PA
723 if (!unpush_target (target_stack))
724 {
725 fprintf_unfiltered (gdb_stderr,
726 "pop_all_targets couldn't find target %s\n",
b52323fa 727 target_stack->to_shortname);
aa76d38d
PA
728 internal_error (__FILE__, __LINE__,
729 _("failed internal consistency check"));
730 break;
731 }
732 }
733}
734
87ab71f0 735void
460014f5 736pop_all_targets (void)
87ab71f0 737{
460014f5 738 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
739}
740
c0edd9ed
JK
741/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
742
743int
744target_is_pushed (struct target_ops *t)
745{
84202f9c 746 struct target_ops *cur;
c0edd9ed
JK
747
748 /* Check magic number. If wrong, it probably means someone changed
749 the struct definition, but not all the places that initialize one. */
750 if (t->to_magic != OPS_MAGIC)
751 {
752 fprintf_unfiltered (gdb_stderr,
753 "Magic number of %s target struct wrong\n",
754 t->to_shortname);
3e43a32a
MS
755 internal_error (__FILE__, __LINE__,
756 _("failed internal consistency check"));
c0edd9ed
JK
757 }
758
84202f9c
TT
759 for (cur = target_stack; cur != NULL; cur = cur->beneath)
760 if (cur == t)
c0edd9ed
JK
761 return 1;
762
763 return 0;
764}
765
f0f9ff95
TT
766/* Default implementation of to_get_thread_local_address. */
767
768static void
769generic_tls_error (void)
770{
771 throw_error (TLS_GENERIC_ERROR,
772 _("Cannot find thread-local variables on this target"));
773}
774
72f5cf0e 775/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
776 current thread's thread-local storage with offset OFFSET. */
777CORE_ADDR
778target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
779{
780 volatile CORE_ADDR addr = 0;
f0f9ff95 781 struct target_ops *target = &current_target;
9e35dae4 782
f0f9ff95 783 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
784 {
785 ptid_t ptid = inferior_ptid;
786 volatile struct gdb_exception ex;
787
788 TRY_CATCH (ex, RETURN_MASK_ALL)
789 {
790 CORE_ADDR lm_addr;
791
792 /* Fetch the load module address for this objfile. */
f5656ead 793 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 794 objfile);
9e35dae4 795
3e43a32a
MS
796 addr = target->to_get_thread_local_address (target, ptid,
797 lm_addr, offset);
9e35dae4
DJ
798 }
799 /* If an error occurred, print TLS related messages here. Otherwise,
800 throw the error to some higher catcher. */
801 if (ex.reason < 0)
802 {
803 int objfile_is_library = (objfile->flags & OBJF_SHARED);
804
805 switch (ex.error)
806 {
807 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
808 error (_("Cannot find thread-local variables "
809 "in this thread library."));
9e35dae4
DJ
810 break;
811 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
812 if (objfile_is_library)
813 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 814 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
815 else
816 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 817 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
818 break;
819 case TLS_NOT_ALLOCATED_YET_ERROR:
820 if (objfile_is_library)
821 error (_("The inferior has not yet allocated storage for"
822 " thread-local variables in\n"
823 "the shared library `%s'\n"
824 "for %s"),
4262abfb 825 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
826 else
827 error (_("The inferior has not yet allocated storage for"
828 " thread-local variables in\n"
829 "the executable `%s'\n"
830 "for %s"),
4262abfb 831 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
832 break;
833 case TLS_GENERIC_ERROR:
834 if (objfile_is_library)
835 error (_("Cannot find thread-local storage for %s, "
836 "shared library %s:\n%s"),
837 target_pid_to_str (ptid),
4262abfb 838 objfile_name (objfile), ex.message);
9e35dae4
DJ
839 else
840 error (_("Cannot find thread-local storage for %s, "
841 "executable file %s:\n%s"),
842 target_pid_to_str (ptid),
4262abfb 843 objfile_name (objfile), ex.message);
9e35dae4
DJ
844 break;
845 default:
846 throw_exception (ex);
847 break;
848 }
849 }
850 }
851 /* It wouldn't be wrong here to try a gdbarch method, too; finding
852 TLS is an ABI-specific thing. But we don't do that yet. */
853 else
854 error (_("Cannot find thread-local variables on this target"));
855
856 return addr;
857}
858
6be7b56e 859const char *
01cb8804 860target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
861{
862#define CASE(X) case X: return #X
01cb8804 863 switch (status)
6be7b56e
PA
864 {
865 CASE(TARGET_XFER_E_IO);
bc113b4e 866 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
867 default:
868 return "<unknown>";
869 }
870#undef CASE
871};
872
873
c906108c
SS
874#undef MIN
875#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
876
877/* target_read_string -- read a null terminated string, up to LEN bytes,
878 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
879 Set *STRING to a pointer to malloc'd memory containing the data; the caller
880 is responsible for freeing it. Return the number of bytes successfully
881 read. */
882
883int
fba45db2 884target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 885{
c2e8b827 886 int tlen, offset, i;
1b0ba102 887 gdb_byte buf[4];
c906108c
SS
888 int errcode = 0;
889 char *buffer;
890 int buffer_allocated;
891 char *bufptr;
892 unsigned int nbytes_read = 0;
893
6217bf3e
MS
894 gdb_assert (string);
895
c906108c
SS
896 /* Small for testing. */
897 buffer_allocated = 4;
898 buffer = xmalloc (buffer_allocated);
899 bufptr = buffer;
900
c906108c
SS
901 while (len > 0)
902 {
903 tlen = MIN (len, 4 - (memaddr & 3));
904 offset = memaddr & 3;
905
1b0ba102 906 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
907 if (errcode != 0)
908 {
909 /* The transfer request might have crossed the boundary to an
c378eb4e 910 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
911 a single byte. */
912 tlen = 1;
913 offset = 0;
b8eb5af0 914 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
915 if (errcode != 0)
916 goto done;
917 }
918
919 if (bufptr - buffer + tlen > buffer_allocated)
920 {
921 unsigned int bytes;
5d502164 922
c906108c
SS
923 bytes = bufptr - buffer;
924 buffer_allocated *= 2;
925 buffer = xrealloc (buffer, buffer_allocated);
926 bufptr = buffer + bytes;
927 }
928
929 for (i = 0; i < tlen; i++)
930 {
931 *bufptr++ = buf[i + offset];
932 if (buf[i + offset] == '\000')
933 {
934 nbytes_read += i + 1;
935 goto done;
936 }
937 }
938
939 memaddr += tlen;
940 len -= tlen;
941 nbytes_read += tlen;
942 }
c5aa993b 943done:
6217bf3e 944 *string = buffer;
c906108c
SS
945 if (errnop != NULL)
946 *errnop = errcode;
c906108c
SS
947 return nbytes_read;
948}
949
07b82ea5
PA
950struct target_section_table *
951target_get_section_table (struct target_ops *target)
952{
7e35c012 953 return (*target->to_get_section_table) (target);
07b82ea5
PA
954}
955
8db32d44 956/* Find a section containing ADDR. */
07b82ea5 957
0542c86d 958struct target_section *
8db32d44
AC
959target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
960{
07b82ea5 961 struct target_section_table *table = target_get_section_table (target);
0542c86d 962 struct target_section *secp;
07b82ea5
PA
963
964 if (table == NULL)
965 return NULL;
966
967 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
968 {
969 if (addr >= secp->addr && addr < secp->endaddr)
970 return secp;
971 }
972 return NULL;
973}
974
0fec99e8
PA
975
976/* Helper for the memory xfer routines. Checks the attributes of the
977 memory region of MEMADDR against the read or write being attempted.
978 If the access is permitted returns true, otherwise returns false.
979 REGION_P is an optional output parameter. If not-NULL, it is
980 filled with a pointer to the memory region of MEMADDR. REG_LEN
981 returns LEN trimmed to the end of the region. This is how much the
982 caller can continue requesting, if the access is permitted. A
983 single xfer request must not straddle memory region boundaries. */
984
985static int
986memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
987 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
988 struct mem_region **region_p)
989{
990 struct mem_region *region;
991
992 region = lookup_mem_region (memaddr);
993
994 if (region_p != NULL)
995 *region_p = region;
996
997 switch (region->attrib.mode)
998 {
999 case MEM_RO:
1000 if (writebuf != NULL)
1001 return 0;
1002 break;
1003
1004 case MEM_WO:
1005 if (readbuf != NULL)
1006 return 0;
1007 break;
1008
1009 case MEM_FLASH:
1010 /* We only support writing to flash during "load" for now. */
1011 if (writebuf != NULL)
1012 error (_("Writing to flash memory forbidden in this context"));
1013 break;
1014
1015 case MEM_NONE:
1016 return 0;
1017 }
1018
1019 /* region->hi == 0 means there's no upper bound. */
1020 if (memaddr + len < region->hi || region->hi == 0)
1021 *reg_len = len;
1022 else
1023 *reg_len = region->hi - memaddr;
1024
1025 return 1;
1026}
1027
9f713294
YQ
1028/* Read memory from more than one valid target. A core file, for
1029 instance, could have some of memory but delegate other bits to
1030 the target below it. So, we must manually try all targets. */
1031
9b409511 1032static enum target_xfer_status
17fde6d0 1033raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1034 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1035 ULONGEST *xfered_len)
9f713294 1036{
9b409511 1037 enum target_xfer_status res;
9f713294
YQ
1038
1039 do
1040 {
1041 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1042 readbuf, writebuf, memaddr, len,
1043 xfered_len);
1044 if (res == TARGET_XFER_OK)
9f713294
YQ
1045 break;
1046
633785ff 1047 /* Stop if the target reports that the memory is not available. */
bc113b4e 1048 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1049 break;
1050
9f713294
YQ
1051 /* We want to continue past core files to executables, but not
1052 past a running target's memory. */
1053 if (ops->to_has_all_memory (ops))
1054 break;
1055
1056 ops = ops->beneath;
1057 }
1058 while (ops != NULL);
1059
0f26cec1
PA
1060 /* The cache works at the raw memory level. Make sure the cache
1061 gets updated with raw contents no matter what kind of memory
1062 object was originally being written. Note we do write-through
1063 first, so that if it fails, we don't write to the cache contents
1064 that never made it to the target. */
1065 if (writebuf != NULL
1066 && !ptid_equal (inferior_ptid, null_ptid)
1067 && target_dcache_init_p ()
1068 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1069 {
1070 DCACHE *dcache = target_dcache_get ();
1071
1072 /* Note that writing to an area of memory which wasn't present
1073 in the cache doesn't cause it to be loaded in. */
1074 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1075 }
1076
9f713294
YQ
1077 return res;
1078}
1079
7f79c47e
DE
1080/* Perform a partial memory transfer.
1081 For docs see target.h, to_xfer_partial. */
cf7a04e8 1082
9b409511 1083static enum target_xfer_status
f0ba3972 1084memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1085 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1086 ULONGEST len, ULONGEST *xfered_len)
0779438d 1087{
9b409511 1088 enum target_xfer_status res;
0fec99e8 1089 ULONGEST reg_len;
cf7a04e8 1090 struct mem_region *region;
4e5d721f 1091 struct inferior *inf;
cf7a04e8 1092
07b82ea5
PA
1093 /* For accesses to unmapped overlay sections, read directly from
1094 files. Must do this first, as MEMADDR may need adjustment. */
1095 if (readbuf != NULL && overlay_debugging)
1096 {
1097 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1098
07b82ea5
PA
1099 if (pc_in_unmapped_range (memaddr, section))
1100 {
1101 struct target_section_table *table
1102 = target_get_section_table (ops);
1103 const char *section_name = section->the_bfd_section->name;
5d502164 1104
07b82ea5
PA
1105 memaddr = overlay_mapped_address (memaddr, section);
1106 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1107 memaddr, len, xfered_len,
07b82ea5
PA
1108 table->sections,
1109 table->sections_end,
1110 section_name);
1111 }
1112 }
1113
1114 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1115 if (readbuf != NULL && trust_readonly)
1116 {
0542c86d 1117 struct target_section *secp;
07b82ea5 1118 struct target_section_table *table;
cf7a04e8
DJ
1119
1120 secp = target_section_by_addr (ops, memaddr);
1121 if (secp != NULL
2b2848e2
DE
1122 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1123 secp->the_bfd_section)
cf7a04e8 1124 & SEC_READONLY))
07b82ea5
PA
1125 {
1126 table = target_get_section_table (ops);
1127 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1128 memaddr, len, xfered_len,
07b82ea5
PA
1129 table->sections,
1130 table->sections_end,
1131 NULL);
1132 }
98646950
UW
1133 }
1134
cf7a04e8 1135 /* Try GDB's internal data cache. */
cf7a04e8 1136
0fec99e8
PA
1137 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1138 &region))
1139 return TARGET_XFER_E_IO;
cf7a04e8 1140
6c95b8df
PA
1141 if (!ptid_equal (inferior_ptid, null_ptid))
1142 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1143 else
1144 inf = NULL;
4e5d721f
DE
1145
1146 if (inf != NULL
0f26cec1 1147 && readbuf != NULL
2f4d8875
PA
1148 /* The dcache reads whole cache lines; that doesn't play well
1149 with reading from a trace buffer, because reading outside of
1150 the collected memory range fails. */
1151 && get_traceframe_number () == -1
4e5d721f 1152 && (region->attrib.cache
29453a14
YQ
1153 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1154 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1155 {
2a2f9fe4
YQ
1156 DCACHE *dcache = target_dcache_get_or_init ();
1157
0f26cec1
PA
1158 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1159 reg_len, xfered_len);
cf7a04e8
DJ
1160 }
1161
1162 /* If none of those methods found the memory we wanted, fall back
1163 to a target partial transfer. Normally a single call to
1164 to_xfer_partial is enough; if it doesn't recognize an object
1165 it will call the to_xfer_partial of the next target down.
1166 But for memory this won't do. Memory is the only target
9b409511
YQ
1167 object which can be read from more than one valid target.
1168 A core file, for instance, could have some of memory but
1169 delegate other bits to the target below it. So, we must
1170 manually try all targets. */
1171
1172 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1173 xfered_len);
cf7a04e8
DJ
1174
1175 /* If we still haven't got anything, return the last error. We
1176 give up. */
1177 return res;
0779438d
AC
1178}
1179
f0ba3972
PA
1180/* Perform a partial memory transfer. For docs see target.h,
1181 to_xfer_partial. */
1182
9b409511 1183static enum target_xfer_status
f0ba3972 1184memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1185 gdb_byte *readbuf, const gdb_byte *writebuf,
1186 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1187{
9b409511 1188 enum target_xfer_status res;
f0ba3972
PA
1189
1190 /* Zero length requests are ok and require no work. */
1191 if (len == 0)
9b409511 1192 return TARGET_XFER_EOF;
f0ba3972
PA
1193
1194 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1195 breakpoint insns, thus hiding out from higher layers whether
1196 there are software breakpoints inserted in the code stream. */
1197 if (readbuf != NULL)
1198 {
9b409511
YQ
1199 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1200 xfered_len);
f0ba3972 1201
9b409511 1202 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1203 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1204 }
1205 else
1206 {
1207 void *buf;
1208 struct cleanup *old_chain;
1209
67c059c2
AB
1210 /* A large write request is likely to be partially satisfied
1211 by memory_xfer_partial_1. We will continually malloc
1212 and free a copy of the entire write request for breakpoint
1213 shadow handling even though we only end up writing a small
1214 subset of it. Cap writes to 4KB to mitigate this. */
1215 len = min (4096, len);
1216
f0ba3972
PA
1217 buf = xmalloc (len);
1218 old_chain = make_cleanup (xfree, buf);
1219 memcpy (buf, writebuf, len);
1220
1221 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1222 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1223 xfered_len);
f0ba3972
PA
1224
1225 do_cleanups (old_chain);
1226 }
1227
1228 return res;
1229}
1230
8defab1a
DJ
1231static void
1232restore_show_memory_breakpoints (void *arg)
1233{
1234 show_memory_breakpoints = (uintptr_t) arg;
1235}
1236
1237struct cleanup *
1238make_show_memory_breakpoints_cleanup (int show)
1239{
1240 int current = show_memory_breakpoints;
8defab1a 1241
5d502164 1242 show_memory_breakpoints = show;
8defab1a
DJ
1243 return make_cleanup (restore_show_memory_breakpoints,
1244 (void *) (uintptr_t) current);
1245}
1246
7f79c47e
DE
1247/* For docs see target.h, to_xfer_partial. */
1248
9b409511 1249enum target_xfer_status
27394598
AC
1250target_xfer_partial (struct target_ops *ops,
1251 enum target_object object, const char *annex,
4ac248ca 1252 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1253 ULONGEST offset, ULONGEST len,
1254 ULONGEST *xfered_len)
27394598 1255{
9b409511 1256 enum target_xfer_status retval;
27394598
AC
1257
1258 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1259
ce6d0892
YQ
1260 /* Transfer is done when LEN is zero. */
1261 if (len == 0)
9b409511 1262 return TARGET_XFER_EOF;
ce6d0892 1263
d914c394
SS
1264 if (writebuf && !may_write_memory)
1265 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1266 core_addr_to_string_nz (offset), plongest (len));
1267
9b409511
YQ
1268 *xfered_len = 0;
1269
cf7a04e8
DJ
1270 /* If this is a memory transfer, let the memory-specific code
1271 have a look at it instead. Memory transfers are more
1272 complicated. */
29453a14
YQ
1273 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1274 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1275 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1276 writebuf, offset, len, xfered_len);
9f713294 1277 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1278 {
0fec99e8
PA
1279 /* Skip/avoid accessing the target if the memory region
1280 attributes block the access. Check this here instead of in
1281 raw_memory_xfer_partial as otherwise we'd end up checking
1282 this twice in the case of the memory_xfer_partial path is
1283 taken; once before checking the dcache, and another in the
1284 tail call to raw_memory_xfer_partial. */
1285 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1286 NULL))
1287 return TARGET_XFER_E_IO;
1288
9f713294 1289 /* Request the normal memory object from other layers. */
9b409511
YQ
1290 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1291 xfered_len);
cf7a04e8 1292 }
9f713294
YQ
1293 else
1294 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1295 writebuf, offset, len, xfered_len);
cf7a04e8 1296
27394598
AC
1297 if (targetdebug)
1298 {
1299 const unsigned char *myaddr = NULL;
1300
1301 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1302 "%s:target_xfer_partial "
9b409511 1303 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1304 ops->to_shortname,
1305 (int) object,
1306 (annex ? annex : "(null)"),
53b71562
JB
1307 host_address_to_string (readbuf),
1308 host_address_to_string (writebuf),
0b1553bc 1309 core_addr_to_string_nz (offset),
9b409511
YQ
1310 pulongest (len), retval,
1311 pulongest (*xfered_len));
27394598
AC
1312
1313 if (readbuf)
1314 myaddr = readbuf;
1315 if (writebuf)
1316 myaddr = writebuf;
9b409511 1317 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1318 {
1319 int i;
2bc416ba 1320
27394598 1321 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1322 for (i = 0; i < *xfered_len; i++)
27394598 1323 {
53b71562 1324 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1325 {
1326 if (targetdebug < 2 && i > 0)
1327 {
1328 fprintf_unfiltered (gdb_stdlog, " ...");
1329 break;
1330 }
1331 fprintf_unfiltered (gdb_stdlog, "\n");
1332 }
2bc416ba 1333
27394598
AC
1334 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1335 }
1336 }
2bc416ba 1337
27394598
AC
1338 fputc_unfiltered ('\n', gdb_stdlog);
1339 }
9b409511
YQ
1340
1341 /* Check implementations of to_xfer_partial update *XFERED_LEN
1342 properly. Do assertion after printing debug messages, so that we
1343 can find more clues on assertion failure from debugging messages. */
bc113b4e 1344 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1345 gdb_assert (*xfered_len > 0);
1346
27394598
AC
1347 return retval;
1348}
1349
578d3588
PA
1350/* Read LEN bytes of target memory at address MEMADDR, placing the
1351 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1352 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1353
1354 If an error occurs, no guarantee is made about the contents of the data at
1355 MYADDR. In particular, the caller should not depend upon partial reads
1356 filling the buffer with good data. There is no way for the caller to know
1357 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1358 deal with partial reads should call target_read (which will retry until
c378eb4e 1359 it makes no progress, and then return how much was transferred). */
c906108c
SS
1360
1361int
1b162304 1362target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1363{
c35b1492
PA
1364 /* Dispatch to the topmost target, not the flattened current_target.
1365 Memory accesses check target->to_has_(all_)memory, and the
1366 flattened target doesn't inherit those. */
1367 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1368 myaddr, memaddr, len) == len)
1369 return 0;
0779438d 1370 else
578d3588 1371 return TARGET_XFER_E_IO;
c906108c
SS
1372}
1373
721ec300
GB
1374/* See target/target.h. */
1375
1376int
1377target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1378{
1379 gdb_byte buf[4];
1380 int r;
1381
1382 r = target_read_memory (memaddr, buf, sizeof buf);
1383 if (r != 0)
1384 return r;
1385 *result = extract_unsigned_integer (buf, sizeof buf,
1386 gdbarch_byte_order (target_gdbarch ()));
1387 return 0;
1388}
1389
aee4bf85
PA
1390/* Like target_read_memory, but specify explicitly that this is a read
1391 from the target's raw memory. That is, this read bypasses the
1392 dcache, breakpoint shadowing, etc. */
1393
1394int
1395target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1396{
1397 /* See comment in target_read_memory about why the request starts at
1398 current_target.beneath. */
1399 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1400 myaddr, memaddr, len) == len)
1401 return 0;
1402 else
1403 return TARGET_XFER_E_IO;
1404}
1405
4e5d721f
DE
1406/* Like target_read_memory, but specify explicitly that this is a read from
1407 the target's stack. This may trigger different cache behavior. */
1408
1409int
45aa4659 1410target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1411{
aee4bf85
PA
1412 /* See comment in target_read_memory about why the request starts at
1413 current_target.beneath. */
4e5d721f
DE
1414 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1415 myaddr, memaddr, len) == len)
1416 return 0;
1417 else
578d3588 1418 return TARGET_XFER_E_IO;
4e5d721f
DE
1419}
1420
29453a14
YQ
1421/* Like target_read_memory, but specify explicitly that this is a read from
1422 the target's code. This may trigger different cache behavior. */
1423
1424int
1425target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1426{
aee4bf85
PA
1427 /* See comment in target_read_memory about why the request starts at
1428 current_target.beneath. */
29453a14
YQ
1429 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1430 myaddr, memaddr, len) == len)
1431 return 0;
1432 else
1433 return TARGET_XFER_E_IO;
1434}
1435
7f79c47e 1436/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1437 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1438 error occurs. If an error occurs, no guarantee is made about how
1439 much data got written. Callers that can deal with partial writes
1440 should call target_write. */
7f79c47e 1441
c906108c 1442int
45aa4659 1443target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1444{
aee4bf85
PA
1445 /* See comment in target_read_memory about why the request starts at
1446 current_target.beneath. */
c35b1492 1447 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1448 myaddr, memaddr, len) == len)
1449 return 0;
0779438d 1450 else
578d3588 1451 return TARGET_XFER_E_IO;
c906108c 1452}
c5aa993b 1453
f0ba3972 1454/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1455 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1456 if any error occurs. If an error occurs, no guarantee is made
1457 about how much data got written. Callers that can deal with
1458 partial writes should call target_write. */
f0ba3972
PA
1459
1460int
45aa4659 1461target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1462{
aee4bf85
PA
1463 /* See comment in target_read_memory about why the request starts at
1464 current_target.beneath. */
f0ba3972
PA
1465 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1466 myaddr, memaddr, len) == len)
1467 return 0;
1468 else
578d3588 1469 return TARGET_XFER_E_IO;
f0ba3972
PA
1470}
1471
fd79ecee
DJ
1472/* Fetch the target's memory map. */
1473
1474VEC(mem_region_s) *
1475target_memory_map (void)
1476{
1477 VEC(mem_region_s) *result;
1478 struct mem_region *last_one, *this_one;
1479 int ix;
1480 struct target_ops *t;
1481
6b2c5a57 1482 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1483 if (result == NULL)
1484 return NULL;
1485
1486 qsort (VEC_address (mem_region_s, result),
1487 VEC_length (mem_region_s, result),
1488 sizeof (struct mem_region), mem_region_cmp);
1489
1490 /* Check that regions do not overlap. Simultaneously assign
1491 a numbering for the "mem" commands to use to refer to
1492 each region. */
1493 last_one = NULL;
1494 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1495 {
1496 this_one->number = ix;
1497
1498 if (last_one && last_one->hi > this_one->lo)
1499 {
1500 warning (_("Overlapping regions in memory map: ignoring"));
1501 VEC_free (mem_region_s, result);
1502 return NULL;
1503 }
1504 last_one = this_one;
1505 }
1506
1507 return result;
1508}
1509
a76d924d
DJ
1510void
1511target_flash_erase (ULONGEST address, LONGEST length)
1512{
e8a6c6ac 1513 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1514}
1515
1516void
1517target_flash_done (void)
1518{
f6fb2925 1519 current_target.to_flash_done (&current_target);
a76d924d
DJ
1520}
1521
920d2a44
AC
1522static void
1523show_trust_readonly (struct ui_file *file, int from_tty,
1524 struct cmd_list_element *c, const char *value)
1525{
3e43a32a
MS
1526 fprintf_filtered (file,
1527 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1528 value);
1529}
3a11626d 1530
7f79c47e 1531/* Target vector read/write partial wrapper functions. */
0088c768 1532
9b409511 1533static enum target_xfer_status
1e3ff5ad
AC
1534target_read_partial (struct target_ops *ops,
1535 enum target_object object,
1b0ba102 1536 const char *annex, gdb_byte *buf,
9b409511
YQ
1537 ULONGEST offset, ULONGEST len,
1538 ULONGEST *xfered_len)
1e3ff5ad 1539{
9b409511
YQ
1540 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1541 xfered_len);
1e3ff5ad
AC
1542}
1543
8a55ffb0 1544static enum target_xfer_status
1e3ff5ad
AC
1545target_write_partial (struct target_ops *ops,
1546 enum target_object object,
1b0ba102 1547 const char *annex, const gdb_byte *buf,
9b409511 1548 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1549{
9b409511
YQ
1550 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1551 xfered_len);
1e3ff5ad
AC
1552}
1553
1554/* Wrappers to perform the full transfer. */
7f79c47e
DE
1555
1556/* For docs on target_read see target.h. */
1557
1e3ff5ad
AC
1558LONGEST
1559target_read (struct target_ops *ops,
1560 enum target_object object,
1b0ba102 1561 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1562 ULONGEST offset, LONGEST len)
1563{
1564 LONGEST xfered = 0;
5d502164 1565
1e3ff5ad
AC
1566 while (xfered < len)
1567 {
9b409511
YQ
1568 ULONGEST xfered_len;
1569 enum target_xfer_status status;
1570
1571 status = target_read_partial (ops, object, annex,
1572 (gdb_byte *) buf + xfered,
1573 offset + xfered, len - xfered,
1574 &xfered_len);
5d502164 1575
1e3ff5ad 1576 /* Call an observer, notifying them of the xfer progress? */
9b409511 1577 if (status == TARGET_XFER_EOF)
13547ab6 1578 return xfered;
9b409511
YQ
1579 else if (status == TARGET_XFER_OK)
1580 {
1581 xfered += xfered_len;
1582 QUIT;
1583 }
1584 else
0088c768 1585 return -1;
9b409511 1586
1e3ff5ad
AC
1587 }
1588 return len;
1589}
1590
f1a507a1
JB
1591/* Assuming that the entire [begin, end) range of memory cannot be
1592 read, try to read whatever subrange is possible to read.
1593
1594 The function returns, in RESULT, either zero or one memory block.
1595 If there's a readable subrange at the beginning, it is completely
1596 read and returned. Any further readable subrange will not be read.
1597 Otherwise, if there's a readable subrange at the end, it will be
1598 completely read and returned. Any readable subranges before it
1599 (obviously, not starting at the beginning), will be ignored. In
1600 other cases -- either no readable subrange, or readable subrange(s)
1601 that is neither at the beginning, or end, nothing is returned.
1602
1603 The purpose of this function is to handle a read across a boundary
1604 of accessible memory in a case when memory map is not available.
1605 The above restrictions are fine for this case, but will give
1606 incorrect results if the memory is 'patchy'. However, supporting
1607 'patchy' memory would require trying to read every single byte,
1608 and it seems unacceptable solution. Explicit memory map is
1609 recommended for this case -- and target_read_memory_robust will
1610 take care of reading multiple ranges then. */
8dedea02
VP
1611
1612static void
3e43a32a
MS
1613read_whatever_is_readable (struct target_ops *ops,
1614 ULONGEST begin, ULONGEST end,
8dedea02 1615 VEC(memory_read_result_s) **result)
d5086790 1616{
f1a507a1 1617 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1618 ULONGEST current_begin = begin;
1619 ULONGEST current_end = end;
1620 int forward;
1621 memory_read_result_s r;
9b409511 1622 ULONGEST xfered_len;
8dedea02
VP
1623
1624 /* If we previously failed to read 1 byte, nothing can be done here. */
1625 if (end - begin <= 1)
13b3fd9b
MS
1626 {
1627 xfree (buf);
1628 return;
1629 }
8dedea02
VP
1630
1631 /* Check that either first or the last byte is readable, and give up
c378eb4e 1632 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1633 at the boundary of accessible region. */
1634 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1635 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1636 {
1637 forward = 1;
1638 ++current_begin;
1639 }
1640 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1641 buf + (end-begin) - 1, end - 1, 1,
1642 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1643 {
1644 forward = 0;
1645 --current_end;
1646 }
1647 else
1648 {
13b3fd9b 1649 xfree (buf);
8dedea02
VP
1650 return;
1651 }
1652
1653 /* Loop invariant is that the [current_begin, current_end) was previously
1654 found to be not readable as a whole.
1655
1656 Note loop condition -- if the range has 1 byte, we can't divide the range
1657 so there's no point trying further. */
1658 while (current_end - current_begin > 1)
1659 {
1660 ULONGEST first_half_begin, first_half_end;
1661 ULONGEST second_half_begin, second_half_end;
1662 LONGEST xfer;
8dedea02 1663 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1664
8dedea02
VP
1665 if (forward)
1666 {
1667 first_half_begin = current_begin;
1668 first_half_end = middle;
1669 second_half_begin = middle;
1670 second_half_end = current_end;
1671 }
1672 else
1673 {
1674 first_half_begin = middle;
1675 first_half_end = current_end;
1676 second_half_begin = current_begin;
1677 second_half_end = middle;
1678 }
1679
1680 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1681 buf + (first_half_begin - begin),
1682 first_half_begin,
1683 first_half_end - first_half_begin);
1684
1685 if (xfer == first_half_end - first_half_begin)
1686 {
c378eb4e 1687 /* This half reads up fine. So, the error must be in the
3e43a32a 1688 other half. */
8dedea02
VP
1689 current_begin = second_half_begin;
1690 current_end = second_half_end;
1691 }
1692 else
1693 {
c378eb4e
MS
1694 /* This half is not readable. Because we've tried one byte, we
1695 know some part of this half if actually redable. Go to the next
8dedea02
VP
1696 iteration to divide again and try to read.
1697
1698 We don't handle the other half, because this function only tries
1699 to read a single readable subrange. */
1700 current_begin = first_half_begin;
1701 current_end = first_half_end;
1702 }
1703 }
1704
1705 if (forward)
1706 {
1707 /* The [begin, current_begin) range has been read. */
1708 r.begin = begin;
1709 r.end = current_begin;
1710 r.data = buf;
1711 }
1712 else
1713 {
1714 /* The [current_end, end) range has been read. */
1715 LONGEST rlen = end - current_end;
f1a507a1 1716
8dedea02
VP
1717 r.data = xmalloc (rlen);
1718 memcpy (r.data, buf + current_end - begin, rlen);
1719 r.begin = current_end;
1720 r.end = end;
1721 xfree (buf);
1722 }
1723 VEC_safe_push(memory_read_result_s, (*result), &r);
1724}
1725
1726void
1727free_memory_read_result_vector (void *x)
1728{
1729 VEC(memory_read_result_s) *v = x;
1730 memory_read_result_s *current;
1731 int ix;
1732
1733 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1734 {
1735 xfree (current->data);
1736 }
1737 VEC_free (memory_read_result_s, v);
1738}
1739
1740VEC(memory_read_result_s) *
1741read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1742{
1743 VEC(memory_read_result_s) *result = 0;
1744
1745 LONGEST xfered = 0;
d5086790
VP
1746 while (xfered < len)
1747 {
8dedea02
VP
1748 struct mem_region *region = lookup_mem_region (offset + xfered);
1749 LONGEST rlen;
5d502164 1750
8dedea02
VP
1751 /* If there is no explicit region, a fake one should be created. */
1752 gdb_assert (region);
1753
1754 if (region->hi == 0)
1755 rlen = len - xfered;
1756 else
1757 rlen = region->hi - offset;
1758
1759 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1760 {
c378eb4e 1761 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1762 if the region is explicitly marked inaccessible, or
1763 'inaccessible-by-default' is in effect. */
1764 xfered += rlen;
1765 }
1766 else
1767 {
1768 LONGEST to_read = min (len - xfered, rlen);
1769 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1770
1771 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1772 (gdb_byte *) buffer,
1773 offset + xfered, to_read);
1774 /* Call an observer, notifying them of the xfer progress? */
d5086790 1775 if (xfer <= 0)
d5086790 1776 {
c378eb4e 1777 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1778 some subrange. */
1779 xfree (buffer);
3e43a32a
MS
1780 read_whatever_is_readable (ops, offset + xfered,
1781 offset + xfered + to_read, &result);
8dedea02 1782 xfered += to_read;
d5086790 1783 }
8dedea02
VP
1784 else
1785 {
1786 struct memory_read_result r;
1787 r.data = buffer;
1788 r.begin = offset + xfered;
1789 r.end = r.begin + xfer;
1790 VEC_safe_push (memory_read_result_s, result, &r);
1791 xfered += xfer;
1792 }
1793 QUIT;
d5086790 1794 }
d5086790 1795 }
8dedea02 1796 return result;
d5086790
VP
1797}
1798
8dedea02 1799
cf7a04e8
DJ
1800/* An alternative to target_write with progress callbacks. */
1801
1e3ff5ad 1802LONGEST
cf7a04e8
DJ
1803target_write_with_progress (struct target_ops *ops,
1804 enum target_object object,
1805 const char *annex, const gdb_byte *buf,
1806 ULONGEST offset, LONGEST len,
1807 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1808{
1809 LONGEST xfered = 0;
a76d924d
DJ
1810
1811 /* Give the progress callback a chance to set up. */
1812 if (progress)
1813 (*progress) (0, baton);
1814
1e3ff5ad
AC
1815 while (xfered < len)
1816 {
9b409511
YQ
1817 ULONGEST xfered_len;
1818 enum target_xfer_status status;
1819
1820 status = target_write_partial (ops, object, annex,
1821 (gdb_byte *) buf + xfered,
1822 offset + xfered, len - xfered,
1823 &xfered_len);
cf7a04e8 1824
5c328c05
YQ
1825 if (status != TARGET_XFER_OK)
1826 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1827
1828 if (progress)
9b409511 1829 (*progress) (xfered_len, baton);
cf7a04e8 1830
9b409511 1831 xfered += xfered_len;
1e3ff5ad
AC
1832 QUIT;
1833 }
1834 return len;
1835}
1836
7f79c47e
DE
1837/* For docs on target_write see target.h. */
1838
cf7a04e8
DJ
1839LONGEST
1840target_write (struct target_ops *ops,
1841 enum target_object object,
1842 const char *annex, const gdb_byte *buf,
1843 ULONGEST offset, LONGEST len)
1844{
1845 return target_write_with_progress (ops, object, annex, buf, offset, len,
1846 NULL, NULL);
1847}
1848
159f81f3
DJ
1849/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1850 the size of the transferred data. PADDING additional bytes are
1851 available in *BUF_P. This is a helper function for
1852 target_read_alloc; see the declaration of that function for more
1853 information. */
13547ab6 1854
159f81f3
DJ
1855static LONGEST
1856target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1857 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1858{
1859 size_t buf_alloc, buf_pos;
1860 gdb_byte *buf;
13547ab6
DJ
1861
1862 /* This function does not have a length parameter; it reads the
1863 entire OBJECT). Also, it doesn't support objects fetched partly
1864 from one target and partly from another (in a different stratum,
1865 e.g. a core file and an executable). Both reasons make it
1866 unsuitable for reading memory. */
1867 gdb_assert (object != TARGET_OBJECT_MEMORY);
1868
1869 /* Start by reading up to 4K at a time. The target will throttle
1870 this number down if necessary. */
1871 buf_alloc = 4096;
1872 buf = xmalloc (buf_alloc);
1873 buf_pos = 0;
1874 while (1)
1875 {
9b409511
YQ
1876 ULONGEST xfered_len;
1877 enum target_xfer_status status;
1878
1879 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1880 buf_pos, buf_alloc - buf_pos - padding,
1881 &xfered_len);
1882
1883 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1884 {
1885 /* Read all there was. */
1886 if (buf_pos == 0)
1887 xfree (buf);
1888 else
1889 *buf_p = buf;
1890 return buf_pos;
1891 }
9b409511
YQ
1892 else if (status != TARGET_XFER_OK)
1893 {
1894 /* An error occurred. */
1895 xfree (buf);
1896 return TARGET_XFER_E_IO;
1897 }
13547ab6 1898
9b409511 1899 buf_pos += xfered_len;
13547ab6
DJ
1900
1901 /* If the buffer is filling up, expand it. */
1902 if (buf_alloc < buf_pos * 2)
1903 {
1904 buf_alloc *= 2;
1905 buf = xrealloc (buf, buf_alloc);
1906 }
1907
1908 QUIT;
1909 }
1910}
1911
159f81f3
DJ
1912/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1913 the size of the transferred data. See the declaration in "target.h"
1914 function for more information about the return value. */
1915
1916LONGEST
1917target_read_alloc (struct target_ops *ops, enum target_object object,
1918 const char *annex, gdb_byte **buf_p)
1919{
1920 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1921}
1922
1923/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1924 returned as a string, allocated using xmalloc. If an error occurs
1925 or the transfer is unsupported, NULL is returned. Empty objects
1926 are returned as allocated but empty strings. A warning is issued
1927 if the result contains any embedded NUL bytes. */
1928
1929char *
1930target_read_stralloc (struct target_ops *ops, enum target_object object,
1931 const char *annex)
1932{
39086a0e
PA
1933 gdb_byte *buffer;
1934 char *bufstr;
7313baad 1935 LONGEST i, transferred;
159f81f3 1936
39086a0e
PA
1937 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1938 bufstr = (char *) buffer;
159f81f3
DJ
1939
1940 if (transferred < 0)
1941 return NULL;
1942
1943 if (transferred == 0)
1944 return xstrdup ("");
1945
39086a0e 1946 bufstr[transferred] = 0;
7313baad
UW
1947
1948 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1949 for (i = strlen (bufstr); i < transferred; i++)
1950 if (bufstr[i] != 0)
7313baad
UW
1951 {
1952 warning (_("target object %d, annex %s, "
1953 "contained unexpected null characters"),
1954 (int) object, annex ? annex : "(none)");
1955 break;
1956 }
159f81f3 1957
39086a0e 1958 return bufstr;
159f81f3
DJ
1959}
1960
b6591e8b
AC
1961/* Memory transfer methods. */
1962
1963void
1b0ba102 1964get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1965 LONGEST len)
1966{
07b82ea5
PA
1967 /* This method is used to read from an alternate, non-current
1968 target. This read must bypass the overlay support (as symbols
1969 don't match this target), and GDB's internal cache (wrong cache
1970 for this target). */
1971 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1972 != len)
578d3588 1973 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1974}
1975
1976ULONGEST
5d502164
MS
1977get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1978 int len, enum bfd_endian byte_order)
b6591e8b 1979{
f6519ebc 1980 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1981
1982 gdb_assert (len <= sizeof (buf));
1983 get_target_memory (ops, addr, buf, len);
e17a4113 1984 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1985}
1986
3db08215
MM
1987/* See target.h. */
1988
d914c394
SS
1989int
1990target_insert_breakpoint (struct gdbarch *gdbarch,
1991 struct bp_target_info *bp_tgt)
1992{
1993 if (!may_insert_breakpoints)
1994 {
1995 warning (_("May not insert breakpoints"));
1996 return 1;
1997 }
1998
6b84065d
TT
1999 return current_target.to_insert_breakpoint (&current_target,
2000 gdbarch, bp_tgt);
d914c394
SS
2001}
2002
3db08215
MM
2003/* See target.h. */
2004
d914c394 2005int
6b84065d
TT
2006target_remove_breakpoint (struct gdbarch *gdbarch,
2007 struct bp_target_info *bp_tgt)
d914c394
SS
2008{
2009 /* This is kind of a weird case to handle, but the permission might
2010 have been changed after breakpoints were inserted - in which case
2011 we should just take the user literally and assume that any
2012 breakpoints should be left in place. */
2013 if (!may_insert_breakpoints)
2014 {
2015 warning (_("May not remove breakpoints"));
2016 return 1;
2017 }
2018
6b84065d
TT
2019 return current_target.to_remove_breakpoint (&current_target,
2020 gdbarch, bp_tgt);
d914c394
SS
2021}
2022
c906108c 2023static void
fba45db2 2024target_info (char *args, int from_tty)
c906108c
SS
2025{
2026 struct target_ops *t;
c906108c 2027 int has_all_mem = 0;
c5aa993b 2028
c906108c 2029 if (symfile_objfile != NULL)
4262abfb
JK
2030 printf_unfiltered (_("Symbols from \"%s\".\n"),
2031 objfile_name (symfile_objfile));
c906108c 2032
258b763a 2033 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2034 {
c35b1492 2035 if (!(*t->to_has_memory) (t))
c906108c
SS
2036 continue;
2037
c5aa993b 2038 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2039 continue;
2040 if (has_all_mem)
3e43a32a
MS
2041 printf_unfiltered (_("\tWhile running this, "
2042 "GDB does not access memory from...\n"));
c5aa993b
JM
2043 printf_unfiltered ("%s:\n", t->to_longname);
2044 (t->to_files_info) (t);
c35b1492 2045 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2046 }
2047}
2048
fd79ecee
DJ
2049/* This function is called before any new inferior is created, e.g.
2050 by running a program, attaching, or connecting to a target.
2051 It cleans up any state from previous invocations which might
2052 change between runs. This is a subset of what target_preopen
2053 resets (things which might change between targets). */
2054
2055void
2056target_pre_inferior (int from_tty)
2057{
c378eb4e 2058 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2059 inferior might have survived and is entirely wrong for the new
c378eb4e 2060 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2061 to reproduce:
2062
2063 bash$ ./foo&
2064 [1] 4711
2065 bash$ ./foo&
2066 [1] 4712
2067 bash$ gdb ./foo
2068 [...]
2069 (gdb) attach 4711
2070 (gdb) detach
2071 (gdb) attach 4712
2072 Cannot access memory at address 0xdeadbeef
2073 */
b9db4ced 2074
50c71eaf
PA
2075 /* In some OSs, the shared library list is the same/global/shared
2076 across inferiors. If code is shared between processes, so are
2077 memory regions and features. */
f5656ead 2078 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2079 {
2080 no_shared_libraries (NULL, from_tty);
2081
2082 invalidate_target_mem_regions ();
424163ea 2083
50c71eaf
PA
2084 target_clear_description ();
2085 }
8ffcbaaf
YQ
2086
2087 agent_capability_invalidate ();
fd79ecee
DJ
2088}
2089
b8fa0bfa
PA
2090/* Callback for iterate_over_inferiors. Gets rid of the given
2091 inferior. */
2092
2093static int
2094dispose_inferior (struct inferior *inf, void *args)
2095{
2096 struct thread_info *thread;
2097
2098 thread = any_thread_of_process (inf->pid);
2099 if (thread)
2100 {
2101 switch_to_thread (thread->ptid);
2102
2103 /* Core inferiors actually should be detached, not killed. */
2104 if (target_has_execution)
2105 target_kill ();
2106 else
2107 target_detach (NULL, 0);
2108 }
2109
2110 return 0;
2111}
2112
c906108c
SS
2113/* This is to be called by the open routine before it does
2114 anything. */
2115
2116void
fba45db2 2117target_preopen (int from_tty)
c906108c 2118{
c5aa993b 2119 dont_repeat ();
c906108c 2120
b8fa0bfa 2121 if (have_inferiors ())
c5aa993b 2122 {
adf40b2e 2123 if (!from_tty
b8fa0bfa
PA
2124 || !have_live_inferiors ()
2125 || query (_("A program is being debugged already. Kill it? ")))
2126 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2127 else
8a3fe4f8 2128 error (_("Program not killed."));
c906108c
SS
2129 }
2130
2131 /* Calling target_kill may remove the target from the stack. But if
2132 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2133 /* Leave the exec target, though. The user may be switching from a
2134 live process to a core of the same program. */
460014f5 2135 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2136
2137 target_pre_inferior (from_tty);
c906108c
SS
2138}
2139
2140/* Detach a target after doing deferred register stores. */
2141
2142void
52554a0e 2143target_detach (const char *args, int from_tty)
c906108c 2144{
136d6dae
VP
2145 struct target_ops* t;
2146
f5656ead 2147 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2148 /* Don't remove global breakpoints here. They're removed on
2149 disconnection from the target. */
2150 ;
2151 else
2152 /* If we're in breakpoints-always-inserted mode, have to remove
2153 them before detaching. */
dfd4cc63 2154 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2155
24291992
PA
2156 prepare_for_detach ();
2157
09da0d0a 2158 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2159}
2160
6ad8ae5c 2161void
fee354ee 2162target_disconnect (const char *args, int from_tty)
6ad8ae5c 2163{
50c71eaf
PA
2164 /* If we're in breakpoints-always-inserted mode or if breakpoints
2165 are global across processes, we have to remove them before
2166 disconnecting. */
74960c60
VP
2167 remove_breakpoints ();
2168
86a0854a 2169 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2170}
2171
117de6a9 2172ptid_t
47608cb1 2173target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2174{
a7068b60 2175 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2176}
2177
2178char *
2179target_pid_to_str (ptid_t ptid)
2180{
770234d3 2181 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2182}
2183
4694da01
TT
2184char *
2185target_thread_name (struct thread_info *info)
2186{
825828fc 2187 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2188}
2189
e1ac3328 2190void
2ea28649 2191target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2192{
28439f5e
PA
2193 struct target_ops *t;
2194
4e5d721f 2195 target_dcache_invalidate ();
28439f5e 2196
6b84065d 2197 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2198
6b84065d 2199 registers_changed_ptid (ptid);
251bde03
PA
2200 /* We only set the internal executing state here. The user/frontend
2201 running state is set at a higher level. */
6b84065d 2202 set_executing (ptid, 1);
6b84065d 2203 clear_inline_frame_state (ptid);
e1ac3328 2204}
2455069d
UW
2205
2206void
2207target_pass_signals (int numsigs, unsigned char *pass_signals)
2208{
035cad7f 2209 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2210}
2211
9b224c5e
PA
2212void
2213target_program_signals (int numsigs, unsigned char *program_signals)
2214{
7d4f8efa
TT
2215 (*current_target.to_program_signals) (&current_target,
2216 numsigs, program_signals);
9b224c5e
PA
2217}
2218
098dba18
TT
2219static int
2220default_follow_fork (struct target_ops *self, int follow_child,
2221 int detach_fork)
2222{
2223 /* Some target returned a fork event, but did not know how to follow it. */
2224 internal_error (__FILE__, __LINE__,
2225 _("could not find a target to follow fork"));
2226}
2227
ee057212
DJ
2228/* Look through the list of possible targets for a target that can
2229 follow forks. */
2230
2231int
07107ca6 2232target_follow_fork (int follow_child, int detach_fork)
ee057212 2233{
a7068b60
TT
2234 return current_target.to_follow_fork (&current_target,
2235 follow_child, detach_fork);
ee057212
DJ
2236}
2237
8d657035
TT
2238static void
2239default_mourn_inferior (struct target_ops *self)
2240{
2241 internal_error (__FILE__, __LINE__,
2242 _("could not find a target to follow mourn inferior"));
2243}
2244
136d6dae
VP
2245void
2246target_mourn_inferior (void)
2247{
8d657035 2248 current_target.to_mourn_inferior (&current_target);
136d6dae 2249
8d657035
TT
2250 /* We no longer need to keep handles on any of the object files.
2251 Make sure to release them to avoid unnecessarily locking any
2252 of them while we're not actually debugging. */
2253 bfd_cache_close_all ();
136d6dae
VP
2254}
2255
424163ea
DJ
2256/* Look for a target which can describe architectural features, starting
2257 from TARGET. If we find one, return its description. */
2258
2259const struct target_desc *
2260target_read_description (struct target_ops *target)
2261{
2117c711 2262 return target->to_read_description (target);
424163ea
DJ
2263}
2264
58a5184e 2265/* This implements a basic search of memory, reading target memory and
08388c79
DE
2266 performing the search here (as opposed to performing the search in on the
2267 target side with, for example, gdbserver). */
2268
2269int
2270simple_search_memory (struct target_ops *ops,
2271 CORE_ADDR start_addr, ULONGEST search_space_len,
2272 const gdb_byte *pattern, ULONGEST pattern_len,
2273 CORE_ADDR *found_addrp)
2274{
2275 /* NOTE: also defined in find.c testcase. */
2276#define SEARCH_CHUNK_SIZE 16000
2277 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2278 /* Buffer to hold memory contents for searching. */
2279 gdb_byte *search_buf;
2280 unsigned search_buf_size;
2281 struct cleanup *old_cleanups;
2282
2283 search_buf_size = chunk_size + pattern_len - 1;
2284
2285 /* No point in trying to allocate a buffer larger than the search space. */
2286 if (search_space_len < search_buf_size)
2287 search_buf_size = search_space_len;
2288
2289 search_buf = malloc (search_buf_size);
2290 if (search_buf == NULL)
5e1471f5 2291 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2292 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2293
2294 /* Prime the search buffer. */
2295
2296 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2297 search_buf, start_addr, search_buf_size) != search_buf_size)
2298 {
b3dc46ff
AB
2299 warning (_("Unable to access %s bytes of target "
2300 "memory at %s, halting search."),
2301 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2302 do_cleanups (old_cleanups);
2303 return -1;
2304 }
2305
2306 /* Perform the search.
2307
2308 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2309 When we've scanned N bytes we copy the trailing bytes to the start and
2310 read in another N bytes. */
2311
2312 while (search_space_len >= pattern_len)
2313 {
2314 gdb_byte *found_ptr;
2315 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2316
2317 found_ptr = memmem (search_buf, nr_search_bytes,
2318 pattern, pattern_len);
2319
2320 if (found_ptr != NULL)
2321 {
2322 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2323
08388c79
DE
2324 *found_addrp = found_addr;
2325 do_cleanups (old_cleanups);
2326 return 1;
2327 }
2328
2329 /* Not found in this chunk, skip to next chunk. */
2330
2331 /* Don't let search_space_len wrap here, it's unsigned. */
2332 if (search_space_len >= chunk_size)
2333 search_space_len -= chunk_size;
2334 else
2335 search_space_len = 0;
2336
2337 if (search_space_len >= pattern_len)
2338 {
2339 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2340 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2341 int nr_to_read;
2342
2343 /* Copy the trailing part of the previous iteration to the front
2344 of the buffer for the next iteration. */
2345 gdb_assert (keep_len == pattern_len - 1);
2346 memcpy (search_buf, search_buf + chunk_size, keep_len);
2347
2348 nr_to_read = min (search_space_len - keep_len, chunk_size);
2349
2350 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2351 search_buf + keep_len, read_addr,
2352 nr_to_read) != nr_to_read)
2353 {
b3dc46ff 2354 warning (_("Unable to access %s bytes of target "
9b20d036 2355 "memory at %s, halting search."),
b3dc46ff 2356 plongest (nr_to_read),
08388c79
DE
2357 hex_string (read_addr));
2358 do_cleanups (old_cleanups);
2359 return -1;
2360 }
2361
2362 start_addr += chunk_size;
2363 }
2364 }
2365
2366 /* Not found. */
2367
2368 do_cleanups (old_cleanups);
2369 return 0;
2370}
2371
58a5184e
TT
2372/* Default implementation of memory-searching. */
2373
2374static int
2375default_search_memory (struct target_ops *self,
2376 CORE_ADDR start_addr, ULONGEST search_space_len,
2377 const gdb_byte *pattern, ULONGEST pattern_len,
2378 CORE_ADDR *found_addrp)
2379{
2380 /* Start over from the top of the target stack. */
2381 return simple_search_memory (current_target.beneath,
2382 start_addr, search_space_len,
2383 pattern, pattern_len, found_addrp);
2384}
2385
08388c79
DE
2386/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2387 sequence of bytes in PATTERN with length PATTERN_LEN.
2388
2389 The result is 1 if found, 0 if not found, and -1 if there was an error
2390 requiring halting of the search (e.g. memory read error).
2391 If the pattern is found the address is recorded in FOUND_ADDRP. */
2392
2393int
2394target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2395 const gdb_byte *pattern, ULONGEST pattern_len,
2396 CORE_ADDR *found_addrp)
2397{
a7068b60
TT
2398 return current_target.to_search_memory (&current_target, start_addr,
2399 search_space_len,
2400 pattern, pattern_len, found_addrp);
08388c79
DE
2401}
2402
8edfe269
DJ
2403/* Look through the currently pushed targets. If none of them will
2404 be able to restart the currently running process, issue an error
2405 message. */
2406
2407void
2408target_require_runnable (void)
2409{
2410 struct target_ops *t;
2411
2412 for (t = target_stack; t != NULL; t = t->beneath)
2413 {
2414 /* If this target knows how to create a new program, then
2415 assume we will still be able to after killing the current
2416 one. Either killing and mourning will not pop T, or else
2417 find_default_run_target will find it again. */
2418 if (t->to_create_inferior != NULL)
2419 return;
2420
548740d6 2421 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2422 create inferiors. Assume they will be pushed again if
2423 necessary, and continue to the process_stratum. */
85e747d2 2424 if (t->to_stratum == thread_stratum
548740d6 2425 || t->to_stratum == record_stratum
85e747d2 2426 || t->to_stratum == arch_stratum)
8edfe269
DJ
2427 continue;
2428
3e43a32a
MS
2429 error (_("The \"%s\" target does not support \"run\". "
2430 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2431 t->to_shortname);
2432 }
2433
2434 /* This function is only called if the target is running. In that
2435 case there should have been a process_stratum target and it
c378eb4e 2436 should either know how to create inferiors, or not... */
9b20d036 2437 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2438}
2439
6a3cb8e8
PA
2440/* Whether GDB is allowed to fall back to the default run target for
2441 "run", "attach", etc. when no target is connected yet. */
2442static int auto_connect_native_target = 1;
2443
2444static void
2445show_auto_connect_native_target (struct ui_file *file, int from_tty,
2446 struct cmd_list_element *c, const char *value)
2447{
2448 fprintf_filtered (file,
2449 _("Whether GDB may automatically connect to the "
2450 "native target is %s.\n"),
2451 value);
2452}
2453
c906108c
SS
2454/* Look through the list of possible targets for a target that can
2455 execute a run or attach command without any other data. This is
2456 used to locate the default process stratum.
2457
5f667f2d
PA
2458 If DO_MESG is not NULL, the result is always valid (error() is
2459 called for errors); else, return NULL on error. */
c906108c
SS
2460
2461static struct target_ops *
fba45db2 2462find_default_run_target (char *do_mesg)
c906108c 2463{
c906108c 2464 struct target_ops *runable = NULL;
c906108c 2465
6a3cb8e8 2466 if (auto_connect_native_target)
c906108c 2467 {
89a1c21a 2468 struct target_ops *t;
6a3cb8e8 2469 int count = 0;
89a1c21a 2470 int i;
6a3cb8e8 2471
89a1c21a 2472 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2473 {
89a1c21a 2474 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2475 {
89a1c21a 2476 runable = t;
6a3cb8e8
PA
2477 ++count;
2478 }
c906108c 2479 }
6a3cb8e8
PA
2480
2481 if (count != 1)
2482 runable = NULL;
c906108c
SS
2483 }
2484
6a3cb8e8 2485 if (runable == NULL)
5f667f2d
PA
2486 {
2487 if (do_mesg)
2488 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2489 else
2490 return NULL;
2491 }
c906108c
SS
2492
2493 return runable;
2494}
2495
b3ccfe11 2496/* See target.h. */
c906108c 2497
b3ccfe11
TT
2498struct target_ops *
2499find_attach_target (void)
c906108c
SS
2500{
2501 struct target_ops *t;
2502
b3ccfe11
TT
2503 /* If a target on the current stack can attach, use it. */
2504 for (t = current_target.beneath; t != NULL; t = t->beneath)
2505 {
2506 if (t->to_attach != NULL)
2507 break;
2508 }
c906108c 2509
b3ccfe11
TT
2510 /* Otherwise, use the default run target for attaching. */
2511 if (t == NULL)
2512 t = find_default_run_target ("attach");
b84876c2 2513
b3ccfe11 2514 return t;
b84876c2
PA
2515}
2516
b3ccfe11 2517/* See target.h. */
b84876c2 2518
b3ccfe11
TT
2519struct target_ops *
2520find_run_target (void)
9908b566
VP
2521{
2522 struct target_ops *t;
2523
b3ccfe11
TT
2524 /* If a target on the current stack can attach, use it. */
2525 for (t = current_target.beneath; t != NULL; t = t->beneath)
2526 {
2527 if (t->to_create_inferior != NULL)
2528 break;
2529 }
5d502164 2530
b3ccfe11
TT
2531 /* Otherwise, use the default run target. */
2532 if (t == NULL)
2533 t = find_default_run_target ("run");
9908b566 2534
b3ccfe11 2535 return t;
9908b566
VP
2536}
2537
145b16a9
UW
2538/* Implement the "info proc" command. */
2539
451b7c33 2540int
7bc112c1 2541target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2542{
2543 struct target_ops *t;
2544
2545 /* If we're already connected to something that can get us OS
2546 related data, use it. Otherwise, try using the native
2547 target. */
2548 if (current_target.to_stratum >= process_stratum)
2549 t = current_target.beneath;
2550 else
2551 t = find_default_run_target (NULL);
2552
2553 for (; t != NULL; t = t->beneath)
2554 {
2555 if (t->to_info_proc != NULL)
2556 {
2557 t->to_info_proc (t, args, what);
2558
2559 if (targetdebug)
2560 fprintf_unfiltered (gdb_stdlog,
2561 "target_info_proc (\"%s\", %d)\n", args, what);
2562
451b7c33 2563 return 1;
145b16a9
UW
2564 }
2565 }
2566
451b7c33 2567 return 0;
145b16a9
UW
2568}
2569
03583c20 2570static int
2bfc0540 2571find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2572{
2573 struct target_ops *t;
2574
2575 t = find_default_run_target (NULL);
2576 if (t && t->to_supports_disable_randomization)
2bfc0540 2577 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2578 return 0;
2579}
2580
2581int
2582target_supports_disable_randomization (void)
2583{
2584 struct target_ops *t;
2585
2586 for (t = &current_target; t != NULL; t = t->beneath)
2587 if (t->to_supports_disable_randomization)
2bfc0540 2588 return t->to_supports_disable_randomization (t);
03583c20
UW
2589
2590 return 0;
2591}
9908b566 2592
07e059b5
VP
2593char *
2594target_get_osdata (const char *type)
2595{
07e059b5
VP
2596 struct target_ops *t;
2597
739ef7fb
PA
2598 /* If we're already connected to something that can get us OS
2599 related data, use it. Otherwise, try using the native
2600 target. */
2601 if (current_target.to_stratum >= process_stratum)
6d097e65 2602 t = current_target.beneath;
739ef7fb
PA
2603 else
2604 t = find_default_run_target ("get OS data");
07e059b5
VP
2605
2606 if (!t)
2607 return NULL;
2608
6d097e65 2609 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2610}
2611
8eaff7cd
TT
2612static struct address_space *
2613default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2614{
2615 struct inferior *inf;
6c95b8df
PA
2616
2617 /* Fall-back to the "main" address space of the inferior. */
2618 inf = find_inferior_pid (ptid_get_pid (ptid));
2619
2620 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2621 internal_error (__FILE__, __LINE__,
9b20d036
MS
2622 _("Can't determine the current "
2623 "address space of thread %s\n"),
6c95b8df
PA
2624 target_pid_to_str (ptid));
2625
2626 return inf->aspace;
2627}
2628
8eaff7cd
TT
2629/* Determine the current address space of thread PTID. */
2630
2631struct address_space *
2632target_thread_address_space (ptid_t ptid)
2633{
2634 struct address_space *aspace;
2635
2636 aspace = current_target.to_thread_address_space (&current_target, ptid);
2637 gdb_assert (aspace != NULL);
2638
8eaff7cd
TT
2639 return aspace;
2640}
2641
7313baad
UW
2642
2643/* Target file operations. */
2644
2645static struct target_ops *
2646default_fileio_target (void)
2647{
2648 /* If we're already connected to something that can perform
2649 file I/O, use it. Otherwise, try using the native target. */
2650 if (current_target.to_stratum >= process_stratum)
2651 return current_target.beneath;
2652 else
2653 return find_default_run_target ("file I/O");
2654}
2655
2656/* Open FILENAME on the target, using FLAGS and MODE. Return a
2657 target file descriptor, or -1 if an error occurs (and set
2658 *TARGET_ERRNO). */
2659int
2660target_fileio_open (const char *filename, int flags, int mode,
2661 int *target_errno)
2662{
2663 struct target_ops *t;
2664
2665 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2666 {
2667 if (t->to_fileio_open != NULL)
2668 {
cd897586 2669 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2670
2671 if (targetdebug)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2674 filename, flags, mode,
2675 fd, fd != -1 ? 0 : *target_errno);
2676 return fd;
2677 }
2678 }
2679
2680 *target_errno = FILEIO_ENOSYS;
2681 return -1;
2682}
2683
2684/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2685 Return the number of bytes written, or -1 if an error occurs
2686 (and set *TARGET_ERRNO). */
2687int
2688target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2689 ULONGEST offset, int *target_errno)
2690{
2691 struct target_ops *t;
2692
2693 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2694 {
2695 if (t->to_fileio_pwrite != NULL)
2696 {
0d866f62 2697 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2698 target_errno);
2699
2700 if (targetdebug)
2701 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2702 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2703 "= %d (%d)\n",
a71b5a38 2704 fd, len, pulongest (offset),
7313baad
UW
2705 ret, ret != -1 ? 0 : *target_errno);
2706 return ret;
2707 }
2708 }
2709
2710 *target_errno = FILEIO_ENOSYS;
2711 return -1;
2712}
2713
2714/* Read up to LEN bytes FD on the target into READ_BUF.
2715 Return the number of bytes read, or -1 if an error occurs
2716 (and set *TARGET_ERRNO). */
2717int
2718target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2719 ULONGEST offset, int *target_errno)
2720{
2721 struct target_ops *t;
2722
2723 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2724 {
2725 if (t->to_fileio_pread != NULL)
2726 {
a3be983c 2727 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2728 target_errno);
2729
2730 if (targetdebug)
2731 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2732 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2733 "= %d (%d)\n",
a71b5a38 2734 fd, len, pulongest (offset),
7313baad
UW
2735 ret, ret != -1 ? 0 : *target_errno);
2736 return ret;
2737 }
2738 }
2739
2740 *target_errno = FILEIO_ENOSYS;
2741 return -1;
2742}
2743
2744/* Close FD on the target. Return 0, or -1 if an error occurs
2745 (and set *TARGET_ERRNO). */
2746int
2747target_fileio_close (int fd, int *target_errno)
2748{
2749 struct target_ops *t;
2750
2751 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2752 {
2753 if (t->to_fileio_close != NULL)
2754 {
df39ea25 2755 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2756
2757 if (targetdebug)
2758 fprintf_unfiltered (gdb_stdlog,
2759 "target_fileio_close (%d) = %d (%d)\n",
2760 fd, ret, ret != -1 ? 0 : *target_errno);
2761 return ret;
2762 }
2763 }
2764
2765 *target_errno = FILEIO_ENOSYS;
2766 return -1;
2767}
2768
2769/* Unlink FILENAME on the target. Return 0, or -1 if an error
2770 occurs (and set *TARGET_ERRNO). */
2771int
2772target_fileio_unlink (const char *filename, int *target_errno)
2773{
2774 struct target_ops *t;
2775
2776 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2777 {
2778 if (t->to_fileio_unlink != NULL)
2779 {
dbbca37d 2780 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2781
2782 if (targetdebug)
2783 fprintf_unfiltered (gdb_stdlog,
2784 "target_fileio_unlink (%s) = %d (%d)\n",
2785 filename, ret, ret != -1 ? 0 : *target_errno);
2786 return ret;
2787 }
2788 }
2789
2790 *target_errno = FILEIO_ENOSYS;
2791 return -1;
2792}
2793
b9e7b9c3
UW
2794/* Read value of symbolic link FILENAME on the target. Return a
2795 null-terminated string allocated via xmalloc, or NULL if an error
2796 occurs (and set *TARGET_ERRNO). */
2797char *
2798target_fileio_readlink (const char *filename, int *target_errno)
2799{
2800 struct target_ops *t;
2801
2802 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2803 {
2804 if (t->to_fileio_readlink != NULL)
2805 {
fab5aa7c 2806 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2807
2808 if (targetdebug)
2809 fprintf_unfiltered (gdb_stdlog,
2810 "target_fileio_readlink (%s) = %s (%d)\n",
2811 filename, ret? ret : "(nil)",
2812 ret? 0 : *target_errno);
2813 return ret;
2814 }
2815 }
2816
2817 *target_errno = FILEIO_ENOSYS;
2818 return NULL;
2819}
2820
7313baad
UW
2821static void
2822target_fileio_close_cleanup (void *opaque)
2823{
2824 int fd = *(int *) opaque;
2825 int target_errno;
2826
2827 target_fileio_close (fd, &target_errno);
2828}
2829
2830/* Read target file FILENAME. Store the result in *BUF_P and
2831 return the size of the transferred data. PADDING additional bytes are
2832 available in *BUF_P. This is a helper function for
2833 target_fileio_read_alloc; see the declaration of that function for more
2834 information. */
2835
2836static LONGEST
2837target_fileio_read_alloc_1 (const char *filename,
2838 gdb_byte **buf_p, int padding)
2839{
2840 struct cleanup *close_cleanup;
2841 size_t buf_alloc, buf_pos;
2842 gdb_byte *buf;
2843 LONGEST n;
2844 int fd;
2845 int target_errno;
2846
2847 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2848 if (fd == -1)
2849 return -1;
2850
2851 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2852
2853 /* Start by reading up to 4K at a time. The target will throttle
2854 this number down if necessary. */
2855 buf_alloc = 4096;
2856 buf = xmalloc (buf_alloc);
2857 buf_pos = 0;
2858 while (1)
2859 {
2860 n = target_fileio_pread (fd, &buf[buf_pos],
2861 buf_alloc - buf_pos - padding, buf_pos,
2862 &target_errno);
2863 if (n < 0)
2864 {
2865 /* An error occurred. */
2866 do_cleanups (close_cleanup);
2867 xfree (buf);
2868 return -1;
2869 }
2870 else if (n == 0)
2871 {
2872 /* Read all there was. */
2873 do_cleanups (close_cleanup);
2874 if (buf_pos == 0)
2875 xfree (buf);
2876 else
2877 *buf_p = buf;
2878 return buf_pos;
2879 }
2880
2881 buf_pos += n;
2882
2883 /* If the buffer is filling up, expand it. */
2884 if (buf_alloc < buf_pos * 2)
2885 {
2886 buf_alloc *= 2;
2887 buf = xrealloc (buf, buf_alloc);
2888 }
2889
2890 QUIT;
2891 }
2892}
2893
2894/* Read target file FILENAME. Store the result in *BUF_P and return
2895 the size of the transferred data. See the declaration in "target.h"
2896 function for more information about the return value. */
2897
2898LONGEST
2899target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2900{
2901 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2902}
2903
2904/* Read target file FILENAME. The result is NUL-terminated and
2905 returned as a string, allocated using xmalloc. If an error occurs
2906 or the transfer is unsupported, NULL is returned. Empty objects
2907 are returned as allocated but empty strings. A warning is issued
2908 if the result contains any embedded NUL bytes. */
2909
2910char *
2911target_fileio_read_stralloc (const char *filename)
2912{
39086a0e
PA
2913 gdb_byte *buffer;
2914 char *bufstr;
7313baad
UW
2915 LONGEST i, transferred;
2916
39086a0e
PA
2917 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2918 bufstr = (char *) buffer;
7313baad
UW
2919
2920 if (transferred < 0)
2921 return NULL;
2922
2923 if (transferred == 0)
2924 return xstrdup ("");
2925
39086a0e 2926 bufstr[transferred] = 0;
7313baad
UW
2927
2928 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2929 for (i = strlen (bufstr); i < transferred; i++)
2930 if (bufstr[i] != 0)
7313baad
UW
2931 {
2932 warning (_("target file %s "
2933 "contained unexpected null characters"),
2934 filename);
2935 break;
2936 }
2937
39086a0e 2938 return bufstr;
7313baad
UW
2939}
2940
2941
e0d24f8d 2942static int
31568a15
TT
2943default_region_ok_for_hw_watchpoint (struct target_ops *self,
2944 CORE_ADDR addr, int len)
e0d24f8d 2945{
f5656ead 2946 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2947}
2948
5009afc5
AS
2949static int
2950default_watchpoint_addr_within_range (struct target_ops *target,
2951 CORE_ADDR addr,
2952 CORE_ADDR start, int length)
2953{
2954 return addr >= start && addr < start + length;
2955}
2956
c2250ad1
UW
2957static struct gdbarch *
2958default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2959{
f5656ead 2960 return target_gdbarch ();
c2250ad1
UW
2961}
2962
c906108c 2963static int
555bbdeb
TT
2964return_zero (struct target_ops *ignore)
2965{
2966 return 0;
2967}
2968
2969static int
2970return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2971{
2972 return 0;
2973}
2974
ed9a39eb
JM
2975/*
2976 * Find the next target down the stack from the specified target.
2977 */
2978
2979struct target_ops *
fba45db2 2980find_target_beneath (struct target_ops *t)
ed9a39eb 2981{
258b763a 2982 return t->beneath;
ed9a39eb
JM
2983}
2984
8b06beed
TT
2985/* See target.h. */
2986
2987struct target_ops *
2988find_target_at (enum strata stratum)
2989{
2990 struct target_ops *t;
2991
2992 for (t = current_target.beneath; t != NULL; t = t->beneath)
2993 if (t->to_stratum == stratum)
2994 return t;
2995
2996 return NULL;
2997}
2998
c906108c
SS
2999\f
3000/* The inferior process has died. Long live the inferior! */
3001
3002void
fba45db2 3003generic_mourn_inferior (void)
c906108c 3004{
7f9f62ba 3005 ptid_t ptid;
c906108c 3006
7f9f62ba 3007 ptid = inferior_ptid;
39f77062 3008 inferior_ptid = null_ptid;
7f9f62ba 3009
f59f708a
PA
3010 /* Mark breakpoints uninserted in case something tries to delete a
3011 breakpoint while we delete the inferior's threads (which would
3012 fail, since the inferior is long gone). */
3013 mark_breakpoints_out ();
3014
7f9f62ba
PA
3015 if (!ptid_equal (ptid, null_ptid))
3016 {
3017 int pid = ptid_get_pid (ptid);
6c95b8df 3018 exit_inferior (pid);
7f9f62ba
PA
3019 }
3020
f59f708a
PA
3021 /* Note this wipes step-resume breakpoints, so needs to be done
3022 after exit_inferior, which ends up referencing the step-resume
3023 breakpoints through clear_thread_inferior_resources. */
c906108c 3024 breakpoint_init_inferior (inf_exited);
f59f708a 3025
c906108c
SS
3026 registers_changed ();
3027
c906108c
SS
3028 reopen_exec_file ();
3029 reinit_frame_cache ();
3030
9a4105ab
AC
3031 if (deprecated_detach_hook)
3032 deprecated_detach_hook ();
c906108c
SS
3033}
3034\f
fd0a2a6f
MK
3035/* Convert a normal process ID to a string. Returns the string in a
3036 static buffer. */
c906108c
SS
3037
3038char *
39f77062 3039normal_pid_to_str (ptid_t ptid)
c906108c 3040{
fd0a2a6f 3041 static char buf[32];
c906108c 3042
5fff8fc0 3043 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3044 return buf;
3045}
3046
2c0b251b 3047static char *
770234d3 3048default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3049{
3050 return normal_pid_to_str (ptid);
3051}
3052
9b4eba8e
HZ
3053/* Error-catcher for target_find_memory_regions. */
3054static int
2e73927c
TT
3055dummy_find_memory_regions (struct target_ops *self,
3056 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3057{
9b4eba8e 3058 error (_("Command not implemented for this target."));
be4d1333
MS
3059 return 0;
3060}
3061
9b4eba8e
HZ
3062/* Error-catcher for target_make_corefile_notes. */
3063static char *
fc6691b2
TT
3064dummy_make_corefile_notes (struct target_ops *self,
3065 bfd *ignore1, int *ignore2)
be4d1333 3066{
9b4eba8e 3067 error (_("Command not implemented for this target."));
be4d1333
MS
3068 return NULL;
3069}
3070
c906108c
SS
3071/* Set up the handful of non-empty slots needed by the dummy target
3072 vector. */
3073
3074static void
fba45db2 3075init_dummy_target (void)
c906108c
SS
3076{
3077 dummy_target.to_shortname = "None";
3078 dummy_target.to_longname = "None";
3079 dummy_target.to_doc = "";
03583c20
UW
3080 dummy_target.to_supports_disable_randomization
3081 = find_default_supports_disable_randomization;
c906108c 3082 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3083 dummy_target.to_has_all_memory = return_zero;
3084 dummy_target.to_has_memory = return_zero;
3085 dummy_target.to_has_stack = return_zero;
3086 dummy_target.to_has_registers = return_zero;
3087 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3088 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3089
3090 install_dummy_methods (&dummy_target);
c906108c 3091}
c906108c 3092\f
c906108c 3093
f1c07ab0 3094void
460014f5 3095target_close (struct target_ops *targ)
f1c07ab0 3096{
7fdc1521
TT
3097 gdb_assert (!target_is_pushed (targ));
3098
f1c07ab0 3099 if (targ->to_xclose != NULL)
460014f5 3100 targ->to_xclose (targ);
f1c07ab0 3101 else if (targ->to_close != NULL)
de90e03d 3102 targ->to_close (targ);
947b8855
PA
3103
3104 if (targetdebug)
460014f5 3105 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3106}
3107
28439f5e
PA
3108int
3109target_thread_alive (ptid_t ptid)
c906108c 3110{
a7068b60 3111 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3112}
3113
3114void
e8032dde 3115target_update_thread_list (void)
28439f5e 3116{
e8032dde 3117 current_target.to_update_thread_list (&current_target);
c906108c
SS
3118}
3119
d914c394
SS
3120void
3121target_stop (ptid_t ptid)
3122{
3123 if (!may_stop)
3124 {
3125 warning (_("May not interrupt or stop the target, ignoring attempt"));
3126 return;
3127 }
3128
1eab8a48 3129 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3130}
3131
f8c1d06b
GB
3132/* See target/target.h. */
3133
3134void
03f4463b 3135target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3136{
3137 struct target_waitstatus status;
3138 int was_non_stop = non_stop;
3139
3140 non_stop = 1;
3141 target_stop (ptid);
3142
3143 memset (&status, 0, sizeof (status));
3144 target_wait (ptid, &status, 0);
3145
3146 non_stop = was_non_stop;
3147}
3148
3149/* See target/target.h. */
3150
3151void
03f4463b 3152target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3153{
3154 target_resume (ptid, 0, GDB_SIGNAL_0);
3155}
3156
09826ec5
PA
3157/* Concatenate ELEM to LIST, a comma separate list, and return the
3158 result. The LIST incoming argument is released. */
3159
3160static char *
3161str_comma_list_concat_elem (char *list, const char *elem)
3162{
3163 if (list == NULL)
3164 return xstrdup (elem);
3165 else
3166 return reconcat (list, list, ", ", elem, (char *) NULL);
3167}
3168
3169/* Helper for target_options_to_string. If OPT is present in
3170 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3171 Returns the new resulting string. OPT is removed from
3172 TARGET_OPTIONS. */
3173
3174static char *
3175do_option (int *target_options, char *ret,
3176 int opt, char *opt_str)
3177{
3178 if ((*target_options & opt) != 0)
3179 {
3180 ret = str_comma_list_concat_elem (ret, opt_str);
3181 *target_options &= ~opt;
3182 }
3183
3184 return ret;
3185}
3186
3187char *
3188target_options_to_string (int target_options)
3189{
3190 char *ret = NULL;
3191
3192#define DO_TARG_OPTION(OPT) \
3193 ret = do_option (&target_options, ret, OPT, #OPT)
3194
3195 DO_TARG_OPTION (TARGET_WNOHANG);
3196
3197 if (target_options != 0)
3198 ret = str_comma_list_concat_elem (ret, "unknown???");
3199
3200 if (ret == NULL)
3201 ret = xstrdup ("");
3202 return ret;
3203}
3204
bf0c5130 3205static void
56be3814
UW
3206debug_print_register (const char * func,
3207 struct regcache *regcache, int regno)
bf0c5130 3208{
f8d29908 3209 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3210
bf0c5130 3211 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3212 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3213 && gdbarch_register_name (gdbarch, regno) != NULL
3214 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3215 fprintf_unfiltered (gdb_stdlog, "(%s)",
3216 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3217 else
3218 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3219 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3220 {
e17a4113 3221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3222 int i, size = register_size (gdbarch, regno);
e362b510 3223 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3224
0ff58721 3225 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3226 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3227 for (i = 0; i < size; i++)
bf0c5130
AC
3228 {
3229 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3230 }
81c4a259 3231 if (size <= sizeof (LONGEST))
bf0c5130 3232 {
e17a4113 3233 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3234
0b1553bc
UW
3235 fprintf_unfiltered (gdb_stdlog, " %s %s",
3236 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3237 }
3238 }
3239 fprintf_unfiltered (gdb_stdlog, "\n");
3240}
3241
28439f5e
PA
3242void
3243target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3244{
ad5989bd
TT
3245 current_target.to_fetch_registers (&current_target, regcache, regno);
3246 if (targetdebug)
3247 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3248}
3249
28439f5e
PA
3250void
3251target_store_registers (struct regcache *regcache, int regno)
c906108c 3252{
28439f5e 3253 struct target_ops *t;
5d502164 3254
d914c394
SS
3255 if (!may_write_registers)
3256 error (_("Writing to registers is not allowed (regno %d)"), regno);
3257
6b84065d
TT
3258 current_target.to_store_registers (&current_target, regcache, regno);
3259 if (targetdebug)
28439f5e 3260 {
6b84065d 3261 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3262 }
c906108c
SS
3263}
3264
dc146f7c
VP
3265int
3266target_core_of_thread (ptid_t ptid)
3267{
a7068b60 3268 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3269}
3270
936d2992
PA
3271int
3272simple_verify_memory (struct target_ops *ops,
3273 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3274{
3275 LONGEST total_xfered = 0;
3276
3277 while (total_xfered < size)
3278 {
3279 ULONGEST xfered_len;
3280 enum target_xfer_status status;
3281 gdb_byte buf[1024];
3282 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3283
3284 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3285 buf, NULL, lma + total_xfered, howmuch,
3286 &xfered_len);
3287 if (status == TARGET_XFER_OK
3288 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3289 {
3290 total_xfered += xfered_len;
3291 QUIT;
3292 }
3293 else
3294 return 0;
3295 }
3296 return 1;
3297}
3298
3299/* Default implementation of memory verification. */
3300
3301static int
3302default_verify_memory (struct target_ops *self,
3303 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3304{
3305 /* Start over from the top of the target stack. */
3306 return simple_verify_memory (current_target.beneath,
3307 data, memaddr, size);
3308}
3309
4a5e7a5b
PA
3310int
3311target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3312{
a7068b60
TT
3313 return current_target.to_verify_memory (&current_target,
3314 data, memaddr, size);
4a5e7a5b
PA
3315}
3316
9c06b0b4
TJB
3317/* The documentation for this function is in its prototype declaration in
3318 target.h. */
3319
3320int
3321target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3322{
a7068b60
TT
3323 return current_target.to_insert_mask_watchpoint (&current_target,
3324 addr, mask, rw);
9c06b0b4
TJB
3325}
3326
3327/* The documentation for this function is in its prototype declaration in
3328 target.h. */
3329
3330int
3331target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3332{
a7068b60
TT
3333 return current_target.to_remove_mask_watchpoint (&current_target,
3334 addr, mask, rw);
9c06b0b4
TJB
3335}
3336
3337/* The documentation for this function is in its prototype declaration
3338 in target.h. */
3339
3340int
3341target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3342{
6c7e5e5c
TT
3343 return current_target.to_masked_watch_num_registers (&current_target,
3344 addr, mask);
9c06b0b4
TJB
3345}
3346
f1310107
TJB
3347/* The documentation for this function is in its prototype declaration
3348 in target.h. */
3349
3350int
3351target_ranged_break_num_registers (void)
3352{
a134316b 3353 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3354}
3355
02d27625
MM
3356/* See target.h. */
3357
02d27625
MM
3358struct btrace_target_info *
3359target_enable_btrace (ptid_t ptid)
3360{
6dc7fcf4 3361 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3362}
3363
3364/* See target.h. */
3365
3366void
3367target_disable_btrace (struct btrace_target_info *btinfo)
3368{
8dc292d3 3369 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3370}
3371
3372/* See target.h. */
3373
3374void
3375target_teardown_btrace (struct btrace_target_info *btinfo)
3376{
9ace480d 3377 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3378}
3379
3380/* See target.h. */
3381
969c39fb
MM
3382enum btrace_error
3383target_read_btrace (VEC (btrace_block_s) **btrace,
3384 struct btrace_target_info *btinfo,
02d27625
MM
3385 enum btrace_read_type type)
3386{
eb5b20d4 3387 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3388}
3389
d02ed0bb
MM
3390/* See target.h. */
3391
7c1687a9
MM
3392void
3393target_stop_recording (void)
3394{
ee97f592 3395 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3396}
3397
3398/* See target.h. */
3399
d02ed0bb 3400void
85e1311a 3401target_save_record (const char *filename)
d02ed0bb 3402{
f09e2107 3403 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3404}
3405
3406/* See target.h. */
3407
3408int
3409target_supports_delete_record (void)
3410{
3411 struct target_ops *t;
3412
3413 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3414 if (t->to_delete_record != delegate_delete_record
3415 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3416 return 1;
3417
3418 return 0;
3419}
3420
3421/* See target.h. */
3422
3423void
3424target_delete_record (void)
3425{
07366925 3426 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3427}
3428
3429/* See target.h. */
3430
3431int
3432target_record_is_replaying (void)
3433{
dd2e9d25 3434 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3435}
3436
3437/* See target.h. */
3438
3439void
3440target_goto_record_begin (void)
3441{
671e76cc 3442 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3443}
3444
3445/* See target.h. */
3446
3447void
3448target_goto_record_end (void)
3449{
e9179bb3 3450 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3451}
3452
3453/* See target.h. */
3454
3455void
3456target_goto_record (ULONGEST insn)
3457{
05969c84 3458 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3459}
3460
67c86d06
MM
3461/* See target.h. */
3462
3463void
3464target_insn_history (int size, int flags)
3465{
3679abfa 3466 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3467}
3468
3469/* See target.h. */
3470
3471void
3472target_insn_history_from (ULONGEST from, int size, int flags)
3473{
8444ab58 3474 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3475}
3476
3477/* See target.h. */
3478
3479void
3480target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3481{
c29302cc 3482 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3483}
3484
15984c13
MM
3485/* See target.h. */
3486
3487void
3488target_call_history (int size, int flags)
3489{
170049d4 3490 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3491}
3492
3493/* See target.h. */
3494
3495void
3496target_call_history_from (ULONGEST begin, int size, int flags)
3497{
16fc27d6 3498 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3499}
3500
3501/* See target.h. */
3502
3503void
3504target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3505{
115d9817 3506 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3507}
3508
ea001bdc
MM
3509/* See target.h. */
3510
3511const struct frame_unwind *
3512target_get_unwinder (void)
3513{
ac01945b 3514 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3515}
3516
3517/* See target.h. */
3518
3519const struct frame_unwind *
3520target_get_tailcall_unwinder (void)
3521{
ac01945b 3522 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3523}
3524
c0eca49f 3525/* Default implementation of to_decr_pc_after_break. */
118e6252 3526
c0eca49f
TT
3527static CORE_ADDR
3528default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3529 struct gdbarch *gdbarch)
3530{
118e6252
MM
3531 return gdbarch_decr_pc_after_break (gdbarch);
3532}
3533
3534/* See target.h. */
3535
3536CORE_ADDR
3537target_decr_pc_after_break (struct gdbarch *gdbarch)
3538{
c0eca49f 3539 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3540}
3541
5fff78c4
MM
3542/* See target.h. */
3543
3544void
3545target_prepare_to_generate_core (void)
3546{
3547 current_target.to_prepare_to_generate_core (&current_target);
3548}
3549
3550/* See target.h. */
3551
3552void
3553target_done_generating_core (void)
3554{
3555 current_target.to_done_generating_core (&current_target);
3556}
3557
c906108c 3558static void
fba45db2 3559setup_target_debug (void)
c906108c
SS
3560{
3561 memcpy (&debug_target, &current_target, sizeof debug_target);
3562
a7068b60 3563 init_debug_target (&current_target);
c906108c 3564}
c906108c 3565\f
c5aa993b
JM
3566
3567static char targ_desc[] =
3e43a32a
MS
3568"Names of targets and files being debugged.\nShows the entire \
3569stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3570core-file, and process, if any), as well as the symbol file name.";
3571
a53f3625 3572static void
a30bf1f1
TT
3573default_rcmd (struct target_ops *self, const char *command,
3574 struct ui_file *output)
a53f3625
TT
3575{
3576 error (_("\"monitor\" command not supported by this target."));
3577}
3578
96baa820
JM
3579static void
3580do_monitor_command (char *cmd,
3581 int from_tty)
3582{
96baa820
JM
3583 target_rcmd (cmd, gdb_stdtarg);
3584}
3585
87680a14
JB
3586/* Print the name of each layers of our target stack. */
3587
3588static void
3589maintenance_print_target_stack (char *cmd, int from_tty)
3590{
3591 struct target_ops *t;
3592
3593 printf_filtered (_("The current target stack is:\n"));
3594
3595 for (t = target_stack; t != NULL; t = t->beneath)
3596 {
3597 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3598 }
3599}
3600
329ea579
PA
3601/* Controls if targets can report that they can/are async. This is
3602 just for maintainers to use when debugging gdb. */
3603int target_async_permitted = 1;
c6ebd6cf
VP
3604
3605/* The set command writes to this variable. If the inferior is
b5419e49 3606 executing, target_async_permitted is *not* updated. */
329ea579 3607static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3608
3609static void
329ea579
PA
3610maint_set_target_async_command (char *args, int from_tty,
3611 struct cmd_list_element *c)
c6ebd6cf 3612{
c35b1492 3613 if (have_live_inferiors ())
c6ebd6cf
VP
3614 {
3615 target_async_permitted_1 = target_async_permitted;
3616 error (_("Cannot change this setting while the inferior is running."));
3617 }
3618
3619 target_async_permitted = target_async_permitted_1;
3620}
3621
3622static void
329ea579
PA
3623maint_show_target_async_command (struct ui_file *file, int from_tty,
3624 struct cmd_list_element *c,
3625 const char *value)
c6ebd6cf 3626{
3e43a32a
MS
3627 fprintf_filtered (file,
3628 _("Controlling the inferior in "
3629 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3630}
3631
d914c394
SS
3632/* Temporary copies of permission settings. */
3633
3634static int may_write_registers_1 = 1;
3635static int may_write_memory_1 = 1;
3636static int may_insert_breakpoints_1 = 1;
3637static int may_insert_tracepoints_1 = 1;
3638static int may_insert_fast_tracepoints_1 = 1;
3639static int may_stop_1 = 1;
3640
3641/* Make the user-set values match the real values again. */
3642
3643void
3644update_target_permissions (void)
3645{
3646 may_write_registers_1 = may_write_registers;
3647 may_write_memory_1 = may_write_memory;
3648 may_insert_breakpoints_1 = may_insert_breakpoints;
3649 may_insert_tracepoints_1 = may_insert_tracepoints;
3650 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3651 may_stop_1 = may_stop;
3652}
3653
3654/* The one function handles (most of) the permission flags in the same
3655 way. */
3656
3657static void
3658set_target_permissions (char *args, int from_tty,
3659 struct cmd_list_element *c)
3660{
3661 if (target_has_execution)
3662 {
3663 update_target_permissions ();
3664 error (_("Cannot change this setting while the inferior is running."));
3665 }
3666
3667 /* Make the real values match the user-changed values. */
3668 may_write_registers = may_write_registers_1;
3669 may_insert_breakpoints = may_insert_breakpoints_1;
3670 may_insert_tracepoints = may_insert_tracepoints_1;
3671 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3672 may_stop = may_stop_1;
3673 update_observer_mode ();
3674}
3675
3676/* Set memory write permission independently of observer mode. */
3677
3678static void
3679set_write_memory_permission (char *args, int from_tty,
3680 struct cmd_list_element *c)
3681{
3682 /* Make the real values match the user-changed values. */
3683 may_write_memory = may_write_memory_1;
3684 update_observer_mode ();
3685}
3686
3687
c906108c 3688void
fba45db2 3689initialize_targets (void)
c906108c
SS
3690{
3691 init_dummy_target ();
3692 push_target (&dummy_target);
3693
3694 add_info ("target", target_info, targ_desc);
3695 add_info ("files", target_info, targ_desc);
3696
ccce17b0 3697 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3698Set target debugging."), _("\
3699Show target debugging."), _("\
333dabeb 3700When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3701verbose."),
3702 set_targetdebug,
ccce17b0
YQ
3703 show_targetdebug,
3704 &setdebuglist, &showdebuglist);
3a11626d 3705
2bc416ba 3706 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3707 &trust_readonly, _("\
3708Set mode for reading from readonly sections."), _("\
3709Show mode for reading from readonly sections."), _("\
3a11626d
MS
3710When this mode is on, memory reads from readonly sections (such as .text)\n\
3711will be read from the object file instead of from the target. This will\n\
7915a72c 3712result in significant performance improvement for remote targets."),
2c5b56ce 3713 NULL,
920d2a44 3714 show_trust_readonly,
e707bbc2 3715 &setlist, &showlist);
96baa820
JM
3716
3717 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3718 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3719
87680a14
JB
3720 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3721 _("Print the name of each layer of the internal target stack."),
3722 &maintenanceprintlist);
3723
c6ebd6cf
VP
3724 add_setshow_boolean_cmd ("target-async", no_class,
3725 &target_async_permitted_1, _("\
3726Set whether gdb controls the inferior in asynchronous mode."), _("\
3727Show whether gdb controls the inferior in asynchronous mode."), _("\
3728Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3729 maint_set_target_async_command,
3730 maint_show_target_async_command,
3731 &maintenance_set_cmdlist,
3732 &maintenance_show_cmdlist);
c6ebd6cf 3733
d914c394
SS
3734 add_setshow_boolean_cmd ("may-write-registers", class_support,
3735 &may_write_registers_1, _("\
3736Set permission to write into registers."), _("\
3737Show permission to write into registers."), _("\
3738When this permission is on, GDB may write into the target's registers.\n\
3739Otherwise, any sort of write attempt will result in an error."),
3740 set_target_permissions, NULL,
3741 &setlist, &showlist);
3742
3743 add_setshow_boolean_cmd ("may-write-memory", class_support,
3744 &may_write_memory_1, _("\
3745Set permission to write into target memory."), _("\
3746Show permission to write into target memory."), _("\
3747When this permission is on, GDB may write into the target's memory.\n\
3748Otherwise, any sort of write attempt will result in an error."),
3749 set_write_memory_permission, NULL,
3750 &setlist, &showlist);
3751
3752 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3753 &may_insert_breakpoints_1, _("\
3754Set permission to insert breakpoints in the target."), _("\
3755Show permission to insert breakpoints in the target."), _("\
3756When this permission is on, GDB may insert breakpoints in the program.\n\
3757Otherwise, any sort of insertion attempt will result in an error."),
3758 set_target_permissions, NULL,
3759 &setlist, &showlist);
3760
3761 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3762 &may_insert_tracepoints_1, _("\
3763Set permission to insert tracepoints in the target."), _("\
3764Show permission to insert tracepoints in the target."), _("\
3765When this permission is on, GDB may insert tracepoints in the program.\n\
3766Otherwise, any sort of insertion attempt will result in an error."),
3767 set_target_permissions, NULL,
3768 &setlist, &showlist);
3769
3770 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3771 &may_insert_fast_tracepoints_1, _("\
3772Set permission to insert fast tracepoints in the target."), _("\
3773Show permission to insert fast tracepoints in the target."), _("\
3774When this permission is on, GDB may insert fast tracepoints.\n\
3775Otherwise, any sort of insertion attempt will result in an error."),
3776 set_target_permissions, NULL,
3777 &setlist, &showlist);
3778
3779 add_setshow_boolean_cmd ("may-interrupt", class_support,
3780 &may_stop_1, _("\
3781Set permission to interrupt or signal the target."), _("\
3782Show permission to interrupt or signal the target."), _("\
3783When this permission is on, GDB may interrupt/stop the target's execution.\n\
3784Otherwise, any attempt to interrupt or stop will be ignored."),
3785 set_target_permissions, NULL,
3786 &setlist, &showlist);
6a3cb8e8
PA
3787
3788 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3789 &auto_connect_native_target, _("\
3790Set whether GDB may automatically connect to the native target."), _("\
3791Show whether GDB may automatically connect to the native target."), _("\
3792When on, and GDB is not connected to a target yet, GDB\n\
3793attempts \"run\" and other commands with the native target."),
3794 NULL, show_auto_connect_native_target,
3795 &setlist, &showlist);
c906108c 3796}
This page took 2.688562 seconds and 4 git commands to generate.