Really fail inserting software breakpoints on read-only regions
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
9e35dae4 36#include "exceptions.h"
424163ea 37#include "target-descriptions.h"
e1ac3328 38#include "gdbthread.h"
b9db4ced 39#include "solib.h"
07b82ea5 40#include "exec.h"
edb3359d 41#include "inline-frame.h"
2f4d8875 42#include "tracepoint.h"
7313baad 43#include "gdb/fileio.h"
8ffcbaaf 44#include "agent.h"
8de71aab 45#include "auxv.h"
a7068b60 46#include "target-debug.h"
c906108c 47
a14ed312 48static void target_info (char *, int);
c906108c 49
f0f9ff95
TT
50static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51
0a4f40a2 52static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 53
5009afc5
AS
54static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
31568a15
TT
57static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
e0d24f8d 59
a30bf1f1 60static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 61
4229b31d
TT
62static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
098dba18
TT
65static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
8d657035
TT
68static void default_mourn_inferior (struct target_ops *self);
69
58a5184e
TT
70static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
936d2992
PA
77static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
8eaff7cd
TT
81static struct address_space *default_thread_address_space
82 (struct target_ops *self, ptid_t ptid);
83
c25c4a8b 84static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 85
555bbdeb
TT
86static int return_zero (struct target_ops *);
87
88static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 89
a14ed312 90static void target_command (char *, int);
c906108c 91
a14ed312 92static struct target_ops *find_default_run_target (char *);
c906108c 93
c2250ad1
UW
94static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
0b5a2719
TT
97static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
16f796b1
TT
101static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
770234d3
TT
104static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
fe31bf5b
TT
106static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
c0eca49f
TT
109static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
110 struct gdbarch *gdbarch);
111
a7068b60
TT
112static struct target_ops debug_target;
113
1101cb7b
TT
114#include "target-delegates.c"
115
a14ed312 116static void init_dummy_target (void);
c906108c 117
3cecbbbe
TT
118static void update_current_target (void);
119
89a1c21a
SM
120/* Vector of existing target structures. */
121typedef struct target_ops *target_ops_p;
122DEF_VEC_P (target_ops_p);
123static VEC (target_ops_p) *target_structs;
c906108c
SS
124
125/* The initial current target, so that there is always a semi-valid
126 current target. */
127
128static struct target_ops dummy_target;
129
130/* Top of target stack. */
131
258b763a 132static struct target_ops *target_stack;
c906108c
SS
133
134/* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137struct target_ops current_target;
138
139/* Command list for target. */
140
141static struct cmd_list_element *targetlist = NULL;
142
cf7a04e8
DJ
143/* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146static int trust_readonly = 0;
147
8defab1a
DJ
148/* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151static int show_memory_breakpoints = 0;
152
d914c394
SS
153/* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157int may_write_registers = 1;
158
159int may_write_memory = 1;
160
161int may_insert_breakpoints = 1;
162
163int may_insert_tracepoints = 1;
164
165int may_insert_fast_tracepoints = 1;
166
167int may_stop = 1;
168
c906108c
SS
169/* Non-zero if we want to see trace of target level stuff. */
170
ccce17b0 171static unsigned int targetdebug = 0;
3cecbbbe
TT
172
173static void
174set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175{
176 update_current_target ();
177}
178
920d2a44
AC
179static void
180show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184}
c906108c 185
a14ed312 186static void setup_target_debug (void);
c906108c 187
c906108c
SS
188/* The user just typed 'target' without the name of a target. */
189
c906108c 190static void
fba45db2 191target_command (char *arg, int from_tty)
c906108c
SS
192{
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195}
196
c35b1492
PA
197/* Default target_has_* methods for process_stratum targets. */
198
199int
200default_child_has_all_memory (struct target_ops *ops)
201{
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207}
208
209int
210default_child_has_memory (struct target_ops *ops)
211{
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217}
218
219int
220default_child_has_stack (struct target_ops *ops)
221{
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227}
228
229int
230default_child_has_registers (struct target_ops *ops)
231{
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237}
238
239int
aeaec162 240default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
241{
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
aeaec162 244 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
245 return 0;
246
247 return 1;
248}
249
250
251int
252target_has_all_memory_1 (void)
253{
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261}
262
263int
264target_has_memory_1 (void)
265{
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273}
274
275int
276target_has_stack_1 (void)
277{
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285}
286
287int
288target_has_registers_1 (void)
289{
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297}
298
299int
aeaec162 300target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
301{
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 305 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
306 return 1;
307
308 return 0;
309}
310
aeaec162
TT
311int
312target_has_execution_current (void)
313{
314 return target_has_execution_1 (inferior_ptid);
315}
316
c22a2b88
TT
317/* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
c906108c
SS
319
320void
c22a2b88 321complete_target_initialization (struct target_ops *t)
c906108c 322{
0088c768 323 /* Provide default values for all "must have" methods. */
0088c768 324
c35b1492 325 if (t->to_has_all_memory == NULL)
555bbdeb 326 t->to_has_all_memory = return_zero;
c35b1492
PA
327
328 if (t->to_has_memory == NULL)
555bbdeb 329 t->to_has_memory = return_zero;
c35b1492
PA
330
331 if (t->to_has_stack == NULL)
555bbdeb 332 t->to_has_stack = return_zero;
c35b1492
PA
333
334 if (t->to_has_registers == NULL)
555bbdeb 335 t->to_has_registers = return_zero;
c35b1492
PA
336
337 if (t->to_has_execution == NULL)
555bbdeb 338 t->to_has_execution = return_zero_has_execution;
1101cb7b 339
b3ccfe11
TT
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
1101cb7b 346 install_delegators (t);
c22a2b88
TT
347}
348
8981c758
TT
349/* This is used to implement the various target commands. */
350
351static void
352open_target (char *args, int from_tty, struct cmd_list_element *command)
353{
354 struct target_ops *ops = get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365}
366
c22a2b88
TT
367/* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371void
372add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374{
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
c35b1492 378
89a1c21a 379 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
380
381 if (targetlist == NULL)
1bedd215
AC
382 add_prefix_cmd ("target", class_run, target_command, _("\
383Connect to a target machine or process.\n\
c906108c
SS
384The first argument is the type or protocol of the target machine.\n\
385Remaining arguments are interpreted by the target protocol. For more\n\
386information on the arguments for a particular protocol, type\n\
1bedd215 387`help target ' followed by the protocol name."),
c906108c 388 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
9852c492
YQ
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394}
395
396/* Add a possible target architecture to the list. */
397
398void
399add_target (struct target_ops *t)
400{
401 add_target_with_completer (t, NULL);
c906108c
SS
402}
403
b48d48eb
MM
404/* See target.h. */
405
406void
407add_deprecated_target_alias (struct target_ops *t, char *alias)
408{
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
8981c758
TT
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
b48d48eb
MM
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419}
420
c906108c
SS
421/* Stub functions */
422
7d85a9c0
JB
423void
424target_kill (void)
425{
423a4807 426 current_target.to_kill (&current_target);
7d85a9c0
JB
427}
428
11cf8741 429void
9cbe5fff 430target_load (const char *arg, int from_tty)
11cf8741 431{
4e5d721f 432 target_dcache_invalidate ();
71a9f134 433 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
434}
435
d9d2d8b6
PA
436void
437target_terminal_inferior (void)
438{
439 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 440 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
441 this point the target is not async yet. However, if sync_execution
442 is not set, we know it will become async prior to resume. */
443 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
444 return;
445
446 /* If GDB is resuming the inferior in the foreground, install
447 inferior's terminal modes. */
d2f640d4 448 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 449}
136d6dae 450
b0ed115f
TT
451/* See target.h. */
452
453int
454target_supports_terminal_ours (void)
455{
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 {
460 if (t->to_terminal_ours != delegate_terminal_ours
461 && t->to_terminal_ours != tdefault_terminal_ours)
462 return 1;
463 }
464
465 return 0;
466}
467
c906108c 468static void
fba45db2 469tcomplain (void)
c906108c 470{
8a3fe4f8 471 error (_("You can't do that when your target is `%s'"),
c906108c
SS
472 current_target.to_shortname);
473}
474
475void
fba45db2 476noprocess (void)
c906108c 477{
8a3fe4f8 478 error (_("You can't do that without a process to debug."));
c906108c
SS
479}
480
c906108c 481static void
0a4f40a2 482default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 483{
a3f17187 484 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
485}
486
0ef643c8
JB
487/* A default implementation for the to_get_ada_task_ptid target method.
488
489 This function builds the PTID by using both LWP and TID as part of
490 the PTID lwp and tid elements. The pid used is the pid of the
491 inferior_ptid. */
492
2c0b251b 493static ptid_t
1e6b91a4 494default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
495{
496 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
497}
498
32231432 499static enum exec_direction_kind
4c612759 500default_execution_direction (struct target_ops *self)
32231432
PA
501{
502 if (!target_can_execute_reverse)
503 return EXEC_FORWARD;
504 else if (!target_can_async_p ())
505 return EXEC_FORWARD;
506 else
507 gdb_assert_not_reached ("\
508to_execution_direction must be implemented for reverse async");
509}
510
7998dfc3
AC
511/* Go through the target stack from top to bottom, copying over zero
512 entries in current_target, then filling in still empty entries. In
513 effect, we are doing class inheritance through the pushed target
514 vectors.
515
516 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
517 is currently implemented, is that it discards any knowledge of
518 which target an inherited method originally belonged to.
519 Consequently, new new target methods should instead explicitly and
520 locally search the target stack for the target that can handle the
521 request. */
c906108c
SS
522
523static void
7998dfc3 524update_current_target (void)
c906108c 525{
7998dfc3
AC
526 struct target_ops *t;
527
08d8bcd7 528 /* First, reset current's contents. */
7998dfc3
AC
529 memset (&current_target, 0, sizeof (current_target));
530
1101cb7b
TT
531 /* Install the delegators. */
532 install_delegators (&current_target);
533
be4ddd36
TT
534 current_target.to_stratum = target_stack->to_stratum;
535
7998dfc3
AC
536#define INHERIT(FIELD, TARGET) \
537 if (!current_target.FIELD) \
538 current_target.FIELD = (TARGET)->FIELD
539
be4ddd36
TT
540 /* Do not add any new INHERITs here. Instead, use the delegation
541 mechanism provided by make-target-delegates. */
7998dfc3
AC
542 for (t = target_stack; t; t = t->beneath)
543 {
544 INHERIT (to_shortname, t);
545 INHERIT (to_longname, t);
dc177b7a 546 INHERIT (to_attach_no_wait, t);
74174d2e 547 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 548 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 549 INHERIT (to_has_thread_control, t);
7998dfc3
AC
550 }
551#undef INHERIT
552
7998dfc3
AC
553 /* Finally, position the target-stack beneath the squashed
554 "current_target". That way code looking for a non-inherited
555 target method can quickly and simply find it. */
556 current_target.beneath = target_stack;
b4b61fdb
DJ
557
558 if (targetdebug)
559 setup_target_debug ();
c906108c
SS
560}
561
562/* Push a new target type into the stack of the existing target accessors,
563 possibly superseding some of the existing accessors.
564
c906108c
SS
565 Rather than allow an empty stack, we always have the dummy target at
566 the bottom stratum, so we can call the function vectors without
567 checking them. */
568
b26a4dcb 569void
fba45db2 570push_target (struct target_ops *t)
c906108c 571{
258b763a 572 struct target_ops **cur;
c906108c
SS
573
574 /* Check magic number. If wrong, it probably means someone changed
575 the struct definition, but not all the places that initialize one. */
576 if (t->to_magic != OPS_MAGIC)
577 {
c5aa993b
JM
578 fprintf_unfiltered (gdb_stderr,
579 "Magic number of %s target struct wrong\n",
580 t->to_shortname);
3e43a32a
MS
581 internal_error (__FILE__, __LINE__,
582 _("failed internal consistency check"));
c906108c
SS
583 }
584
258b763a
AC
585 /* Find the proper stratum to install this target in. */
586 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 587 {
258b763a 588 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
589 break;
590 }
591
258b763a 592 /* If there's already targets at this stratum, remove them. */
88c231eb 593 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
594 targets to CUR, and not just those at this stratum level. */
595 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
596 {
597 /* There's already something at this stratum level. Close it,
598 and un-hook it from the stack. */
599 struct target_ops *tmp = (*cur);
5d502164 600
258b763a
AC
601 (*cur) = (*cur)->beneath;
602 tmp->beneath = NULL;
460014f5 603 target_close (tmp);
258b763a 604 }
c906108c
SS
605
606 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
607 t->beneath = (*cur);
608 (*cur) = t;
c906108c
SS
609
610 update_current_target ();
c906108c
SS
611}
612
2bc416ba 613/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
614 Return how many times it was removed (0 or 1). */
615
616int
fba45db2 617unpush_target (struct target_ops *t)
c906108c 618{
258b763a
AC
619 struct target_ops **cur;
620 struct target_ops *tmp;
c906108c 621
c8d104ad
PA
622 if (t->to_stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
9b20d036 624 _("Attempt to unpush the dummy target"));
c8d104ad 625
c906108c 626 /* Look for the specified target. Note that we assume that a target
c378eb4e 627 can only occur once in the target stack. */
c906108c 628
258b763a
AC
629 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
630 {
631 if ((*cur) == t)
632 break;
633 }
c906108c 634
305436e0
PA
635 /* If we don't find target_ops, quit. Only open targets should be
636 closed. */
258b763a 637 if ((*cur) == NULL)
305436e0 638 return 0;
5269965e 639
c378eb4e 640 /* Unchain the target. */
258b763a
AC
641 tmp = (*cur);
642 (*cur) = (*cur)->beneath;
643 tmp->beneath = NULL;
c906108c
SS
644
645 update_current_target ();
c906108c 646
305436e0
PA
647 /* Finally close the target. Note we do this after unchaining, so
648 any target method calls from within the target_close
649 implementation don't end up in T anymore. */
460014f5 650 target_close (t);
305436e0 651
c906108c
SS
652 return 1;
653}
654
aa76d38d 655void
460014f5 656pop_all_targets_above (enum strata above_stratum)
aa76d38d 657{
87ab71f0 658 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 659 {
aa76d38d
PA
660 if (!unpush_target (target_stack))
661 {
662 fprintf_unfiltered (gdb_stderr,
663 "pop_all_targets couldn't find target %s\n",
b52323fa 664 target_stack->to_shortname);
aa76d38d
PA
665 internal_error (__FILE__, __LINE__,
666 _("failed internal consistency check"));
667 break;
668 }
669 }
670}
671
87ab71f0 672void
460014f5 673pop_all_targets (void)
87ab71f0 674{
460014f5 675 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
676}
677
c0edd9ed
JK
678/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
679
680int
681target_is_pushed (struct target_ops *t)
682{
84202f9c 683 struct target_ops *cur;
c0edd9ed
JK
684
685 /* Check magic number. If wrong, it probably means someone changed
686 the struct definition, but not all the places that initialize one. */
687 if (t->to_magic != OPS_MAGIC)
688 {
689 fprintf_unfiltered (gdb_stderr,
690 "Magic number of %s target struct wrong\n",
691 t->to_shortname);
3e43a32a
MS
692 internal_error (__FILE__, __LINE__,
693 _("failed internal consistency check"));
c0edd9ed
JK
694 }
695
84202f9c
TT
696 for (cur = target_stack; cur != NULL; cur = cur->beneath)
697 if (cur == t)
c0edd9ed
JK
698 return 1;
699
700 return 0;
701}
702
f0f9ff95
TT
703/* Default implementation of to_get_thread_local_address. */
704
705static void
706generic_tls_error (void)
707{
708 throw_error (TLS_GENERIC_ERROR,
709 _("Cannot find thread-local variables on this target"));
710}
711
72f5cf0e 712/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
713 current thread's thread-local storage with offset OFFSET. */
714CORE_ADDR
715target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
716{
717 volatile CORE_ADDR addr = 0;
f0f9ff95 718 struct target_ops *target = &current_target;
9e35dae4 719
f0f9ff95 720 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
721 {
722 ptid_t ptid = inferior_ptid;
723 volatile struct gdb_exception ex;
724
725 TRY_CATCH (ex, RETURN_MASK_ALL)
726 {
727 CORE_ADDR lm_addr;
728
729 /* Fetch the load module address for this objfile. */
f5656ead 730 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 731 objfile);
9e35dae4 732
3e43a32a
MS
733 addr = target->to_get_thread_local_address (target, ptid,
734 lm_addr, offset);
9e35dae4
DJ
735 }
736 /* If an error occurred, print TLS related messages here. Otherwise,
737 throw the error to some higher catcher. */
738 if (ex.reason < 0)
739 {
740 int objfile_is_library = (objfile->flags & OBJF_SHARED);
741
742 switch (ex.error)
743 {
744 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
745 error (_("Cannot find thread-local variables "
746 "in this thread library."));
9e35dae4
DJ
747 break;
748 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
749 if (objfile_is_library)
750 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 751 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
752 else
753 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 754 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
755 break;
756 case TLS_NOT_ALLOCATED_YET_ERROR:
757 if (objfile_is_library)
758 error (_("The inferior has not yet allocated storage for"
759 " thread-local variables in\n"
760 "the shared library `%s'\n"
761 "for %s"),
4262abfb 762 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
4262abfb 768 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
769 break;
770 case TLS_GENERIC_ERROR:
771 if (objfile_is_library)
772 error (_("Cannot find thread-local storage for %s, "
773 "shared library %s:\n%s"),
774 target_pid_to_str (ptid),
4262abfb 775 objfile_name (objfile), ex.message);
9e35dae4
DJ
776 else
777 error (_("Cannot find thread-local storage for %s, "
778 "executable file %s:\n%s"),
779 target_pid_to_str (ptid),
4262abfb 780 objfile_name (objfile), ex.message);
9e35dae4
DJ
781 break;
782 default:
783 throw_exception (ex);
784 break;
785 }
786 }
787 }
788 /* It wouldn't be wrong here to try a gdbarch method, too; finding
789 TLS is an ABI-specific thing. But we don't do that yet. */
790 else
791 error (_("Cannot find thread-local variables on this target"));
792
793 return addr;
794}
795
6be7b56e 796const char *
01cb8804 797target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
798{
799#define CASE(X) case X: return #X
01cb8804 800 switch (status)
6be7b56e
PA
801 {
802 CASE(TARGET_XFER_E_IO);
bc113b4e 803 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
804 default:
805 return "<unknown>";
806 }
807#undef CASE
808};
809
810
c906108c
SS
811#undef MIN
812#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
813
814/* target_read_string -- read a null terminated string, up to LEN bytes,
815 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
816 Set *STRING to a pointer to malloc'd memory containing the data; the caller
817 is responsible for freeing it. Return the number of bytes successfully
818 read. */
819
820int
fba45db2 821target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 822{
c2e8b827 823 int tlen, offset, i;
1b0ba102 824 gdb_byte buf[4];
c906108c
SS
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
6217bf3e
MS
831 gdb_assert (string);
832
c906108c
SS
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = xmalloc (buffer_allocated);
836 bufptr = buffer;
837
c906108c
SS
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
1b0ba102 843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
c378eb4e 847 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
848 a single byte. */
849 tlen = 1;
850 offset = 0;
b8eb5af0 851 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
5d502164 859
c906108c
SS
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
c5aa993b 880done:
6217bf3e 881 *string = buffer;
c906108c
SS
882 if (errnop != NULL)
883 *errnop = errcode;
c906108c
SS
884 return nbytes_read;
885}
886
07b82ea5
PA
887struct target_section_table *
888target_get_section_table (struct target_ops *target)
889{
7e35c012 890 return (*target->to_get_section_table) (target);
07b82ea5
PA
891}
892
8db32d44 893/* Find a section containing ADDR. */
07b82ea5 894
0542c86d 895struct target_section *
8db32d44
AC
896target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897{
07b82ea5 898 struct target_section_table *table = target_get_section_table (target);
0542c86d 899 struct target_section *secp;
07b82ea5
PA
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910}
911
0fec99e8
PA
912
913/* Helper for the memory xfer routines. Checks the attributes of the
914 memory region of MEMADDR against the read or write being attempted.
915 If the access is permitted returns true, otherwise returns false.
916 REGION_P is an optional output parameter. If not-NULL, it is
917 filled with a pointer to the memory region of MEMADDR. REG_LEN
918 returns LEN trimmed to the end of the region. This is how much the
919 caller can continue requesting, if the access is permitted. A
920 single xfer request must not straddle memory region boundaries. */
921
922static int
923memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
924 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
925 struct mem_region **region_p)
926{
927 struct mem_region *region;
928
929 region = lookup_mem_region (memaddr);
930
931 if (region_p != NULL)
932 *region_p = region;
933
934 switch (region->attrib.mode)
935 {
936 case MEM_RO:
937 if (writebuf != NULL)
938 return 0;
939 break;
940
941 case MEM_WO:
942 if (readbuf != NULL)
943 return 0;
944 break;
945
946 case MEM_FLASH:
947 /* We only support writing to flash during "load" for now. */
948 if (writebuf != NULL)
949 error (_("Writing to flash memory forbidden in this context"));
950 break;
951
952 case MEM_NONE:
953 return 0;
954 }
955
956 /* region->hi == 0 means there's no upper bound. */
957 if (memaddr + len < region->hi || region->hi == 0)
958 *reg_len = len;
959 else
960 *reg_len = region->hi - memaddr;
961
962 return 1;
963}
964
9f713294
YQ
965/* Read memory from more than one valid target. A core file, for
966 instance, could have some of memory but delegate other bits to
967 the target below it. So, we must manually try all targets. */
968
9b409511 969static enum target_xfer_status
17fde6d0 970raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
971 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
972 ULONGEST *xfered_len)
9f713294 973{
9b409511 974 enum target_xfer_status res;
9f713294
YQ
975
976 do
977 {
978 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
979 readbuf, writebuf, memaddr, len,
980 xfered_len);
981 if (res == TARGET_XFER_OK)
9f713294
YQ
982 break;
983
633785ff 984 /* Stop if the target reports that the memory is not available. */
bc113b4e 985 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
986 break;
987
9f713294
YQ
988 /* We want to continue past core files to executables, but not
989 past a running target's memory. */
990 if (ops->to_has_all_memory (ops))
991 break;
992
993 ops = ops->beneath;
994 }
995 while (ops != NULL);
996
0f26cec1
PA
997 /* The cache works at the raw memory level. Make sure the cache
998 gets updated with raw contents no matter what kind of memory
999 object was originally being written. Note we do write-through
1000 first, so that if it fails, we don't write to the cache contents
1001 that never made it to the target. */
1002 if (writebuf != NULL
1003 && !ptid_equal (inferior_ptid, null_ptid)
1004 && target_dcache_init_p ()
1005 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1006 {
1007 DCACHE *dcache = target_dcache_get ();
1008
1009 /* Note that writing to an area of memory which wasn't present
1010 in the cache doesn't cause it to be loaded in. */
1011 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1012 }
1013
9f713294
YQ
1014 return res;
1015}
1016
7f79c47e
DE
1017/* Perform a partial memory transfer.
1018 For docs see target.h, to_xfer_partial. */
cf7a04e8 1019
9b409511 1020static enum target_xfer_status
f0ba3972 1021memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1022 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1023 ULONGEST len, ULONGEST *xfered_len)
0779438d 1024{
9b409511 1025 enum target_xfer_status res;
0fec99e8 1026 ULONGEST reg_len;
cf7a04e8 1027 struct mem_region *region;
4e5d721f 1028 struct inferior *inf;
cf7a04e8 1029
07b82ea5
PA
1030 /* For accesses to unmapped overlay sections, read directly from
1031 files. Must do this first, as MEMADDR may need adjustment. */
1032 if (readbuf != NULL && overlay_debugging)
1033 {
1034 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1035
07b82ea5
PA
1036 if (pc_in_unmapped_range (memaddr, section))
1037 {
1038 struct target_section_table *table
1039 = target_get_section_table (ops);
1040 const char *section_name = section->the_bfd_section->name;
5d502164 1041
07b82ea5
PA
1042 memaddr = overlay_mapped_address (memaddr, section);
1043 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1044 memaddr, len, xfered_len,
07b82ea5
PA
1045 table->sections,
1046 table->sections_end,
1047 section_name);
1048 }
1049 }
1050
1051 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1052 if (readbuf != NULL && trust_readonly)
1053 {
0542c86d 1054 struct target_section *secp;
07b82ea5 1055 struct target_section_table *table;
cf7a04e8
DJ
1056
1057 secp = target_section_by_addr (ops, memaddr);
1058 if (secp != NULL
2b2848e2
DE
1059 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1060 secp->the_bfd_section)
cf7a04e8 1061 & SEC_READONLY))
07b82ea5
PA
1062 {
1063 table = target_get_section_table (ops);
1064 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1065 memaddr, len, xfered_len,
07b82ea5
PA
1066 table->sections,
1067 table->sections_end,
1068 NULL);
1069 }
98646950
UW
1070 }
1071
cf7a04e8 1072 /* Try GDB's internal data cache. */
cf7a04e8 1073
0fec99e8
PA
1074 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1075 &region))
1076 return TARGET_XFER_E_IO;
cf7a04e8 1077
6c95b8df
PA
1078 if (!ptid_equal (inferior_ptid, null_ptid))
1079 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1080 else
1081 inf = NULL;
4e5d721f
DE
1082
1083 if (inf != NULL
0f26cec1 1084 && readbuf != NULL
2f4d8875
PA
1085 /* The dcache reads whole cache lines; that doesn't play well
1086 with reading from a trace buffer, because reading outside of
1087 the collected memory range fails. */
1088 && get_traceframe_number () == -1
4e5d721f 1089 && (region->attrib.cache
29453a14
YQ
1090 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1091 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1092 {
2a2f9fe4
YQ
1093 DCACHE *dcache = target_dcache_get_or_init ();
1094
0f26cec1
PA
1095 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1096 reg_len, xfered_len);
cf7a04e8
DJ
1097 }
1098
1099 /* If none of those methods found the memory we wanted, fall back
1100 to a target partial transfer. Normally a single call to
1101 to_xfer_partial is enough; if it doesn't recognize an object
1102 it will call the to_xfer_partial of the next target down.
1103 But for memory this won't do. Memory is the only target
9b409511
YQ
1104 object which can be read from more than one valid target.
1105 A core file, for instance, could have some of memory but
1106 delegate other bits to the target below it. So, we must
1107 manually try all targets. */
1108
1109 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1110 xfered_len);
cf7a04e8
DJ
1111
1112 /* If we still haven't got anything, return the last error. We
1113 give up. */
1114 return res;
0779438d
AC
1115}
1116
f0ba3972
PA
1117/* Perform a partial memory transfer. For docs see target.h,
1118 to_xfer_partial. */
1119
9b409511 1120static enum target_xfer_status
f0ba3972 1121memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1122 gdb_byte *readbuf, const gdb_byte *writebuf,
1123 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1124{
9b409511 1125 enum target_xfer_status res;
f0ba3972
PA
1126
1127 /* Zero length requests are ok and require no work. */
1128 if (len == 0)
9b409511 1129 return TARGET_XFER_EOF;
f0ba3972
PA
1130
1131 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1132 breakpoint insns, thus hiding out from higher layers whether
1133 there are software breakpoints inserted in the code stream. */
1134 if (readbuf != NULL)
1135 {
9b409511
YQ
1136 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1137 xfered_len);
f0ba3972 1138
9b409511 1139 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1140 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1141 }
1142 else
1143 {
1144 void *buf;
1145 struct cleanup *old_chain;
1146
67c059c2
AB
1147 /* A large write request is likely to be partially satisfied
1148 by memory_xfer_partial_1. We will continually malloc
1149 and free a copy of the entire write request for breakpoint
1150 shadow handling even though we only end up writing a small
1151 subset of it. Cap writes to 4KB to mitigate this. */
1152 len = min (4096, len);
1153
f0ba3972
PA
1154 buf = xmalloc (len);
1155 old_chain = make_cleanup (xfree, buf);
1156 memcpy (buf, writebuf, len);
1157
1158 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1159 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1160 xfered_len);
f0ba3972
PA
1161
1162 do_cleanups (old_chain);
1163 }
1164
1165 return res;
1166}
1167
8defab1a
DJ
1168static void
1169restore_show_memory_breakpoints (void *arg)
1170{
1171 show_memory_breakpoints = (uintptr_t) arg;
1172}
1173
1174struct cleanup *
1175make_show_memory_breakpoints_cleanup (int show)
1176{
1177 int current = show_memory_breakpoints;
8defab1a 1178
5d502164 1179 show_memory_breakpoints = show;
8defab1a
DJ
1180 return make_cleanup (restore_show_memory_breakpoints,
1181 (void *) (uintptr_t) current);
1182}
1183
7f79c47e
DE
1184/* For docs see target.h, to_xfer_partial. */
1185
9b409511 1186enum target_xfer_status
27394598
AC
1187target_xfer_partial (struct target_ops *ops,
1188 enum target_object object, const char *annex,
4ac248ca 1189 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1190 ULONGEST offset, ULONGEST len,
1191 ULONGEST *xfered_len)
27394598 1192{
9b409511 1193 enum target_xfer_status retval;
27394598
AC
1194
1195 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1196
ce6d0892
YQ
1197 /* Transfer is done when LEN is zero. */
1198 if (len == 0)
9b409511 1199 return TARGET_XFER_EOF;
ce6d0892 1200
d914c394
SS
1201 if (writebuf && !may_write_memory)
1202 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1203 core_addr_to_string_nz (offset), plongest (len));
1204
9b409511
YQ
1205 *xfered_len = 0;
1206
cf7a04e8
DJ
1207 /* If this is a memory transfer, let the memory-specific code
1208 have a look at it instead. Memory transfers are more
1209 complicated. */
29453a14
YQ
1210 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1211 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1212 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1213 writebuf, offset, len, xfered_len);
9f713294 1214 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1215 {
0fec99e8
PA
1216 /* Skip/avoid accessing the target if the memory region
1217 attributes block the access. Check this here instead of in
1218 raw_memory_xfer_partial as otherwise we'd end up checking
1219 this twice in the case of the memory_xfer_partial path is
1220 taken; once before checking the dcache, and another in the
1221 tail call to raw_memory_xfer_partial. */
1222 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1223 NULL))
1224 return TARGET_XFER_E_IO;
1225
9f713294 1226 /* Request the normal memory object from other layers. */
9b409511
YQ
1227 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1228 xfered_len);
cf7a04e8 1229 }
9f713294
YQ
1230 else
1231 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1232 writebuf, offset, len, xfered_len);
cf7a04e8 1233
27394598
AC
1234 if (targetdebug)
1235 {
1236 const unsigned char *myaddr = NULL;
1237
1238 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1239 "%s:target_xfer_partial "
9b409511 1240 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1241 ops->to_shortname,
1242 (int) object,
1243 (annex ? annex : "(null)"),
53b71562
JB
1244 host_address_to_string (readbuf),
1245 host_address_to_string (writebuf),
0b1553bc 1246 core_addr_to_string_nz (offset),
9b409511
YQ
1247 pulongest (len), retval,
1248 pulongest (*xfered_len));
27394598
AC
1249
1250 if (readbuf)
1251 myaddr = readbuf;
1252 if (writebuf)
1253 myaddr = writebuf;
9b409511 1254 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1255 {
1256 int i;
2bc416ba 1257
27394598 1258 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1259 for (i = 0; i < *xfered_len; i++)
27394598 1260 {
53b71562 1261 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1262 {
1263 if (targetdebug < 2 && i > 0)
1264 {
1265 fprintf_unfiltered (gdb_stdlog, " ...");
1266 break;
1267 }
1268 fprintf_unfiltered (gdb_stdlog, "\n");
1269 }
2bc416ba 1270
27394598
AC
1271 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1272 }
1273 }
2bc416ba 1274
27394598
AC
1275 fputc_unfiltered ('\n', gdb_stdlog);
1276 }
9b409511
YQ
1277
1278 /* Check implementations of to_xfer_partial update *XFERED_LEN
1279 properly. Do assertion after printing debug messages, so that we
1280 can find more clues on assertion failure from debugging messages. */
bc113b4e 1281 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1282 gdb_assert (*xfered_len > 0);
1283
27394598
AC
1284 return retval;
1285}
1286
578d3588
PA
1287/* Read LEN bytes of target memory at address MEMADDR, placing the
1288 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1289 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1290
1291 If an error occurs, no guarantee is made about the contents of the data at
1292 MYADDR. In particular, the caller should not depend upon partial reads
1293 filling the buffer with good data. There is no way for the caller to know
1294 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1295 deal with partial reads should call target_read (which will retry until
c378eb4e 1296 it makes no progress, and then return how much was transferred). */
c906108c
SS
1297
1298int
1b162304 1299target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1300{
c35b1492
PA
1301 /* Dispatch to the topmost target, not the flattened current_target.
1302 Memory accesses check target->to_has_(all_)memory, and the
1303 flattened target doesn't inherit those. */
1304 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1305 myaddr, memaddr, len) == len)
1306 return 0;
0779438d 1307 else
578d3588 1308 return TARGET_XFER_E_IO;
c906108c
SS
1309}
1310
721ec300
GB
1311/* See target/target.h. */
1312
1313int
1314target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1315{
1316 gdb_byte buf[4];
1317 int r;
1318
1319 r = target_read_memory (memaddr, buf, sizeof buf);
1320 if (r != 0)
1321 return r;
1322 *result = extract_unsigned_integer (buf, sizeof buf,
1323 gdbarch_byte_order (target_gdbarch ()));
1324 return 0;
1325}
1326
aee4bf85
PA
1327/* Like target_read_memory, but specify explicitly that this is a read
1328 from the target's raw memory. That is, this read bypasses the
1329 dcache, breakpoint shadowing, etc. */
1330
1331int
1332target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1333{
1334 /* See comment in target_read_memory about why the request starts at
1335 current_target.beneath. */
1336 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1338 return 0;
1339 else
1340 return TARGET_XFER_E_IO;
1341}
1342
4e5d721f
DE
1343/* Like target_read_memory, but specify explicitly that this is a read from
1344 the target's stack. This may trigger different cache behavior. */
1345
1346int
45aa4659 1347target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1348{
aee4bf85
PA
1349 /* See comment in target_read_memory about why the request starts at
1350 current_target.beneath. */
4e5d721f
DE
1351 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1352 myaddr, memaddr, len) == len)
1353 return 0;
1354 else
578d3588 1355 return TARGET_XFER_E_IO;
4e5d721f
DE
1356}
1357
29453a14
YQ
1358/* Like target_read_memory, but specify explicitly that this is a read from
1359 the target's code. This may trigger different cache behavior. */
1360
1361int
1362target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1363{
aee4bf85
PA
1364 /* See comment in target_read_memory about why the request starts at
1365 current_target.beneath. */
29453a14
YQ
1366 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return TARGET_XFER_E_IO;
1371}
1372
7f79c47e 1373/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1374 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1375 error occurs. If an error occurs, no guarantee is made about how
1376 much data got written. Callers that can deal with partial writes
1377 should call target_write. */
7f79c47e 1378
c906108c 1379int
45aa4659 1380target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1381{
aee4bf85
PA
1382 /* See comment in target_read_memory about why the request starts at
1383 current_target.beneath. */
c35b1492 1384 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1385 myaddr, memaddr, len) == len)
1386 return 0;
0779438d 1387 else
578d3588 1388 return TARGET_XFER_E_IO;
c906108c 1389}
c5aa993b 1390
f0ba3972 1391/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1392 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1393 if any error occurs. If an error occurs, no guarantee is made
1394 about how much data got written. Callers that can deal with
1395 partial writes should call target_write. */
f0ba3972
PA
1396
1397int
45aa4659 1398target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1399{
aee4bf85
PA
1400 /* See comment in target_read_memory about why the request starts at
1401 current_target.beneath. */
f0ba3972
PA
1402 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1403 myaddr, memaddr, len) == len)
1404 return 0;
1405 else
578d3588 1406 return TARGET_XFER_E_IO;
f0ba3972
PA
1407}
1408
fd79ecee
DJ
1409/* Fetch the target's memory map. */
1410
1411VEC(mem_region_s) *
1412target_memory_map (void)
1413{
1414 VEC(mem_region_s) *result;
1415 struct mem_region *last_one, *this_one;
1416 int ix;
1417 struct target_ops *t;
1418
6b2c5a57 1419 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1420 if (result == NULL)
1421 return NULL;
1422
1423 qsort (VEC_address (mem_region_s, result),
1424 VEC_length (mem_region_s, result),
1425 sizeof (struct mem_region), mem_region_cmp);
1426
1427 /* Check that regions do not overlap. Simultaneously assign
1428 a numbering for the "mem" commands to use to refer to
1429 each region. */
1430 last_one = NULL;
1431 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1432 {
1433 this_one->number = ix;
1434
1435 if (last_one && last_one->hi > this_one->lo)
1436 {
1437 warning (_("Overlapping regions in memory map: ignoring"));
1438 VEC_free (mem_region_s, result);
1439 return NULL;
1440 }
1441 last_one = this_one;
1442 }
1443
1444 return result;
1445}
1446
a76d924d
DJ
1447void
1448target_flash_erase (ULONGEST address, LONGEST length)
1449{
e8a6c6ac 1450 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1451}
1452
1453void
1454target_flash_done (void)
1455{
f6fb2925 1456 current_target.to_flash_done (&current_target);
a76d924d
DJ
1457}
1458
920d2a44
AC
1459static void
1460show_trust_readonly (struct ui_file *file, int from_tty,
1461 struct cmd_list_element *c, const char *value)
1462{
3e43a32a
MS
1463 fprintf_filtered (file,
1464 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1465 value);
1466}
3a11626d 1467
7f79c47e 1468/* Target vector read/write partial wrapper functions. */
0088c768 1469
9b409511 1470static enum target_xfer_status
1e3ff5ad
AC
1471target_read_partial (struct target_ops *ops,
1472 enum target_object object,
1b0ba102 1473 const char *annex, gdb_byte *buf,
9b409511
YQ
1474 ULONGEST offset, ULONGEST len,
1475 ULONGEST *xfered_len)
1e3ff5ad 1476{
9b409511
YQ
1477 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1478 xfered_len);
1e3ff5ad
AC
1479}
1480
8a55ffb0 1481static enum target_xfer_status
1e3ff5ad
AC
1482target_write_partial (struct target_ops *ops,
1483 enum target_object object,
1b0ba102 1484 const char *annex, const gdb_byte *buf,
9b409511 1485 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1486{
9b409511
YQ
1487 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1488 xfered_len);
1e3ff5ad
AC
1489}
1490
1491/* Wrappers to perform the full transfer. */
7f79c47e
DE
1492
1493/* For docs on target_read see target.h. */
1494
1e3ff5ad
AC
1495LONGEST
1496target_read (struct target_ops *ops,
1497 enum target_object object,
1b0ba102 1498 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1499 ULONGEST offset, LONGEST len)
1500{
1501 LONGEST xfered = 0;
5d502164 1502
1e3ff5ad
AC
1503 while (xfered < len)
1504 {
9b409511
YQ
1505 ULONGEST xfered_len;
1506 enum target_xfer_status status;
1507
1508 status = target_read_partial (ops, object, annex,
1509 (gdb_byte *) buf + xfered,
1510 offset + xfered, len - xfered,
1511 &xfered_len);
5d502164 1512
1e3ff5ad 1513 /* Call an observer, notifying them of the xfer progress? */
9b409511 1514 if (status == TARGET_XFER_EOF)
13547ab6 1515 return xfered;
9b409511
YQ
1516 else if (status == TARGET_XFER_OK)
1517 {
1518 xfered += xfered_len;
1519 QUIT;
1520 }
1521 else
0088c768 1522 return -1;
9b409511 1523
1e3ff5ad
AC
1524 }
1525 return len;
1526}
1527
f1a507a1
JB
1528/* Assuming that the entire [begin, end) range of memory cannot be
1529 read, try to read whatever subrange is possible to read.
1530
1531 The function returns, in RESULT, either zero or one memory block.
1532 If there's a readable subrange at the beginning, it is completely
1533 read and returned. Any further readable subrange will not be read.
1534 Otherwise, if there's a readable subrange at the end, it will be
1535 completely read and returned. Any readable subranges before it
1536 (obviously, not starting at the beginning), will be ignored. In
1537 other cases -- either no readable subrange, or readable subrange(s)
1538 that is neither at the beginning, or end, nothing is returned.
1539
1540 The purpose of this function is to handle a read across a boundary
1541 of accessible memory in a case when memory map is not available.
1542 The above restrictions are fine for this case, but will give
1543 incorrect results if the memory is 'patchy'. However, supporting
1544 'patchy' memory would require trying to read every single byte,
1545 and it seems unacceptable solution. Explicit memory map is
1546 recommended for this case -- and target_read_memory_robust will
1547 take care of reading multiple ranges then. */
8dedea02
VP
1548
1549static void
3e43a32a
MS
1550read_whatever_is_readable (struct target_ops *ops,
1551 ULONGEST begin, ULONGEST end,
8dedea02 1552 VEC(memory_read_result_s) **result)
d5086790 1553{
f1a507a1 1554 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1555 ULONGEST current_begin = begin;
1556 ULONGEST current_end = end;
1557 int forward;
1558 memory_read_result_s r;
9b409511 1559 ULONGEST xfered_len;
8dedea02
VP
1560
1561 /* If we previously failed to read 1 byte, nothing can be done here. */
1562 if (end - begin <= 1)
13b3fd9b
MS
1563 {
1564 xfree (buf);
1565 return;
1566 }
8dedea02
VP
1567
1568 /* Check that either first or the last byte is readable, and give up
c378eb4e 1569 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1570 at the boundary of accessible region. */
1571 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1572 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1573 {
1574 forward = 1;
1575 ++current_begin;
1576 }
1577 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1578 buf + (end-begin) - 1, end - 1, 1,
1579 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1580 {
1581 forward = 0;
1582 --current_end;
1583 }
1584 else
1585 {
13b3fd9b 1586 xfree (buf);
8dedea02
VP
1587 return;
1588 }
1589
1590 /* Loop invariant is that the [current_begin, current_end) was previously
1591 found to be not readable as a whole.
1592
1593 Note loop condition -- if the range has 1 byte, we can't divide the range
1594 so there's no point trying further. */
1595 while (current_end - current_begin > 1)
1596 {
1597 ULONGEST first_half_begin, first_half_end;
1598 ULONGEST second_half_begin, second_half_end;
1599 LONGEST xfer;
8dedea02 1600 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1601
8dedea02
VP
1602 if (forward)
1603 {
1604 first_half_begin = current_begin;
1605 first_half_end = middle;
1606 second_half_begin = middle;
1607 second_half_end = current_end;
1608 }
1609 else
1610 {
1611 first_half_begin = middle;
1612 first_half_end = current_end;
1613 second_half_begin = current_begin;
1614 second_half_end = middle;
1615 }
1616
1617 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1618 buf + (first_half_begin - begin),
1619 first_half_begin,
1620 first_half_end - first_half_begin);
1621
1622 if (xfer == first_half_end - first_half_begin)
1623 {
c378eb4e 1624 /* This half reads up fine. So, the error must be in the
3e43a32a 1625 other half. */
8dedea02
VP
1626 current_begin = second_half_begin;
1627 current_end = second_half_end;
1628 }
1629 else
1630 {
c378eb4e
MS
1631 /* This half is not readable. Because we've tried one byte, we
1632 know some part of this half if actually redable. Go to the next
8dedea02
VP
1633 iteration to divide again and try to read.
1634
1635 We don't handle the other half, because this function only tries
1636 to read a single readable subrange. */
1637 current_begin = first_half_begin;
1638 current_end = first_half_end;
1639 }
1640 }
1641
1642 if (forward)
1643 {
1644 /* The [begin, current_begin) range has been read. */
1645 r.begin = begin;
1646 r.end = current_begin;
1647 r.data = buf;
1648 }
1649 else
1650 {
1651 /* The [current_end, end) range has been read. */
1652 LONGEST rlen = end - current_end;
f1a507a1 1653
8dedea02
VP
1654 r.data = xmalloc (rlen);
1655 memcpy (r.data, buf + current_end - begin, rlen);
1656 r.begin = current_end;
1657 r.end = end;
1658 xfree (buf);
1659 }
1660 VEC_safe_push(memory_read_result_s, (*result), &r);
1661}
1662
1663void
1664free_memory_read_result_vector (void *x)
1665{
1666 VEC(memory_read_result_s) *v = x;
1667 memory_read_result_s *current;
1668 int ix;
1669
1670 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1671 {
1672 xfree (current->data);
1673 }
1674 VEC_free (memory_read_result_s, v);
1675}
1676
1677VEC(memory_read_result_s) *
1678read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1679{
1680 VEC(memory_read_result_s) *result = 0;
1681
1682 LONGEST xfered = 0;
d5086790
VP
1683 while (xfered < len)
1684 {
8dedea02
VP
1685 struct mem_region *region = lookup_mem_region (offset + xfered);
1686 LONGEST rlen;
5d502164 1687
8dedea02
VP
1688 /* If there is no explicit region, a fake one should be created. */
1689 gdb_assert (region);
1690
1691 if (region->hi == 0)
1692 rlen = len - xfered;
1693 else
1694 rlen = region->hi - offset;
1695
1696 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1697 {
c378eb4e 1698 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1699 if the region is explicitly marked inaccessible, or
1700 'inaccessible-by-default' is in effect. */
1701 xfered += rlen;
1702 }
1703 else
1704 {
1705 LONGEST to_read = min (len - xfered, rlen);
1706 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1707
1708 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1709 (gdb_byte *) buffer,
1710 offset + xfered, to_read);
1711 /* Call an observer, notifying them of the xfer progress? */
d5086790 1712 if (xfer <= 0)
d5086790 1713 {
c378eb4e 1714 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1715 some subrange. */
1716 xfree (buffer);
3e43a32a
MS
1717 read_whatever_is_readable (ops, offset + xfered,
1718 offset + xfered + to_read, &result);
8dedea02 1719 xfered += to_read;
d5086790 1720 }
8dedea02
VP
1721 else
1722 {
1723 struct memory_read_result r;
1724 r.data = buffer;
1725 r.begin = offset + xfered;
1726 r.end = r.begin + xfer;
1727 VEC_safe_push (memory_read_result_s, result, &r);
1728 xfered += xfer;
1729 }
1730 QUIT;
d5086790 1731 }
d5086790 1732 }
8dedea02 1733 return result;
d5086790
VP
1734}
1735
8dedea02 1736
cf7a04e8
DJ
1737/* An alternative to target_write with progress callbacks. */
1738
1e3ff5ad 1739LONGEST
cf7a04e8
DJ
1740target_write_with_progress (struct target_ops *ops,
1741 enum target_object object,
1742 const char *annex, const gdb_byte *buf,
1743 ULONGEST offset, LONGEST len,
1744 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1745{
1746 LONGEST xfered = 0;
a76d924d
DJ
1747
1748 /* Give the progress callback a chance to set up. */
1749 if (progress)
1750 (*progress) (0, baton);
1751
1e3ff5ad
AC
1752 while (xfered < len)
1753 {
9b409511
YQ
1754 ULONGEST xfered_len;
1755 enum target_xfer_status status;
1756
1757 status = target_write_partial (ops, object, annex,
1758 (gdb_byte *) buf + xfered,
1759 offset + xfered, len - xfered,
1760 &xfered_len);
cf7a04e8 1761
5c328c05
YQ
1762 if (status != TARGET_XFER_OK)
1763 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1764
1765 if (progress)
9b409511 1766 (*progress) (xfered_len, baton);
cf7a04e8 1767
9b409511 1768 xfered += xfered_len;
1e3ff5ad
AC
1769 QUIT;
1770 }
1771 return len;
1772}
1773
7f79c47e
DE
1774/* For docs on target_write see target.h. */
1775
cf7a04e8
DJ
1776LONGEST
1777target_write (struct target_ops *ops,
1778 enum target_object object,
1779 const char *annex, const gdb_byte *buf,
1780 ULONGEST offset, LONGEST len)
1781{
1782 return target_write_with_progress (ops, object, annex, buf, offset, len,
1783 NULL, NULL);
1784}
1785
159f81f3
DJ
1786/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1787 the size of the transferred data. PADDING additional bytes are
1788 available in *BUF_P. This is a helper function for
1789 target_read_alloc; see the declaration of that function for more
1790 information. */
13547ab6 1791
159f81f3
DJ
1792static LONGEST
1793target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1794 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1795{
1796 size_t buf_alloc, buf_pos;
1797 gdb_byte *buf;
13547ab6
DJ
1798
1799 /* This function does not have a length parameter; it reads the
1800 entire OBJECT). Also, it doesn't support objects fetched partly
1801 from one target and partly from another (in a different stratum,
1802 e.g. a core file and an executable). Both reasons make it
1803 unsuitable for reading memory. */
1804 gdb_assert (object != TARGET_OBJECT_MEMORY);
1805
1806 /* Start by reading up to 4K at a time. The target will throttle
1807 this number down if necessary. */
1808 buf_alloc = 4096;
1809 buf = xmalloc (buf_alloc);
1810 buf_pos = 0;
1811 while (1)
1812 {
9b409511
YQ
1813 ULONGEST xfered_len;
1814 enum target_xfer_status status;
1815
1816 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1817 buf_pos, buf_alloc - buf_pos - padding,
1818 &xfered_len);
1819
1820 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1821 {
1822 /* Read all there was. */
1823 if (buf_pos == 0)
1824 xfree (buf);
1825 else
1826 *buf_p = buf;
1827 return buf_pos;
1828 }
9b409511
YQ
1829 else if (status != TARGET_XFER_OK)
1830 {
1831 /* An error occurred. */
1832 xfree (buf);
1833 return TARGET_XFER_E_IO;
1834 }
13547ab6 1835
9b409511 1836 buf_pos += xfered_len;
13547ab6
DJ
1837
1838 /* If the buffer is filling up, expand it. */
1839 if (buf_alloc < buf_pos * 2)
1840 {
1841 buf_alloc *= 2;
1842 buf = xrealloc (buf, buf_alloc);
1843 }
1844
1845 QUIT;
1846 }
1847}
1848
159f81f3
DJ
1849/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1850 the size of the transferred data. See the declaration in "target.h"
1851 function for more information about the return value. */
1852
1853LONGEST
1854target_read_alloc (struct target_ops *ops, enum target_object object,
1855 const char *annex, gdb_byte **buf_p)
1856{
1857 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1858}
1859
1860/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1861 returned as a string, allocated using xmalloc. If an error occurs
1862 or the transfer is unsupported, NULL is returned. Empty objects
1863 are returned as allocated but empty strings. A warning is issued
1864 if the result contains any embedded NUL bytes. */
1865
1866char *
1867target_read_stralloc (struct target_ops *ops, enum target_object object,
1868 const char *annex)
1869{
39086a0e
PA
1870 gdb_byte *buffer;
1871 char *bufstr;
7313baad 1872 LONGEST i, transferred;
159f81f3 1873
39086a0e
PA
1874 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1875 bufstr = (char *) buffer;
159f81f3
DJ
1876
1877 if (transferred < 0)
1878 return NULL;
1879
1880 if (transferred == 0)
1881 return xstrdup ("");
1882
39086a0e 1883 bufstr[transferred] = 0;
7313baad
UW
1884
1885 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1886 for (i = strlen (bufstr); i < transferred; i++)
1887 if (bufstr[i] != 0)
7313baad
UW
1888 {
1889 warning (_("target object %d, annex %s, "
1890 "contained unexpected null characters"),
1891 (int) object, annex ? annex : "(none)");
1892 break;
1893 }
159f81f3 1894
39086a0e 1895 return bufstr;
159f81f3
DJ
1896}
1897
b6591e8b
AC
1898/* Memory transfer methods. */
1899
1900void
1b0ba102 1901get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1902 LONGEST len)
1903{
07b82ea5
PA
1904 /* This method is used to read from an alternate, non-current
1905 target. This read must bypass the overlay support (as symbols
1906 don't match this target), and GDB's internal cache (wrong cache
1907 for this target). */
1908 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1909 != len)
578d3588 1910 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1911}
1912
1913ULONGEST
5d502164
MS
1914get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1915 int len, enum bfd_endian byte_order)
b6591e8b 1916{
f6519ebc 1917 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1918
1919 gdb_assert (len <= sizeof (buf));
1920 get_target_memory (ops, addr, buf, len);
e17a4113 1921 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1922}
1923
3db08215
MM
1924/* See target.h. */
1925
d914c394
SS
1926int
1927target_insert_breakpoint (struct gdbarch *gdbarch,
1928 struct bp_target_info *bp_tgt)
1929{
1930 if (!may_insert_breakpoints)
1931 {
1932 warning (_("May not insert breakpoints"));
1933 return 1;
1934 }
1935
6b84065d
TT
1936 return current_target.to_insert_breakpoint (&current_target,
1937 gdbarch, bp_tgt);
d914c394
SS
1938}
1939
3db08215
MM
1940/* See target.h. */
1941
d914c394 1942int
6b84065d
TT
1943target_remove_breakpoint (struct gdbarch *gdbarch,
1944 struct bp_target_info *bp_tgt)
d914c394
SS
1945{
1946 /* This is kind of a weird case to handle, but the permission might
1947 have been changed after breakpoints were inserted - in which case
1948 we should just take the user literally and assume that any
1949 breakpoints should be left in place. */
1950 if (!may_insert_breakpoints)
1951 {
1952 warning (_("May not remove breakpoints"));
1953 return 1;
1954 }
1955
6b84065d
TT
1956 return current_target.to_remove_breakpoint (&current_target,
1957 gdbarch, bp_tgt);
d914c394
SS
1958}
1959
c906108c 1960static void
fba45db2 1961target_info (char *args, int from_tty)
c906108c
SS
1962{
1963 struct target_ops *t;
c906108c 1964 int has_all_mem = 0;
c5aa993b 1965
c906108c 1966 if (symfile_objfile != NULL)
4262abfb
JK
1967 printf_unfiltered (_("Symbols from \"%s\".\n"),
1968 objfile_name (symfile_objfile));
c906108c 1969
258b763a 1970 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1971 {
c35b1492 1972 if (!(*t->to_has_memory) (t))
c906108c
SS
1973 continue;
1974
c5aa993b 1975 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1976 continue;
1977 if (has_all_mem)
3e43a32a
MS
1978 printf_unfiltered (_("\tWhile running this, "
1979 "GDB does not access memory from...\n"));
c5aa993b
JM
1980 printf_unfiltered ("%s:\n", t->to_longname);
1981 (t->to_files_info) (t);
c35b1492 1982 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1983 }
1984}
1985
fd79ecee
DJ
1986/* This function is called before any new inferior is created, e.g.
1987 by running a program, attaching, or connecting to a target.
1988 It cleans up any state from previous invocations which might
1989 change between runs. This is a subset of what target_preopen
1990 resets (things which might change between targets). */
1991
1992void
1993target_pre_inferior (int from_tty)
1994{
c378eb4e 1995 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1996 inferior might have survived and is entirely wrong for the new
c378eb4e 1997 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1998 to reproduce:
1999
2000 bash$ ./foo&
2001 [1] 4711
2002 bash$ ./foo&
2003 [1] 4712
2004 bash$ gdb ./foo
2005 [...]
2006 (gdb) attach 4711
2007 (gdb) detach
2008 (gdb) attach 4712
2009 Cannot access memory at address 0xdeadbeef
2010 */
b9db4ced 2011
50c71eaf
PA
2012 /* In some OSs, the shared library list is the same/global/shared
2013 across inferiors. If code is shared between processes, so are
2014 memory regions and features. */
f5656ead 2015 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2016 {
2017 no_shared_libraries (NULL, from_tty);
2018
2019 invalidate_target_mem_regions ();
424163ea 2020
50c71eaf
PA
2021 target_clear_description ();
2022 }
8ffcbaaf
YQ
2023
2024 agent_capability_invalidate ();
fd79ecee
DJ
2025}
2026
b8fa0bfa
PA
2027/* Callback for iterate_over_inferiors. Gets rid of the given
2028 inferior. */
2029
2030static int
2031dispose_inferior (struct inferior *inf, void *args)
2032{
2033 struct thread_info *thread;
2034
2035 thread = any_thread_of_process (inf->pid);
2036 if (thread)
2037 {
2038 switch_to_thread (thread->ptid);
2039
2040 /* Core inferiors actually should be detached, not killed. */
2041 if (target_has_execution)
2042 target_kill ();
2043 else
2044 target_detach (NULL, 0);
2045 }
2046
2047 return 0;
2048}
2049
c906108c
SS
2050/* This is to be called by the open routine before it does
2051 anything. */
2052
2053void
fba45db2 2054target_preopen (int from_tty)
c906108c 2055{
c5aa993b 2056 dont_repeat ();
c906108c 2057
b8fa0bfa 2058 if (have_inferiors ())
c5aa993b 2059 {
adf40b2e 2060 if (!from_tty
b8fa0bfa
PA
2061 || !have_live_inferiors ()
2062 || query (_("A program is being debugged already. Kill it? ")))
2063 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2064 else
8a3fe4f8 2065 error (_("Program not killed."));
c906108c
SS
2066 }
2067
2068 /* Calling target_kill may remove the target from the stack. But if
2069 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2070 /* Leave the exec target, though. The user may be switching from a
2071 live process to a core of the same program. */
460014f5 2072 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2073
2074 target_pre_inferior (from_tty);
c906108c
SS
2075}
2076
2077/* Detach a target after doing deferred register stores. */
2078
2079void
52554a0e 2080target_detach (const char *args, int from_tty)
c906108c 2081{
136d6dae
VP
2082 struct target_ops* t;
2083
f5656ead 2084 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2085 /* Don't remove global breakpoints here. They're removed on
2086 disconnection from the target. */
2087 ;
2088 else
2089 /* If we're in breakpoints-always-inserted mode, have to remove
2090 them before detaching. */
dfd4cc63 2091 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2092
24291992
PA
2093 prepare_for_detach ();
2094
09da0d0a 2095 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2096}
2097
6ad8ae5c 2098void
fee354ee 2099target_disconnect (const char *args, int from_tty)
6ad8ae5c 2100{
50c71eaf
PA
2101 /* If we're in breakpoints-always-inserted mode or if breakpoints
2102 are global across processes, we have to remove them before
2103 disconnecting. */
74960c60
VP
2104 remove_breakpoints ();
2105
86a0854a 2106 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2107}
2108
117de6a9 2109ptid_t
47608cb1 2110target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2111{
a7068b60 2112 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2113}
2114
2115char *
2116target_pid_to_str (ptid_t ptid)
2117{
770234d3 2118 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2119}
2120
4694da01
TT
2121char *
2122target_thread_name (struct thread_info *info)
2123{
825828fc 2124 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2125}
2126
e1ac3328 2127void
2ea28649 2128target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2129{
28439f5e
PA
2130 struct target_ops *t;
2131
4e5d721f 2132 target_dcache_invalidate ();
28439f5e 2133
6b84065d 2134 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2135
6b84065d 2136 registers_changed_ptid (ptid);
251bde03
PA
2137 /* We only set the internal executing state here. The user/frontend
2138 running state is set at a higher level. */
6b84065d 2139 set_executing (ptid, 1);
6b84065d 2140 clear_inline_frame_state (ptid);
e1ac3328 2141}
2455069d
UW
2142
2143void
2144target_pass_signals (int numsigs, unsigned char *pass_signals)
2145{
035cad7f 2146 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2147}
2148
9b224c5e
PA
2149void
2150target_program_signals (int numsigs, unsigned char *program_signals)
2151{
7d4f8efa
TT
2152 (*current_target.to_program_signals) (&current_target,
2153 numsigs, program_signals);
9b224c5e
PA
2154}
2155
098dba18
TT
2156static int
2157default_follow_fork (struct target_ops *self, int follow_child,
2158 int detach_fork)
2159{
2160 /* Some target returned a fork event, but did not know how to follow it. */
2161 internal_error (__FILE__, __LINE__,
2162 _("could not find a target to follow fork"));
2163}
2164
ee057212
DJ
2165/* Look through the list of possible targets for a target that can
2166 follow forks. */
2167
2168int
07107ca6 2169target_follow_fork (int follow_child, int detach_fork)
ee057212 2170{
a7068b60
TT
2171 return current_target.to_follow_fork (&current_target,
2172 follow_child, detach_fork);
ee057212
DJ
2173}
2174
8d657035
TT
2175static void
2176default_mourn_inferior (struct target_ops *self)
2177{
2178 internal_error (__FILE__, __LINE__,
2179 _("could not find a target to follow mourn inferior"));
2180}
2181
136d6dae
VP
2182void
2183target_mourn_inferior (void)
2184{
8d657035 2185 current_target.to_mourn_inferior (&current_target);
136d6dae 2186
8d657035
TT
2187 /* We no longer need to keep handles on any of the object files.
2188 Make sure to release them to avoid unnecessarily locking any
2189 of them while we're not actually debugging. */
2190 bfd_cache_close_all ();
136d6dae
VP
2191}
2192
424163ea
DJ
2193/* Look for a target which can describe architectural features, starting
2194 from TARGET. If we find one, return its description. */
2195
2196const struct target_desc *
2197target_read_description (struct target_ops *target)
2198{
2117c711 2199 return target->to_read_description (target);
424163ea
DJ
2200}
2201
58a5184e 2202/* This implements a basic search of memory, reading target memory and
08388c79
DE
2203 performing the search here (as opposed to performing the search in on the
2204 target side with, for example, gdbserver). */
2205
2206int
2207simple_search_memory (struct target_ops *ops,
2208 CORE_ADDR start_addr, ULONGEST search_space_len,
2209 const gdb_byte *pattern, ULONGEST pattern_len,
2210 CORE_ADDR *found_addrp)
2211{
2212 /* NOTE: also defined in find.c testcase. */
2213#define SEARCH_CHUNK_SIZE 16000
2214 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2215 /* Buffer to hold memory contents for searching. */
2216 gdb_byte *search_buf;
2217 unsigned search_buf_size;
2218 struct cleanup *old_cleanups;
2219
2220 search_buf_size = chunk_size + pattern_len - 1;
2221
2222 /* No point in trying to allocate a buffer larger than the search space. */
2223 if (search_space_len < search_buf_size)
2224 search_buf_size = search_space_len;
2225
2226 search_buf = malloc (search_buf_size);
2227 if (search_buf == NULL)
5e1471f5 2228 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2229 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2230
2231 /* Prime the search buffer. */
2232
2233 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2234 search_buf, start_addr, search_buf_size) != search_buf_size)
2235 {
b3dc46ff
AB
2236 warning (_("Unable to access %s bytes of target "
2237 "memory at %s, halting search."),
2238 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2239 do_cleanups (old_cleanups);
2240 return -1;
2241 }
2242
2243 /* Perform the search.
2244
2245 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2246 When we've scanned N bytes we copy the trailing bytes to the start and
2247 read in another N bytes. */
2248
2249 while (search_space_len >= pattern_len)
2250 {
2251 gdb_byte *found_ptr;
2252 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2253
2254 found_ptr = memmem (search_buf, nr_search_bytes,
2255 pattern, pattern_len);
2256
2257 if (found_ptr != NULL)
2258 {
2259 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2260
08388c79
DE
2261 *found_addrp = found_addr;
2262 do_cleanups (old_cleanups);
2263 return 1;
2264 }
2265
2266 /* Not found in this chunk, skip to next chunk. */
2267
2268 /* Don't let search_space_len wrap here, it's unsigned. */
2269 if (search_space_len >= chunk_size)
2270 search_space_len -= chunk_size;
2271 else
2272 search_space_len = 0;
2273
2274 if (search_space_len >= pattern_len)
2275 {
2276 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2277 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2278 int nr_to_read;
2279
2280 /* Copy the trailing part of the previous iteration to the front
2281 of the buffer for the next iteration. */
2282 gdb_assert (keep_len == pattern_len - 1);
2283 memcpy (search_buf, search_buf + chunk_size, keep_len);
2284
2285 nr_to_read = min (search_space_len - keep_len, chunk_size);
2286
2287 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2288 search_buf + keep_len, read_addr,
2289 nr_to_read) != nr_to_read)
2290 {
b3dc46ff 2291 warning (_("Unable to access %s bytes of target "
9b20d036 2292 "memory at %s, halting search."),
b3dc46ff 2293 plongest (nr_to_read),
08388c79
DE
2294 hex_string (read_addr));
2295 do_cleanups (old_cleanups);
2296 return -1;
2297 }
2298
2299 start_addr += chunk_size;
2300 }
2301 }
2302
2303 /* Not found. */
2304
2305 do_cleanups (old_cleanups);
2306 return 0;
2307}
2308
58a5184e
TT
2309/* Default implementation of memory-searching. */
2310
2311static int
2312default_search_memory (struct target_ops *self,
2313 CORE_ADDR start_addr, ULONGEST search_space_len,
2314 const gdb_byte *pattern, ULONGEST pattern_len,
2315 CORE_ADDR *found_addrp)
2316{
2317 /* Start over from the top of the target stack. */
2318 return simple_search_memory (current_target.beneath,
2319 start_addr, search_space_len,
2320 pattern, pattern_len, found_addrp);
2321}
2322
08388c79
DE
2323/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2324 sequence of bytes in PATTERN with length PATTERN_LEN.
2325
2326 The result is 1 if found, 0 if not found, and -1 if there was an error
2327 requiring halting of the search (e.g. memory read error).
2328 If the pattern is found the address is recorded in FOUND_ADDRP. */
2329
2330int
2331target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2332 const gdb_byte *pattern, ULONGEST pattern_len,
2333 CORE_ADDR *found_addrp)
2334{
a7068b60
TT
2335 return current_target.to_search_memory (&current_target, start_addr,
2336 search_space_len,
2337 pattern, pattern_len, found_addrp);
08388c79
DE
2338}
2339
8edfe269
DJ
2340/* Look through the currently pushed targets. If none of them will
2341 be able to restart the currently running process, issue an error
2342 message. */
2343
2344void
2345target_require_runnable (void)
2346{
2347 struct target_ops *t;
2348
2349 for (t = target_stack; t != NULL; t = t->beneath)
2350 {
2351 /* If this target knows how to create a new program, then
2352 assume we will still be able to after killing the current
2353 one. Either killing and mourning will not pop T, or else
2354 find_default_run_target will find it again. */
2355 if (t->to_create_inferior != NULL)
2356 return;
2357
548740d6 2358 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2359 create inferiors. Assume they will be pushed again if
2360 necessary, and continue to the process_stratum. */
85e747d2 2361 if (t->to_stratum == thread_stratum
548740d6 2362 || t->to_stratum == record_stratum
85e747d2 2363 || t->to_stratum == arch_stratum)
8edfe269
DJ
2364 continue;
2365
3e43a32a
MS
2366 error (_("The \"%s\" target does not support \"run\". "
2367 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2368 t->to_shortname);
2369 }
2370
2371 /* This function is only called if the target is running. In that
2372 case there should have been a process_stratum target and it
c378eb4e 2373 should either know how to create inferiors, or not... */
9b20d036 2374 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2375}
2376
6a3cb8e8
PA
2377/* Whether GDB is allowed to fall back to the default run target for
2378 "run", "attach", etc. when no target is connected yet. */
2379static int auto_connect_native_target = 1;
2380
2381static void
2382show_auto_connect_native_target (struct ui_file *file, int from_tty,
2383 struct cmd_list_element *c, const char *value)
2384{
2385 fprintf_filtered (file,
2386 _("Whether GDB may automatically connect to the "
2387 "native target is %s.\n"),
2388 value);
2389}
2390
c906108c
SS
2391/* Look through the list of possible targets for a target that can
2392 execute a run or attach command without any other data. This is
2393 used to locate the default process stratum.
2394
5f667f2d
PA
2395 If DO_MESG is not NULL, the result is always valid (error() is
2396 called for errors); else, return NULL on error. */
c906108c
SS
2397
2398static struct target_ops *
fba45db2 2399find_default_run_target (char *do_mesg)
c906108c 2400{
c906108c 2401 struct target_ops *runable = NULL;
c906108c 2402
6a3cb8e8 2403 if (auto_connect_native_target)
c906108c 2404 {
89a1c21a 2405 struct target_ops *t;
6a3cb8e8 2406 int count = 0;
89a1c21a 2407 int i;
6a3cb8e8 2408
89a1c21a 2409 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2410 {
89a1c21a 2411 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2412 {
89a1c21a 2413 runable = t;
6a3cb8e8
PA
2414 ++count;
2415 }
c906108c 2416 }
6a3cb8e8
PA
2417
2418 if (count != 1)
2419 runable = NULL;
c906108c
SS
2420 }
2421
6a3cb8e8 2422 if (runable == NULL)
5f667f2d
PA
2423 {
2424 if (do_mesg)
2425 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2426 else
2427 return NULL;
2428 }
c906108c
SS
2429
2430 return runable;
2431}
2432
b3ccfe11 2433/* See target.h. */
c906108c 2434
b3ccfe11
TT
2435struct target_ops *
2436find_attach_target (void)
c906108c
SS
2437{
2438 struct target_ops *t;
2439
b3ccfe11
TT
2440 /* If a target on the current stack can attach, use it. */
2441 for (t = current_target.beneath; t != NULL; t = t->beneath)
2442 {
2443 if (t->to_attach != NULL)
2444 break;
2445 }
c906108c 2446
b3ccfe11
TT
2447 /* Otherwise, use the default run target for attaching. */
2448 if (t == NULL)
2449 t = find_default_run_target ("attach");
b84876c2 2450
b3ccfe11 2451 return t;
b84876c2
PA
2452}
2453
b3ccfe11 2454/* See target.h. */
b84876c2 2455
b3ccfe11
TT
2456struct target_ops *
2457find_run_target (void)
9908b566
VP
2458{
2459 struct target_ops *t;
2460
b3ccfe11
TT
2461 /* If a target on the current stack can attach, use it. */
2462 for (t = current_target.beneath; t != NULL; t = t->beneath)
2463 {
2464 if (t->to_create_inferior != NULL)
2465 break;
2466 }
5d502164 2467
b3ccfe11
TT
2468 /* Otherwise, use the default run target. */
2469 if (t == NULL)
2470 t = find_default_run_target ("run");
9908b566 2471
b3ccfe11 2472 return t;
9908b566
VP
2473}
2474
145b16a9
UW
2475/* Implement the "info proc" command. */
2476
451b7c33 2477int
7bc112c1 2478target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2479{
2480 struct target_ops *t;
2481
2482 /* If we're already connected to something that can get us OS
2483 related data, use it. Otherwise, try using the native
2484 target. */
2485 if (current_target.to_stratum >= process_stratum)
2486 t = current_target.beneath;
2487 else
2488 t = find_default_run_target (NULL);
2489
2490 for (; t != NULL; t = t->beneath)
2491 {
2492 if (t->to_info_proc != NULL)
2493 {
2494 t->to_info_proc (t, args, what);
2495
2496 if (targetdebug)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "target_info_proc (\"%s\", %d)\n", args, what);
2499
451b7c33 2500 return 1;
145b16a9
UW
2501 }
2502 }
2503
451b7c33 2504 return 0;
145b16a9
UW
2505}
2506
03583c20 2507static int
2bfc0540 2508find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2509{
2510 struct target_ops *t;
2511
2512 t = find_default_run_target (NULL);
2513 if (t && t->to_supports_disable_randomization)
2bfc0540 2514 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2515 return 0;
2516}
2517
2518int
2519target_supports_disable_randomization (void)
2520{
2521 struct target_ops *t;
2522
2523 for (t = &current_target; t != NULL; t = t->beneath)
2524 if (t->to_supports_disable_randomization)
2bfc0540 2525 return t->to_supports_disable_randomization (t);
03583c20
UW
2526
2527 return 0;
2528}
9908b566 2529
07e059b5
VP
2530char *
2531target_get_osdata (const char *type)
2532{
07e059b5
VP
2533 struct target_ops *t;
2534
739ef7fb
PA
2535 /* If we're already connected to something that can get us OS
2536 related data, use it. Otherwise, try using the native
2537 target. */
2538 if (current_target.to_stratum >= process_stratum)
6d097e65 2539 t = current_target.beneath;
739ef7fb
PA
2540 else
2541 t = find_default_run_target ("get OS data");
07e059b5
VP
2542
2543 if (!t)
2544 return NULL;
2545
6d097e65 2546 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2547}
2548
8eaff7cd
TT
2549static struct address_space *
2550default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2551{
2552 struct inferior *inf;
6c95b8df
PA
2553
2554 /* Fall-back to the "main" address space of the inferior. */
2555 inf = find_inferior_pid (ptid_get_pid (ptid));
2556
2557 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2558 internal_error (__FILE__, __LINE__,
9b20d036
MS
2559 _("Can't determine the current "
2560 "address space of thread %s\n"),
6c95b8df
PA
2561 target_pid_to_str (ptid));
2562
2563 return inf->aspace;
2564}
2565
8eaff7cd
TT
2566/* Determine the current address space of thread PTID. */
2567
2568struct address_space *
2569target_thread_address_space (ptid_t ptid)
2570{
2571 struct address_space *aspace;
2572
2573 aspace = current_target.to_thread_address_space (&current_target, ptid);
2574 gdb_assert (aspace != NULL);
2575
8eaff7cd
TT
2576 return aspace;
2577}
2578
7313baad
UW
2579
2580/* Target file operations. */
2581
2582static struct target_ops *
2583default_fileio_target (void)
2584{
2585 /* If we're already connected to something that can perform
2586 file I/O, use it. Otherwise, try using the native target. */
2587 if (current_target.to_stratum >= process_stratum)
2588 return current_target.beneath;
2589 else
2590 return find_default_run_target ("file I/O");
2591}
2592
2593/* Open FILENAME on the target, using FLAGS and MODE. Return a
2594 target file descriptor, or -1 if an error occurs (and set
2595 *TARGET_ERRNO). */
2596int
2597target_fileio_open (const char *filename, int flags, int mode,
2598 int *target_errno)
2599{
2600 struct target_ops *t;
2601
2602 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2603 {
2604 if (t->to_fileio_open != NULL)
2605 {
cd897586 2606 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2607
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2611 filename, flags, mode,
2612 fd, fd != -1 ? 0 : *target_errno);
2613 return fd;
2614 }
2615 }
2616
2617 *target_errno = FILEIO_ENOSYS;
2618 return -1;
2619}
2620
2621/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2622 Return the number of bytes written, or -1 if an error occurs
2623 (and set *TARGET_ERRNO). */
2624int
2625target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2626 ULONGEST offset, int *target_errno)
2627{
2628 struct target_ops *t;
2629
2630 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2631 {
2632 if (t->to_fileio_pwrite != NULL)
2633 {
0d866f62 2634 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2635 target_errno);
2636
2637 if (targetdebug)
2638 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2639 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2640 "= %d (%d)\n",
a71b5a38 2641 fd, len, pulongest (offset),
7313baad
UW
2642 ret, ret != -1 ? 0 : *target_errno);
2643 return ret;
2644 }
2645 }
2646
2647 *target_errno = FILEIO_ENOSYS;
2648 return -1;
2649}
2650
2651/* Read up to LEN bytes FD on the target into READ_BUF.
2652 Return the number of bytes read, or -1 if an error occurs
2653 (and set *TARGET_ERRNO). */
2654int
2655target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2656 ULONGEST offset, int *target_errno)
2657{
2658 struct target_ops *t;
2659
2660 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2661 {
2662 if (t->to_fileio_pread != NULL)
2663 {
a3be983c 2664 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2665 target_errno);
2666
2667 if (targetdebug)
2668 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2669 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2670 "= %d (%d)\n",
a71b5a38 2671 fd, len, pulongest (offset),
7313baad
UW
2672 ret, ret != -1 ? 0 : *target_errno);
2673 return ret;
2674 }
2675 }
2676
2677 *target_errno = FILEIO_ENOSYS;
2678 return -1;
2679}
2680
2681/* Close FD on the target. Return 0, or -1 if an error occurs
2682 (and set *TARGET_ERRNO). */
2683int
2684target_fileio_close (int fd, int *target_errno)
2685{
2686 struct target_ops *t;
2687
2688 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2689 {
2690 if (t->to_fileio_close != NULL)
2691 {
df39ea25 2692 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2693
2694 if (targetdebug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "target_fileio_close (%d) = %d (%d)\n",
2697 fd, ret, ret != -1 ? 0 : *target_errno);
2698 return ret;
2699 }
2700 }
2701
2702 *target_errno = FILEIO_ENOSYS;
2703 return -1;
2704}
2705
2706/* Unlink FILENAME on the target. Return 0, or -1 if an error
2707 occurs (and set *TARGET_ERRNO). */
2708int
2709target_fileio_unlink (const char *filename, int *target_errno)
2710{
2711 struct target_ops *t;
2712
2713 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2714 {
2715 if (t->to_fileio_unlink != NULL)
2716 {
dbbca37d 2717 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2718
2719 if (targetdebug)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "target_fileio_unlink (%s) = %d (%d)\n",
2722 filename, ret, ret != -1 ? 0 : *target_errno);
2723 return ret;
2724 }
2725 }
2726
2727 *target_errno = FILEIO_ENOSYS;
2728 return -1;
2729}
2730
b9e7b9c3
UW
2731/* Read value of symbolic link FILENAME on the target. Return a
2732 null-terminated string allocated via xmalloc, or NULL if an error
2733 occurs (and set *TARGET_ERRNO). */
2734char *
2735target_fileio_readlink (const char *filename, int *target_errno)
2736{
2737 struct target_ops *t;
2738
2739 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2740 {
2741 if (t->to_fileio_readlink != NULL)
2742 {
fab5aa7c 2743 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2744
2745 if (targetdebug)
2746 fprintf_unfiltered (gdb_stdlog,
2747 "target_fileio_readlink (%s) = %s (%d)\n",
2748 filename, ret? ret : "(nil)",
2749 ret? 0 : *target_errno);
2750 return ret;
2751 }
2752 }
2753
2754 *target_errno = FILEIO_ENOSYS;
2755 return NULL;
2756}
2757
7313baad
UW
2758static void
2759target_fileio_close_cleanup (void *opaque)
2760{
2761 int fd = *(int *) opaque;
2762 int target_errno;
2763
2764 target_fileio_close (fd, &target_errno);
2765}
2766
2767/* Read target file FILENAME. Store the result in *BUF_P and
2768 return the size of the transferred data. PADDING additional bytes are
2769 available in *BUF_P. This is a helper function for
2770 target_fileio_read_alloc; see the declaration of that function for more
2771 information. */
2772
2773static LONGEST
2774target_fileio_read_alloc_1 (const char *filename,
2775 gdb_byte **buf_p, int padding)
2776{
2777 struct cleanup *close_cleanup;
2778 size_t buf_alloc, buf_pos;
2779 gdb_byte *buf;
2780 LONGEST n;
2781 int fd;
2782 int target_errno;
2783
2784 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2785 if (fd == -1)
2786 return -1;
2787
2788 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2789
2790 /* Start by reading up to 4K at a time. The target will throttle
2791 this number down if necessary. */
2792 buf_alloc = 4096;
2793 buf = xmalloc (buf_alloc);
2794 buf_pos = 0;
2795 while (1)
2796 {
2797 n = target_fileio_pread (fd, &buf[buf_pos],
2798 buf_alloc - buf_pos - padding, buf_pos,
2799 &target_errno);
2800 if (n < 0)
2801 {
2802 /* An error occurred. */
2803 do_cleanups (close_cleanup);
2804 xfree (buf);
2805 return -1;
2806 }
2807 else if (n == 0)
2808 {
2809 /* Read all there was. */
2810 do_cleanups (close_cleanup);
2811 if (buf_pos == 0)
2812 xfree (buf);
2813 else
2814 *buf_p = buf;
2815 return buf_pos;
2816 }
2817
2818 buf_pos += n;
2819
2820 /* If the buffer is filling up, expand it. */
2821 if (buf_alloc < buf_pos * 2)
2822 {
2823 buf_alloc *= 2;
2824 buf = xrealloc (buf, buf_alloc);
2825 }
2826
2827 QUIT;
2828 }
2829}
2830
2831/* Read target file FILENAME. Store the result in *BUF_P and return
2832 the size of the transferred data. See the declaration in "target.h"
2833 function for more information about the return value. */
2834
2835LONGEST
2836target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2837{
2838 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2839}
2840
2841/* Read target file FILENAME. The result is NUL-terminated and
2842 returned as a string, allocated using xmalloc. If an error occurs
2843 or the transfer is unsupported, NULL is returned. Empty objects
2844 are returned as allocated but empty strings. A warning is issued
2845 if the result contains any embedded NUL bytes. */
2846
2847char *
2848target_fileio_read_stralloc (const char *filename)
2849{
39086a0e
PA
2850 gdb_byte *buffer;
2851 char *bufstr;
7313baad
UW
2852 LONGEST i, transferred;
2853
39086a0e
PA
2854 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2855 bufstr = (char *) buffer;
7313baad
UW
2856
2857 if (transferred < 0)
2858 return NULL;
2859
2860 if (transferred == 0)
2861 return xstrdup ("");
2862
39086a0e 2863 bufstr[transferred] = 0;
7313baad
UW
2864
2865 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2866 for (i = strlen (bufstr); i < transferred; i++)
2867 if (bufstr[i] != 0)
7313baad
UW
2868 {
2869 warning (_("target file %s "
2870 "contained unexpected null characters"),
2871 filename);
2872 break;
2873 }
2874
39086a0e 2875 return bufstr;
7313baad
UW
2876}
2877
2878
e0d24f8d 2879static int
31568a15
TT
2880default_region_ok_for_hw_watchpoint (struct target_ops *self,
2881 CORE_ADDR addr, int len)
e0d24f8d 2882{
f5656ead 2883 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2884}
2885
5009afc5
AS
2886static int
2887default_watchpoint_addr_within_range (struct target_ops *target,
2888 CORE_ADDR addr,
2889 CORE_ADDR start, int length)
2890{
2891 return addr >= start && addr < start + length;
2892}
2893
c2250ad1
UW
2894static struct gdbarch *
2895default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2896{
f5656ead 2897 return target_gdbarch ();
c2250ad1
UW
2898}
2899
c906108c 2900static int
555bbdeb
TT
2901return_zero (struct target_ops *ignore)
2902{
2903 return 0;
2904}
2905
2906static int
2907return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2908{
2909 return 0;
2910}
2911
ed9a39eb
JM
2912/*
2913 * Find the next target down the stack from the specified target.
2914 */
2915
2916struct target_ops *
fba45db2 2917find_target_beneath (struct target_ops *t)
ed9a39eb 2918{
258b763a 2919 return t->beneath;
ed9a39eb
JM
2920}
2921
8b06beed
TT
2922/* See target.h. */
2923
2924struct target_ops *
2925find_target_at (enum strata stratum)
2926{
2927 struct target_ops *t;
2928
2929 for (t = current_target.beneath; t != NULL; t = t->beneath)
2930 if (t->to_stratum == stratum)
2931 return t;
2932
2933 return NULL;
2934}
2935
c906108c
SS
2936\f
2937/* The inferior process has died. Long live the inferior! */
2938
2939void
fba45db2 2940generic_mourn_inferior (void)
c906108c 2941{
7f9f62ba 2942 ptid_t ptid;
c906108c 2943
7f9f62ba 2944 ptid = inferior_ptid;
39f77062 2945 inferior_ptid = null_ptid;
7f9f62ba 2946
f59f708a
PA
2947 /* Mark breakpoints uninserted in case something tries to delete a
2948 breakpoint while we delete the inferior's threads (which would
2949 fail, since the inferior is long gone). */
2950 mark_breakpoints_out ();
2951
7f9f62ba
PA
2952 if (!ptid_equal (ptid, null_ptid))
2953 {
2954 int pid = ptid_get_pid (ptid);
6c95b8df 2955 exit_inferior (pid);
7f9f62ba
PA
2956 }
2957
f59f708a
PA
2958 /* Note this wipes step-resume breakpoints, so needs to be done
2959 after exit_inferior, which ends up referencing the step-resume
2960 breakpoints through clear_thread_inferior_resources. */
c906108c 2961 breakpoint_init_inferior (inf_exited);
f59f708a 2962
c906108c
SS
2963 registers_changed ();
2964
c906108c
SS
2965 reopen_exec_file ();
2966 reinit_frame_cache ();
2967
9a4105ab
AC
2968 if (deprecated_detach_hook)
2969 deprecated_detach_hook ();
c906108c
SS
2970}
2971\f
fd0a2a6f
MK
2972/* Convert a normal process ID to a string. Returns the string in a
2973 static buffer. */
c906108c
SS
2974
2975char *
39f77062 2976normal_pid_to_str (ptid_t ptid)
c906108c 2977{
fd0a2a6f 2978 static char buf[32];
c906108c 2979
5fff8fc0 2980 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
2981 return buf;
2982}
2983
2c0b251b 2984static char *
770234d3 2985default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
2986{
2987 return normal_pid_to_str (ptid);
2988}
2989
9b4eba8e
HZ
2990/* Error-catcher for target_find_memory_regions. */
2991static int
2e73927c
TT
2992dummy_find_memory_regions (struct target_ops *self,
2993 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 2994{
9b4eba8e 2995 error (_("Command not implemented for this target."));
be4d1333
MS
2996 return 0;
2997}
2998
9b4eba8e
HZ
2999/* Error-catcher for target_make_corefile_notes. */
3000static char *
fc6691b2
TT
3001dummy_make_corefile_notes (struct target_ops *self,
3002 bfd *ignore1, int *ignore2)
be4d1333 3003{
9b4eba8e 3004 error (_("Command not implemented for this target."));
be4d1333
MS
3005 return NULL;
3006}
3007
c906108c
SS
3008/* Set up the handful of non-empty slots needed by the dummy target
3009 vector. */
3010
3011static void
fba45db2 3012init_dummy_target (void)
c906108c
SS
3013{
3014 dummy_target.to_shortname = "None";
3015 dummy_target.to_longname = "None";
3016 dummy_target.to_doc = "";
03583c20
UW
3017 dummy_target.to_supports_disable_randomization
3018 = find_default_supports_disable_randomization;
c906108c 3019 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3020 dummy_target.to_has_all_memory = return_zero;
3021 dummy_target.to_has_memory = return_zero;
3022 dummy_target.to_has_stack = return_zero;
3023 dummy_target.to_has_registers = return_zero;
3024 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3025 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3026
3027 install_dummy_methods (&dummy_target);
c906108c 3028}
c906108c 3029\f
c906108c 3030
f1c07ab0 3031void
460014f5 3032target_close (struct target_ops *targ)
f1c07ab0 3033{
7fdc1521
TT
3034 gdb_assert (!target_is_pushed (targ));
3035
f1c07ab0 3036 if (targ->to_xclose != NULL)
460014f5 3037 targ->to_xclose (targ);
f1c07ab0 3038 else if (targ->to_close != NULL)
de90e03d 3039 targ->to_close (targ);
947b8855
PA
3040
3041 if (targetdebug)
460014f5 3042 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3043}
3044
28439f5e
PA
3045int
3046target_thread_alive (ptid_t ptid)
c906108c 3047{
a7068b60 3048 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3049}
3050
3051void
3052target_find_new_threads (void)
3053{
09b0dc2b 3054 current_target.to_find_new_threads (&current_target);
c906108c
SS
3055}
3056
d914c394
SS
3057void
3058target_stop (ptid_t ptid)
3059{
3060 if (!may_stop)
3061 {
3062 warning (_("May not interrupt or stop the target, ignoring attempt"));
3063 return;
3064 }
3065
1eab8a48 3066 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3067}
3068
f8c1d06b
GB
3069/* See target/target.h. */
3070
3071void
03f4463b 3072target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3073{
3074 struct target_waitstatus status;
3075 int was_non_stop = non_stop;
3076
3077 non_stop = 1;
3078 target_stop (ptid);
3079
3080 memset (&status, 0, sizeof (status));
3081 target_wait (ptid, &status, 0);
3082
3083 non_stop = was_non_stop;
3084}
3085
3086/* See target/target.h. */
3087
3088void
03f4463b 3089target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3090{
3091 target_resume (ptid, 0, GDB_SIGNAL_0);
3092}
3093
09826ec5
PA
3094/* Concatenate ELEM to LIST, a comma separate list, and return the
3095 result. The LIST incoming argument is released. */
3096
3097static char *
3098str_comma_list_concat_elem (char *list, const char *elem)
3099{
3100 if (list == NULL)
3101 return xstrdup (elem);
3102 else
3103 return reconcat (list, list, ", ", elem, (char *) NULL);
3104}
3105
3106/* Helper for target_options_to_string. If OPT is present in
3107 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3108 Returns the new resulting string. OPT is removed from
3109 TARGET_OPTIONS. */
3110
3111static char *
3112do_option (int *target_options, char *ret,
3113 int opt, char *opt_str)
3114{
3115 if ((*target_options & opt) != 0)
3116 {
3117 ret = str_comma_list_concat_elem (ret, opt_str);
3118 *target_options &= ~opt;
3119 }
3120
3121 return ret;
3122}
3123
3124char *
3125target_options_to_string (int target_options)
3126{
3127 char *ret = NULL;
3128
3129#define DO_TARG_OPTION(OPT) \
3130 ret = do_option (&target_options, ret, OPT, #OPT)
3131
3132 DO_TARG_OPTION (TARGET_WNOHANG);
3133
3134 if (target_options != 0)
3135 ret = str_comma_list_concat_elem (ret, "unknown???");
3136
3137 if (ret == NULL)
3138 ret = xstrdup ("");
3139 return ret;
3140}
3141
bf0c5130 3142static void
56be3814
UW
3143debug_print_register (const char * func,
3144 struct regcache *regcache, int regno)
bf0c5130 3145{
f8d29908 3146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3147
bf0c5130 3148 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3149 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3150 && gdbarch_register_name (gdbarch, regno) != NULL
3151 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3152 fprintf_unfiltered (gdb_stdlog, "(%s)",
3153 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3154 else
3155 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3156 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3157 {
e17a4113 3158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3159 int i, size = register_size (gdbarch, regno);
e362b510 3160 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3161
0ff58721 3162 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3163 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3164 for (i = 0; i < size; i++)
bf0c5130
AC
3165 {
3166 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3167 }
81c4a259 3168 if (size <= sizeof (LONGEST))
bf0c5130 3169 {
e17a4113 3170 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3171
0b1553bc
UW
3172 fprintf_unfiltered (gdb_stdlog, " %s %s",
3173 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3174 }
3175 }
3176 fprintf_unfiltered (gdb_stdlog, "\n");
3177}
3178
28439f5e
PA
3179void
3180target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3181{
ad5989bd
TT
3182 current_target.to_fetch_registers (&current_target, regcache, regno);
3183 if (targetdebug)
3184 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3185}
3186
28439f5e
PA
3187void
3188target_store_registers (struct regcache *regcache, int regno)
c906108c 3189{
28439f5e 3190 struct target_ops *t;
5d502164 3191
d914c394
SS
3192 if (!may_write_registers)
3193 error (_("Writing to registers is not allowed (regno %d)"), regno);
3194
6b84065d
TT
3195 current_target.to_store_registers (&current_target, regcache, regno);
3196 if (targetdebug)
28439f5e 3197 {
6b84065d 3198 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3199 }
c906108c
SS
3200}
3201
dc146f7c
VP
3202int
3203target_core_of_thread (ptid_t ptid)
3204{
a7068b60 3205 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3206}
3207
936d2992
PA
3208int
3209simple_verify_memory (struct target_ops *ops,
3210 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3211{
3212 LONGEST total_xfered = 0;
3213
3214 while (total_xfered < size)
3215 {
3216 ULONGEST xfered_len;
3217 enum target_xfer_status status;
3218 gdb_byte buf[1024];
3219 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3220
3221 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3222 buf, NULL, lma + total_xfered, howmuch,
3223 &xfered_len);
3224 if (status == TARGET_XFER_OK
3225 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3226 {
3227 total_xfered += xfered_len;
3228 QUIT;
3229 }
3230 else
3231 return 0;
3232 }
3233 return 1;
3234}
3235
3236/* Default implementation of memory verification. */
3237
3238static int
3239default_verify_memory (struct target_ops *self,
3240 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3241{
3242 /* Start over from the top of the target stack. */
3243 return simple_verify_memory (current_target.beneath,
3244 data, memaddr, size);
3245}
3246
4a5e7a5b
PA
3247int
3248target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3249{
a7068b60
TT
3250 return current_target.to_verify_memory (&current_target,
3251 data, memaddr, size);
4a5e7a5b
PA
3252}
3253
9c06b0b4
TJB
3254/* The documentation for this function is in its prototype declaration in
3255 target.h. */
3256
3257int
3258target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3259{
a7068b60
TT
3260 return current_target.to_insert_mask_watchpoint (&current_target,
3261 addr, mask, rw);
9c06b0b4
TJB
3262}
3263
3264/* The documentation for this function is in its prototype declaration in
3265 target.h. */
3266
3267int
3268target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3269{
a7068b60
TT
3270 return current_target.to_remove_mask_watchpoint (&current_target,
3271 addr, mask, rw);
9c06b0b4
TJB
3272}
3273
3274/* The documentation for this function is in its prototype declaration
3275 in target.h. */
3276
3277int
3278target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3279{
6c7e5e5c
TT
3280 return current_target.to_masked_watch_num_registers (&current_target,
3281 addr, mask);
9c06b0b4
TJB
3282}
3283
f1310107
TJB
3284/* The documentation for this function is in its prototype declaration
3285 in target.h. */
3286
3287int
3288target_ranged_break_num_registers (void)
3289{
a134316b 3290 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3291}
3292
02d27625
MM
3293/* See target.h. */
3294
02d27625
MM
3295struct btrace_target_info *
3296target_enable_btrace (ptid_t ptid)
3297{
6dc7fcf4 3298 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3299}
3300
3301/* See target.h. */
3302
3303void
3304target_disable_btrace (struct btrace_target_info *btinfo)
3305{
8dc292d3 3306 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3307}
3308
3309/* See target.h. */
3310
3311void
3312target_teardown_btrace (struct btrace_target_info *btinfo)
3313{
9ace480d 3314 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3315}
3316
3317/* See target.h. */
3318
969c39fb
MM
3319enum btrace_error
3320target_read_btrace (VEC (btrace_block_s) **btrace,
3321 struct btrace_target_info *btinfo,
02d27625
MM
3322 enum btrace_read_type type)
3323{
eb5b20d4 3324 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3325}
3326
d02ed0bb
MM
3327/* See target.h. */
3328
7c1687a9
MM
3329void
3330target_stop_recording (void)
3331{
ee97f592 3332 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3333}
3334
3335/* See target.h. */
3336
d02ed0bb 3337void
85e1311a 3338target_save_record (const char *filename)
d02ed0bb 3339{
f09e2107 3340 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3341}
3342
3343/* See target.h. */
3344
3345int
3346target_supports_delete_record (void)
3347{
3348 struct target_ops *t;
3349
3350 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3351 if (t->to_delete_record != delegate_delete_record
3352 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3353 return 1;
3354
3355 return 0;
3356}
3357
3358/* See target.h. */
3359
3360void
3361target_delete_record (void)
3362{
07366925 3363 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3364}
3365
3366/* See target.h. */
3367
3368int
3369target_record_is_replaying (void)
3370{
dd2e9d25 3371 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3372}
3373
3374/* See target.h. */
3375
3376void
3377target_goto_record_begin (void)
3378{
671e76cc 3379 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3380}
3381
3382/* See target.h. */
3383
3384void
3385target_goto_record_end (void)
3386{
e9179bb3 3387 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3388}
3389
3390/* See target.h. */
3391
3392void
3393target_goto_record (ULONGEST insn)
3394{
05969c84 3395 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3396}
3397
67c86d06
MM
3398/* See target.h. */
3399
3400void
3401target_insn_history (int size, int flags)
3402{
3679abfa 3403 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3404}
3405
3406/* See target.h. */
3407
3408void
3409target_insn_history_from (ULONGEST from, int size, int flags)
3410{
8444ab58 3411 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3412}
3413
3414/* See target.h. */
3415
3416void
3417target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3418{
c29302cc 3419 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3420}
3421
15984c13
MM
3422/* See target.h. */
3423
3424void
3425target_call_history (int size, int flags)
3426{
170049d4 3427 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3428}
3429
3430/* See target.h. */
3431
3432void
3433target_call_history_from (ULONGEST begin, int size, int flags)
3434{
16fc27d6 3435 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3436}
3437
3438/* See target.h. */
3439
3440void
3441target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3442{
115d9817 3443 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3444}
3445
ea001bdc
MM
3446/* See target.h. */
3447
3448const struct frame_unwind *
3449target_get_unwinder (void)
3450{
ac01945b 3451 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3452}
3453
3454/* See target.h. */
3455
3456const struct frame_unwind *
3457target_get_tailcall_unwinder (void)
3458{
ac01945b 3459 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3460}
3461
c0eca49f 3462/* Default implementation of to_decr_pc_after_break. */
118e6252 3463
c0eca49f
TT
3464static CORE_ADDR
3465default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3466 struct gdbarch *gdbarch)
3467{
118e6252
MM
3468 return gdbarch_decr_pc_after_break (gdbarch);
3469}
3470
3471/* See target.h. */
3472
3473CORE_ADDR
3474target_decr_pc_after_break (struct gdbarch *gdbarch)
3475{
c0eca49f 3476 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3477}
3478
5fff78c4
MM
3479/* See target.h. */
3480
3481void
3482target_prepare_to_generate_core (void)
3483{
3484 current_target.to_prepare_to_generate_core (&current_target);
3485}
3486
3487/* See target.h. */
3488
3489void
3490target_done_generating_core (void)
3491{
3492 current_target.to_done_generating_core (&current_target);
3493}
3494
c906108c 3495static void
fba45db2 3496setup_target_debug (void)
c906108c
SS
3497{
3498 memcpy (&debug_target, &current_target, sizeof debug_target);
3499
a7068b60 3500 init_debug_target (&current_target);
c906108c 3501}
c906108c 3502\f
c5aa993b
JM
3503
3504static char targ_desc[] =
3e43a32a
MS
3505"Names of targets and files being debugged.\nShows the entire \
3506stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3507core-file, and process, if any), as well as the symbol file name.";
3508
a53f3625 3509static void
a30bf1f1
TT
3510default_rcmd (struct target_ops *self, const char *command,
3511 struct ui_file *output)
a53f3625
TT
3512{
3513 error (_("\"monitor\" command not supported by this target."));
3514}
3515
96baa820
JM
3516static void
3517do_monitor_command (char *cmd,
3518 int from_tty)
3519{
96baa820
JM
3520 target_rcmd (cmd, gdb_stdtarg);
3521}
3522
87680a14
JB
3523/* Print the name of each layers of our target stack. */
3524
3525static void
3526maintenance_print_target_stack (char *cmd, int from_tty)
3527{
3528 struct target_ops *t;
3529
3530 printf_filtered (_("The current target stack is:\n"));
3531
3532 for (t = target_stack; t != NULL; t = t->beneath)
3533 {
3534 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3535 }
3536}
3537
329ea579
PA
3538/* Controls if targets can report that they can/are async. This is
3539 just for maintainers to use when debugging gdb. */
3540int target_async_permitted = 1;
c6ebd6cf
VP
3541
3542/* The set command writes to this variable. If the inferior is
b5419e49 3543 executing, target_async_permitted is *not* updated. */
329ea579 3544static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3545
3546static void
329ea579
PA
3547maint_set_target_async_command (char *args, int from_tty,
3548 struct cmd_list_element *c)
c6ebd6cf 3549{
c35b1492 3550 if (have_live_inferiors ())
c6ebd6cf
VP
3551 {
3552 target_async_permitted_1 = target_async_permitted;
3553 error (_("Cannot change this setting while the inferior is running."));
3554 }
3555
3556 target_async_permitted = target_async_permitted_1;
3557}
3558
3559static void
329ea579
PA
3560maint_show_target_async_command (struct ui_file *file, int from_tty,
3561 struct cmd_list_element *c,
3562 const char *value)
c6ebd6cf 3563{
3e43a32a
MS
3564 fprintf_filtered (file,
3565 _("Controlling the inferior in "
3566 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3567}
3568
d914c394
SS
3569/* Temporary copies of permission settings. */
3570
3571static int may_write_registers_1 = 1;
3572static int may_write_memory_1 = 1;
3573static int may_insert_breakpoints_1 = 1;
3574static int may_insert_tracepoints_1 = 1;
3575static int may_insert_fast_tracepoints_1 = 1;
3576static int may_stop_1 = 1;
3577
3578/* Make the user-set values match the real values again. */
3579
3580void
3581update_target_permissions (void)
3582{
3583 may_write_registers_1 = may_write_registers;
3584 may_write_memory_1 = may_write_memory;
3585 may_insert_breakpoints_1 = may_insert_breakpoints;
3586 may_insert_tracepoints_1 = may_insert_tracepoints;
3587 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3588 may_stop_1 = may_stop;
3589}
3590
3591/* The one function handles (most of) the permission flags in the same
3592 way. */
3593
3594static void
3595set_target_permissions (char *args, int from_tty,
3596 struct cmd_list_element *c)
3597{
3598 if (target_has_execution)
3599 {
3600 update_target_permissions ();
3601 error (_("Cannot change this setting while the inferior is running."));
3602 }
3603
3604 /* Make the real values match the user-changed values. */
3605 may_write_registers = may_write_registers_1;
3606 may_insert_breakpoints = may_insert_breakpoints_1;
3607 may_insert_tracepoints = may_insert_tracepoints_1;
3608 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3609 may_stop = may_stop_1;
3610 update_observer_mode ();
3611}
3612
3613/* Set memory write permission independently of observer mode. */
3614
3615static void
3616set_write_memory_permission (char *args, int from_tty,
3617 struct cmd_list_element *c)
3618{
3619 /* Make the real values match the user-changed values. */
3620 may_write_memory = may_write_memory_1;
3621 update_observer_mode ();
3622}
3623
3624
c906108c 3625void
fba45db2 3626initialize_targets (void)
c906108c
SS
3627{
3628 init_dummy_target ();
3629 push_target (&dummy_target);
3630
3631 add_info ("target", target_info, targ_desc);
3632 add_info ("files", target_info, targ_desc);
3633
ccce17b0 3634 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3635Set target debugging."), _("\
3636Show target debugging."), _("\
333dabeb 3637When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3638verbose."),
3639 set_targetdebug,
ccce17b0
YQ
3640 show_targetdebug,
3641 &setdebuglist, &showdebuglist);
3a11626d 3642
2bc416ba 3643 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3644 &trust_readonly, _("\
3645Set mode for reading from readonly sections."), _("\
3646Show mode for reading from readonly sections."), _("\
3a11626d
MS
3647When this mode is on, memory reads from readonly sections (such as .text)\n\
3648will be read from the object file instead of from the target. This will\n\
7915a72c 3649result in significant performance improvement for remote targets."),
2c5b56ce 3650 NULL,
920d2a44 3651 show_trust_readonly,
e707bbc2 3652 &setlist, &showlist);
96baa820
JM
3653
3654 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3655 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3656
87680a14
JB
3657 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3658 _("Print the name of each layer of the internal target stack."),
3659 &maintenanceprintlist);
3660
c6ebd6cf
VP
3661 add_setshow_boolean_cmd ("target-async", no_class,
3662 &target_async_permitted_1, _("\
3663Set whether gdb controls the inferior in asynchronous mode."), _("\
3664Show whether gdb controls the inferior in asynchronous mode."), _("\
3665Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3666 maint_set_target_async_command,
3667 maint_show_target_async_command,
3668 &maintenance_set_cmdlist,
3669 &maintenance_show_cmdlist);
c6ebd6cf 3670
d914c394
SS
3671 add_setshow_boolean_cmd ("may-write-registers", class_support,
3672 &may_write_registers_1, _("\
3673Set permission to write into registers."), _("\
3674Show permission to write into registers."), _("\
3675When this permission is on, GDB may write into the target's registers.\n\
3676Otherwise, any sort of write attempt will result in an error."),
3677 set_target_permissions, NULL,
3678 &setlist, &showlist);
3679
3680 add_setshow_boolean_cmd ("may-write-memory", class_support,
3681 &may_write_memory_1, _("\
3682Set permission to write into target memory."), _("\
3683Show permission to write into target memory."), _("\
3684When this permission is on, GDB may write into the target's memory.\n\
3685Otherwise, any sort of write attempt will result in an error."),
3686 set_write_memory_permission, NULL,
3687 &setlist, &showlist);
3688
3689 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3690 &may_insert_breakpoints_1, _("\
3691Set permission to insert breakpoints in the target."), _("\
3692Show permission to insert breakpoints in the target."), _("\
3693When this permission is on, GDB may insert breakpoints in the program.\n\
3694Otherwise, any sort of insertion attempt will result in an error."),
3695 set_target_permissions, NULL,
3696 &setlist, &showlist);
3697
3698 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3699 &may_insert_tracepoints_1, _("\
3700Set permission to insert tracepoints in the target."), _("\
3701Show permission to insert tracepoints in the target."), _("\
3702When this permission is on, GDB may insert tracepoints in the program.\n\
3703Otherwise, any sort of insertion attempt will result in an error."),
3704 set_target_permissions, NULL,
3705 &setlist, &showlist);
3706
3707 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3708 &may_insert_fast_tracepoints_1, _("\
3709Set permission to insert fast tracepoints in the target."), _("\
3710Show permission to insert fast tracepoints in the target."), _("\
3711When this permission is on, GDB may insert fast tracepoints.\n\
3712Otherwise, any sort of insertion attempt will result in an error."),
3713 set_target_permissions, NULL,
3714 &setlist, &showlist);
3715
3716 add_setshow_boolean_cmd ("may-interrupt", class_support,
3717 &may_stop_1, _("\
3718Set permission to interrupt or signal the target."), _("\
3719Show permission to interrupt or signal the target."), _("\
3720When this permission is on, GDB may interrupt/stop the target's execution.\n\
3721Otherwise, any attempt to interrupt or stop will be ignored."),
3722 set_target_permissions, NULL,
3723 &setlist, &showlist);
6a3cb8e8
PA
3724
3725 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3726 &auto_connect_native_target, _("\
3727Set whether GDB may automatically connect to the native target."), _("\
3728Show whether GDB may automatically connect to the native target."), _("\
3729When on, and GDB is not connected to a target yet, GDB\n\
3730attempts \"run\" and other commands with the native target."),
3731 NULL, show_auto_connect_native_target,
3732 &setlist, &showlist);
c906108c 3733}
This page took 1.897114 seconds and 4 git commands to generate.