Make common code handle target_terminal_* idempotency
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
c0eca49f
TT
108static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
110
a7068b60
TT
111static struct target_ops debug_target;
112
1101cb7b
TT
113#include "target-delegates.c"
114
a14ed312 115static void init_dummy_target (void);
c906108c 116
3cecbbbe
TT
117static void update_current_target (void);
118
89a1c21a
SM
119/* Vector of existing target structures. */
120typedef struct target_ops *target_ops_p;
121DEF_VEC_P (target_ops_p);
122static VEC (target_ops_p) *target_structs;
c906108c
SS
123
124/* The initial current target, so that there is always a semi-valid
125 current target. */
126
127static struct target_ops dummy_target;
128
129/* Top of target stack. */
130
258b763a 131static struct target_ops *target_stack;
c906108c
SS
132
133/* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136struct target_ops current_target;
137
138/* Command list for target. */
139
140static struct cmd_list_element *targetlist = NULL;
141
cf7a04e8
DJ
142/* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145static int trust_readonly = 0;
146
8defab1a
DJ
147/* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150static int show_memory_breakpoints = 0;
151
d914c394
SS
152/* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156int may_write_registers = 1;
157
158int may_write_memory = 1;
159
160int may_insert_breakpoints = 1;
161
162int may_insert_tracepoints = 1;
163
164int may_insert_fast_tracepoints = 1;
165
166int may_stop = 1;
167
c906108c
SS
168/* Non-zero if we want to see trace of target level stuff. */
169
ccce17b0 170static unsigned int targetdebug = 0;
3cecbbbe
TT
171
172static void
173set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174{
175 update_current_target ();
176}
177
920d2a44
AC
178static void
179show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183}
c906108c 184
a14ed312 185static void setup_target_debug (void);
c906108c 186
c906108c
SS
187/* The user just typed 'target' without the name of a target. */
188
c906108c 189static void
fba45db2 190target_command (char *arg, int from_tty)
c906108c
SS
191{
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194}
195
c35b1492
PA
196/* Default target_has_* methods for process_stratum targets. */
197
198int
199default_child_has_all_memory (struct target_ops *ops)
200{
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206}
207
208int
209default_child_has_memory (struct target_ops *ops)
210{
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216}
217
218int
219default_child_has_stack (struct target_ops *ops)
220{
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226}
227
228int
229default_child_has_registers (struct target_ops *ops)
230{
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236}
237
238int
aeaec162 239default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
240{
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
aeaec162 243 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
244 return 0;
245
246 return 1;
247}
248
249
250int
251target_has_all_memory_1 (void)
252{
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260}
261
262int
263target_has_memory_1 (void)
264{
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272}
273
274int
275target_has_stack_1 (void)
276{
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284}
285
286int
287target_has_registers_1 (void)
288{
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296}
297
298int
aeaec162 299target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
300{
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 304 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
305 return 1;
306
307 return 0;
308}
309
aeaec162
TT
310int
311target_has_execution_current (void)
312{
313 return target_has_execution_1 (inferior_ptid);
314}
315
c22a2b88
TT
316/* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
c906108c
SS
318
319void
c22a2b88 320complete_target_initialization (struct target_ops *t)
c906108c 321{
0088c768 322 /* Provide default values for all "must have" methods. */
0088c768 323
c35b1492 324 if (t->to_has_all_memory == NULL)
555bbdeb 325 t->to_has_all_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_memory == NULL)
555bbdeb 328 t->to_has_memory = return_zero;
c35b1492
PA
329
330 if (t->to_has_stack == NULL)
555bbdeb 331 t->to_has_stack = return_zero;
c35b1492
PA
332
333 if (t->to_has_registers == NULL)
555bbdeb 334 t->to_has_registers = return_zero;
c35b1492
PA
335
336 if (t->to_has_execution == NULL)
555bbdeb 337 t->to_has_execution = return_zero_has_execution;
1101cb7b 338
b3ccfe11
TT
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
1101cb7b 345 install_delegators (t);
c22a2b88
TT
346}
347
8981c758
TT
348/* This is used to implement the various target commands. */
349
350static void
351open_target (char *args, int from_tty, struct cmd_list_element *command)
352{
353 struct target_ops *ops = get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364}
365
c22a2b88
TT
366/* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370void
371add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373{
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
c35b1492 377
89a1c21a 378 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
379
380 if (targetlist == NULL)
1bedd215
AC
381 add_prefix_cmd ("target", class_run, target_command, _("\
382Connect to a target machine or process.\n\
c906108c
SS
383The first argument is the type or protocol of the target machine.\n\
384Remaining arguments are interpreted by the target protocol. For more\n\
385information on the arguments for a particular protocol, type\n\
1bedd215 386`help target ' followed by the protocol name."),
c906108c 387 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
9852c492
YQ
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393}
394
395/* Add a possible target architecture to the list. */
396
397void
398add_target (struct target_ops *t)
399{
400 add_target_with_completer (t, NULL);
c906108c
SS
401}
402
b48d48eb
MM
403/* See target.h. */
404
405void
406add_deprecated_target_alias (struct target_ops *t, char *alias)
407{
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
8981c758
TT
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
b48d48eb
MM
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418}
419
c906108c
SS
420/* Stub functions */
421
7d85a9c0
JB
422void
423target_kill (void)
424{
423a4807 425 current_target.to_kill (&current_target);
7d85a9c0
JB
426}
427
11cf8741 428void
9cbe5fff 429target_load (const char *arg, int from_tty)
11cf8741 430{
4e5d721f 431 target_dcache_invalidate ();
71a9f134 432 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
433}
434
5842f62a
PA
435/* Possible terminal states. */
436
437enum terminal_state
438 {
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
441
442 /* Some of our terminal settings are in effect, enough to get
443 proper output. */
444 terminal_is_ours_for_output = 1,
445
446 /* Our terminal settings are in effect, for output and input. */
447 terminal_is_ours = 2
448 };
449
450static enum terminal_state terminal_state;
451
452/* See target.h. */
453
454void
455target_terminal_init (void)
456{
457 (*current_target.to_terminal_init) (&current_target);
458
459 terminal_state = terminal_is_ours;
460}
461
462/* See target.h. */
463
d9d2d8b6
PA
464void
465target_terminal_inferior (void)
466{
467 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 468 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
469 this point the target is not async yet. However, if sync_execution
470 is not set, we know it will become async prior to resume. */
471 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
472 return;
473
5842f62a
PA
474 if (terminal_state == terminal_is_inferior)
475 return;
476
d9d2d8b6
PA
477 /* If GDB is resuming the inferior in the foreground, install
478 inferior's terminal modes. */
d2f640d4 479 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
480 terminal_state = terminal_is_inferior;
481}
482
483/* See target.h. */
484
485void
486target_terminal_ours (void)
487{
488 if (terminal_state == terminal_is_ours)
489 return;
490
491 (*current_target.to_terminal_ours) (&current_target);
492 terminal_state = terminal_is_ours;
493}
494
495/* See target.h. */
496
497void
498target_terminal_ours_for_output (void)
499{
500 if (terminal_state != terminal_is_inferior)
501 return;
502 (*current_target.to_terminal_ours_for_output) (&current_target);
503 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 504}
136d6dae 505
b0ed115f
TT
506/* See target.h. */
507
508int
509target_supports_terminal_ours (void)
510{
511 struct target_ops *t;
512
513 for (t = current_target.beneath; t != NULL; t = t->beneath)
514 {
515 if (t->to_terminal_ours != delegate_terminal_ours
516 && t->to_terminal_ours != tdefault_terminal_ours)
517 return 1;
518 }
519
520 return 0;
521}
522
c906108c 523static void
fba45db2 524tcomplain (void)
c906108c 525{
8a3fe4f8 526 error (_("You can't do that when your target is `%s'"),
c906108c
SS
527 current_target.to_shortname);
528}
529
530void
fba45db2 531noprocess (void)
c906108c 532{
8a3fe4f8 533 error (_("You can't do that without a process to debug."));
c906108c
SS
534}
535
c906108c 536static void
0a4f40a2 537default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 538{
a3f17187 539 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
540}
541
0ef643c8
JB
542/* A default implementation for the to_get_ada_task_ptid target method.
543
544 This function builds the PTID by using both LWP and TID as part of
545 the PTID lwp and tid elements. The pid used is the pid of the
546 inferior_ptid. */
547
2c0b251b 548static ptid_t
1e6b91a4 549default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
550{
551 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
552}
553
32231432 554static enum exec_direction_kind
4c612759 555default_execution_direction (struct target_ops *self)
32231432
PA
556{
557 if (!target_can_execute_reverse)
558 return EXEC_FORWARD;
559 else if (!target_can_async_p ())
560 return EXEC_FORWARD;
561 else
562 gdb_assert_not_reached ("\
563to_execution_direction must be implemented for reverse async");
564}
565
7998dfc3
AC
566/* Go through the target stack from top to bottom, copying over zero
567 entries in current_target, then filling in still empty entries. In
568 effect, we are doing class inheritance through the pushed target
569 vectors.
570
571 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
572 is currently implemented, is that it discards any knowledge of
573 which target an inherited method originally belonged to.
574 Consequently, new new target methods should instead explicitly and
575 locally search the target stack for the target that can handle the
576 request. */
c906108c
SS
577
578static void
7998dfc3 579update_current_target (void)
c906108c 580{
7998dfc3
AC
581 struct target_ops *t;
582
08d8bcd7 583 /* First, reset current's contents. */
7998dfc3
AC
584 memset (&current_target, 0, sizeof (current_target));
585
1101cb7b
TT
586 /* Install the delegators. */
587 install_delegators (&current_target);
588
be4ddd36
TT
589 current_target.to_stratum = target_stack->to_stratum;
590
7998dfc3
AC
591#define INHERIT(FIELD, TARGET) \
592 if (!current_target.FIELD) \
593 current_target.FIELD = (TARGET)->FIELD
594
be4ddd36
TT
595 /* Do not add any new INHERITs here. Instead, use the delegation
596 mechanism provided by make-target-delegates. */
7998dfc3
AC
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
dc177b7a 601 INHERIT (to_attach_no_wait, t);
74174d2e 602 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 603 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 604 INHERIT (to_has_thread_control, t);
7998dfc3
AC
605 }
606#undef INHERIT
607
7998dfc3
AC
608 /* Finally, position the target-stack beneath the squashed
609 "current_target". That way code looking for a non-inherited
610 target method can quickly and simply find it. */
611 current_target.beneath = target_stack;
b4b61fdb
DJ
612
613 if (targetdebug)
614 setup_target_debug ();
c906108c
SS
615}
616
617/* Push a new target type into the stack of the existing target accessors,
618 possibly superseding some of the existing accessors.
619
c906108c
SS
620 Rather than allow an empty stack, we always have the dummy target at
621 the bottom stratum, so we can call the function vectors without
622 checking them. */
623
b26a4dcb 624void
fba45db2 625push_target (struct target_ops *t)
c906108c 626{
258b763a 627 struct target_ops **cur;
c906108c
SS
628
629 /* Check magic number. If wrong, it probably means someone changed
630 the struct definition, but not all the places that initialize one. */
631 if (t->to_magic != OPS_MAGIC)
632 {
c5aa993b
JM
633 fprintf_unfiltered (gdb_stderr,
634 "Magic number of %s target struct wrong\n",
635 t->to_shortname);
3e43a32a
MS
636 internal_error (__FILE__, __LINE__,
637 _("failed internal consistency check"));
c906108c
SS
638 }
639
258b763a
AC
640 /* Find the proper stratum to install this target in. */
641 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 642 {
258b763a 643 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
644 break;
645 }
646
258b763a 647 /* If there's already targets at this stratum, remove them. */
88c231eb 648 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
649 targets to CUR, and not just those at this stratum level. */
650 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
651 {
652 /* There's already something at this stratum level. Close it,
653 and un-hook it from the stack. */
654 struct target_ops *tmp = (*cur);
5d502164 655
258b763a
AC
656 (*cur) = (*cur)->beneath;
657 tmp->beneath = NULL;
460014f5 658 target_close (tmp);
258b763a 659 }
c906108c
SS
660
661 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
662 t->beneath = (*cur);
663 (*cur) = t;
c906108c
SS
664
665 update_current_target ();
c906108c
SS
666}
667
2bc416ba 668/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
669 Return how many times it was removed (0 or 1). */
670
671int
fba45db2 672unpush_target (struct target_ops *t)
c906108c 673{
258b763a
AC
674 struct target_ops **cur;
675 struct target_ops *tmp;
c906108c 676
c8d104ad
PA
677 if (t->to_stratum == dummy_stratum)
678 internal_error (__FILE__, __LINE__,
9b20d036 679 _("Attempt to unpush the dummy target"));
c8d104ad 680
c906108c 681 /* Look for the specified target. Note that we assume that a target
c378eb4e 682 can only occur once in the target stack. */
c906108c 683
258b763a
AC
684 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
685 {
686 if ((*cur) == t)
687 break;
688 }
c906108c 689
305436e0
PA
690 /* If we don't find target_ops, quit. Only open targets should be
691 closed. */
258b763a 692 if ((*cur) == NULL)
305436e0 693 return 0;
5269965e 694
c378eb4e 695 /* Unchain the target. */
258b763a
AC
696 tmp = (*cur);
697 (*cur) = (*cur)->beneath;
698 tmp->beneath = NULL;
c906108c
SS
699
700 update_current_target ();
c906108c 701
305436e0
PA
702 /* Finally close the target. Note we do this after unchaining, so
703 any target method calls from within the target_close
704 implementation don't end up in T anymore. */
460014f5 705 target_close (t);
305436e0 706
c906108c
SS
707 return 1;
708}
709
aa76d38d 710void
460014f5 711pop_all_targets_above (enum strata above_stratum)
aa76d38d 712{
87ab71f0 713 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 714 {
aa76d38d
PA
715 if (!unpush_target (target_stack))
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "pop_all_targets couldn't find target %s\n",
b52323fa 719 target_stack->to_shortname);
aa76d38d
PA
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 break;
723 }
724 }
725}
726
87ab71f0 727void
460014f5 728pop_all_targets (void)
87ab71f0 729{
460014f5 730 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
731}
732
c0edd9ed
JK
733/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
734
735int
736target_is_pushed (struct target_ops *t)
737{
84202f9c 738 struct target_ops *cur;
c0edd9ed
JK
739
740 /* Check magic number. If wrong, it probably means someone changed
741 the struct definition, but not all the places that initialize one. */
742 if (t->to_magic != OPS_MAGIC)
743 {
744 fprintf_unfiltered (gdb_stderr,
745 "Magic number of %s target struct wrong\n",
746 t->to_shortname);
3e43a32a
MS
747 internal_error (__FILE__, __LINE__,
748 _("failed internal consistency check"));
c0edd9ed
JK
749 }
750
84202f9c
TT
751 for (cur = target_stack; cur != NULL; cur = cur->beneath)
752 if (cur == t)
c0edd9ed
JK
753 return 1;
754
755 return 0;
756}
757
f0f9ff95
TT
758/* Default implementation of to_get_thread_local_address. */
759
760static void
761generic_tls_error (void)
762{
763 throw_error (TLS_GENERIC_ERROR,
764 _("Cannot find thread-local variables on this target"));
765}
766
72f5cf0e 767/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
768 current thread's thread-local storage with offset OFFSET. */
769CORE_ADDR
770target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
771{
772 volatile CORE_ADDR addr = 0;
f0f9ff95 773 struct target_ops *target = &current_target;
9e35dae4 774
f0f9ff95 775 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
776 {
777 ptid_t ptid = inferior_ptid;
778 volatile struct gdb_exception ex;
779
780 TRY_CATCH (ex, RETURN_MASK_ALL)
781 {
782 CORE_ADDR lm_addr;
783
784 /* Fetch the load module address for this objfile. */
f5656ead 785 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 786 objfile);
9e35dae4 787
3e43a32a
MS
788 addr = target->to_get_thread_local_address (target, ptid,
789 lm_addr, offset);
9e35dae4
DJ
790 }
791 /* If an error occurred, print TLS related messages here. Otherwise,
792 throw the error to some higher catcher. */
793 if (ex.reason < 0)
794 {
795 int objfile_is_library = (objfile->flags & OBJF_SHARED);
796
797 switch (ex.error)
798 {
799 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
800 error (_("Cannot find thread-local variables "
801 "in this thread library."));
9e35dae4
DJ
802 break;
803 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
804 if (objfile_is_library)
805 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 806 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
807 else
808 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 809 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
810 break;
811 case TLS_NOT_ALLOCATED_YET_ERROR:
812 if (objfile_is_library)
813 error (_("The inferior has not yet allocated storage for"
814 " thread-local variables in\n"
815 "the shared library `%s'\n"
816 "for %s"),
4262abfb 817 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
818 else
819 error (_("The inferior has not yet allocated storage for"
820 " thread-local variables in\n"
821 "the executable `%s'\n"
822 "for %s"),
4262abfb 823 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
824 break;
825 case TLS_GENERIC_ERROR:
826 if (objfile_is_library)
827 error (_("Cannot find thread-local storage for %s, "
828 "shared library %s:\n%s"),
829 target_pid_to_str (ptid),
4262abfb 830 objfile_name (objfile), ex.message);
9e35dae4
DJ
831 else
832 error (_("Cannot find thread-local storage for %s, "
833 "executable file %s:\n%s"),
834 target_pid_to_str (ptid),
4262abfb 835 objfile_name (objfile), ex.message);
9e35dae4
DJ
836 break;
837 default:
838 throw_exception (ex);
839 break;
840 }
841 }
842 }
843 /* It wouldn't be wrong here to try a gdbarch method, too; finding
844 TLS is an ABI-specific thing. But we don't do that yet. */
845 else
846 error (_("Cannot find thread-local variables on this target"));
847
848 return addr;
849}
850
6be7b56e 851const char *
01cb8804 852target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
853{
854#define CASE(X) case X: return #X
01cb8804 855 switch (status)
6be7b56e
PA
856 {
857 CASE(TARGET_XFER_E_IO);
bc113b4e 858 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
859 default:
860 return "<unknown>";
861 }
862#undef CASE
863};
864
865
c906108c
SS
866#undef MIN
867#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
868
869/* target_read_string -- read a null terminated string, up to LEN bytes,
870 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
871 Set *STRING to a pointer to malloc'd memory containing the data; the caller
872 is responsible for freeing it. Return the number of bytes successfully
873 read. */
874
875int
fba45db2 876target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 877{
c2e8b827 878 int tlen, offset, i;
1b0ba102 879 gdb_byte buf[4];
c906108c
SS
880 int errcode = 0;
881 char *buffer;
882 int buffer_allocated;
883 char *bufptr;
884 unsigned int nbytes_read = 0;
885
6217bf3e
MS
886 gdb_assert (string);
887
c906108c
SS
888 /* Small for testing. */
889 buffer_allocated = 4;
890 buffer = xmalloc (buffer_allocated);
891 bufptr = buffer;
892
c906108c
SS
893 while (len > 0)
894 {
895 tlen = MIN (len, 4 - (memaddr & 3));
896 offset = memaddr & 3;
897
1b0ba102 898 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
899 if (errcode != 0)
900 {
901 /* The transfer request might have crossed the boundary to an
c378eb4e 902 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
903 a single byte. */
904 tlen = 1;
905 offset = 0;
b8eb5af0 906 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
907 if (errcode != 0)
908 goto done;
909 }
910
911 if (bufptr - buffer + tlen > buffer_allocated)
912 {
913 unsigned int bytes;
5d502164 914
c906108c
SS
915 bytes = bufptr - buffer;
916 buffer_allocated *= 2;
917 buffer = xrealloc (buffer, buffer_allocated);
918 bufptr = buffer + bytes;
919 }
920
921 for (i = 0; i < tlen; i++)
922 {
923 *bufptr++ = buf[i + offset];
924 if (buf[i + offset] == '\000')
925 {
926 nbytes_read += i + 1;
927 goto done;
928 }
929 }
930
931 memaddr += tlen;
932 len -= tlen;
933 nbytes_read += tlen;
934 }
c5aa993b 935done:
6217bf3e 936 *string = buffer;
c906108c
SS
937 if (errnop != NULL)
938 *errnop = errcode;
c906108c
SS
939 return nbytes_read;
940}
941
07b82ea5
PA
942struct target_section_table *
943target_get_section_table (struct target_ops *target)
944{
7e35c012 945 return (*target->to_get_section_table) (target);
07b82ea5
PA
946}
947
8db32d44 948/* Find a section containing ADDR. */
07b82ea5 949
0542c86d 950struct target_section *
8db32d44
AC
951target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
952{
07b82ea5 953 struct target_section_table *table = target_get_section_table (target);
0542c86d 954 struct target_section *secp;
07b82ea5
PA
955
956 if (table == NULL)
957 return NULL;
958
959 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
960 {
961 if (addr >= secp->addr && addr < secp->endaddr)
962 return secp;
963 }
964 return NULL;
965}
966
0fec99e8
PA
967
968/* Helper for the memory xfer routines. Checks the attributes of the
969 memory region of MEMADDR against the read or write being attempted.
970 If the access is permitted returns true, otherwise returns false.
971 REGION_P is an optional output parameter. If not-NULL, it is
972 filled with a pointer to the memory region of MEMADDR. REG_LEN
973 returns LEN trimmed to the end of the region. This is how much the
974 caller can continue requesting, if the access is permitted. A
975 single xfer request must not straddle memory region boundaries. */
976
977static int
978memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
979 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
980 struct mem_region **region_p)
981{
982 struct mem_region *region;
983
984 region = lookup_mem_region (memaddr);
985
986 if (region_p != NULL)
987 *region_p = region;
988
989 switch (region->attrib.mode)
990 {
991 case MEM_RO:
992 if (writebuf != NULL)
993 return 0;
994 break;
995
996 case MEM_WO:
997 if (readbuf != NULL)
998 return 0;
999 break;
1000
1001 case MEM_FLASH:
1002 /* We only support writing to flash during "load" for now. */
1003 if (writebuf != NULL)
1004 error (_("Writing to flash memory forbidden in this context"));
1005 break;
1006
1007 case MEM_NONE:
1008 return 0;
1009 }
1010
1011 /* region->hi == 0 means there's no upper bound. */
1012 if (memaddr + len < region->hi || region->hi == 0)
1013 *reg_len = len;
1014 else
1015 *reg_len = region->hi - memaddr;
1016
1017 return 1;
1018}
1019
9f713294
YQ
1020/* Read memory from more than one valid target. A core file, for
1021 instance, could have some of memory but delegate other bits to
1022 the target below it. So, we must manually try all targets. */
1023
9b409511 1024static enum target_xfer_status
17fde6d0 1025raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1026 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1027 ULONGEST *xfered_len)
9f713294 1028{
9b409511 1029 enum target_xfer_status res;
9f713294
YQ
1030
1031 do
1032 {
1033 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1034 readbuf, writebuf, memaddr, len,
1035 xfered_len);
1036 if (res == TARGET_XFER_OK)
9f713294
YQ
1037 break;
1038
633785ff 1039 /* Stop if the target reports that the memory is not available. */
bc113b4e 1040 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1041 break;
1042
9f713294
YQ
1043 /* We want to continue past core files to executables, but not
1044 past a running target's memory. */
1045 if (ops->to_has_all_memory (ops))
1046 break;
1047
1048 ops = ops->beneath;
1049 }
1050 while (ops != NULL);
1051
0f26cec1
PA
1052 /* The cache works at the raw memory level. Make sure the cache
1053 gets updated with raw contents no matter what kind of memory
1054 object was originally being written. Note we do write-through
1055 first, so that if it fails, we don't write to the cache contents
1056 that never made it to the target. */
1057 if (writebuf != NULL
1058 && !ptid_equal (inferior_ptid, null_ptid)
1059 && target_dcache_init_p ()
1060 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1061 {
1062 DCACHE *dcache = target_dcache_get ();
1063
1064 /* Note that writing to an area of memory which wasn't present
1065 in the cache doesn't cause it to be loaded in. */
1066 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1067 }
1068
9f713294
YQ
1069 return res;
1070}
1071
7f79c47e
DE
1072/* Perform a partial memory transfer.
1073 For docs see target.h, to_xfer_partial. */
cf7a04e8 1074
9b409511 1075static enum target_xfer_status
f0ba3972 1076memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1077 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1078 ULONGEST len, ULONGEST *xfered_len)
0779438d 1079{
9b409511 1080 enum target_xfer_status res;
0fec99e8 1081 ULONGEST reg_len;
cf7a04e8 1082 struct mem_region *region;
4e5d721f 1083 struct inferior *inf;
cf7a04e8 1084
07b82ea5
PA
1085 /* For accesses to unmapped overlay sections, read directly from
1086 files. Must do this first, as MEMADDR may need adjustment. */
1087 if (readbuf != NULL && overlay_debugging)
1088 {
1089 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1090
07b82ea5
PA
1091 if (pc_in_unmapped_range (memaddr, section))
1092 {
1093 struct target_section_table *table
1094 = target_get_section_table (ops);
1095 const char *section_name = section->the_bfd_section->name;
5d502164 1096
07b82ea5
PA
1097 memaddr = overlay_mapped_address (memaddr, section);
1098 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1099 memaddr, len, xfered_len,
07b82ea5
PA
1100 table->sections,
1101 table->sections_end,
1102 section_name);
1103 }
1104 }
1105
1106 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1107 if (readbuf != NULL && trust_readonly)
1108 {
0542c86d 1109 struct target_section *secp;
07b82ea5 1110 struct target_section_table *table;
cf7a04e8
DJ
1111
1112 secp = target_section_by_addr (ops, memaddr);
1113 if (secp != NULL
2b2848e2
DE
1114 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1115 secp->the_bfd_section)
cf7a04e8 1116 & SEC_READONLY))
07b82ea5
PA
1117 {
1118 table = target_get_section_table (ops);
1119 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1120 memaddr, len, xfered_len,
07b82ea5
PA
1121 table->sections,
1122 table->sections_end,
1123 NULL);
1124 }
98646950
UW
1125 }
1126
cf7a04e8 1127 /* Try GDB's internal data cache. */
cf7a04e8 1128
0fec99e8
PA
1129 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1130 &region))
1131 return TARGET_XFER_E_IO;
cf7a04e8 1132
6c95b8df
PA
1133 if (!ptid_equal (inferior_ptid, null_ptid))
1134 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1135 else
1136 inf = NULL;
4e5d721f
DE
1137
1138 if (inf != NULL
0f26cec1 1139 && readbuf != NULL
2f4d8875
PA
1140 /* The dcache reads whole cache lines; that doesn't play well
1141 with reading from a trace buffer, because reading outside of
1142 the collected memory range fails. */
1143 && get_traceframe_number () == -1
4e5d721f 1144 && (region->attrib.cache
29453a14
YQ
1145 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1146 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1147 {
2a2f9fe4
YQ
1148 DCACHE *dcache = target_dcache_get_or_init ();
1149
0f26cec1
PA
1150 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1151 reg_len, xfered_len);
cf7a04e8
DJ
1152 }
1153
1154 /* If none of those methods found the memory we wanted, fall back
1155 to a target partial transfer. Normally a single call to
1156 to_xfer_partial is enough; if it doesn't recognize an object
1157 it will call the to_xfer_partial of the next target down.
1158 But for memory this won't do. Memory is the only target
9b409511
YQ
1159 object which can be read from more than one valid target.
1160 A core file, for instance, could have some of memory but
1161 delegate other bits to the target below it. So, we must
1162 manually try all targets. */
1163
1164 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1165 xfered_len);
cf7a04e8
DJ
1166
1167 /* If we still haven't got anything, return the last error. We
1168 give up. */
1169 return res;
0779438d
AC
1170}
1171
f0ba3972
PA
1172/* Perform a partial memory transfer. For docs see target.h,
1173 to_xfer_partial. */
1174
9b409511 1175static enum target_xfer_status
f0ba3972 1176memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1177 gdb_byte *readbuf, const gdb_byte *writebuf,
1178 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1179{
9b409511 1180 enum target_xfer_status res;
f0ba3972
PA
1181
1182 /* Zero length requests are ok and require no work. */
1183 if (len == 0)
9b409511 1184 return TARGET_XFER_EOF;
f0ba3972
PA
1185
1186 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1187 breakpoint insns, thus hiding out from higher layers whether
1188 there are software breakpoints inserted in the code stream. */
1189 if (readbuf != NULL)
1190 {
9b409511
YQ
1191 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1192 xfered_len);
f0ba3972 1193
9b409511 1194 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1195 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1196 }
1197 else
1198 {
1199 void *buf;
1200 struct cleanup *old_chain;
1201
67c059c2
AB
1202 /* A large write request is likely to be partially satisfied
1203 by memory_xfer_partial_1. We will continually malloc
1204 and free a copy of the entire write request for breakpoint
1205 shadow handling even though we only end up writing a small
1206 subset of it. Cap writes to 4KB to mitigate this. */
1207 len = min (4096, len);
1208
f0ba3972
PA
1209 buf = xmalloc (len);
1210 old_chain = make_cleanup (xfree, buf);
1211 memcpy (buf, writebuf, len);
1212
1213 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1214 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1215 xfered_len);
f0ba3972
PA
1216
1217 do_cleanups (old_chain);
1218 }
1219
1220 return res;
1221}
1222
8defab1a
DJ
1223static void
1224restore_show_memory_breakpoints (void *arg)
1225{
1226 show_memory_breakpoints = (uintptr_t) arg;
1227}
1228
1229struct cleanup *
1230make_show_memory_breakpoints_cleanup (int show)
1231{
1232 int current = show_memory_breakpoints;
8defab1a 1233
5d502164 1234 show_memory_breakpoints = show;
8defab1a
DJ
1235 return make_cleanup (restore_show_memory_breakpoints,
1236 (void *) (uintptr_t) current);
1237}
1238
7f79c47e
DE
1239/* For docs see target.h, to_xfer_partial. */
1240
9b409511 1241enum target_xfer_status
27394598
AC
1242target_xfer_partial (struct target_ops *ops,
1243 enum target_object object, const char *annex,
4ac248ca 1244 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1245 ULONGEST offset, ULONGEST len,
1246 ULONGEST *xfered_len)
27394598 1247{
9b409511 1248 enum target_xfer_status retval;
27394598
AC
1249
1250 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1251
ce6d0892
YQ
1252 /* Transfer is done when LEN is zero. */
1253 if (len == 0)
9b409511 1254 return TARGET_XFER_EOF;
ce6d0892 1255
d914c394
SS
1256 if (writebuf && !may_write_memory)
1257 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1258 core_addr_to_string_nz (offset), plongest (len));
1259
9b409511
YQ
1260 *xfered_len = 0;
1261
cf7a04e8
DJ
1262 /* If this is a memory transfer, let the memory-specific code
1263 have a look at it instead. Memory transfers are more
1264 complicated. */
29453a14
YQ
1265 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1266 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1267 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1268 writebuf, offset, len, xfered_len);
9f713294 1269 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1270 {
0fec99e8
PA
1271 /* Skip/avoid accessing the target if the memory region
1272 attributes block the access. Check this here instead of in
1273 raw_memory_xfer_partial as otherwise we'd end up checking
1274 this twice in the case of the memory_xfer_partial path is
1275 taken; once before checking the dcache, and another in the
1276 tail call to raw_memory_xfer_partial. */
1277 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1278 NULL))
1279 return TARGET_XFER_E_IO;
1280
9f713294 1281 /* Request the normal memory object from other layers. */
9b409511
YQ
1282 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1283 xfered_len);
cf7a04e8 1284 }
9f713294
YQ
1285 else
1286 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1287 writebuf, offset, len, xfered_len);
cf7a04e8 1288
27394598
AC
1289 if (targetdebug)
1290 {
1291 const unsigned char *myaddr = NULL;
1292
1293 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1294 "%s:target_xfer_partial "
9b409511 1295 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1296 ops->to_shortname,
1297 (int) object,
1298 (annex ? annex : "(null)"),
53b71562
JB
1299 host_address_to_string (readbuf),
1300 host_address_to_string (writebuf),
0b1553bc 1301 core_addr_to_string_nz (offset),
9b409511
YQ
1302 pulongest (len), retval,
1303 pulongest (*xfered_len));
27394598
AC
1304
1305 if (readbuf)
1306 myaddr = readbuf;
1307 if (writebuf)
1308 myaddr = writebuf;
9b409511 1309 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1310 {
1311 int i;
2bc416ba 1312
27394598 1313 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1314 for (i = 0; i < *xfered_len; i++)
27394598 1315 {
53b71562 1316 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1317 {
1318 if (targetdebug < 2 && i > 0)
1319 {
1320 fprintf_unfiltered (gdb_stdlog, " ...");
1321 break;
1322 }
1323 fprintf_unfiltered (gdb_stdlog, "\n");
1324 }
2bc416ba 1325
27394598
AC
1326 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1327 }
1328 }
2bc416ba 1329
27394598
AC
1330 fputc_unfiltered ('\n', gdb_stdlog);
1331 }
9b409511
YQ
1332
1333 /* Check implementations of to_xfer_partial update *XFERED_LEN
1334 properly. Do assertion after printing debug messages, so that we
1335 can find more clues on assertion failure from debugging messages. */
bc113b4e 1336 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1337 gdb_assert (*xfered_len > 0);
1338
27394598
AC
1339 return retval;
1340}
1341
578d3588
PA
1342/* Read LEN bytes of target memory at address MEMADDR, placing the
1343 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1344 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1345
1346 If an error occurs, no guarantee is made about the contents of the data at
1347 MYADDR. In particular, the caller should not depend upon partial reads
1348 filling the buffer with good data. There is no way for the caller to know
1349 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1350 deal with partial reads should call target_read (which will retry until
c378eb4e 1351 it makes no progress, and then return how much was transferred). */
c906108c
SS
1352
1353int
1b162304 1354target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1355{
c35b1492
PA
1356 /* Dispatch to the topmost target, not the flattened current_target.
1357 Memory accesses check target->to_has_(all_)memory, and the
1358 flattened target doesn't inherit those. */
1359 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1360 myaddr, memaddr, len) == len)
1361 return 0;
0779438d 1362 else
578d3588 1363 return TARGET_XFER_E_IO;
c906108c
SS
1364}
1365
721ec300
GB
1366/* See target/target.h. */
1367
1368int
1369target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1370{
1371 gdb_byte buf[4];
1372 int r;
1373
1374 r = target_read_memory (memaddr, buf, sizeof buf);
1375 if (r != 0)
1376 return r;
1377 *result = extract_unsigned_integer (buf, sizeof buf,
1378 gdbarch_byte_order (target_gdbarch ()));
1379 return 0;
1380}
1381
aee4bf85
PA
1382/* Like target_read_memory, but specify explicitly that this is a read
1383 from the target's raw memory. That is, this read bypasses the
1384 dcache, breakpoint shadowing, etc. */
1385
1386int
1387target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1388{
1389 /* See comment in target_read_memory about why the request starts at
1390 current_target.beneath. */
1391 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1392 myaddr, memaddr, len) == len)
1393 return 0;
1394 else
1395 return TARGET_XFER_E_IO;
1396}
1397
4e5d721f
DE
1398/* Like target_read_memory, but specify explicitly that this is a read from
1399 the target's stack. This may trigger different cache behavior. */
1400
1401int
45aa4659 1402target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1403{
aee4bf85
PA
1404 /* See comment in target_read_memory about why the request starts at
1405 current_target.beneath. */
4e5d721f
DE
1406 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1407 myaddr, memaddr, len) == len)
1408 return 0;
1409 else
578d3588 1410 return TARGET_XFER_E_IO;
4e5d721f
DE
1411}
1412
29453a14
YQ
1413/* Like target_read_memory, but specify explicitly that this is a read from
1414 the target's code. This may trigger different cache behavior. */
1415
1416int
1417target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1418{
aee4bf85
PA
1419 /* See comment in target_read_memory about why the request starts at
1420 current_target.beneath. */
29453a14
YQ
1421 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1422 myaddr, memaddr, len) == len)
1423 return 0;
1424 else
1425 return TARGET_XFER_E_IO;
1426}
1427
7f79c47e 1428/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1429 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1430 error occurs. If an error occurs, no guarantee is made about how
1431 much data got written. Callers that can deal with partial writes
1432 should call target_write. */
7f79c47e 1433
c906108c 1434int
45aa4659 1435target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1436{
aee4bf85
PA
1437 /* See comment in target_read_memory about why the request starts at
1438 current_target.beneath. */
c35b1492 1439 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1440 myaddr, memaddr, len) == len)
1441 return 0;
0779438d 1442 else
578d3588 1443 return TARGET_XFER_E_IO;
c906108c 1444}
c5aa993b 1445
f0ba3972 1446/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1447 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1448 if any error occurs. If an error occurs, no guarantee is made
1449 about how much data got written. Callers that can deal with
1450 partial writes should call target_write. */
f0ba3972
PA
1451
1452int
45aa4659 1453target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1454{
aee4bf85
PA
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
f0ba3972
PA
1457 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
578d3588 1461 return TARGET_XFER_E_IO;
f0ba3972
PA
1462}
1463
fd79ecee
DJ
1464/* Fetch the target's memory map. */
1465
1466VEC(mem_region_s) *
1467target_memory_map (void)
1468{
1469 VEC(mem_region_s) *result;
1470 struct mem_region *last_one, *this_one;
1471 int ix;
1472 struct target_ops *t;
1473
6b2c5a57 1474 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1475 if (result == NULL)
1476 return NULL;
1477
1478 qsort (VEC_address (mem_region_s, result),
1479 VEC_length (mem_region_s, result),
1480 sizeof (struct mem_region), mem_region_cmp);
1481
1482 /* Check that regions do not overlap. Simultaneously assign
1483 a numbering for the "mem" commands to use to refer to
1484 each region. */
1485 last_one = NULL;
1486 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1487 {
1488 this_one->number = ix;
1489
1490 if (last_one && last_one->hi > this_one->lo)
1491 {
1492 warning (_("Overlapping regions in memory map: ignoring"));
1493 VEC_free (mem_region_s, result);
1494 return NULL;
1495 }
1496 last_one = this_one;
1497 }
1498
1499 return result;
1500}
1501
a76d924d
DJ
1502void
1503target_flash_erase (ULONGEST address, LONGEST length)
1504{
e8a6c6ac 1505 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1506}
1507
1508void
1509target_flash_done (void)
1510{
f6fb2925 1511 current_target.to_flash_done (&current_target);
a76d924d
DJ
1512}
1513
920d2a44
AC
1514static void
1515show_trust_readonly (struct ui_file *file, int from_tty,
1516 struct cmd_list_element *c, const char *value)
1517{
3e43a32a
MS
1518 fprintf_filtered (file,
1519 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1520 value);
1521}
3a11626d 1522
7f79c47e 1523/* Target vector read/write partial wrapper functions. */
0088c768 1524
9b409511 1525static enum target_xfer_status
1e3ff5ad
AC
1526target_read_partial (struct target_ops *ops,
1527 enum target_object object,
1b0ba102 1528 const char *annex, gdb_byte *buf,
9b409511
YQ
1529 ULONGEST offset, ULONGEST len,
1530 ULONGEST *xfered_len)
1e3ff5ad 1531{
9b409511
YQ
1532 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1533 xfered_len);
1e3ff5ad
AC
1534}
1535
8a55ffb0 1536static enum target_xfer_status
1e3ff5ad
AC
1537target_write_partial (struct target_ops *ops,
1538 enum target_object object,
1b0ba102 1539 const char *annex, const gdb_byte *buf,
9b409511 1540 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1541{
9b409511
YQ
1542 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1543 xfered_len);
1e3ff5ad
AC
1544}
1545
1546/* Wrappers to perform the full transfer. */
7f79c47e
DE
1547
1548/* For docs on target_read see target.h. */
1549
1e3ff5ad
AC
1550LONGEST
1551target_read (struct target_ops *ops,
1552 enum target_object object,
1b0ba102 1553 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1554 ULONGEST offset, LONGEST len)
1555{
1556 LONGEST xfered = 0;
5d502164 1557
1e3ff5ad
AC
1558 while (xfered < len)
1559 {
9b409511
YQ
1560 ULONGEST xfered_len;
1561 enum target_xfer_status status;
1562
1563 status = target_read_partial (ops, object, annex,
1564 (gdb_byte *) buf + xfered,
1565 offset + xfered, len - xfered,
1566 &xfered_len);
5d502164 1567
1e3ff5ad 1568 /* Call an observer, notifying them of the xfer progress? */
9b409511 1569 if (status == TARGET_XFER_EOF)
13547ab6 1570 return xfered;
9b409511
YQ
1571 else if (status == TARGET_XFER_OK)
1572 {
1573 xfered += xfered_len;
1574 QUIT;
1575 }
1576 else
0088c768 1577 return -1;
9b409511 1578
1e3ff5ad
AC
1579 }
1580 return len;
1581}
1582
f1a507a1
JB
1583/* Assuming that the entire [begin, end) range of memory cannot be
1584 read, try to read whatever subrange is possible to read.
1585
1586 The function returns, in RESULT, either zero or one memory block.
1587 If there's a readable subrange at the beginning, it is completely
1588 read and returned. Any further readable subrange will not be read.
1589 Otherwise, if there's a readable subrange at the end, it will be
1590 completely read and returned. Any readable subranges before it
1591 (obviously, not starting at the beginning), will be ignored. In
1592 other cases -- either no readable subrange, or readable subrange(s)
1593 that is neither at the beginning, or end, nothing is returned.
1594
1595 The purpose of this function is to handle a read across a boundary
1596 of accessible memory in a case when memory map is not available.
1597 The above restrictions are fine for this case, but will give
1598 incorrect results if the memory is 'patchy'. However, supporting
1599 'patchy' memory would require trying to read every single byte,
1600 and it seems unacceptable solution. Explicit memory map is
1601 recommended for this case -- and target_read_memory_robust will
1602 take care of reading multiple ranges then. */
8dedea02
VP
1603
1604static void
3e43a32a
MS
1605read_whatever_is_readable (struct target_ops *ops,
1606 ULONGEST begin, ULONGEST end,
8dedea02 1607 VEC(memory_read_result_s) **result)
d5086790 1608{
f1a507a1 1609 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1610 ULONGEST current_begin = begin;
1611 ULONGEST current_end = end;
1612 int forward;
1613 memory_read_result_s r;
9b409511 1614 ULONGEST xfered_len;
8dedea02
VP
1615
1616 /* If we previously failed to read 1 byte, nothing can be done here. */
1617 if (end - begin <= 1)
13b3fd9b
MS
1618 {
1619 xfree (buf);
1620 return;
1621 }
8dedea02
VP
1622
1623 /* Check that either first or the last byte is readable, and give up
c378eb4e 1624 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1625 at the boundary of accessible region. */
1626 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1627 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1628 {
1629 forward = 1;
1630 ++current_begin;
1631 }
1632 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1633 buf + (end-begin) - 1, end - 1, 1,
1634 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1635 {
1636 forward = 0;
1637 --current_end;
1638 }
1639 else
1640 {
13b3fd9b 1641 xfree (buf);
8dedea02
VP
1642 return;
1643 }
1644
1645 /* Loop invariant is that the [current_begin, current_end) was previously
1646 found to be not readable as a whole.
1647
1648 Note loop condition -- if the range has 1 byte, we can't divide the range
1649 so there's no point trying further. */
1650 while (current_end - current_begin > 1)
1651 {
1652 ULONGEST first_half_begin, first_half_end;
1653 ULONGEST second_half_begin, second_half_end;
1654 LONGEST xfer;
8dedea02 1655 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1656
8dedea02
VP
1657 if (forward)
1658 {
1659 first_half_begin = current_begin;
1660 first_half_end = middle;
1661 second_half_begin = middle;
1662 second_half_end = current_end;
1663 }
1664 else
1665 {
1666 first_half_begin = middle;
1667 first_half_end = current_end;
1668 second_half_begin = current_begin;
1669 second_half_end = middle;
1670 }
1671
1672 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1673 buf + (first_half_begin - begin),
1674 first_half_begin,
1675 first_half_end - first_half_begin);
1676
1677 if (xfer == first_half_end - first_half_begin)
1678 {
c378eb4e 1679 /* This half reads up fine. So, the error must be in the
3e43a32a 1680 other half. */
8dedea02
VP
1681 current_begin = second_half_begin;
1682 current_end = second_half_end;
1683 }
1684 else
1685 {
c378eb4e
MS
1686 /* This half is not readable. Because we've tried one byte, we
1687 know some part of this half if actually redable. Go to the next
8dedea02
VP
1688 iteration to divide again and try to read.
1689
1690 We don't handle the other half, because this function only tries
1691 to read a single readable subrange. */
1692 current_begin = first_half_begin;
1693 current_end = first_half_end;
1694 }
1695 }
1696
1697 if (forward)
1698 {
1699 /* The [begin, current_begin) range has been read. */
1700 r.begin = begin;
1701 r.end = current_begin;
1702 r.data = buf;
1703 }
1704 else
1705 {
1706 /* The [current_end, end) range has been read. */
1707 LONGEST rlen = end - current_end;
f1a507a1 1708
8dedea02
VP
1709 r.data = xmalloc (rlen);
1710 memcpy (r.data, buf + current_end - begin, rlen);
1711 r.begin = current_end;
1712 r.end = end;
1713 xfree (buf);
1714 }
1715 VEC_safe_push(memory_read_result_s, (*result), &r);
1716}
1717
1718void
1719free_memory_read_result_vector (void *x)
1720{
1721 VEC(memory_read_result_s) *v = x;
1722 memory_read_result_s *current;
1723 int ix;
1724
1725 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1726 {
1727 xfree (current->data);
1728 }
1729 VEC_free (memory_read_result_s, v);
1730}
1731
1732VEC(memory_read_result_s) *
1733read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1734{
1735 VEC(memory_read_result_s) *result = 0;
1736
1737 LONGEST xfered = 0;
d5086790
VP
1738 while (xfered < len)
1739 {
8dedea02
VP
1740 struct mem_region *region = lookup_mem_region (offset + xfered);
1741 LONGEST rlen;
5d502164 1742
8dedea02
VP
1743 /* If there is no explicit region, a fake one should be created. */
1744 gdb_assert (region);
1745
1746 if (region->hi == 0)
1747 rlen = len - xfered;
1748 else
1749 rlen = region->hi - offset;
1750
1751 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1752 {
c378eb4e 1753 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1754 if the region is explicitly marked inaccessible, or
1755 'inaccessible-by-default' is in effect. */
1756 xfered += rlen;
1757 }
1758 else
1759 {
1760 LONGEST to_read = min (len - xfered, rlen);
1761 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1762
1763 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1764 (gdb_byte *) buffer,
1765 offset + xfered, to_read);
1766 /* Call an observer, notifying them of the xfer progress? */
d5086790 1767 if (xfer <= 0)
d5086790 1768 {
c378eb4e 1769 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1770 some subrange. */
1771 xfree (buffer);
3e43a32a
MS
1772 read_whatever_is_readable (ops, offset + xfered,
1773 offset + xfered + to_read, &result);
8dedea02 1774 xfered += to_read;
d5086790 1775 }
8dedea02
VP
1776 else
1777 {
1778 struct memory_read_result r;
1779 r.data = buffer;
1780 r.begin = offset + xfered;
1781 r.end = r.begin + xfer;
1782 VEC_safe_push (memory_read_result_s, result, &r);
1783 xfered += xfer;
1784 }
1785 QUIT;
d5086790 1786 }
d5086790 1787 }
8dedea02 1788 return result;
d5086790
VP
1789}
1790
8dedea02 1791
cf7a04e8
DJ
1792/* An alternative to target_write with progress callbacks. */
1793
1e3ff5ad 1794LONGEST
cf7a04e8
DJ
1795target_write_with_progress (struct target_ops *ops,
1796 enum target_object object,
1797 const char *annex, const gdb_byte *buf,
1798 ULONGEST offset, LONGEST len,
1799 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1800{
1801 LONGEST xfered = 0;
a76d924d
DJ
1802
1803 /* Give the progress callback a chance to set up. */
1804 if (progress)
1805 (*progress) (0, baton);
1806
1e3ff5ad
AC
1807 while (xfered < len)
1808 {
9b409511
YQ
1809 ULONGEST xfered_len;
1810 enum target_xfer_status status;
1811
1812 status = target_write_partial (ops, object, annex,
1813 (gdb_byte *) buf + xfered,
1814 offset + xfered, len - xfered,
1815 &xfered_len);
cf7a04e8 1816
5c328c05
YQ
1817 if (status != TARGET_XFER_OK)
1818 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1819
1820 if (progress)
9b409511 1821 (*progress) (xfered_len, baton);
cf7a04e8 1822
9b409511 1823 xfered += xfered_len;
1e3ff5ad
AC
1824 QUIT;
1825 }
1826 return len;
1827}
1828
7f79c47e
DE
1829/* For docs on target_write see target.h. */
1830
cf7a04e8
DJ
1831LONGEST
1832target_write (struct target_ops *ops,
1833 enum target_object object,
1834 const char *annex, const gdb_byte *buf,
1835 ULONGEST offset, LONGEST len)
1836{
1837 return target_write_with_progress (ops, object, annex, buf, offset, len,
1838 NULL, NULL);
1839}
1840
159f81f3
DJ
1841/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1842 the size of the transferred data. PADDING additional bytes are
1843 available in *BUF_P. This is a helper function for
1844 target_read_alloc; see the declaration of that function for more
1845 information. */
13547ab6 1846
159f81f3
DJ
1847static LONGEST
1848target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1849 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1850{
1851 size_t buf_alloc, buf_pos;
1852 gdb_byte *buf;
13547ab6
DJ
1853
1854 /* This function does not have a length parameter; it reads the
1855 entire OBJECT). Also, it doesn't support objects fetched partly
1856 from one target and partly from another (in a different stratum,
1857 e.g. a core file and an executable). Both reasons make it
1858 unsuitable for reading memory. */
1859 gdb_assert (object != TARGET_OBJECT_MEMORY);
1860
1861 /* Start by reading up to 4K at a time. The target will throttle
1862 this number down if necessary. */
1863 buf_alloc = 4096;
1864 buf = xmalloc (buf_alloc);
1865 buf_pos = 0;
1866 while (1)
1867 {
9b409511
YQ
1868 ULONGEST xfered_len;
1869 enum target_xfer_status status;
1870
1871 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1872 buf_pos, buf_alloc - buf_pos - padding,
1873 &xfered_len);
1874
1875 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1876 {
1877 /* Read all there was. */
1878 if (buf_pos == 0)
1879 xfree (buf);
1880 else
1881 *buf_p = buf;
1882 return buf_pos;
1883 }
9b409511
YQ
1884 else if (status != TARGET_XFER_OK)
1885 {
1886 /* An error occurred. */
1887 xfree (buf);
1888 return TARGET_XFER_E_IO;
1889 }
13547ab6 1890
9b409511 1891 buf_pos += xfered_len;
13547ab6
DJ
1892
1893 /* If the buffer is filling up, expand it. */
1894 if (buf_alloc < buf_pos * 2)
1895 {
1896 buf_alloc *= 2;
1897 buf = xrealloc (buf, buf_alloc);
1898 }
1899
1900 QUIT;
1901 }
1902}
1903
159f81f3
DJ
1904/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1905 the size of the transferred data. See the declaration in "target.h"
1906 function for more information about the return value. */
1907
1908LONGEST
1909target_read_alloc (struct target_ops *ops, enum target_object object,
1910 const char *annex, gdb_byte **buf_p)
1911{
1912 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1913}
1914
1915/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1916 returned as a string, allocated using xmalloc. If an error occurs
1917 or the transfer is unsupported, NULL is returned. Empty objects
1918 are returned as allocated but empty strings. A warning is issued
1919 if the result contains any embedded NUL bytes. */
1920
1921char *
1922target_read_stralloc (struct target_ops *ops, enum target_object object,
1923 const char *annex)
1924{
39086a0e
PA
1925 gdb_byte *buffer;
1926 char *bufstr;
7313baad 1927 LONGEST i, transferred;
159f81f3 1928
39086a0e
PA
1929 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1930 bufstr = (char *) buffer;
159f81f3
DJ
1931
1932 if (transferred < 0)
1933 return NULL;
1934
1935 if (transferred == 0)
1936 return xstrdup ("");
1937
39086a0e 1938 bufstr[transferred] = 0;
7313baad
UW
1939
1940 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1941 for (i = strlen (bufstr); i < transferred; i++)
1942 if (bufstr[i] != 0)
7313baad
UW
1943 {
1944 warning (_("target object %d, annex %s, "
1945 "contained unexpected null characters"),
1946 (int) object, annex ? annex : "(none)");
1947 break;
1948 }
159f81f3 1949
39086a0e 1950 return bufstr;
159f81f3
DJ
1951}
1952
b6591e8b
AC
1953/* Memory transfer methods. */
1954
1955void
1b0ba102 1956get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1957 LONGEST len)
1958{
07b82ea5
PA
1959 /* This method is used to read from an alternate, non-current
1960 target. This read must bypass the overlay support (as symbols
1961 don't match this target), and GDB's internal cache (wrong cache
1962 for this target). */
1963 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1964 != len)
578d3588 1965 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1966}
1967
1968ULONGEST
5d502164
MS
1969get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1970 int len, enum bfd_endian byte_order)
b6591e8b 1971{
f6519ebc 1972 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1973
1974 gdb_assert (len <= sizeof (buf));
1975 get_target_memory (ops, addr, buf, len);
e17a4113 1976 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1977}
1978
3db08215
MM
1979/* See target.h. */
1980
d914c394
SS
1981int
1982target_insert_breakpoint (struct gdbarch *gdbarch,
1983 struct bp_target_info *bp_tgt)
1984{
1985 if (!may_insert_breakpoints)
1986 {
1987 warning (_("May not insert breakpoints"));
1988 return 1;
1989 }
1990
6b84065d
TT
1991 return current_target.to_insert_breakpoint (&current_target,
1992 gdbarch, bp_tgt);
d914c394
SS
1993}
1994
3db08215
MM
1995/* See target.h. */
1996
d914c394 1997int
6b84065d
TT
1998target_remove_breakpoint (struct gdbarch *gdbarch,
1999 struct bp_target_info *bp_tgt)
d914c394
SS
2000{
2001 /* This is kind of a weird case to handle, but the permission might
2002 have been changed after breakpoints were inserted - in which case
2003 we should just take the user literally and assume that any
2004 breakpoints should be left in place. */
2005 if (!may_insert_breakpoints)
2006 {
2007 warning (_("May not remove breakpoints"));
2008 return 1;
2009 }
2010
6b84065d
TT
2011 return current_target.to_remove_breakpoint (&current_target,
2012 gdbarch, bp_tgt);
d914c394
SS
2013}
2014
c906108c 2015static void
fba45db2 2016target_info (char *args, int from_tty)
c906108c
SS
2017{
2018 struct target_ops *t;
c906108c 2019 int has_all_mem = 0;
c5aa993b 2020
c906108c 2021 if (symfile_objfile != NULL)
4262abfb
JK
2022 printf_unfiltered (_("Symbols from \"%s\".\n"),
2023 objfile_name (symfile_objfile));
c906108c 2024
258b763a 2025 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2026 {
c35b1492 2027 if (!(*t->to_has_memory) (t))
c906108c
SS
2028 continue;
2029
c5aa993b 2030 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2031 continue;
2032 if (has_all_mem)
3e43a32a
MS
2033 printf_unfiltered (_("\tWhile running this, "
2034 "GDB does not access memory from...\n"));
c5aa993b
JM
2035 printf_unfiltered ("%s:\n", t->to_longname);
2036 (t->to_files_info) (t);
c35b1492 2037 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2038 }
2039}
2040
fd79ecee
DJ
2041/* This function is called before any new inferior is created, e.g.
2042 by running a program, attaching, or connecting to a target.
2043 It cleans up any state from previous invocations which might
2044 change between runs. This is a subset of what target_preopen
2045 resets (things which might change between targets). */
2046
2047void
2048target_pre_inferior (int from_tty)
2049{
c378eb4e 2050 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2051 inferior might have survived and is entirely wrong for the new
c378eb4e 2052 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2053 to reproduce:
2054
2055 bash$ ./foo&
2056 [1] 4711
2057 bash$ ./foo&
2058 [1] 4712
2059 bash$ gdb ./foo
2060 [...]
2061 (gdb) attach 4711
2062 (gdb) detach
2063 (gdb) attach 4712
2064 Cannot access memory at address 0xdeadbeef
2065 */
b9db4ced 2066
50c71eaf
PA
2067 /* In some OSs, the shared library list is the same/global/shared
2068 across inferiors. If code is shared between processes, so are
2069 memory regions and features. */
f5656ead 2070 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2071 {
2072 no_shared_libraries (NULL, from_tty);
2073
2074 invalidate_target_mem_regions ();
424163ea 2075
50c71eaf
PA
2076 target_clear_description ();
2077 }
8ffcbaaf
YQ
2078
2079 agent_capability_invalidate ();
fd79ecee
DJ
2080}
2081
b8fa0bfa
PA
2082/* Callback for iterate_over_inferiors. Gets rid of the given
2083 inferior. */
2084
2085static int
2086dispose_inferior (struct inferior *inf, void *args)
2087{
2088 struct thread_info *thread;
2089
2090 thread = any_thread_of_process (inf->pid);
2091 if (thread)
2092 {
2093 switch_to_thread (thread->ptid);
2094
2095 /* Core inferiors actually should be detached, not killed. */
2096 if (target_has_execution)
2097 target_kill ();
2098 else
2099 target_detach (NULL, 0);
2100 }
2101
2102 return 0;
2103}
2104
c906108c
SS
2105/* This is to be called by the open routine before it does
2106 anything. */
2107
2108void
fba45db2 2109target_preopen (int from_tty)
c906108c 2110{
c5aa993b 2111 dont_repeat ();
c906108c 2112
b8fa0bfa 2113 if (have_inferiors ())
c5aa993b 2114 {
adf40b2e 2115 if (!from_tty
b8fa0bfa
PA
2116 || !have_live_inferiors ()
2117 || query (_("A program is being debugged already. Kill it? ")))
2118 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2119 else
8a3fe4f8 2120 error (_("Program not killed."));
c906108c
SS
2121 }
2122
2123 /* Calling target_kill may remove the target from the stack. But if
2124 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2125 /* Leave the exec target, though. The user may be switching from a
2126 live process to a core of the same program. */
460014f5 2127 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2128
2129 target_pre_inferior (from_tty);
c906108c
SS
2130}
2131
2132/* Detach a target after doing deferred register stores. */
2133
2134void
52554a0e 2135target_detach (const char *args, int from_tty)
c906108c 2136{
136d6dae
VP
2137 struct target_ops* t;
2138
f5656ead 2139 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2140 /* Don't remove global breakpoints here. They're removed on
2141 disconnection from the target. */
2142 ;
2143 else
2144 /* If we're in breakpoints-always-inserted mode, have to remove
2145 them before detaching. */
dfd4cc63 2146 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2147
24291992
PA
2148 prepare_for_detach ();
2149
09da0d0a 2150 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2151}
2152
6ad8ae5c 2153void
fee354ee 2154target_disconnect (const char *args, int from_tty)
6ad8ae5c 2155{
50c71eaf
PA
2156 /* If we're in breakpoints-always-inserted mode or if breakpoints
2157 are global across processes, we have to remove them before
2158 disconnecting. */
74960c60
VP
2159 remove_breakpoints ();
2160
86a0854a 2161 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2162}
2163
117de6a9 2164ptid_t
47608cb1 2165target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2166{
a7068b60 2167 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2168}
2169
2170char *
2171target_pid_to_str (ptid_t ptid)
2172{
770234d3 2173 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2174}
2175
4694da01
TT
2176char *
2177target_thread_name (struct thread_info *info)
2178{
825828fc 2179 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2180}
2181
e1ac3328 2182void
2ea28649 2183target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2184{
28439f5e
PA
2185 struct target_ops *t;
2186
4e5d721f 2187 target_dcache_invalidate ();
28439f5e 2188
6b84065d 2189 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2190
6b84065d 2191 registers_changed_ptid (ptid);
251bde03
PA
2192 /* We only set the internal executing state here. The user/frontend
2193 running state is set at a higher level. */
6b84065d 2194 set_executing (ptid, 1);
6b84065d 2195 clear_inline_frame_state (ptid);
e1ac3328 2196}
2455069d
UW
2197
2198void
2199target_pass_signals (int numsigs, unsigned char *pass_signals)
2200{
035cad7f 2201 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2202}
2203
9b224c5e
PA
2204void
2205target_program_signals (int numsigs, unsigned char *program_signals)
2206{
7d4f8efa
TT
2207 (*current_target.to_program_signals) (&current_target,
2208 numsigs, program_signals);
9b224c5e
PA
2209}
2210
098dba18
TT
2211static int
2212default_follow_fork (struct target_ops *self, int follow_child,
2213 int detach_fork)
2214{
2215 /* Some target returned a fork event, but did not know how to follow it. */
2216 internal_error (__FILE__, __LINE__,
2217 _("could not find a target to follow fork"));
2218}
2219
ee057212
DJ
2220/* Look through the list of possible targets for a target that can
2221 follow forks. */
2222
2223int
07107ca6 2224target_follow_fork (int follow_child, int detach_fork)
ee057212 2225{
a7068b60
TT
2226 return current_target.to_follow_fork (&current_target,
2227 follow_child, detach_fork);
ee057212
DJ
2228}
2229
8d657035
TT
2230static void
2231default_mourn_inferior (struct target_ops *self)
2232{
2233 internal_error (__FILE__, __LINE__,
2234 _("could not find a target to follow mourn inferior"));
2235}
2236
136d6dae
VP
2237void
2238target_mourn_inferior (void)
2239{
8d657035 2240 current_target.to_mourn_inferior (&current_target);
136d6dae 2241
8d657035
TT
2242 /* We no longer need to keep handles on any of the object files.
2243 Make sure to release them to avoid unnecessarily locking any
2244 of them while we're not actually debugging. */
2245 bfd_cache_close_all ();
136d6dae
VP
2246}
2247
424163ea
DJ
2248/* Look for a target which can describe architectural features, starting
2249 from TARGET. If we find one, return its description. */
2250
2251const struct target_desc *
2252target_read_description (struct target_ops *target)
2253{
2117c711 2254 return target->to_read_description (target);
424163ea
DJ
2255}
2256
58a5184e 2257/* This implements a basic search of memory, reading target memory and
08388c79
DE
2258 performing the search here (as opposed to performing the search in on the
2259 target side with, for example, gdbserver). */
2260
2261int
2262simple_search_memory (struct target_ops *ops,
2263 CORE_ADDR start_addr, ULONGEST search_space_len,
2264 const gdb_byte *pattern, ULONGEST pattern_len,
2265 CORE_ADDR *found_addrp)
2266{
2267 /* NOTE: also defined in find.c testcase. */
2268#define SEARCH_CHUNK_SIZE 16000
2269 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2270 /* Buffer to hold memory contents for searching. */
2271 gdb_byte *search_buf;
2272 unsigned search_buf_size;
2273 struct cleanup *old_cleanups;
2274
2275 search_buf_size = chunk_size + pattern_len - 1;
2276
2277 /* No point in trying to allocate a buffer larger than the search space. */
2278 if (search_space_len < search_buf_size)
2279 search_buf_size = search_space_len;
2280
2281 search_buf = malloc (search_buf_size);
2282 if (search_buf == NULL)
5e1471f5 2283 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2284 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2285
2286 /* Prime the search buffer. */
2287
2288 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2289 search_buf, start_addr, search_buf_size) != search_buf_size)
2290 {
b3dc46ff
AB
2291 warning (_("Unable to access %s bytes of target "
2292 "memory at %s, halting search."),
2293 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2294 do_cleanups (old_cleanups);
2295 return -1;
2296 }
2297
2298 /* Perform the search.
2299
2300 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2301 When we've scanned N bytes we copy the trailing bytes to the start and
2302 read in another N bytes. */
2303
2304 while (search_space_len >= pattern_len)
2305 {
2306 gdb_byte *found_ptr;
2307 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2308
2309 found_ptr = memmem (search_buf, nr_search_bytes,
2310 pattern, pattern_len);
2311
2312 if (found_ptr != NULL)
2313 {
2314 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2315
08388c79
DE
2316 *found_addrp = found_addr;
2317 do_cleanups (old_cleanups);
2318 return 1;
2319 }
2320
2321 /* Not found in this chunk, skip to next chunk. */
2322
2323 /* Don't let search_space_len wrap here, it's unsigned. */
2324 if (search_space_len >= chunk_size)
2325 search_space_len -= chunk_size;
2326 else
2327 search_space_len = 0;
2328
2329 if (search_space_len >= pattern_len)
2330 {
2331 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2332 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2333 int nr_to_read;
2334
2335 /* Copy the trailing part of the previous iteration to the front
2336 of the buffer for the next iteration. */
2337 gdb_assert (keep_len == pattern_len - 1);
2338 memcpy (search_buf, search_buf + chunk_size, keep_len);
2339
2340 nr_to_read = min (search_space_len - keep_len, chunk_size);
2341
2342 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2343 search_buf + keep_len, read_addr,
2344 nr_to_read) != nr_to_read)
2345 {
b3dc46ff 2346 warning (_("Unable to access %s bytes of target "
9b20d036 2347 "memory at %s, halting search."),
b3dc46ff 2348 plongest (nr_to_read),
08388c79
DE
2349 hex_string (read_addr));
2350 do_cleanups (old_cleanups);
2351 return -1;
2352 }
2353
2354 start_addr += chunk_size;
2355 }
2356 }
2357
2358 /* Not found. */
2359
2360 do_cleanups (old_cleanups);
2361 return 0;
2362}
2363
58a5184e
TT
2364/* Default implementation of memory-searching. */
2365
2366static int
2367default_search_memory (struct target_ops *self,
2368 CORE_ADDR start_addr, ULONGEST search_space_len,
2369 const gdb_byte *pattern, ULONGEST pattern_len,
2370 CORE_ADDR *found_addrp)
2371{
2372 /* Start over from the top of the target stack. */
2373 return simple_search_memory (current_target.beneath,
2374 start_addr, search_space_len,
2375 pattern, pattern_len, found_addrp);
2376}
2377
08388c79
DE
2378/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2379 sequence of bytes in PATTERN with length PATTERN_LEN.
2380
2381 The result is 1 if found, 0 if not found, and -1 if there was an error
2382 requiring halting of the search (e.g. memory read error).
2383 If the pattern is found the address is recorded in FOUND_ADDRP. */
2384
2385int
2386target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2387 const gdb_byte *pattern, ULONGEST pattern_len,
2388 CORE_ADDR *found_addrp)
2389{
a7068b60
TT
2390 return current_target.to_search_memory (&current_target, start_addr,
2391 search_space_len,
2392 pattern, pattern_len, found_addrp);
08388c79
DE
2393}
2394
8edfe269
DJ
2395/* Look through the currently pushed targets. If none of them will
2396 be able to restart the currently running process, issue an error
2397 message. */
2398
2399void
2400target_require_runnable (void)
2401{
2402 struct target_ops *t;
2403
2404 for (t = target_stack; t != NULL; t = t->beneath)
2405 {
2406 /* If this target knows how to create a new program, then
2407 assume we will still be able to after killing the current
2408 one. Either killing and mourning will not pop T, or else
2409 find_default_run_target will find it again. */
2410 if (t->to_create_inferior != NULL)
2411 return;
2412
548740d6 2413 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2414 create inferiors. Assume they will be pushed again if
2415 necessary, and continue to the process_stratum. */
85e747d2 2416 if (t->to_stratum == thread_stratum
548740d6 2417 || t->to_stratum == record_stratum
85e747d2 2418 || t->to_stratum == arch_stratum)
8edfe269
DJ
2419 continue;
2420
3e43a32a
MS
2421 error (_("The \"%s\" target does not support \"run\". "
2422 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2423 t->to_shortname);
2424 }
2425
2426 /* This function is only called if the target is running. In that
2427 case there should have been a process_stratum target and it
c378eb4e 2428 should either know how to create inferiors, or not... */
9b20d036 2429 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2430}
2431
6a3cb8e8
PA
2432/* Whether GDB is allowed to fall back to the default run target for
2433 "run", "attach", etc. when no target is connected yet. */
2434static int auto_connect_native_target = 1;
2435
2436static void
2437show_auto_connect_native_target (struct ui_file *file, int from_tty,
2438 struct cmd_list_element *c, const char *value)
2439{
2440 fprintf_filtered (file,
2441 _("Whether GDB may automatically connect to the "
2442 "native target is %s.\n"),
2443 value);
2444}
2445
c906108c
SS
2446/* Look through the list of possible targets for a target that can
2447 execute a run or attach command without any other data. This is
2448 used to locate the default process stratum.
2449
5f667f2d
PA
2450 If DO_MESG is not NULL, the result is always valid (error() is
2451 called for errors); else, return NULL on error. */
c906108c
SS
2452
2453static struct target_ops *
fba45db2 2454find_default_run_target (char *do_mesg)
c906108c 2455{
c906108c 2456 struct target_ops *runable = NULL;
c906108c 2457
6a3cb8e8 2458 if (auto_connect_native_target)
c906108c 2459 {
89a1c21a 2460 struct target_ops *t;
6a3cb8e8 2461 int count = 0;
89a1c21a 2462 int i;
6a3cb8e8 2463
89a1c21a 2464 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2465 {
89a1c21a 2466 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2467 {
89a1c21a 2468 runable = t;
6a3cb8e8
PA
2469 ++count;
2470 }
c906108c 2471 }
6a3cb8e8
PA
2472
2473 if (count != 1)
2474 runable = NULL;
c906108c
SS
2475 }
2476
6a3cb8e8 2477 if (runable == NULL)
5f667f2d
PA
2478 {
2479 if (do_mesg)
2480 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2481 else
2482 return NULL;
2483 }
c906108c
SS
2484
2485 return runable;
2486}
2487
b3ccfe11 2488/* See target.h. */
c906108c 2489
b3ccfe11
TT
2490struct target_ops *
2491find_attach_target (void)
c906108c
SS
2492{
2493 struct target_ops *t;
2494
b3ccfe11
TT
2495 /* If a target on the current stack can attach, use it. */
2496 for (t = current_target.beneath; t != NULL; t = t->beneath)
2497 {
2498 if (t->to_attach != NULL)
2499 break;
2500 }
c906108c 2501
b3ccfe11
TT
2502 /* Otherwise, use the default run target for attaching. */
2503 if (t == NULL)
2504 t = find_default_run_target ("attach");
b84876c2 2505
b3ccfe11 2506 return t;
b84876c2
PA
2507}
2508
b3ccfe11 2509/* See target.h. */
b84876c2 2510
b3ccfe11
TT
2511struct target_ops *
2512find_run_target (void)
9908b566
VP
2513{
2514 struct target_ops *t;
2515
b3ccfe11
TT
2516 /* If a target on the current stack can attach, use it. */
2517 for (t = current_target.beneath; t != NULL; t = t->beneath)
2518 {
2519 if (t->to_create_inferior != NULL)
2520 break;
2521 }
5d502164 2522
b3ccfe11
TT
2523 /* Otherwise, use the default run target. */
2524 if (t == NULL)
2525 t = find_default_run_target ("run");
9908b566 2526
b3ccfe11 2527 return t;
9908b566
VP
2528}
2529
145b16a9
UW
2530/* Implement the "info proc" command. */
2531
451b7c33 2532int
7bc112c1 2533target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2534{
2535 struct target_ops *t;
2536
2537 /* If we're already connected to something that can get us OS
2538 related data, use it. Otherwise, try using the native
2539 target. */
2540 if (current_target.to_stratum >= process_stratum)
2541 t = current_target.beneath;
2542 else
2543 t = find_default_run_target (NULL);
2544
2545 for (; t != NULL; t = t->beneath)
2546 {
2547 if (t->to_info_proc != NULL)
2548 {
2549 t->to_info_proc (t, args, what);
2550
2551 if (targetdebug)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "target_info_proc (\"%s\", %d)\n", args, what);
2554
451b7c33 2555 return 1;
145b16a9
UW
2556 }
2557 }
2558
451b7c33 2559 return 0;
145b16a9
UW
2560}
2561
03583c20 2562static int
2bfc0540 2563find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2564{
2565 struct target_ops *t;
2566
2567 t = find_default_run_target (NULL);
2568 if (t && t->to_supports_disable_randomization)
2bfc0540 2569 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2570 return 0;
2571}
2572
2573int
2574target_supports_disable_randomization (void)
2575{
2576 struct target_ops *t;
2577
2578 for (t = &current_target; t != NULL; t = t->beneath)
2579 if (t->to_supports_disable_randomization)
2bfc0540 2580 return t->to_supports_disable_randomization (t);
03583c20
UW
2581
2582 return 0;
2583}
9908b566 2584
07e059b5
VP
2585char *
2586target_get_osdata (const char *type)
2587{
07e059b5
VP
2588 struct target_ops *t;
2589
739ef7fb
PA
2590 /* If we're already connected to something that can get us OS
2591 related data, use it. Otherwise, try using the native
2592 target. */
2593 if (current_target.to_stratum >= process_stratum)
6d097e65 2594 t = current_target.beneath;
739ef7fb
PA
2595 else
2596 t = find_default_run_target ("get OS data");
07e059b5
VP
2597
2598 if (!t)
2599 return NULL;
2600
6d097e65 2601 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2602}
2603
8eaff7cd
TT
2604static struct address_space *
2605default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2606{
2607 struct inferior *inf;
6c95b8df
PA
2608
2609 /* Fall-back to the "main" address space of the inferior. */
2610 inf = find_inferior_pid (ptid_get_pid (ptid));
2611
2612 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2613 internal_error (__FILE__, __LINE__,
9b20d036
MS
2614 _("Can't determine the current "
2615 "address space of thread %s\n"),
6c95b8df
PA
2616 target_pid_to_str (ptid));
2617
2618 return inf->aspace;
2619}
2620
8eaff7cd
TT
2621/* Determine the current address space of thread PTID. */
2622
2623struct address_space *
2624target_thread_address_space (ptid_t ptid)
2625{
2626 struct address_space *aspace;
2627
2628 aspace = current_target.to_thread_address_space (&current_target, ptid);
2629 gdb_assert (aspace != NULL);
2630
8eaff7cd
TT
2631 return aspace;
2632}
2633
7313baad
UW
2634
2635/* Target file operations. */
2636
2637static struct target_ops *
2638default_fileio_target (void)
2639{
2640 /* If we're already connected to something that can perform
2641 file I/O, use it. Otherwise, try using the native target. */
2642 if (current_target.to_stratum >= process_stratum)
2643 return current_target.beneath;
2644 else
2645 return find_default_run_target ("file I/O");
2646}
2647
2648/* Open FILENAME on the target, using FLAGS and MODE. Return a
2649 target file descriptor, or -1 if an error occurs (and set
2650 *TARGET_ERRNO). */
2651int
2652target_fileio_open (const char *filename, int flags, int mode,
2653 int *target_errno)
2654{
2655 struct target_ops *t;
2656
2657 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2658 {
2659 if (t->to_fileio_open != NULL)
2660 {
cd897586 2661 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2662
2663 if (targetdebug)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2666 filename, flags, mode,
2667 fd, fd != -1 ? 0 : *target_errno);
2668 return fd;
2669 }
2670 }
2671
2672 *target_errno = FILEIO_ENOSYS;
2673 return -1;
2674}
2675
2676/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2677 Return the number of bytes written, or -1 if an error occurs
2678 (and set *TARGET_ERRNO). */
2679int
2680target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2681 ULONGEST offset, int *target_errno)
2682{
2683 struct target_ops *t;
2684
2685 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2686 {
2687 if (t->to_fileio_pwrite != NULL)
2688 {
0d866f62 2689 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2690 target_errno);
2691
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2694 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2695 "= %d (%d)\n",
a71b5a38 2696 fd, len, pulongest (offset),
7313baad
UW
2697 ret, ret != -1 ? 0 : *target_errno);
2698 return ret;
2699 }
2700 }
2701
2702 *target_errno = FILEIO_ENOSYS;
2703 return -1;
2704}
2705
2706/* Read up to LEN bytes FD on the target into READ_BUF.
2707 Return the number of bytes read, or -1 if an error occurs
2708 (and set *TARGET_ERRNO). */
2709int
2710target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2711 ULONGEST offset, int *target_errno)
2712{
2713 struct target_ops *t;
2714
2715 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2716 {
2717 if (t->to_fileio_pread != NULL)
2718 {
a3be983c 2719 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2720 target_errno);
2721
2722 if (targetdebug)
2723 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2724 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2725 "= %d (%d)\n",
a71b5a38 2726 fd, len, pulongest (offset),
7313baad
UW
2727 ret, ret != -1 ? 0 : *target_errno);
2728 return ret;
2729 }
2730 }
2731
2732 *target_errno = FILEIO_ENOSYS;
2733 return -1;
2734}
2735
2736/* Close FD on the target. Return 0, or -1 if an error occurs
2737 (and set *TARGET_ERRNO). */
2738int
2739target_fileio_close (int fd, int *target_errno)
2740{
2741 struct target_ops *t;
2742
2743 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2744 {
2745 if (t->to_fileio_close != NULL)
2746 {
df39ea25 2747 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2748
2749 if (targetdebug)
2750 fprintf_unfiltered (gdb_stdlog,
2751 "target_fileio_close (%d) = %d (%d)\n",
2752 fd, ret, ret != -1 ? 0 : *target_errno);
2753 return ret;
2754 }
2755 }
2756
2757 *target_errno = FILEIO_ENOSYS;
2758 return -1;
2759}
2760
2761/* Unlink FILENAME on the target. Return 0, or -1 if an error
2762 occurs (and set *TARGET_ERRNO). */
2763int
2764target_fileio_unlink (const char *filename, int *target_errno)
2765{
2766 struct target_ops *t;
2767
2768 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2769 {
2770 if (t->to_fileio_unlink != NULL)
2771 {
dbbca37d 2772 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2773
2774 if (targetdebug)
2775 fprintf_unfiltered (gdb_stdlog,
2776 "target_fileio_unlink (%s) = %d (%d)\n",
2777 filename, ret, ret != -1 ? 0 : *target_errno);
2778 return ret;
2779 }
2780 }
2781
2782 *target_errno = FILEIO_ENOSYS;
2783 return -1;
2784}
2785
b9e7b9c3
UW
2786/* Read value of symbolic link FILENAME on the target. Return a
2787 null-terminated string allocated via xmalloc, or NULL if an error
2788 occurs (and set *TARGET_ERRNO). */
2789char *
2790target_fileio_readlink (const char *filename, int *target_errno)
2791{
2792 struct target_ops *t;
2793
2794 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2795 {
2796 if (t->to_fileio_readlink != NULL)
2797 {
fab5aa7c 2798 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2799
2800 if (targetdebug)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "target_fileio_readlink (%s) = %s (%d)\n",
2803 filename, ret? ret : "(nil)",
2804 ret? 0 : *target_errno);
2805 return ret;
2806 }
2807 }
2808
2809 *target_errno = FILEIO_ENOSYS;
2810 return NULL;
2811}
2812
7313baad
UW
2813static void
2814target_fileio_close_cleanup (void *opaque)
2815{
2816 int fd = *(int *) opaque;
2817 int target_errno;
2818
2819 target_fileio_close (fd, &target_errno);
2820}
2821
2822/* Read target file FILENAME. Store the result in *BUF_P and
2823 return the size of the transferred data. PADDING additional bytes are
2824 available in *BUF_P. This is a helper function for
2825 target_fileio_read_alloc; see the declaration of that function for more
2826 information. */
2827
2828static LONGEST
2829target_fileio_read_alloc_1 (const char *filename,
2830 gdb_byte **buf_p, int padding)
2831{
2832 struct cleanup *close_cleanup;
2833 size_t buf_alloc, buf_pos;
2834 gdb_byte *buf;
2835 LONGEST n;
2836 int fd;
2837 int target_errno;
2838
2839 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2840 if (fd == -1)
2841 return -1;
2842
2843 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2844
2845 /* Start by reading up to 4K at a time. The target will throttle
2846 this number down if necessary. */
2847 buf_alloc = 4096;
2848 buf = xmalloc (buf_alloc);
2849 buf_pos = 0;
2850 while (1)
2851 {
2852 n = target_fileio_pread (fd, &buf[buf_pos],
2853 buf_alloc - buf_pos - padding, buf_pos,
2854 &target_errno);
2855 if (n < 0)
2856 {
2857 /* An error occurred. */
2858 do_cleanups (close_cleanup);
2859 xfree (buf);
2860 return -1;
2861 }
2862 else if (n == 0)
2863 {
2864 /* Read all there was. */
2865 do_cleanups (close_cleanup);
2866 if (buf_pos == 0)
2867 xfree (buf);
2868 else
2869 *buf_p = buf;
2870 return buf_pos;
2871 }
2872
2873 buf_pos += n;
2874
2875 /* If the buffer is filling up, expand it. */
2876 if (buf_alloc < buf_pos * 2)
2877 {
2878 buf_alloc *= 2;
2879 buf = xrealloc (buf, buf_alloc);
2880 }
2881
2882 QUIT;
2883 }
2884}
2885
2886/* Read target file FILENAME. Store the result in *BUF_P and return
2887 the size of the transferred data. See the declaration in "target.h"
2888 function for more information about the return value. */
2889
2890LONGEST
2891target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2892{
2893 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2894}
2895
2896/* Read target file FILENAME. The result is NUL-terminated and
2897 returned as a string, allocated using xmalloc. If an error occurs
2898 or the transfer is unsupported, NULL is returned. Empty objects
2899 are returned as allocated but empty strings. A warning is issued
2900 if the result contains any embedded NUL bytes. */
2901
2902char *
2903target_fileio_read_stralloc (const char *filename)
2904{
39086a0e
PA
2905 gdb_byte *buffer;
2906 char *bufstr;
7313baad
UW
2907 LONGEST i, transferred;
2908
39086a0e
PA
2909 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2910 bufstr = (char *) buffer;
7313baad
UW
2911
2912 if (transferred < 0)
2913 return NULL;
2914
2915 if (transferred == 0)
2916 return xstrdup ("");
2917
39086a0e 2918 bufstr[transferred] = 0;
7313baad
UW
2919
2920 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2921 for (i = strlen (bufstr); i < transferred; i++)
2922 if (bufstr[i] != 0)
7313baad
UW
2923 {
2924 warning (_("target file %s "
2925 "contained unexpected null characters"),
2926 filename);
2927 break;
2928 }
2929
39086a0e 2930 return bufstr;
7313baad
UW
2931}
2932
2933
e0d24f8d 2934static int
31568a15
TT
2935default_region_ok_for_hw_watchpoint (struct target_ops *self,
2936 CORE_ADDR addr, int len)
e0d24f8d 2937{
f5656ead 2938 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2939}
2940
5009afc5
AS
2941static int
2942default_watchpoint_addr_within_range (struct target_ops *target,
2943 CORE_ADDR addr,
2944 CORE_ADDR start, int length)
2945{
2946 return addr >= start && addr < start + length;
2947}
2948
c2250ad1
UW
2949static struct gdbarch *
2950default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2951{
f5656ead 2952 return target_gdbarch ();
c2250ad1
UW
2953}
2954
c906108c 2955static int
555bbdeb
TT
2956return_zero (struct target_ops *ignore)
2957{
2958 return 0;
2959}
2960
2961static int
2962return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2963{
2964 return 0;
2965}
2966
ed9a39eb
JM
2967/*
2968 * Find the next target down the stack from the specified target.
2969 */
2970
2971struct target_ops *
fba45db2 2972find_target_beneath (struct target_ops *t)
ed9a39eb 2973{
258b763a 2974 return t->beneath;
ed9a39eb
JM
2975}
2976
8b06beed
TT
2977/* See target.h. */
2978
2979struct target_ops *
2980find_target_at (enum strata stratum)
2981{
2982 struct target_ops *t;
2983
2984 for (t = current_target.beneath; t != NULL; t = t->beneath)
2985 if (t->to_stratum == stratum)
2986 return t;
2987
2988 return NULL;
2989}
2990
c906108c
SS
2991\f
2992/* The inferior process has died. Long live the inferior! */
2993
2994void
fba45db2 2995generic_mourn_inferior (void)
c906108c 2996{
7f9f62ba 2997 ptid_t ptid;
c906108c 2998
7f9f62ba 2999 ptid = inferior_ptid;
39f77062 3000 inferior_ptid = null_ptid;
7f9f62ba 3001
f59f708a
PA
3002 /* Mark breakpoints uninserted in case something tries to delete a
3003 breakpoint while we delete the inferior's threads (which would
3004 fail, since the inferior is long gone). */
3005 mark_breakpoints_out ();
3006
7f9f62ba
PA
3007 if (!ptid_equal (ptid, null_ptid))
3008 {
3009 int pid = ptid_get_pid (ptid);
6c95b8df 3010 exit_inferior (pid);
7f9f62ba
PA
3011 }
3012
f59f708a
PA
3013 /* Note this wipes step-resume breakpoints, so needs to be done
3014 after exit_inferior, which ends up referencing the step-resume
3015 breakpoints through clear_thread_inferior_resources. */
c906108c 3016 breakpoint_init_inferior (inf_exited);
f59f708a 3017
c906108c
SS
3018 registers_changed ();
3019
c906108c
SS
3020 reopen_exec_file ();
3021 reinit_frame_cache ();
3022
9a4105ab
AC
3023 if (deprecated_detach_hook)
3024 deprecated_detach_hook ();
c906108c
SS
3025}
3026\f
fd0a2a6f
MK
3027/* Convert a normal process ID to a string. Returns the string in a
3028 static buffer. */
c906108c
SS
3029
3030char *
39f77062 3031normal_pid_to_str (ptid_t ptid)
c906108c 3032{
fd0a2a6f 3033 static char buf[32];
c906108c 3034
5fff8fc0 3035 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3036 return buf;
3037}
3038
2c0b251b 3039static char *
770234d3 3040default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3041{
3042 return normal_pid_to_str (ptid);
3043}
3044
9b4eba8e
HZ
3045/* Error-catcher for target_find_memory_regions. */
3046static int
2e73927c
TT
3047dummy_find_memory_regions (struct target_ops *self,
3048 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3049{
9b4eba8e 3050 error (_("Command not implemented for this target."));
be4d1333
MS
3051 return 0;
3052}
3053
9b4eba8e
HZ
3054/* Error-catcher for target_make_corefile_notes. */
3055static char *
fc6691b2
TT
3056dummy_make_corefile_notes (struct target_ops *self,
3057 bfd *ignore1, int *ignore2)
be4d1333 3058{
9b4eba8e 3059 error (_("Command not implemented for this target."));
be4d1333
MS
3060 return NULL;
3061}
3062
c906108c
SS
3063/* Set up the handful of non-empty slots needed by the dummy target
3064 vector. */
3065
3066static void
fba45db2 3067init_dummy_target (void)
c906108c
SS
3068{
3069 dummy_target.to_shortname = "None";
3070 dummy_target.to_longname = "None";
3071 dummy_target.to_doc = "";
03583c20
UW
3072 dummy_target.to_supports_disable_randomization
3073 = find_default_supports_disable_randomization;
c906108c 3074 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3075 dummy_target.to_has_all_memory = return_zero;
3076 dummy_target.to_has_memory = return_zero;
3077 dummy_target.to_has_stack = return_zero;
3078 dummy_target.to_has_registers = return_zero;
3079 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3080 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3081
3082 install_dummy_methods (&dummy_target);
c906108c 3083}
c906108c 3084\f
c906108c 3085
f1c07ab0 3086void
460014f5 3087target_close (struct target_ops *targ)
f1c07ab0 3088{
7fdc1521
TT
3089 gdb_assert (!target_is_pushed (targ));
3090
f1c07ab0 3091 if (targ->to_xclose != NULL)
460014f5 3092 targ->to_xclose (targ);
f1c07ab0 3093 else if (targ->to_close != NULL)
de90e03d 3094 targ->to_close (targ);
947b8855
PA
3095
3096 if (targetdebug)
460014f5 3097 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3098}
3099
28439f5e
PA
3100int
3101target_thread_alive (ptid_t ptid)
c906108c 3102{
a7068b60 3103 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3104}
3105
3106void
e8032dde 3107target_update_thread_list (void)
28439f5e 3108{
e8032dde 3109 current_target.to_update_thread_list (&current_target);
c906108c
SS
3110}
3111
d914c394
SS
3112void
3113target_stop (ptid_t ptid)
3114{
3115 if (!may_stop)
3116 {
3117 warning (_("May not interrupt or stop the target, ignoring attempt"));
3118 return;
3119 }
3120
1eab8a48 3121 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3122}
3123
f8c1d06b
GB
3124/* See target/target.h. */
3125
3126void
03f4463b 3127target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3128{
3129 struct target_waitstatus status;
3130 int was_non_stop = non_stop;
3131
3132 non_stop = 1;
3133 target_stop (ptid);
3134
3135 memset (&status, 0, sizeof (status));
3136 target_wait (ptid, &status, 0);
3137
3138 non_stop = was_non_stop;
3139}
3140
3141/* See target/target.h. */
3142
3143void
03f4463b 3144target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3145{
3146 target_resume (ptid, 0, GDB_SIGNAL_0);
3147}
3148
09826ec5
PA
3149/* Concatenate ELEM to LIST, a comma separate list, and return the
3150 result. The LIST incoming argument is released. */
3151
3152static char *
3153str_comma_list_concat_elem (char *list, const char *elem)
3154{
3155 if (list == NULL)
3156 return xstrdup (elem);
3157 else
3158 return reconcat (list, list, ", ", elem, (char *) NULL);
3159}
3160
3161/* Helper for target_options_to_string. If OPT is present in
3162 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3163 Returns the new resulting string. OPT is removed from
3164 TARGET_OPTIONS. */
3165
3166static char *
3167do_option (int *target_options, char *ret,
3168 int opt, char *opt_str)
3169{
3170 if ((*target_options & opt) != 0)
3171 {
3172 ret = str_comma_list_concat_elem (ret, opt_str);
3173 *target_options &= ~opt;
3174 }
3175
3176 return ret;
3177}
3178
3179char *
3180target_options_to_string (int target_options)
3181{
3182 char *ret = NULL;
3183
3184#define DO_TARG_OPTION(OPT) \
3185 ret = do_option (&target_options, ret, OPT, #OPT)
3186
3187 DO_TARG_OPTION (TARGET_WNOHANG);
3188
3189 if (target_options != 0)
3190 ret = str_comma_list_concat_elem (ret, "unknown???");
3191
3192 if (ret == NULL)
3193 ret = xstrdup ("");
3194 return ret;
3195}
3196
bf0c5130 3197static void
56be3814
UW
3198debug_print_register (const char * func,
3199 struct regcache *regcache, int regno)
bf0c5130 3200{
f8d29908 3201 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3202
bf0c5130 3203 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3204 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3205 && gdbarch_register_name (gdbarch, regno) != NULL
3206 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3207 fprintf_unfiltered (gdb_stdlog, "(%s)",
3208 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3209 else
3210 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3211 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3212 {
e17a4113 3213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3214 int i, size = register_size (gdbarch, regno);
e362b510 3215 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3216
0ff58721 3217 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3218 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3219 for (i = 0; i < size; i++)
bf0c5130
AC
3220 {
3221 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3222 }
81c4a259 3223 if (size <= sizeof (LONGEST))
bf0c5130 3224 {
e17a4113 3225 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3226
0b1553bc
UW
3227 fprintf_unfiltered (gdb_stdlog, " %s %s",
3228 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3229 }
3230 }
3231 fprintf_unfiltered (gdb_stdlog, "\n");
3232}
3233
28439f5e
PA
3234void
3235target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3236{
ad5989bd
TT
3237 current_target.to_fetch_registers (&current_target, regcache, regno);
3238 if (targetdebug)
3239 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3240}
3241
28439f5e
PA
3242void
3243target_store_registers (struct regcache *regcache, int regno)
c906108c 3244{
28439f5e 3245 struct target_ops *t;
5d502164 3246
d914c394
SS
3247 if (!may_write_registers)
3248 error (_("Writing to registers is not allowed (regno %d)"), regno);
3249
6b84065d
TT
3250 current_target.to_store_registers (&current_target, regcache, regno);
3251 if (targetdebug)
28439f5e 3252 {
6b84065d 3253 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3254 }
c906108c
SS
3255}
3256
dc146f7c
VP
3257int
3258target_core_of_thread (ptid_t ptid)
3259{
a7068b60 3260 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3261}
3262
936d2992
PA
3263int
3264simple_verify_memory (struct target_ops *ops,
3265 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3266{
3267 LONGEST total_xfered = 0;
3268
3269 while (total_xfered < size)
3270 {
3271 ULONGEST xfered_len;
3272 enum target_xfer_status status;
3273 gdb_byte buf[1024];
3274 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3275
3276 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3277 buf, NULL, lma + total_xfered, howmuch,
3278 &xfered_len);
3279 if (status == TARGET_XFER_OK
3280 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3281 {
3282 total_xfered += xfered_len;
3283 QUIT;
3284 }
3285 else
3286 return 0;
3287 }
3288 return 1;
3289}
3290
3291/* Default implementation of memory verification. */
3292
3293static int
3294default_verify_memory (struct target_ops *self,
3295 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3296{
3297 /* Start over from the top of the target stack. */
3298 return simple_verify_memory (current_target.beneath,
3299 data, memaddr, size);
3300}
3301
4a5e7a5b
PA
3302int
3303target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3304{
a7068b60
TT
3305 return current_target.to_verify_memory (&current_target,
3306 data, memaddr, size);
4a5e7a5b
PA
3307}
3308
9c06b0b4
TJB
3309/* The documentation for this function is in its prototype declaration in
3310 target.h. */
3311
3312int
3313target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3314{
a7068b60
TT
3315 return current_target.to_insert_mask_watchpoint (&current_target,
3316 addr, mask, rw);
9c06b0b4
TJB
3317}
3318
3319/* The documentation for this function is in its prototype declaration in
3320 target.h. */
3321
3322int
3323target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3324{
a7068b60
TT
3325 return current_target.to_remove_mask_watchpoint (&current_target,
3326 addr, mask, rw);
9c06b0b4
TJB
3327}
3328
3329/* The documentation for this function is in its prototype declaration
3330 in target.h. */
3331
3332int
3333target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3334{
6c7e5e5c
TT
3335 return current_target.to_masked_watch_num_registers (&current_target,
3336 addr, mask);
9c06b0b4
TJB
3337}
3338
f1310107
TJB
3339/* The documentation for this function is in its prototype declaration
3340 in target.h. */
3341
3342int
3343target_ranged_break_num_registers (void)
3344{
a134316b 3345 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3346}
3347
02d27625
MM
3348/* See target.h. */
3349
02d27625
MM
3350struct btrace_target_info *
3351target_enable_btrace (ptid_t ptid)
3352{
6dc7fcf4 3353 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3354}
3355
3356/* See target.h. */
3357
3358void
3359target_disable_btrace (struct btrace_target_info *btinfo)
3360{
8dc292d3 3361 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3362}
3363
3364/* See target.h. */
3365
3366void
3367target_teardown_btrace (struct btrace_target_info *btinfo)
3368{
9ace480d 3369 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3370}
3371
3372/* See target.h. */
3373
969c39fb
MM
3374enum btrace_error
3375target_read_btrace (VEC (btrace_block_s) **btrace,
3376 struct btrace_target_info *btinfo,
02d27625
MM
3377 enum btrace_read_type type)
3378{
eb5b20d4 3379 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3380}
3381
d02ed0bb
MM
3382/* See target.h. */
3383
7c1687a9
MM
3384void
3385target_stop_recording (void)
3386{
ee97f592 3387 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3388}
3389
3390/* See target.h. */
3391
d02ed0bb 3392void
85e1311a 3393target_save_record (const char *filename)
d02ed0bb 3394{
f09e2107 3395 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3396}
3397
3398/* See target.h. */
3399
3400int
3401target_supports_delete_record (void)
3402{
3403 struct target_ops *t;
3404
3405 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3406 if (t->to_delete_record != delegate_delete_record
3407 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3408 return 1;
3409
3410 return 0;
3411}
3412
3413/* See target.h. */
3414
3415void
3416target_delete_record (void)
3417{
07366925 3418 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3419}
3420
3421/* See target.h. */
3422
3423int
3424target_record_is_replaying (void)
3425{
dd2e9d25 3426 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3427}
3428
3429/* See target.h. */
3430
3431void
3432target_goto_record_begin (void)
3433{
671e76cc 3434 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3435}
3436
3437/* See target.h. */
3438
3439void
3440target_goto_record_end (void)
3441{
e9179bb3 3442 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3443}
3444
3445/* See target.h. */
3446
3447void
3448target_goto_record (ULONGEST insn)
3449{
05969c84 3450 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3451}
3452
67c86d06
MM
3453/* See target.h. */
3454
3455void
3456target_insn_history (int size, int flags)
3457{
3679abfa 3458 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3459}
3460
3461/* See target.h. */
3462
3463void
3464target_insn_history_from (ULONGEST from, int size, int flags)
3465{
8444ab58 3466 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3467}
3468
3469/* See target.h. */
3470
3471void
3472target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3473{
c29302cc 3474 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3475}
3476
15984c13
MM
3477/* See target.h. */
3478
3479void
3480target_call_history (int size, int flags)
3481{
170049d4 3482 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3483}
3484
3485/* See target.h. */
3486
3487void
3488target_call_history_from (ULONGEST begin, int size, int flags)
3489{
16fc27d6 3490 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3491}
3492
3493/* See target.h. */
3494
3495void
3496target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3497{
115d9817 3498 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3499}
3500
ea001bdc
MM
3501/* See target.h. */
3502
3503const struct frame_unwind *
3504target_get_unwinder (void)
3505{
ac01945b 3506 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3507}
3508
3509/* See target.h. */
3510
3511const struct frame_unwind *
3512target_get_tailcall_unwinder (void)
3513{
ac01945b 3514 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3515}
3516
c0eca49f 3517/* Default implementation of to_decr_pc_after_break. */
118e6252 3518
c0eca49f
TT
3519static CORE_ADDR
3520default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3521 struct gdbarch *gdbarch)
3522{
118e6252
MM
3523 return gdbarch_decr_pc_after_break (gdbarch);
3524}
3525
3526/* See target.h. */
3527
3528CORE_ADDR
3529target_decr_pc_after_break (struct gdbarch *gdbarch)
3530{
c0eca49f 3531 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3532}
3533
5fff78c4
MM
3534/* See target.h. */
3535
3536void
3537target_prepare_to_generate_core (void)
3538{
3539 current_target.to_prepare_to_generate_core (&current_target);
3540}
3541
3542/* See target.h. */
3543
3544void
3545target_done_generating_core (void)
3546{
3547 current_target.to_done_generating_core (&current_target);
3548}
3549
c906108c 3550static void
fba45db2 3551setup_target_debug (void)
c906108c
SS
3552{
3553 memcpy (&debug_target, &current_target, sizeof debug_target);
3554
a7068b60 3555 init_debug_target (&current_target);
c906108c 3556}
c906108c 3557\f
c5aa993b
JM
3558
3559static char targ_desc[] =
3e43a32a
MS
3560"Names of targets and files being debugged.\nShows the entire \
3561stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3562core-file, and process, if any), as well as the symbol file name.";
3563
a53f3625 3564static void
a30bf1f1
TT
3565default_rcmd (struct target_ops *self, const char *command,
3566 struct ui_file *output)
a53f3625
TT
3567{
3568 error (_("\"monitor\" command not supported by this target."));
3569}
3570
96baa820
JM
3571static void
3572do_monitor_command (char *cmd,
3573 int from_tty)
3574{
96baa820
JM
3575 target_rcmd (cmd, gdb_stdtarg);
3576}
3577
87680a14
JB
3578/* Print the name of each layers of our target stack. */
3579
3580static void
3581maintenance_print_target_stack (char *cmd, int from_tty)
3582{
3583 struct target_ops *t;
3584
3585 printf_filtered (_("The current target stack is:\n"));
3586
3587 for (t = target_stack; t != NULL; t = t->beneath)
3588 {
3589 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3590 }
3591}
3592
329ea579
PA
3593/* Controls if targets can report that they can/are async. This is
3594 just for maintainers to use when debugging gdb. */
3595int target_async_permitted = 1;
c6ebd6cf
VP
3596
3597/* The set command writes to this variable. If the inferior is
b5419e49 3598 executing, target_async_permitted is *not* updated. */
329ea579 3599static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3600
3601static void
329ea579
PA
3602maint_set_target_async_command (char *args, int from_tty,
3603 struct cmd_list_element *c)
c6ebd6cf 3604{
c35b1492 3605 if (have_live_inferiors ())
c6ebd6cf
VP
3606 {
3607 target_async_permitted_1 = target_async_permitted;
3608 error (_("Cannot change this setting while the inferior is running."));
3609 }
3610
3611 target_async_permitted = target_async_permitted_1;
3612}
3613
3614static void
329ea579
PA
3615maint_show_target_async_command (struct ui_file *file, int from_tty,
3616 struct cmd_list_element *c,
3617 const char *value)
c6ebd6cf 3618{
3e43a32a
MS
3619 fprintf_filtered (file,
3620 _("Controlling the inferior in "
3621 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3622}
3623
d914c394
SS
3624/* Temporary copies of permission settings. */
3625
3626static int may_write_registers_1 = 1;
3627static int may_write_memory_1 = 1;
3628static int may_insert_breakpoints_1 = 1;
3629static int may_insert_tracepoints_1 = 1;
3630static int may_insert_fast_tracepoints_1 = 1;
3631static int may_stop_1 = 1;
3632
3633/* Make the user-set values match the real values again. */
3634
3635void
3636update_target_permissions (void)
3637{
3638 may_write_registers_1 = may_write_registers;
3639 may_write_memory_1 = may_write_memory;
3640 may_insert_breakpoints_1 = may_insert_breakpoints;
3641 may_insert_tracepoints_1 = may_insert_tracepoints;
3642 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3643 may_stop_1 = may_stop;
3644}
3645
3646/* The one function handles (most of) the permission flags in the same
3647 way. */
3648
3649static void
3650set_target_permissions (char *args, int from_tty,
3651 struct cmd_list_element *c)
3652{
3653 if (target_has_execution)
3654 {
3655 update_target_permissions ();
3656 error (_("Cannot change this setting while the inferior is running."));
3657 }
3658
3659 /* Make the real values match the user-changed values. */
3660 may_write_registers = may_write_registers_1;
3661 may_insert_breakpoints = may_insert_breakpoints_1;
3662 may_insert_tracepoints = may_insert_tracepoints_1;
3663 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3664 may_stop = may_stop_1;
3665 update_observer_mode ();
3666}
3667
3668/* Set memory write permission independently of observer mode. */
3669
3670static void
3671set_write_memory_permission (char *args, int from_tty,
3672 struct cmd_list_element *c)
3673{
3674 /* Make the real values match the user-changed values. */
3675 may_write_memory = may_write_memory_1;
3676 update_observer_mode ();
3677}
3678
3679
c906108c 3680void
fba45db2 3681initialize_targets (void)
c906108c
SS
3682{
3683 init_dummy_target ();
3684 push_target (&dummy_target);
3685
3686 add_info ("target", target_info, targ_desc);
3687 add_info ("files", target_info, targ_desc);
3688
ccce17b0 3689 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3690Set target debugging."), _("\
3691Show target debugging."), _("\
333dabeb 3692When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3693verbose."),
3694 set_targetdebug,
ccce17b0
YQ
3695 show_targetdebug,
3696 &setdebuglist, &showdebuglist);
3a11626d 3697
2bc416ba 3698 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3699 &trust_readonly, _("\
3700Set mode for reading from readonly sections."), _("\
3701Show mode for reading from readonly sections."), _("\
3a11626d
MS
3702When this mode is on, memory reads from readonly sections (such as .text)\n\
3703will be read from the object file instead of from the target. This will\n\
7915a72c 3704result in significant performance improvement for remote targets."),
2c5b56ce 3705 NULL,
920d2a44 3706 show_trust_readonly,
e707bbc2 3707 &setlist, &showlist);
96baa820
JM
3708
3709 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3710 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3711
87680a14
JB
3712 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3713 _("Print the name of each layer of the internal target stack."),
3714 &maintenanceprintlist);
3715
c6ebd6cf
VP
3716 add_setshow_boolean_cmd ("target-async", no_class,
3717 &target_async_permitted_1, _("\
3718Set whether gdb controls the inferior in asynchronous mode."), _("\
3719Show whether gdb controls the inferior in asynchronous mode."), _("\
3720Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3721 maint_set_target_async_command,
3722 maint_show_target_async_command,
3723 &maintenance_set_cmdlist,
3724 &maintenance_show_cmdlist);
c6ebd6cf 3725
d914c394
SS
3726 add_setshow_boolean_cmd ("may-write-registers", class_support,
3727 &may_write_registers_1, _("\
3728Set permission to write into registers."), _("\
3729Show permission to write into registers."), _("\
3730When this permission is on, GDB may write into the target's registers.\n\
3731Otherwise, any sort of write attempt will result in an error."),
3732 set_target_permissions, NULL,
3733 &setlist, &showlist);
3734
3735 add_setshow_boolean_cmd ("may-write-memory", class_support,
3736 &may_write_memory_1, _("\
3737Set permission to write into target memory."), _("\
3738Show permission to write into target memory."), _("\
3739When this permission is on, GDB may write into the target's memory.\n\
3740Otherwise, any sort of write attempt will result in an error."),
3741 set_write_memory_permission, NULL,
3742 &setlist, &showlist);
3743
3744 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3745 &may_insert_breakpoints_1, _("\
3746Set permission to insert breakpoints in the target."), _("\
3747Show permission to insert breakpoints in the target."), _("\
3748When this permission is on, GDB may insert breakpoints in the program.\n\
3749Otherwise, any sort of insertion attempt will result in an error."),
3750 set_target_permissions, NULL,
3751 &setlist, &showlist);
3752
3753 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3754 &may_insert_tracepoints_1, _("\
3755Set permission to insert tracepoints in the target."), _("\
3756Show permission to insert tracepoints in the target."), _("\
3757When this permission is on, GDB may insert tracepoints in the program.\n\
3758Otherwise, any sort of insertion attempt will result in an error."),
3759 set_target_permissions, NULL,
3760 &setlist, &showlist);
3761
3762 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3763 &may_insert_fast_tracepoints_1, _("\
3764Set permission to insert fast tracepoints in the target."), _("\
3765Show permission to insert fast tracepoints in the target."), _("\
3766When this permission is on, GDB may insert fast tracepoints.\n\
3767Otherwise, any sort of insertion attempt will result in an error."),
3768 set_target_permissions, NULL,
3769 &setlist, &showlist);
3770
3771 add_setshow_boolean_cmd ("may-interrupt", class_support,
3772 &may_stop_1, _("\
3773Set permission to interrupt or signal the target."), _("\
3774Show permission to interrupt or signal the target."), _("\
3775When this permission is on, GDB may interrupt/stop the target's execution.\n\
3776Otherwise, any attempt to interrupt or stop will be ignored."),
3777 set_target_permissions, NULL,
3778 &setlist, &showlist);
6a3cb8e8
PA
3779
3780 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3781 &auto_connect_native_target, _("\
3782Set whether GDB may automatically connect to the native target."), _("\
3783Show whether GDB may automatically connect to the native target."), _("\
3784When on, and GDB is not connected to a target yet, GDB\n\
3785attempts \"run\" and other commands with the native target."),
3786 NULL, show_auto_connect_native_target,
3787 &setlist, &showlist);
c906108c 3788}
This page took 2.331379 seconds and 4 git commands to generate.