Per-inferior/Inferior-qualified thread IDs
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
a7068b60
TT
108static struct target_ops debug_target;
109
1101cb7b
TT
110#include "target-delegates.c"
111
a14ed312 112static void init_dummy_target (void);
c906108c 113
3cecbbbe
TT
114static void update_current_target (void);
115
89a1c21a
SM
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
c906108c
SS
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
258b763a 128static struct target_ops *target_stack;
c906108c
SS
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
cf7a04e8
DJ
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
8defab1a
DJ
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
d914c394
SS
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
c906108c
SS
165/* Non-zero if we want to see trace of target level stuff. */
166
ccce17b0 167static unsigned int targetdebug = 0;
3cecbbbe
TT
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
920d2a44
AC
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
c906108c 181
a14ed312 182static void setup_target_debug (void);
c906108c 183
c906108c
SS
184/* The user just typed 'target' without the name of a target. */
185
c906108c 186static void
fba45db2 187target_command (char *arg, int from_tty)
c906108c
SS
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
c35b1492
PA
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
aeaec162 236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
aeaec162 240 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
aeaec162 296target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 301 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
302 return 1;
303
304 return 0;
305}
306
aeaec162
TT
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
c22a2b88
TT
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
c906108c
SS
315
316void
c22a2b88 317complete_target_initialization (struct target_ops *t)
c906108c 318{
0088c768 319 /* Provide default values for all "must have" methods. */
0088c768 320
c35b1492 321 if (t->to_has_all_memory == NULL)
555bbdeb 322 t->to_has_all_memory = return_zero;
c35b1492
PA
323
324 if (t->to_has_memory == NULL)
555bbdeb 325 t->to_has_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_stack == NULL)
555bbdeb 328 t->to_has_stack = return_zero;
c35b1492
PA
329
330 if (t->to_has_registers == NULL)
555bbdeb 331 t->to_has_registers = return_zero;
c35b1492
PA
332
333 if (t->to_has_execution == NULL)
555bbdeb 334 t->to_has_execution = return_zero_has_execution;
1101cb7b 335
b3ccfe11
TT
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
1101cb7b 342 install_delegators (t);
c22a2b88
TT
343}
344
8981c758
TT
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
19ba03f4 350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
c22a2b88
TT
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
c35b1492 374
89a1c21a 375 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
376
377 if (targetlist == NULL)
1bedd215
AC
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
c906108c
SS
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
1bedd215 383`help target ' followed by the protocol name."),
c906108c 384 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
9852c492
YQ
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
c906108c
SS
398}
399
b48d48eb
MM
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
8981c758
TT
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
b48d48eb
MM
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
c906108c
SS
417/* Stub functions */
418
7d85a9c0
JB
419void
420target_kill (void)
421{
423a4807 422 current_target.to_kill (&current_target);
7d85a9c0
JB
423}
424
11cf8741 425void
9cbe5fff 426target_load (const char *arg, int from_tty)
11cf8741 427{
4e5d721f 428 target_dcache_invalidate ();
71a9f134 429 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
430}
431
5842f62a
PA
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
7afa63c6 447static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
6fdebc3d
PA
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
2f99e8fc
YQ
469int
470target_terminal_is_ours (void)
471{
472 return (terminal_state == terminal_is_ours);
473}
474
475/* See target.h. */
476
d9d2d8b6
PA
477void
478target_terminal_inferior (void)
479{
480 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 481 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
485 return;
486
5842f62a
PA
487 if (terminal_state == terminal_is_inferior)
488 return;
489
d9d2d8b6
PA
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
d2f640d4 492 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
493 terminal_state = terminal_is_inferior;
494}
495
496/* See target.h. */
497
498void
499target_terminal_ours (void)
500{
501 if (terminal_state == terminal_is_ours)
502 return;
503
504 (*current_target.to_terminal_ours) (&current_target);
505 terminal_state = terminal_is_ours;
506}
507
508/* See target.h. */
509
510void
511target_terminal_ours_for_output (void)
512{
513 if (terminal_state != terminal_is_inferior)
514 return;
515 (*current_target.to_terminal_ours_for_output) (&current_target);
516 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 517}
136d6dae 518
b0ed115f
TT
519/* See target.h. */
520
521int
522target_supports_terminal_ours (void)
523{
524 struct target_ops *t;
525
526 for (t = current_target.beneath; t != NULL; t = t->beneath)
527 {
528 if (t->to_terminal_ours != delegate_terminal_ours
529 && t->to_terminal_ours != tdefault_terminal_ours)
530 return 1;
531 }
532
533 return 0;
534}
535
1abf3a14
SM
536/* Restore the terminal to its previous state (helper for
537 make_cleanup_restore_target_terminal). */
538
539static void
540cleanup_restore_target_terminal (void *arg)
541{
19ba03f4 542 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
543
544 switch (*previous_state)
545 {
546 case terminal_is_ours:
547 target_terminal_ours ();
548 break;
549 case terminal_is_ours_for_output:
550 target_terminal_ours_for_output ();
551 break;
552 case terminal_is_inferior:
553 target_terminal_inferior ();
554 break;
555 }
556}
557
558/* See target.h. */
559
560struct cleanup *
561make_cleanup_restore_target_terminal (void)
562{
8d749320 563 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
564
565 *ts = terminal_state;
566
567 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
568}
569
c906108c 570static void
fba45db2 571tcomplain (void)
c906108c 572{
8a3fe4f8 573 error (_("You can't do that when your target is `%s'"),
c906108c
SS
574 current_target.to_shortname);
575}
576
577void
fba45db2 578noprocess (void)
c906108c 579{
8a3fe4f8 580 error (_("You can't do that without a process to debug."));
c906108c
SS
581}
582
c906108c 583static void
0a4f40a2 584default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 585{
a3f17187 586 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
587}
588
0ef643c8
JB
589/* A default implementation for the to_get_ada_task_ptid target method.
590
591 This function builds the PTID by using both LWP and TID as part of
592 the PTID lwp and tid elements. The pid used is the pid of the
593 inferior_ptid. */
594
2c0b251b 595static ptid_t
1e6b91a4 596default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
597{
598 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
599}
600
32231432 601static enum exec_direction_kind
4c612759 602default_execution_direction (struct target_ops *self)
32231432
PA
603{
604 if (!target_can_execute_reverse)
605 return EXEC_FORWARD;
606 else if (!target_can_async_p ())
607 return EXEC_FORWARD;
608 else
609 gdb_assert_not_reached ("\
610to_execution_direction must be implemented for reverse async");
611}
612
7998dfc3
AC
613/* Go through the target stack from top to bottom, copying over zero
614 entries in current_target, then filling in still empty entries. In
615 effect, we are doing class inheritance through the pushed target
616 vectors.
617
618 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
619 is currently implemented, is that it discards any knowledge of
620 which target an inherited method originally belonged to.
621 Consequently, new new target methods should instead explicitly and
622 locally search the target stack for the target that can handle the
623 request. */
c906108c
SS
624
625static void
7998dfc3 626update_current_target (void)
c906108c 627{
7998dfc3
AC
628 struct target_ops *t;
629
08d8bcd7 630 /* First, reset current's contents. */
7998dfc3
AC
631 memset (&current_target, 0, sizeof (current_target));
632
1101cb7b
TT
633 /* Install the delegators. */
634 install_delegators (&current_target);
635
be4ddd36
TT
636 current_target.to_stratum = target_stack->to_stratum;
637
7998dfc3
AC
638#define INHERIT(FIELD, TARGET) \
639 if (!current_target.FIELD) \
640 current_target.FIELD = (TARGET)->FIELD
641
be4ddd36
TT
642 /* Do not add any new INHERITs here. Instead, use the delegation
643 mechanism provided by make-target-delegates. */
7998dfc3
AC
644 for (t = target_stack; t; t = t->beneath)
645 {
646 INHERIT (to_shortname, t);
647 INHERIT (to_longname, t);
dc177b7a 648 INHERIT (to_attach_no_wait, t);
74174d2e 649 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 650 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 651 INHERIT (to_has_thread_control, t);
7998dfc3
AC
652 }
653#undef INHERIT
654
7998dfc3
AC
655 /* Finally, position the target-stack beneath the squashed
656 "current_target". That way code looking for a non-inherited
657 target method can quickly and simply find it. */
658 current_target.beneath = target_stack;
b4b61fdb
DJ
659
660 if (targetdebug)
661 setup_target_debug ();
c906108c
SS
662}
663
664/* Push a new target type into the stack of the existing target accessors,
665 possibly superseding some of the existing accessors.
666
c906108c
SS
667 Rather than allow an empty stack, we always have the dummy target at
668 the bottom stratum, so we can call the function vectors without
669 checking them. */
670
b26a4dcb 671void
fba45db2 672push_target (struct target_ops *t)
c906108c 673{
258b763a 674 struct target_ops **cur;
c906108c
SS
675
676 /* Check magic number. If wrong, it probably means someone changed
677 the struct definition, but not all the places that initialize one. */
678 if (t->to_magic != OPS_MAGIC)
679 {
c5aa993b
JM
680 fprintf_unfiltered (gdb_stderr,
681 "Magic number of %s target struct wrong\n",
682 t->to_shortname);
3e43a32a
MS
683 internal_error (__FILE__, __LINE__,
684 _("failed internal consistency check"));
c906108c
SS
685 }
686
258b763a
AC
687 /* Find the proper stratum to install this target in. */
688 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 689 {
258b763a 690 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
691 break;
692 }
693
258b763a 694 /* If there's already targets at this stratum, remove them. */
88c231eb 695 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
696 targets to CUR, and not just those at this stratum level. */
697 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
698 {
699 /* There's already something at this stratum level. Close it,
700 and un-hook it from the stack. */
701 struct target_ops *tmp = (*cur);
5d502164 702
258b763a
AC
703 (*cur) = (*cur)->beneath;
704 tmp->beneath = NULL;
460014f5 705 target_close (tmp);
258b763a 706 }
c906108c
SS
707
708 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
709 t->beneath = (*cur);
710 (*cur) = t;
c906108c
SS
711
712 update_current_target ();
c906108c
SS
713}
714
2bc416ba 715/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
716 Return how many times it was removed (0 or 1). */
717
718int
fba45db2 719unpush_target (struct target_ops *t)
c906108c 720{
258b763a
AC
721 struct target_ops **cur;
722 struct target_ops *tmp;
c906108c 723
c8d104ad
PA
724 if (t->to_stratum == dummy_stratum)
725 internal_error (__FILE__, __LINE__,
9b20d036 726 _("Attempt to unpush the dummy target"));
c8d104ad 727
c906108c 728 /* Look for the specified target. Note that we assume that a target
c378eb4e 729 can only occur once in the target stack. */
c906108c 730
258b763a
AC
731 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 {
733 if ((*cur) == t)
734 break;
735 }
c906108c 736
305436e0
PA
737 /* If we don't find target_ops, quit. Only open targets should be
738 closed. */
258b763a 739 if ((*cur) == NULL)
305436e0 740 return 0;
5269965e 741
c378eb4e 742 /* Unchain the target. */
258b763a
AC
743 tmp = (*cur);
744 (*cur) = (*cur)->beneath;
745 tmp->beneath = NULL;
c906108c
SS
746
747 update_current_target ();
c906108c 748
305436e0
PA
749 /* Finally close the target. Note we do this after unchaining, so
750 any target method calls from within the target_close
751 implementation don't end up in T anymore. */
460014f5 752 target_close (t);
305436e0 753
c906108c
SS
754 return 1;
755}
756
915ef8b1
PA
757/* Unpush TARGET and assert that it worked. */
758
759static void
760unpush_target_and_assert (struct target_ops *target)
761{
762 if (!unpush_target (target))
763 {
764 fprintf_unfiltered (gdb_stderr,
765 "pop_all_targets couldn't find target %s\n",
766 target->to_shortname);
767 internal_error (__FILE__, __LINE__,
768 _("failed internal consistency check"));
769 }
770}
771
aa76d38d 772void
460014f5 773pop_all_targets_above (enum strata above_stratum)
aa76d38d 774{
87ab71f0 775 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
776 unpush_target_and_assert (target_stack);
777}
778
779/* See target.h. */
780
781void
782pop_all_targets_at_and_above (enum strata stratum)
783{
784 while ((int) (current_target.to_stratum) >= (int) stratum)
785 unpush_target_and_assert (target_stack);
aa76d38d
PA
786}
787
87ab71f0 788void
460014f5 789pop_all_targets (void)
87ab71f0 790{
460014f5 791 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
792}
793
c0edd9ed
JK
794/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
795
796int
797target_is_pushed (struct target_ops *t)
798{
84202f9c 799 struct target_ops *cur;
c0edd9ed
JK
800
801 /* Check magic number. If wrong, it probably means someone changed
802 the struct definition, but not all the places that initialize one. */
803 if (t->to_magic != OPS_MAGIC)
804 {
805 fprintf_unfiltered (gdb_stderr,
806 "Magic number of %s target struct wrong\n",
807 t->to_shortname);
3e43a32a
MS
808 internal_error (__FILE__, __LINE__,
809 _("failed internal consistency check"));
c0edd9ed
JK
810 }
811
84202f9c
TT
812 for (cur = target_stack; cur != NULL; cur = cur->beneath)
813 if (cur == t)
c0edd9ed
JK
814 return 1;
815
816 return 0;
817}
818
f0f9ff95
TT
819/* Default implementation of to_get_thread_local_address. */
820
821static void
822generic_tls_error (void)
823{
824 throw_error (TLS_GENERIC_ERROR,
825 _("Cannot find thread-local variables on this target"));
826}
827
72f5cf0e 828/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
829 current thread's thread-local storage with offset OFFSET. */
830CORE_ADDR
831target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
832{
833 volatile CORE_ADDR addr = 0;
f0f9ff95 834 struct target_ops *target = &current_target;
9e35dae4 835
f0f9ff95 836 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
837 {
838 ptid_t ptid = inferior_ptid;
9e35dae4 839
492d29ea 840 TRY
9e35dae4
DJ
841 {
842 CORE_ADDR lm_addr;
843
844 /* Fetch the load module address for this objfile. */
f5656ead 845 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 846 objfile);
9e35dae4 847
3e43a32a
MS
848 addr = target->to_get_thread_local_address (target, ptid,
849 lm_addr, offset);
9e35dae4
DJ
850 }
851 /* If an error occurred, print TLS related messages here. Otherwise,
852 throw the error to some higher catcher. */
492d29ea 853 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
854 {
855 int objfile_is_library = (objfile->flags & OBJF_SHARED);
856
857 switch (ex.error)
858 {
859 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
860 error (_("Cannot find thread-local variables "
861 "in this thread library."));
9e35dae4
DJ
862 break;
863 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 866 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
867 else
868 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 869 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
870 break;
871 case TLS_NOT_ALLOCATED_YET_ERROR:
872 if (objfile_is_library)
873 error (_("The inferior has not yet allocated storage for"
874 " thread-local variables in\n"
875 "the shared library `%s'\n"
876 "for %s"),
4262abfb 877 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
878 else
879 error (_("The inferior has not yet allocated storage for"
880 " thread-local variables in\n"
881 "the executable `%s'\n"
882 "for %s"),
4262abfb 883 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
884 break;
885 case TLS_GENERIC_ERROR:
886 if (objfile_is_library)
887 error (_("Cannot find thread-local storage for %s, "
888 "shared library %s:\n%s"),
889 target_pid_to_str (ptid),
4262abfb 890 objfile_name (objfile), ex.message);
9e35dae4
DJ
891 else
892 error (_("Cannot find thread-local storage for %s, "
893 "executable file %s:\n%s"),
894 target_pid_to_str (ptid),
4262abfb 895 objfile_name (objfile), ex.message);
9e35dae4
DJ
896 break;
897 default:
898 throw_exception (ex);
899 break;
900 }
901 }
492d29ea 902 END_CATCH
9e35dae4
DJ
903 }
904 /* It wouldn't be wrong here to try a gdbarch method, too; finding
905 TLS is an ABI-specific thing. But we don't do that yet. */
906 else
907 error (_("Cannot find thread-local variables on this target"));
908
909 return addr;
910}
911
6be7b56e 912const char *
01cb8804 913target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
914{
915#define CASE(X) case X: return #X
01cb8804 916 switch (status)
6be7b56e
PA
917 {
918 CASE(TARGET_XFER_E_IO);
bc113b4e 919 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
920 default:
921 return "<unknown>";
922 }
923#undef CASE
924};
925
926
c906108c
SS
927#undef MIN
928#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
929
930/* target_read_string -- read a null terminated string, up to LEN bytes,
931 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
932 Set *STRING to a pointer to malloc'd memory containing the data; the caller
933 is responsible for freeing it. Return the number of bytes successfully
934 read. */
935
936int
fba45db2 937target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 938{
c2e8b827 939 int tlen, offset, i;
1b0ba102 940 gdb_byte buf[4];
c906108c
SS
941 int errcode = 0;
942 char *buffer;
943 int buffer_allocated;
944 char *bufptr;
945 unsigned int nbytes_read = 0;
946
6217bf3e
MS
947 gdb_assert (string);
948
c906108c
SS
949 /* Small for testing. */
950 buffer_allocated = 4;
224c3ddb 951 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
952 bufptr = buffer;
953
c906108c
SS
954 while (len > 0)
955 {
956 tlen = MIN (len, 4 - (memaddr & 3));
957 offset = memaddr & 3;
958
1b0ba102 959 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
960 if (errcode != 0)
961 {
962 /* The transfer request might have crossed the boundary to an
c378eb4e 963 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
964 a single byte. */
965 tlen = 1;
966 offset = 0;
b8eb5af0 967 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
968 if (errcode != 0)
969 goto done;
970 }
971
972 if (bufptr - buffer + tlen > buffer_allocated)
973 {
974 unsigned int bytes;
5d502164 975
c906108c
SS
976 bytes = bufptr - buffer;
977 buffer_allocated *= 2;
224c3ddb 978 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
979 bufptr = buffer + bytes;
980 }
981
982 for (i = 0; i < tlen; i++)
983 {
984 *bufptr++ = buf[i + offset];
985 if (buf[i + offset] == '\000')
986 {
987 nbytes_read += i + 1;
988 goto done;
989 }
990 }
991
992 memaddr += tlen;
993 len -= tlen;
994 nbytes_read += tlen;
995 }
c5aa993b 996done:
6217bf3e 997 *string = buffer;
c906108c
SS
998 if (errnop != NULL)
999 *errnop = errcode;
c906108c
SS
1000 return nbytes_read;
1001}
1002
07b82ea5
PA
1003struct target_section_table *
1004target_get_section_table (struct target_ops *target)
1005{
7e35c012 1006 return (*target->to_get_section_table) (target);
07b82ea5
PA
1007}
1008
8db32d44 1009/* Find a section containing ADDR. */
07b82ea5 1010
0542c86d 1011struct target_section *
8db32d44
AC
1012target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1013{
07b82ea5 1014 struct target_section_table *table = target_get_section_table (target);
0542c86d 1015 struct target_section *secp;
07b82ea5
PA
1016
1017 if (table == NULL)
1018 return NULL;
1019
1020 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1021 {
1022 if (addr >= secp->addr && addr < secp->endaddr)
1023 return secp;
1024 }
1025 return NULL;
1026}
1027
0fec99e8
PA
1028
1029/* Helper for the memory xfer routines. Checks the attributes of the
1030 memory region of MEMADDR against the read or write being attempted.
1031 If the access is permitted returns true, otherwise returns false.
1032 REGION_P is an optional output parameter. If not-NULL, it is
1033 filled with a pointer to the memory region of MEMADDR. REG_LEN
1034 returns LEN trimmed to the end of the region. This is how much the
1035 caller can continue requesting, if the access is permitted. A
1036 single xfer request must not straddle memory region boundaries. */
1037
1038static int
1039memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1040 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1041 struct mem_region **region_p)
1042{
1043 struct mem_region *region;
1044
1045 region = lookup_mem_region (memaddr);
1046
1047 if (region_p != NULL)
1048 *region_p = region;
1049
1050 switch (region->attrib.mode)
1051 {
1052 case MEM_RO:
1053 if (writebuf != NULL)
1054 return 0;
1055 break;
1056
1057 case MEM_WO:
1058 if (readbuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_FLASH:
1063 /* We only support writing to flash during "load" for now. */
1064 if (writebuf != NULL)
1065 error (_("Writing to flash memory forbidden in this context"));
1066 break;
1067
1068 case MEM_NONE:
1069 return 0;
1070 }
1071
1072 /* region->hi == 0 means there's no upper bound. */
1073 if (memaddr + len < region->hi || region->hi == 0)
1074 *reg_len = len;
1075 else
1076 *reg_len = region->hi - memaddr;
1077
1078 return 1;
1079}
1080
9f713294
YQ
1081/* Read memory from more than one valid target. A core file, for
1082 instance, could have some of memory but delegate other bits to
1083 the target below it. So, we must manually try all targets. */
1084
cc9f16aa 1085enum target_xfer_status
17fde6d0 1086raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1087 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1088 ULONGEST *xfered_len)
9f713294 1089{
9b409511 1090 enum target_xfer_status res;
9f713294
YQ
1091
1092 do
1093 {
1094 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1095 readbuf, writebuf, memaddr, len,
1096 xfered_len);
1097 if (res == TARGET_XFER_OK)
9f713294
YQ
1098 break;
1099
633785ff 1100 /* Stop if the target reports that the memory is not available. */
bc113b4e 1101 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1102 break;
1103
9f713294
YQ
1104 /* We want to continue past core files to executables, but not
1105 past a running target's memory. */
1106 if (ops->to_has_all_memory (ops))
1107 break;
1108
1109 ops = ops->beneath;
1110 }
1111 while (ops != NULL);
1112
0f26cec1
PA
1113 /* The cache works at the raw memory level. Make sure the cache
1114 gets updated with raw contents no matter what kind of memory
1115 object was originally being written. Note we do write-through
1116 first, so that if it fails, we don't write to the cache contents
1117 that never made it to the target. */
1118 if (writebuf != NULL
1119 && !ptid_equal (inferior_ptid, null_ptid)
1120 && target_dcache_init_p ()
1121 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1122 {
1123 DCACHE *dcache = target_dcache_get ();
1124
1125 /* Note that writing to an area of memory which wasn't present
1126 in the cache doesn't cause it to be loaded in. */
1127 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1128 }
1129
9f713294
YQ
1130 return res;
1131}
1132
7f79c47e
DE
1133/* Perform a partial memory transfer.
1134 For docs see target.h, to_xfer_partial. */
cf7a04e8 1135
9b409511 1136static enum target_xfer_status
f0ba3972 1137memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1138 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1139 ULONGEST len, ULONGEST *xfered_len)
0779438d 1140{
9b409511 1141 enum target_xfer_status res;
0fec99e8 1142 ULONGEST reg_len;
cf7a04e8 1143 struct mem_region *region;
4e5d721f 1144 struct inferior *inf;
cf7a04e8 1145
07b82ea5
PA
1146 /* For accesses to unmapped overlay sections, read directly from
1147 files. Must do this first, as MEMADDR may need adjustment. */
1148 if (readbuf != NULL && overlay_debugging)
1149 {
1150 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1151
07b82ea5
PA
1152 if (pc_in_unmapped_range (memaddr, section))
1153 {
1154 struct target_section_table *table
1155 = target_get_section_table (ops);
1156 const char *section_name = section->the_bfd_section->name;
5d502164 1157
07b82ea5
PA
1158 memaddr = overlay_mapped_address (memaddr, section);
1159 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1160 memaddr, len, xfered_len,
07b82ea5
PA
1161 table->sections,
1162 table->sections_end,
1163 section_name);
1164 }
1165 }
1166
1167 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1168 if (readbuf != NULL && trust_readonly)
1169 {
0542c86d 1170 struct target_section *secp;
07b82ea5 1171 struct target_section_table *table;
cf7a04e8
DJ
1172
1173 secp = target_section_by_addr (ops, memaddr);
1174 if (secp != NULL
2b2848e2
DE
1175 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1176 secp->the_bfd_section)
cf7a04e8 1177 & SEC_READONLY))
07b82ea5
PA
1178 {
1179 table = target_get_section_table (ops);
1180 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1181 memaddr, len, xfered_len,
07b82ea5
PA
1182 table->sections,
1183 table->sections_end,
1184 NULL);
1185 }
98646950
UW
1186 }
1187
cf7a04e8 1188 /* Try GDB's internal data cache. */
cf7a04e8 1189
0fec99e8
PA
1190 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1191 &region))
1192 return TARGET_XFER_E_IO;
cf7a04e8 1193
6c95b8df 1194 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1195 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1196 else
1197 inf = NULL;
4e5d721f
DE
1198
1199 if (inf != NULL
0f26cec1 1200 && readbuf != NULL
2f4d8875
PA
1201 /* The dcache reads whole cache lines; that doesn't play well
1202 with reading from a trace buffer, because reading outside of
1203 the collected memory range fails. */
1204 && get_traceframe_number () == -1
4e5d721f 1205 && (region->attrib.cache
29453a14
YQ
1206 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1207 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1208 {
2a2f9fe4
YQ
1209 DCACHE *dcache = target_dcache_get_or_init ();
1210
0f26cec1
PA
1211 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1212 reg_len, xfered_len);
cf7a04e8
DJ
1213 }
1214
1215 /* If none of those methods found the memory we wanted, fall back
1216 to a target partial transfer. Normally a single call to
1217 to_xfer_partial is enough; if it doesn't recognize an object
1218 it will call the to_xfer_partial of the next target down.
1219 But for memory this won't do. Memory is the only target
9b409511
YQ
1220 object which can be read from more than one valid target.
1221 A core file, for instance, could have some of memory but
1222 delegate other bits to the target below it. So, we must
1223 manually try all targets. */
1224
1225 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1226 xfered_len);
cf7a04e8
DJ
1227
1228 /* If we still haven't got anything, return the last error. We
1229 give up. */
1230 return res;
0779438d
AC
1231}
1232
f0ba3972
PA
1233/* Perform a partial memory transfer. For docs see target.h,
1234 to_xfer_partial. */
1235
9b409511 1236static enum target_xfer_status
f0ba3972 1237memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1238 gdb_byte *readbuf, const gdb_byte *writebuf,
1239 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1240{
9b409511 1241 enum target_xfer_status res;
f0ba3972
PA
1242
1243 /* Zero length requests are ok and require no work. */
1244 if (len == 0)
9b409511 1245 return TARGET_XFER_EOF;
f0ba3972
PA
1246
1247 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1248 breakpoint insns, thus hiding out from higher layers whether
1249 there are software breakpoints inserted in the code stream. */
1250 if (readbuf != NULL)
1251 {
9b409511
YQ
1252 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1253 xfered_len);
f0ba3972 1254
9b409511 1255 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1256 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1257 }
1258 else
1259 {
d7f3ff3e 1260 gdb_byte *buf;
f0ba3972
PA
1261 struct cleanup *old_chain;
1262
67c059c2
AB
1263 /* A large write request is likely to be partially satisfied
1264 by memory_xfer_partial_1. We will continually malloc
1265 and free a copy of the entire write request for breakpoint
1266 shadow handling even though we only end up writing a small
1267 subset of it. Cap writes to 4KB to mitigate this. */
1268 len = min (4096, len);
1269
d7f3ff3e 1270 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1271 old_chain = make_cleanup (xfree, buf);
1272 memcpy (buf, writebuf, len);
1273
1274 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1275 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1276 xfered_len);
f0ba3972
PA
1277
1278 do_cleanups (old_chain);
1279 }
1280
1281 return res;
1282}
1283
8defab1a
DJ
1284static void
1285restore_show_memory_breakpoints (void *arg)
1286{
1287 show_memory_breakpoints = (uintptr_t) arg;
1288}
1289
1290struct cleanup *
1291make_show_memory_breakpoints_cleanup (int show)
1292{
1293 int current = show_memory_breakpoints;
8defab1a 1294
5d502164 1295 show_memory_breakpoints = show;
8defab1a
DJ
1296 return make_cleanup (restore_show_memory_breakpoints,
1297 (void *) (uintptr_t) current);
1298}
1299
7f79c47e
DE
1300/* For docs see target.h, to_xfer_partial. */
1301
9b409511 1302enum target_xfer_status
27394598
AC
1303target_xfer_partial (struct target_ops *ops,
1304 enum target_object object, const char *annex,
4ac248ca 1305 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1306 ULONGEST offset, ULONGEST len,
1307 ULONGEST *xfered_len)
27394598 1308{
9b409511 1309 enum target_xfer_status retval;
27394598
AC
1310
1311 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1312
ce6d0892
YQ
1313 /* Transfer is done when LEN is zero. */
1314 if (len == 0)
9b409511 1315 return TARGET_XFER_EOF;
ce6d0892 1316
d914c394
SS
1317 if (writebuf && !may_write_memory)
1318 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1319 core_addr_to_string_nz (offset), plongest (len));
1320
9b409511
YQ
1321 *xfered_len = 0;
1322
cf7a04e8
DJ
1323 /* If this is a memory transfer, let the memory-specific code
1324 have a look at it instead. Memory transfers are more
1325 complicated. */
29453a14
YQ
1326 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1327 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1328 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1329 writebuf, offset, len, xfered_len);
9f713294 1330 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1331 {
0fec99e8
PA
1332 /* Skip/avoid accessing the target if the memory region
1333 attributes block the access. Check this here instead of in
1334 raw_memory_xfer_partial as otherwise we'd end up checking
1335 this twice in the case of the memory_xfer_partial path is
1336 taken; once before checking the dcache, and another in the
1337 tail call to raw_memory_xfer_partial. */
1338 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1339 NULL))
1340 return TARGET_XFER_E_IO;
1341
9f713294 1342 /* Request the normal memory object from other layers. */
9b409511
YQ
1343 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1344 xfered_len);
cf7a04e8 1345 }
9f713294
YQ
1346 else
1347 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1348 writebuf, offset, len, xfered_len);
cf7a04e8 1349
27394598
AC
1350 if (targetdebug)
1351 {
1352 const unsigned char *myaddr = NULL;
1353
1354 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1355 "%s:target_xfer_partial "
9b409511 1356 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1357 ops->to_shortname,
1358 (int) object,
1359 (annex ? annex : "(null)"),
53b71562
JB
1360 host_address_to_string (readbuf),
1361 host_address_to_string (writebuf),
0b1553bc 1362 core_addr_to_string_nz (offset),
9b409511
YQ
1363 pulongest (len), retval,
1364 pulongest (*xfered_len));
27394598
AC
1365
1366 if (readbuf)
1367 myaddr = readbuf;
1368 if (writebuf)
1369 myaddr = writebuf;
9b409511 1370 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1371 {
1372 int i;
2bc416ba 1373
27394598 1374 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1375 for (i = 0; i < *xfered_len; i++)
27394598 1376 {
53b71562 1377 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1378 {
1379 if (targetdebug < 2 && i > 0)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, " ...");
1382 break;
1383 }
1384 fprintf_unfiltered (gdb_stdlog, "\n");
1385 }
2bc416ba 1386
27394598
AC
1387 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1388 }
1389 }
2bc416ba 1390
27394598
AC
1391 fputc_unfiltered ('\n', gdb_stdlog);
1392 }
9b409511
YQ
1393
1394 /* Check implementations of to_xfer_partial update *XFERED_LEN
1395 properly. Do assertion after printing debug messages, so that we
1396 can find more clues on assertion failure from debugging messages. */
bc113b4e 1397 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1398 gdb_assert (*xfered_len > 0);
1399
27394598
AC
1400 return retval;
1401}
1402
578d3588
PA
1403/* Read LEN bytes of target memory at address MEMADDR, placing the
1404 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1405 -1 if any error occurs.
c906108c
SS
1406
1407 If an error occurs, no guarantee is made about the contents of the data at
1408 MYADDR. In particular, the caller should not depend upon partial reads
1409 filling the buffer with good data. There is no way for the caller to know
1410 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1411 deal with partial reads should call target_read (which will retry until
c378eb4e 1412 it makes no progress, and then return how much was transferred). */
c906108c
SS
1413
1414int
1b162304 1415target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1416{
c35b1492
PA
1417 /* Dispatch to the topmost target, not the flattened current_target.
1418 Memory accesses check target->to_has_(all_)memory, and the
1419 flattened target doesn't inherit those. */
1420 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1421 myaddr, memaddr, len) == len)
1422 return 0;
0779438d 1423 else
d09f2c3f 1424 return -1;
c906108c
SS
1425}
1426
721ec300
GB
1427/* See target/target.h. */
1428
1429int
1430target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1431{
1432 gdb_byte buf[4];
1433 int r;
1434
1435 r = target_read_memory (memaddr, buf, sizeof buf);
1436 if (r != 0)
1437 return r;
1438 *result = extract_unsigned_integer (buf, sizeof buf,
1439 gdbarch_byte_order (target_gdbarch ()));
1440 return 0;
1441}
1442
aee4bf85
PA
1443/* Like target_read_memory, but specify explicitly that this is a read
1444 from the target's raw memory. That is, this read bypasses the
1445 dcache, breakpoint shadowing, etc. */
1446
1447int
1448target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1449{
1450 /* See comment in target_read_memory about why the request starts at
1451 current_target.beneath. */
1452 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1453 myaddr, memaddr, len) == len)
1454 return 0;
1455 else
d09f2c3f 1456 return -1;
aee4bf85
PA
1457}
1458
4e5d721f
DE
1459/* Like target_read_memory, but specify explicitly that this is a read from
1460 the target's stack. This may trigger different cache behavior. */
1461
1462int
45aa4659 1463target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1464{
aee4bf85
PA
1465 /* See comment in target_read_memory about why the request starts at
1466 current_target.beneath. */
4e5d721f
DE
1467 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1468 myaddr, memaddr, len) == len)
1469 return 0;
1470 else
d09f2c3f 1471 return -1;
4e5d721f
DE
1472}
1473
29453a14
YQ
1474/* Like target_read_memory, but specify explicitly that this is a read from
1475 the target's code. This may trigger different cache behavior. */
1476
1477int
1478target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1479{
aee4bf85
PA
1480 /* See comment in target_read_memory about why the request starts at
1481 current_target.beneath. */
29453a14
YQ
1482 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1483 myaddr, memaddr, len) == len)
1484 return 0;
1485 else
d09f2c3f 1486 return -1;
29453a14
YQ
1487}
1488
7f79c47e 1489/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1490 Returns either 0 for success or -1 if any error occurs. If an
1491 error occurs, no guarantee is made about how much data got written.
1492 Callers that can deal with partial writes should call
1493 target_write. */
7f79c47e 1494
c906108c 1495int
45aa4659 1496target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1497{
aee4bf85
PA
1498 /* See comment in target_read_memory about why the request starts at
1499 current_target.beneath. */
c35b1492 1500 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1501 myaddr, memaddr, len) == len)
1502 return 0;
0779438d 1503 else
d09f2c3f 1504 return -1;
c906108c 1505}
c5aa993b 1506
f0ba3972 1507/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1508 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1509 If an error occurs, no guarantee is made about how much data got
1510 written. Callers that can deal with partial writes should call
1511 target_write. */
f0ba3972
PA
1512
1513int
45aa4659 1514target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1515{
aee4bf85
PA
1516 /* See comment in target_read_memory about why the request starts at
1517 current_target.beneath. */
f0ba3972
PA
1518 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1519 myaddr, memaddr, len) == len)
1520 return 0;
1521 else
d09f2c3f 1522 return -1;
f0ba3972
PA
1523}
1524
fd79ecee
DJ
1525/* Fetch the target's memory map. */
1526
1527VEC(mem_region_s) *
1528target_memory_map (void)
1529{
1530 VEC(mem_region_s) *result;
1531 struct mem_region *last_one, *this_one;
1532 int ix;
1533 struct target_ops *t;
1534
6b2c5a57 1535 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1536 if (result == NULL)
1537 return NULL;
1538
1539 qsort (VEC_address (mem_region_s, result),
1540 VEC_length (mem_region_s, result),
1541 sizeof (struct mem_region), mem_region_cmp);
1542
1543 /* Check that regions do not overlap. Simultaneously assign
1544 a numbering for the "mem" commands to use to refer to
1545 each region. */
1546 last_one = NULL;
1547 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1548 {
1549 this_one->number = ix;
1550
1551 if (last_one && last_one->hi > this_one->lo)
1552 {
1553 warning (_("Overlapping regions in memory map: ignoring"));
1554 VEC_free (mem_region_s, result);
1555 return NULL;
1556 }
1557 last_one = this_one;
1558 }
1559
1560 return result;
1561}
1562
a76d924d
DJ
1563void
1564target_flash_erase (ULONGEST address, LONGEST length)
1565{
e8a6c6ac 1566 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1567}
1568
1569void
1570target_flash_done (void)
1571{
f6fb2925 1572 current_target.to_flash_done (&current_target);
a76d924d
DJ
1573}
1574
920d2a44
AC
1575static void
1576show_trust_readonly (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c, const char *value)
1578{
3e43a32a
MS
1579 fprintf_filtered (file,
1580 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1581 value);
1582}
3a11626d 1583
7f79c47e 1584/* Target vector read/write partial wrapper functions. */
0088c768 1585
9b409511 1586static enum target_xfer_status
1e3ff5ad
AC
1587target_read_partial (struct target_ops *ops,
1588 enum target_object object,
1b0ba102 1589 const char *annex, gdb_byte *buf,
9b409511
YQ
1590 ULONGEST offset, ULONGEST len,
1591 ULONGEST *xfered_len)
1e3ff5ad 1592{
9b409511
YQ
1593 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1594 xfered_len);
1e3ff5ad
AC
1595}
1596
8a55ffb0 1597static enum target_xfer_status
1e3ff5ad
AC
1598target_write_partial (struct target_ops *ops,
1599 enum target_object object,
1b0ba102 1600 const char *annex, const gdb_byte *buf,
9b409511 1601 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1602{
9b409511
YQ
1603 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1604 xfered_len);
1e3ff5ad
AC
1605}
1606
1607/* Wrappers to perform the full transfer. */
7f79c47e
DE
1608
1609/* For docs on target_read see target.h. */
1610
1e3ff5ad
AC
1611LONGEST
1612target_read (struct target_ops *ops,
1613 enum target_object object,
1b0ba102 1614 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1615 ULONGEST offset, LONGEST len)
1616{
279a6fed 1617 LONGEST xfered_total = 0;
d309493c
SM
1618 int unit_size = 1;
1619
1620 /* If we are reading from a memory object, find the length of an addressable
1621 unit for that architecture. */
1622 if (object == TARGET_OBJECT_MEMORY
1623 || object == TARGET_OBJECT_STACK_MEMORY
1624 || object == TARGET_OBJECT_CODE_MEMORY
1625 || object == TARGET_OBJECT_RAW_MEMORY)
1626 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1627
279a6fed 1628 while (xfered_total < len)
1e3ff5ad 1629 {
279a6fed 1630 ULONGEST xfered_partial;
9b409511
YQ
1631 enum target_xfer_status status;
1632
1633 status = target_read_partial (ops, object, annex,
d309493c 1634 buf + xfered_total * unit_size,
279a6fed
SM
1635 offset + xfered_total, len - xfered_total,
1636 &xfered_partial);
5d502164 1637
1e3ff5ad 1638 /* Call an observer, notifying them of the xfer progress? */
9b409511 1639 if (status == TARGET_XFER_EOF)
279a6fed 1640 return xfered_total;
9b409511
YQ
1641 else if (status == TARGET_XFER_OK)
1642 {
279a6fed 1643 xfered_total += xfered_partial;
9b409511
YQ
1644 QUIT;
1645 }
1646 else
279a6fed 1647 return TARGET_XFER_E_IO;
9b409511 1648
1e3ff5ad
AC
1649 }
1650 return len;
1651}
1652
f1a507a1
JB
1653/* Assuming that the entire [begin, end) range of memory cannot be
1654 read, try to read whatever subrange is possible to read.
1655
1656 The function returns, in RESULT, either zero or one memory block.
1657 If there's a readable subrange at the beginning, it is completely
1658 read and returned. Any further readable subrange will not be read.
1659 Otherwise, if there's a readable subrange at the end, it will be
1660 completely read and returned. Any readable subranges before it
1661 (obviously, not starting at the beginning), will be ignored. In
1662 other cases -- either no readable subrange, or readable subrange(s)
1663 that is neither at the beginning, or end, nothing is returned.
1664
1665 The purpose of this function is to handle a read across a boundary
1666 of accessible memory in a case when memory map is not available.
1667 The above restrictions are fine for this case, but will give
1668 incorrect results if the memory is 'patchy'. However, supporting
1669 'patchy' memory would require trying to read every single byte,
1670 and it seems unacceptable solution. Explicit memory map is
1671 recommended for this case -- and target_read_memory_robust will
1672 take care of reading multiple ranges then. */
8dedea02
VP
1673
1674static void
3e43a32a 1675read_whatever_is_readable (struct target_ops *ops,
279a6fed 1676 const ULONGEST begin, const ULONGEST end,
d309493c 1677 int unit_size,
8dedea02 1678 VEC(memory_read_result_s) **result)
d5086790 1679{
224c3ddb 1680 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1681 ULONGEST current_begin = begin;
1682 ULONGEST current_end = end;
1683 int forward;
1684 memory_read_result_s r;
9b409511 1685 ULONGEST xfered_len;
8dedea02
VP
1686
1687 /* If we previously failed to read 1 byte, nothing can be done here. */
1688 if (end - begin <= 1)
13b3fd9b
MS
1689 {
1690 xfree (buf);
1691 return;
1692 }
8dedea02
VP
1693
1694 /* Check that either first or the last byte is readable, and give up
c378eb4e 1695 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1696 at the boundary of accessible region. */
1697 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1698 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1699 {
1700 forward = 1;
1701 ++current_begin;
1702 }
1703 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1704 buf + (end - begin) - 1, end - 1, 1,
9b409511 1705 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1706 {
1707 forward = 0;
1708 --current_end;
1709 }
1710 else
1711 {
13b3fd9b 1712 xfree (buf);
8dedea02
VP
1713 return;
1714 }
1715
1716 /* Loop invariant is that the [current_begin, current_end) was previously
1717 found to be not readable as a whole.
1718
1719 Note loop condition -- if the range has 1 byte, we can't divide the range
1720 so there's no point trying further. */
1721 while (current_end - current_begin > 1)
1722 {
1723 ULONGEST first_half_begin, first_half_end;
1724 ULONGEST second_half_begin, second_half_end;
1725 LONGEST xfer;
279a6fed 1726 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1727
8dedea02
VP
1728 if (forward)
1729 {
1730 first_half_begin = current_begin;
1731 first_half_end = middle;
1732 second_half_begin = middle;
1733 second_half_end = current_end;
1734 }
1735 else
1736 {
1737 first_half_begin = middle;
1738 first_half_end = current_end;
1739 second_half_begin = current_begin;
1740 second_half_end = middle;
1741 }
1742
1743 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1744 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1745 first_half_begin,
1746 first_half_end - first_half_begin);
1747
1748 if (xfer == first_half_end - first_half_begin)
1749 {
c378eb4e 1750 /* This half reads up fine. So, the error must be in the
3e43a32a 1751 other half. */
8dedea02
VP
1752 current_begin = second_half_begin;
1753 current_end = second_half_end;
1754 }
1755 else
1756 {
c378eb4e 1757 /* This half is not readable. Because we've tried one byte, we
279a6fed 1758 know some part of this half if actually readable. Go to the next
8dedea02
VP
1759 iteration to divide again and try to read.
1760
1761 We don't handle the other half, because this function only tries
1762 to read a single readable subrange. */
1763 current_begin = first_half_begin;
1764 current_end = first_half_end;
1765 }
1766 }
1767
1768 if (forward)
1769 {
1770 /* The [begin, current_begin) range has been read. */
1771 r.begin = begin;
1772 r.end = current_begin;
1773 r.data = buf;
1774 }
1775 else
1776 {
1777 /* The [current_end, end) range has been read. */
279a6fed 1778 LONGEST region_len = end - current_end;
f1a507a1 1779
224c3ddb 1780 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1781 memcpy (r.data, buf + (current_end - begin) * unit_size,
1782 region_len * unit_size);
8dedea02
VP
1783 r.begin = current_end;
1784 r.end = end;
1785 xfree (buf);
1786 }
1787 VEC_safe_push(memory_read_result_s, (*result), &r);
1788}
1789
1790void
1791free_memory_read_result_vector (void *x)
1792{
19ba03f4 1793 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
8dedea02
VP
1794 memory_read_result_s *current;
1795 int ix;
1796
1797 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1798 {
1799 xfree (current->data);
1800 }
1801 VEC_free (memory_read_result_s, v);
1802}
1803
1804VEC(memory_read_result_s) *
279a6fed
SM
1805read_memory_robust (struct target_ops *ops,
1806 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1807{
1808 VEC(memory_read_result_s) *result = 0;
d309493c 1809 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
8dedea02 1810
279a6fed
SM
1811 LONGEST xfered_total = 0;
1812 while (xfered_total < len)
d5086790 1813 {
279a6fed
SM
1814 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1815 LONGEST region_len;
5d502164 1816
8dedea02
VP
1817 /* If there is no explicit region, a fake one should be created. */
1818 gdb_assert (region);
1819
1820 if (region->hi == 0)
279a6fed 1821 region_len = len - xfered_total;
8dedea02 1822 else
279a6fed 1823 region_len = region->hi - offset;
8dedea02
VP
1824
1825 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1826 {
c378eb4e 1827 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1828 if the region is explicitly marked inaccessible, or
1829 'inaccessible-by-default' is in effect. */
279a6fed 1830 xfered_total += region_len;
8dedea02
VP
1831 }
1832 else
1833 {
279a6fed 1834 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1835 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
8dedea02 1836
279a6fed
SM
1837 LONGEST xfered_partial =
1838 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1839 (gdb_byte *) buffer,
1840 offset + xfered_total, to_read);
8dedea02 1841 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1842 if (xfered_partial <= 0)
d5086790 1843 {
c378eb4e 1844 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1845 some subrange. */
1846 xfree (buffer);
e084c964
DB
1847 read_whatever_is_readable (ops, offset + xfered_total,
1848 offset + xfered_total + to_read,
1849 unit_size, &result);
279a6fed 1850 xfered_total += to_read;
d5086790 1851 }
8dedea02
VP
1852 else
1853 {
1854 struct memory_read_result r;
1855 r.data = buffer;
279a6fed
SM
1856 r.begin = offset + xfered_total;
1857 r.end = r.begin + xfered_partial;
8dedea02 1858 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1859 xfered_total += xfered_partial;
8dedea02
VP
1860 }
1861 QUIT;
d5086790 1862 }
d5086790 1863 }
8dedea02 1864 return result;
d5086790
VP
1865}
1866
8dedea02 1867
cf7a04e8
DJ
1868/* An alternative to target_write with progress callbacks. */
1869
1e3ff5ad 1870LONGEST
cf7a04e8
DJ
1871target_write_with_progress (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len,
1875 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1876{
279a6fed 1877 LONGEST xfered_total = 0;
d309493c
SM
1878 int unit_size = 1;
1879
1880 /* If we are writing to a memory object, find the length of an addressable
1881 unit for that architecture. */
1882 if (object == TARGET_OBJECT_MEMORY
1883 || object == TARGET_OBJECT_STACK_MEMORY
1884 || object == TARGET_OBJECT_CODE_MEMORY
1885 || object == TARGET_OBJECT_RAW_MEMORY)
1886 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1887
1888 /* Give the progress callback a chance to set up. */
1889 if (progress)
1890 (*progress) (0, baton);
1891
279a6fed 1892 while (xfered_total < len)
1e3ff5ad 1893 {
279a6fed 1894 ULONGEST xfered_partial;
9b409511
YQ
1895 enum target_xfer_status status;
1896
1897 status = target_write_partial (ops, object, annex,
d309493c 1898 buf + xfered_total * unit_size,
279a6fed
SM
1899 offset + xfered_total, len - xfered_total,
1900 &xfered_partial);
cf7a04e8 1901
5c328c05 1902 if (status != TARGET_XFER_OK)
279a6fed 1903 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1904
1905 if (progress)
279a6fed 1906 (*progress) (xfered_partial, baton);
cf7a04e8 1907
279a6fed 1908 xfered_total += xfered_partial;
1e3ff5ad
AC
1909 QUIT;
1910 }
1911 return len;
1912}
1913
7f79c47e
DE
1914/* For docs on target_write see target.h. */
1915
cf7a04e8
DJ
1916LONGEST
1917target_write (struct target_ops *ops,
1918 enum target_object object,
1919 const char *annex, const gdb_byte *buf,
1920 ULONGEST offset, LONGEST len)
1921{
1922 return target_write_with_progress (ops, object, annex, buf, offset, len,
1923 NULL, NULL);
1924}
1925
159f81f3
DJ
1926/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1927 the size of the transferred data. PADDING additional bytes are
1928 available in *BUF_P. This is a helper function for
1929 target_read_alloc; see the declaration of that function for more
1930 information. */
13547ab6 1931
159f81f3
DJ
1932static LONGEST
1933target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1934 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1935{
1936 size_t buf_alloc, buf_pos;
1937 gdb_byte *buf;
13547ab6
DJ
1938
1939 /* This function does not have a length parameter; it reads the
1940 entire OBJECT). Also, it doesn't support objects fetched partly
1941 from one target and partly from another (in a different stratum,
1942 e.g. a core file and an executable). Both reasons make it
1943 unsuitable for reading memory. */
1944 gdb_assert (object != TARGET_OBJECT_MEMORY);
1945
1946 /* Start by reading up to 4K at a time. The target will throttle
1947 this number down if necessary. */
1948 buf_alloc = 4096;
224c3ddb 1949 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1950 buf_pos = 0;
1951 while (1)
1952 {
9b409511
YQ
1953 ULONGEST xfered_len;
1954 enum target_xfer_status status;
1955
1956 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1957 buf_pos, buf_alloc - buf_pos - padding,
1958 &xfered_len);
1959
1960 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1961 {
1962 /* Read all there was. */
1963 if (buf_pos == 0)
1964 xfree (buf);
1965 else
1966 *buf_p = buf;
1967 return buf_pos;
1968 }
9b409511
YQ
1969 else if (status != TARGET_XFER_OK)
1970 {
1971 /* An error occurred. */
1972 xfree (buf);
1973 return TARGET_XFER_E_IO;
1974 }
13547ab6 1975
9b409511 1976 buf_pos += xfered_len;
13547ab6
DJ
1977
1978 /* If the buffer is filling up, expand it. */
1979 if (buf_alloc < buf_pos * 2)
1980 {
1981 buf_alloc *= 2;
224c3ddb 1982 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
1983 }
1984
1985 QUIT;
1986 }
1987}
1988
159f81f3
DJ
1989/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1990 the size of the transferred data. See the declaration in "target.h"
1991 function for more information about the return value. */
1992
1993LONGEST
1994target_read_alloc (struct target_ops *ops, enum target_object object,
1995 const char *annex, gdb_byte **buf_p)
1996{
1997 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1998}
1999
2000/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2001 returned as a string, allocated using xmalloc. If an error occurs
2002 or the transfer is unsupported, NULL is returned. Empty objects
2003 are returned as allocated but empty strings. A warning is issued
2004 if the result contains any embedded NUL bytes. */
2005
2006char *
2007target_read_stralloc (struct target_ops *ops, enum target_object object,
2008 const char *annex)
2009{
39086a0e
PA
2010 gdb_byte *buffer;
2011 char *bufstr;
7313baad 2012 LONGEST i, transferred;
159f81f3 2013
39086a0e
PA
2014 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2015 bufstr = (char *) buffer;
159f81f3
DJ
2016
2017 if (transferred < 0)
2018 return NULL;
2019
2020 if (transferred == 0)
2021 return xstrdup ("");
2022
39086a0e 2023 bufstr[transferred] = 0;
7313baad
UW
2024
2025 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2026 for (i = strlen (bufstr); i < transferred; i++)
2027 if (bufstr[i] != 0)
7313baad
UW
2028 {
2029 warning (_("target object %d, annex %s, "
2030 "contained unexpected null characters"),
2031 (int) object, annex ? annex : "(none)");
2032 break;
2033 }
159f81f3 2034
39086a0e 2035 return bufstr;
159f81f3
DJ
2036}
2037
b6591e8b
AC
2038/* Memory transfer methods. */
2039
2040void
1b0ba102 2041get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2042 LONGEST len)
2043{
07b82ea5
PA
2044 /* This method is used to read from an alternate, non-current
2045 target. This read must bypass the overlay support (as symbols
2046 don't match this target), and GDB's internal cache (wrong cache
2047 for this target). */
2048 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2049 != len)
578d3588 2050 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2051}
2052
2053ULONGEST
5d502164
MS
2054get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2055 int len, enum bfd_endian byte_order)
b6591e8b 2056{
f6519ebc 2057 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2058
2059 gdb_assert (len <= sizeof (buf));
2060 get_target_memory (ops, addr, buf, len);
e17a4113 2061 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2062}
2063
3db08215
MM
2064/* See target.h. */
2065
d914c394
SS
2066int
2067target_insert_breakpoint (struct gdbarch *gdbarch,
2068 struct bp_target_info *bp_tgt)
2069{
2070 if (!may_insert_breakpoints)
2071 {
2072 warning (_("May not insert breakpoints"));
2073 return 1;
2074 }
2075
6b84065d
TT
2076 return current_target.to_insert_breakpoint (&current_target,
2077 gdbarch, bp_tgt);
d914c394
SS
2078}
2079
3db08215
MM
2080/* See target.h. */
2081
d914c394 2082int
6b84065d
TT
2083target_remove_breakpoint (struct gdbarch *gdbarch,
2084 struct bp_target_info *bp_tgt)
d914c394
SS
2085{
2086 /* This is kind of a weird case to handle, but the permission might
2087 have been changed after breakpoints were inserted - in which case
2088 we should just take the user literally and assume that any
2089 breakpoints should be left in place. */
2090 if (!may_insert_breakpoints)
2091 {
2092 warning (_("May not remove breakpoints"));
2093 return 1;
2094 }
2095
6b84065d
TT
2096 return current_target.to_remove_breakpoint (&current_target,
2097 gdbarch, bp_tgt);
d914c394
SS
2098}
2099
c906108c 2100static void
fba45db2 2101target_info (char *args, int from_tty)
c906108c
SS
2102{
2103 struct target_ops *t;
c906108c 2104 int has_all_mem = 0;
c5aa993b 2105
c906108c 2106 if (symfile_objfile != NULL)
4262abfb
JK
2107 printf_unfiltered (_("Symbols from \"%s\".\n"),
2108 objfile_name (symfile_objfile));
c906108c 2109
258b763a 2110 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2111 {
c35b1492 2112 if (!(*t->to_has_memory) (t))
c906108c
SS
2113 continue;
2114
c5aa993b 2115 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2116 continue;
2117 if (has_all_mem)
3e43a32a
MS
2118 printf_unfiltered (_("\tWhile running this, "
2119 "GDB does not access memory from...\n"));
c5aa993b
JM
2120 printf_unfiltered ("%s:\n", t->to_longname);
2121 (t->to_files_info) (t);
c35b1492 2122 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2123 }
2124}
2125
fd79ecee
DJ
2126/* This function is called before any new inferior is created, e.g.
2127 by running a program, attaching, or connecting to a target.
2128 It cleans up any state from previous invocations which might
2129 change between runs. This is a subset of what target_preopen
2130 resets (things which might change between targets). */
2131
2132void
2133target_pre_inferior (int from_tty)
2134{
c378eb4e 2135 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2136 inferior might have survived and is entirely wrong for the new
c378eb4e 2137 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2138 to reproduce:
2139
2140 bash$ ./foo&
2141 [1] 4711
2142 bash$ ./foo&
2143 [1] 4712
2144 bash$ gdb ./foo
2145 [...]
2146 (gdb) attach 4711
2147 (gdb) detach
2148 (gdb) attach 4712
2149 Cannot access memory at address 0xdeadbeef
2150 */
b9db4ced 2151
50c71eaf
PA
2152 /* In some OSs, the shared library list is the same/global/shared
2153 across inferiors. If code is shared between processes, so are
2154 memory regions and features. */
f5656ead 2155 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2156 {
2157 no_shared_libraries (NULL, from_tty);
2158
2159 invalidate_target_mem_regions ();
424163ea 2160
50c71eaf
PA
2161 target_clear_description ();
2162 }
8ffcbaaf 2163
e9756d52
PP
2164 /* attach_flag may be set if the previous process associated with
2165 the inferior was attached to. */
2166 current_inferior ()->attach_flag = 0;
2167
5d5658a1
PA
2168 current_inferior ()->highest_thread_num = 0;
2169
8ffcbaaf 2170 agent_capability_invalidate ();
fd79ecee
DJ
2171}
2172
b8fa0bfa
PA
2173/* Callback for iterate_over_inferiors. Gets rid of the given
2174 inferior. */
2175
2176static int
2177dispose_inferior (struct inferior *inf, void *args)
2178{
2179 struct thread_info *thread;
2180
2181 thread = any_thread_of_process (inf->pid);
2182 if (thread)
2183 {
2184 switch_to_thread (thread->ptid);
2185
2186 /* Core inferiors actually should be detached, not killed. */
2187 if (target_has_execution)
2188 target_kill ();
2189 else
2190 target_detach (NULL, 0);
2191 }
2192
2193 return 0;
2194}
2195
c906108c
SS
2196/* This is to be called by the open routine before it does
2197 anything. */
2198
2199void
fba45db2 2200target_preopen (int from_tty)
c906108c 2201{
c5aa993b 2202 dont_repeat ();
c906108c 2203
b8fa0bfa 2204 if (have_inferiors ())
c5aa993b 2205 {
adf40b2e 2206 if (!from_tty
b8fa0bfa
PA
2207 || !have_live_inferiors ()
2208 || query (_("A program is being debugged already. Kill it? ")))
2209 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2210 else
8a3fe4f8 2211 error (_("Program not killed."));
c906108c
SS
2212 }
2213
2214 /* Calling target_kill may remove the target from the stack. But if
2215 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2216 /* Leave the exec target, though. The user may be switching from a
2217 live process to a core of the same program. */
460014f5 2218 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2219
2220 target_pre_inferior (from_tty);
c906108c
SS
2221}
2222
2223/* Detach a target after doing deferred register stores. */
2224
2225void
52554a0e 2226target_detach (const char *args, int from_tty)
c906108c 2227{
136d6dae
VP
2228 struct target_ops* t;
2229
f5656ead 2230 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2231 /* Don't remove global breakpoints here. They're removed on
2232 disconnection from the target. */
2233 ;
2234 else
2235 /* If we're in breakpoints-always-inserted mode, have to remove
2236 them before detaching. */
dfd4cc63 2237 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2238
24291992
PA
2239 prepare_for_detach ();
2240
09da0d0a 2241 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2242}
2243
6ad8ae5c 2244void
fee354ee 2245target_disconnect (const char *args, int from_tty)
6ad8ae5c 2246{
50c71eaf
PA
2247 /* If we're in breakpoints-always-inserted mode or if breakpoints
2248 are global across processes, we have to remove them before
2249 disconnecting. */
74960c60
VP
2250 remove_breakpoints ();
2251
86a0854a 2252 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2253}
2254
117de6a9 2255ptid_t
47608cb1 2256target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2257{
a7068b60 2258 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2259}
2260
0b333c5e
PA
2261/* See target.h. */
2262
2263ptid_t
2264default_target_wait (struct target_ops *ops,
2265 ptid_t ptid, struct target_waitstatus *status,
2266 int options)
2267{
2268 status->kind = TARGET_WAITKIND_IGNORE;
2269 return minus_one_ptid;
2270}
2271
117de6a9
PA
2272char *
2273target_pid_to_str (ptid_t ptid)
2274{
770234d3 2275 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2276}
2277
73ede765 2278const char *
4694da01
TT
2279target_thread_name (struct thread_info *info)
2280{
825828fc 2281 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2282}
2283
e1ac3328 2284void
2ea28649 2285target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2286{
28439f5e
PA
2287 struct target_ops *t;
2288
4e5d721f 2289 target_dcache_invalidate ();
28439f5e 2290
6b84065d 2291 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2292
6b84065d 2293 registers_changed_ptid (ptid);
251bde03
PA
2294 /* We only set the internal executing state here. The user/frontend
2295 running state is set at a higher level. */
6b84065d 2296 set_executing (ptid, 1);
6b84065d 2297 clear_inline_frame_state (ptid);
e1ac3328 2298}
2455069d
UW
2299
2300void
2301target_pass_signals (int numsigs, unsigned char *pass_signals)
2302{
035cad7f 2303 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2304}
2305
9b224c5e
PA
2306void
2307target_program_signals (int numsigs, unsigned char *program_signals)
2308{
7d4f8efa
TT
2309 (*current_target.to_program_signals) (&current_target,
2310 numsigs, program_signals);
9b224c5e
PA
2311}
2312
098dba18
TT
2313static int
2314default_follow_fork (struct target_ops *self, int follow_child,
2315 int detach_fork)
2316{
2317 /* Some target returned a fork event, but did not know how to follow it. */
2318 internal_error (__FILE__, __LINE__,
2319 _("could not find a target to follow fork"));
2320}
2321
ee057212
DJ
2322/* Look through the list of possible targets for a target that can
2323 follow forks. */
2324
2325int
07107ca6 2326target_follow_fork (int follow_child, int detach_fork)
ee057212 2327{
a7068b60
TT
2328 return current_target.to_follow_fork (&current_target,
2329 follow_child, detach_fork);
ee057212
DJ
2330}
2331
94585166
DB
2332/* Target wrapper for follow exec hook. */
2333
2334void
2335target_follow_exec (struct inferior *inf, char *execd_pathname)
2336{
2337 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2338}
2339
8d657035
TT
2340static void
2341default_mourn_inferior (struct target_ops *self)
2342{
2343 internal_error (__FILE__, __LINE__,
2344 _("could not find a target to follow mourn inferior"));
2345}
2346
136d6dae
VP
2347void
2348target_mourn_inferior (void)
2349{
8d657035 2350 current_target.to_mourn_inferior (&current_target);
136d6dae 2351
8d657035
TT
2352 /* We no longer need to keep handles on any of the object files.
2353 Make sure to release them to avoid unnecessarily locking any
2354 of them while we're not actually debugging. */
2355 bfd_cache_close_all ();
136d6dae
VP
2356}
2357
424163ea
DJ
2358/* Look for a target which can describe architectural features, starting
2359 from TARGET. If we find one, return its description. */
2360
2361const struct target_desc *
2362target_read_description (struct target_ops *target)
2363{
2117c711 2364 return target->to_read_description (target);
424163ea
DJ
2365}
2366
58a5184e 2367/* This implements a basic search of memory, reading target memory and
08388c79
DE
2368 performing the search here (as opposed to performing the search in on the
2369 target side with, for example, gdbserver). */
2370
2371int
2372simple_search_memory (struct target_ops *ops,
2373 CORE_ADDR start_addr, ULONGEST search_space_len,
2374 const gdb_byte *pattern, ULONGEST pattern_len,
2375 CORE_ADDR *found_addrp)
2376{
2377 /* NOTE: also defined in find.c testcase. */
2378#define SEARCH_CHUNK_SIZE 16000
2379 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2380 /* Buffer to hold memory contents for searching. */
2381 gdb_byte *search_buf;
2382 unsigned search_buf_size;
2383 struct cleanup *old_cleanups;
2384
2385 search_buf_size = chunk_size + pattern_len - 1;
2386
2387 /* No point in trying to allocate a buffer larger than the search space. */
2388 if (search_space_len < search_buf_size)
2389 search_buf_size = search_space_len;
2390
224c3ddb 2391 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2392 if (search_buf == NULL)
5e1471f5 2393 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2394 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2395
2396 /* Prime the search buffer. */
2397
2398 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2399 search_buf, start_addr, search_buf_size) != search_buf_size)
2400 {
b3dc46ff
AB
2401 warning (_("Unable to access %s bytes of target "
2402 "memory at %s, halting search."),
2403 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2404 do_cleanups (old_cleanups);
2405 return -1;
2406 }
2407
2408 /* Perform the search.
2409
2410 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2411 When we've scanned N bytes we copy the trailing bytes to the start and
2412 read in another N bytes. */
2413
2414 while (search_space_len >= pattern_len)
2415 {
2416 gdb_byte *found_ptr;
2417 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2418
d7f3ff3e
SM
2419 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2420 pattern, pattern_len);
08388c79
DE
2421
2422 if (found_ptr != NULL)
2423 {
2424 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2425
08388c79
DE
2426 *found_addrp = found_addr;
2427 do_cleanups (old_cleanups);
2428 return 1;
2429 }
2430
2431 /* Not found in this chunk, skip to next chunk. */
2432
2433 /* Don't let search_space_len wrap here, it's unsigned. */
2434 if (search_space_len >= chunk_size)
2435 search_space_len -= chunk_size;
2436 else
2437 search_space_len = 0;
2438
2439 if (search_space_len >= pattern_len)
2440 {
2441 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2442 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2443 int nr_to_read;
2444
2445 /* Copy the trailing part of the previous iteration to the front
2446 of the buffer for the next iteration. */
2447 gdb_assert (keep_len == pattern_len - 1);
2448 memcpy (search_buf, search_buf + chunk_size, keep_len);
2449
2450 nr_to_read = min (search_space_len - keep_len, chunk_size);
2451
2452 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2453 search_buf + keep_len, read_addr,
2454 nr_to_read) != nr_to_read)
2455 {
b3dc46ff 2456 warning (_("Unable to access %s bytes of target "
9b20d036 2457 "memory at %s, halting search."),
b3dc46ff 2458 plongest (nr_to_read),
08388c79
DE
2459 hex_string (read_addr));
2460 do_cleanups (old_cleanups);
2461 return -1;
2462 }
2463
2464 start_addr += chunk_size;
2465 }
2466 }
2467
2468 /* Not found. */
2469
2470 do_cleanups (old_cleanups);
2471 return 0;
2472}
2473
58a5184e
TT
2474/* Default implementation of memory-searching. */
2475
2476static int
2477default_search_memory (struct target_ops *self,
2478 CORE_ADDR start_addr, ULONGEST search_space_len,
2479 const gdb_byte *pattern, ULONGEST pattern_len,
2480 CORE_ADDR *found_addrp)
2481{
2482 /* Start over from the top of the target stack. */
2483 return simple_search_memory (current_target.beneath,
2484 start_addr, search_space_len,
2485 pattern, pattern_len, found_addrp);
2486}
2487
08388c79
DE
2488/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2489 sequence of bytes in PATTERN with length PATTERN_LEN.
2490
2491 The result is 1 if found, 0 if not found, and -1 if there was an error
2492 requiring halting of the search (e.g. memory read error).
2493 If the pattern is found the address is recorded in FOUND_ADDRP. */
2494
2495int
2496target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2497 const gdb_byte *pattern, ULONGEST pattern_len,
2498 CORE_ADDR *found_addrp)
2499{
a7068b60
TT
2500 return current_target.to_search_memory (&current_target, start_addr,
2501 search_space_len,
2502 pattern, pattern_len, found_addrp);
08388c79
DE
2503}
2504
8edfe269
DJ
2505/* Look through the currently pushed targets. If none of them will
2506 be able to restart the currently running process, issue an error
2507 message. */
2508
2509void
2510target_require_runnable (void)
2511{
2512 struct target_ops *t;
2513
2514 for (t = target_stack; t != NULL; t = t->beneath)
2515 {
2516 /* If this target knows how to create a new program, then
2517 assume we will still be able to after killing the current
2518 one. Either killing and mourning will not pop T, or else
2519 find_default_run_target will find it again. */
2520 if (t->to_create_inferior != NULL)
2521 return;
2522
548740d6 2523 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2524 create inferiors. Assume they will be pushed again if
2525 necessary, and continue to the process_stratum. */
85e747d2 2526 if (t->to_stratum == thread_stratum
548740d6 2527 || t->to_stratum == record_stratum
85e747d2 2528 || t->to_stratum == arch_stratum)
8edfe269
DJ
2529 continue;
2530
3e43a32a
MS
2531 error (_("The \"%s\" target does not support \"run\". "
2532 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2533 t->to_shortname);
2534 }
2535
2536 /* This function is only called if the target is running. In that
2537 case there should have been a process_stratum target and it
c378eb4e 2538 should either know how to create inferiors, or not... */
9b20d036 2539 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2540}
2541
6a3cb8e8
PA
2542/* Whether GDB is allowed to fall back to the default run target for
2543 "run", "attach", etc. when no target is connected yet. */
2544static int auto_connect_native_target = 1;
2545
2546static void
2547show_auto_connect_native_target (struct ui_file *file, int from_tty,
2548 struct cmd_list_element *c, const char *value)
2549{
2550 fprintf_filtered (file,
2551 _("Whether GDB may automatically connect to the "
2552 "native target is %s.\n"),
2553 value);
2554}
2555
c906108c
SS
2556/* Look through the list of possible targets for a target that can
2557 execute a run or attach command without any other data. This is
2558 used to locate the default process stratum.
2559
5f667f2d
PA
2560 If DO_MESG is not NULL, the result is always valid (error() is
2561 called for errors); else, return NULL on error. */
c906108c
SS
2562
2563static struct target_ops *
fba45db2 2564find_default_run_target (char *do_mesg)
c906108c 2565{
c906108c 2566 struct target_ops *runable = NULL;
c906108c 2567
6a3cb8e8 2568 if (auto_connect_native_target)
c906108c 2569 {
89a1c21a 2570 struct target_ops *t;
6a3cb8e8 2571 int count = 0;
89a1c21a 2572 int i;
6a3cb8e8 2573
89a1c21a 2574 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2575 {
89a1c21a 2576 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2577 {
89a1c21a 2578 runable = t;
6a3cb8e8
PA
2579 ++count;
2580 }
c906108c 2581 }
6a3cb8e8
PA
2582
2583 if (count != 1)
2584 runable = NULL;
c906108c
SS
2585 }
2586
6a3cb8e8 2587 if (runable == NULL)
5f667f2d
PA
2588 {
2589 if (do_mesg)
2590 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2591 else
2592 return NULL;
2593 }
c906108c
SS
2594
2595 return runable;
2596}
2597
b3ccfe11 2598/* See target.h. */
c906108c 2599
b3ccfe11
TT
2600struct target_ops *
2601find_attach_target (void)
c906108c
SS
2602{
2603 struct target_ops *t;
2604
b3ccfe11
TT
2605 /* If a target on the current stack can attach, use it. */
2606 for (t = current_target.beneath; t != NULL; t = t->beneath)
2607 {
2608 if (t->to_attach != NULL)
2609 break;
2610 }
c906108c 2611
b3ccfe11
TT
2612 /* Otherwise, use the default run target for attaching. */
2613 if (t == NULL)
2614 t = find_default_run_target ("attach");
b84876c2 2615
b3ccfe11 2616 return t;
b84876c2
PA
2617}
2618
b3ccfe11 2619/* See target.h. */
b84876c2 2620
b3ccfe11
TT
2621struct target_ops *
2622find_run_target (void)
9908b566
VP
2623{
2624 struct target_ops *t;
2625
b3ccfe11
TT
2626 /* If a target on the current stack can attach, use it. */
2627 for (t = current_target.beneath; t != NULL; t = t->beneath)
2628 {
2629 if (t->to_create_inferior != NULL)
2630 break;
2631 }
5d502164 2632
b3ccfe11
TT
2633 /* Otherwise, use the default run target. */
2634 if (t == NULL)
2635 t = find_default_run_target ("run");
9908b566 2636
b3ccfe11 2637 return t;
9908b566
VP
2638}
2639
145b16a9
UW
2640/* Implement the "info proc" command. */
2641
451b7c33 2642int
7bc112c1 2643target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2644{
2645 struct target_ops *t;
2646
2647 /* If we're already connected to something that can get us OS
2648 related data, use it. Otherwise, try using the native
2649 target. */
2650 if (current_target.to_stratum >= process_stratum)
2651 t = current_target.beneath;
2652 else
2653 t = find_default_run_target (NULL);
2654
2655 for (; t != NULL; t = t->beneath)
2656 {
2657 if (t->to_info_proc != NULL)
2658 {
2659 t->to_info_proc (t, args, what);
2660
2661 if (targetdebug)
2662 fprintf_unfiltered (gdb_stdlog,
2663 "target_info_proc (\"%s\", %d)\n", args, what);
2664
451b7c33 2665 return 1;
145b16a9
UW
2666 }
2667 }
2668
451b7c33 2669 return 0;
145b16a9
UW
2670}
2671
03583c20 2672static int
2bfc0540 2673find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2674{
2675 struct target_ops *t;
2676
2677 t = find_default_run_target (NULL);
2678 if (t && t->to_supports_disable_randomization)
2bfc0540 2679 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2680 return 0;
2681}
2682
2683int
2684target_supports_disable_randomization (void)
2685{
2686 struct target_ops *t;
2687
2688 for (t = &current_target; t != NULL; t = t->beneath)
2689 if (t->to_supports_disable_randomization)
2bfc0540 2690 return t->to_supports_disable_randomization (t);
03583c20
UW
2691
2692 return 0;
2693}
9908b566 2694
07e059b5
VP
2695char *
2696target_get_osdata (const char *type)
2697{
07e059b5
VP
2698 struct target_ops *t;
2699
739ef7fb
PA
2700 /* If we're already connected to something that can get us OS
2701 related data, use it. Otherwise, try using the native
2702 target. */
2703 if (current_target.to_stratum >= process_stratum)
6d097e65 2704 t = current_target.beneath;
739ef7fb
PA
2705 else
2706 t = find_default_run_target ("get OS data");
07e059b5
VP
2707
2708 if (!t)
2709 return NULL;
2710
6d097e65 2711 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2712}
2713
8eaff7cd
TT
2714static struct address_space *
2715default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2716{
2717 struct inferior *inf;
6c95b8df
PA
2718
2719 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2720 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2721
2722 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2723 internal_error (__FILE__, __LINE__,
9b20d036
MS
2724 _("Can't determine the current "
2725 "address space of thread %s\n"),
6c95b8df
PA
2726 target_pid_to_str (ptid));
2727
2728 return inf->aspace;
2729}
2730
8eaff7cd
TT
2731/* Determine the current address space of thread PTID. */
2732
2733struct address_space *
2734target_thread_address_space (ptid_t ptid)
2735{
2736 struct address_space *aspace;
2737
2738 aspace = current_target.to_thread_address_space (&current_target, ptid);
2739 gdb_assert (aspace != NULL);
2740
8eaff7cd
TT
2741 return aspace;
2742}
2743
7313baad
UW
2744
2745/* Target file operations. */
2746
2747static struct target_ops *
2748default_fileio_target (void)
2749{
2750 /* If we're already connected to something that can perform
2751 file I/O, use it. Otherwise, try using the native target. */
2752 if (current_target.to_stratum >= process_stratum)
2753 return current_target.beneath;
2754 else
2755 return find_default_run_target ("file I/O");
2756}
2757
1c4b552b
GB
2758/* File handle for target file operations. */
2759
2760typedef struct
2761{
2762 /* The target on which this file is open. */
2763 struct target_ops *t;
2764
2765 /* The file descriptor on the target. */
2766 int fd;
2767} fileio_fh_t;
2768
2769DEF_VEC_O (fileio_fh_t);
2770
2771/* Vector of currently open file handles. The value returned by
2772 target_fileio_open and passed as the FD argument to other
2773 target_fileio_* functions is an index into this vector. This
2774 vector's entries are never freed; instead, files are marked as
2775 closed, and the handle becomes available for reuse. */
2776static VEC (fileio_fh_t) *fileio_fhandles;
2777
2778/* Macro to check whether a fileio_fh_t represents a closed file. */
2779#define is_closed_fileio_fh(fd) ((fd) < 0)
2780
2781/* Index into fileio_fhandles of the lowest handle that might be
2782 closed. This permits handle reuse without searching the whole
2783 list each time a new file is opened. */
2784static int lowest_closed_fd;
2785
2786/* Acquire a target fileio file descriptor. */
2787
2788static int
2789acquire_fileio_fd (struct target_ops *t, int fd)
2790{
2791 fileio_fh_t *fh, buf;
2792
2793 gdb_assert (!is_closed_fileio_fh (fd));
2794
2795 /* Search for closed handles to reuse. */
2796 for (;
2797 VEC_iterate (fileio_fh_t, fileio_fhandles,
2798 lowest_closed_fd, fh);
2799 lowest_closed_fd++)
2800 if (is_closed_fileio_fh (fh->fd))
2801 break;
2802
2803 /* Push a new handle if no closed handles were found. */
2804 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2805 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2806
2807 /* Fill in the handle. */
2808 fh->t = t;
2809 fh->fd = fd;
2810
2811 /* Return its index, and start the next lookup at
2812 the next index. */
2813 return lowest_closed_fd++;
2814}
2815
2816/* Release a target fileio file descriptor. */
2817
2818static void
2819release_fileio_fd (int fd, fileio_fh_t *fh)
2820{
2821 fh->fd = -1;
2822 lowest_closed_fd = min (lowest_closed_fd, fd);
2823}
2824
2825/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2826
2827#define fileio_fd_to_fh(fd) \
2828 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2829
4313b8c0
GB
2830/* Helper for target_fileio_open and
2831 target_fileio_open_warn_if_slow. */
12e2a5fd 2832
4313b8c0
GB
2833static int
2834target_fileio_open_1 (struct inferior *inf, const char *filename,
2835 int flags, int mode, int warn_if_slow,
2836 int *target_errno)
7313baad
UW
2837{
2838 struct target_ops *t;
2839
2840 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2841 {
2842 if (t->to_fileio_open != NULL)
2843 {
07c138c8 2844 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2845 warn_if_slow, target_errno);
7313baad 2846
1c4b552b
GB
2847 if (fd < 0)
2848 fd = -1;
2849 else
2850 fd = acquire_fileio_fd (t, fd);
2851
7313baad
UW
2852 if (targetdebug)
2853 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2854 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2855 " = %d (%d)\n",
2856 inf == NULL ? 0 : inf->num,
7313baad 2857 filename, flags, mode,
4313b8c0
GB
2858 warn_if_slow, fd,
2859 fd != -1 ? 0 : *target_errno);
7313baad
UW
2860 return fd;
2861 }
2862 }
2863
2864 *target_errno = FILEIO_ENOSYS;
2865 return -1;
2866}
2867
12e2a5fd
GB
2868/* See target.h. */
2869
4313b8c0
GB
2870int
2871target_fileio_open (struct inferior *inf, const char *filename,
2872 int flags, int mode, int *target_errno)
2873{
2874 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2875 target_errno);
2876}
2877
2878/* See target.h. */
2879
2880int
2881target_fileio_open_warn_if_slow (struct inferior *inf,
2882 const char *filename,
2883 int flags, int mode, int *target_errno)
2884{
2885 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2886 target_errno);
2887}
2888
2889/* See target.h. */
2890
7313baad
UW
2891int
2892target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2893 ULONGEST offset, int *target_errno)
2894{
1c4b552b
GB
2895 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2896 int ret = -1;
7313baad 2897
1c4b552b
GB
2898 if (is_closed_fileio_fh (fh->fd))
2899 *target_errno = EBADF;
2900 else
2901 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2902 len, offset, target_errno);
7313baad 2903
1c4b552b
GB
2904 if (targetdebug)
2905 fprintf_unfiltered (gdb_stdlog,
2906 "target_fileio_pwrite (%d,...,%d,%s) "
2907 "= %d (%d)\n",
2908 fd, len, pulongest (offset),
2909 ret, ret != -1 ? 0 : *target_errno);
2910 return ret;
7313baad
UW
2911}
2912
12e2a5fd
GB
2913/* See target.h. */
2914
7313baad
UW
2915int
2916target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2917 ULONGEST offset, int *target_errno)
2918{
1c4b552b
GB
2919 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2920 int ret = -1;
7313baad 2921
1c4b552b
GB
2922 if (is_closed_fileio_fh (fh->fd))
2923 *target_errno = EBADF;
2924 else
2925 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2926 len, offset, target_errno);
7313baad 2927
1c4b552b
GB
2928 if (targetdebug)
2929 fprintf_unfiltered (gdb_stdlog,
2930 "target_fileio_pread (%d,...,%d,%s) "
2931 "= %d (%d)\n",
2932 fd, len, pulongest (offset),
2933 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2934 return ret;
2935}
2936
2937/* See target.h. */
12e2a5fd 2938
9b15c1f0
GB
2939int
2940target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2941{
2942 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2943 int ret = -1;
2944
2945 if (is_closed_fileio_fh (fh->fd))
2946 *target_errno = EBADF;
2947 else
2948 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2949
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "target_fileio_fstat (%d) = %d (%d)\n",
2953 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2954 return ret;
7313baad
UW
2955}
2956
12e2a5fd
GB
2957/* See target.h. */
2958
7313baad
UW
2959int
2960target_fileio_close (int fd, int *target_errno)
2961{
1c4b552b
GB
2962 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2963 int ret = -1;
7313baad 2964
1c4b552b
GB
2965 if (is_closed_fileio_fh (fh->fd))
2966 *target_errno = EBADF;
2967 else
7313baad 2968 {
1c4b552b
GB
2969 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2970 release_fileio_fd (fd, fh);
7313baad
UW
2971 }
2972
1c4b552b
GB
2973 if (targetdebug)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "target_fileio_close (%d) = %d (%d)\n",
2976 fd, ret, ret != -1 ? 0 : *target_errno);
2977 return ret;
7313baad
UW
2978}
2979
12e2a5fd
GB
2980/* See target.h. */
2981
7313baad 2982int
07c138c8
GB
2983target_fileio_unlink (struct inferior *inf, const char *filename,
2984 int *target_errno)
7313baad
UW
2985{
2986 struct target_ops *t;
2987
2988 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2989 {
2990 if (t->to_fileio_unlink != NULL)
2991 {
07c138c8
GB
2992 int ret = t->to_fileio_unlink (t, inf, filename,
2993 target_errno);
7313baad
UW
2994
2995 if (targetdebug)
2996 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
2997 "target_fileio_unlink (%d,%s)"
2998 " = %d (%d)\n",
2999 inf == NULL ? 0 : inf->num, filename,
3000 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
3001 return ret;
3002 }
3003 }
3004
3005 *target_errno = FILEIO_ENOSYS;
3006 return -1;
3007}
3008
12e2a5fd
GB
3009/* See target.h. */
3010
b9e7b9c3 3011char *
07c138c8
GB
3012target_fileio_readlink (struct inferior *inf, const char *filename,
3013 int *target_errno)
b9e7b9c3
UW
3014{
3015 struct target_ops *t;
3016
3017 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3018 {
3019 if (t->to_fileio_readlink != NULL)
3020 {
07c138c8
GB
3021 char *ret = t->to_fileio_readlink (t, inf, filename,
3022 target_errno);
b9e7b9c3
UW
3023
3024 if (targetdebug)
3025 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3026 "target_fileio_readlink (%d,%s)"
3027 " = %s (%d)\n",
3028 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3029 filename, ret? ret : "(nil)",
3030 ret? 0 : *target_errno);
3031 return ret;
3032 }
3033 }
3034
3035 *target_errno = FILEIO_ENOSYS;
3036 return NULL;
3037}
3038
7313baad
UW
3039static void
3040target_fileio_close_cleanup (void *opaque)
3041{
3042 int fd = *(int *) opaque;
3043 int target_errno;
3044
3045 target_fileio_close (fd, &target_errno);
3046}
3047
07c138c8
GB
3048/* Read target file FILENAME, in the filesystem as seen by INF. If
3049 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3050 remote targets, the remote stub). Store the result in *BUF_P and
3051 return the size of the transferred data. PADDING additional bytes
3052 are available in *BUF_P. This is a helper function for
3053 target_fileio_read_alloc; see the declaration of that function for
3054 more information. */
7313baad 3055
f7af1fcd
JK
3056static LONGEST
3057target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3058 gdb_byte **buf_p, int padding)
3059{
3060 struct cleanup *close_cleanup;
db1ff28b
JK
3061 size_t buf_alloc, buf_pos;
3062 gdb_byte *buf;
3063 LONGEST n;
3064 int fd;
3065 int target_errno;
f7af1fcd 3066
db1ff28b
JK
3067 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3068 &target_errno);
f7af1fcd
JK
3069 if (fd == -1)
3070 return -1;
3071
3072 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3073
3074 /* Start by reading up to 4K at a time. The target will throttle
3075 this number down if necessary. */
3076 buf_alloc = 4096;
224c3ddb 3077 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3078 buf_pos = 0;
3079 while (1)
3080 {
3081 n = target_fileio_pread (fd, &buf[buf_pos],
3082 buf_alloc - buf_pos - padding, buf_pos,
3083 &target_errno);
3084 if (n < 0)
3085 {
3086 /* An error occurred. */
3087 do_cleanups (close_cleanup);
3088 xfree (buf);
3089 return -1;
3090 }
3091 else if (n == 0)
3092 {
3093 /* Read all there was. */
3094 do_cleanups (close_cleanup);
3095 if (buf_pos == 0)
3096 xfree (buf);
3097 else
3098 *buf_p = buf;
3099 return buf_pos;
3100 }
3101
3102 buf_pos += n;
3103
3104 /* If the buffer is filling up, expand it. */
3105 if (buf_alloc < buf_pos * 2)
3106 {
3107 buf_alloc *= 2;
224c3ddb 3108 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3109 }
3110
3111 QUIT;
3112 }
f7af1fcd
JK
3113}
3114
12e2a5fd 3115/* See target.h. */
7313baad
UW
3116
3117LONGEST
07c138c8
GB
3118target_fileio_read_alloc (struct inferior *inf, const char *filename,
3119 gdb_byte **buf_p)
7313baad 3120{
07c138c8 3121 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3122}
3123
db1ff28b 3124/* See target.h. */
f7af1fcd
JK
3125
3126char *
3127target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3128{
db1ff28b
JK
3129 gdb_byte *buffer;
3130 char *bufstr;
3131 LONGEST i, transferred;
3132
3133 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3134 bufstr = (char *) buffer;
3135
3136 if (transferred < 0)
3137 return NULL;
3138
3139 if (transferred == 0)
3140 return xstrdup ("");
3141
3142 bufstr[transferred] = 0;
3143
3144 /* Check for embedded NUL bytes; but allow trailing NULs. */
3145 for (i = strlen (bufstr); i < transferred; i++)
3146 if (bufstr[i] != 0)
3147 {
3148 warning (_("target file %s "
3149 "contained unexpected null characters"),
3150 filename);
3151 break;
3152 }
3153
3154 return bufstr;
f7af1fcd 3155}
7313baad 3156
db1ff28b 3157
e0d24f8d 3158static int
31568a15
TT
3159default_region_ok_for_hw_watchpoint (struct target_ops *self,
3160 CORE_ADDR addr, int len)
e0d24f8d 3161{
f5656ead 3162 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3163}
3164
5009afc5
AS
3165static int
3166default_watchpoint_addr_within_range (struct target_ops *target,
3167 CORE_ADDR addr,
3168 CORE_ADDR start, int length)
3169{
3170 return addr >= start && addr < start + length;
3171}
3172
c2250ad1
UW
3173static struct gdbarch *
3174default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3175{
f5656ead 3176 return target_gdbarch ();
c2250ad1
UW
3177}
3178
c906108c 3179static int
555bbdeb
TT
3180return_zero (struct target_ops *ignore)
3181{
3182 return 0;
3183}
3184
3185static int
3186return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3187{
3188 return 0;
3189}
3190
ed9a39eb
JM
3191/*
3192 * Find the next target down the stack from the specified target.
3193 */
3194
3195struct target_ops *
fba45db2 3196find_target_beneath (struct target_ops *t)
ed9a39eb 3197{
258b763a 3198 return t->beneath;
ed9a39eb
JM
3199}
3200
8b06beed
TT
3201/* See target.h. */
3202
3203struct target_ops *
3204find_target_at (enum strata stratum)
3205{
3206 struct target_ops *t;
3207
3208 for (t = current_target.beneath; t != NULL; t = t->beneath)
3209 if (t->to_stratum == stratum)
3210 return t;
3211
3212 return NULL;
3213}
3214
c906108c
SS
3215\f
3216/* The inferior process has died. Long live the inferior! */
3217
3218void
fba45db2 3219generic_mourn_inferior (void)
c906108c 3220{
7f9f62ba 3221 ptid_t ptid;
c906108c 3222
7f9f62ba 3223 ptid = inferior_ptid;
39f77062 3224 inferior_ptid = null_ptid;
7f9f62ba 3225
f59f708a
PA
3226 /* Mark breakpoints uninserted in case something tries to delete a
3227 breakpoint while we delete the inferior's threads (which would
3228 fail, since the inferior is long gone). */
3229 mark_breakpoints_out ();
3230
7f9f62ba
PA
3231 if (!ptid_equal (ptid, null_ptid))
3232 {
3233 int pid = ptid_get_pid (ptid);
6c95b8df 3234 exit_inferior (pid);
7f9f62ba
PA
3235 }
3236
f59f708a
PA
3237 /* Note this wipes step-resume breakpoints, so needs to be done
3238 after exit_inferior, which ends up referencing the step-resume
3239 breakpoints through clear_thread_inferior_resources. */
c906108c 3240 breakpoint_init_inferior (inf_exited);
f59f708a 3241
c906108c
SS
3242 registers_changed ();
3243
c906108c
SS
3244 reopen_exec_file ();
3245 reinit_frame_cache ();
3246
9a4105ab
AC
3247 if (deprecated_detach_hook)
3248 deprecated_detach_hook ();
c906108c
SS
3249}
3250\f
fd0a2a6f
MK
3251/* Convert a normal process ID to a string. Returns the string in a
3252 static buffer. */
c906108c
SS
3253
3254char *
39f77062 3255normal_pid_to_str (ptid_t ptid)
c906108c 3256{
fd0a2a6f 3257 static char buf[32];
c906108c 3258
5fff8fc0 3259 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3260 return buf;
3261}
3262
2c0b251b 3263static char *
770234d3 3264default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3265{
3266 return normal_pid_to_str (ptid);
3267}
3268
9b4eba8e
HZ
3269/* Error-catcher for target_find_memory_regions. */
3270static int
2e73927c
TT
3271dummy_find_memory_regions (struct target_ops *self,
3272 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3273{
9b4eba8e 3274 error (_("Command not implemented for this target."));
be4d1333
MS
3275 return 0;
3276}
3277
9b4eba8e
HZ
3278/* Error-catcher for target_make_corefile_notes. */
3279static char *
fc6691b2
TT
3280dummy_make_corefile_notes (struct target_ops *self,
3281 bfd *ignore1, int *ignore2)
be4d1333 3282{
9b4eba8e 3283 error (_("Command not implemented for this target."));
be4d1333
MS
3284 return NULL;
3285}
3286
c906108c
SS
3287/* Set up the handful of non-empty slots needed by the dummy target
3288 vector. */
3289
3290static void
fba45db2 3291init_dummy_target (void)
c906108c
SS
3292{
3293 dummy_target.to_shortname = "None";
3294 dummy_target.to_longname = "None";
3295 dummy_target.to_doc = "";
03583c20
UW
3296 dummy_target.to_supports_disable_randomization
3297 = find_default_supports_disable_randomization;
c906108c 3298 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3299 dummy_target.to_has_all_memory = return_zero;
3300 dummy_target.to_has_memory = return_zero;
3301 dummy_target.to_has_stack = return_zero;
3302 dummy_target.to_has_registers = return_zero;
3303 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3304 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3305
3306 install_dummy_methods (&dummy_target);
c906108c 3307}
c906108c 3308\f
c906108c 3309
f1c07ab0 3310void
460014f5 3311target_close (struct target_ops *targ)
f1c07ab0 3312{
7fdc1521
TT
3313 gdb_assert (!target_is_pushed (targ));
3314
f1c07ab0 3315 if (targ->to_xclose != NULL)
460014f5 3316 targ->to_xclose (targ);
f1c07ab0 3317 else if (targ->to_close != NULL)
de90e03d 3318 targ->to_close (targ);
947b8855
PA
3319
3320 if (targetdebug)
460014f5 3321 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3322}
3323
28439f5e
PA
3324int
3325target_thread_alive (ptid_t ptid)
c906108c 3326{
a7068b60 3327 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3328}
3329
3330void
e8032dde 3331target_update_thread_list (void)
28439f5e 3332{
e8032dde 3333 current_target.to_update_thread_list (&current_target);
c906108c
SS
3334}
3335
d914c394
SS
3336void
3337target_stop (ptid_t ptid)
3338{
3339 if (!may_stop)
3340 {
3341 warning (_("May not interrupt or stop the target, ignoring attempt"));
3342 return;
3343 }
3344
1eab8a48 3345 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3346}
3347
bfedc46a
PA
3348void
3349target_interrupt (ptid_t ptid)
3350{
3351 if (!may_stop)
3352 {
3353 warning (_("May not interrupt or stop the target, ignoring attempt"));
3354 return;
3355 }
3356
3357 (*current_target.to_interrupt) (&current_target, ptid);
3358}
3359
abc56d60
PA
3360/* See target.h. */
3361
3362void
3363target_check_pending_interrupt (void)
3364{
3365 (*current_target.to_check_pending_interrupt) (&current_target);
3366}
3367
f8c1d06b
GB
3368/* See target/target.h. */
3369
3370void
03f4463b 3371target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3372{
3373 struct target_waitstatus status;
3374 int was_non_stop = non_stop;
3375
3376 non_stop = 1;
3377 target_stop (ptid);
3378
3379 memset (&status, 0, sizeof (status));
3380 target_wait (ptid, &status, 0);
3381
3382 non_stop = was_non_stop;
3383}
3384
3385/* See target/target.h. */
3386
3387void
03f4463b 3388target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3389{
3390 target_resume (ptid, 0, GDB_SIGNAL_0);
3391}
3392
09826ec5
PA
3393/* Concatenate ELEM to LIST, a comma separate list, and return the
3394 result. The LIST incoming argument is released. */
3395
3396static char *
3397str_comma_list_concat_elem (char *list, const char *elem)
3398{
3399 if (list == NULL)
3400 return xstrdup (elem);
3401 else
3402 return reconcat (list, list, ", ", elem, (char *) NULL);
3403}
3404
3405/* Helper for target_options_to_string. If OPT is present in
3406 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3407 Returns the new resulting string. OPT is removed from
3408 TARGET_OPTIONS. */
3409
3410static char *
3411do_option (int *target_options, char *ret,
3412 int opt, char *opt_str)
3413{
3414 if ((*target_options & opt) != 0)
3415 {
3416 ret = str_comma_list_concat_elem (ret, opt_str);
3417 *target_options &= ~opt;
3418 }
3419
3420 return ret;
3421}
3422
3423char *
3424target_options_to_string (int target_options)
3425{
3426 char *ret = NULL;
3427
3428#define DO_TARG_OPTION(OPT) \
3429 ret = do_option (&target_options, ret, OPT, #OPT)
3430
3431 DO_TARG_OPTION (TARGET_WNOHANG);
3432
3433 if (target_options != 0)
3434 ret = str_comma_list_concat_elem (ret, "unknown???");
3435
3436 if (ret == NULL)
3437 ret = xstrdup ("");
3438 return ret;
3439}
3440
bf0c5130 3441static void
56be3814
UW
3442debug_print_register (const char * func,
3443 struct regcache *regcache, int regno)
bf0c5130 3444{
f8d29908 3445 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3446
bf0c5130 3447 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3448 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3449 && gdbarch_register_name (gdbarch, regno) != NULL
3450 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3451 fprintf_unfiltered (gdb_stdlog, "(%s)",
3452 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3453 else
3454 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3455 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3456 {
e17a4113 3457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3458 int i, size = register_size (gdbarch, regno);
e362b510 3459 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3460
0ff58721 3461 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3462 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3463 for (i = 0; i < size; i++)
bf0c5130
AC
3464 {
3465 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3466 }
81c4a259 3467 if (size <= sizeof (LONGEST))
bf0c5130 3468 {
e17a4113 3469 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3470
0b1553bc
UW
3471 fprintf_unfiltered (gdb_stdlog, " %s %s",
3472 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3473 }
3474 }
3475 fprintf_unfiltered (gdb_stdlog, "\n");
3476}
3477
28439f5e
PA
3478void
3479target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3480{
ad5989bd
TT
3481 current_target.to_fetch_registers (&current_target, regcache, regno);
3482 if (targetdebug)
3483 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3484}
3485
28439f5e
PA
3486void
3487target_store_registers (struct regcache *regcache, int regno)
c906108c 3488{
28439f5e 3489 struct target_ops *t;
5d502164 3490
d914c394
SS
3491 if (!may_write_registers)
3492 error (_("Writing to registers is not allowed (regno %d)"), regno);
3493
6b84065d
TT
3494 current_target.to_store_registers (&current_target, regcache, regno);
3495 if (targetdebug)
28439f5e 3496 {
6b84065d 3497 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3498 }
c906108c
SS
3499}
3500
dc146f7c
VP
3501int
3502target_core_of_thread (ptid_t ptid)
3503{
a7068b60 3504 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3505}
3506
936d2992
PA
3507int
3508simple_verify_memory (struct target_ops *ops,
3509 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3510{
3511 LONGEST total_xfered = 0;
3512
3513 while (total_xfered < size)
3514 {
3515 ULONGEST xfered_len;
3516 enum target_xfer_status status;
3517 gdb_byte buf[1024];
3518 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3519
3520 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3521 buf, NULL, lma + total_xfered, howmuch,
3522 &xfered_len);
3523 if (status == TARGET_XFER_OK
3524 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3525 {
3526 total_xfered += xfered_len;
3527 QUIT;
3528 }
3529 else
3530 return 0;
3531 }
3532 return 1;
3533}
3534
3535/* Default implementation of memory verification. */
3536
3537static int
3538default_verify_memory (struct target_ops *self,
3539 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3540{
3541 /* Start over from the top of the target stack. */
3542 return simple_verify_memory (current_target.beneath,
3543 data, memaddr, size);
3544}
3545
4a5e7a5b
PA
3546int
3547target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3548{
a7068b60
TT
3549 return current_target.to_verify_memory (&current_target,
3550 data, memaddr, size);
4a5e7a5b
PA
3551}
3552
9c06b0b4
TJB
3553/* The documentation for this function is in its prototype declaration in
3554 target.h. */
3555
3556int
f4b0a671
SM
3557target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3558 enum target_hw_bp_type rw)
9c06b0b4 3559{
a7068b60
TT
3560 return current_target.to_insert_mask_watchpoint (&current_target,
3561 addr, mask, rw);
9c06b0b4
TJB
3562}
3563
3564/* The documentation for this function is in its prototype declaration in
3565 target.h. */
3566
3567int
f4b0a671
SM
3568target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3569 enum target_hw_bp_type rw)
9c06b0b4 3570{
a7068b60
TT
3571 return current_target.to_remove_mask_watchpoint (&current_target,
3572 addr, mask, rw);
9c06b0b4
TJB
3573}
3574
3575/* The documentation for this function is in its prototype declaration
3576 in target.h. */
3577
3578int
3579target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3580{
6c7e5e5c
TT
3581 return current_target.to_masked_watch_num_registers (&current_target,
3582 addr, mask);
9c06b0b4
TJB
3583}
3584
f1310107
TJB
3585/* The documentation for this function is in its prototype declaration
3586 in target.h. */
3587
3588int
3589target_ranged_break_num_registers (void)
3590{
a134316b 3591 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3592}
3593
02d27625
MM
3594/* See target.h. */
3595
043c3577
MM
3596int
3597target_supports_btrace (enum btrace_format format)
3598{
3599 return current_target.to_supports_btrace (&current_target, format);
3600}
3601
3602/* See target.h. */
3603
02d27625 3604struct btrace_target_info *
f4abbc16 3605target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3606{
f4abbc16 3607 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3608}
3609
3610/* See target.h. */
3611
3612void
3613target_disable_btrace (struct btrace_target_info *btinfo)
3614{
8dc292d3 3615 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3616}
3617
3618/* See target.h. */
3619
3620void
3621target_teardown_btrace (struct btrace_target_info *btinfo)
3622{
9ace480d 3623 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3624}
3625
3626/* See target.h. */
3627
969c39fb 3628enum btrace_error
734b0e4b 3629target_read_btrace (struct btrace_data *btrace,
969c39fb 3630 struct btrace_target_info *btinfo,
02d27625
MM
3631 enum btrace_read_type type)
3632{
eb5b20d4 3633 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3634}
3635
d02ed0bb
MM
3636/* See target.h. */
3637
f4abbc16
MM
3638const struct btrace_config *
3639target_btrace_conf (const struct btrace_target_info *btinfo)
3640{
3641 return current_target.to_btrace_conf (&current_target, btinfo);
3642}
3643
3644/* See target.h. */
3645
7c1687a9
MM
3646void
3647target_stop_recording (void)
3648{
ee97f592 3649 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3650}
3651
3652/* See target.h. */
3653
d02ed0bb 3654void
85e1311a 3655target_save_record (const char *filename)
d02ed0bb 3656{
f09e2107 3657 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3658}
3659
3660/* See target.h. */
3661
3662int
3663target_supports_delete_record (void)
3664{
3665 struct target_ops *t;
3666
3667 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3668 if (t->to_delete_record != delegate_delete_record
3669 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3670 return 1;
3671
3672 return 0;
3673}
3674
3675/* See target.h. */
3676
3677void
3678target_delete_record (void)
3679{
07366925 3680 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3681}
3682
3683/* See target.h. */
3684
3685int
a52eab48 3686target_record_is_replaying (ptid_t ptid)
d02ed0bb 3687{
a52eab48 3688 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3689}
3690
3691/* See target.h. */
3692
7ff27e9b
MM
3693int
3694target_record_will_replay (ptid_t ptid, int dir)
3695{
3696 return current_target.to_record_will_replay (&current_target, ptid, dir);
3697}
3698
3699/* See target.h. */
3700
797094dd
MM
3701void
3702target_record_stop_replaying (void)
3703{
3704 current_target.to_record_stop_replaying (&current_target);
3705}
3706
3707/* See target.h. */
3708
d02ed0bb
MM
3709void
3710target_goto_record_begin (void)
3711{
671e76cc 3712 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3713}
3714
3715/* See target.h. */
3716
3717void
3718target_goto_record_end (void)
3719{
e9179bb3 3720 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3721}
3722
3723/* See target.h. */
3724
3725void
3726target_goto_record (ULONGEST insn)
3727{
05969c84 3728 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3729}
3730
67c86d06
MM
3731/* See target.h. */
3732
3733void
3734target_insn_history (int size, int flags)
3735{
3679abfa 3736 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3737}
3738
3739/* See target.h. */
3740
3741void
3742target_insn_history_from (ULONGEST from, int size, int flags)
3743{
8444ab58 3744 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3745}
3746
3747/* See target.h. */
3748
3749void
3750target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3751{
c29302cc 3752 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3753}
3754
15984c13
MM
3755/* See target.h. */
3756
3757void
3758target_call_history (int size, int flags)
3759{
170049d4 3760 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3761}
3762
3763/* See target.h. */
3764
3765void
3766target_call_history_from (ULONGEST begin, int size, int flags)
3767{
16fc27d6 3768 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3769}
3770
3771/* See target.h. */
3772
3773void
3774target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3775{
115d9817 3776 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3777}
3778
ea001bdc
MM
3779/* See target.h. */
3780
3781const struct frame_unwind *
3782target_get_unwinder (void)
3783{
ac01945b 3784 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3785}
3786
3787/* See target.h. */
3788
3789const struct frame_unwind *
3790target_get_tailcall_unwinder (void)
3791{
ac01945b 3792 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3793}
3794
5fff78c4
MM
3795/* See target.h. */
3796
3797void
3798target_prepare_to_generate_core (void)
3799{
3800 current_target.to_prepare_to_generate_core (&current_target);
3801}
3802
3803/* See target.h. */
3804
3805void
3806target_done_generating_core (void)
3807{
3808 current_target.to_done_generating_core (&current_target);
3809}
3810
c906108c 3811static void
fba45db2 3812setup_target_debug (void)
c906108c
SS
3813{
3814 memcpy (&debug_target, &current_target, sizeof debug_target);
3815
a7068b60 3816 init_debug_target (&current_target);
c906108c 3817}
c906108c 3818\f
c5aa993b
JM
3819
3820static char targ_desc[] =
3e43a32a
MS
3821"Names of targets and files being debugged.\nShows the entire \
3822stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3823core-file, and process, if any), as well as the symbol file name.";
3824
a53f3625 3825static void
a30bf1f1
TT
3826default_rcmd (struct target_ops *self, const char *command,
3827 struct ui_file *output)
a53f3625
TT
3828{
3829 error (_("\"monitor\" command not supported by this target."));
3830}
3831
96baa820
JM
3832static void
3833do_monitor_command (char *cmd,
3834 int from_tty)
3835{
96baa820
JM
3836 target_rcmd (cmd, gdb_stdtarg);
3837}
3838
87680a14
JB
3839/* Print the name of each layers of our target stack. */
3840
3841static void
3842maintenance_print_target_stack (char *cmd, int from_tty)
3843{
3844 struct target_ops *t;
3845
3846 printf_filtered (_("The current target stack is:\n"));
3847
3848 for (t = target_stack; t != NULL; t = t->beneath)
3849 {
3850 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3851 }
3852}
3853
372316f1
PA
3854/* See target.h. */
3855
3856void
3857target_async (int enable)
3858{
3859 infrun_async (enable);
3860 current_target.to_async (&current_target, enable);
3861}
3862
65706a29
PA
3863/* See target.h. */
3864
3865void
3866target_thread_events (int enable)
3867{
3868 current_target.to_thread_events (&current_target, enable);
3869}
3870
329ea579
PA
3871/* Controls if targets can report that they can/are async. This is
3872 just for maintainers to use when debugging gdb. */
3873int target_async_permitted = 1;
c6ebd6cf
VP
3874
3875/* The set command writes to this variable. If the inferior is
b5419e49 3876 executing, target_async_permitted is *not* updated. */
329ea579 3877static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3878
3879static void
329ea579
PA
3880maint_set_target_async_command (char *args, int from_tty,
3881 struct cmd_list_element *c)
c6ebd6cf 3882{
c35b1492 3883 if (have_live_inferiors ())
c6ebd6cf
VP
3884 {
3885 target_async_permitted_1 = target_async_permitted;
3886 error (_("Cannot change this setting while the inferior is running."));
3887 }
3888
3889 target_async_permitted = target_async_permitted_1;
3890}
3891
3892static void
329ea579
PA
3893maint_show_target_async_command (struct ui_file *file, int from_tty,
3894 struct cmd_list_element *c,
3895 const char *value)
c6ebd6cf 3896{
3e43a32a
MS
3897 fprintf_filtered (file,
3898 _("Controlling the inferior in "
3899 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3900}
3901
fbea99ea
PA
3902/* Return true if the target operates in non-stop mode even with "set
3903 non-stop off". */
3904
3905static int
3906target_always_non_stop_p (void)
3907{
3908 return current_target.to_always_non_stop_p (&current_target);
3909}
3910
3911/* See target.h. */
3912
3913int
3914target_is_non_stop_p (void)
3915{
3916 return (non_stop
3917 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3918 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3919 && target_always_non_stop_p ()));
3920}
3921
3922/* Controls if targets can report that they always run in non-stop
3923 mode. This is just for maintainers to use when debugging gdb. */
3924enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3925
3926/* The set command writes to this variable. If the inferior is
3927 executing, target_non_stop_enabled is *not* updated. */
3928static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3929
3930/* Implementation of "maint set target-non-stop". */
3931
3932static void
3933maint_set_target_non_stop_command (char *args, int from_tty,
3934 struct cmd_list_element *c)
3935{
3936 if (have_live_inferiors ())
3937 {
3938 target_non_stop_enabled_1 = target_non_stop_enabled;
3939 error (_("Cannot change this setting while the inferior is running."));
3940 }
3941
3942 target_non_stop_enabled = target_non_stop_enabled_1;
3943}
3944
3945/* Implementation of "maint show target-non-stop". */
3946
3947static void
3948maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3949 struct cmd_list_element *c,
3950 const char *value)
3951{
3952 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3953 fprintf_filtered (file,
3954 _("Whether the target is always in non-stop mode "
3955 "is %s (currently %s).\n"), value,
3956 target_always_non_stop_p () ? "on" : "off");
3957 else
3958 fprintf_filtered (file,
3959 _("Whether the target is always in non-stop mode "
3960 "is %s.\n"), value);
3961}
3962
d914c394
SS
3963/* Temporary copies of permission settings. */
3964
3965static int may_write_registers_1 = 1;
3966static int may_write_memory_1 = 1;
3967static int may_insert_breakpoints_1 = 1;
3968static int may_insert_tracepoints_1 = 1;
3969static int may_insert_fast_tracepoints_1 = 1;
3970static int may_stop_1 = 1;
3971
3972/* Make the user-set values match the real values again. */
3973
3974void
3975update_target_permissions (void)
3976{
3977 may_write_registers_1 = may_write_registers;
3978 may_write_memory_1 = may_write_memory;
3979 may_insert_breakpoints_1 = may_insert_breakpoints;
3980 may_insert_tracepoints_1 = may_insert_tracepoints;
3981 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3982 may_stop_1 = may_stop;
3983}
3984
3985/* The one function handles (most of) the permission flags in the same
3986 way. */
3987
3988static void
3989set_target_permissions (char *args, int from_tty,
3990 struct cmd_list_element *c)
3991{
3992 if (target_has_execution)
3993 {
3994 update_target_permissions ();
3995 error (_("Cannot change this setting while the inferior is running."));
3996 }
3997
3998 /* Make the real values match the user-changed values. */
3999 may_write_registers = may_write_registers_1;
4000 may_insert_breakpoints = may_insert_breakpoints_1;
4001 may_insert_tracepoints = may_insert_tracepoints_1;
4002 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4003 may_stop = may_stop_1;
4004 update_observer_mode ();
4005}
4006
4007/* Set memory write permission independently of observer mode. */
4008
4009static void
4010set_write_memory_permission (char *args, int from_tty,
4011 struct cmd_list_element *c)
4012{
4013 /* Make the real values match the user-changed values. */
4014 may_write_memory = may_write_memory_1;
4015 update_observer_mode ();
4016}
4017
4018
c906108c 4019void
fba45db2 4020initialize_targets (void)
c906108c
SS
4021{
4022 init_dummy_target ();
4023 push_target (&dummy_target);
4024
4025 add_info ("target", target_info, targ_desc);
4026 add_info ("files", target_info, targ_desc);
4027
ccce17b0 4028 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4029Set target debugging."), _("\
4030Show target debugging."), _("\
333dabeb 4031When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4032verbose."),
4033 set_targetdebug,
ccce17b0
YQ
4034 show_targetdebug,
4035 &setdebuglist, &showdebuglist);
3a11626d 4036
2bc416ba 4037 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4038 &trust_readonly, _("\
4039Set mode for reading from readonly sections."), _("\
4040Show mode for reading from readonly sections."), _("\
3a11626d
MS
4041When this mode is on, memory reads from readonly sections (such as .text)\n\
4042will be read from the object file instead of from the target. This will\n\
7915a72c 4043result in significant performance improvement for remote targets."),
2c5b56ce 4044 NULL,
920d2a44 4045 show_trust_readonly,
e707bbc2 4046 &setlist, &showlist);
96baa820
JM
4047
4048 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4049 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4050
87680a14
JB
4051 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4052 _("Print the name of each layer of the internal target stack."),
4053 &maintenanceprintlist);
4054
c6ebd6cf
VP
4055 add_setshow_boolean_cmd ("target-async", no_class,
4056 &target_async_permitted_1, _("\
4057Set whether gdb controls the inferior in asynchronous mode."), _("\
4058Show whether gdb controls the inferior in asynchronous mode."), _("\
4059Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4060 maint_set_target_async_command,
4061 maint_show_target_async_command,
4062 &maintenance_set_cmdlist,
4063 &maintenance_show_cmdlist);
c6ebd6cf 4064
fbea99ea
PA
4065 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4066 &target_non_stop_enabled_1, _("\
4067Set whether gdb always controls the inferior in non-stop mode."), _("\
4068Show whether gdb always controls the inferior in non-stop mode."), _("\
4069Tells gdb whether to control the inferior in non-stop mode."),
4070 maint_set_target_non_stop_command,
4071 maint_show_target_non_stop_command,
4072 &maintenance_set_cmdlist,
4073 &maintenance_show_cmdlist);
4074
d914c394
SS
4075 add_setshow_boolean_cmd ("may-write-registers", class_support,
4076 &may_write_registers_1, _("\
4077Set permission to write into registers."), _("\
4078Show permission to write into registers."), _("\
4079When this permission is on, GDB may write into the target's registers.\n\
4080Otherwise, any sort of write attempt will result in an error."),
4081 set_target_permissions, NULL,
4082 &setlist, &showlist);
4083
4084 add_setshow_boolean_cmd ("may-write-memory", class_support,
4085 &may_write_memory_1, _("\
4086Set permission to write into target memory."), _("\
4087Show permission to write into target memory."), _("\
4088When this permission is on, GDB may write into the target's memory.\n\
4089Otherwise, any sort of write attempt will result in an error."),
4090 set_write_memory_permission, NULL,
4091 &setlist, &showlist);
4092
4093 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4094 &may_insert_breakpoints_1, _("\
4095Set permission to insert breakpoints in the target."), _("\
4096Show permission to insert breakpoints in the target."), _("\
4097When this permission is on, GDB may insert breakpoints in the program.\n\
4098Otherwise, any sort of insertion attempt will result in an error."),
4099 set_target_permissions, NULL,
4100 &setlist, &showlist);
4101
4102 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4103 &may_insert_tracepoints_1, _("\
4104Set permission to insert tracepoints in the target."), _("\
4105Show permission to insert tracepoints in the target."), _("\
4106When this permission is on, GDB may insert tracepoints in the program.\n\
4107Otherwise, any sort of insertion attempt will result in an error."),
4108 set_target_permissions, NULL,
4109 &setlist, &showlist);
4110
4111 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4112 &may_insert_fast_tracepoints_1, _("\
4113Set permission to insert fast tracepoints in the target."), _("\
4114Show permission to insert fast tracepoints in the target."), _("\
4115When this permission is on, GDB may insert fast tracepoints.\n\
4116Otherwise, any sort of insertion attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4119
4120 add_setshow_boolean_cmd ("may-interrupt", class_support,
4121 &may_stop_1, _("\
4122Set permission to interrupt or signal the target."), _("\
4123Show permission to interrupt or signal the target."), _("\
4124When this permission is on, GDB may interrupt/stop the target's execution.\n\
4125Otherwise, any attempt to interrupt or stop will be ignored."),
4126 set_target_permissions, NULL,
4127 &setlist, &showlist);
6a3cb8e8
PA
4128
4129 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4130 &auto_connect_native_target, _("\
4131Set whether GDB may automatically connect to the native target."), _("\
4132Show whether GDB may automatically connect to the native target."), _("\
4133When on, and GDB is not connected to a target yet, GDB\n\
4134attempts \"run\" and other commands with the native target."),
4135 NULL, show_auto_connect_native_target,
4136 &setlist, &showlist);
c906108c 4137}
This page took 1.998131 seconds and 4 git commands to generate.