auto-generate most target debug methods
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include <errno.h>
0e9f083f 24#include <string.h>
c906108c 25#include "target.h"
68c765e2 26#include "target-dcache.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "symtab.h"
29#include "inferior.h"
45741a9c 30#include "infrun.h"
c906108c
SS
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
4930751a 34#include "dcache.h"
c906108c 35#include <signal.h>
4e052eda 36#include "regcache.h"
0088c768 37#include "gdb_assert.h"
b6591e8b 38#include "gdbcore.h"
9e35dae4 39#include "exceptions.h"
424163ea 40#include "target-descriptions.h"
e1ac3328 41#include "gdbthread.h"
b9db4ced 42#include "solib.h"
07b82ea5 43#include "exec.h"
edb3359d 44#include "inline-frame.h"
2f4d8875 45#include "tracepoint.h"
7313baad 46#include "gdb/fileio.h"
8ffcbaaf 47#include "agent.h"
8de71aab 48#include "auxv.h"
a7068b60 49#include "target-debug.h"
c906108c 50
a14ed312 51static void target_info (char *, int);
c906108c 52
f0f9ff95
TT
53static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
0a4f40a2 55static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 56
5009afc5
AS
57static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
31568a15
TT
60static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
e0d24f8d 62
a30bf1f1 63static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 64
4229b31d
TT
65static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
098dba18
TT
68static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
8d657035
TT
71static void default_mourn_inferior (struct target_ops *self);
72
58a5184e
TT
73static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
936d2992
PA
80static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
8eaff7cd
TT
84static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
c25c4a8b 87static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 88
555bbdeb
TT
89static int return_zero (struct target_ops *);
90
91static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 92
a14ed312 93static void target_command (char *, int);
c906108c 94
a14ed312 95static struct target_ops *find_default_run_target (char *);
c906108c 96
c2250ad1
UW
97static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
0b5a2719
TT
100static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
16f796b1
TT
104static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
770234d3
TT
107static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
fe31bf5b
TT
109static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
c0eca49f
TT
112static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
113 struct gdbarch *gdbarch);
114
a7068b60
TT
115static struct target_ops debug_target;
116
1101cb7b
TT
117#include "target-delegates.c"
118
a14ed312 119static void init_dummy_target (void);
c906108c 120
a14ed312 121static void debug_to_open (char *, int);
c906108c 122
c906108c 123/* Pointer to array of target architecture structures; the size of the
2bc416ba 124 array; the current index into the array; the allocated size of the
c906108c
SS
125 array. */
126struct target_ops **target_structs;
127unsigned target_struct_size;
c906108c
SS
128unsigned target_struct_allocsize;
129#define DEFAULT_ALLOCSIZE 10
130
131/* The initial current target, so that there is always a semi-valid
132 current target. */
133
134static struct target_ops dummy_target;
135
136/* Top of target stack. */
137
258b763a 138static struct target_ops *target_stack;
c906108c
SS
139
140/* The target structure we are currently using to talk to a process
141 or file or whatever "inferior" we have. */
142
143struct target_ops current_target;
144
145/* Command list for target. */
146
147static struct cmd_list_element *targetlist = NULL;
148
cf7a04e8
DJ
149/* Nonzero if we should trust readonly sections from the
150 executable when reading memory. */
151
152static int trust_readonly = 0;
153
8defab1a
DJ
154/* Nonzero if we should show true memory content including
155 memory breakpoint inserted by gdb. */
156
157static int show_memory_breakpoints = 0;
158
d914c394
SS
159/* These globals control whether GDB attempts to perform these
160 operations; they are useful for targets that need to prevent
161 inadvertant disruption, such as in non-stop mode. */
162
163int may_write_registers = 1;
164
165int may_write_memory = 1;
166
167int may_insert_breakpoints = 1;
168
169int may_insert_tracepoints = 1;
170
171int may_insert_fast_tracepoints = 1;
172
173int may_stop = 1;
174
c906108c
SS
175/* Non-zero if we want to see trace of target level stuff. */
176
ccce17b0 177static unsigned int targetdebug = 0;
920d2a44
AC
178static void
179show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183}
c906108c 184
a14ed312 185static void setup_target_debug (void);
c906108c 186
c906108c
SS
187/* The user just typed 'target' without the name of a target. */
188
c906108c 189static void
fba45db2 190target_command (char *arg, int from_tty)
c906108c
SS
191{
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194}
195
c35b1492
PA
196/* Default target_has_* methods for process_stratum targets. */
197
198int
199default_child_has_all_memory (struct target_ops *ops)
200{
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206}
207
208int
209default_child_has_memory (struct target_ops *ops)
210{
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216}
217
218int
219default_child_has_stack (struct target_ops *ops)
220{
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226}
227
228int
229default_child_has_registers (struct target_ops *ops)
230{
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236}
237
238int
aeaec162 239default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
240{
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
aeaec162 243 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
244 return 0;
245
246 return 1;
247}
248
249
250int
251target_has_all_memory_1 (void)
252{
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260}
261
262int
263target_has_memory_1 (void)
264{
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272}
273
274int
275target_has_stack_1 (void)
276{
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284}
285
286int
287target_has_registers_1 (void)
288{
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296}
297
298int
aeaec162 299target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
300{
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 304 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
305 return 1;
306
307 return 0;
308}
309
aeaec162
TT
310int
311target_has_execution_current (void)
312{
313 return target_has_execution_1 (inferior_ptid);
314}
315
c22a2b88
TT
316/* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
c906108c
SS
318
319void
c22a2b88 320complete_target_initialization (struct target_ops *t)
c906108c 321{
0088c768 322 /* Provide default values for all "must have" methods. */
0088c768 323
c35b1492 324 if (t->to_has_all_memory == NULL)
555bbdeb 325 t->to_has_all_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_memory == NULL)
555bbdeb 328 t->to_has_memory = return_zero;
c35b1492
PA
329
330 if (t->to_has_stack == NULL)
555bbdeb 331 t->to_has_stack = return_zero;
c35b1492
PA
332
333 if (t->to_has_registers == NULL)
555bbdeb 334 t->to_has_registers = return_zero;
c35b1492
PA
335
336 if (t->to_has_execution == NULL)
555bbdeb 337 t->to_has_execution = return_zero_has_execution;
1101cb7b 338
b3ccfe11
TT
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
1101cb7b 345 install_delegators (t);
c22a2b88
TT
346}
347
348/* Add possible target architecture T to the list and add a new
349 command 'target T->to_shortname'. Set COMPLETER as the command's
350 completer if not NULL. */
351
352void
353add_target_with_completer (struct target_ops *t,
354 completer_ftype *completer)
355{
356 struct cmd_list_element *c;
357
358 complete_target_initialization (t);
c35b1492 359
c906108c
SS
360 if (!target_structs)
361 {
362 target_struct_allocsize = DEFAULT_ALLOCSIZE;
363 target_structs = (struct target_ops **) xmalloc
364 (target_struct_allocsize * sizeof (*target_structs));
365 }
366 if (target_struct_size >= target_struct_allocsize)
367 {
368 target_struct_allocsize *= 2;
369 target_structs = (struct target_ops **)
c5aa993b
JM
370 xrealloc ((char *) target_structs,
371 target_struct_allocsize * sizeof (*target_structs));
c906108c
SS
372 }
373 target_structs[target_struct_size++] = t;
c906108c
SS
374
375 if (targetlist == NULL)
1bedd215
AC
376 add_prefix_cmd ("target", class_run, target_command, _("\
377Connect to a target machine or process.\n\
c906108c
SS
378The first argument is the type or protocol of the target machine.\n\
379Remaining arguments are interpreted by the target protocol. For more\n\
380information on the arguments for a particular protocol, type\n\
1bedd215 381`help target ' followed by the protocol name."),
c906108c 382 &targetlist, "target ", 0, &cmdlist);
9852c492
YQ
383 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
384 &targetlist);
385 if (completer != NULL)
386 set_cmd_completer (c, completer);
387}
388
389/* Add a possible target architecture to the list. */
390
391void
392add_target (struct target_ops *t)
393{
394 add_target_with_completer (t, NULL);
c906108c
SS
395}
396
b48d48eb
MM
397/* See target.h. */
398
399void
400add_deprecated_target_alias (struct target_ops *t, char *alias)
401{
402 struct cmd_list_element *c;
403 char *alt;
404
405 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
406 see PR cli/15104. */
407 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
408 alt = xstrprintf ("target %s", t->to_shortname);
409 deprecate_cmd (c, alt);
410}
411
c906108c
SS
412/* Stub functions */
413
7d85a9c0
JB
414void
415target_kill (void)
416{
423a4807 417 current_target.to_kill (&current_target);
7d85a9c0
JB
418}
419
11cf8741 420void
9cbe5fff 421target_load (const char *arg, int from_tty)
11cf8741 422{
4e5d721f 423 target_dcache_invalidate ();
71a9f134 424 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
425}
426
d9d2d8b6
PA
427void
428target_terminal_inferior (void)
429{
430 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 431 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
432 this point the target is not async yet. However, if sync_execution
433 is not set, we know it will become async prior to resume. */
434 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
435 return;
436
437 /* If GDB is resuming the inferior in the foreground, install
438 inferior's terminal modes. */
d2f640d4 439 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 440}
136d6dae 441
b0ed115f
TT
442/* See target.h. */
443
444int
445target_supports_terminal_ours (void)
446{
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 {
451 if (t->to_terminal_ours != delegate_terminal_ours
452 && t->to_terminal_ours != tdefault_terminal_ours)
453 return 1;
454 }
455
456 return 0;
457}
458
c906108c 459static void
fba45db2 460tcomplain (void)
c906108c 461{
8a3fe4f8 462 error (_("You can't do that when your target is `%s'"),
c906108c
SS
463 current_target.to_shortname);
464}
465
466void
fba45db2 467noprocess (void)
c906108c 468{
8a3fe4f8 469 error (_("You can't do that without a process to debug."));
c906108c
SS
470}
471
c906108c 472static void
0a4f40a2 473default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 474{
a3f17187 475 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
476}
477
0ef643c8
JB
478/* A default implementation for the to_get_ada_task_ptid target method.
479
480 This function builds the PTID by using both LWP and TID as part of
481 the PTID lwp and tid elements. The pid used is the pid of the
482 inferior_ptid. */
483
2c0b251b 484static ptid_t
1e6b91a4 485default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
486{
487 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
488}
489
32231432 490static enum exec_direction_kind
4c612759 491default_execution_direction (struct target_ops *self)
32231432
PA
492{
493 if (!target_can_execute_reverse)
494 return EXEC_FORWARD;
495 else if (!target_can_async_p ())
496 return EXEC_FORWARD;
497 else
498 gdb_assert_not_reached ("\
499to_execution_direction must be implemented for reverse async");
500}
501
7998dfc3
AC
502/* Go through the target stack from top to bottom, copying over zero
503 entries in current_target, then filling in still empty entries. In
504 effect, we are doing class inheritance through the pushed target
505 vectors.
506
507 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
508 is currently implemented, is that it discards any knowledge of
509 which target an inherited method originally belonged to.
510 Consequently, new new target methods should instead explicitly and
511 locally search the target stack for the target that can handle the
512 request. */
c906108c
SS
513
514static void
7998dfc3 515update_current_target (void)
c906108c 516{
7998dfc3
AC
517 struct target_ops *t;
518
08d8bcd7 519 /* First, reset current's contents. */
7998dfc3
AC
520 memset (&current_target, 0, sizeof (current_target));
521
1101cb7b
TT
522 /* Install the delegators. */
523 install_delegators (&current_target);
524
be4ddd36
TT
525 current_target.to_stratum = target_stack->to_stratum;
526
7998dfc3
AC
527#define INHERIT(FIELD, TARGET) \
528 if (!current_target.FIELD) \
529 current_target.FIELD = (TARGET)->FIELD
530
be4ddd36
TT
531 /* Do not add any new INHERITs here. Instead, use the delegation
532 mechanism provided by make-target-delegates. */
7998dfc3
AC
533 for (t = target_stack; t; t = t->beneath)
534 {
535 INHERIT (to_shortname, t);
536 INHERIT (to_longname, t);
dc177b7a 537 INHERIT (to_attach_no_wait, t);
74174d2e 538 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 539 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 540 INHERIT (to_has_thread_control, t);
7998dfc3
AC
541 }
542#undef INHERIT
543
7998dfc3
AC
544 /* Finally, position the target-stack beneath the squashed
545 "current_target". That way code looking for a non-inherited
546 target method can quickly and simply find it. */
547 current_target.beneath = target_stack;
b4b61fdb
DJ
548
549 if (targetdebug)
550 setup_target_debug ();
c906108c
SS
551}
552
553/* Push a new target type into the stack of the existing target accessors,
554 possibly superseding some of the existing accessors.
555
c906108c
SS
556 Rather than allow an empty stack, we always have the dummy target at
557 the bottom stratum, so we can call the function vectors without
558 checking them. */
559
b26a4dcb 560void
fba45db2 561push_target (struct target_ops *t)
c906108c 562{
258b763a 563 struct target_ops **cur;
c906108c
SS
564
565 /* Check magic number. If wrong, it probably means someone changed
566 the struct definition, but not all the places that initialize one. */
567 if (t->to_magic != OPS_MAGIC)
568 {
c5aa993b
JM
569 fprintf_unfiltered (gdb_stderr,
570 "Magic number of %s target struct wrong\n",
571 t->to_shortname);
3e43a32a
MS
572 internal_error (__FILE__, __LINE__,
573 _("failed internal consistency check"));
c906108c
SS
574 }
575
258b763a
AC
576 /* Find the proper stratum to install this target in. */
577 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 578 {
258b763a 579 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
580 break;
581 }
582
258b763a 583 /* If there's already targets at this stratum, remove them. */
88c231eb 584 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
585 targets to CUR, and not just those at this stratum level. */
586 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
587 {
588 /* There's already something at this stratum level. Close it,
589 and un-hook it from the stack. */
590 struct target_ops *tmp = (*cur);
5d502164 591
258b763a
AC
592 (*cur) = (*cur)->beneath;
593 tmp->beneath = NULL;
460014f5 594 target_close (tmp);
258b763a 595 }
c906108c
SS
596
597 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
598 t->beneath = (*cur);
599 (*cur) = t;
c906108c
SS
600
601 update_current_target ();
c906108c
SS
602}
603
2bc416ba 604/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
605 Return how many times it was removed (0 or 1). */
606
607int
fba45db2 608unpush_target (struct target_ops *t)
c906108c 609{
258b763a
AC
610 struct target_ops **cur;
611 struct target_ops *tmp;
c906108c 612
c8d104ad
PA
613 if (t->to_stratum == dummy_stratum)
614 internal_error (__FILE__, __LINE__,
9b20d036 615 _("Attempt to unpush the dummy target"));
c8d104ad 616
c906108c 617 /* Look for the specified target. Note that we assume that a target
c378eb4e 618 can only occur once in the target stack. */
c906108c 619
258b763a
AC
620 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
621 {
622 if ((*cur) == t)
623 break;
624 }
c906108c 625
305436e0
PA
626 /* If we don't find target_ops, quit. Only open targets should be
627 closed. */
258b763a 628 if ((*cur) == NULL)
305436e0 629 return 0;
5269965e 630
c378eb4e 631 /* Unchain the target. */
258b763a
AC
632 tmp = (*cur);
633 (*cur) = (*cur)->beneath;
634 tmp->beneath = NULL;
c906108c
SS
635
636 update_current_target ();
c906108c 637
305436e0
PA
638 /* Finally close the target. Note we do this after unchaining, so
639 any target method calls from within the target_close
640 implementation don't end up in T anymore. */
460014f5 641 target_close (t);
305436e0 642
c906108c
SS
643 return 1;
644}
645
aa76d38d 646void
460014f5 647pop_all_targets_above (enum strata above_stratum)
aa76d38d 648{
87ab71f0 649 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 650 {
aa76d38d
PA
651 if (!unpush_target (target_stack))
652 {
653 fprintf_unfiltered (gdb_stderr,
654 "pop_all_targets couldn't find target %s\n",
b52323fa 655 target_stack->to_shortname);
aa76d38d
PA
656 internal_error (__FILE__, __LINE__,
657 _("failed internal consistency check"));
658 break;
659 }
660 }
661}
662
87ab71f0 663void
460014f5 664pop_all_targets (void)
87ab71f0 665{
460014f5 666 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
667}
668
c0edd9ed
JK
669/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
670
671int
672target_is_pushed (struct target_ops *t)
673{
674 struct target_ops **cur;
675
676 /* Check magic number. If wrong, it probably means someone changed
677 the struct definition, but not all the places that initialize one. */
678 if (t->to_magic != OPS_MAGIC)
679 {
680 fprintf_unfiltered (gdb_stderr,
681 "Magic number of %s target struct wrong\n",
682 t->to_shortname);
3e43a32a
MS
683 internal_error (__FILE__, __LINE__,
684 _("failed internal consistency check"));
c0edd9ed
JK
685 }
686
687 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
688 if (*cur == t)
689 return 1;
690
691 return 0;
692}
693
f0f9ff95
TT
694/* Default implementation of to_get_thread_local_address. */
695
696static void
697generic_tls_error (void)
698{
699 throw_error (TLS_GENERIC_ERROR,
700 _("Cannot find thread-local variables on this target"));
701}
702
72f5cf0e 703/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
704 current thread's thread-local storage with offset OFFSET. */
705CORE_ADDR
706target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
707{
708 volatile CORE_ADDR addr = 0;
f0f9ff95 709 struct target_ops *target = &current_target;
9e35dae4 710
f0f9ff95 711 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
712 {
713 ptid_t ptid = inferior_ptid;
714 volatile struct gdb_exception ex;
715
716 TRY_CATCH (ex, RETURN_MASK_ALL)
717 {
718 CORE_ADDR lm_addr;
719
720 /* Fetch the load module address for this objfile. */
f5656ead 721 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 722 objfile);
9e35dae4 723
3e43a32a
MS
724 addr = target->to_get_thread_local_address (target, ptid,
725 lm_addr, offset);
9e35dae4
DJ
726 }
727 /* If an error occurred, print TLS related messages here. Otherwise,
728 throw the error to some higher catcher. */
729 if (ex.reason < 0)
730 {
731 int objfile_is_library = (objfile->flags & OBJF_SHARED);
732
733 switch (ex.error)
734 {
735 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
736 error (_("Cannot find thread-local variables "
737 "in this thread library."));
9e35dae4
DJ
738 break;
739 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
740 if (objfile_is_library)
741 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 742 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
743 else
744 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 745 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
746 break;
747 case TLS_NOT_ALLOCATED_YET_ERROR:
748 if (objfile_is_library)
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the shared library `%s'\n"
752 "for %s"),
4262abfb 753 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
754 else
755 error (_("The inferior has not yet allocated storage for"
756 " thread-local variables in\n"
757 "the executable `%s'\n"
758 "for %s"),
4262abfb 759 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
760 break;
761 case TLS_GENERIC_ERROR:
762 if (objfile_is_library)
763 error (_("Cannot find thread-local storage for %s, "
764 "shared library %s:\n%s"),
765 target_pid_to_str (ptid),
4262abfb 766 objfile_name (objfile), ex.message);
9e35dae4
DJ
767 else
768 error (_("Cannot find thread-local storage for %s, "
769 "executable file %s:\n%s"),
770 target_pid_to_str (ptid),
4262abfb 771 objfile_name (objfile), ex.message);
9e35dae4
DJ
772 break;
773 default:
774 throw_exception (ex);
775 break;
776 }
777 }
778 }
779 /* It wouldn't be wrong here to try a gdbarch method, too; finding
780 TLS is an ABI-specific thing. But we don't do that yet. */
781 else
782 error (_("Cannot find thread-local variables on this target"));
783
784 return addr;
785}
786
6be7b56e 787const char *
01cb8804 788target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
789{
790#define CASE(X) case X: return #X
01cb8804 791 switch (status)
6be7b56e
PA
792 {
793 CASE(TARGET_XFER_E_IO);
bc113b4e 794 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
795 default:
796 return "<unknown>";
797 }
798#undef CASE
799};
800
801
c906108c
SS
802#undef MIN
803#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
804
805/* target_read_string -- read a null terminated string, up to LEN bytes,
806 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
807 Set *STRING to a pointer to malloc'd memory containing the data; the caller
808 is responsible for freeing it. Return the number of bytes successfully
809 read. */
810
811int
fba45db2 812target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 813{
c2e8b827 814 int tlen, offset, i;
1b0ba102 815 gdb_byte buf[4];
c906108c
SS
816 int errcode = 0;
817 char *buffer;
818 int buffer_allocated;
819 char *bufptr;
820 unsigned int nbytes_read = 0;
821
6217bf3e
MS
822 gdb_assert (string);
823
c906108c
SS
824 /* Small for testing. */
825 buffer_allocated = 4;
826 buffer = xmalloc (buffer_allocated);
827 bufptr = buffer;
828
c906108c
SS
829 while (len > 0)
830 {
831 tlen = MIN (len, 4 - (memaddr & 3));
832 offset = memaddr & 3;
833
1b0ba102 834 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
835 if (errcode != 0)
836 {
837 /* The transfer request might have crossed the boundary to an
c378eb4e 838 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
839 a single byte. */
840 tlen = 1;
841 offset = 0;
b8eb5af0 842 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
843 if (errcode != 0)
844 goto done;
845 }
846
847 if (bufptr - buffer + tlen > buffer_allocated)
848 {
849 unsigned int bytes;
5d502164 850
c906108c
SS
851 bytes = bufptr - buffer;
852 buffer_allocated *= 2;
853 buffer = xrealloc (buffer, buffer_allocated);
854 bufptr = buffer + bytes;
855 }
856
857 for (i = 0; i < tlen; i++)
858 {
859 *bufptr++ = buf[i + offset];
860 if (buf[i + offset] == '\000')
861 {
862 nbytes_read += i + 1;
863 goto done;
864 }
865 }
866
867 memaddr += tlen;
868 len -= tlen;
869 nbytes_read += tlen;
870 }
c5aa993b 871done:
6217bf3e 872 *string = buffer;
c906108c
SS
873 if (errnop != NULL)
874 *errnop = errcode;
c906108c
SS
875 return nbytes_read;
876}
877
07b82ea5
PA
878struct target_section_table *
879target_get_section_table (struct target_ops *target)
880{
7e35c012 881 return (*target->to_get_section_table) (target);
07b82ea5
PA
882}
883
8db32d44 884/* Find a section containing ADDR. */
07b82ea5 885
0542c86d 886struct target_section *
8db32d44
AC
887target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
888{
07b82ea5 889 struct target_section_table *table = target_get_section_table (target);
0542c86d 890 struct target_section *secp;
07b82ea5
PA
891
892 if (table == NULL)
893 return NULL;
894
895 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
896 {
897 if (addr >= secp->addr && addr < secp->endaddr)
898 return secp;
899 }
900 return NULL;
901}
902
9f713294
YQ
903/* Read memory from more than one valid target. A core file, for
904 instance, could have some of memory but delegate other bits to
905 the target below it. So, we must manually try all targets. */
906
9b409511 907static enum target_xfer_status
17fde6d0 908raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
909 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
910 ULONGEST *xfered_len)
9f713294 911{
9b409511 912 enum target_xfer_status res;
9f713294
YQ
913
914 do
915 {
916 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
917 readbuf, writebuf, memaddr, len,
918 xfered_len);
919 if (res == TARGET_XFER_OK)
9f713294
YQ
920 break;
921
633785ff 922 /* Stop if the target reports that the memory is not available. */
bc113b4e 923 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
924 break;
925
9f713294
YQ
926 /* We want to continue past core files to executables, but not
927 past a running target's memory. */
928 if (ops->to_has_all_memory (ops))
929 break;
930
931 ops = ops->beneath;
932 }
933 while (ops != NULL);
934
0f26cec1
PA
935 /* The cache works at the raw memory level. Make sure the cache
936 gets updated with raw contents no matter what kind of memory
937 object was originally being written. Note we do write-through
938 first, so that if it fails, we don't write to the cache contents
939 that never made it to the target. */
940 if (writebuf != NULL
941 && !ptid_equal (inferior_ptid, null_ptid)
942 && target_dcache_init_p ()
943 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
944 {
945 DCACHE *dcache = target_dcache_get ();
946
947 /* Note that writing to an area of memory which wasn't present
948 in the cache doesn't cause it to be loaded in. */
949 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
950 }
951
9f713294
YQ
952 return res;
953}
954
7f79c47e
DE
955/* Perform a partial memory transfer.
956 For docs see target.h, to_xfer_partial. */
cf7a04e8 957
9b409511 958static enum target_xfer_status
f0ba3972 959memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 960 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 961 ULONGEST len, ULONGEST *xfered_len)
0779438d 962{
9b409511 963 enum target_xfer_status res;
cf7a04e8
DJ
964 int reg_len;
965 struct mem_region *region;
4e5d721f 966 struct inferior *inf;
cf7a04e8 967
07b82ea5
PA
968 /* For accesses to unmapped overlay sections, read directly from
969 files. Must do this first, as MEMADDR may need adjustment. */
970 if (readbuf != NULL && overlay_debugging)
971 {
972 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 973
07b82ea5
PA
974 if (pc_in_unmapped_range (memaddr, section))
975 {
976 struct target_section_table *table
977 = target_get_section_table (ops);
978 const char *section_name = section->the_bfd_section->name;
5d502164 979
07b82ea5
PA
980 memaddr = overlay_mapped_address (memaddr, section);
981 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 982 memaddr, len, xfered_len,
07b82ea5
PA
983 table->sections,
984 table->sections_end,
985 section_name);
986 }
987 }
988
989 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
990 if (readbuf != NULL && trust_readonly)
991 {
0542c86d 992 struct target_section *secp;
07b82ea5 993 struct target_section_table *table;
cf7a04e8
DJ
994
995 secp = target_section_by_addr (ops, memaddr);
996 if (secp != NULL
2b2848e2
DE
997 && (bfd_get_section_flags (secp->the_bfd_section->owner,
998 secp->the_bfd_section)
cf7a04e8 999 & SEC_READONLY))
07b82ea5
PA
1000 {
1001 table = target_get_section_table (ops);
1002 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1003 memaddr, len, xfered_len,
07b82ea5
PA
1004 table->sections,
1005 table->sections_end,
1006 NULL);
1007 }
98646950
UW
1008 }
1009
cf7a04e8
DJ
1010 /* Try GDB's internal data cache. */
1011 region = lookup_mem_region (memaddr);
4b5752d0
VP
1012 /* region->hi == 0 means there's no upper bound. */
1013 if (memaddr + len < region->hi || region->hi == 0)
cf7a04e8
DJ
1014 reg_len = len;
1015 else
1016 reg_len = region->hi - memaddr;
1017
1018 switch (region->attrib.mode)
1019 {
1020 case MEM_RO:
1021 if (writebuf != NULL)
2ed4b548 1022 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1023 break;
1024
1025 case MEM_WO:
1026 if (readbuf != NULL)
2ed4b548 1027 return TARGET_XFER_E_IO;
cf7a04e8 1028 break;
a76d924d
DJ
1029
1030 case MEM_FLASH:
1031 /* We only support writing to flash during "load" for now. */
1032 if (writebuf != NULL)
1033 error (_("Writing to flash memory forbidden in this context"));
1034 break;
4b5752d0
VP
1035
1036 case MEM_NONE:
2ed4b548 1037 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1038 }
1039
6c95b8df
PA
1040 if (!ptid_equal (inferior_ptid, null_ptid))
1041 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1042 else
1043 inf = NULL;
4e5d721f
DE
1044
1045 if (inf != NULL
0f26cec1 1046 && readbuf != NULL
2f4d8875
PA
1047 /* The dcache reads whole cache lines; that doesn't play well
1048 with reading from a trace buffer, because reading outside of
1049 the collected memory range fails. */
1050 && get_traceframe_number () == -1
4e5d721f 1051 && (region->attrib.cache
29453a14
YQ
1052 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1053 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1054 {
2a2f9fe4
YQ
1055 DCACHE *dcache = target_dcache_get_or_init ();
1056
0f26cec1
PA
1057 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1058 reg_len, xfered_len);
cf7a04e8
DJ
1059 }
1060
1061 /* If none of those methods found the memory we wanted, fall back
1062 to a target partial transfer. Normally a single call to
1063 to_xfer_partial is enough; if it doesn't recognize an object
1064 it will call the to_xfer_partial of the next target down.
1065 But for memory this won't do. Memory is the only target
9b409511
YQ
1066 object which can be read from more than one valid target.
1067 A core file, for instance, could have some of memory but
1068 delegate other bits to the target below it. So, we must
1069 manually try all targets. */
1070
1071 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1072 xfered_len);
cf7a04e8
DJ
1073
1074 /* If we still haven't got anything, return the last error. We
1075 give up. */
1076 return res;
0779438d
AC
1077}
1078
f0ba3972
PA
1079/* Perform a partial memory transfer. For docs see target.h,
1080 to_xfer_partial. */
1081
9b409511 1082static enum target_xfer_status
f0ba3972 1083memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1084 gdb_byte *readbuf, const gdb_byte *writebuf,
1085 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1086{
9b409511 1087 enum target_xfer_status res;
f0ba3972
PA
1088
1089 /* Zero length requests are ok and require no work. */
1090 if (len == 0)
9b409511 1091 return TARGET_XFER_EOF;
f0ba3972
PA
1092
1093 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1094 breakpoint insns, thus hiding out from higher layers whether
1095 there are software breakpoints inserted in the code stream. */
1096 if (readbuf != NULL)
1097 {
9b409511
YQ
1098 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1099 xfered_len);
f0ba3972 1100
9b409511 1101 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1102 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1103 }
1104 else
1105 {
1106 void *buf;
1107 struct cleanup *old_chain;
1108
67c059c2
AB
1109 /* A large write request is likely to be partially satisfied
1110 by memory_xfer_partial_1. We will continually malloc
1111 and free a copy of the entire write request for breakpoint
1112 shadow handling even though we only end up writing a small
1113 subset of it. Cap writes to 4KB to mitigate this. */
1114 len = min (4096, len);
1115
f0ba3972
PA
1116 buf = xmalloc (len);
1117 old_chain = make_cleanup (xfree, buf);
1118 memcpy (buf, writebuf, len);
1119
1120 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1121 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1122 xfered_len);
f0ba3972
PA
1123
1124 do_cleanups (old_chain);
1125 }
1126
1127 return res;
1128}
1129
8defab1a
DJ
1130static void
1131restore_show_memory_breakpoints (void *arg)
1132{
1133 show_memory_breakpoints = (uintptr_t) arg;
1134}
1135
1136struct cleanup *
1137make_show_memory_breakpoints_cleanup (int show)
1138{
1139 int current = show_memory_breakpoints;
8defab1a 1140
5d502164 1141 show_memory_breakpoints = show;
8defab1a
DJ
1142 return make_cleanup (restore_show_memory_breakpoints,
1143 (void *) (uintptr_t) current);
1144}
1145
7f79c47e
DE
1146/* For docs see target.h, to_xfer_partial. */
1147
9b409511 1148enum target_xfer_status
27394598
AC
1149target_xfer_partial (struct target_ops *ops,
1150 enum target_object object, const char *annex,
4ac248ca 1151 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1152 ULONGEST offset, ULONGEST len,
1153 ULONGEST *xfered_len)
27394598 1154{
9b409511 1155 enum target_xfer_status retval;
27394598
AC
1156
1157 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1158
ce6d0892
YQ
1159 /* Transfer is done when LEN is zero. */
1160 if (len == 0)
9b409511 1161 return TARGET_XFER_EOF;
ce6d0892 1162
d914c394
SS
1163 if (writebuf && !may_write_memory)
1164 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1165 core_addr_to_string_nz (offset), plongest (len));
1166
9b409511
YQ
1167 *xfered_len = 0;
1168
cf7a04e8
DJ
1169 /* If this is a memory transfer, let the memory-specific code
1170 have a look at it instead. Memory transfers are more
1171 complicated. */
29453a14
YQ
1172 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1173 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1174 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1175 writebuf, offset, len, xfered_len);
9f713294 1176 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1177 {
9f713294 1178 /* Request the normal memory object from other layers. */
9b409511
YQ
1179 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1180 xfered_len);
cf7a04e8 1181 }
9f713294
YQ
1182 else
1183 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1184 writebuf, offset, len, xfered_len);
cf7a04e8 1185
27394598
AC
1186 if (targetdebug)
1187 {
1188 const unsigned char *myaddr = NULL;
1189
1190 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1191 "%s:target_xfer_partial "
9b409511 1192 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1193 ops->to_shortname,
1194 (int) object,
1195 (annex ? annex : "(null)"),
53b71562
JB
1196 host_address_to_string (readbuf),
1197 host_address_to_string (writebuf),
0b1553bc 1198 core_addr_to_string_nz (offset),
9b409511
YQ
1199 pulongest (len), retval,
1200 pulongest (*xfered_len));
27394598
AC
1201
1202 if (readbuf)
1203 myaddr = readbuf;
1204 if (writebuf)
1205 myaddr = writebuf;
9b409511 1206 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1207 {
1208 int i;
2bc416ba 1209
27394598 1210 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1211 for (i = 0; i < *xfered_len; i++)
27394598 1212 {
53b71562 1213 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1214 {
1215 if (targetdebug < 2 && i > 0)
1216 {
1217 fprintf_unfiltered (gdb_stdlog, " ...");
1218 break;
1219 }
1220 fprintf_unfiltered (gdb_stdlog, "\n");
1221 }
2bc416ba 1222
27394598
AC
1223 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1224 }
1225 }
2bc416ba 1226
27394598
AC
1227 fputc_unfiltered ('\n', gdb_stdlog);
1228 }
9b409511
YQ
1229
1230 /* Check implementations of to_xfer_partial update *XFERED_LEN
1231 properly. Do assertion after printing debug messages, so that we
1232 can find more clues on assertion failure from debugging messages. */
bc113b4e 1233 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1234 gdb_assert (*xfered_len > 0);
1235
27394598
AC
1236 return retval;
1237}
1238
578d3588
PA
1239/* Read LEN bytes of target memory at address MEMADDR, placing the
1240 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1241 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1242
1243 If an error occurs, no guarantee is made about the contents of the data at
1244 MYADDR. In particular, the caller should not depend upon partial reads
1245 filling the buffer with good data. There is no way for the caller to know
1246 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1247 deal with partial reads should call target_read (which will retry until
c378eb4e 1248 it makes no progress, and then return how much was transferred). */
c906108c
SS
1249
1250int
1b162304 1251target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1252{
c35b1492
PA
1253 /* Dispatch to the topmost target, not the flattened current_target.
1254 Memory accesses check target->to_has_(all_)memory, and the
1255 flattened target doesn't inherit those. */
1256 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1257 myaddr, memaddr, len) == len)
1258 return 0;
0779438d 1259 else
578d3588 1260 return TARGET_XFER_E_IO;
c906108c
SS
1261}
1262
aee4bf85
PA
1263/* Like target_read_memory, but specify explicitly that this is a read
1264 from the target's raw memory. That is, this read bypasses the
1265 dcache, breakpoint shadowing, etc. */
1266
1267int
1268target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1269{
1270 /* See comment in target_read_memory about why the request starts at
1271 current_target.beneath. */
1272 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1273 myaddr, memaddr, len) == len)
1274 return 0;
1275 else
1276 return TARGET_XFER_E_IO;
1277}
1278
4e5d721f
DE
1279/* Like target_read_memory, but specify explicitly that this is a read from
1280 the target's stack. This may trigger different cache behavior. */
1281
1282int
45aa4659 1283target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1284{
aee4bf85
PA
1285 /* See comment in target_read_memory about why the request starts at
1286 current_target.beneath. */
4e5d721f
DE
1287 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1288 myaddr, memaddr, len) == len)
1289 return 0;
1290 else
578d3588 1291 return TARGET_XFER_E_IO;
4e5d721f
DE
1292}
1293
29453a14
YQ
1294/* Like target_read_memory, but specify explicitly that this is a read from
1295 the target's code. This may trigger different cache behavior. */
1296
1297int
1298target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1299{
aee4bf85
PA
1300 /* See comment in target_read_memory about why the request starts at
1301 current_target.beneath. */
29453a14
YQ
1302 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return TARGET_XFER_E_IO;
1307}
1308
7f79c47e 1309/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1310 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1311 error occurs. If an error occurs, no guarantee is made about how
1312 much data got written. Callers that can deal with partial writes
1313 should call target_write. */
7f79c47e 1314
c906108c 1315int
45aa4659 1316target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1317{
aee4bf85
PA
1318 /* See comment in target_read_memory about why the request starts at
1319 current_target.beneath. */
c35b1492 1320 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1321 myaddr, memaddr, len) == len)
1322 return 0;
0779438d 1323 else
578d3588 1324 return TARGET_XFER_E_IO;
c906108c 1325}
c5aa993b 1326
f0ba3972 1327/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1328 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1329 if any error occurs. If an error occurs, no guarantee is made
1330 about how much data got written. Callers that can deal with
1331 partial writes should call target_write. */
f0ba3972
PA
1332
1333int
45aa4659 1334target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1335{
aee4bf85
PA
1336 /* See comment in target_read_memory about why the request starts at
1337 current_target.beneath. */
f0ba3972
PA
1338 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1339 myaddr, memaddr, len) == len)
1340 return 0;
1341 else
578d3588 1342 return TARGET_XFER_E_IO;
f0ba3972
PA
1343}
1344
fd79ecee
DJ
1345/* Fetch the target's memory map. */
1346
1347VEC(mem_region_s) *
1348target_memory_map (void)
1349{
1350 VEC(mem_region_s) *result;
1351 struct mem_region *last_one, *this_one;
1352 int ix;
1353 struct target_ops *t;
1354
6b2c5a57 1355 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1356 if (result == NULL)
1357 return NULL;
1358
1359 qsort (VEC_address (mem_region_s, result),
1360 VEC_length (mem_region_s, result),
1361 sizeof (struct mem_region), mem_region_cmp);
1362
1363 /* Check that regions do not overlap. Simultaneously assign
1364 a numbering for the "mem" commands to use to refer to
1365 each region. */
1366 last_one = NULL;
1367 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1368 {
1369 this_one->number = ix;
1370
1371 if (last_one && last_one->hi > this_one->lo)
1372 {
1373 warning (_("Overlapping regions in memory map: ignoring"));
1374 VEC_free (mem_region_s, result);
1375 return NULL;
1376 }
1377 last_one = this_one;
1378 }
1379
1380 return result;
1381}
1382
a76d924d
DJ
1383void
1384target_flash_erase (ULONGEST address, LONGEST length)
1385{
e8a6c6ac 1386 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1387}
1388
1389void
1390target_flash_done (void)
1391{
f6fb2925 1392 current_target.to_flash_done (&current_target);
a76d924d
DJ
1393}
1394
920d2a44
AC
1395static void
1396show_trust_readonly (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c, const char *value)
1398{
3e43a32a
MS
1399 fprintf_filtered (file,
1400 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1401 value);
1402}
3a11626d 1403
7f79c47e 1404/* Target vector read/write partial wrapper functions. */
0088c768 1405
9b409511 1406static enum target_xfer_status
1e3ff5ad
AC
1407target_read_partial (struct target_ops *ops,
1408 enum target_object object,
1b0ba102 1409 const char *annex, gdb_byte *buf,
9b409511
YQ
1410 ULONGEST offset, ULONGEST len,
1411 ULONGEST *xfered_len)
1e3ff5ad 1412{
9b409511
YQ
1413 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1414 xfered_len);
1e3ff5ad
AC
1415}
1416
8a55ffb0 1417static enum target_xfer_status
1e3ff5ad
AC
1418target_write_partial (struct target_ops *ops,
1419 enum target_object object,
1b0ba102 1420 const char *annex, const gdb_byte *buf,
9b409511 1421 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1422{
9b409511
YQ
1423 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1424 xfered_len);
1e3ff5ad
AC
1425}
1426
1427/* Wrappers to perform the full transfer. */
7f79c47e
DE
1428
1429/* For docs on target_read see target.h. */
1430
1e3ff5ad
AC
1431LONGEST
1432target_read (struct target_ops *ops,
1433 enum target_object object,
1b0ba102 1434 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1435 ULONGEST offset, LONGEST len)
1436{
1437 LONGEST xfered = 0;
5d502164 1438
1e3ff5ad
AC
1439 while (xfered < len)
1440 {
9b409511
YQ
1441 ULONGEST xfered_len;
1442 enum target_xfer_status status;
1443
1444 status = target_read_partial (ops, object, annex,
1445 (gdb_byte *) buf + xfered,
1446 offset + xfered, len - xfered,
1447 &xfered_len);
5d502164 1448
1e3ff5ad 1449 /* Call an observer, notifying them of the xfer progress? */
9b409511 1450 if (status == TARGET_XFER_EOF)
13547ab6 1451 return xfered;
9b409511
YQ
1452 else if (status == TARGET_XFER_OK)
1453 {
1454 xfered += xfered_len;
1455 QUIT;
1456 }
1457 else
0088c768 1458 return -1;
9b409511 1459
1e3ff5ad
AC
1460 }
1461 return len;
1462}
1463
f1a507a1
JB
1464/* Assuming that the entire [begin, end) range of memory cannot be
1465 read, try to read whatever subrange is possible to read.
1466
1467 The function returns, in RESULT, either zero or one memory block.
1468 If there's a readable subrange at the beginning, it is completely
1469 read and returned. Any further readable subrange will not be read.
1470 Otherwise, if there's a readable subrange at the end, it will be
1471 completely read and returned. Any readable subranges before it
1472 (obviously, not starting at the beginning), will be ignored. In
1473 other cases -- either no readable subrange, or readable subrange(s)
1474 that is neither at the beginning, or end, nothing is returned.
1475
1476 The purpose of this function is to handle a read across a boundary
1477 of accessible memory in a case when memory map is not available.
1478 The above restrictions are fine for this case, but will give
1479 incorrect results if the memory is 'patchy'. However, supporting
1480 'patchy' memory would require trying to read every single byte,
1481 and it seems unacceptable solution. Explicit memory map is
1482 recommended for this case -- and target_read_memory_robust will
1483 take care of reading multiple ranges then. */
8dedea02
VP
1484
1485static void
3e43a32a
MS
1486read_whatever_is_readable (struct target_ops *ops,
1487 ULONGEST begin, ULONGEST end,
8dedea02 1488 VEC(memory_read_result_s) **result)
d5086790 1489{
f1a507a1 1490 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1491 ULONGEST current_begin = begin;
1492 ULONGEST current_end = end;
1493 int forward;
1494 memory_read_result_s r;
9b409511 1495 ULONGEST xfered_len;
8dedea02
VP
1496
1497 /* If we previously failed to read 1 byte, nothing can be done here. */
1498 if (end - begin <= 1)
13b3fd9b
MS
1499 {
1500 xfree (buf);
1501 return;
1502 }
8dedea02
VP
1503
1504 /* Check that either first or the last byte is readable, and give up
c378eb4e 1505 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1506 at the boundary of accessible region. */
1507 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1508 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1509 {
1510 forward = 1;
1511 ++current_begin;
1512 }
1513 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1514 buf + (end-begin) - 1, end - 1, 1,
1515 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1516 {
1517 forward = 0;
1518 --current_end;
1519 }
1520 else
1521 {
13b3fd9b 1522 xfree (buf);
8dedea02
VP
1523 return;
1524 }
1525
1526 /* Loop invariant is that the [current_begin, current_end) was previously
1527 found to be not readable as a whole.
1528
1529 Note loop condition -- if the range has 1 byte, we can't divide the range
1530 so there's no point trying further. */
1531 while (current_end - current_begin > 1)
1532 {
1533 ULONGEST first_half_begin, first_half_end;
1534 ULONGEST second_half_begin, second_half_end;
1535 LONGEST xfer;
8dedea02 1536 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1537
8dedea02
VP
1538 if (forward)
1539 {
1540 first_half_begin = current_begin;
1541 first_half_end = middle;
1542 second_half_begin = middle;
1543 second_half_end = current_end;
1544 }
1545 else
1546 {
1547 first_half_begin = middle;
1548 first_half_end = current_end;
1549 second_half_begin = current_begin;
1550 second_half_end = middle;
1551 }
1552
1553 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1554 buf + (first_half_begin - begin),
1555 first_half_begin,
1556 first_half_end - first_half_begin);
1557
1558 if (xfer == first_half_end - first_half_begin)
1559 {
c378eb4e 1560 /* This half reads up fine. So, the error must be in the
3e43a32a 1561 other half. */
8dedea02
VP
1562 current_begin = second_half_begin;
1563 current_end = second_half_end;
1564 }
1565 else
1566 {
c378eb4e
MS
1567 /* This half is not readable. Because we've tried one byte, we
1568 know some part of this half if actually redable. Go to the next
8dedea02
VP
1569 iteration to divide again and try to read.
1570
1571 We don't handle the other half, because this function only tries
1572 to read a single readable subrange. */
1573 current_begin = first_half_begin;
1574 current_end = first_half_end;
1575 }
1576 }
1577
1578 if (forward)
1579 {
1580 /* The [begin, current_begin) range has been read. */
1581 r.begin = begin;
1582 r.end = current_begin;
1583 r.data = buf;
1584 }
1585 else
1586 {
1587 /* The [current_end, end) range has been read. */
1588 LONGEST rlen = end - current_end;
f1a507a1 1589
8dedea02
VP
1590 r.data = xmalloc (rlen);
1591 memcpy (r.data, buf + current_end - begin, rlen);
1592 r.begin = current_end;
1593 r.end = end;
1594 xfree (buf);
1595 }
1596 VEC_safe_push(memory_read_result_s, (*result), &r);
1597}
1598
1599void
1600free_memory_read_result_vector (void *x)
1601{
1602 VEC(memory_read_result_s) *v = x;
1603 memory_read_result_s *current;
1604 int ix;
1605
1606 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1607 {
1608 xfree (current->data);
1609 }
1610 VEC_free (memory_read_result_s, v);
1611}
1612
1613VEC(memory_read_result_s) *
1614read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1615{
1616 VEC(memory_read_result_s) *result = 0;
1617
1618 LONGEST xfered = 0;
d5086790
VP
1619 while (xfered < len)
1620 {
8dedea02
VP
1621 struct mem_region *region = lookup_mem_region (offset + xfered);
1622 LONGEST rlen;
5d502164 1623
8dedea02
VP
1624 /* If there is no explicit region, a fake one should be created. */
1625 gdb_assert (region);
1626
1627 if (region->hi == 0)
1628 rlen = len - xfered;
1629 else
1630 rlen = region->hi - offset;
1631
1632 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1633 {
c378eb4e 1634 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1635 if the region is explicitly marked inaccessible, or
1636 'inaccessible-by-default' is in effect. */
1637 xfered += rlen;
1638 }
1639 else
1640 {
1641 LONGEST to_read = min (len - xfered, rlen);
1642 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1643
1644 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1645 (gdb_byte *) buffer,
1646 offset + xfered, to_read);
1647 /* Call an observer, notifying them of the xfer progress? */
d5086790 1648 if (xfer <= 0)
d5086790 1649 {
c378eb4e 1650 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1651 some subrange. */
1652 xfree (buffer);
3e43a32a
MS
1653 read_whatever_is_readable (ops, offset + xfered,
1654 offset + xfered + to_read, &result);
8dedea02 1655 xfered += to_read;
d5086790 1656 }
8dedea02
VP
1657 else
1658 {
1659 struct memory_read_result r;
1660 r.data = buffer;
1661 r.begin = offset + xfered;
1662 r.end = r.begin + xfer;
1663 VEC_safe_push (memory_read_result_s, result, &r);
1664 xfered += xfer;
1665 }
1666 QUIT;
d5086790 1667 }
d5086790 1668 }
8dedea02 1669 return result;
d5086790
VP
1670}
1671
8dedea02 1672
cf7a04e8
DJ
1673/* An alternative to target_write with progress callbacks. */
1674
1e3ff5ad 1675LONGEST
cf7a04e8
DJ
1676target_write_with_progress (struct target_ops *ops,
1677 enum target_object object,
1678 const char *annex, const gdb_byte *buf,
1679 ULONGEST offset, LONGEST len,
1680 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1681{
1682 LONGEST xfered = 0;
a76d924d
DJ
1683
1684 /* Give the progress callback a chance to set up. */
1685 if (progress)
1686 (*progress) (0, baton);
1687
1e3ff5ad
AC
1688 while (xfered < len)
1689 {
9b409511
YQ
1690 ULONGEST xfered_len;
1691 enum target_xfer_status status;
1692
1693 status = target_write_partial (ops, object, annex,
1694 (gdb_byte *) buf + xfered,
1695 offset + xfered, len - xfered,
1696 &xfered_len);
cf7a04e8 1697
5c328c05
YQ
1698 if (status != TARGET_XFER_OK)
1699 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1700
1701 if (progress)
9b409511 1702 (*progress) (xfered_len, baton);
cf7a04e8 1703
9b409511 1704 xfered += xfered_len;
1e3ff5ad
AC
1705 QUIT;
1706 }
1707 return len;
1708}
1709
7f79c47e
DE
1710/* For docs on target_write see target.h. */
1711
cf7a04e8
DJ
1712LONGEST
1713target_write (struct target_ops *ops,
1714 enum target_object object,
1715 const char *annex, const gdb_byte *buf,
1716 ULONGEST offset, LONGEST len)
1717{
1718 return target_write_with_progress (ops, object, annex, buf, offset, len,
1719 NULL, NULL);
1720}
1721
159f81f3
DJ
1722/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1723 the size of the transferred data. PADDING additional bytes are
1724 available in *BUF_P. This is a helper function for
1725 target_read_alloc; see the declaration of that function for more
1726 information. */
13547ab6 1727
159f81f3
DJ
1728static LONGEST
1729target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1730 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1731{
1732 size_t buf_alloc, buf_pos;
1733 gdb_byte *buf;
13547ab6
DJ
1734
1735 /* This function does not have a length parameter; it reads the
1736 entire OBJECT). Also, it doesn't support objects fetched partly
1737 from one target and partly from another (in a different stratum,
1738 e.g. a core file and an executable). Both reasons make it
1739 unsuitable for reading memory. */
1740 gdb_assert (object != TARGET_OBJECT_MEMORY);
1741
1742 /* Start by reading up to 4K at a time. The target will throttle
1743 this number down if necessary. */
1744 buf_alloc = 4096;
1745 buf = xmalloc (buf_alloc);
1746 buf_pos = 0;
1747 while (1)
1748 {
9b409511
YQ
1749 ULONGEST xfered_len;
1750 enum target_xfer_status status;
1751
1752 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1753 buf_pos, buf_alloc - buf_pos - padding,
1754 &xfered_len);
1755
1756 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1757 {
1758 /* Read all there was. */
1759 if (buf_pos == 0)
1760 xfree (buf);
1761 else
1762 *buf_p = buf;
1763 return buf_pos;
1764 }
9b409511
YQ
1765 else if (status != TARGET_XFER_OK)
1766 {
1767 /* An error occurred. */
1768 xfree (buf);
1769 return TARGET_XFER_E_IO;
1770 }
13547ab6 1771
9b409511 1772 buf_pos += xfered_len;
13547ab6
DJ
1773
1774 /* If the buffer is filling up, expand it. */
1775 if (buf_alloc < buf_pos * 2)
1776 {
1777 buf_alloc *= 2;
1778 buf = xrealloc (buf, buf_alloc);
1779 }
1780
1781 QUIT;
1782 }
1783}
1784
159f81f3
DJ
1785/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1786 the size of the transferred data. See the declaration in "target.h"
1787 function for more information about the return value. */
1788
1789LONGEST
1790target_read_alloc (struct target_ops *ops, enum target_object object,
1791 const char *annex, gdb_byte **buf_p)
1792{
1793 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1794}
1795
1796/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1797 returned as a string, allocated using xmalloc. If an error occurs
1798 or the transfer is unsupported, NULL is returned. Empty objects
1799 are returned as allocated but empty strings. A warning is issued
1800 if the result contains any embedded NUL bytes. */
1801
1802char *
1803target_read_stralloc (struct target_ops *ops, enum target_object object,
1804 const char *annex)
1805{
39086a0e
PA
1806 gdb_byte *buffer;
1807 char *bufstr;
7313baad 1808 LONGEST i, transferred;
159f81f3 1809
39086a0e
PA
1810 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1811 bufstr = (char *) buffer;
159f81f3
DJ
1812
1813 if (transferred < 0)
1814 return NULL;
1815
1816 if (transferred == 0)
1817 return xstrdup ("");
1818
39086a0e 1819 bufstr[transferred] = 0;
7313baad
UW
1820
1821 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1822 for (i = strlen (bufstr); i < transferred; i++)
1823 if (bufstr[i] != 0)
7313baad
UW
1824 {
1825 warning (_("target object %d, annex %s, "
1826 "contained unexpected null characters"),
1827 (int) object, annex ? annex : "(none)");
1828 break;
1829 }
159f81f3 1830
39086a0e 1831 return bufstr;
159f81f3
DJ
1832}
1833
b6591e8b
AC
1834/* Memory transfer methods. */
1835
1836void
1b0ba102 1837get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1838 LONGEST len)
1839{
07b82ea5
PA
1840 /* This method is used to read from an alternate, non-current
1841 target. This read must bypass the overlay support (as symbols
1842 don't match this target), and GDB's internal cache (wrong cache
1843 for this target). */
1844 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1845 != len)
578d3588 1846 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1847}
1848
1849ULONGEST
5d502164
MS
1850get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1851 int len, enum bfd_endian byte_order)
b6591e8b 1852{
f6519ebc 1853 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1854
1855 gdb_assert (len <= sizeof (buf));
1856 get_target_memory (ops, addr, buf, len);
e17a4113 1857 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1858}
1859
3db08215
MM
1860/* See target.h. */
1861
d914c394
SS
1862int
1863target_insert_breakpoint (struct gdbarch *gdbarch,
1864 struct bp_target_info *bp_tgt)
1865{
1866 if (!may_insert_breakpoints)
1867 {
1868 warning (_("May not insert breakpoints"));
1869 return 1;
1870 }
1871
6b84065d
TT
1872 return current_target.to_insert_breakpoint (&current_target,
1873 gdbarch, bp_tgt);
d914c394
SS
1874}
1875
3db08215
MM
1876/* See target.h. */
1877
d914c394 1878int
6b84065d
TT
1879target_remove_breakpoint (struct gdbarch *gdbarch,
1880 struct bp_target_info *bp_tgt)
d914c394
SS
1881{
1882 /* This is kind of a weird case to handle, but the permission might
1883 have been changed after breakpoints were inserted - in which case
1884 we should just take the user literally and assume that any
1885 breakpoints should be left in place. */
1886 if (!may_insert_breakpoints)
1887 {
1888 warning (_("May not remove breakpoints"));
1889 return 1;
1890 }
1891
6b84065d
TT
1892 return current_target.to_remove_breakpoint (&current_target,
1893 gdbarch, bp_tgt);
d914c394
SS
1894}
1895
c906108c 1896static void
fba45db2 1897target_info (char *args, int from_tty)
c906108c
SS
1898{
1899 struct target_ops *t;
c906108c 1900 int has_all_mem = 0;
c5aa993b 1901
c906108c 1902 if (symfile_objfile != NULL)
4262abfb
JK
1903 printf_unfiltered (_("Symbols from \"%s\".\n"),
1904 objfile_name (symfile_objfile));
c906108c 1905
258b763a 1906 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1907 {
c35b1492 1908 if (!(*t->to_has_memory) (t))
c906108c
SS
1909 continue;
1910
c5aa993b 1911 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1912 continue;
1913 if (has_all_mem)
3e43a32a
MS
1914 printf_unfiltered (_("\tWhile running this, "
1915 "GDB does not access memory from...\n"));
c5aa993b
JM
1916 printf_unfiltered ("%s:\n", t->to_longname);
1917 (t->to_files_info) (t);
c35b1492 1918 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1919 }
1920}
1921
fd79ecee
DJ
1922/* This function is called before any new inferior is created, e.g.
1923 by running a program, attaching, or connecting to a target.
1924 It cleans up any state from previous invocations which might
1925 change between runs. This is a subset of what target_preopen
1926 resets (things which might change between targets). */
1927
1928void
1929target_pre_inferior (int from_tty)
1930{
c378eb4e 1931 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1932 inferior might have survived and is entirely wrong for the new
c378eb4e 1933 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1934 to reproduce:
1935
1936 bash$ ./foo&
1937 [1] 4711
1938 bash$ ./foo&
1939 [1] 4712
1940 bash$ gdb ./foo
1941 [...]
1942 (gdb) attach 4711
1943 (gdb) detach
1944 (gdb) attach 4712
1945 Cannot access memory at address 0xdeadbeef
1946 */
b9db4ced 1947
50c71eaf
PA
1948 /* In some OSs, the shared library list is the same/global/shared
1949 across inferiors. If code is shared between processes, so are
1950 memory regions and features. */
f5656ead 1951 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
1952 {
1953 no_shared_libraries (NULL, from_tty);
1954
1955 invalidate_target_mem_regions ();
424163ea 1956
50c71eaf
PA
1957 target_clear_description ();
1958 }
8ffcbaaf
YQ
1959
1960 agent_capability_invalidate ();
fd79ecee
DJ
1961}
1962
b8fa0bfa
PA
1963/* Callback for iterate_over_inferiors. Gets rid of the given
1964 inferior. */
1965
1966static int
1967dispose_inferior (struct inferior *inf, void *args)
1968{
1969 struct thread_info *thread;
1970
1971 thread = any_thread_of_process (inf->pid);
1972 if (thread)
1973 {
1974 switch_to_thread (thread->ptid);
1975
1976 /* Core inferiors actually should be detached, not killed. */
1977 if (target_has_execution)
1978 target_kill ();
1979 else
1980 target_detach (NULL, 0);
1981 }
1982
1983 return 0;
1984}
1985
c906108c
SS
1986/* This is to be called by the open routine before it does
1987 anything. */
1988
1989void
fba45db2 1990target_preopen (int from_tty)
c906108c 1991{
c5aa993b 1992 dont_repeat ();
c906108c 1993
b8fa0bfa 1994 if (have_inferiors ())
c5aa993b 1995 {
adf40b2e 1996 if (!from_tty
b8fa0bfa
PA
1997 || !have_live_inferiors ()
1998 || query (_("A program is being debugged already. Kill it? ")))
1999 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2000 else
8a3fe4f8 2001 error (_("Program not killed."));
c906108c
SS
2002 }
2003
2004 /* Calling target_kill may remove the target from the stack. But if
2005 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2006 /* Leave the exec target, though. The user may be switching from a
2007 live process to a core of the same program. */
460014f5 2008 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2009
2010 target_pre_inferior (from_tty);
c906108c
SS
2011}
2012
2013/* Detach a target after doing deferred register stores. */
2014
2015void
52554a0e 2016target_detach (const char *args, int from_tty)
c906108c 2017{
136d6dae
VP
2018 struct target_ops* t;
2019
f5656ead 2020 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2021 /* Don't remove global breakpoints here. They're removed on
2022 disconnection from the target. */
2023 ;
2024 else
2025 /* If we're in breakpoints-always-inserted mode, have to remove
2026 them before detaching. */
dfd4cc63 2027 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2028
24291992
PA
2029 prepare_for_detach ();
2030
09da0d0a 2031 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2032}
2033
6ad8ae5c 2034void
fee354ee 2035target_disconnect (const char *args, int from_tty)
6ad8ae5c 2036{
50c71eaf
PA
2037 /* If we're in breakpoints-always-inserted mode or if breakpoints
2038 are global across processes, we have to remove them before
2039 disconnecting. */
74960c60
VP
2040 remove_breakpoints ();
2041
86a0854a 2042 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2043}
2044
117de6a9 2045ptid_t
47608cb1 2046target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2047{
a7068b60 2048 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2049}
2050
2051char *
2052target_pid_to_str (ptid_t ptid)
2053{
770234d3 2054 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2055}
2056
4694da01
TT
2057char *
2058target_thread_name (struct thread_info *info)
2059{
825828fc 2060 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2061}
2062
e1ac3328 2063void
2ea28649 2064target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2065{
28439f5e
PA
2066 struct target_ops *t;
2067
4e5d721f 2068 target_dcache_invalidate ();
28439f5e 2069
6b84065d 2070 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2071
6b84065d 2072 registers_changed_ptid (ptid);
251bde03
PA
2073 /* We only set the internal executing state here. The user/frontend
2074 running state is set at a higher level. */
6b84065d 2075 set_executing (ptid, 1);
6b84065d 2076 clear_inline_frame_state (ptid);
e1ac3328 2077}
2455069d
UW
2078
2079void
2080target_pass_signals (int numsigs, unsigned char *pass_signals)
2081{
035cad7f 2082 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2083}
2084
9b224c5e
PA
2085void
2086target_program_signals (int numsigs, unsigned char *program_signals)
2087{
7d4f8efa
TT
2088 (*current_target.to_program_signals) (&current_target,
2089 numsigs, program_signals);
9b224c5e
PA
2090}
2091
098dba18
TT
2092static int
2093default_follow_fork (struct target_ops *self, int follow_child,
2094 int detach_fork)
2095{
2096 /* Some target returned a fork event, but did not know how to follow it. */
2097 internal_error (__FILE__, __LINE__,
2098 _("could not find a target to follow fork"));
2099}
2100
ee057212
DJ
2101/* Look through the list of possible targets for a target that can
2102 follow forks. */
2103
2104int
07107ca6 2105target_follow_fork (int follow_child, int detach_fork)
ee057212 2106{
a7068b60
TT
2107 return current_target.to_follow_fork (&current_target,
2108 follow_child, detach_fork);
ee057212
DJ
2109}
2110
8d657035
TT
2111static void
2112default_mourn_inferior (struct target_ops *self)
2113{
2114 internal_error (__FILE__, __LINE__,
2115 _("could not find a target to follow mourn inferior"));
2116}
2117
136d6dae
VP
2118void
2119target_mourn_inferior (void)
2120{
8d657035 2121 current_target.to_mourn_inferior (&current_target);
136d6dae 2122
8d657035
TT
2123 /* We no longer need to keep handles on any of the object files.
2124 Make sure to release them to avoid unnecessarily locking any
2125 of them while we're not actually debugging. */
2126 bfd_cache_close_all ();
136d6dae
VP
2127}
2128
424163ea
DJ
2129/* Look for a target which can describe architectural features, starting
2130 from TARGET. If we find one, return its description. */
2131
2132const struct target_desc *
2133target_read_description (struct target_ops *target)
2134{
2117c711 2135 return target->to_read_description (target);
424163ea
DJ
2136}
2137
58a5184e 2138/* This implements a basic search of memory, reading target memory and
08388c79
DE
2139 performing the search here (as opposed to performing the search in on the
2140 target side with, for example, gdbserver). */
2141
2142int
2143simple_search_memory (struct target_ops *ops,
2144 CORE_ADDR start_addr, ULONGEST search_space_len,
2145 const gdb_byte *pattern, ULONGEST pattern_len,
2146 CORE_ADDR *found_addrp)
2147{
2148 /* NOTE: also defined in find.c testcase. */
2149#define SEARCH_CHUNK_SIZE 16000
2150 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2151 /* Buffer to hold memory contents for searching. */
2152 gdb_byte *search_buf;
2153 unsigned search_buf_size;
2154 struct cleanup *old_cleanups;
2155
2156 search_buf_size = chunk_size + pattern_len - 1;
2157
2158 /* No point in trying to allocate a buffer larger than the search space. */
2159 if (search_space_len < search_buf_size)
2160 search_buf_size = search_space_len;
2161
2162 search_buf = malloc (search_buf_size);
2163 if (search_buf == NULL)
5e1471f5 2164 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2165 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2166
2167 /* Prime the search buffer. */
2168
2169 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2170 search_buf, start_addr, search_buf_size) != search_buf_size)
2171 {
b3dc46ff
AB
2172 warning (_("Unable to access %s bytes of target "
2173 "memory at %s, halting search."),
2174 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2175 do_cleanups (old_cleanups);
2176 return -1;
2177 }
2178
2179 /* Perform the search.
2180
2181 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2182 When we've scanned N bytes we copy the trailing bytes to the start and
2183 read in another N bytes. */
2184
2185 while (search_space_len >= pattern_len)
2186 {
2187 gdb_byte *found_ptr;
2188 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2189
2190 found_ptr = memmem (search_buf, nr_search_bytes,
2191 pattern, pattern_len);
2192
2193 if (found_ptr != NULL)
2194 {
2195 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2196
08388c79
DE
2197 *found_addrp = found_addr;
2198 do_cleanups (old_cleanups);
2199 return 1;
2200 }
2201
2202 /* Not found in this chunk, skip to next chunk. */
2203
2204 /* Don't let search_space_len wrap here, it's unsigned. */
2205 if (search_space_len >= chunk_size)
2206 search_space_len -= chunk_size;
2207 else
2208 search_space_len = 0;
2209
2210 if (search_space_len >= pattern_len)
2211 {
2212 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2213 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2214 int nr_to_read;
2215
2216 /* Copy the trailing part of the previous iteration to the front
2217 of the buffer for the next iteration. */
2218 gdb_assert (keep_len == pattern_len - 1);
2219 memcpy (search_buf, search_buf + chunk_size, keep_len);
2220
2221 nr_to_read = min (search_space_len - keep_len, chunk_size);
2222
2223 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2224 search_buf + keep_len, read_addr,
2225 nr_to_read) != nr_to_read)
2226 {
b3dc46ff 2227 warning (_("Unable to access %s bytes of target "
9b20d036 2228 "memory at %s, halting search."),
b3dc46ff 2229 plongest (nr_to_read),
08388c79
DE
2230 hex_string (read_addr));
2231 do_cleanups (old_cleanups);
2232 return -1;
2233 }
2234
2235 start_addr += chunk_size;
2236 }
2237 }
2238
2239 /* Not found. */
2240
2241 do_cleanups (old_cleanups);
2242 return 0;
2243}
2244
58a5184e
TT
2245/* Default implementation of memory-searching. */
2246
2247static int
2248default_search_memory (struct target_ops *self,
2249 CORE_ADDR start_addr, ULONGEST search_space_len,
2250 const gdb_byte *pattern, ULONGEST pattern_len,
2251 CORE_ADDR *found_addrp)
2252{
2253 /* Start over from the top of the target stack. */
2254 return simple_search_memory (current_target.beneath,
2255 start_addr, search_space_len,
2256 pattern, pattern_len, found_addrp);
2257}
2258
08388c79
DE
2259/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2260 sequence of bytes in PATTERN with length PATTERN_LEN.
2261
2262 The result is 1 if found, 0 if not found, and -1 if there was an error
2263 requiring halting of the search (e.g. memory read error).
2264 If the pattern is found the address is recorded in FOUND_ADDRP. */
2265
2266int
2267target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2268 const gdb_byte *pattern, ULONGEST pattern_len,
2269 CORE_ADDR *found_addrp)
2270{
a7068b60
TT
2271 return current_target.to_search_memory (&current_target, start_addr,
2272 search_space_len,
2273 pattern, pattern_len, found_addrp);
08388c79
DE
2274}
2275
8edfe269
DJ
2276/* Look through the currently pushed targets. If none of them will
2277 be able to restart the currently running process, issue an error
2278 message. */
2279
2280void
2281target_require_runnable (void)
2282{
2283 struct target_ops *t;
2284
2285 for (t = target_stack; t != NULL; t = t->beneath)
2286 {
2287 /* If this target knows how to create a new program, then
2288 assume we will still be able to after killing the current
2289 one. Either killing and mourning will not pop T, or else
2290 find_default_run_target will find it again. */
2291 if (t->to_create_inferior != NULL)
2292 return;
2293
548740d6 2294 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2295 create inferiors. Assume they will be pushed again if
2296 necessary, and continue to the process_stratum. */
85e747d2 2297 if (t->to_stratum == thread_stratum
548740d6 2298 || t->to_stratum == record_stratum
85e747d2 2299 || t->to_stratum == arch_stratum)
8edfe269
DJ
2300 continue;
2301
3e43a32a
MS
2302 error (_("The \"%s\" target does not support \"run\". "
2303 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2304 t->to_shortname);
2305 }
2306
2307 /* This function is only called if the target is running. In that
2308 case there should have been a process_stratum target and it
c378eb4e 2309 should either know how to create inferiors, or not... */
9b20d036 2310 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2311}
2312
6a3cb8e8
PA
2313/* Whether GDB is allowed to fall back to the default run target for
2314 "run", "attach", etc. when no target is connected yet. */
2315static int auto_connect_native_target = 1;
2316
2317static void
2318show_auto_connect_native_target (struct ui_file *file, int from_tty,
2319 struct cmd_list_element *c, const char *value)
2320{
2321 fprintf_filtered (file,
2322 _("Whether GDB may automatically connect to the "
2323 "native target is %s.\n"),
2324 value);
2325}
2326
c906108c
SS
2327/* Look through the list of possible targets for a target that can
2328 execute a run or attach command without any other data. This is
2329 used to locate the default process stratum.
2330
5f667f2d
PA
2331 If DO_MESG is not NULL, the result is always valid (error() is
2332 called for errors); else, return NULL on error. */
c906108c
SS
2333
2334static struct target_ops *
fba45db2 2335find_default_run_target (char *do_mesg)
c906108c 2336{
c906108c 2337 struct target_ops *runable = NULL;
c906108c 2338
6a3cb8e8 2339 if (auto_connect_native_target)
c906108c 2340 {
6a3cb8e8
PA
2341 struct target_ops **t;
2342 int count = 0;
2343
2344 for (t = target_structs; t < target_structs + target_struct_size;
2345 ++t)
c906108c 2346 {
6a3cb8e8
PA
2347 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2348 {
2349 runable = *t;
2350 ++count;
2351 }
c906108c 2352 }
6a3cb8e8
PA
2353
2354 if (count != 1)
2355 runable = NULL;
c906108c
SS
2356 }
2357
6a3cb8e8 2358 if (runable == NULL)
5f667f2d
PA
2359 {
2360 if (do_mesg)
2361 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2362 else
2363 return NULL;
2364 }
c906108c
SS
2365
2366 return runable;
2367}
2368
b3ccfe11 2369/* See target.h. */
c906108c 2370
b3ccfe11
TT
2371struct target_ops *
2372find_attach_target (void)
c906108c
SS
2373{
2374 struct target_ops *t;
2375
b3ccfe11
TT
2376 /* If a target on the current stack can attach, use it. */
2377 for (t = current_target.beneath; t != NULL; t = t->beneath)
2378 {
2379 if (t->to_attach != NULL)
2380 break;
2381 }
c906108c 2382
b3ccfe11
TT
2383 /* Otherwise, use the default run target for attaching. */
2384 if (t == NULL)
2385 t = find_default_run_target ("attach");
b84876c2 2386
b3ccfe11 2387 return t;
b84876c2
PA
2388}
2389
b3ccfe11 2390/* See target.h. */
b84876c2 2391
b3ccfe11
TT
2392struct target_ops *
2393find_run_target (void)
9908b566
VP
2394{
2395 struct target_ops *t;
2396
b3ccfe11
TT
2397 /* If a target on the current stack can attach, use it. */
2398 for (t = current_target.beneath; t != NULL; t = t->beneath)
2399 {
2400 if (t->to_create_inferior != NULL)
2401 break;
2402 }
5d502164 2403
b3ccfe11
TT
2404 /* Otherwise, use the default run target. */
2405 if (t == NULL)
2406 t = find_default_run_target ("run");
9908b566 2407
b3ccfe11 2408 return t;
9908b566
VP
2409}
2410
145b16a9
UW
2411/* Implement the "info proc" command. */
2412
451b7c33 2413int
7bc112c1 2414target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2415{
2416 struct target_ops *t;
2417
2418 /* If we're already connected to something that can get us OS
2419 related data, use it. Otherwise, try using the native
2420 target. */
2421 if (current_target.to_stratum >= process_stratum)
2422 t = current_target.beneath;
2423 else
2424 t = find_default_run_target (NULL);
2425
2426 for (; t != NULL; t = t->beneath)
2427 {
2428 if (t->to_info_proc != NULL)
2429 {
2430 t->to_info_proc (t, args, what);
2431
2432 if (targetdebug)
2433 fprintf_unfiltered (gdb_stdlog,
2434 "target_info_proc (\"%s\", %d)\n", args, what);
2435
451b7c33 2436 return 1;
145b16a9
UW
2437 }
2438 }
2439
451b7c33 2440 return 0;
145b16a9
UW
2441}
2442
03583c20 2443static int
2bfc0540 2444find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2445{
2446 struct target_ops *t;
2447
2448 t = find_default_run_target (NULL);
2449 if (t && t->to_supports_disable_randomization)
2bfc0540 2450 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2451 return 0;
2452}
2453
2454int
2455target_supports_disable_randomization (void)
2456{
2457 struct target_ops *t;
2458
2459 for (t = &current_target; t != NULL; t = t->beneath)
2460 if (t->to_supports_disable_randomization)
2bfc0540 2461 return t->to_supports_disable_randomization (t);
03583c20
UW
2462
2463 return 0;
2464}
9908b566 2465
07e059b5
VP
2466char *
2467target_get_osdata (const char *type)
2468{
07e059b5
VP
2469 struct target_ops *t;
2470
739ef7fb
PA
2471 /* If we're already connected to something that can get us OS
2472 related data, use it. Otherwise, try using the native
2473 target. */
2474 if (current_target.to_stratum >= process_stratum)
6d097e65 2475 t = current_target.beneath;
739ef7fb
PA
2476 else
2477 t = find_default_run_target ("get OS data");
07e059b5
VP
2478
2479 if (!t)
2480 return NULL;
2481
6d097e65 2482 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2483}
2484
8eaff7cd
TT
2485static struct address_space *
2486default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2487{
2488 struct inferior *inf;
6c95b8df
PA
2489
2490 /* Fall-back to the "main" address space of the inferior. */
2491 inf = find_inferior_pid (ptid_get_pid (ptid));
2492
2493 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2494 internal_error (__FILE__, __LINE__,
9b20d036
MS
2495 _("Can't determine the current "
2496 "address space of thread %s\n"),
6c95b8df
PA
2497 target_pid_to_str (ptid));
2498
2499 return inf->aspace;
2500}
2501
8eaff7cd
TT
2502/* Determine the current address space of thread PTID. */
2503
2504struct address_space *
2505target_thread_address_space (ptid_t ptid)
2506{
2507 struct address_space *aspace;
2508
2509 aspace = current_target.to_thread_address_space (&current_target, ptid);
2510 gdb_assert (aspace != NULL);
2511
8eaff7cd
TT
2512 return aspace;
2513}
2514
7313baad
UW
2515
2516/* Target file operations. */
2517
2518static struct target_ops *
2519default_fileio_target (void)
2520{
2521 /* If we're already connected to something that can perform
2522 file I/O, use it. Otherwise, try using the native target. */
2523 if (current_target.to_stratum >= process_stratum)
2524 return current_target.beneath;
2525 else
2526 return find_default_run_target ("file I/O");
2527}
2528
2529/* Open FILENAME on the target, using FLAGS and MODE. Return a
2530 target file descriptor, or -1 if an error occurs (and set
2531 *TARGET_ERRNO). */
2532int
2533target_fileio_open (const char *filename, int flags, int mode,
2534 int *target_errno)
2535{
2536 struct target_ops *t;
2537
2538 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2539 {
2540 if (t->to_fileio_open != NULL)
2541 {
cd897586 2542 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2543
2544 if (targetdebug)
2545 fprintf_unfiltered (gdb_stdlog,
2546 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2547 filename, flags, mode,
2548 fd, fd != -1 ? 0 : *target_errno);
2549 return fd;
2550 }
2551 }
2552
2553 *target_errno = FILEIO_ENOSYS;
2554 return -1;
2555}
2556
2557/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2558 Return the number of bytes written, or -1 if an error occurs
2559 (and set *TARGET_ERRNO). */
2560int
2561target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2562 ULONGEST offset, int *target_errno)
2563{
2564 struct target_ops *t;
2565
2566 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2567 {
2568 if (t->to_fileio_pwrite != NULL)
2569 {
0d866f62 2570 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2571 target_errno);
2572
2573 if (targetdebug)
2574 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2575 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2576 "= %d (%d)\n",
a71b5a38 2577 fd, len, pulongest (offset),
7313baad
UW
2578 ret, ret != -1 ? 0 : *target_errno);
2579 return ret;
2580 }
2581 }
2582
2583 *target_errno = FILEIO_ENOSYS;
2584 return -1;
2585}
2586
2587/* Read up to LEN bytes FD on the target into READ_BUF.
2588 Return the number of bytes read, or -1 if an error occurs
2589 (and set *TARGET_ERRNO). */
2590int
2591target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2592 ULONGEST offset, int *target_errno)
2593{
2594 struct target_ops *t;
2595
2596 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2597 {
2598 if (t->to_fileio_pread != NULL)
2599 {
a3be983c 2600 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2601 target_errno);
2602
2603 if (targetdebug)
2604 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2605 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2606 "= %d (%d)\n",
a71b5a38 2607 fd, len, pulongest (offset),
7313baad
UW
2608 ret, ret != -1 ? 0 : *target_errno);
2609 return ret;
2610 }
2611 }
2612
2613 *target_errno = FILEIO_ENOSYS;
2614 return -1;
2615}
2616
2617/* Close FD on the target. Return 0, or -1 if an error occurs
2618 (and set *TARGET_ERRNO). */
2619int
2620target_fileio_close (int fd, int *target_errno)
2621{
2622 struct target_ops *t;
2623
2624 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2625 {
2626 if (t->to_fileio_close != NULL)
2627 {
df39ea25 2628 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2629
2630 if (targetdebug)
2631 fprintf_unfiltered (gdb_stdlog,
2632 "target_fileio_close (%d) = %d (%d)\n",
2633 fd, ret, ret != -1 ? 0 : *target_errno);
2634 return ret;
2635 }
2636 }
2637
2638 *target_errno = FILEIO_ENOSYS;
2639 return -1;
2640}
2641
2642/* Unlink FILENAME on the target. Return 0, or -1 if an error
2643 occurs (and set *TARGET_ERRNO). */
2644int
2645target_fileio_unlink (const char *filename, int *target_errno)
2646{
2647 struct target_ops *t;
2648
2649 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2650 {
2651 if (t->to_fileio_unlink != NULL)
2652 {
dbbca37d 2653 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2654
2655 if (targetdebug)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "target_fileio_unlink (%s) = %d (%d)\n",
2658 filename, ret, ret != -1 ? 0 : *target_errno);
2659 return ret;
2660 }
2661 }
2662
2663 *target_errno = FILEIO_ENOSYS;
2664 return -1;
2665}
2666
b9e7b9c3
UW
2667/* Read value of symbolic link FILENAME on the target. Return a
2668 null-terminated string allocated via xmalloc, or NULL if an error
2669 occurs (and set *TARGET_ERRNO). */
2670char *
2671target_fileio_readlink (const char *filename, int *target_errno)
2672{
2673 struct target_ops *t;
2674
2675 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2676 {
2677 if (t->to_fileio_readlink != NULL)
2678 {
fab5aa7c 2679 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2680
2681 if (targetdebug)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "target_fileio_readlink (%s) = %s (%d)\n",
2684 filename, ret? ret : "(nil)",
2685 ret? 0 : *target_errno);
2686 return ret;
2687 }
2688 }
2689
2690 *target_errno = FILEIO_ENOSYS;
2691 return NULL;
2692}
2693
7313baad
UW
2694static void
2695target_fileio_close_cleanup (void *opaque)
2696{
2697 int fd = *(int *) opaque;
2698 int target_errno;
2699
2700 target_fileio_close (fd, &target_errno);
2701}
2702
2703/* Read target file FILENAME. Store the result in *BUF_P and
2704 return the size of the transferred data. PADDING additional bytes are
2705 available in *BUF_P. This is a helper function for
2706 target_fileio_read_alloc; see the declaration of that function for more
2707 information. */
2708
2709static LONGEST
2710target_fileio_read_alloc_1 (const char *filename,
2711 gdb_byte **buf_p, int padding)
2712{
2713 struct cleanup *close_cleanup;
2714 size_t buf_alloc, buf_pos;
2715 gdb_byte *buf;
2716 LONGEST n;
2717 int fd;
2718 int target_errno;
2719
2720 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2721 if (fd == -1)
2722 return -1;
2723
2724 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2725
2726 /* Start by reading up to 4K at a time. The target will throttle
2727 this number down if necessary. */
2728 buf_alloc = 4096;
2729 buf = xmalloc (buf_alloc);
2730 buf_pos = 0;
2731 while (1)
2732 {
2733 n = target_fileio_pread (fd, &buf[buf_pos],
2734 buf_alloc - buf_pos - padding, buf_pos,
2735 &target_errno);
2736 if (n < 0)
2737 {
2738 /* An error occurred. */
2739 do_cleanups (close_cleanup);
2740 xfree (buf);
2741 return -1;
2742 }
2743 else if (n == 0)
2744 {
2745 /* Read all there was. */
2746 do_cleanups (close_cleanup);
2747 if (buf_pos == 0)
2748 xfree (buf);
2749 else
2750 *buf_p = buf;
2751 return buf_pos;
2752 }
2753
2754 buf_pos += n;
2755
2756 /* If the buffer is filling up, expand it. */
2757 if (buf_alloc < buf_pos * 2)
2758 {
2759 buf_alloc *= 2;
2760 buf = xrealloc (buf, buf_alloc);
2761 }
2762
2763 QUIT;
2764 }
2765}
2766
2767/* Read target file FILENAME. Store the result in *BUF_P and return
2768 the size of the transferred data. See the declaration in "target.h"
2769 function for more information about the return value. */
2770
2771LONGEST
2772target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2773{
2774 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2775}
2776
2777/* Read target file FILENAME. The result is NUL-terminated and
2778 returned as a string, allocated using xmalloc. If an error occurs
2779 or the transfer is unsupported, NULL is returned. Empty objects
2780 are returned as allocated but empty strings. A warning is issued
2781 if the result contains any embedded NUL bytes. */
2782
2783char *
2784target_fileio_read_stralloc (const char *filename)
2785{
39086a0e
PA
2786 gdb_byte *buffer;
2787 char *bufstr;
7313baad
UW
2788 LONGEST i, transferred;
2789
39086a0e
PA
2790 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2791 bufstr = (char *) buffer;
7313baad
UW
2792
2793 if (transferred < 0)
2794 return NULL;
2795
2796 if (transferred == 0)
2797 return xstrdup ("");
2798
39086a0e 2799 bufstr[transferred] = 0;
7313baad
UW
2800
2801 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2802 for (i = strlen (bufstr); i < transferred; i++)
2803 if (bufstr[i] != 0)
7313baad
UW
2804 {
2805 warning (_("target file %s "
2806 "contained unexpected null characters"),
2807 filename);
2808 break;
2809 }
2810
39086a0e 2811 return bufstr;
7313baad
UW
2812}
2813
2814
e0d24f8d 2815static int
31568a15
TT
2816default_region_ok_for_hw_watchpoint (struct target_ops *self,
2817 CORE_ADDR addr, int len)
e0d24f8d 2818{
f5656ead 2819 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2820}
2821
5009afc5
AS
2822static int
2823default_watchpoint_addr_within_range (struct target_ops *target,
2824 CORE_ADDR addr,
2825 CORE_ADDR start, int length)
2826{
2827 return addr >= start && addr < start + length;
2828}
2829
c2250ad1
UW
2830static struct gdbarch *
2831default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2832{
f5656ead 2833 return target_gdbarch ();
c2250ad1
UW
2834}
2835
c906108c 2836static int
555bbdeb
TT
2837return_zero (struct target_ops *ignore)
2838{
2839 return 0;
2840}
2841
2842static int
2843return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2844{
2845 return 0;
2846}
2847
ed9a39eb
JM
2848/*
2849 * Find the next target down the stack from the specified target.
2850 */
2851
2852struct target_ops *
fba45db2 2853find_target_beneath (struct target_ops *t)
ed9a39eb 2854{
258b763a 2855 return t->beneath;
ed9a39eb
JM
2856}
2857
8b06beed
TT
2858/* See target.h. */
2859
2860struct target_ops *
2861find_target_at (enum strata stratum)
2862{
2863 struct target_ops *t;
2864
2865 for (t = current_target.beneath; t != NULL; t = t->beneath)
2866 if (t->to_stratum == stratum)
2867 return t;
2868
2869 return NULL;
2870}
2871
c906108c
SS
2872\f
2873/* The inferior process has died. Long live the inferior! */
2874
2875void
fba45db2 2876generic_mourn_inferior (void)
c906108c 2877{
7f9f62ba 2878 ptid_t ptid;
c906108c 2879
7f9f62ba 2880 ptid = inferior_ptid;
39f77062 2881 inferior_ptid = null_ptid;
7f9f62ba 2882
f59f708a
PA
2883 /* Mark breakpoints uninserted in case something tries to delete a
2884 breakpoint while we delete the inferior's threads (which would
2885 fail, since the inferior is long gone). */
2886 mark_breakpoints_out ();
2887
7f9f62ba
PA
2888 if (!ptid_equal (ptid, null_ptid))
2889 {
2890 int pid = ptid_get_pid (ptid);
6c95b8df 2891 exit_inferior (pid);
7f9f62ba
PA
2892 }
2893
f59f708a
PA
2894 /* Note this wipes step-resume breakpoints, so needs to be done
2895 after exit_inferior, which ends up referencing the step-resume
2896 breakpoints through clear_thread_inferior_resources. */
c906108c 2897 breakpoint_init_inferior (inf_exited);
f59f708a 2898
c906108c
SS
2899 registers_changed ();
2900
c906108c
SS
2901 reopen_exec_file ();
2902 reinit_frame_cache ();
2903
9a4105ab
AC
2904 if (deprecated_detach_hook)
2905 deprecated_detach_hook ();
c906108c
SS
2906}
2907\f
fd0a2a6f
MK
2908/* Convert a normal process ID to a string. Returns the string in a
2909 static buffer. */
c906108c
SS
2910
2911char *
39f77062 2912normal_pid_to_str (ptid_t ptid)
c906108c 2913{
fd0a2a6f 2914 static char buf[32];
c906108c 2915
5fff8fc0 2916 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
2917 return buf;
2918}
2919
2c0b251b 2920static char *
770234d3 2921default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
2922{
2923 return normal_pid_to_str (ptid);
2924}
2925
9b4eba8e
HZ
2926/* Error-catcher for target_find_memory_regions. */
2927static int
2e73927c
TT
2928dummy_find_memory_regions (struct target_ops *self,
2929 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 2930{
9b4eba8e 2931 error (_("Command not implemented for this target."));
be4d1333
MS
2932 return 0;
2933}
2934
9b4eba8e
HZ
2935/* Error-catcher for target_make_corefile_notes. */
2936static char *
fc6691b2
TT
2937dummy_make_corefile_notes (struct target_ops *self,
2938 bfd *ignore1, int *ignore2)
be4d1333 2939{
9b4eba8e 2940 error (_("Command not implemented for this target."));
be4d1333
MS
2941 return NULL;
2942}
2943
c906108c
SS
2944/* Set up the handful of non-empty slots needed by the dummy target
2945 vector. */
2946
2947static void
fba45db2 2948init_dummy_target (void)
c906108c
SS
2949{
2950 dummy_target.to_shortname = "None";
2951 dummy_target.to_longname = "None";
2952 dummy_target.to_doc = "";
03583c20
UW
2953 dummy_target.to_supports_disable_randomization
2954 = find_default_supports_disable_randomization;
c906108c 2955 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
2956 dummy_target.to_has_all_memory = return_zero;
2957 dummy_target.to_has_memory = return_zero;
2958 dummy_target.to_has_stack = return_zero;
2959 dummy_target.to_has_registers = return_zero;
2960 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 2961 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
2962
2963 install_dummy_methods (&dummy_target);
c906108c 2964}
c906108c 2965\f
c906108c 2966static void
fba45db2 2967debug_to_open (char *args, int from_tty)
c906108c
SS
2968{
2969 debug_target.to_open (args, from_tty);
2970
96baa820 2971 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
c906108c
SS
2972}
2973
f1c07ab0 2974void
460014f5 2975target_close (struct target_ops *targ)
f1c07ab0 2976{
7fdc1521
TT
2977 gdb_assert (!target_is_pushed (targ));
2978
f1c07ab0 2979 if (targ->to_xclose != NULL)
460014f5 2980 targ->to_xclose (targ);
f1c07ab0 2981 else if (targ->to_close != NULL)
de90e03d 2982 targ->to_close (targ);
947b8855
PA
2983
2984 if (targetdebug)
460014f5 2985 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
2986}
2987
28439f5e
PA
2988int
2989target_thread_alive (ptid_t ptid)
c906108c 2990{
a7068b60 2991 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
2992}
2993
2994void
2995target_find_new_threads (void)
2996{
09b0dc2b 2997 current_target.to_find_new_threads (&current_target);
c906108c
SS
2998}
2999
d914c394
SS
3000void
3001target_stop (ptid_t ptid)
3002{
3003 if (!may_stop)
3004 {
3005 warning (_("May not interrupt or stop the target, ignoring attempt"));
3006 return;
3007 }
3008
1eab8a48 3009 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3010}
3011
09826ec5
PA
3012/* Concatenate ELEM to LIST, a comma separate list, and return the
3013 result. The LIST incoming argument is released. */
3014
3015static char *
3016str_comma_list_concat_elem (char *list, const char *elem)
3017{
3018 if (list == NULL)
3019 return xstrdup (elem);
3020 else
3021 return reconcat (list, list, ", ", elem, (char *) NULL);
3022}
3023
3024/* Helper for target_options_to_string. If OPT is present in
3025 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3026 Returns the new resulting string. OPT is removed from
3027 TARGET_OPTIONS. */
3028
3029static char *
3030do_option (int *target_options, char *ret,
3031 int opt, char *opt_str)
3032{
3033 if ((*target_options & opt) != 0)
3034 {
3035 ret = str_comma_list_concat_elem (ret, opt_str);
3036 *target_options &= ~opt;
3037 }
3038
3039 return ret;
3040}
3041
3042char *
3043target_options_to_string (int target_options)
3044{
3045 char *ret = NULL;
3046
3047#define DO_TARG_OPTION(OPT) \
3048 ret = do_option (&target_options, ret, OPT, #OPT)
3049
3050 DO_TARG_OPTION (TARGET_WNOHANG);
3051
3052 if (target_options != 0)
3053 ret = str_comma_list_concat_elem (ret, "unknown???");
3054
3055 if (ret == NULL)
3056 ret = xstrdup ("");
3057 return ret;
3058}
3059
bf0c5130 3060static void
56be3814
UW
3061debug_print_register (const char * func,
3062 struct regcache *regcache, int regno)
bf0c5130 3063{
f8d29908 3064 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3065
bf0c5130 3066 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3067 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3068 && gdbarch_register_name (gdbarch, regno) != NULL
3069 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3070 fprintf_unfiltered (gdb_stdlog, "(%s)",
3071 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3072 else
3073 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3074 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3075 {
e17a4113 3076 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3077 int i, size = register_size (gdbarch, regno);
e362b510 3078 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3079
0ff58721 3080 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3081 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3082 for (i = 0; i < size; i++)
bf0c5130
AC
3083 {
3084 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3085 }
81c4a259 3086 if (size <= sizeof (LONGEST))
bf0c5130 3087 {
e17a4113 3088 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3089
0b1553bc
UW
3090 fprintf_unfiltered (gdb_stdlog, " %s %s",
3091 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3092 }
3093 }
3094 fprintf_unfiltered (gdb_stdlog, "\n");
3095}
3096
28439f5e
PA
3097void
3098target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3099{
ad5989bd
TT
3100 current_target.to_fetch_registers (&current_target, regcache, regno);
3101 if (targetdebug)
3102 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3103}
3104
28439f5e
PA
3105void
3106target_store_registers (struct regcache *regcache, int regno)
c906108c 3107{
28439f5e 3108 struct target_ops *t;
5d502164 3109
d914c394
SS
3110 if (!may_write_registers)
3111 error (_("Writing to registers is not allowed (regno %d)"), regno);
3112
6b84065d
TT
3113 current_target.to_store_registers (&current_target, regcache, regno);
3114 if (targetdebug)
28439f5e 3115 {
6b84065d 3116 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3117 }
c906108c
SS
3118}
3119
dc146f7c
VP
3120int
3121target_core_of_thread (ptid_t ptid)
3122{
a7068b60 3123 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3124}
3125
936d2992
PA
3126int
3127simple_verify_memory (struct target_ops *ops,
3128 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3129{
3130 LONGEST total_xfered = 0;
3131
3132 while (total_xfered < size)
3133 {
3134 ULONGEST xfered_len;
3135 enum target_xfer_status status;
3136 gdb_byte buf[1024];
3137 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3138
3139 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3140 buf, NULL, lma + total_xfered, howmuch,
3141 &xfered_len);
3142 if (status == TARGET_XFER_OK
3143 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3144 {
3145 total_xfered += xfered_len;
3146 QUIT;
3147 }
3148 else
3149 return 0;
3150 }
3151 return 1;
3152}
3153
3154/* Default implementation of memory verification. */
3155
3156static int
3157default_verify_memory (struct target_ops *self,
3158 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3159{
3160 /* Start over from the top of the target stack. */
3161 return simple_verify_memory (current_target.beneath,
3162 data, memaddr, size);
3163}
3164
4a5e7a5b
PA
3165int
3166target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3167{
a7068b60
TT
3168 return current_target.to_verify_memory (&current_target,
3169 data, memaddr, size);
4a5e7a5b
PA
3170}
3171
9c06b0b4
TJB
3172/* The documentation for this function is in its prototype declaration in
3173 target.h. */
3174
3175int
3176target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3177{
a7068b60
TT
3178 return current_target.to_insert_mask_watchpoint (&current_target,
3179 addr, mask, rw);
9c06b0b4
TJB
3180}
3181
3182/* The documentation for this function is in its prototype declaration in
3183 target.h. */
3184
3185int
3186target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3187{
a7068b60
TT
3188 return current_target.to_remove_mask_watchpoint (&current_target,
3189 addr, mask, rw);
9c06b0b4
TJB
3190}
3191
3192/* The documentation for this function is in its prototype declaration
3193 in target.h. */
3194
3195int
3196target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3197{
6c7e5e5c
TT
3198 return current_target.to_masked_watch_num_registers (&current_target,
3199 addr, mask);
9c06b0b4
TJB
3200}
3201
f1310107
TJB
3202/* The documentation for this function is in its prototype declaration
3203 in target.h. */
3204
3205int
3206target_ranged_break_num_registers (void)
3207{
a134316b 3208 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3209}
3210
02d27625
MM
3211/* See target.h. */
3212
02d27625
MM
3213struct btrace_target_info *
3214target_enable_btrace (ptid_t ptid)
3215{
6dc7fcf4 3216 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3217}
3218
3219/* See target.h. */
3220
3221void
3222target_disable_btrace (struct btrace_target_info *btinfo)
3223{
8dc292d3 3224 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3225}
3226
3227/* See target.h. */
3228
3229void
3230target_teardown_btrace (struct btrace_target_info *btinfo)
3231{
9ace480d 3232 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3233}
3234
3235/* See target.h. */
3236
969c39fb
MM
3237enum btrace_error
3238target_read_btrace (VEC (btrace_block_s) **btrace,
3239 struct btrace_target_info *btinfo,
02d27625
MM
3240 enum btrace_read_type type)
3241{
eb5b20d4 3242 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3243}
3244
d02ed0bb
MM
3245/* See target.h. */
3246
7c1687a9
MM
3247void
3248target_stop_recording (void)
3249{
ee97f592 3250 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3251}
3252
3253/* See target.h. */
3254
d02ed0bb 3255void
85e1311a 3256target_save_record (const char *filename)
d02ed0bb 3257{
f09e2107 3258 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3259}
3260
3261/* See target.h. */
3262
3263int
3264target_supports_delete_record (void)
3265{
3266 struct target_ops *t;
3267
3268 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3269 if (t->to_delete_record != delegate_delete_record
3270 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3271 return 1;
3272
3273 return 0;
3274}
3275
3276/* See target.h. */
3277
3278void
3279target_delete_record (void)
3280{
07366925 3281 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3282}
3283
3284/* See target.h. */
3285
3286int
3287target_record_is_replaying (void)
3288{
dd2e9d25 3289 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3290}
3291
3292/* See target.h. */
3293
3294void
3295target_goto_record_begin (void)
3296{
671e76cc 3297 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3298}
3299
3300/* See target.h. */
3301
3302void
3303target_goto_record_end (void)
3304{
e9179bb3 3305 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3306}
3307
3308/* See target.h. */
3309
3310void
3311target_goto_record (ULONGEST insn)
3312{
05969c84 3313 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3314}
3315
67c86d06
MM
3316/* See target.h. */
3317
3318void
3319target_insn_history (int size, int flags)
3320{
3679abfa 3321 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3322}
3323
3324/* See target.h. */
3325
3326void
3327target_insn_history_from (ULONGEST from, int size, int flags)
3328{
8444ab58 3329 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3330}
3331
3332/* See target.h. */
3333
3334void
3335target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3336{
c29302cc 3337 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3338}
3339
15984c13
MM
3340/* See target.h. */
3341
3342void
3343target_call_history (int size, int flags)
3344{
170049d4 3345 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3346}
3347
3348/* See target.h. */
3349
3350void
3351target_call_history_from (ULONGEST begin, int size, int flags)
3352{
16fc27d6 3353 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3354}
3355
3356/* See target.h. */
3357
3358void
3359target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3360{
115d9817 3361 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3362}
3363
ea001bdc
MM
3364/* See target.h. */
3365
3366const struct frame_unwind *
3367target_get_unwinder (void)
3368{
ac01945b 3369 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3370}
3371
3372/* See target.h. */
3373
3374const struct frame_unwind *
3375target_get_tailcall_unwinder (void)
3376{
ac01945b 3377 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3378}
3379
c0eca49f 3380/* Default implementation of to_decr_pc_after_break. */
118e6252 3381
c0eca49f
TT
3382static CORE_ADDR
3383default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3384 struct gdbarch *gdbarch)
3385{
118e6252
MM
3386 return gdbarch_decr_pc_after_break (gdbarch);
3387}
3388
3389/* See target.h. */
3390
3391CORE_ADDR
3392target_decr_pc_after_break (struct gdbarch *gdbarch)
3393{
c0eca49f 3394 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3395}
3396
5fff78c4
MM
3397/* See target.h. */
3398
3399void
3400target_prepare_to_generate_core (void)
3401{
3402 current_target.to_prepare_to_generate_core (&current_target);
3403}
3404
3405/* See target.h. */
3406
3407void
3408target_done_generating_core (void)
3409{
3410 current_target.to_done_generating_core (&current_target);
3411}
3412
c906108c 3413static void
fba45db2 3414setup_target_debug (void)
c906108c
SS
3415{
3416 memcpy (&debug_target, &current_target, sizeof debug_target);
3417
3418 current_target.to_open = debug_to_open;
a7068b60 3419 init_debug_target (&current_target);
c906108c 3420}
c906108c 3421\f
c5aa993b
JM
3422
3423static char targ_desc[] =
3e43a32a
MS
3424"Names of targets and files being debugged.\nShows the entire \
3425stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3426core-file, and process, if any), as well as the symbol file name.";
3427
a53f3625 3428static void
a30bf1f1
TT
3429default_rcmd (struct target_ops *self, const char *command,
3430 struct ui_file *output)
a53f3625
TT
3431{
3432 error (_("\"monitor\" command not supported by this target."));
3433}
3434
96baa820
JM
3435static void
3436do_monitor_command (char *cmd,
3437 int from_tty)
3438{
96baa820
JM
3439 target_rcmd (cmd, gdb_stdtarg);
3440}
3441
87680a14
JB
3442/* Print the name of each layers of our target stack. */
3443
3444static void
3445maintenance_print_target_stack (char *cmd, int from_tty)
3446{
3447 struct target_ops *t;
3448
3449 printf_filtered (_("The current target stack is:\n"));
3450
3451 for (t = target_stack; t != NULL; t = t->beneath)
3452 {
3453 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3454 }
3455}
3456
329ea579
PA
3457/* Controls if targets can report that they can/are async. This is
3458 just for maintainers to use when debugging gdb. */
3459int target_async_permitted = 1;
c6ebd6cf
VP
3460
3461/* The set command writes to this variable. If the inferior is
b5419e49 3462 executing, target_async_permitted is *not* updated. */
329ea579 3463static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3464
3465static void
329ea579
PA
3466maint_set_target_async_command (char *args, int from_tty,
3467 struct cmd_list_element *c)
c6ebd6cf 3468{
c35b1492 3469 if (have_live_inferiors ())
c6ebd6cf
VP
3470 {
3471 target_async_permitted_1 = target_async_permitted;
3472 error (_("Cannot change this setting while the inferior is running."));
3473 }
3474
3475 target_async_permitted = target_async_permitted_1;
3476}
3477
3478static void
329ea579
PA
3479maint_show_target_async_command (struct ui_file *file, int from_tty,
3480 struct cmd_list_element *c,
3481 const char *value)
c6ebd6cf 3482{
3e43a32a
MS
3483 fprintf_filtered (file,
3484 _("Controlling the inferior in "
3485 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3486}
3487
d914c394
SS
3488/* Temporary copies of permission settings. */
3489
3490static int may_write_registers_1 = 1;
3491static int may_write_memory_1 = 1;
3492static int may_insert_breakpoints_1 = 1;
3493static int may_insert_tracepoints_1 = 1;
3494static int may_insert_fast_tracepoints_1 = 1;
3495static int may_stop_1 = 1;
3496
3497/* Make the user-set values match the real values again. */
3498
3499void
3500update_target_permissions (void)
3501{
3502 may_write_registers_1 = may_write_registers;
3503 may_write_memory_1 = may_write_memory;
3504 may_insert_breakpoints_1 = may_insert_breakpoints;
3505 may_insert_tracepoints_1 = may_insert_tracepoints;
3506 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3507 may_stop_1 = may_stop;
3508}
3509
3510/* The one function handles (most of) the permission flags in the same
3511 way. */
3512
3513static void
3514set_target_permissions (char *args, int from_tty,
3515 struct cmd_list_element *c)
3516{
3517 if (target_has_execution)
3518 {
3519 update_target_permissions ();
3520 error (_("Cannot change this setting while the inferior is running."));
3521 }
3522
3523 /* Make the real values match the user-changed values. */
3524 may_write_registers = may_write_registers_1;
3525 may_insert_breakpoints = may_insert_breakpoints_1;
3526 may_insert_tracepoints = may_insert_tracepoints_1;
3527 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3528 may_stop = may_stop_1;
3529 update_observer_mode ();
3530}
3531
3532/* Set memory write permission independently of observer mode. */
3533
3534static void
3535set_write_memory_permission (char *args, int from_tty,
3536 struct cmd_list_element *c)
3537{
3538 /* Make the real values match the user-changed values. */
3539 may_write_memory = may_write_memory_1;
3540 update_observer_mode ();
3541}
3542
3543
c906108c 3544void
fba45db2 3545initialize_targets (void)
c906108c
SS
3546{
3547 init_dummy_target ();
3548 push_target (&dummy_target);
3549
3550 add_info ("target", target_info, targ_desc);
3551 add_info ("files", target_info, targ_desc);
3552
ccce17b0 3553 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3554Set target debugging."), _("\
3555Show target debugging."), _("\
333dabeb
DJ
3556When non-zero, target debugging is enabled. Higher numbers are more\n\
3557verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
85c07804 3558command."),
ccce17b0
YQ
3559 NULL,
3560 show_targetdebug,
3561 &setdebuglist, &showdebuglist);
3a11626d 3562
2bc416ba 3563 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3564 &trust_readonly, _("\
3565Set mode for reading from readonly sections."), _("\
3566Show mode for reading from readonly sections."), _("\
3a11626d
MS
3567When this mode is on, memory reads from readonly sections (such as .text)\n\
3568will be read from the object file instead of from the target. This will\n\
7915a72c 3569result in significant performance improvement for remote targets."),
2c5b56ce 3570 NULL,
920d2a44 3571 show_trust_readonly,
e707bbc2 3572 &setlist, &showlist);
96baa820
JM
3573
3574 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3575 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3576
87680a14
JB
3577 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3578 _("Print the name of each layer of the internal target stack."),
3579 &maintenanceprintlist);
3580
c6ebd6cf
VP
3581 add_setshow_boolean_cmd ("target-async", no_class,
3582 &target_async_permitted_1, _("\
3583Set whether gdb controls the inferior in asynchronous mode."), _("\
3584Show whether gdb controls the inferior in asynchronous mode."), _("\
3585Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3586 maint_set_target_async_command,
3587 maint_show_target_async_command,
3588 &maintenance_set_cmdlist,
3589 &maintenance_show_cmdlist);
c6ebd6cf 3590
d914c394
SS
3591 add_setshow_boolean_cmd ("may-write-registers", class_support,
3592 &may_write_registers_1, _("\
3593Set permission to write into registers."), _("\
3594Show permission to write into registers."), _("\
3595When this permission is on, GDB may write into the target's registers.\n\
3596Otherwise, any sort of write attempt will result in an error."),
3597 set_target_permissions, NULL,
3598 &setlist, &showlist);
3599
3600 add_setshow_boolean_cmd ("may-write-memory", class_support,
3601 &may_write_memory_1, _("\
3602Set permission to write into target memory."), _("\
3603Show permission to write into target memory."), _("\
3604When this permission is on, GDB may write into the target's memory.\n\
3605Otherwise, any sort of write attempt will result in an error."),
3606 set_write_memory_permission, NULL,
3607 &setlist, &showlist);
3608
3609 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3610 &may_insert_breakpoints_1, _("\
3611Set permission to insert breakpoints in the target."), _("\
3612Show permission to insert breakpoints in the target."), _("\
3613When this permission is on, GDB may insert breakpoints in the program.\n\
3614Otherwise, any sort of insertion attempt will result in an error."),
3615 set_target_permissions, NULL,
3616 &setlist, &showlist);
3617
3618 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3619 &may_insert_tracepoints_1, _("\
3620Set permission to insert tracepoints in the target."), _("\
3621Show permission to insert tracepoints in the target."), _("\
3622When this permission is on, GDB may insert tracepoints in the program.\n\
3623Otherwise, any sort of insertion attempt will result in an error."),
3624 set_target_permissions, NULL,
3625 &setlist, &showlist);
3626
3627 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3628 &may_insert_fast_tracepoints_1, _("\
3629Set permission to insert fast tracepoints in the target."), _("\
3630Show permission to insert fast tracepoints in the target."), _("\
3631When this permission is on, GDB may insert fast tracepoints.\n\
3632Otherwise, any sort of insertion attempt will result in an error."),
3633 set_target_permissions, NULL,
3634 &setlist, &showlist);
3635
3636 add_setshow_boolean_cmd ("may-interrupt", class_support,
3637 &may_stop_1, _("\
3638Set permission to interrupt or signal the target."), _("\
3639Show permission to interrupt or signal the target."), _("\
3640When this permission is on, GDB may interrupt/stop the target's execution.\n\
3641Otherwise, any attempt to interrupt or stop will be ignored."),
3642 set_target_permissions, NULL,
3643 &setlist, &showlist);
6a3cb8e8
PA
3644
3645 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3646 &auto_connect_native_target, _("\
3647Set whether GDB may automatically connect to the native target."), _("\
3648Show whether GDB may automatically connect to the native target."), _("\
3649When on, and GDB is not connected to a target yet, GDB\n\
3650attempts \"run\" and other commands with the native target."),
3651 NULL, show_auto_connect_native_target,
3652 &setlist, &showlist);
c906108c 3653}
This page took 2.258836 seconds and 4 git commands to generate.