Introduce 'enum remove_bp_reason'
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
41fd2b0f
PA
46#include "top.h"
47#include "event-top.h"
c906108c 48
a14ed312 49static void target_info (char *, int);
c906108c 50
f0f9ff95
TT
51static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
0a4f40a2 53static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 54
5009afc5
AS
55static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
31568a15
TT
58static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
e0d24f8d 60
a30bf1f1 61static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 62
4229b31d
TT
63static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
098dba18
TT
66static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
8d657035
TT
69static void default_mourn_inferior (struct target_ops *self);
70
58a5184e
TT
71static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
936d2992
PA
78static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
8eaff7cd
TT
82static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
c25c4a8b 85static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 86
555bbdeb
TT
87static int return_zero (struct target_ops *);
88
89static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 90
a14ed312 91static void target_command (char *, int);
c906108c 92
a14ed312 93static struct target_ops *find_default_run_target (char *);
c906108c 94
c2250ad1
UW
95static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
0b5a2719
TT
98static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
16f796b1
TT
102static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
770234d3
TT
105static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
fe31bf5b
TT
107static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
a7068b60
TT
110static struct target_ops debug_target;
111
1101cb7b
TT
112#include "target-delegates.c"
113
a14ed312 114static void init_dummy_target (void);
c906108c 115
3cecbbbe
TT
116static void update_current_target (void);
117
89a1c21a
SM
118/* Vector of existing target structures. */
119typedef struct target_ops *target_ops_p;
120DEF_VEC_P (target_ops_p);
121static VEC (target_ops_p) *target_structs;
c906108c
SS
122
123/* The initial current target, so that there is always a semi-valid
124 current target. */
125
126static struct target_ops dummy_target;
127
128/* Top of target stack. */
129
258b763a 130static struct target_ops *target_stack;
c906108c
SS
131
132/* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135struct target_ops current_target;
136
137/* Command list for target. */
138
139static struct cmd_list_element *targetlist = NULL;
140
cf7a04e8
DJ
141/* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144static int trust_readonly = 0;
145
8defab1a
DJ
146/* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149static int show_memory_breakpoints = 0;
150
d914c394
SS
151/* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155int may_write_registers = 1;
156
157int may_write_memory = 1;
158
159int may_insert_breakpoints = 1;
160
161int may_insert_tracepoints = 1;
162
163int may_insert_fast_tracepoints = 1;
164
165int may_stop = 1;
166
c906108c
SS
167/* Non-zero if we want to see trace of target level stuff. */
168
ccce17b0 169static unsigned int targetdebug = 0;
3cecbbbe
TT
170
171static void
172set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173{
174 update_current_target ();
175}
176
920d2a44
AC
177static void
178show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182}
c906108c 183
a14ed312 184static void setup_target_debug (void);
c906108c 185
c906108c
SS
186/* The user just typed 'target' without the name of a target. */
187
c906108c 188static void
fba45db2 189target_command (char *arg, int from_tty)
c906108c
SS
190{
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193}
194
c35b1492
PA
195/* Default target_has_* methods for process_stratum targets. */
196
197int
198default_child_has_all_memory (struct target_ops *ops)
199{
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205}
206
207int
208default_child_has_memory (struct target_ops *ops)
209{
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215}
216
217int
218default_child_has_stack (struct target_ops *ops)
219{
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225}
226
227int
228default_child_has_registers (struct target_ops *ops)
229{
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235}
236
237int
aeaec162 238default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
239{
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
aeaec162 242 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
243 return 0;
244
245 return 1;
246}
247
248
249int
250target_has_all_memory_1 (void)
251{
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259}
260
261int
262target_has_memory_1 (void)
263{
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271}
272
273int
274target_has_stack_1 (void)
275{
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283}
284
285int
286target_has_registers_1 (void)
287{
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295}
296
297int
aeaec162 298target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
299{
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 303 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
304 return 1;
305
306 return 0;
307}
308
aeaec162
TT
309int
310target_has_execution_current (void)
311{
312 return target_has_execution_1 (inferior_ptid);
313}
314
c22a2b88
TT
315/* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
c906108c
SS
317
318void
c22a2b88 319complete_target_initialization (struct target_ops *t)
c906108c 320{
0088c768 321 /* Provide default values for all "must have" methods. */
0088c768 322
c35b1492 323 if (t->to_has_all_memory == NULL)
555bbdeb 324 t->to_has_all_memory = return_zero;
c35b1492
PA
325
326 if (t->to_has_memory == NULL)
555bbdeb 327 t->to_has_memory = return_zero;
c35b1492
PA
328
329 if (t->to_has_stack == NULL)
555bbdeb 330 t->to_has_stack = return_zero;
c35b1492
PA
331
332 if (t->to_has_registers == NULL)
555bbdeb 333 t->to_has_registers = return_zero;
c35b1492
PA
334
335 if (t->to_has_execution == NULL)
555bbdeb 336 t->to_has_execution = return_zero_has_execution;
1101cb7b 337
b3ccfe11
TT
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
1101cb7b 344 install_delegators (t);
c22a2b88
TT
345}
346
8981c758
TT
347/* This is used to implement the various target commands. */
348
349static void
350open_target (char *args, int from_tty, struct cmd_list_element *command)
351{
19ba03f4 352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363}
364
c22a2b88
TT
365/* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369void
370add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372{
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
c35b1492 376
89a1c21a 377 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
378
379 if (targetlist == NULL)
1bedd215
AC
380 add_prefix_cmd ("target", class_run, target_command, _("\
381Connect to a target machine or process.\n\
c906108c
SS
382The first argument is the type or protocol of the target machine.\n\
383Remaining arguments are interpreted by the target protocol. For more\n\
384information on the arguments for a particular protocol, type\n\
1bedd215 385`help target ' followed by the protocol name."),
c906108c 386 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
9852c492
YQ
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392}
393
394/* Add a possible target architecture to the list. */
395
396void
397add_target (struct target_ops *t)
398{
399 add_target_with_completer (t, NULL);
c906108c
SS
400}
401
b48d48eb
MM
402/* See target.h. */
403
404void
405add_deprecated_target_alias (struct target_ops *t, char *alias)
406{
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
8981c758
TT
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
b48d48eb
MM
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417}
418
c906108c
SS
419/* Stub functions */
420
7d85a9c0
JB
421void
422target_kill (void)
423{
423a4807 424 current_target.to_kill (&current_target);
7d85a9c0
JB
425}
426
11cf8741 427void
9cbe5fff 428target_load (const char *arg, int from_tty)
11cf8741 429{
4e5d721f 430 target_dcache_invalidate ();
71a9f134 431 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
432}
433
5842f62a
PA
434/* Possible terminal states. */
435
436enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
7afa63c6 449static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
450
451/* See target.h. */
452
453void
454target_terminal_init (void)
455{
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459}
460
461/* See target.h. */
462
6fdebc3d
PA
463int
464target_terminal_is_inferior (void)
465{
466 return (terminal_state == terminal_is_inferior);
467}
468
469/* See target.h. */
470
2f99e8fc
YQ
471int
472target_terminal_is_ours (void)
473{
474 return (terminal_state == terminal_is_ours);
475}
476
477/* See target.h. */
478
d9d2d8b6
PA
479void
480target_terminal_inferior (void)
481{
41fd2b0f
PA
482 struct ui *ui = current_ui;
483
d9d2d8b6 484 /* A background resume (``run&'') should leave GDB in control of the
3b12939d
PA
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
d9d2d8b6
PA
487 return;
488
215d3118
PA
489 /* Since we always run the inferior in the main console (unless "set
490 inferior-tty" is in effect), when some UI other than the main one
491 calls target_terminal_inferior/target_terminal_inferior, then we
215d3118
PA
492 leave the main UI's terminal settings as is. */
493 if (ui != main_ui)
494 return;
495
5842f62a
PA
496 if (terminal_state == terminal_is_inferior)
497 return;
498
d9d2d8b6
PA
499 /* If GDB is resuming the inferior in the foreground, install
500 inferior's terminal modes. */
d2f640d4 501 (*current_target.to_terminal_inferior) (&current_target);
5842f62a 502 terminal_state = terminal_is_inferior;
93692b58
PA
503
504 /* If the user hit C-c before, pretend that it was hit right
505 here. */
506 if (check_quit_flag ())
507 target_pass_ctrlc ();
5842f62a
PA
508}
509
510/* See target.h. */
511
512void
513target_terminal_ours (void)
514{
41fd2b0f
PA
515 struct ui *ui = current_ui;
516
215d3118
PA
517 /* See target_terminal_inferior. */
518 if (ui != main_ui)
519 return;
520
5842f62a
PA
521 if (terminal_state == terminal_is_ours)
522 return;
523
524 (*current_target.to_terminal_ours) (&current_target);
525 terminal_state = terminal_is_ours;
526}
527
528/* See target.h. */
529
530void
531target_terminal_ours_for_output (void)
532{
215d3118
PA
533 struct ui *ui = current_ui;
534
535 /* See target_terminal_inferior. */
536 if (ui != main_ui)
537 return;
538
5842f62a
PA
539 if (terminal_state != terminal_is_inferior)
540 return;
541 (*current_target.to_terminal_ours_for_output) (&current_target);
542 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 543}
136d6dae 544
b0ed115f
TT
545/* See target.h. */
546
547int
548target_supports_terminal_ours (void)
549{
550 struct target_ops *t;
551
552 for (t = current_target.beneath; t != NULL; t = t->beneath)
553 {
554 if (t->to_terminal_ours != delegate_terminal_ours
555 && t->to_terminal_ours != tdefault_terminal_ours)
556 return 1;
557 }
558
559 return 0;
560}
561
1abf3a14
SM
562/* Restore the terminal to its previous state (helper for
563 make_cleanup_restore_target_terminal). */
564
565static void
566cleanup_restore_target_terminal (void *arg)
567{
19ba03f4 568 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
569
570 switch (*previous_state)
571 {
572 case terminal_is_ours:
573 target_terminal_ours ();
574 break;
575 case terminal_is_ours_for_output:
576 target_terminal_ours_for_output ();
577 break;
578 case terminal_is_inferior:
579 target_terminal_inferior ();
580 break;
581 }
582}
583
584/* See target.h. */
585
586struct cleanup *
587make_cleanup_restore_target_terminal (void)
588{
8d749320 589 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
590
591 *ts = terminal_state;
592
593 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
594}
595
c906108c 596static void
fba45db2 597tcomplain (void)
c906108c 598{
8a3fe4f8 599 error (_("You can't do that when your target is `%s'"),
c906108c
SS
600 current_target.to_shortname);
601}
602
603void
fba45db2 604noprocess (void)
c906108c 605{
8a3fe4f8 606 error (_("You can't do that without a process to debug."));
c906108c
SS
607}
608
c906108c 609static void
0a4f40a2 610default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 611{
a3f17187 612 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
613}
614
0ef643c8
JB
615/* A default implementation for the to_get_ada_task_ptid target method.
616
617 This function builds the PTID by using both LWP and TID as part of
618 the PTID lwp and tid elements. The pid used is the pid of the
619 inferior_ptid. */
620
2c0b251b 621static ptid_t
1e6b91a4 622default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
623{
624 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
625}
626
32231432 627static enum exec_direction_kind
4c612759 628default_execution_direction (struct target_ops *self)
32231432
PA
629{
630 if (!target_can_execute_reverse)
631 return EXEC_FORWARD;
632 else if (!target_can_async_p ())
633 return EXEC_FORWARD;
634 else
635 gdb_assert_not_reached ("\
636to_execution_direction must be implemented for reverse async");
637}
638
7998dfc3
AC
639/* Go through the target stack from top to bottom, copying over zero
640 entries in current_target, then filling in still empty entries. In
641 effect, we are doing class inheritance through the pushed target
642 vectors.
643
644 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
645 is currently implemented, is that it discards any knowledge of
646 which target an inherited method originally belonged to.
647 Consequently, new new target methods should instead explicitly and
648 locally search the target stack for the target that can handle the
649 request. */
c906108c
SS
650
651static void
7998dfc3 652update_current_target (void)
c906108c 653{
7998dfc3
AC
654 struct target_ops *t;
655
08d8bcd7 656 /* First, reset current's contents. */
7998dfc3
AC
657 memset (&current_target, 0, sizeof (current_target));
658
1101cb7b
TT
659 /* Install the delegators. */
660 install_delegators (&current_target);
661
be4ddd36
TT
662 current_target.to_stratum = target_stack->to_stratum;
663
7998dfc3
AC
664#define INHERIT(FIELD, TARGET) \
665 if (!current_target.FIELD) \
666 current_target.FIELD = (TARGET)->FIELD
667
be4ddd36
TT
668 /* Do not add any new INHERITs here. Instead, use the delegation
669 mechanism provided by make-target-delegates. */
7998dfc3
AC
670 for (t = target_stack; t; t = t->beneath)
671 {
672 INHERIT (to_shortname, t);
673 INHERIT (to_longname, t);
dc177b7a 674 INHERIT (to_attach_no_wait, t);
74174d2e 675 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 676 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 677 INHERIT (to_has_thread_control, t);
7998dfc3
AC
678 }
679#undef INHERIT
680
7998dfc3
AC
681 /* Finally, position the target-stack beneath the squashed
682 "current_target". That way code looking for a non-inherited
683 target method can quickly and simply find it. */
684 current_target.beneath = target_stack;
b4b61fdb
DJ
685
686 if (targetdebug)
687 setup_target_debug ();
c906108c
SS
688}
689
690/* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
c906108c
SS
693 Rather than allow an empty stack, we always have the dummy target at
694 the bottom stratum, so we can call the function vectors without
695 checking them. */
696
b26a4dcb 697void
fba45db2 698push_target (struct target_ops *t)
c906108c 699{
258b763a 700 struct target_ops **cur;
c906108c
SS
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
c5aa993b
JM
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
3e43a32a
MS
709 internal_error (__FILE__, __LINE__,
710 _("failed internal consistency check"));
c906108c
SS
711 }
712
258b763a
AC
713 /* Find the proper stratum to install this target in. */
714 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 715 {
258b763a 716 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
717 break;
718 }
719
258b763a 720 /* If there's already targets at this stratum, remove them. */
88c231eb 721 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
722 targets to CUR, and not just those at this stratum level. */
723 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
724 {
725 /* There's already something at this stratum level. Close it,
726 and un-hook it from the stack. */
727 struct target_ops *tmp = (*cur);
5d502164 728
258b763a
AC
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
460014f5 731 target_close (tmp);
258b763a 732 }
c906108c
SS
733
734 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
735 t->beneath = (*cur);
736 (*cur) = t;
c906108c
SS
737
738 update_current_target ();
c906108c
SS
739}
740
2bc416ba 741/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
742 Return how many times it was removed (0 or 1). */
743
744int
fba45db2 745unpush_target (struct target_ops *t)
c906108c 746{
258b763a
AC
747 struct target_ops **cur;
748 struct target_ops *tmp;
c906108c 749
c8d104ad
PA
750 if (t->to_stratum == dummy_stratum)
751 internal_error (__FILE__, __LINE__,
9b20d036 752 _("Attempt to unpush the dummy target"));
c8d104ad 753
c906108c 754 /* Look for the specified target. Note that we assume that a target
c378eb4e 755 can only occur once in the target stack. */
c906108c 756
258b763a
AC
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
c906108c 762
305436e0
PA
763 /* If we don't find target_ops, quit. Only open targets should be
764 closed. */
258b763a 765 if ((*cur) == NULL)
305436e0 766 return 0;
5269965e 767
c378eb4e 768 /* Unchain the target. */
258b763a
AC
769 tmp = (*cur);
770 (*cur) = (*cur)->beneath;
771 tmp->beneath = NULL;
c906108c
SS
772
773 update_current_target ();
c906108c 774
305436e0
PA
775 /* Finally close the target. Note we do this after unchaining, so
776 any target method calls from within the target_close
777 implementation don't end up in T anymore. */
460014f5 778 target_close (t);
305436e0 779
c906108c
SS
780 return 1;
781}
782
915ef8b1
PA
783/* Unpush TARGET and assert that it worked. */
784
785static void
786unpush_target_and_assert (struct target_ops *target)
787{
788 if (!unpush_target (target))
789 {
790 fprintf_unfiltered (gdb_stderr,
791 "pop_all_targets couldn't find target %s\n",
792 target->to_shortname);
793 internal_error (__FILE__, __LINE__,
794 _("failed internal consistency check"));
795 }
796}
797
aa76d38d 798void
460014f5 799pop_all_targets_above (enum strata above_stratum)
aa76d38d 800{
87ab71f0 801 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
802 unpush_target_and_assert (target_stack);
803}
804
805/* See target.h. */
806
807void
808pop_all_targets_at_and_above (enum strata stratum)
809{
810 while ((int) (current_target.to_stratum) >= (int) stratum)
811 unpush_target_and_assert (target_stack);
aa76d38d
PA
812}
813
87ab71f0 814void
460014f5 815pop_all_targets (void)
87ab71f0 816{
460014f5 817 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
818}
819
c0edd9ed
JK
820/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
821
822int
823target_is_pushed (struct target_ops *t)
824{
84202f9c 825 struct target_ops *cur;
c0edd9ed
JK
826
827 /* Check magic number. If wrong, it probably means someone changed
828 the struct definition, but not all the places that initialize one. */
829 if (t->to_magic != OPS_MAGIC)
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "Magic number of %s target struct wrong\n",
833 t->to_shortname);
3e43a32a
MS
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
c0edd9ed
JK
836 }
837
84202f9c
TT
838 for (cur = target_stack; cur != NULL; cur = cur->beneath)
839 if (cur == t)
c0edd9ed
JK
840 return 1;
841
842 return 0;
843}
844
f0f9ff95
TT
845/* Default implementation of to_get_thread_local_address. */
846
847static void
848generic_tls_error (void)
849{
850 throw_error (TLS_GENERIC_ERROR,
851 _("Cannot find thread-local variables on this target"));
852}
853
72f5cf0e 854/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
855 current thread's thread-local storage with offset OFFSET. */
856CORE_ADDR
857target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
858{
859 volatile CORE_ADDR addr = 0;
f0f9ff95 860 struct target_ops *target = &current_target;
9e35dae4 861
f0f9ff95 862 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
863 {
864 ptid_t ptid = inferior_ptid;
9e35dae4 865
492d29ea 866 TRY
9e35dae4
DJ
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
f5656ead 871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 872 objfile);
9e35dae4 873
3e43a32a
MS
874 addr = target->to_get_thread_local_address (target, ptid,
875 lm_addr, offset);
9e35dae4
DJ
876 }
877 /* If an error occurred, print TLS related messages here. Otherwise,
878 throw the error to some higher catcher. */
492d29ea 879 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
880 {
881 int objfile_is_library = (objfile->flags & OBJF_SHARED);
882
883 switch (ex.error)
884 {
885 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
886 error (_("Cannot find thread-local variables "
887 "in this thread library."));
9e35dae4
DJ
888 break;
889 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
890 if (objfile_is_library)
891 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 892 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
893 else
894 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 895 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
896 break;
897 case TLS_NOT_ALLOCATED_YET_ERROR:
898 if (objfile_is_library)
899 error (_("The inferior has not yet allocated storage for"
900 " thread-local variables in\n"
901 "the shared library `%s'\n"
902 "for %s"),
4262abfb 903 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
904 else
905 error (_("The inferior has not yet allocated storage for"
906 " thread-local variables in\n"
907 "the executable `%s'\n"
908 "for %s"),
4262abfb 909 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
910 break;
911 case TLS_GENERIC_ERROR:
912 if (objfile_is_library)
913 error (_("Cannot find thread-local storage for %s, "
914 "shared library %s:\n%s"),
915 target_pid_to_str (ptid),
4262abfb 916 objfile_name (objfile), ex.message);
9e35dae4
DJ
917 else
918 error (_("Cannot find thread-local storage for %s, "
919 "executable file %s:\n%s"),
920 target_pid_to_str (ptid),
4262abfb 921 objfile_name (objfile), ex.message);
9e35dae4
DJ
922 break;
923 default:
924 throw_exception (ex);
925 break;
926 }
927 }
492d29ea 928 END_CATCH
9e35dae4
DJ
929 }
930 /* It wouldn't be wrong here to try a gdbarch method, too; finding
931 TLS is an ABI-specific thing. But we don't do that yet. */
932 else
933 error (_("Cannot find thread-local variables on this target"));
934
935 return addr;
936}
937
6be7b56e 938const char *
01cb8804 939target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
940{
941#define CASE(X) case X: return #X
01cb8804 942 switch (status)
6be7b56e
PA
943 {
944 CASE(TARGET_XFER_E_IO);
bc113b4e 945 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
946 default:
947 return "<unknown>";
948 }
949#undef CASE
950};
951
952
c906108c
SS
953#undef MIN
954#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
955
956/* target_read_string -- read a null terminated string, up to LEN bytes,
957 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
958 Set *STRING to a pointer to malloc'd memory containing the data; the caller
959 is responsible for freeing it. Return the number of bytes successfully
960 read. */
961
962int
fba45db2 963target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 964{
c2e8b827 965 int tlen, offset, i;
1b0ba102 966 gdb_byte buf[4];
c906108c
SS
967 int errcode = 0;
968 char *buffer;
969 int buffer_allocated;
970 char *bufptr;
971 unsigned int nbytes_read = 0;
972
6217bf3e
MS
973 gdb_assert (string);
974
c906108c
SS
975 /* Small for testing. */
976 buffer_allocated = 4;
224c3ddb 977 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
978 bufptr = buffer;
979
c906108c
SS
980 while (len > 0)
981 {
982 tlen = MIN (len, 4 - (memaddr & 3));
983 offset = memaddr & 3;
984
1b0ba102 985 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
986 if (errcode != 0)
987 {
988 /* The transfer request might have crossed the boundary to an
c378eb4e 989 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
990 a single byte. */
991 tlen = 1;
992 offset = 0;
b8eb5af0 993 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
994 if (errcode != 0)
995 goto done;
996 }
997
998 if (bufptr - buffer + tlen > buffer_allocated)
999 {
1000 unsigned int bytes;
5d502164 1001
c906108c
SS
1002 bytes = bufptr - buffer;
1003 buffer_allocated *= 2;
224c3ddb 1004 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
1005 bufptr = buffer + bytes;
1006 }
1007
1008 for (i = 0; i < tlen; i++)
1009 {
1010 *bufptr++ = buf[i + offset];
1011 if (buf[i + offset] == '\000')
1012 {
1013 nbytes_read += i + 1;
1014 goto done;
1015 }
1016 }
1017
1018 memaddr += tlen;
1019 len -= tlen;
1020 nbytes_read += tlen;
1021 }
c5aa993b 1022done:
6217bf3e 1023 *string = buffer;
c906108c
SS
1024 if (errnop != NULL)
1025 *errnop = errcode;
c906108c
SS
1026 return nbytes_read;
1027}
1028
07b82ea5
PA
1029struct target_section_table *
1030target_get_section_table (struct target_ops *target)
1031{
7e35c012 1032 return (*target->to_get_section_table) (target);
07b82ea5
PA
1033}
1034
8db32d44 1035/* Find a section containing ADDR. */
07b82ea5 1036
0542c86d 1037struct target_section *
8db32d44
AC
1038target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1039{
07b82ea5 1040 struct target_section_table *table = target_get_section_table (target);
0542c86d 1041 struct target_section *secp;
07b82ea5
PA
1042
1043 if (table == NULL)
1044 return NULL;
1045
1046 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1047 {
1048 if (addr >= secp->addr && addr < secp->endaddr)
1049 return secp;
1050 }
1051 return NULL;
1052}
1053
0fec99e8
PA
1054
1055/* Helper for the memory xfer routines. Checks the attributes of the
1056 memory region of MEMADDR against the read or write being attempted.
1057 If the access is permitted returns true, otherwise returns false.
1058 REGION_P is an optional output parameter. If not-NULL, it is
1059 filled with a pointer to the memory region of MEMADDR. REG_LEN
1060 returns LEN trimmed to the end of the region. This is how much the
1061 caller can continue requesting, if the access is permitted. A
1062 single xfer request must not straddle memory region boundaries. */
1063
1064static int
1065memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1066 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1067 struct mem_region **region_p)
1068{
1069 struct mem_region *region;
1070
1071 region = lookup_mem_region (memaddr);
1072
1073 if (region_p != NULL)
1074 *region_p = region;
1075
1076 switch (region->attrib.mode)
1077 {
1078 case MEM_RO:
1079 if (writebuf != NULL)
1080 return 0;
1081 break;
1082
1083 case MEM_WO:
1084 if (readbuf != NULL)
1085 return 0;
1086 break;
1087
1088 case MEM_FLASH:
1089 /* We only support writing to flash during "load" for now. */
1090 if (writebuf != NULL)
1091 error (_("Writing to flash memory forbidden in this context"));
1092 break;
1093
1094 case MEM_NONE:
1095 return 0;
1096 }
1097
1098 /* region->hi == 0 means there's no upper bound. */
1099 if (memaddr + len < region->hi || region->hi == 0)
1100 *reg_len = len;
1101 else
1102 *reg_len = region->hi - memaddr;
1103
1104 return 1;
1105}
1106
9f713294
YQ
1107/* Read memory from more than one valid target. A core file, for
1108 instance, could have some of memory but delegate other bits to
1109 the target below it. So, we must manually try all targets. */
1110
cc9f16aa 1111enum target_xfer_status
17fde6d0 1112raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1113 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1114 ULONGEST *xfered_len)
9f713294 1115{
9b409511 1116 enum target_xfer_status res;
9f713294
YQ
1117
1118 do
1119 {
1120 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1121 readbuf, writebuf, memaddr, len,
1122 xfered_len);
1123 if (res == TARGET_XFER_OK)
9f713294
YQ
1124 break;
1125
633785ff 1126 /* Stop if the target reports that the memory is not available. */
bc113b4e 1127 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1128 break;
1129
9f713294
YQ
1130 /* We want to continue past core files to executables, but not
1131 past a running target's memory. */
1132 if (ops->to_has_all_memory (ops))
1133 break;
1134
1135 ops = ops->beneath;
1136 }
1137 while (ops != NULL);
1138
0f26cec1
PA
1139 /* The cache works at the raw memory level. Make sure the cache
1140 gets updated with raw contents no matter what kind of memory
1141 object was originally being written. Note we do write-through
1142 first, so that if it fails, we don't write to the cache contents
1143 that never made it to the target. */
1144 if (writebuf != NULL
1145 && !ptid_equal (inferior_ptid, null_ptid)
1146 && target_dcache_init_p ()
1147 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1148 {
1149 DCACHE *dcache = target_dcache_get ();
1150
1151 /* Note that writing to an area of memory which wasn't present
1152 in the cache doesn't cause it to be loaded in. */
1153 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1154 }
1155
9f713294
YQ
1156 return res;
1157}
1158
7f79c47e
DE
1159/* Perform a partial memory transfer.
1160 For docs see target.h, to_xfer_partial. */
cf7a04e8 1161
9b409511 1162static enum target_xfer_status
f0ba3972 1163memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1164 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1165 ULONGEST len, ULONGEST *xfered_len)
0779438d 1166{
9b409511 1167 enum target_xfer_status res;
0fec99e8 1168 ULONGEST reg_len;
cf7a04e8 1169 struct mem_region *region;
4e5d721f 1170 struct inferior *inf;
cf7a04e8 1171
07b82ea5
PA
1172 /* For accesses to unmapped overlay sections, read directly from
1173 files. Must do this first, as MEMADDR may need adjustment. */
1174 if (readbuf != NULL && overlay_debugging)
1175 {
1176 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1177
07b82ea5
PA
1178 if (pc_in_unmapped_range (memaddr, section))
1179 {
1180 struct target_section_table *table
1181 = target_get_section_table (ops);
1182 const char *section_name = section->the_bfd_section->name;
5d502164 1183
07b82ea5
PA
1184 memaddr = overlay_mapped_address (memaddr, section);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1186 memaddr, len, xfered_len,
07b82ea5
PA
1187 table->sections,
1188 table->sections_end,
1189 section_name);
1190 }
1191 }
1192
1193 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1194 if (readbuf != NULL && trust_readonly)
1195 {
0542c86d 1196 struct target_section *secp;
07b82ea5 1197 struct target_section_table *table;
cf7a04e8
DJ
1198
1199 secp = target_section_by_addr (ops, memaddr);
1200 if (secp != NULL
2b2848e2
DE
1201 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1202 secp->the_bfd_section)
cf7a04e8 1203 & SEC_READONLY))
07b82ea5
PA
1204 {
1205 table = target_get_section_table (ops);
1206 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1207 memaddr, len, xfered_len,
07b82ea5
PA
1208 table->sections,
1209 table->sections_end,
1210 NULL);
1211 }
98646950
UW
1212 }
1213
cf7a04e8 1214 /* Try GDB's internal data cache. */
cf7a04e8 1215
0fec99e8
PA
1216 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1217 &region))
1218 return TARGET_XFER_E_IO;
cf7a04e8 1219
6c95b8df 1220 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1221 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1222 else
1223 inf = NULL;
4e5d721f
DE
1224
1225 if (inf != NULL
0f26cec1 1226 && readbuf != NULL
2f4d8875
PA
1227 /* The dcache reads whole cache lines; that doesn't play well
1228 with reading from a trace buffer, because reading outside of
1229 the collected memory range fails. */
1230 && get_traceframe_number () == -1
4e5d721f 1231 && (region->attrib.cache
29453a14
YQ
1232 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1233 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1234 {
2a2f9fe4
YQ
1235 DCACHE *dcache = target_dcache_get_or_init ();
1236
0f26cec1
PA
1237 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1238 reg_len, xfered_len);
cf7a04e8
DJ
1239 }
1240
1241 /* If none of those methods found the memory we wanted, fall back
1242 to a target partial transfer. Normally a single call to
1243 to_xfer_partial is enough; if it doesn't recognize an object
1244 it will call the to_xfer_partial of the next target down.
1245 But for memory this won't do. Memory is the only target
9b409511
YQ
1246 object which can be read from more than one valid target.
1247 A core file, for instance, could have some of memory but
1248 delegate other bits to the target below it. So, we must
1249 manually try all targets. */
1250
1251 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1252 xfered_len);
cf7a04e8
DJ
1253
1254 /* If we still haven't got anything, return the last error. We
1255 give up. */
1256 return res;
0779438d
AC
1257}
1258
f0ba3972
PA
1259/* Perform a partial memory transfer. For docs see target.h,
1260 to_xfer_partial. */
1261
9b409511 1262static enum target_xfer_status
f0ba3972 1263memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1264 gdb_byte *readbuf, const gdb_byte *writebuf,
1265 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1266{
9b409511 1267 enum target_xfer_status res;
f0ba3972
PA
1268
1269 /* Zero length requests are ok and require no work. */
1270 if (len == 0)
9b409511 1271 return TARGET_XFER_EOF;
f0ba3972
PA
1272
1273 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1274 breakpoint insns, thus hiding out from higher layers whether
1275 there are software breakpoints inserted in the code stream. */
1276 if (readbuf != NULL)
1277 {
9b409511
YQ
1278 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1279 xfered_len);
f0ba3972 1280
9b409511 1281 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1282 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1283 }
1284 else
1285 {
d7f3ff3e 1286 gdb_byte *buf;
f0ba3972
PA
1287 struct cleanup *old_chain;
1288
67c059c2
AB
1289 /* A large write request is likely to be partially satisfied
1290 by memory_xfer_partial_1. We will continually malloc
1291 and free a copy of the entire write request for breakpoint
1292 shadow handling even though we only end up writing a small
09c98b44
DB
1293 subset of it. Cap writes to a limit specified by the target
1294 to mitigate this. */
1295 len = min (ops->to_get_memory_xfer_limit (ops), len);
67c059c2 1296
d7f3ff3e 1297 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1298 old_chain = make_cleanup (xfree, buf);
1299 memcpy (buf, writebuf, len);
1300
1301 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1302 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1303 xfered_len);
f0ba3972
PA
1304
1305 do_cleanups (old_chain);
1306 }
1307
1308 return res;
1309}
1310
8defab1a
DJ
1311static void
1312restore_show_memory_breakpoints (void *arg)
1313{
1314 show_memory_breakpoints = (uintptr_t) arg;
1315}
1316
1317struct cleanup *
1318make_show_memory_breakpoints_cleanup (int show)
1319{
1320 int current = show_memory_breakpoints;
8defab1a 1321
5d502164 1322 show_memory_breakpoints = show;
8defab1a
DJ
1323 return make_cleanup (restore_show_memory_breakpoints,
1324 (void *) (uintptr_t) current);
1325}
1326
7f79c47e
DE
1327/* For docs see target.h, to_xfer_partial. */
1328
9b409511 1329enum target_xfer_status
27394598
AC
1330target_xfer_partial (struct target_ops *ops,
1331 enum target_object object, const char *annex,
4ac248ca 1332 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1333 ULONGEST offset, ULONGEST len,
1334 ULONGEST *xfered_len)
27394598 1335{
9b409511 1336 enum target_xfer_status retval;
27394598
AC
1337
1338 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1339
ce6d0892
YQ
1340 /* Transfer is done when LEN is zero. */
1341 if (len == 0)
9b409511 1342 return TARGET_XFER_EOF;
ce6d0892 1343
d914c394
SS
1344 if (writebuf && !may_write_memory)
1345 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1346 core_addr_to_string_nz (offset), plongest (len));
1347
9b409511
YQ
1348 *xfered_len = 0;
1349
cf7a04e8
DJ
1350 /* If this is a memory transfer, let the memory-specific code
1351 have a look at it instead. Memory transfers are more
1352 complicated. */
29453a14
YQ
1353 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1354 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1355 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1356 writebuf, offset, len, xfered_len);
9f713294 1357 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1358 {
0fec99e8
PA
1359 /* Skip/avoid accessing the target if the memory region
1360 attributes block the access. Check this here instead of in
1361 raw_memory_xfer_partial as otherwise we'd end up checking
1362 this twice in the case of the memory_xfer_partial path is
1363 taken; once before checking the dcache, and another in the
1364 tail call to raw_memory_xfer_partial. */
1365 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1366 NULL))
1367 return TARGET_XFER_E_IO;
1368
9f713294 1369 /* Request the normal memory object from other layers. */
9b409511
YQ
1370 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1371 xfered_len);
cf7a04e8 1372 }
9f713294
YQ
1373 else
1374 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1375 writebuf, offset, len, xfered_len);
cf7a04e8 1376
27394598
AC
1377 if (targetdebug)
1378 {
1379 const unsigned char *myaddr = NULL;
1380
1381 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1382 "%s:target_xfer_partial "
9b409511 1383 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1384 ops->to_shortname,
1385 (int) object,
1386 (annex ? annex : "(null)"),
53b71562
JB
1387 host_address_to_string (readbuf),
1388 host_address_to_string (writebuf),
0b1553bc 1389 core_addr_to_string_nz (offset),
9b409511
YQ
1390 pulongest (len), retval,
1391 pulongest (*xfered_len));
27394598
AC
1392
1393 if (readbuf)
1394 myaddr = readbuf;
1395 if (writebuf)
1396 myaddr = writebuf;
9b409511 1397 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1398 {
1399 int i;
2bc416ba 1400
27394598 1401 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1402 for (i = 0; i < *xfered_len; i++)
27394598 1403 {
53b71562 1404 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1405 {
1406 if (targetdebug < 2 && i > 0)
1407 {
1408 fprintf_unfiltered (gdb_stdlog, " ...");
1409 break;
1410 }
1411 fprintf_unfiltered (gdb_stdlog, "\n");
1412 }
2bc416ba 1413
27394598
AC
1414 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1415 }
1416 }
2bc416ba 1417
27394598
AC
1418 fputc_unfiltered ('\n', gdb_stdlog);
1419 }
9b409511
YQ
1420
1421 /* Check implementations of to_xfer_partial update *XFERED_LEN
1422 properly. Do assertion after printing debug messages, so that we
1423 can find more clues on assertion failure from debugging messages. */
bc113b4e 1424 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1425 gdb_assert (*xfered_len > 0);
1426
27394598
AC
1427 return retval;
1428}
1429
578d3588
PA
1430/* Read LEN bytes of target memory at address MEMADDR, placing the
1431 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1432 -1 if any error occurs.
c906108c
SS
1433
1434 If an error occurs, no guarantee is made about the contents of the data at
1435 MYADDR. In particular, the caller should not depend upon partial reads
1436 filling the buffer with good data. There is no way for the caller to know
1437 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1438 deal with partial reads should call target_read (which will retry until
c378eb4e 1439 it makes no progress, and then return how much was transferred). */
c906108c
SS
1440
1441int
1b162304 1442target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1443{
c35b1492
PA
1444 /* Dispatch to the topmost target, not the flattened current_target.
1445 Memory accesses check target->to_has_(all_)memory, and the
1446 flattened target doesn't inherit those. */
1447 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1448 myaddr, memaddr, len) == len)
1449 return 0;
0779438d 1450 else
d09f2c3f 1451 return -1;
c906108c
SS
1452}
1453
721ec300
GB
1454/* See target/target.h. */
1455
1456int
1457target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1458{
1459 gdb_byte buf[4];
1460 int r;
1461
1462 r = target_read_memory (memaddr, buf, sizeof buf);
1463 if (r != 0)
1464 return r;
1465 *result = extract_unsigned_integer (buf, sizeof buf,
1466 gdbarch_byte_order (target_gdbarch ()));
1467 return 0;
1468}
1469
aee4bf85
PA
1470/* Like target_read_memory, but specify explicitly that this is a read
1471 from the target's raw memory. That is, this read bypasses the
1472 dcache, breakpoint shadowing, etc. */
1473
1474int
1475target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1476{
1477 /* See comment in target_read_memory about why the request starts at
1478 current_target.beneath. */
1479 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1480 myaddr, memaddr, len) == len)
1481 return 0;
1482 else
d09f2c3f 1483 return -1;
aee4bf85
PA
1484}
1485
4e5d721f
DE
1486/* Like target_read_memory, but specify explicitly that this is a read from
1487 the target's stack. This may trigger different cache behavior. */
1488
1489int
45aa4659 1490target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1491{
aee4bf85
PA
1492 /* See comment in target_read_memory about why the request starts at
1493 current_target.beneath. */
4e5d721f
DE
1494 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1495 myaddr, memaddr, len) == len)
1496 return 0;
1497 else
d09f2c3f 1498 return -1;
4e5d721f
DE
1499}
1500
29453a14
YQ
1501/* Like target_read_memory, but specify explicitly that this is a read from
1502 the target's code. This may trigger different cache behavior. */
1503
1504int
1505target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1506{
aee4bf85
PA
1507 /* See comment in target_read_memory about why the request starts at
1508 current_target.beneath. */
29453a14
YQ
1509 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1510 myaddr, memaddr, len) == len)
1511 return 0;
1512 else
d09f2c3f 1513 return -1;
29453a14
YQ
1514}
1515
7f79c47e 1516/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1517 Returns either 0 for success or -1 if any error occurs. If an
1518 error occurs, no guarantee is made about how much data got written.
1519 Callers that can deal with partial writes should call
1520 target_write. */
7f79c47e 1521
c906108c 1522int
45aa4659 1523target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1524{
aee4bf85
PA
1525 /* See comment in target_read_memory about why the request starts at
1526 current_target.beneath. */
c35b1492 1527 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1528 myaddr, memaddr, len) == len)
1529 return 0;
0779438d 1530 else
d09f2c3f 1531 return -1;
c906108c 1532}
c5aa993b 1533
f0ba3972 1534/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1535 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1536 If an error occurs, no guarantee is made about how much data got
1537 written. Callers that can deal with partial writes should call
1538 target_write. */
f0ba3972
PA
1539
1540int
45aa4659 1541target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1542{
aee4bf85
PA
1543 /* See comment in target_read_memory about why the request starts at
1544 current_target.beneath. */
f0ba3972
PA
1545 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
d09f2c3f 1549 return -1;
f0ba3972
PA
1550}
1551
fd79ecee
DJ
1552/* Fetch the target's memory map. */
1553
1554VEC(mem_region_s) *
1555target_memory_map (void)
1556{
1557 VEC(mem_region_s) *result;
1558 struct mem_region *last_one, *this_one;
1559 int ix;
6b2c5a57 1560 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1561 if (result == NULL)
1562 return NULL;
1563
1564 qsort (VEC_address (mem_region_s, result),
1565 VEC_length (mem_region_s, result),
1566 sizeof (struct mem_region), mem_region_cmp);
1567
1568 /* Check that regions do not overlap. Simultaneously assign
1569 a numbering for the "mem" commands to use to refer to
1570 each region. */
1571 last_one = NULL;
1572 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1573 {
1574 this_one->number = ix;
1575
1576 if (last_one && last_one->hi > this_one->lo)
1577 {
1578 warning (_("Overlapping regions in memory map: ignoring"));
1579 VEC_free (mem_region_s, result);
1580 return NULL;
1581 }
1582 last_one = this_one;
1583 }
1584
1585 return result;
1586}
1587
a76d924d
DJ
1588void
1589target_flash_erase (ULONGEST address, LONGEST length)
1590{
e8a6c6ac 1591 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1592}
1593
1594void
1595target_flash_done (void)
1596{
f6fb2925 1597 current_target.to_flash_done (&current_target);
a76d924d
DJ
1598}
1599
920d2a44
AC
1600static void
1601show_trust_readonly (struct ui_file *file, int from_tty,
1602 struct cmd_list_element *c, const char *value)
1603{
3e43a32a
MS
1604 fprintf_filtered (file,
1605 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1606 value);
1607}
3a11626d 1608
7f79c47e 1609/* Target vector read/write partial wrapper functions. */
0088c768 1610
9b409511 1611static enum target_xfer_status
1e3ff5ad
AC
1612target_read_partial (struct target_ops *ops,
1613 enum target_object object,
1b0ba102 1614 const char *annex, gdb_byte *buf,
9b409511
YQ
1615 ULONGEST offset, ULONGEST len,
1616 ULONGEST *xfered_len)
1e3ff5ad 1617{
9b409511
YQ
1618 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1619 xfered_len);
1e3ff5ad
AC
1620}
1621
8a55ffb0 1622static enum target_xfer_status
1e3ff5ad
AC
1623target_write_partial (struct target_ops *ops,
1624 enum target_object object,
1b0ba102 1625 const char *annex, const gdb_byte *buf,
9b409511 1626 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1627{
9b409511
YQ
1628 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1629 xfered_len);
1e3ff5ad
AC
1630}
1631
1632/* Wrappers to perform the full transfer. */
7f79c47e
DE
1633
1634/* For docs on target_read see target.h. */
1635
1e3ff5ad
AC
1636LONGEST
1637target_read (struct target_ops *ops,
1638 enum target_object object,
1b0ba102 1639 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1640 ULONGEST offset, LONGEST len)
1641{
279a6fed 1642 LONGEST xfered_total = 0;
d309493c
SM
1643 int unit_size = 1;
1644
1645 /* If we are reading from a memory object, find the length of an addressable
1646 unit for that architecture. */
1647 if (object == TARGET_OBJECT_MEMORY
1648 || object == TARGET_OBJECT_STACK_MEMORY
1649 || object == TARGET_OBJECT_CODE_MEMORY
1650 || object == TARGET_OBJECT_RAW_MEMORY)
1651 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1652
279a6fed 1653 while (xfered_total < len)
1e3ff5ad 1654 {
279a6fed 1655 ULONGEST xfered_partial;
9b409511
YQ
1656 enum target_xfer_status status;
1657
1658 status = target_read_partial (ops, object, annex,
d309493c 1659 buf + xfered_total * unit_size,
279a6fed
SM
1660 offset + xfered_total, len - xfered_total,
1661 &xfered_partial);
5d502164 1662
1e3ff5ad 1663 /* Call an observer, notifying them of the xfer progress? */
9b409511 1664 if (status == TARGET_XFER_EOF)
279a6fed 1665 return xfered_total;
9b409511
YQ
1666 else if (status == TARGET_XFER_OK)
1667 {
279a6fed 1668 xfered_total += xfered_partial;
9b409511
YQ
1669 QUIT;
1670 }
1671 else
279a6fed 1672 return TARGET_XFER_E_IO;
9b409511 1673
1e3ff5ad
AC
1674 }
1675 return len;
1676}
1677
f1a507a1
JB
1678/* Assuming that the entire [begin, end) range of memory cannot be
1679 read, try to read whatever subrange is possible to read.
1680
1681 The function returns, in RESULT, either zero or one memory block.
1682 If there's a readable subrange at the beginning, it is completely
1683 read and returned. Any further readable subrange will not be read.
1684 Otherwise, if there's a readable subrange at the end, it will be
1685 completely read and returned. Any readable subranges before it
1686 (obviously, not starting at the beginning), will be ignored. In
1687 other cases -- either no readable subrange, or readable subrange(s)
1688 that is neither at the beginning, or end, nothing is returned.
1689
1690 The purpose of this function is to handle a read across a boundary
1691 of accessible memory in a case when memory map is not available.
1692 The above restrictions are fine for this case, but will give
1693 incorrect results if the memory is 'patchy'. However, supporting
1694 'patchy' memory would require trying to read every single byte,
1695 and it seems unacceptable solution. Explicit memory map is
1696 recommended for this case -- and target_read_memory_robust will
1697 take care of reading multiple ranges then. */
8dedea02
VP
1698
1699static void
3e43a32a 1700read_whatever_is_readable (struct target_ops *ops,
279a6fed 1701 const ULONGEST begin, const ULONGEST end,
d309493c 1702 int unit_size,
8dedea02 1703 VEC(memory_read_result_s) **result)
d5086790 1704{
224c3ddb 1705 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1706 ULONGEST current_begin = begin;
1707 ULONGEST current_end = end;
1708 int forward;
1709 memory_read_result_s r;
9b409511 1710 ULONGEST xfered_len;
8dedea02
VP
1711
1712 /* If we previously failed to read 1 byte, nothing can be done here. */
1713 if (end - begin <= 1)
13b3fd9b
MS
1714 {
1715 xfree (buf);
1716 return;
1717 }
8dedea02
VP
1718
1719 /* Check that either first or the last byte is readable, and give up
c378eb4e 1720 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1721 at the boundary of accessible region. */
1722 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1723 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1724 {
1725 forward = 1;
1726 ++current_begin;
1727 }
1728 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1729 buf + (end - begin) - 1, end - 1, 1,
9b409511 1730 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1731 {
1732 forward = 0;
1733 --current_end;
1734 }
1735 else
1736 {
13b3fd9b 1737 xfree (buf);
8dedea02
VP
1738 return;
1739 }
1740
1741 /* Loop invariant is that the [current_begin, current_end) was previously
1742 found to be not readable as a whole.
1743
1744 Note loop condition -- if the range has 1 byte, we can't divide the range
1745 so there's no point trying further. */
1746 while (current_end - current_begin > 1)
1747 {
1748 ULONGEST first_half_begin, first_half_end;
1749 ULONGEST second_half_begin, second_half_end;
1750 LONGEST xfer;
279a6fed 1751 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1752
8dedea02
VP
1753 if (forward)
1754 {
1755 first_half_begin = current_begin;
1756 first_half_end = middle;
1757 second_half_begin = middle;
1758 second_half_end = current_end;
1759 }
1760 else
1761 {
1762 first_half_begin = middle;
1763 first_half_end = current_end;
1764 second_half_begin = current_begin;
1765 second_half_end = middle;
1766 }
1767
1768 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1769 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1770 first_half_begin,
1771 first_half_end - first_half_begin);
1772
1773 if (xfer == first_half_end - first_half_begin)
1774 {
c378eb4e 1775 /* This half reads up fine. So, the error must be in the
3e43a32a 1776 other half. */
8dedea02
VP
1777 current_begin = second_half_begin;
1778 current_end = second_half_end;
1779 }
1780 else
1781 {
c378eb4e 1782 /* This half is not readable. Because we've tried one byte, we
279a6fed 1783 know some part of this half if actually readable. Go to the next
8dedea02
VP
1784 iteration to divide again and try to read.
1785
1786 We don't handle the other half, because this function only tries
1787 to read a single readable subrange. */
1788 current_begin = first_half_begin;
1789 current_end = first_half_end;
1790 }
1791 }
1792
1793 if (forward)
1794 {
1795 /* The [begin, current_begin) range has been read. */
1796 r.begin = begin;
1797 r.end = current_begin;
1798 r.data = buf;
1799 }
1800 else
1801 {
1802 /* The [current_end, end) range has been read. */
279a6fed 1803 LONGEST region_len = end - current_end;
f1a507a1 1804
224c3ddb 1805 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1806 memcpy (r.data, buf + (current_end - begin) * unit_size,
1807 region_len * unit_size);
8dedea02
VP
1808 r.begin = current_end;
1809 r.end = end;
1810 xfree (buf);
1811 }
1812 VEC_safe_push(memory_read_result_s, (*result), &r);
1813}
1814
1815void
1816free_memory_read_result_vector (void *x)
1817{
9d78f827 1818 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
8dedea02
VP
1819 memory_read_result_s *current;
1820 int ix;
1821
9d78f827 1822 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
8dedea02
VP
1823 {
1824 xfree (current->data);
1825 }
9d78f827 1826 VEC_free (memory_read_result_s, *v);
8dedea02
VP
1827}
1828
1829VEC(memory_read_result_s) *
279a6fed
SM
1830read_memory_robust (struct target_ops *ops,
1831 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1832{
1833 VEC(memory_read_result_s) *result = 0;
d309493c 1834 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
9d78f827
TT
1835 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1836 &result);
8dedea02 1837
279a6fed
SM
1838 LONGEST xfered_total = 0;
1839 while (xfered_total < len)
d5086790 1840 {
279a6fed
SM
1841 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1842 LONGEST region_len;
5d502164 1843
8dedea02
VP
1844 /* If there is no explicit region, a fake one should be created. */
1845 gdb_assert (region);
1846
1847 if (region->hi == 0)
279a6fed 1848 region_len = len - xfered_total;
8dedea02 1849 else
279a6fed 1850 region_len = region->hi - offset;
8dedea02
VP
1851
1852 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1853 {
c378eb4e 1854 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1855 if the region is explicitly marked inaccessible, or
1856 'inaccessible-by-default' is in effect. */
279a6fed 1857 xfered_total += region_len;
8dedea02
VP
1858 }
1859 else
1860 {
279a6fed 1861 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1862 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
9d78f827 1863 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
8dedea02 1864
279a6fed
SM
1865 LONGEST xfered_partial =
1866 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1867 (gdb_byte *) buffer,
1868 offset + xfered_total, to_read);
8dedea02 1869 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1870 if (xfered_partial <= 0)
d5086790 1871 {
c378eb4e 1872 /* Got an error reading full chunk. See if maybe we can read
8dedea02 1873 some subrange. */
9d78f827 1874 do_cleanups (inner_cleanup);
e084c964
DB
1875 read_whatever_is_readable (ops, offset + xfered_total,
1876 offset + xfered_total + to_read,
1877 unit_size, &result);
279a6fed 1878 xfered_total += to_read;
d5086790 1879 }
8dedea02
VP
1880 else
1881 {
1882 struct memory_read_result r;
9d78f827
TT
1883
1884 discard_cleanups (inner_cleanup);
8dedea02 1885 r.data = buffer;
279a6fed
SM
1886 r.begin = offset + xfered_total;
1887 r.end = r.begin + xfered_partial;
8dedea02 1888 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1889 xfered_total += xfered_partial;
8dedea02
VP
1890 }
1891 QUIT;
d5086790 1892 }
d5086790 1893 }
9d78f827
TT
1894
1895 discard_cleanups (cleanup);
8dedea02 1896 return result;
d5086790
VP
1897}
1898
8dedea02 1899
cf7a04e8
DJ
1900/* An alternative to target_write with progress callbacks. */
1901
1e3ff5ad 1902LONGEST
cf7a04e8
DJ
1903target_write_with_progress (struct target_ops *ops,
1904 enum target_object object,
1905 const char *annex, const gdb_byte *buf,
1906 ULONGEST offset, LONGEST len,
1907 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1908{
279a6fed 1909 LONGEST xfered_total = 0;
d309493c
SM
1910 int unit_size = 1;
1911
1912 /* If we are writing to a memory object, find the length of an addressable
1913 unit for that architecture. */
1914 if (object == TARGET_OBJECT_MEMORY
1915 || object == TARGET_OBJECT_STACK_MEMORY
1916 || object == TARGET_OBJECT_CODE_MEMORY
1917 || object == TARGET_OBJECT_RAW_MEMORY)
1918 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1919
1920 /* Give the progress callback a chance to set up. */
1921 if (progress)
1922 (*progress) (0, baton);
1923
279a6fed 1924 while (xfered_total < len)
1e3ff5ad 1925 {
279a6fed 1926 ULONGEST xfered_partial;
9b409511
YQ
1927 enum target_xfer_status status;
1928
1929 status = target_write_partial (ops, object, annex,
d309493c 1930 buf + xfered_total * unit_size,
279a6fed
SM
1931 offset + xfered_total, len - xfered_total,
1932 &xfered_partial);
cf7a04e8 1933
5c328c05 1934 if (status != TARGET_XFER_OK)
279a6fed 1935 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1936
1937 if (progress)
279a6fed 1938 (*progress) (xfered_partial, baton);
cf7a04e8 1939
279a6fed 1940 xfered_total += xfered_partial;
1e3ff5ad
AC
1941 QUIT;
1942 }
1943 return len;
1944}
1945
7f79c47e
DE
1946/* For docs on target_write see target.h. */
1947
cf7a04e8
DJ
1948LONGEST
1949target_write (struct target_ops *ops,
1950 enum target_object object,
1951 const char *annex, const gdb_byte *buf,
1952 ULONGEST offset, LONGEST len)
1953{
1954 return target_write_with_progress (ops, object, annex, buf, offset, len,
1955 NULL, NULL);
1956}
1957
159f81f3
DJ
1958/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1959 the size of the transferred data. PADDING additional bytes are
1960 available in *BUF_P. This is a helper function for
1961 target_read_alloc; see the declaration of that function for more
1962 information. */
13547ab6 1963
159f81f3
DJ
1964static LONGEST
1965target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1966 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1967{
1968 size_t buf_alloc, buf_pos;
1969 gdb_byte *buf;
13547ab6
DJ
1970
1971 /* This function does not have a length parameter; it reads the
1972 entire OBJECT). Also, it doesn't support objects fetched partly
1973 from one target and partly from another (in a different stratum,
1974 e.g. a core file and an executable). Both reasons make it
1975 unsuitable for reading memory. */
1976 gdb_assert (object != TARGET_OBJECT_MEMORY);
1977
1978 /* Start by reading up to 4K at a time. The target will throttle
1979 this number down if necessary. */
1980 buf_alloc = 4096;
224c3ddb 1981 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1982 buf_pos = 0;
1983 while (1)
1984 {
9b409511
YQ
1985 ULONGEST xfered_len;
1986 enum target_xfer_status status;
1987
1988 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1989 buf_pos, buf_alloc - buf_pos - padding,
1990 &xfered_len);
1991
1992 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1993 {
1994 /* Read all there was. */
1995 if (buf_pos == 0)
1996 xfree (buf);
1997 else
1998 *buf_p = buf;
1999 return buf_pos;
2000 }
9b409511
YQ
2001 else if (status != TARGET_XFER_OK)
2002 {
2003 /* An error occurred. */
2004 xfree (buf);
2005 return TARGET_XFER_E_IO;
2006 }
13547ab6 2007
9b409511 2008 buf_pos += xfered_len;
13547ab6
DJ
2009
2010 /* If the buffer is filling up, expand it. */
2011 if (buf_alloc < buf_pos * 2)
2012 {
2013 buf_alloc *= 2;
224c3ddb 2014 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
2015 }
2016
2017 QUIT;
2018 }
2019}
2020
159f81f3
DJ
2021/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2022 the size of the transferred data. See the declaration in "target.h"
2023 function for more information about the return value. */
2024
2025LONGEST
2026target_read_alloc (struct target_ops *ops, enum target_object object,
2027 const char *annex, gdb_byte **buf_p)
2028{
2029 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2030}
2031
2032/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2033 returned as a string, allocated using xmalloc. If an error occurs
2034 or the transfer is unsupported, NULL is returned. Empty objects
2035 are returned as allocated but empty strings. A warning is issued
2036 if the result contains any embedded NUL bytes. */
2037
2038char *
2039target_read_stralloc (struct target_ops *ops, enum target_object object,
2040 const char *annex)
2041{
39086a0e
PA
2042 gdb_byte *buffer;
2043 char *bufstr;
7313baad 2044 LONGEST i, transferred;
159f81f3 2045
39086a0e
PA
2046 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2047 bufstr = (char *) buffer;
159f81f3
DJ
2048
2049 if (transferred < 0)
2050 return NULL;
2051
2052 if (transferred == 0)
2053 return xstrdup ("");
2054
39086a0e 2055 bufstr[transferred] = 0;
7313baad
UW
2056
2057 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2058 for (i = strlen (bufstr); i < transferred; i++)
2059 if (bufstr[i] != 0)
7313baad
UW
2060 {
2061 warning (_("target object %d, annex %s, "
2062 "contained unexpected null characters"),
2063 (int) object, annex ? annex : "(none)");
2064 break;
2065 }
159f81f3 2066
39086a0e 2067 return bufstr;
159f81f3
DJ
2068}
2069
b6591e8b
AC
2070/* Memory transfer methods. */
2071
2072void
1b0ba102 2073get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2074 LONGEST len)
2075{
07b82ea5
PA
2076 /* This method is used to read from an alternate, non-current
2077 target. This read must bypass the overlay support (as symbols
2078 don't match this target), and GDB's internal cache (wrong cache
2079 for this target). */
2080 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2081 != len)
578d3588 2082 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2083}
2084
2085ULONGEST
5d502164
MS
2086get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2087 int len, enum bfd_endian byte_order)
b6591e8b 2088{
f6519ebc 2089 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2090
2091 gdb_assert (len <= sizeof (buf));
2092 get_target_memory (ops, addr, buf, len);
e17a4113 2093 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2094}
2095
3db08215
MM
2096/* See target.h. */
2097
d914c394
SS
2098int
2099target_insert_breakpoint (struct gdbarch *gdbarch,
2100 struct bp_target_info *bp_tgt)
2101{
2102 if (!may_insert_breakpoints)
2103 {
2104 warning (_("May not insert breakpoints"));
2105 return 1;
2106 }
2107
6b84065d
TT
2108 return current_target.to_insert_breakpoint (&current_target,
2109 gdbarch, bp_tgt);
d914c394
SS
2110}
2111
3db08215
MM
2112/* See target.h. */
2113
d914c394 2114int
6b84065d
TT
2115target_remove_breakpoint (struct gdbarch *gdbarch,
2116 struct bp_target_info *bp_tgt)
d914c394
SS
2117{
2118 /* This is kind of a weird case to handle, but the permission might
2119 have been changed after breakpoints were inserted - in which case
2120 we should just take the user literally and assume that any
2121 breakpoints should be left in place. */
2122 if (!may_insert_breakpoints)
2123 {
2124 warning (_("May not remove breakpoints"));
2125 return 1;
2126 }
2127
6b84065d
TT
2128 return current_target.to_remove_breakpoint (&current_target,
2129 gdbarch, bp_tgt);
d914c394
SS
2130}
2131
c906108c 2132static void
fba45db2 2133target_info (char *args, int from_tty)
c906108c
SS
2134{
2135 struct target_ops *t;
c906108c 2136 int has_all_mem = 0;
c5aa993b 2137
c906108c 2138 if (symfile_objfile != NULL)
4262abfb
JK
2139 printf_unfiltered (_("Symbols from \"%s\".\n"),
2140 objfile_name (symfile_objfile));
c906108c 2141
258b763a 2142 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2143 {
c35b1492 2144 if (!(*t->to_has_memory) (t))
c906108c
SS
2145 continue;
2146
c5aa993b 2147 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2148 continue;
2149 if (has_all_mem)
3e43a32a
MS
2150 printf_unfiltered (_("\tWhile running this, "
2151 "GDB does not access memory from...\n"));
c5aa993b
JM
2152 printf_unfiltered ("%s:\n", t->to_longname);
2153 (t->to_files_info) (t);
c35b1492 2154 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2155 }
2156}
2157
fd79ecee
DJ
2158/* This function is called before any new inferior is created, e.g.
2159 by running a program, attaching, or connecting to a target.
2160 It cleans up any state from previous invocations which might
2161 change between runs. This is a subset of what target_preopen
2162 resets (things which might change between targets). */
2163
2164void
2165target_pre_inferior (int from_tty)
2166{
c378eb4e 2167 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2168 inferior might have survived and is entirely wrong for the new
c378eb4e 2169 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2170 to reproduce:
2171
2172 bash$ ./foo&
2173 [1] 4711
2174 bash$ ./foo&
2175 [1] 4712
2176 bash$ gdb ./foo
2177 [...]
2178 (gdb) attach 4711
2179 (gdb) detach
2180 (gdb) attach 4712
2181 Cannot access memory at address 0xdeadbeef
2182 */
b9db4ced 2183
50c71eaf
PA
2184 /* In some OSs, the shared library list is the same/global/shared
2185 across inferiors. If code is shared between processes, so are
2186 memory regions and features. */
f5656ead 2187 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2188 {
2189 no_shared_libraries (NULL, from_tty);
2190
2191 invalidate_target_mem_regions ();
424163ea 2192
50c71eaf
PA
2193 target_clear_description ();
2194 }
8ffcbaaf 2195
e9756d52
PP
2196 /* attach_flag may be set if the previous process associated with
2197 the inferior was attached to. */
2198 current_inferior ()->attach_flag = 0;
2199
5d5658a1
PA
2200 current_inferior ()->highest_thread_num = 0;
2201
8ffcbaaf 2202 agent_capability_invalidate ();
fd79ecee
DJ
2203}
2204
b8fa0bfa
PA
2205/* Callback for iterate_over_inferiors. Gets rid of the given
2206 inferior. */
2207
2208static int
2209dispose_inferior (struct inferior *inf, void *args)
2210{
2211 struct thread_info *thread;
2212
2213 thread = any_thread_of_process (inf->pid);
2214 if (thread)
2215 {
2216 switch_to_thread (thread->ptid);
2217
2218 /* Core inferiors actually should be detached, not killed. */
2219 if (target_has_execution)
2220 target_kill ();
2221 else
2222 target_detach (NULL, 0);
2223 }
2224
2225 return 0;
2226}
2227
c906108c
SS
2228/* This is to be called by the open routine before it does
2229 anything. */
2230
2231void
fba45db2 2232target_preopen (int from_tty)
c906108c 2233{
c5aa993b 2234 dont_repeat ();
c906108c 2235
b8fa0bfa 2236 if (have_inferiors ())
c5aa993b 2237 {
adf40b2e 2238 if (!from_tty
b8fa0bfa
PA
2239 || !have_live_inferiors ()
2240 || query (_("A program is being debugged already. Kill it? ")))
2241 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2242 else
8a3fe4f8 2243 error (_("Program not killed."));
c906108c
SS
2244 }
2245
2246 /* Calling target_kill may remove the target from the stack. But if
2247 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2248 /* Leave the exec target, though. The user may be switching from a
2249 live process to a core of the same program. */
460014f5 2250 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2251
2252 target_pre_inferior (from_tty);
c906108c
SS
2253}
2254
2255/* Detach a target after doing deferred register stores. */
2256
2257void
52554a0e 2258target_detach (const char *args, int from_tty)
c906108c 2259{
f5656ead 2260 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2261 /* Don't remove global breakpoints here. They're removed on
2262 disconnection from the target. */
2263 ;
2264 else
2265 /* If we're in breakpoints-always-inserted mode, have to remove
2266 them before detaching. */
dfd4cc63 2267 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2268
24291992
PA
2269 prepare_for_detach ();
2270
09da0d0a 2271 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2272}
2273
6ad8ae5c 2274void
fee354ee 2275target_disconnect (const char *args, int from_tty)
6ad8ae5c 2276{
50c71eaf
PA
2277 /* If we're in breakpoints-always-inserted mode or if breakpoints
2278 are global across processes, we have to remove them before
2279 disconnecting. */
74960c60
VP
2280 remove_breakpoints ();
2281
86a0854a 2282 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2283}
2284
117de6a9 2285ptid_t
47608cb1 2286target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2287{
a7068b60 2288 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2289}
2290
0b333c5e
PA
2291/* See target.h. */
2292
2293ptid_t
2294default_target_wait (struct target_ops *ops,
2295 ptid_t ptid, struct target_waitstatus *status,
2296 int options)
2297{
2298 status->kind = TARGET_WAITKIND_IGNORE;
2299 return minus_one_ptid;
2300}
2301
117de6a9
PA
2302char *
2303target_pid_to_str (ptid_t ptid)
2304{
770234d3 2305 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2306}
2307
73ede765 2308const char *
4694da01
TT
2309target_thread_name (struct thread_info *info)
2310{
825828fc 2311 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2312}
2313
e1ac3328 2314void
2ea28649 2315target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2316{
4e5d721f 2317 target_dcache_invalidate ();
28439f5e 2318
6b84065d 2319 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2320
6b84065d 2321 registers_changed_ptid (ptid);
251bde03
PA
2322 /* We only set the internal executing state here. The user/frontend
2323 running state is set at a higher level. */
6b84065d 2324 set_executing (ptid, 1);
6b84065d 2325 clear_inline_frame_state (ptid);
e1ac3328 2326}
2455069d
UW
2327
2328void
2329target_pass_signals (int numsigs, unsigned char *pass_signals)
2330{
035cad7f 2331 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2332}
2333
9b224c5e
PA
2334void
2335target_program_signals (int numsigs, unsigned char *program_signals)
2336{
7d4f8efa
TT
2337 (*current_target.to_program_signals) (&current_target,
2338 numsigs, program_signals);
9b224c5e
PA
2339}
2340
098dba18
TT
2341static int
2342default_follow_fork (struct target_ops *self, int follow_child,
2343 int detach_fork)
2344{
2345 /* Some target returned a fork event, but did not know how to follow it. */
2346 internal_error (__FILE__, __LINE__,
2347 _("could not find a target to follow fork"));
2348}
2349
ee057212
DJ
2350/* Look through the list of possible targets for a target that can
2351 follow forks. */
2352
2353int
07107ca6 2354target_follow_fork (int follow_child, int detach_fork)
ee057212 2355{
a7068b60
TT
2356 return current_target.to_follow_fork (&current_target,
2357 follow_child, detach_fork);
ee057212
DJ
2358}
2359
94585166
DB
2360/* Target wrapper for follow exec hook. */
2361
2362void
2363target_follow_exec (struct inferior *inf, char *execd_pathname)
2364{
2365 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2366}
2367
8d657035
TT
2368static void
2369default_mourn_inferior (struct target_ops *self)
2370{
2371 internal_error (__FILE__, __LINE__,
2372 _("could not find a target to follow mourn inferior"));
2373}
2374
136d6dae
VP
2375void
2376target_mourn_inferior (void)
2377{
8d657035 2378 current_target.to_mourn_inferior (&current_target);
136d6dae 2379
8d657035
TT
2380 /* We no longer need to keep handles on any of the object files.
2381 Make sure to release them to avoid unnecessarily locking any
2382 of them while we're not actually debugging. */
2383 bfd_cache_close_all ();
136d6dae
VP
2384}
2385
424163ea
DJ
2386/* Look for a target which can describe architectural features, starting
2387 from TARGET. If we find one, return its description. */
2388
2389const struct target_desc *
2390target_read_description (struct target_ops *target)
2391{
2117c711 2392 return target->to_read_description (target);
424163ea
DJ
2393}
2394
58a5184e 2395/* This implements a basic search of memory, reading target memory and
08388c79
DE
2396 performing the search here (as opposed to performing the search in on the
2397 target side with, for example, gdbserver). */
2398
2399int
2400simple_search_memory (struct target_ops *ops,
2401 CORE_ADDR start_addr, ULONGEST search_space_len,
2402 const gdb_byte *pattern, ULONGEST pattern_len,
2403 CORE_ADDR *found_addrp)
2404{
2405 /* NOTE: also defined in find.c testcase. */
2406#define SEARCH_CHUNK_SIZE 16000
2407 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2408 /* Buffer to hold memory contents for searching. */
2409 gdb_byte *search_buf;
2410 unsigned search_buf_size;
2411 struct cleanup *old_cleanups;
2412
2413 search_buf_size = chunk_size + pattern_len - 1;
2414
2415 /* No point in trying to allocate a buffer larger than the search space. */
2416 if (search_space_len < search_buf_size)
2417 search_buf_size = search_space_len;
2418
224c3ddb 2419 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2420 if (search_buf == NULL)
5e1471f5 2421 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2422 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2423
2424 /* Prime the search buffer. */
2425
2426 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2427 search_buf, start_addr, search_buf_size) != search_buf_size)
2428 {
b3dc46ff
AB
2429 warning (_("Unable to access %s bytes of target "
2430 "memory at %s, halting search."),
2431 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2432 do_cleanups (old_cleanups);
2433 return -1;
2434 }
2435
2436 /* Perform the search.
2437
2438 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2439 When we've scanned N bytes we copy the trailing bytes to the start and
2440 read in another N bytes. */
2441
2442 while (search_space_len >= pattern_len)
2443 {
2444 gdb_byte *found_ptr;
2445 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2446
d7f3ff3e
SM
2447 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2448 pattern, pattern_len);
08388c79
DE
2449
2450 if (found_ptr != NULL)
2451 {
2452 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2453
08388c79
DE
2454 *found_addrp = found_addr;
2455 do_cleanups (old_cleanups);
2456 return 1;
2457 }
2458
2459 /* Not found in this chunk, skip to next chunk. */
2460
2461 /* Don't let search_space_len wrap here, it's unsigned. */
2462 if (search_space_len >= chunk_size)
2463 search_space_len -= chunk_size;
2464 else
2465 search_space_len = 0;
2466
2467 if (search_space_len >= pattern_len)
2468 {
2469 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2470 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2471 int nr_to_read;
2472
2473 /* Copy the trailing part of the previous iteration to the front
2474 of the buffer for the next iteration. */
2475 gdb_assert (keep_len == pattern_len - 1);
2476 memcpy (search_buf, search_buf + chunk_size, keep_len);
2477
2478 nr_to_read = min (search_space_len - keep_len, chunk_size);
2479
2480 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2481 search_buf + keep_len, read_addr,
2482 nr_to_read) != nr_to_read)
2483 {
b3dc46ff 2484 warning (_("Unable to access %s bytes of target "
9b20d036 2485 "memory at %s, halting search."),
b3dc46ff 2486 plongest (nr_to_read),
08388c79
DE
2487 hex_string (read_addr));
2488 do_cleanups (old_cleanups);
2489 return -1;
2490 }
2491
2492 start_addr += chunk_size;
2493 }
2494 }
2495
2496 /* Not found. */
2497
2498 do_cleanups (old_cleanups);
2499 return 0;
2500}
2501
58a5184e
TT
2502/* Default implementation of memory-searching. */
2503
2504static int
2505default_search_memory (struct target_ops *self,
2506 CORE_ADDR start_addr, ULONGEST search_space_len,
2507 const gdb_byte *pattern, ULONGEST pattern_len,
2508 CORE_ADDR *found_addrp)
2509{
2510 /* Start over from the top of the target stack. */
2511 return simple_search_memory (current_target.beneath,
2512 start_addr, search_space_len,
2513 pattern, pattern_len, found_addrp);
2514}
2515
08388c79
DE
2516/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2517 sequence of bytes in PATTERN with length PATTERN_LEN.
2518
2519 The result is 1 if found, 0 if not found, and -1 if there was an error
2520 requiring halting of the search (e.g. memory read error).
2521 If the pattern is found the address is recorded in FOUND_ADDRP. */
2522
2523int
2524target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2525 const gdb_byte *pattern, ULONGEST pattern_len,
2526 CORE_ADDR *found_addrp)
2527{
a7068b60
TT
2528 return current_target.to_search_memory (&current_target, start_addr,
2529 search_space_len,
2530 pattern, pattern_len, found_addrp);
08388c79
DE
2531}
2532
8edfe269
DJ
2533/* Look through the currently pushed targets. If none of them will
2534 be able to restart the currently running process, issue an error
2535 message. */
2536
2537void
2538target_require_runnable (void)
2539{
2540 struct target_ops *t;
2541
2542 for (t = target_stack; t != NULL; t = t->beneath)
2543 {
2544 /* If this target knows how to create a new program, then
2545 assume we will still be able to after killing the current
2546 one. Either killing and mourning will not pop T, or else
2547 find_default_run_target will find it again. */
2548 if (t->to_create_inferior != NULL)
2549 return;
2550
548740d6 2551 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2552 create inferiors. Assume they will be pushed again if
2553 necessary, and continue to the process_stratum. */
85e747d2 2554 if (t->to_stratum == thread_stratum
548740d6 2555 || t->to_stratum == record_stratum
85e747d2 2556 || t->to_stratum == arch_stratum)
8edfe269
DJ
2557 continue;
2558
3e43a32a
MS
2559 error (_("The \"%s\" target does not support \"run\". "
2560 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2561 t->to_shortname);
2562 }
2563
2564 /* This function is only called if the target is running. In that
2565 case there should have been a process_stratum target and it
c378eb4e 2566 should either know how to create inferiors, or not... */
9b20d036 2567 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2568}
2569
6a3cb8e8
PA
2570/* Whether GDB is allowed to fall back to the default run target for
2571 "run", "attach", etc. when no target is connected yet. */
2572static int auto_connect_native_target = 1;
2573
2574static void
2575show_auto_connect_native_target (struct ui_file *file, int from_tty,
2576 struct cmd_list_element *c, const char *value)
2577{
2578 fprintf_filtered (file,
2579 _("Whether GDB may automatically connect to the "
2580 "native target is %s.\n"),
2581 value);
2582}
2583
c906108c
SS
2584/* Look through the list of possible targets for a target that can
2585 execute a run or attach command without any other data. This is
2586 used to locate the default process stratum.
2587
5f667f2d
PA
2588 If DO_MESG is not NULL, the result is always valid (error() is
2589 called for errors); else, return NULL on error. */
c906108c
SS
2590
2591static struct target_ops *
fba45db2 2592find_default_run_target (char *do_mesg)
c906108c 2593{
c906108c 2594 struct target_ops *runable = NULL;
c906108c 2595
6a3cb8e8 2596 if (auto_connect_native_target)
c906108c 2597 {
89a1c21a 2598 struct target_ops *t;
6a3cb8e8 2599 int count = 0;
89a1c21a 2600 int i;
6a3cb8e8 2601
89a1c21a 2602 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2603 {
89a1c21a 2604 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2605 {
89a1c21a 2606 runable = t;
6a3cb8e8
PA
2607 ++count;
2608 }
c906108c 2609 }
6a3cb8e8
PA
2610
2611 if (count != 1)
2612 runable = NULL;
c906108c
SS
2613 }
2614
6a3cb8e8 2615 if (runable == NULL)
5f667f2d
PA
2616 {
2617 if (do_mesg)
2618 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2619 else
2620 return NULL;
2621 }
c906108c
SS
2622
2623 return runable;
2624}
2625
b3ccfe11 2626/* See target.h. */
c906108c 2627
b3ccfe11
TT
2628struct target_ops *
2629find_attach_target (void)
c906108c
SS
2630{
2631 struct target_ops *t;
2632
b3ccfe11
TT
2633 /* If a target on the current stack can attach, use it. */
2634 for (t = current_target.beneath; t != NULL; t = t->beneath)
2635 {
2636 if (t->to_attach != NULL)
2637 break;
2638 }
c906108c 2639
b3ccfe11
TT
2640 /* Otherwise, use the default run target for attaching. */
2641 if (t == NULL)
2642 t = find_default_run_target ("attach");
b84876c2 2643
b3ccfe11 2644 return t;
b84876c2
PA
2645}
2646
b3ccfe11 2647/* See target.h. */
b84876c2 2648
b3ccfe11
TT
2649struct target_ops *
2650find_run_target (void)
9908b566
VP
2651{
2652 struct target_ops *t;
2653
b3ccfe11
TT
2654 /* If a target on the current stack can attach, use it. */
2655 for (t = current_target.beneath; t != NULL; t = t->beneath)
2656 {
2657 if (t->to_create_inferior != NULL)
2658 break;
2659 }
5d502164 2660
b3ccfe11
TT
2661 /* Otherwise, use the default run target. */
2662 if (t == NULL)
2663 t = find_default_run_target ("run");
9908b566 2664
b3ccfe11 2665 return t;
9908b566
VP
2666}
2667
145b16a9
UW
2668/* Implement the "info proc" command. */
2669
451b7c33 2670int
7bc112c1 2671target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2672{
2673 struct target_ops *t;
2674
2675 /* If we're already connected to something that can get us OS
2676 related data, use it. Otherwise, try using the native
2677 target. */
2678 if (current_target.to_stratum >= process_stratum)
2679 t = current_target.beneath;
2680 else
2681 t = find_default_run_target (NULL);
2682
2683 for (; t != NULL; t = t->beneath)
2684 {
2685 if (t->to_info_proc != NULL)
2686 {
2687 t->to_info_proc (t, args, what);
2688
2689 if (targetdebug)
2690 fprintf_unfiltered (gdb_stdlog,
2691 "target_info_proc (\"%s\", %d)\n", args, what);
2692
451b7c33 2693 return 1;
145b16a9
UW
2694 }
2695 }
2696
451b7c33 2697 return 0;
145b16a9
UW
2698}
2699
03583c20 2700static int
2bfc0540 2701find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2702{
2703 struct target_ops *t;
2704
2705 t = find_default_run_target (NULL);
2706 if (t && t->to_supports_disable_randomization)
2bfc0540 2707 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2708 return 0;
2709}
2710
2711int
2712target_supports_disable_randomization (void)
2713{
2714 struct target_ops *t;
2715
2716 for (t = &current_target; t != NULL; t = t->beneath)
2717 if (t->to_supports_disable_randomization)
2bfc0540 2718 return t->to_supports_disable_randomization (t);
03583c20
UW
2719
2720 return 0;
2721}
9908b566 2722
07e059b5
VP
2723char *
2724target_get_osdata (const char *type)
2725{
07e059b5
VP
2726 struct target_ops *t;
2727
739ef7fb
PA
2728 /* If we're already connected to something that can get us OS
2729 related data, use it. Otherwise, try using the native
2730 target. */
2731 if (current_target.to_stratum >= process_stratum)
6d097e65 2732 t = current_target.beneath;
739ef7fb
PA
2733 else
2734 t = find_default_run_target ("get OS data");
07e059b5
VP
2735
2736 if (!t)
2737 return NULL;
2738
6d097e65 2739 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2740}
2741
8eaff7cd
TT
2742static struct address_space *
2743default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2744{
2745 struct inferior *inf;
6c95b8df
PA
2746
2747 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2748 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2749
2750 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2751 internal_error (__FILE__, __LINE__,
9b20d036
MS
2752 _("Can't determine the current "
2753 "address space of thread %s\n"),
6c95b8df
PA
2754 target_pid_to_str (ptid));
2755
2756 return inf->aspace;
2757}
2758
8eaff7cd
TT
2759/* Determine the current address space of thread PTID. */
2760
2761struct address_space *
2762target_thread_address_space (ptid_t ptid)
2763{
2764 struct address_space *aspace;
2765
2766 aspace = current_target.to_thread_address_space (&current_target, ptid);
2767 gdb_assert (aspace != NULL);
2768
8eaff7cd
TT
2769 return aspace;
2770}
2771
7313baad
UW
2772
2773/* Target file operations. */
2774
2775static struct target_ops *
2776default_fileio_target (void)
2777{
2778 /* If we're already connected to something that can perform
2779 file I/O, use it. Otherwise, try using the native target. */
2780 if (current_target.to_stratum >= process_stratum)
2781 return current_target.beneath;
2782 else
2783 return find_default_run_target ("file I/O");
2784}
2785
1c4b552b
GB
2786/* File handle for target file operations. */
2787
2788typedef struct
2789{
2790 /* The target on which this file is open. */
2791 struct target_ops *t;
2792
2793 /* The file descriptor on the target. */
2794 int fd;
2795} fileio_fh_t;
2796
2797DEF_VEC_O (fileio_fh_t);
2798
2799/* Vector of currently open file handles. The value returned by
2800 target_fileio_open and passed as the FD argument to other
2801 target_fileio_* functions is an index into this vector. This
2802 vector's entries are never freed; instead, files are marked as
2803 closed, and the handle becomes available for reuse. */
2804static VEC (fileio_fh_t) *fileio_fhandles;
2805
2806/* Macro to check whether a fileio_fh_t represents a closed file. */
2807#define is_closed_fileio_fh(fd) ((fd) < 0)
2808
2809/* Index into fileio_fhandles of the lowest handle that might be
2810 closed. This permits handle reuse without searching the whole
2811 list each time a new file is opened. */
2812static int lowest_closed_fd;
2813
2814/* Acquire a target fileio file descriptor. */
2815
2816static int
2817acquire_fileio_fd (struct target_ops *t, int fd)
2818{
870f88f7 2819 fileio_fh_t *fh;
1c4b552b
GB
2820
2821 gdb_assert (!is_closed_fileio_fh (fd));
2822
2823 /* Search for closed handles to reuse. */
2824 for (;
2825 VEC_iterate (fileio_fh_t, fileio_fhandles,
2826 lowest_closed_fd, fh);
2827 lowest_closed_fd++)
2828 if (is_closed_fileio_fh (fh->fd))
2829 break;
2830
2831 /* Push a new handle if no closed handles were found. */
2832 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2833 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2834
2835 /* Fill in the handle. */
2836 fh->t = t;
2837 fh->fd = fd;
2838
2839 /* Return its index, and start the next lookup at
2840 the next index. */
2841 return lowest_closed_fd++;
2842}
2843
2844/* Release a target fileio file descriptor. */
2845
2846static void
2847release_fileio_fd (int fd, fileio_fh_t *fh)
2848{
2849 fh->fd = -1;
2850 lowest_closed_fd = min (lowest_closed_fd, fd);
2851}
2852
2853/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2854
2855#define fileio_fd_to_fh(fd) \
2856 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2857
4313b8c0
GB
2858/* Helper for target_fileio_open and
2859 target_fileio_open_warn_if_slow. */
12e2a5fd 2860
4313b8c0
GB
2861static int
2862target_fileio_open_1 (struct inferior *inf, const char *filename,
2863 int flags, int mode, int warn_if_slow,
2864 int *target_errno)
7313baad
UW
2865{
2866 struct target_ops *t;
2867
2868 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2869 {
2870 if (t->to_fileio_open != NULL)
2871 {
07c138c8 2872 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2873 warn_if_slow, target_errno);
7313baad 2874
1c4b552b
GB
2875 if (fd < 0)
2876 fd = -1;
2877 else
2878 fd = acquire_fileio_fd (t, fd);
2879
7313baad
UW
2880 if (targetdebug)
2881 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2882 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2883 " = %d (%d)\n",
2884 inf == NULL ? 0 : inf->num,
7313baad 2885 filename, flags, mode,
4313b8c0
GB
2886 warn_if_slow, fd,
2887 fd != -1 ? 0 : *target_errno);
7313baad
UW
2888 return fd;
2889 }
2890 }
2891
2892 *target_errno = FILEIO_ENOSYS;
2893 return -1;
2894}
2895
12e2a5fd
GB
2896/* See target.h. */
2897
4313b8c0
GB
2898int
2899target_fileio_open (struct inferior *inf, const char *filename,
2900 int flags, int mode, int *target_errno)
2901{
2902 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2903 target_errno);
2904}
2905
2906/* See target.h. */
2907
2908int
2909target_fileio_open_warn_if_slow (struct inferior *inf,
2910 const char *filename,
2911 int flags, int mode, int *target_errno)
2912{
2913 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2914 target_errno);
2915}
2916
2917/* See target.h. */
2918
7313baad
UW
2919int
2920target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2921 ULONGEST offset, int *target_errno)
2922{
1c4b552b
GB
2923 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2924 int ret = -1;
7313baad 2925
1c4b552b
GB
2926 if (is_closed_fileio_fh (fh->fd))
2927 *target_errno = EBADF;
2928 else
2929 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2930 len, offset, target_errno);
7313baad 2931
1c4b552b
GB
2932 if (targetdebug)
2933 fprintf_unfiltered (gdb_stdlog,
2934 "target_fileio_pwrite (%d,...,%d,%s) "
2935 "= %d (%d)\n",
2936 fd, len, pulongest (offset),
2937 ret, ret != -1 ? 0 : *target_errno);
2938 return ret;
7313baad
UW
2939}
2940
12e2a5fd
GB
2941/* See target.h. */
2942
7313baad
UW
2943int
2944target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2945 ULONGEST offset, int *target_errno)
2946{
1c4b552b
GB
2947 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2948 int ret = -1;
7313baad 2949
1c4b552b
GB
2950 if (is_closed_fileio_fh (fh->fd))
2951 *target_errno = EBADF;
2952 else
2953 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2954 len, offset, target_errno);
7313baad 2955
1c4b552b
GB
2956 if (targetdebug)
2957 fprintf_unfiltered (gdb_stdlog,
2958 "target_fileio_pread (%d,...,%d,%s) "
2959 "= %d (%d)\n",
2960 fd, len, pulongest (offset),
2961 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2962 return ret;
2963}
2964
2965/* See target.h. */
12e2a5fd 2966
9b15c1f0
GB
2967int
2968target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2969{
2970 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2971 int ret = -1;
2972
2973 if (is_closed_fileio_fh (fh->fd))
2974 *target_errno = EBADF;
2975 else
2976 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2977
2978 if (targetdebug)
2979 fprintf_unfiltered (gdb_stdlog,
2980 "target_fileio_fstat (%d) = %d (%d)\n",
2981 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2982 return ret;
7313baad
UW
2983}
2984
12e2a5fd
GB
2985/* See target.h. */
2986
7313baad
UW
2987int
2988target_fileio_close (int fd, int *target_errno)
2989{
1c4b552b
GB
2990 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2991 int ret = -1;
7313baad 2992
1c4b552b
GB
2993 if (is_closed_fileio_fh (fh->fd))
2994 *target_errno = EBADF;
2995 else
7313baad 2996 {
1c4b552b
GB
2997 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2998 release_fileio_fd (fd, fh);
7313baad
UW
2999 }
3000
1c4b552b
GB
3001 if (targetdebug)
3002 fprintf_unfiltered (gdb_stdlog,
3003 "target_fileio_close (%d) = %d (%d)\n",
3004 fd, ret, ret != -1 ? 0 : *target_errno);
3005 return ret;
7313baad
UW
3006}
3007
12e2a5fd
GB
3008/* See target.h. */
3009
7313baad 3010int
07c138c8
GB
3011target_fileio_unlink (struct inferior *inf, const char *filename,
3012 int *target_errno)
7313baad
UW
3013{
3014 struct target_ops *t;
3015
3016 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3017 {
3018 if (t->to_fileio_unlink != NULL)
3019 {
07c138c8
GB
3020 int ret = t->to_fileio_unlink (t, inf, filename,
3021 target_errno);
7313baad
UW
3022
3023 if (targetdebug)
3024 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3025 "target_fileio_unlink (%d,%s)"
3026 " = %d (%d)\n",
3027 inf == NULL ? 0 : inf->num, filename,
3028 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
3029 return ret;
3030 }
3031 }
3032
3033 *target_errno = FILEIO_ENOSYS;
3034 return -1;
3035}
3036
12e2a5fd
GB
3037/* See target.h. */
3038
b9e7b9c3 3039char *
07c138c8
GB
3040target_fileio_readlink (struct inferior *inf, const char *filename,
3041 int *target_errno)
b9e7b9c3
UW
3042{
3043 struct target_ops *t;
3044
3045 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3046 {
3047 if (t->to_fileio_readlink != NULL)
3048 {
07c138c8
GB
3049 char *ret = t->to_fileio_readlink (t, inf, filename,
3050 target_errno);
b9e7b9c3
UW
3051
3052 if (targetdebug)
3053 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3054 "target_fileio_readlink (%d,%s)"
3055 " = %s (%d)\n",
3056 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3057 filename, ret? ret : "(nil)",
3058 ret? 0 : *target_errno);
3059 return ret;
3060 }
3061 }
3062
3063 *target_errno = FILEIO_ENOSYS;
3064 return NULL;
3065}
3066
7313baad
UW
3067static void
3068target_fileio_close_cleanup (void *opaque)
3069{
3070 int fd = *(int *) opaque;
3071 int target_errno;
3072
3073 target_fileio_close (fd, &target_errno);
3074}
3075
07c138c8
GB
3076/* Read target file FILENAME, in the filesystem as seen by INF. If
3077 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3078 remote targets, the remote stub). Store the result in *BUF_P and
3079 return the size of the transferred data. PADDING additional bytes
3080 are available in *BUF_P. This is a helper function for
3081 target_fileio_read_alloc; see the declaration of that function for
3082 more information. */
7313baad 3083
f7af1fcd
JK
3084static LONGEST
3085target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3086 gdb_byte **buf_p, int padding)
3087{
3088 struct cleanup *close_cleanup;
db1ff28b
JK
3089 size_t buf_alloc, buf_pos;
3090 gdb_byte *buf;
3091 LONGEST n;
3092 int fd;
3093 int target_errno;
f7af1fcd 3094
db1ff28b
JK
3095 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3096 &target_errno);
f7af1fcd
JK
3097 if (fd == -1)
3098 return -1;
3099
3100 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3101
3102 /* Start by reading up to 4K at a time. The target will throttle
3103 this number down if necessary. */
3104 buf_alloc = 4096;
224c3ddb 3105 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3106 buf_pos = 0;
3107 while (1)
3108 {
3109 n = target_fileio_pread (fd, &buf[buf_pos],
3110 buf_alloc - buf_pos - padding, buf_pos,
3111 &target_errno);
3112 if (n < 0)
3113 {
3114 /* An error occurred. */
3115 do_cleanups (close_cleanup);
3116 xfree (buf);
3117 return -1;
3118 }
3119 else if (n == 0)
3120 {
3121 /* Read all there was. */
3122 do_cleanups (close_cleanup);
3123 if (buf_pos == 0)
3124 xfree (buf);
3125 else
3126 *buf_p = buf;
3127 return buf_pos;
3128 }
3129
3130 buf_pos += n;
3131
3132 /* If the buffer is filling up, expand it. */
3133 if (buf_alloc < buf_pos * 2)
3134 {
3135 buf_alloc *= 2;
224c3ddb 3136 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3137 }
3138
3139 QUIT;
3140 }
f7af1fcd
JK
3141}
3142
12e2a5fd 3143/* See target.h. */
7313baad
UW
3144
3145LONGEST
07c138c8
GB
3146target_fileio_read_alloc (struct inferior *inf, const char *filename,
3147 gdb_byte **buf_p)
7313baad 3148{
07c138c8 3149 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3150}
3151
db1ff28b 3152/* See target.h. */
f7af1fcd
JK
3153
3154char *
3155target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3156{
db1ff28b
JK
3157 gdb_byte *buffer;
3158 char *bufstr;
3159 LONGEST i, transferred;
3160
3161 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3162 bufstr = (char *) buffer;
3163
3164 if (transferred < 0)
3165 return NULL;
3166
3167 if (transferred == 0)
3168 return xstrdup ("");
3169
3170 bufstr[transferred] = 0;
3171
3172 /* Check for embedded NUL bytes; but allow trailing NULs. */
3173 for (i = strlen (bufstr); i < transferred; i++)
3174 if (bufstr[i] != 0)
3175 {
3176 warning (_("target file %s "
3177 "contained unexpected null characters"),
3178 filename);
3179 break;
3180 }
3181
3182 return bufstr;
f7af1fcd 3183}
7313baad 3184
db1ff28b 3185
e0d24f8d 3186static int
31568a15
TT
3187default_region_ok_for_hw_watchpoint (struct target_ops *self,
3188 CORE_ADDR addr, int len)
e0d24f8d 3189{
f5656ead 3190 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3191}
3192
5009afc5
AS
3193static int
3194default_watchpoint_addr_within_range (struct target_ops *target,
3195 CORE_ADDR addr,
3196 CORE_ADDR start, int length)
3197{
3198 return addr >= start && addr < start + length;
3199}
3200
c2250ad1
UW
3201static struct gdbarch *
3202default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3203{
f5656ead 3204 return target_gdbarch ();
c2250ad1
UW
3205}
3206
c906108c 3207static int
555bbdeb
TT
3208return_zero (struct target_ops *ignore)
3209{
3210 return 0;
3211}
3212
3213static int
3214return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3215{
3216 return 0;
3217}
3218
ed9a39eb
JM
3219/*
3220 * Find the next target down the stack from the specified target.
3221 */
3222
3223struct target_ops *
fba45db2 3224find_target_beneath (struct target_ops *t)
ed9a39eb 3225{
258b763a 3226 return t->beneath;
ed9a39eb
JM
3227}
3228
8b06beed
TT
3229/* See target.h. */
3230
3231struct target_ops *
3232find_target_at (enum strata stratum)
3233{
3234 struct target_ops *t;
3235
3236 for (t = current_target.beneath; t != NULL; t = t->beneath)
3237 if (t->to_stratum == stratum)
3238 return t;
3239
3240 return NULL;
3241}
3242
c906108c 3243\f
0f48b757
PA
3244
3245/* See target.h */
3246
3247void
3248target_announce_detach (int from_tty)
3249{
3250 pid_t pid;
3251 char *exec_file;
3252
3253 if (!from_tty)
3254 return;
3255
3256 exec_file = get_exec_file (0);
3257 if (exec_file == NULL)
3258 exec_file = "";
3259
3260 pid = ptid_get_pid (inferior_ptid);
3261 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3262 target_pid_to_str (pid_to_ptid (pid)));
3263 gdb_flush (gdb_stdout);
3264}
3265
c906108c
SS
3266/* The inferior process has died. Long live the inferior! */
3267
3268void
fba45db2 3269generic_mourn_inferior (void)
c906108c 3270{
7f9f62ba 3271 ptid_t ptid;
c906108c 3272
7f9f62ba 3273 ptid = inferior_ptid;
39f77062 3274 inferior_ptid = null_ptid;
7f9f62ba 3275
f59f708a
PA
3276 /* Mark breakpoints uninserted in case something tries to delete a
3277 breakpoint while we delete the inferior's threads (which would
3278 fail, since the inferior is long gone). */
3279 mark_breakpoints_out ();
3280
7f9f62ba
PA
3281 if (!ptid_equal (ptid, null_ptid))
3282 {
3283 int pid = ptid_get_pid (ptid);
6c95b8df 3284 exit_inferior (pid);
7f9f62ba
PA
3285 }
3286
f59f708a
PA
3287 /* Note this wipes step-resume breakpoints, so needs to be done
3288 after exit_inferior, which ends up referencing the step-resume
3289 breakpoints through clear_thread_inferior_resources. */
c906108c 3290 breakpoint_init_inferior (inf_exited);
f59f708a 3291
c906108c
SS
3292 registers_changed ();
3293
c906108c
SS
3294 reopen_exec_file ();
3295 reinit_frame_cache ();
3296
9a4105ab
AC
3297 if (deprecated_detach_hook)
3298 deprecated_detach_hook ();
c906108c
SS
3299}
3300\f
fd0a2a6f
MK
3301/* Convert a normal process ID to a string. Returns the string in a
3302 static buffer. */
c906108c
SS
3303
3304char *
39f77062 3305normal_pid_to_str (ptid_t ptid)
c906108c 3306{
fd0a2a6f 3307 static char buf[32];
c906108c 3308
5fff8fc0 3309 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3310 return buf;
3311}
3312
2c0b251b 3313static char *
770234d3 3314default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3315{
3316 return normal_pid_to_str (ptid);
3317}
3318
9b4eba8e
HZ
3319/* Error-catcher for target_find_memory_regions. */
3320static int
2e73927c
TT
3321dummy_find_memory_regions (struct target_ops *self,
3322 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3323{
9b4eba8e 3324 error (_("Command not implemented for this target."));
be4d1333
MS
3325 return 0;
3326}
3327
9b4eba8e
HZ
3328/* Error-catcher for target_make_corefile_notes. */
3329static char *
fc6691b2
TT
3330dummy_make_corefile_notes (struct target_ops *self,
3331 bfd *ignore1, int *ignore2)
be4d1333 3332{
9b4eba8e 3333 error (_("Command not implemented for this target."));
be4d1333
MS
3334 return NULL;
3335}
3336
c906108c
SS
3337/* Set up the handful of non-empty slots needed by the dummy target
3338 vector. */
3339
3340static void
fba45db2 3341init_dummy_target (void)
c906108c
SS
3342{
3343 dummy_target.to_shortname = "None";
3344 dummy_target.to_longname = "None";
3345 dummy_target.to_doc = "";
03583c20
UW
3346 dummy_target.to_supports_disable_randomization
3347 = find_default_supports_disable_randomization;
c906108c 3348 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3349 dummy_target.to_has_all_memory = return_zero;
3350 dummy_target.to_has_memory = return_zero;
3351 dummy_target.to_has_stack = return_zero;
3352 dummy_target.to_has_registers = return_zero;
3353 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3354 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3355
3356 install_dummy_methods (&dummy_target);
c906108c 3357}
c906108c 3358\f
c906108c 3359
f1c07ab0 3360void
460014f5 3361target_close (struct target_ops *targ)
f1c07ab0 3362{
7fdc1521
TT
3363 gdb_assert (!target_is_pushed (targ));
3364
f1c07ab0 3365 if (targ->to_xclose != NULL)
460014f5 3366 targ->to_xclose (targ);
f1c07ab0 3367 else if (targ->to_close != NULL)
de90e03d 3368 targ->to_close (targ);
947b8855
PA
3369
3370 if (targetdebug)
460014f5 3371 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3372}
3373
28439f5e
PA
3374int
3375target_thread_alive (ptid_t ptid)
c906108c 3376{
a7068b60 3377 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3378}
3379
3380void
e8032dde 3381target_update_thread_list (void)
28439f5e 3382{
e8032dde 3383 current_target.to_update_thread_list (&current_target);
c906108c
SS
3384}
3385
d914c394
SS
3386void
3387target_stop (ptid_t ptid)
3388{
3389 if (!may_stop)
3390 {
3391 warning (_("May not interrupt or stop the target, ignoring attempt"));
3392 return;
3393 }
3394
1eab8a48 3395 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3396}
3397
bfedc46a
PA
3398void
3399target_interrupt (ptid_t ptid)
3400{
3401 if (!may_stop)
3402 {
3403 warning (_("May not interrupt or stop the target, ignoring attempt"));
3404 return;
3405 }
3406
3407 (*current_target.to_interrupt) (&current_target, ptid);
3408}
3409
abc56d60
PA
3410/* See target.h. */
3411
93692b58
PA
3412void
3413target_pass_ctrlc (void)
3414{
3415 (*current_target.to_pass_ctrlc) (&current_target);
3416}
3417
3418/* See target.h. */
3419
3420void
3421default_target_pass_ctrlc (struct target_ops *ops)
3422{
3423 target_interrupt (inferior_ptid);
3424}
3425
f8c1d06b
GB
3426/* See target/target.h. */
3427
3428void
03f4463b 3429target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3430{
3431 struct target_waitstatus status;
3432 int was_non_stop = non_stop;
3433
3434 non_stop = 1;
3435 target_stop (ptid);
3436
3437 memset (&status, 0, sizeof (status));
3438 target_wait (ptid, &status, 0);
3439
3440 non_stop = was_non_stop;
3441}
3442
3443/* See target/target.h. */
3444
3445void
03f4463b 3446target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3447{
3448 target_resume (ptid, 0, GDB_SIGNAL_0);
3449}
3450
09826ec5
PA
3451/* Concatenate ELEM to LIST, a comma separate list, and return the
3452 result. The LIST incoming argument is released. */
3453
3454static char *
3455str_comma_list_concat_elem (char *list, const char *elem)
3456{
3457 if (list == NULL)
3458 return xstrdup (elem);
3459 else
3460 return reconcat (list, list, ", ", elem, (char *) NULL);
3461}
3462
3463/* Helper for target_options_to_string. If OPT is present in
3464 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3465 Returns the new resulting string. OPT is removed from
3466 TARGET_OPTIONS. */
3467
3468static char *
3469do_option (int *target_options, char *ret,
3470 int opt, char *opt_str)
3471{
3472 if ((*target_options & opt) != 0)
3473 {
3474 ret = str_comma_list_concat_elem (ret, opt_str);
3475 *target_options &= ~opt;
3476 }
3477
3478 return ret;
3479}
3480
3481char *
3482target_options_to_string (int target_options)
3483{
3484 char *ret = NULL;
3485
3486#define DO_TARG_OPTION(OPT) \
3487 ret = do_option (&target_options, ret, OPT, #OPT)
3488
3489 DO_TARG_OPTION (TARGET_WNOHANG);
3490
3491 if (target_options != 0)
3492 ret = str_comma_list_concat_elem (ret, "unknown???");
3493
3494 if (ret == NULL)
3495 ret = xstrdup ("");
3496 return ret;
3497}
3498
bf0c5130 3499static void
56be3814
UW
3500debug_print_register (const char * func,
3501 struct regcache *regcache, int regno)
bf0c5130 3502{
f8d29908 3503 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3504
bf0c5130 3505 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3506 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3507 && gdbarch_register_name (gdbarch, regno) != NULL
3508 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3509 fprintf_unfiltered (gdb_stdlog, "(%s)",
3510 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3511 else
3512 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3513 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3514 {
e17a4113 3515 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3516 int i, size = register_size (gdbarch, regno);
e362b510 3517 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3518
0ff58721 3519 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3520 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3521 for (i = 0; i < size; i++)
bf0c5130
AC
3522 {
3523 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3524 }
81c4a259 3525 if (size <= sizeof (LONGEST))
bf0c5130 3526 {
e17a4113 3527 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3528
0b1553bc
UW
3529 fprintf_unfiltered (gdb_stdlog, " %s %s",
3530 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3531 }
3532 }
3533 fprintf_unfiltered (gdb_stdlog, "\n");
3534}
3535
28439f5e
PA
3536void
3537target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3538{
ad5989bd
TT
3539 current_target.to_fetch_registers (&current_target, regcache, regno);
3540 if (targetdebug)
3541 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3542}
3543
28439f5e
PA
3544void
3545target_store_registers (struct regcache *regcache, int regno)
c906108c 3546{
d914c394
SS
3547 if (!may_write_registers)
3548 error (_("Writing to registers is not allowed (regno %d)"), regno);
3549
6b84065d
TT
3550 current_target.to_store_registers (&current_target, regcache, regno);
3551 if (targetdebug)
28439f5e 3552 {
6b84065d 3553 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3554 }
c906108c
SS
3555}
3556
dc146f7c
VP
3557int
3558target_core_of_thread (ptid_t ptid)
3559{
a7068b60 3560 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3561}
3562
936d2992
PA
3563int
3564simple_verify_memory (struct target_ops *ops,
3565 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3566{
3567 LONGEST total_xfered = 0;
3568
3569 while (total_xfered < size)
3570 {
3571 ULONGEST xfered_len;
3572 enum target_xfer_status status;
3573 gdb_byte buf[1024];
3574 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3575
3576 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3577 buf, NULL, lma + total_xfered, howmuch,
3578 &xfered_len);
3579 if (status == TARGET_XFER_OK
3580 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3581 {
3582 total_xfered += xfered_len;
3583 QUIT;
3584 }
3585 else
3586 return 0;
3587 }
3588 return 1;
3589}
3590
3591/* Default implementation of memory verification. */
3592
3593static int
3594default_verify_memory (struct target_ops *self,
3595 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3596{
3597 /* Start over from the top of the target stack. */
3598 return simple_verify_memory (current_target.beneath,
3599 data, memaddr, size);
3600}
3601
4a5e7a5b
PA
3602int
3603target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3604{
a7068b60
TT
3605 return current_target.to_verify_memory (&current_target,
3606 data, memaddr, size);
4a5e7a5b
PA
3607}
3608
9c06b0b4
TJB
3609/* The documentation for this function is in its prototype declaration in
3610 target.h. */
3611
3612int
f4b0a671
SM
3613target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3614 enum target_hw_bp_type rw)
9c06b0b4 3615{
a7068b60
TT
3616 return current_target.to_insert_mask_watchpoint (&current_target,
3617 addr, mask, rw);
9c06b0b4
TJB
3618}
3619
3620/* The documentation for this function is in its prototype declaration in
3621 target.h. */
3622
3623int
f4b0a671
SM
3624target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3625 enum target_hw_bp_type rw)
9c06b0b4 3626{
a7068b60
TT
3627 return current_target.to_remove_mask_watchpoint (&current_target,
3628 addr, mask, rw);
9c06b0b4
TJB
3629}
3630
3631/* The documentation for this function is in its prototype declaration
3632 in target.h. */
3633
3634int
3635target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3636{
6c7e5e5c
TT
3637 return current_target.to_masked_watch_num_registers (&current_target,
3638 addr, mask);
9c06b0b4
TJB
3639}
3640
f1310107
TJB
3641/* The documentation for this function is in its prototype declaration
3642 in target.h. */
3643
3644int
3645target_ranged_break_num_registers (void)
3646{
a134316b 3647 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3648}
3649
02d27625
MM
3650/* See target.h. */
3651
043c3577
MM
3652int
3653target_supports_btrace (enum btrace_format format)
3654{
3655 return current_target.to_supports_btrace (&current_target, format);
3656}
3657
3658/* See target.h. */
3659
02d27625 3660struct btrace_target_info *
f4abbc16 3661target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3662{
f4abbc16 3663 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3664}
3665
3666/* See target.h. */
3667
3668void
3669target_disable_btrace (struct btrace_target_info *btinfo)
3670{
8dc292d3 3671 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3672}
3673
3674/* See target.h. */
3675
3676void
3677target_teardown_btrace (struct btrace_target_info *btinfo)
3678{
9ace480d 3679 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3680}
3681
3682/* See target.h. */
3683
969c39fb 3684enum btrace_error
734b0e4b 3685target_read_btrace (struct btrace_data *btrace,
969c39fb 3686 struct btrace_target_info *btinfo,
02d27625
MM
3687 enum btrace_read_type type)
3688{
eb5b20d4 3689 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3690}
3691
d02ed0bb
MM
3692/* See target.h. */
3693
f4abbc16
MM
3694const struct btrace_config *
3695target_btrace_conf (const struct btrace_target_info *btinfo)
3696{
3697 return current_target.to_btrace_conf (&current_target, btinfo);
3698}
3699
3700/* See target.h. */
3701
7c1687a9
MM
3702void
3703target_stop_recording (void)
3704{
ee97f592 3705 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3706}
3707
3708/* See target.h. */
3709
d02ed0bb 3710void
85e1311a 3711target_save_record (const char *filename)
d02ed0bb 3712{
f09e2107 3713 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3714}
3715
3716/* See target.h. */
3717
3718int
3719target_supports_delete_record (void)
3720{
3721 struct target_ops *t;
3722
3723 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3724 if (t->to_delete_record != delegate_delete_record
3725 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3726 return 1;
3727
3728 return 0;
3729}
3730
3731/* See target.h. */
3732
3733void
3734target_delete_record (void)
3735{
07366925 3736 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3737}
3738
3739/* See target.h. */
3740
3741int
a52eab48 3742target_record_is_replaying (ptid_t ptid)
d02ed0bb 3743{
a52eab48 3744 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3745}
3746
3747/* See target.h. */
3748
7ff27e9b
MM
3749int
3750target_record_will_replay (ptid_t ptid, int dir)
3751{
3752 return current_target.to_record_will_replay (&current_target, ptid, dir);
3753}
3754
3755/* See target.h. */
3756
797094dd
MM
3757void
3758target_record_stop_replaying (void)
3759{
3760 current_target.to_record_stop_replaying (&current_target);
3761}
3762
3763/* See target.h. */
3764
d02ed0bb
MM
3765void
3766target_goto_record_begin (void)
3767{
671e76cc 3768 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3769}
3770
3771/* See target.h. */
3772
3773void
3774target_goto_record_end (void)
3775{
e9179bb3 3776 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3777}
3778
3779/* See target.h. */
3780
3781void
3782target_goto_record (ULONGEST insn)
3783{
05969c84 3784 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3785}
3786
67c86d06
MM
3787/* See target.h. */
3788
3789void
3790target_insn_history (int size, int flags)
3791{
3679abfa 3792 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3793}
3794
3795/* See target.h. */
3796
3797void
3798target_insn_history_from (ULONGEST from, int size, int flags)
3799{
8444ab58 3800 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3801}
3802
3803/* See target.h. */
3804
3805void
3806target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3807{
c29302cc 3808 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3809}
3810
15984c13
MM
3811/* See target.h. */
3812
3813void
3814target_call_history (int size, int flags)
3815{
170049d4 3816 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3817}
3818
3819/* See target.h. */
3820
3821void
3822target_call_history_from (ULONGEST begin, int size, int flags)
3823{
16fc27d6 3824 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3825}
3826
3827/* See target.h. */
3828
3829void
3830target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3831{
115d9817 3832 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3833}
3834
ea001bdc
MM
3835/* See target.h. */
3836
3837const struct frame_unwind *
3838target_get_unwinder (void)
3839{
ac01945b 3840 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3841}
3842
3843/* See target.h. */
3844
3845const struct frame_unwind *
3846target_get_tailcall_unwinder (void)
3847{
ac01945b 3848 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3849}
3850
5fff78c4
MM
3851/* See target.h. */
3852
3853void
3854target_prepare_to_generate_core (void)
3855{
3856 current_target.to_prepare_to_generate_core (&current_target);
3857}
3858
3859/* See target.h. */
3860
3861void
3862target_done_generating_core (void)
3863{
3864 current_target.to_done_generating_core (&current_target);
3865}
3866
c906108c 3867static void
fba45db2 3868setup_target_debug (void)
c906108c
SS
3869{
3870 memcpy (&debug_target, &current_target, sizeof debug_target);
3871
a7068b60 3872 init_debug_target (&current_target);
c906108c 3873}
c906108c 3874\f
c5aa993b
JM
3875
3876static char targ_desc[] =
3e43a32a
MS
3877"Names of targets and files being debugged.\nShows the entire \
3878stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3879core-file, and process, if any), as well as the symbol file name.";
3880
a53f3625 3881static void
a30bf1f1
TT
3882default_rcmd (struct target_ops *self, const char *command,
3883 struct ui_file *output)
a53f3625
TT
3884{
3885 error (_("\"monitor\" command not supported by this target."));
3886}
3887
96baa820
JM
3888static void
3889do_monitor_command (char *cmd,
3890 int from_tty)
3891{
96baa820
JM
3892 target_rcmd (cmd, gdb_stdtarg);
3893}
3894
87680a14
JB
3895/* Print the name of each layers of our target stack. */
3896
3897static void
3898maintenance_print_target_stack (char *cmd, int from_tty)
3899{
3900 struct target_ops *t;
3901
3902 printf_filtered (_("The current target stack is:\n"));
3903
3904 for (t = target_stack; t != NULL; t = t->beneath)
3905 {
3906 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3907 }
3908}
3909
372316f1
PA
3910/* See target.h. */
3911
3912void
3913target_async (int enable)
3914{
3915 infrun_async (enable);
3916 current_target.to_async (&current_target, enable);
3917}
3918
65706a29
PA
3919/* See target.h. */
3920
3921void
3922target_thread_events (int enable)
3923{
3924 current_target.to_thread_events (&current_target, enable);
3925}
3926
329ea579
PA
3927/* Controls if targets can report that they can/are async. This is
3928 just for maintainers to use when debugging gdb. */
3929int target_async_permitted = 1;
c6ebd6cf
VP
3930
3931/* The set command writes to this variable. If the inferior is
b5419e49 3932 executing, target_async_permitted is *not* updated. */
329ea579 3933static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3934
3935static void
329ea579
PA
3936maint_set_target_async_command (char *args, int from_tty,
3937 struct cmd_list_element *c)
c6ebd6cf 3938{
c35b1492 3939 if (have_live_inferiors ())
c6ebd6cf
VP
3940 {
3941 target_async_permitted_1 = target_async_permitted;
3942 error (_("Cannot change this setting while the inferior is running."));
3943 }
3944
3945 target_async_permitted = target_async_permitted_1;
3946}
3947
3948static void
329ea579
PA
3949maint_show_target_async_command (struct ui_file *file, int from_tty,
3950 struct cmd_list_element *c,
3951 const char *value)
c6ebd6cf 3952{
3e43a32a
MS
3953 fprintf_filtered (file,
3954 _("Controlling the inferior in "
3955 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3956}
3957
fbea99ea
PA
3958/* Return true if the target operates in non-stop mode even with "set
3959 non-stop off". */
3960
3961static int
3962target_always_non_stop_p (void)
3963{
3964 return current_target.to_always_non_stop_p (&current_target);
3965}
3966
3967/* See target.h. */
3968
3969int
3970target_is_non_stop_p (void)
3971{
3972 return (non_stop
3973 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3974 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3975 && target_always_non_stop_p ()));
3976}
3977
3978/* Controls if targets can report that they always run in non-stop
3979 mode. This is just for maintainers to use when debugging gdb. */
3980enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3981
3982/* The set command writes to this variable. If the inferior is
3983 executing, target_non_stop_enabled is *not* updated. */
3984static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3985
3986/* Implementation of "maint set target-non-stop". */
3987
3988static void
3989maint_set_target_non_stop_command (char *args, int from_tty,
3990 struct cmd_list_element *c)
3991{
3992 if (have_live_inferiors ())
3993 {
3994 target_non_stop_enabled_1 = target_non_stop_enabled;
3995 error (_("Cannot change this setting while the inferior is running."));
3996 }
3997
3998 target_non_stop_enabled = target_non_stop_enabled_1;
3999}
4000
4001/* Implementation of "maint show target-non-stop". */
4002
4003static void
4004maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4005 struct cmd_list_element *c,
4006 const char *value)
4007{
4008 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4009 fprintf_filtered (file,
4010 _("Whether the target is always in non-stop mode "
4011 "is %s (currently %s).\n"), value,
4012 target_always_non_stop_p () ? "on" : "off");
4013 else
4014 fprintf_filtered (file,
4015 _("Whether the target is always in non-stop mode "
4016 "is %s.\n"), value);
4017}
4018
d914c394
SS
4019/* Temporary copies of permission settings. */
4020
4021static int may_write_registers_1 = 1;
4022static int may_write_memory_1 = 1;
4023static int may_insert_breakpoints_1 = 1;
4024static int may_insert_tracepoints_1 = 1;
4025static int may_insert_fast_tracepoints_1 = 1;
4026static int may_stop_1 = 1;
4027
4028/* Make the user-set values match the real values again. */
4029
4030void
4031update_target_permissions (void)
4032{
4033 may_write_registers_1 = may_write_registers;
4034 may_write_memory_1 = may_write_memory;
4035 may_insert_breakpoints_1 = may_insert_breakpoints;
4036 may_insert_tracepoints_1 = may_insert_tracepoints;
4037 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4038 may_stop_1 = may_stop;
4039}
4040
4041/* The one function handles (most of) the permission flags in the same
4042 way. */
4043
4044static void
4045set_target_permissions (char *args, int from_tty,
4046 struct cmd_list_element *c)
4047{
4048 if (target_has_execution)
4049 {
4050 update_target_permissions ();
4051 error (_("Cannot change this setting while the inferior is running."));
4052 }
4053
4054 /* Make the real values match the user-changed values. */
4055 may_write_registers = may_write_registers_1;
4056 may_insert_breakpoints = may_insert_breakpoints_1;
4057 may_insert_tracepoints = may_insert_tracepoints_1;
4058 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4059 may_stop = may_stop_1;
4060 update_observer_mode ();
4061}
4062
4063/* Set memory write permission independently of observer mode. */
4064
4065static void
4066set_write_memory_permission (char *args, int from_tty,
4067 struct cmd_list_element *c)
4068{
4069 /* Make the real values match the user-changed values. */
4070 may_write_memory = may_write_memory_1;
4071 update_observer_mode ();
4072}
4073
4074
c906108c 4075void
fba45db2 4076initialize_targets (void)
c906108c
SS
4077{
4078 init_dummy_target ();
4079 push_target (&dummy_target);
4080
4081 add_info ("target", target_info, targ_desc);
4082 add_info ("files", target_info, targ_desc);
4083
ccce17b0 4084 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4085Set target debugging."), _("\
4086Show target debugging."), _("\
333dabeb 4087When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4088verbose."),
4089 set_targetdebug,
ccce17b0
YQ
4090 show_targetdebug,
4091 &setdebuglist, &showdebuglist);
3a11626d 4092
2bc416ba 4093 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4094 &trust_readonly, _("\
4095Set mode for reading from readonly sections."), _("\
4096Show mode for reading from readonly sections."), _("\
3a11626d
MS
4097When this mode is on, memory reads from readonly sections (such as .text)\n\
4098will be read from the object file instead of from the target. This will\n\
7915a72c 4099result in significant performance improvement for remote targets."),
2c5b56ce 4100 NULL,
920d2a44 4101 show_trust_readonly,
e707bbc2 4102 &setlist, &showlist);
96baa820
JM
4103
4104 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4105 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4106
87680a14
JB
4107 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4108 _("Print the name of each layer of the internal target stack."),
4109 &maintenanceprintlist);
4110
c6ebd6cf
VP
4111 add_setshow_boolean_cmd ("target-async", no_class,
4112 &target_async_permitted_1, _("\
4113Set whether gdb controls the inferior in asynchronous mode."), _("\
4114Show whether gdb controls the inferior in asynchronous mode."), _("\
4115Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4116 maint_set_target_async_command,
4117 maint_show_target_async_command,
4118 &maintenance_set_cmdlist,
4119 &maintenance_show_cmdlist);
c6ebd6cf 4120
fbea99ea
PA
4121 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4122 &target_non_stop_enabled_1, _("\
4123Set whether gdb always controls the inferior in non-stop mode."), _("\
4124Show whether gdb always controls the inferior in non-stop mode."), _("\
4125Tells gdb whether to control the inferior in non-stop mode."),
4126 maint_set_target_non_stop_command,
4127 maint_show_target_non_stop_command,
4128 &maintenance_set_cmdlist,
4129 &maintenance_show_cmdlist);
4130
d914c394
SS
4131 add_setshow_boolean_cmd ("may-write-registers", class_support,
4132 &may_write_registers_1, _("\
4133Set permission to write into registers."), _("\
4134Show permission to write into registers."), _("\
4135When this permission is on, GDB may write into the target's registers.\n\
4136Otherwise, any sort of write attempt will result in an error."),
4137 set_target_permissions, NULL,
4138 &setlist, &showlist);
4139
4140 add_setshow_boolean_cmd ("may-write-memory", class_support,
4141 &may_write_memory_1, _("\
4142Set permission to write into target memory."), _("\
4143Show permission to write into target memory."), _("\
4144When this permission is on, GDB may write into the target's memory.\n\
4145Otherwise, any sort of write attempt will result in an error."),
4146 set_write_memory_permission, NULL,
4147 &setlist, &showlist);
4148
4149 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4150 &may_insert_breakpoints_1, _("\
4151Set permission to insert breakpoints in the target."), _("\
4152Show permission to insert breakpoints in the target."), _("\
4153When this permission is on, GDB may insert breakpoints in the program.\n\
4154Otherwise, any sort of insertion attempt will result in an error."),
4155 set_target_permissions, NULL,
4156 &setlist, &showlist);
4157
4158 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4159 &may_insert_tracepoints_1, _("\
4160Set permission to insert tracepoints in the target."), _("\
4161Show permission to insert tracepoints in the target."), _("\
4162When this permission is on, GDB may insert tracepoints in the program.\n\
4163Otherwise, any sort of insertion attempt will result in an error."),
4164 set_target_permissions, NULL,
4165 &setlist, &showlist);
4166
4167 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4168 &may_insert_fast_tracepoints_1, _("\
4169Set permission to insert fast tracepoints in the target."), _("\
4170Show permission to insert fast tracepoints in the target."), _("\
4171When this permission is on, GDB may insert fast tracepoints.\n\
4172Otherwise, any sort of insertion attempt will result in an error."),
4173 set_target_permissions, NULL,
4174 &setlist, &showlist);
4175
4176 add_setshow_boolean_cmd ("may-interrupt", class_support,
4177 &may_stop_1, _("\
4178Set permission to interrupt or signal the target."), _("\
4179Show permission to interrupt or signal the target."), _("\
4180When this permission is on, GDB may interrupt/stop the target's execution.\n\
4181Otherwise, any attempt to interrupt or stop will be ignored."),
4182 set_target_permissions, NULL,
4183 &setlist, &showlist);
6a3cb8e8
PA
4184
4185 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4186 &auto_connect_native_target, _("\
4187Set whether GDB may automatically connect to the native target."), _("\
4188Show whether GDB may automatically connect to the native target."), _("\
4189When on, and GDB is not connected to a target yet, GDB\n\
4190attempts \"run\" and other commands with the native target."),
4191 NULL, show_auto_connect_native_target,
4192 &setlist, &showlist);
c906108c 4193}
This page took 3.81341 seconds and 4 git commands to generate.