2002-09-30 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
26/* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45#include "bfd.h"
46#include "symtab.h"
4930751a 47#include "dcache.h"
29e57380 48#include "memattr.h"
c906108c 49
c5aa993b
JM
50enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
c5aa993b 58 };
c906108c 59
c5aa993b
JM
60enum thread_control_capabilities
61 {
0d06e24b
JM
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 65 };
c906108c
SS
66
67/* Stuff for target_wait. */
68
69/* Generally, what has the program done? */
c5aa993b
JM
70enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
c906108c 74
0d06e24b
JM
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
c5aa993b 77 TARGET_WAITKIND_STOPPED,
c906108c 78
c5aa993b
JM
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
c906108c 82
c5aa993b
JM
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
c906108c 86
0d06e24b
JM
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
c5aa993b 91 TARGET_WAITKIND_FORKED,
c906108c 92
0d06e24b
JM
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
c5aa993b 96 TARGET_WAITKIND_VFORKED,
c906108c 97
0d06e24b
JM
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
c5aa993b 101 TARGET_WAITKIND_EXECD,
c906108c 102
0d06e24b
JM
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
c5aa993b
JM
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 109
c5aa993b
JM
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
c4093a6a
JM
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
0d06e24b 123 like for instance the user typing. */
c4093a6a 124 TARGET_WAITKIND_IGNORE
c906108c
SS
125 };
126
c5aa993b
JM
127struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
c906108c 142
2acceee2 143/* Possible types of events that the inferior handler will have to
0d06e24b 144 deal with. */
2acceee2
JM
145enum inferior_event_type
146 {
0d06e24b 147 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
0d06e24b 150 being called. */
2acceee2 151 INF_REG_EVENT,
0d06e24b 152 /* Deal with an error on the inferior. */
2acceee2 153 INF_ERROR,
0d06e24b 154 /* We are called because a timer went off. */
2acceee2 155 INF_TIMER,
0d06e24b 156 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
0d06e24b 161 'step n' like commands. */
c2d11a7d 162 INF_EXEC_CONTINUE
2acceee2
JM
163 };
164
c906108c 165/* Return the string for a signal. */
a14ed312 166extern char *target_signal_to_string (enum target_signal);
c906108c
SS
167
168/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 169extern char *target_signal_to_name (enum target_signal);
c906108c
SS
170
171/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 172enum target_signal target_signal_from_name (char *);
c906108c 173\f
c5aa993b 174
c906108c
SS
175/* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 178 on TARGET_ACTIVITY_FD. */
c906108c
SS
179extern int target_activity_fd;
180/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 181extern int (*target_activity_function) (void);
c906108c 182\f
0d06e24b
JM
183struct thread_info; /* fwd decl for parameter list below: */
184
c906108c 185struct target_ops
c5aa993b
JM
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
c906108c 190 newline, and starts with a one-line descrip-
0d06e24b 191 tion (probably similar to to_longname). */
507f3c78
KB
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
39f77062
KB
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
c5aa993b
JM
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
507f3c78 224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
c906108c
SS
228
229#if 0
c5aa993b 230 /* Enable this after 4.12. */
c906108c 231
c5aa993b
JM
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 238
0d06e24b
JM
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
507f3c78
KB
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
246
247#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
c5aa993b
JM
250#endif /* 0 */
251
507f3c78
KB
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
ccaa32c7
GS
255 int (*to_can_use_hw_breakpoint) (int, int, int);
256 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
258 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
259 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
260 int (*to_stopped_by_watchpoint) (void);
261 CORE_ADDR (*to_stopped_data_address) (void);
262 int (*to_region_size_ok_for_hw_watchpoint) (int);
507f3c78
KB
263 void (*to_terminal_init) (void);
264 void (*to_terminal_inferior) (void);
265 void (*to_terminal_ours_for_output) (void);
266 void (*to_terminal_ours) (void);
a790ad35 267 void (*to_terminal_save_ours) (void);
507f3c78
KB
268 void (*to_terminal_info) (char *, int);
269 void (*to_kill) (void);
270 void (*to_load) (char *, int);
271 int (*to_lookup_symbol) (char *, CORE_ADDR *);
272 void (*to_create_inferior) (char *, char *, char **);
39f77062 273 void (*to_post_startup_inferior) (ptid_t);
507f3c78
KB
274 void (*to_acknowledge_created_inferior) (int);
275 void (*to_clone_and_follow_inferior) (int, int *);
276 void (*to_post_follow_inferior_by_clone) (void);
277 int (*to_insert_fork_catchpoint) (int);
278 int (*to_remove_fork_catchpoint) (int);
279 int (*to_insert_vfork_catchpoint) (int);
280 int (*to_remove_vfork_catchpoint) (int);
281 int (*to_has_forked) (int, int *);
282 int (*to_has_vforked) (int, int *);
283 int (*to_can_follow_vfork_prior_to_exec) (void);
284 void (*to_post_follow_vfork) (int, int, int, int);
285 int (*to_insert_exec_catchpoint) (int);
286 int (*to_remove_exec_catchpoint) (int);
287 int (*to_has_execd) (int, char **);
288 int (*to_reported_exec_events_per_exec_call) (void);
289 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
290 int (*to_has_exited) (int, int, int *);
291 void (*to_mourn_inferior) (void);
292 int (*to_can_run) (void);
39f77062
KB
293 void (*to_notice_signals) (ptid_t ptid);
294 int (*to_thread_alive) (ptid_t ptid);
507f3c78 295 void (*to_find_new_threads) (void);
39f77062 296 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
297 char *(*to_extra_thread_info) (struct thread_info *);
298 void (*to_stop) (void);
299 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 300 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
301 struct symtab_and_line *(*to_enable_exception_callback) (enum
302 exception_event_kind,
303 int);
304 struct exception_event_record *(*to_get_current_exception_event) (void);
305 char *(*to_pid_to_exec_file) (int pid);
c5aa993b
JM
306 enum strata to_stratum;
307 struct target_ops
308 *DONT_USE; /* formerly to_next */
309 int to_has_all_memory;
310 int to_has_memory;
311 int to_has_stack;
312 int to_has_registers;
313 int to_has_execution;
314 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
315 struct section_table
316 *to_sections;
317 struct section_table
318 *to_sections_end;
6426a772
JM
319 /* ASYNC target controls */
320 int (*to_can_async_p) (void);
321 int (*to_is_async_p) (void);
0d06e24b
JM
322 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
323 void *context);
ed9a39eb 324 int to_async_mask_value;
be4d1333
MS
325 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
326 unsigned long,
327 int, int, int,
328 void *),
329 void *);
330 char * (*to_make_corefile_notes) (bfd *, int *);
c5aa993b 331 int to_magic;
0d06e24b
JM
332 /* Need sub-structure for target machine related rather than comm related?
333 */
c5aa993b 334 };
c906108c
SS
335
336/* Magic number for checking ops size. If a struct doesn't end with this
337 number, somebody changed the declaration but didn't change all the
338 places that initialize one. */
339
340#define OPS_MAGIC 3840
341
342/* The ops structure for our "current" target process. This should
343 never be NULL. If there is no target, it points to the dummy_target. */
344
c5aa993b 345extern struct target_ops current_target;
c906108c
SS
346
347/* An item on the target stack. */
348
349struct target_stack_item
c5aa993b
JM
350 {
351 struct target_stack_item *next;
352 struct target_ops *target_ops;
353 };
c906108c
SS
354
355/* The target stack. */
356
357extern struct target_stack_item *target_stack;
358
359/* Define easy words for doing these operations on our current target. */
360
361#define target_shortname (current_target.to_shortname)
362#define target_longname (current_target.to_longname)
363
364/* The open routine takes the rest of the parameters from the command,
365 and (if successful) pushes a new target onto the stack.
366 Targets should supply this routine, if only to provide an error message. */
0d06e24b 367
4930751a
C
368#define target_open(name, from_tty) \
369 do { \
370 dcache_invalidate (target_dcache); \
371 (*current_target.to_open) (name, from_tty); \
372 } while (0)
c906108c
SS
373
374/* Does whatever cleanup is required for a target that we are no longer
375 going to be calling. Argument says whether we are quitting gdb and
376 should not get hung in case of errors, or whether we want a clean
377 termination even if it takes a while. This routine is automatically
378 always called just before a routine is popped off the target stack.
379 Closing file descriptors and freeing memory are typical things it should
380 do. */
381
382#define target_close(quitting) \
0d06e24b 383 (*current_target.to_close) (quitting)
c906108c
SS
384
385/* Attaches to a process on the target side. Arguments are as passed
386 to the `attach' command by the user. This routine can be called
387 when the target is not on the target-stack, if the target_can_run
388 routine returns 1; in that case, it must push itself onto the stack.
389 Upon exit, the target should be ready for normal operations, and
390 should be ready to deliver the status of the process immediately
391 (without waiting) to an upcoming target_wait call. */
392
393#define target_attach(args, from_tty) \
0d06e24b 394 (*current_target.to_attach) (args, from_tty)
c906108c
SS
395
396/* The target_attach operation places a process under debugger control,
397 and stops the process.
398
399 This operation provides a target-specific hook that allows the
0d06e24b 400 necessary bookkeeping to be performed after an attach completes. */
c906108c 401#define target_post_attach(pid) \
0d06e24b 402 (*current_target.to_post_attach) (pid)
c906108c
SS
403
404/* Attaches to a process on the target side, if not already attached.
405 (If already attached, takes no action.)
406
407 This operation can be used to follow the child process of a fork.
408 On some targets, such child processes of an original inferior process
409 are automatically under debugger control, and thus do not require an
410 actual attach operation. */
411
412#define target_require_attach(args, from_tty) \
0d06e24b 413 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
414
415/* Takes a program previously attached to and detaches it.
416 The program may resume execution (some targets do, some don't) and will
417 no longer stop on signals, etc. We better not have left any breakpoints
418 in the program or it'll die when it hits one. ARGS is arguments
419 typed by the user (e.g. a signal to send the process). FROM_TTY
420 says whether to be verbose or not. */
421
a14ed312 422extern void target_detach (char *, int);
c906108c
SS
423
424/* Detaches from a process on the target side, if not already dettached.
425 (If already detached, takes no action.)
426
427 This operation can be used to follow the parent process of a fork.
428 On some targets, such child processes of an original inferior process
429 are automatically under debugger control, and thus do require an actual
430 detach operation.
431
432 PID is the process id of the child to detach from.
433 ARGS is arguments typed by the user (e.g. a signal to send the process).
434 FROM_TTY says whether to be verbose or not. */
435
0d06e24b
JM
436#define target_require_detach(pid, args, from_tty) \
437 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c 438
39f77062 439/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
440 single-step or to run free; SIGGNAL is the signal to be given to
441 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
442 pass TARGET_SIGNAL_DEFAULT. */
443
39f77062 444#define target_resume(ptid, step, siggnal) \
4930751a
C
445 do { \
446 dcache_invalidate(target_dcache); \
39f77062 447 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 448 } while (0)
c906108c 449
b5a2688f
AC
450/* Wait for process pid to do something. PTID = -1 to wait for any
451 pid to do something. Return pid of child, or -1 in case of error;
c906108c 452 store status through argument pointer STATUS. Note that it is
b5a2688f 453 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
454 the debugging target from the stack; GDB isn't prepared to get back
455 to the prompt with a debugging target but without the frame cache,
456 stop_pc, etc., set up. */
457
39f77062
KB
458#define target_wait(ptid, status) \
459 (*current_target.to_wait) (ptid, status)
c906108c
SS
460
461/* The target_wait operation waits for a process event to occur, and
462 thereby stop the process.
463
464 On some targets, certain events may happen in sequences. gdb's
465 correct response to any single event of such a sequence may require
466 knowledge of what earlier events in the sequence have been seen.
467
468 This operation provides a target-specific hook that allows the
0d06e24b 469 necessary bookkeeping to be performed to track such sequences. */
c906108c 470
39f77062
KB
471#define target_post_wait(ptid, status) \
472 (*current_target.to_post_wait) (ptid, status)
c906108c 473
17dee195 474/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
475
476#define target_fetch_registers(regno) \
0d06e24b 477 (*current_target.to_fetch_registers) (regno)
c906108c
SS
478
479/* Store at least register REGNO, or all regs if REGNO == -1.
480 It can store as many registers as it wants to, so target_prepare_to_store
481 must have been previously called. Calls error() if there are problems. */
482
483#define target_store_registers(regs) \
0d06e24b 484 (*current_target.to_store_registers) (regs)
c906108c
SS
485
486/* Get ready to modify the registers array. On machines which store
487 individual registers, this doesn't need to do anything. On machines
488 which store all the registers in one fell swoop, this makes sure
489 that REGISTERS contains all the registers from the program being
490 debugged. */
491
492#define target_prepare_to_store() \
0d06e24b 493 (*current_target.to_prepare_to_store) ()
c906108c 494
4930751a
C
495extern DCACHE *target_dcache;
496
29e57380
C
497extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
498 struct mem_attrib *attrib);
4930751a 499
a14ed312 500extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 501
a14ed312 502extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 503
4930751a 504extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 505
29e57380
C
506extern int xfer_memory (CORE_ADDR, char *, int, int,
507 struct mem_attrib *, struct target_ops *);
c906108c 508
29e57380
C
509extern int child_xfer_memory (CORE_ADDR, char *, int, int,
510 struct mem_attrib *, struct target_ops *);
c906108c 511
917317f4
JM
512/* Make a single attempt at transfering LEN bytes. On a successful
513 transfer, the number of bytes actually transfered is returned and
514 ERR is set to 0. When a transfer fails, -1 is returned (the number
515 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 516 non-zero error indication. */
917317f4 517
ed9a39eb
JM
518extern int
519target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 520
ed9a39eb
JM
521extern int
522target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 523
a14ed312 524extern char *child_pid_to_exec_file (int);
c906108c 525
a14ed312 526extern char *child_core_file_to_sym_file (char *);
c906108c
SS
527
528#if defined(CHILD_POST_ATTACH)
a14ed312 529extern void child_post_attach (int);
c906108c
SS
530#endif
531
39f77062 532extern void child_post_wait (ptid_t, int);
c906108c 533
39f77062 534extern void child_post_startup_inferior (ptid_t);
c906108c 535
a14ed312 536extern void child_acknowledge_created_inferior (int);
c906108c 537
a14ed312 538extern void child_clone_and_follow_inferior (int, int *);
c906108c 539
a14ed312 540extern void child_post_follow_inferior_by_clone (void);
c906108c 541
a14ed312 542extern int child_insert_fork_catchpoint (int);
c906108c 543
a14ed312 544extern int child_remove_fork_catchpoint (int);
c906108c 545
a14ed312 546extern int child_insert_vfork_catchpoint (int);
c906108c 547
a14ed312 548extern int child_remove_vfork_catchpoint (int);
c906108c 549
a14ed312 550extern int child_has_forked (int, int *);
c906108c 551
a14ed312 552extern int child_has_vforked (int, int *);
c906108c 553
a14ed312 554extern void child_acknowledge_created_inferior (int);
c906108c 555
a14ed312 556extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 557
a14ed312 558extern void child_post_follow_vfork (int, int, int, int);
c906108c 559
a14ed312 560extern int child_insert_exec_catchpoint (int);
c906108c 561
a14ed312 562extern int child_remove_exec_catchpoint (int);
c906108c 563
a14ed312 564extern int child_has_execd (int, char **);
c906108c 565
a14ed312 566extern int child_reported_exec_events_per_exec_call (void);
c906108c 567
a14ed312 568extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 569
a14ed312 570extern int child_has_exited (int, int, int *);
c906108c 571
39f77062 572extern int child_thread_alive (ptid_t);
c906108c
SS
573
574/* From exec.c */
575
a14ed312 576extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
577
578/* Print a line about the current target. */
579
580#define target_files_info() \
0d06e24b 581 (*current_target.to_files_info) (&current_target)
c906108c
SS
582
583/* Insert a breakpoint at address ADDR in the target machine.
584 SAVE is a pointer to memory allocated for saving the
585 target contents. It is guaranteed by the caller to be long enough
586 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
587 an errno value. */
588
589#define target_insert_breakpoint(addr, save) \
0d06e24b 590 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
591
592/* Remove a breakpoint at address ADDR in the target machine.
593 SAVE is a pointer to the same save area
594 that was previously passed to target_insert_breakpoint.
595 Result is 0 for success, or an errno value. */
596
597#define target_remove_breakpoint(addr, save) \
0d06e24b 598 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
599
600/* Initialize the terminal settings we record for the inferior,
601 before we actually run the inferior. */
602
603#define target_terminal_init() \
0d06e24b 604 (*current_target.to_terminal_init) ()
c906108c
SS
605
606/* Put the inferior's terminal settings into effect.
607 This is preparation for starting or resuming the inferior. */
608
609#define target_terminal_inferior() \
0d06e24b 610 (*current_target.to_terminal_inferior) ()
c906108c
SS
611
612/* Put some of our terminal settings into effect,
613 enough to get proper results from our output,
614 but do not change into or out of RAW mode
615 so that no input is discarded.
616
617 After doing this, either terminal_ours or terminal_inferior
618 should be called to get back to a normal state of affairs. */
619
620#define target_terminal_ours_for_output() \
0d06e24b 621 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
622
623/* Put our terminal settings into effect.
624 First record the inferior's terminal settings
625 so they can be restored properly later. */
626
627#define target_terminal_ours() \
0d06e24b 628 (*current_target.to_terminal_ours) ()
c906108c 629
a790ad35
SC
630/* Save our terminal settings.
631 This is called from TUI after entering or leaving the curses
632 mode. Since curses modifies our terminal this call is here
633 to take this change into account. */
634
635#define target_terminal_save_ours() \
636 (*current_target.to_terminal_save_ours) ()
637
c906108c
SS
638/* Print useful information about our terminal status, if such a thing
639 exists. */
640
641#define target_terminal_info(arg, from_tty) \
0d06e24b 642 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
643
644/* Kill the inferior process. Make it go away. */
645
646#define target_kill() \
0d06e24b 647 (*current_target.to_kill) ()
c906108c 648
0d06e24b
JM
649/* Load an executable file into the target process. This is expected
650 to not only bring new code into the target process, but also to
651 update GDB's symbol tables to match. */
c906108c 652
11cf8741 653extern void target_load (char *arg, int from_tty);
c906108c
SS
654
655/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
656 name. ADDRP is a CORE_ADDR * pointing to where the value of the
657 symbol should be returned. The result is 0 if successful, nonzero
658 if the symbol does not exist in the target environment. This
659 function should not call error() if communication with the target
660 is interrupted, since it is called from symbol reading, but should
661 return nonzero, possibly doing a complain(). */
c906108c 662
0d06e24b
JM
663#define target_lookup_symbol(name, addrp) \
664 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 665
39f77062 666/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
667 EXEC_FILE is the file to run.
668 ALLARGS is a string containing the arguments to the program.
669 ENV is the environment vector to pass. Errors reported with error().
670 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 671
c906108c 672#define target_create_inferior(exec_file, args, env) \
0d06e24b 673 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
674
675
676/* Some targets (such as ttrace-based HPUX) don't allow us to request
677 notification of inferior events such as fork and vork immediately
678 after the inferior is created. (This because of how gdb gets an
679 inferior created via invoking a shell to do it. In such a scenario,
680 if the shell init file has commands in it, the shell will fork and
681 exec for each of those commands, and we will see each such fork
682 event. Very bad.)
c5aa993b 683
0d06e24b
JM
684 Such targets will supply an appropriate definition for this function. */
685
39f77062
KB
686#define target_post_startup_inferior(ptid) \
687 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
688
689/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
690 some synchronization between gdb and the new inferior process, PID. */
691
c906108c 692#define target_acknowledge_created_inferior(pid) \
0d06e24b 693 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
694
695/* An inferior process has been created via a fork() or similar
696 system call. This function will clone the debugger, then ensure
697 that CHILD_PID is attached to by that debugger.
698
699 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
700 and FALSE otherwise. (The original and clone debuggers can use this
701 to determine which they are, if need be.)
702
703 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
704 the two debuggers from competing for shell input.) */
705
c906108c 706#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 707 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
708
709/* This operation is intended to be used as the last in a sequence of
710 steps taken when following both parent and child of a fork. This
711 is used by a clone of the debugger, which will follow the child.
712
713 The original debugger has detached from this process, and the
714 clone has attached to it.
715
716 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
717 correctly. */
718
c906108c 719#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
720 (*current_target.to_post_follow_inferior_by_clone) ()
721
722/* On some targets, we can catch an inferior fork or vfork event when
723 it occurs. These functions insert/remove an already-created
724 catchpoint for such events. */
c906108c 725
c906108c 726#define target_insert_fork_catchpoint(pid) \
0d06e24b 727 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
728
729#define target_remove_fork_catchpoint(pid) \
0d06e24b 730 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
731
732#define target_insert_vfork_catchpoint(pid) \
0d06e24b 733 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
734
735#define target_remove_vfork_catchpoint(pid) \
0d06e24b 736 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
737
738/* Returns TRUE if PID has invoked the fork() system call. And,
739 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
740 inferior process that was created by that call. */
741
c906108c 742#define target_has_forked(pid,child_pid) \
0d06e24b
JM
743 (*current_target.to_has_forked) (pid,child_pid)
744
745/* Returns TRUE if PID has invoked the vfork() system call. And,
746 also sets CHILD_PID to the process id of the other ("child")
747 inferior process that was created by that call. */
c906108c 748
c906108c 749#define target_has_vforked(pid,child_pid) \
0d06e24b 750 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
751
752/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
753 anything to a vforked child before it subsequently calls exec().
754 On such platforms, we say that the debugger cannot "follow" the
755 child until it has vforked.
756
757 This function should be defined to return 1 by those targets
758 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
759 child, and 0 if they cannot. */
760
c906108c 761#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 762 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
763
764/* An inferior process has been created via a vfork() system call.
765 The debugger has followed the parent, the child, or both. The
766 process of setting up for that follow may have required some
767 target-specific trickery to track the sequence of reported events.
768 If so, this function should be defined by those targets that
769 require the debugger to perform cleanup or initialization after
0d06e24b
JM
770 the vfork follow. */
771
c906108c 772#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 773 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
774
775/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
776 occurs. These functions insert/remove an already-created
777 catchpoint for such events. */
778
c906108c 779#define target_insert_exec_catchpoint(pid) \
0d06e24b 780 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 781
c906108c 782#define target_remove_exec_catchpoint(pid) \
0d06e24b 783 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
784
785/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
786 And, also sets EXECD_PATHNAME to the pathname of the executable
787 file that was passed to exec(), and is now being executed. */
788
c906108c 789#define target_has_execd(pid,execd_pathname) \
0d06e24b 790 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
791
792/* Returns the number of exec events that are reported when a process
793 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
794 events are being reported. */
795
c906108c 796#define target_reported_exec_events_per_exec_call() \
0d06e24b 797 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
798
799/* Returns TRUE if PID has reported a syscall event. And, also sets
800 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
801 the unique integer ID of the syscall. */
802
c906108c 803#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 804 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
805
806/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
807 exit code of PID, if any. */
808
c906108c 809#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 810 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
811
812/* The debugger has completed a blocking wait() call. There is now
0d06e24b 813 some process event that must be processed. This function should
c906108c 814 be defined by those targets that require the debugger to perform
0d06e24b 815 cleanup or internal state changes in response to the process event. */
c906108c
SS
816
817/* The inferior process has died. Do what is right. */
818
819#define target_mourn_inferior() \
0d06e24b 820 (*current_target.to_mourn_inferior) ()
c906108c
SS
821
822/* Does target have enough data to do a run or attach command? */
823
824#define target_can_run(t) \
0d06e24b 825 ((t)->to_can_run) ()
c906108c
SS
826
827/* post process changes to signal handling in the inferior. */
828
39f77062
KB
829#define target_notice_signals(ptid) \
830 (*current_target.to_notice_signals) (ptid)
c906108c
SS
831
832/* Check to see if a thread is still alive. */
833
39f77062
KB
834#define target_thread_alive(ptid) \
835 (*current_target.to_thread_alive) (ptid)
c906108c 836
b83266a0
SS
837/* Query for new threads and add them to the thread list. */
838
839#define target_find_new_threads() \
0d06e24b 840 (*current_target.to_find_new_threads) (); \
b83266a0 841
0d06e24b
JM
842/* Make target stop in a continuable fashion. (For instance, under
843 Unix, this should act like SIGSTOP). This function is normally
844 used by GUIs to implement a stop button. */
c906108c
SS
845
846#define target_stop current_target.to_stop
847
848/* Queries the target side for some information. The first argument is a
849 letter specifying the type of the query, which is used to determine who
850 should process it. The second argument is a string that specifies which
851 information is desired and the third is a buffer that carries back the
852 response from the target side. The fourth parameter is the size of the
0d06e24b 853 output buffer supplied. */
c5aa993b 854
c906108c 855#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 856 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 857
96baa820
JM
858/* Send the specified COMMAND to the target's monitor
859 (shell,interpreter) for execution. The result of the query is
0d06e24b 860 placed in OUTBUF. */
96baa820
JM
861
862#define target_rcmd(command, outbuf) \
863 (*current_target.to_rcmd) (command, outbuf)
864
865
c906108c
SS
866/* Get the symbol information for a breakpointable routine called when
867 an exception event occurs.
868 Intended mainly for C++, and for those
869 platforms/implementations where such a callback mechanism is available,
870 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 871 different mechanisms for debugging exceptions. */
c906108c
SS
872
873#define target_enable_exception_callback(kind, enable) \
0d06e24b 874 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 875
0d06e24b 876/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 877
c906108c 878#define target_get_current_exception_event() \
0d06e24b 879 (*current_target.to_get_current_exception_event) ()
c906108c
SS
880
881/* Pointer to next target in the chain, e.g. a core file and an exec file. */
882
883#define target_next \
0d06e24b 884 (current_target.to_next)
c906108c
SS
885
886/* Does the target include all of memory, or only part of it? This
887 determines whether we look up the target chain for other parts of
888 memory if this target can't satisfy a request. */
889
890#define target_has_all_memory \
0d06e24b 891 (current_target.to_has_all_memory)
c906108c
SS
892
893/* Does the target include memory? (Dummy targets don't.) */
894
895#define target_has_memory \
0d06e24b 896 (current_target.to_has_memory)
c906108c
SS
897
898/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
899 we start a process.) */
c5aa993b 900
c906108c 901#define target_has_stack \
0d06e24b 902 (current_target.to_has_stack)
c906108c
SS
903
904/* Does the target have registers? (Exec files don't.) */
905
906#define target_has_registers \
0d06e24b 907 (current_target.to_has_registers)
c906108c
SS
908
909/* Does the target have execution? Can we make it jump (through
910 hoops), or pop its stack a few times? FIXME: If this is to work that
911 way, it needs to check whether an inferior actually exists.
912 remote-udi.c and probably other targets can be the current target
913 when the inferior doesn't actually exist at the moment. Right now
914 this just tells us whether this target is *capable* of execution. */
915
916#define target_has_execution \
0d06e24b 917 (current_target.to_has_execution)
c906108c
SS
918
919/* Can the target support the debugger control of thread execution?
920 a) Can it lock the thread scheduler?
921 b) Can it switch the currently running thread? */
922
923#define target_can_lock_scheduler \
0d06e24b 924 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
925
926#define target_can_switch_threads \
0d06e24b 927 (current_target.to_has_thread_control & tc_switch)
c906108c 928
6426a772
JM
929/* Can the target support asynchronous execution? */
930#define target_can_async_p() (current_target.to_can_async_p ())
931
932/* Is the target in asynchronous execution mode? */
933#define target_is_async_p() (current_target.to_is_async_p())
934
935/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
936#define target_async(CALLBACK,CONTEXT) \
937 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 938
ed9a39eb
JM
939/* This is to be used ONLY within run_stack_dummy(). It
940 provides a workaround, to have inferior function calls done in
941 sychronous mode, even though the target is asynchronous. After
942 target_async_mask(0) is called, calls to target_can_async_p() will
943 return FALSE , so that target_resume() will not try to start the
944 target asynchronously. After the inferior stops, we IMMEDIATELY
945 restore the previous nature of the target, by calling
946 target_async_mask(1). After that, target_can_async_p() will return
947 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
948
949 FIXME ezannoni 1999-12-13: we won't need this once we move
950 the turning async on and off to the single execution commands,
0d06e24b 951 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
952
953#define target_async_mask_value \
0d06e24b 954 (current_target.to_async_mask_value)
ed9a39eb
JM
955
956extern int target_async_mask (int mask);
957
a14ed312 958extern void target_link (char *, CORE_ADDR *);
c906108c
SS
959
960/* Converts a process id to a string. Usually, the string just contains
961 `process xyz', but on some systems it may contain
962 `process xyz thread abc'. */
963
ed9a39eb
JM
964#undef target_pid_to_str
965#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
966
967#ifndef target_tid_to_str
968#define target_tid_to_str(PID) \
0d06e24b 969 target_pid_to_str (PID)
39f77062 970extern char *normal_pid_to_str (ptid_t ptid);
c906108c 971#endif
c5aa993b 972
0d06e24b
JM
973/* Return a short string describing extra information about PID,
974 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
975 is okay. */
976
977#define target_extra_thread_info(TP) \
978 (current_target.to_extra_thread_info (TP))
ed9a39eb 979
11cf8741
JM
980/*
981 * New Objfile Event Hook:
982 *
983 * Sometimes a GDB component wants to get notified whenever a new
984 * objfile is loaded. Mainly this is used by thread-debugging
985 * implementations that need to know when symbols for the target
986 * thread implemenation are available.
987 *
988 * The old way of doing this is to define a macro 'target_new_objfile'
989 * that points to the function that you want to be called on every
990 * objfile/shlib load.
991 *
992 * The new way is to grab the function pointer, 'target_new_objfile_hook',
993 * and point it to the function that you want to be called on every
994 * objfile/shlib load.
995 *
996 * If multiple clients are willing to be cooperative, they can each
997 * save a pointer to the previous value of target_new_objfile_hook
998 * before modifying it, and arrange for their function to call the
999 * previous function in the chain. In that way, multiple clients
1000 * can receive this notification (something like with signal handlers).
1001 */
c906108c 1002
507f3c78 1003extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
1004
1005#ifndef target_pid_or_tid_to_str
1006#define target_pid_or_tid_to_str(ID) \
0d06e24b 1007 target_pid_to_str (ID)
c906108c
SS
1008#endif
1009
1010/* Attempts to find the pathname of the executable file
1011 that was run to create a specified process.
1012
1013 The process PID must be stopped when this operation is used.
c5aa993b 1014
c906108c
SS
1015 If the executable file cannot be determined, NULL is returned.
1016
1017 Else, a pointer to a character string containing the pathname
1018 is returned. This string should be copied into a buffer by
1019 the client if the string will not be immediately used, or if
0d06e24b 1020 it must persist. */
c906108c
SS
1021
1022#define target_pid_to_exec_file(pid) \
0d06e24b 1023 (current_target.to_pid_to_exec_file) (pid)
c906108c 1024
be4d1333
MS
1025/*
1026 * Iterator function for target memory regions.
1027 * Calls a callback function once for each memory region 'mapped'
1028 * in the child process. Defined as a simple macro rather than
1029 * as a function macro so that it can be tested for nullity.
1030 */
1031
1032#define target_find_memory_regions(FUNC, DATA) \
1033 (current_target.to_find_memory_regions) (FUNC, DATA)
1034
1035/*
1036 * Compose corefile .note section.
1037 */
1038
1039#define target_make_corefile_notes(BFD, SIZE_P) \
1040 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1041
9d8a64cb 1042/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
1043
1044#ifndef TARGET_SYMFILE_POSTREAD
1045#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1046#endif
1047
9d8a64cb 1048/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1049 started. */
1050
1051#ifndef TARGET_CREATE_INFERIOR_HOOK
1052#define TARGET_CREATE_INFERIOR_HOOK(PID)
1053#endif
1054
1055/* Hardware watchpoint interfaces. */
1056
1057/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1058 write). */
1059
1060#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1061#define STOPPED_BY_WATCHPOINT(w) \
1062 (*current_target.to_stopped_by_watchpoint) ()
c906108c
SS
1063#endif
1064
1065/* HP-UX supplies these operations, which respectively disable and enable
1066 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1067 on that platform. See wait_for_inferior's use of these. */
1068
c906108c
SS
1069#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1070#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1071#endif
1072
1073#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1074#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1075#endif
1076
ccaa32c7 1077/* Provide defaults for hardware watchpoint functions. */
c906108c 1078
ccaa32c7
GS
1079/* If the *_hw_beakpoint functions have not been defined
1080 elsewhere use the definitions in the target vector. */
c906108c
SS
1081
1082/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1083 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1084 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1085 (including this one?). OTHERTYPE is who knows what... */
1086
ccaa32c7
GS
1087#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1088#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1089 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1090#endif
c906108c
SS
1091
1092#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1093#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
ccaa32c7 1094 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
c906108c
SS
1095#endif
1096
c906108c
SS
1097
1098/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1099 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1100 success, non-zero for failure. */
1101
ccaa32c7
GS
1102#ifndef target_insert_watchpoint
1103#define target_insert_watchpoint(addr, len, type) \
1104 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1105
ccaa32c7
GS
1106#define target_remove_watchpoint(addr, len, type) \
1107 (*current_target.to_remove_watchpoint) (addr, len, type)
1108#endif
c906108c
SS
1109
1110#ifndef target_insert_hw_breakpoint
ccaa32c7
GS
1111#define target_insert_hw_breakpoint(addr, save) \
1112 (*current_target.to_insert_hw_breakpoint) (addr, save)
1113
1114#define target_remove_hw_breakpoint(addr, save) \
1115 (*current_target.to_remove_hw_breakpoint) (addr, save)
c906108c
SS
1116#endif
1117
1118#ifndef target_stopped_data_address
ccaa32c7
GS
1119#define target_stopped_data_address() \
1120 (*current_target.to_stopped_data_address) ()
c906108c
SS
1121#endif
1122
1123/* If defined, then we need to decr pc by this much after a hardware break-
1124 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1125
1126#ifndef DECR_PC_AFTER_HW_BREAK
1127#define DECR_PC_AFTER_HW_BREAK 0
1128#endif
1129
1130/* Sometimes gdb may pick up what appears to be a valid target address
1131 from a minimal symbol, but the value really means, essentially,
1132 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1133 is run. Therefore, do not attempt to use this as a PC." */
1134
c906108c
SS
1135#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1136#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1137#endif
1138
1139/* This will only be defined by a target that supports catching vfork events,
1140 such as HP-UX.
1141
1142 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1143 child process after it has exec'd, causes the parent process to resume as
1144 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1145 define this to a function that prevents that from happening. */
c906108c
SS
1146#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1147#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1148#endif
1149
1150/* This will only be defined by a target that supports catching vfork events,
1151 such as HP-UX.
1152
1153 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1154 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1155 vfork event will be delivered to us. */
1156
c906108c
SS
1157#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1158#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1159#endif
1160
1161/* Routines for maintenance of the target structures...
1162
1163 add_target: Add a target to the list of all possible targets.
1164
1165 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1166 targets, within its particular stratum of the stack. Result
1167 is 0 if now atop the stack, nonzero if not on top (maybe
1168 should warn user).
c906108c
SS
1169
1170 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1171 no matter where it is on the list. Returns 0 if no
1172 change, 1 if removed from stack.
c906108c 1173
c5aa993b 1174 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1175
a14ed312 1176extern void add_target (struct target_ops *);
c906108c 1177
a14ed312 1178extern int push_target (struct target_ops *);
c906108c 1179
a14ed312 1180extern int unpush_target (struct target_ops *);
c906108c 1181
a14ed312 1182extern void target_preopen (int);
c906108c 1183
a14ed312 1184extern void pop_target (void);
c906108c
SS
1185
1186/* Struct section_table maps address ranges to file sections. It is
1187 mostly used with BFD files, but can be used without (e.g. for handling
1188 raw disks, or files not in formats handled by BFD). */
1189
c5aa993b
JM
1190struct section_table
1191 {
1192 CORE_ADDR addr; /* Lowest address in section */
1193 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1194
c5aa993b 1195 sec_ptr the_bfd_section;
c906108c 1196
c5aa993b
JM
1197 bfd *bfd; /* BFD file pointer */
1198 };
c906108c
SS
1199
1200/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1201 Returns 0 if OK, 1 on error. */
1202
1203extern int
a14ed312 1204build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1205
1206/* From mem-break.c */
1207
a14ed312 1208extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1209
a14ed312 1210extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1211
a14ed312 1212extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1213
a14ed312 1214extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1215
f4f9705a
AC
1216extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1217 int *lenptr);
c906108c
SS
1218
1219
1220/* From target.c */
1221
a14ed312 1222extern void initialize_targets (void);
c906108c 1223
a14ed312 1224extern void noprocess (void);
c906108c 1225
a14ed312 1226extern void find_default_attach (char *, int);
c906108c 1227
a14ed312 1228extern void find_default_require_attach (char *, int);
c906108c 1229
a14ed312 1230extern void find_default_require_detach (int, char *, int);
c906108c 1231
a14ed312 1232extern void find_default_create_inferior (char *, char *, char **);
c906108c 1233
a14ed312 1234extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1235
a14ed312 1236extern struct target_ops *find_run_target (void);
7a292a7a 1237
a14ed312 1238extern struct target_ops *find_core_target (void);
6426a772 1239
a14ed312 1240extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1241
1242extern int
a14ed312 1243target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1244
1245extern void remove_target_sections (bfd *abfd);
1246
c906108c
SS
1247\f
1248/* Stuff that should be shared among the various remote targets. */
1249
1250/* Debugging level. 0 is off, and non-zero values mean to print some debug
1251 information (higher values, more information). */
1252extern int remote_debug;
1253
1254/* Speed in bits per second, or -1 which means don't mess with the speed. */
1255extern int baud_rate;
1256/* Timeout limit for response from target. */
1257extern int remote_timeout;
1258
c906108c
SS
1259\f
1260/* Functions for helping to write a native target. */
1261
1262/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1263extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1264
c2d11a7d 1265/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1266 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1267/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1268 to the shorter target_signal_p() because it is far less ambigious.
1269 In this context ``target_signal'' refers to GDB's internal
1270 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1271 refers to the target operating system's signal. Confused? */
1272
c2d11a7d
JM
1273extern int target_signal_to_host_p (enum target_signal signo);
1274
1275/* Convert between host signal numbers and enum target_signal's.
1276 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1277 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1278/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1279 refering to the target operating system's signal numbering.
1280 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1281 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1282 internal representation of a target operating system's signal. */
1283
a14ed312
KB
1284extern enum target_signal target_signal_from_host (int);
1285extern int target_signal_to_host (enum target_signal);
c906108c
SS
1286
1287/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1288extern enum target_signal target_signal_from_command (int);
c906108c
SS
1289
1290/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1291extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1292\f
1293/* Imported from machine dependent code */
1294
c906108c 1295/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1296void target_ignore (void);
c906108c 1297
c5aa993b 1298#endif /* !defined (TARGET_H) */
This page took 0.346591 seconds and 4 git commands to generate.