2009-07-07 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
07b82ea5 33struct target_section_table;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
fd79ecee 58#include "vec.h"
2aecd87f 59#include "gdb_signals.h"
c906108c 60
c5aa993b
JM
61enum strata
62 {
63 dummy_stratum, /* The lowest of the low */
64 file_stratum, /* Executable files, etc */
4d8ac244 65 core_stratum, /* Core dump files */
d4f3574e 66 process_stratum, /* Executing processes */
81e64f55
HZ
67 thread_stratum, /* Executing threads */
68 record_stratum /* Support record debugging */
c5aa993b 69 };
c906108c 70
c5aa993b
JM
71enum thread_control_capabilities
72 {
0d06e24b
JM
73 tc_none = 0, /* Default: can't control thread execution. */
74 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 75 };
c906108c
SS
76
77/* Stuff for target_wait. */
78
79/* Generally, what has the program done? */
c5aa993b
JM
80enum target_waitkind
81 {
82 /* The program has exited. The exit status is in value.integer. */
83 TARGET_WAITKIND_EXITED,
c906108c 84
0d06e24b
JM
85 /* The program has stopped with a signal. Which signal is in
86 value.sig. */
c5aa993b 87 TARGET_WAITKIND_STOPPED,
c906108c 88
c5aa993b
JM
89 /* The program has terminated with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_SIGNALLED,
c906108c 92
c5aa993b
JM
93 /* The program is letting us know that it dynamically loaded something
94 (e.g. it called load(2) on AIX). */
95 TARGET_WAITKIND_LOADED,
c906108c 96
3a3e9ee3 97 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
98 value.related_pid. I.e., if the child forks, value.related_pid
99 is the parent's ID. */
100
c5aa993b 101 TARGET_WAITKIND_FORKED,
c906108c 102
3a3e9ee3 103 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
104 value.related_pid. */
105
c5aa993b 106 TARGET_WAITKIND_VFORKED,
c906108c 107
0d06e24b
JM
108 /* The program has exec'ed a new executable file. The new file's
109 pathname is pointed to by value.execd_pathname. */
110
c5aa993b 111 TARGET_WAITKIND_EXECD,
c906108c 112
0d06e24b
JM
113 /* The program has entered or returned from a system call. On
114 HP-UX, this is used in the hardware watchpoint implementation.
115 The syscall's unique integer ID number is in value.syscall_id */
116
c5aa993b
JM
117 TARGET_WAITKIND_SYSCALL_ENTRY,
118 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 119
c5aa993b
JM
120 /* Nothing happened, but we stopped anyway. This perhaps should be handled
121 within target_wait, but I'm not sure target_wait should be resuming the
122 inferior. */
c4093a6a
JM
123 TARGET_WAITKIND_SPURIOUS,
124
8e7d2c16
DJ
125 /* An event has occured, but we should wait again.
126 Remote_async_wait() returns this when there is an event
c4093a6a
JM
127 on the inferior, but the rest of the world is not interested in
128 it. The inferior has not stopped, but has just sent some output
129 to the console, for instance. In this case, we want to go back
130 to the event loop and wait there for another event from the
131 inferior, rather than being stuck in the remote_async_wait()
132 function. This way the event loop is responsive to other events,
0d06e24b 133 like for instance the user typing. */
b2175913
MS
134 TARGET_WAITKIND_IGNORE,
135
136 /* The target has run out of history information,
137 and cannot run backward any further. */
138 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
139 };
140
c5aa993b
JM
141struct target_waitstatus
142 {
143 enum target_waitkind kind;
144
145 /* Forked child pid, execd pathname, exit status or signal number. */
146 union
147 {
148 int integer;
149 enum target_signal sig;
3a3e9ee3 150 ptid_t related_pid;
c5aa993b
JM
151 char *execd_pathname;
152 int syscall_id;
153 }
154 value;
155 };
c906108c 156
47608cb1
PA
157/* Options that can be passed to target_wait. */
158
159/* Return immediately if there's no event already queued. If this
160 options is not requested, target_wait blocks waiting for an
161 event. */
162#define TARGET_WNOHANG 1
163
f00150c9
DE
164/* Return a pretty printed form of target_waitstatus.
165 Space for the result is malloc'd, caller must free. */
166extern char *target_waitstatus_to_string (const struct target_waitstatus *);
167
2acceee2 168/* Possible types of events that the inferior handler will have to
0d06e24b 169 deal with. */
2acceee2
JM
170enum inferior_event_type
171 {
0d06e24b 172 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
173 INF_QUIT_REQ,
174 /* Process a normal inferior event which will result in target_wait
0d06e24b 175 being called. */
2146d243 176 INF_REG_EVENT,
0d06e24b 177 /* Deal with an error on the inferior. */
2acceee2 178 INF_ERROR,
0d06e24b 179 /* We are called because a timer went off. */
2acceee2 180 INF_TIMER,
0d06e24b 181 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
182 INF_EXEC_COMPLETE,
183 /* We are called to do some stuff after the inferior stops, but we
184 are expected to reenter the proceed() and
185 handle_inferior_event() functions. This is used only in case of
0d06e24b 186 'step n' like commands. */
c2d11a7d 187 INF_EXEC_CONTINUE
2acceee2 188 };
c906108c 189\f
13547ab6
DJ
190/* Target objects which can be transfered using target_read,
191 target_write, et cetera. */
1e3ff5ad
AC
192
193enum target_object
194{
1e3ff5ad
AC
195 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
196 TARGET_OBJECT_AVR,
23d964e7
UW
197 /* SPU target specific transfer. See "spu-tdep.c". */
198 TARGET_OBJECT_SPU,
1e3ff5ad 199 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 200 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
201 /* Memory, avoiding GDB's data cache and trusting the executable.
202 Target implementations of to_xfer_partial never need to handle
203 this object, and most callers should not use it. */
204 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
205 /* Kernel Unwind Table. See "ia64-tdep.c". */
206 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
207 /* Transfer auxilliary vector. */
208 TARGET_OBJECT_AUXV,
baf92889 209 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
210 TARGET_OBJECT_WCOOKIE,
211 /* Target memory map in XML format. */
212 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
213 /* Flash memory. This object can be used to write contents to
214 a previously erased flash memory. Using it without erasing
215 flash can have unexpected results. Addresses are physical
216 address on target, and not relative to flash start. */
23181151
DJ
217 TARGET_OBJECT_FLASH,
218 /* Available target-specific features, e.g. registers and coprocessors.
219 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
220 TARGET_OBJECT_AVAILABLE_FEATURES,
221 /* Currently loaded libraries, in XML format. */
07e059b5
VP
222 TARGET_OBJECT_LIBRARIES,
223 /* Get OS specific data. The ANNEX specifies the type (running
224 processes, etc.). */
4aa995e1
PA
225 TARGET_OBJECT_OSDATA,
226 /* Extra signal info. Usually the contents of `siginfo_t' on unix
227 platforms. */
228 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 229 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
230};
231
13547ab6
DJ
232/* Request that OPS transfer up to LEN 8-bit bytes of the target's
233 OBJECT. The OFFSET, for a seekable object, specifies the
234 starting point. The ANNEX can be used to provide additional
235 data-specific information to the target.
1e3ff5ad 236
13547ab6
DJ
237 Return the number of bytes actually transfered, or -1 if the
238 transfer is not supported or otherwise fails. Return of a positive
239 value less than LEN indicates that no further transfer is possible.
240 Unlike the raw to_xfer_partial interface, callers of these
241 functions do not need to retry partial transfers. */
1e3ff5ad 242
1e3ff5ad
AC
243extern LONGEST target_read (struct target_ops *ops,
244 enum target_object object,
1b0ba102 245 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
246 ULONGEST offset, LONGEST len);
247
d5086790
VP
248extern LONGEST target_read_until_error (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, gdb_byte *buf,
251 ULONGEST offset, LONGEST len);
252
1e3ff5ad
AC
253extern LONGEST target_write (struct target_ops *ops,
254 enum target_object object,
1b0ba102 255 const char *annex, const gdb_byte *buf,
1e3ff5ad 256 ULONGEST offset, LONGEST len);
b6591e8b 257
a76d924d
DJ
258/* Similar to target_write, except that it also calls PROGRESS with
259 the number of bytes written and the opaque BATON after every
260 successful partial write (and before the first write). This is
261 useful for progress reporting and user interaction while writing
262 data. To abort the transfer, the progress callback can throw an
263 exception. */
264
cf7a04e8
DJ
265LONGEST target_write_with_progress (struct target_ops *ops,
266 enum target_object object,
267 const char *annex, const gdb_byte *buf,
268 ULONGEST offset, LONGEST len,
269 void (*progress) (ULONGEST, void *),
270 void *baton);
271
13547ab6
DJ
272/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
273 be read using OPS. The return value will be -1 if the transfer
274 fails or is not supported; 0 if the object is empty; or the length
275 of the object otherwise. If a positive value is returned, a
276 sufficiently large buffer will be allocated using xmalloc and
277 returned in *BUF_P containing the contents of the object.
278
279 This method should be used for objects sufficiently small to store
280 in a single xmalloc'd buffer, when no fixed bound on the object's
281 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
282 through this function. */
283
284extern LONGEST target_read_alloc (struct target_ops *ops,
285 enum target_object object,
286 const char *annex, gdb_byte **buf_p);
287
159f81f3
DJ
288/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
289 returned as a string, allocated using xmalloc. If an error occurs
290 or the transfer is unsupported, NULL is returned. Empty objects
291 are returned as allocated but empty strings. A warning is issued
292 if the result contains any embedded NUL bytes. */
293
294extern char *target_read_stralloc (struct target_ops *ops,
295 enum target_object object,
296 const char *annex);
297
b6591e8b
AC
298/* Wrappers to target read/write that perform memory transfers. They
299 throw an error if the memory transfer fails.
300
301 NOTE: cagney/2003-10-23: The naming schema is lifted from
302 "frame.h". The parameter order is lifted from get_frame_memory,
303 which in turn lifted it from read_memory. */
304
305extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 306 gdb_byte *buf, LONGEST len);
b6591e8b 307extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
e17a4113
UW
308 CORE_ADDR addr, int len,
309 enum bfd_endian byte_order);
1e3ff5ad 310\f
0d06e24b
JM
311struct thread_info; /* fwd decl for parameter list below: */
312
c906108c 313struct target_ops
c5aa993b 314 {
258b763a 315 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
316 char *to_shortname; /* Name this target type */
317 char *to_longname; /* Name for printing */
318 char *to_doc; /* Documentation. Does not include trailing
c906108c 319 newline, and starts with a one-line descrip-
0d06e24b 320 tion (probably similar to to_longname). */
bba2d28d
AC
321 /* Per-target scratch pad. */
322 void *to_data;
f1c07ab0
AC
323 /* The open routine takes the rest of the parameters from the
324 command, and (if successful) pushes a new target onto the
325 stack. Targets should supply this routine, if only to provide
326 an error message. */
507f3c78 327 void (*to_open) (char *, int);
f1c07ab0
AC
328 /* Old targets with a static target vector provide "to_close".
329 New re-entrant targets provide "to_xclose" and that is expected
330 to xfree everything (including the "struct target_ops"). */
331 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 332 void (*to_close) (int);
136d6dae 333 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 334 void (*to_post_attach) (int);
136d6dae 335 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 336 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 337 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9 338 ptid_t (*to_wait) (struct target_ops *,
47608cb1 339 ptid_t, struct target_waitstatus *, int);
28439f5e
PA
340 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
341 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 342 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
343
344 /* Transfer LEN bytes of memory between GDB address MYADDR and
345 target address MEMADDR. If WRITE, transfer them to the target, else
346 transfer them from the target. TARGET is the target from which we
347 get this function.
348
349 Return value, N, is one of the following:
350
351 0 means that we can't handle this. If errno has been set, it is the
352 error which prevented us from doing it (FIXME: What about bfd_error?).
353
354 positive (call it N) means that we have transferred N bytes
355 starting at MEMADDR. We might be able to handle more bytes
356 beyond this length, but no promises.
357
358 negative (call its absolute value N) means that we cannot
359 transfer right at MEMADDR, but we could transfer at least
c8e73a31 360 something at MEMADDR + N.
c5aa993b 361
c8e73a31
AC
362 NOTE: cagney/2004-10-01: This has been entirely superseeded by
363 to_xfer_partial and inferior inheritance. */
364
1b0ba102 365 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
366 int len, int write,
367 struct mem_attrib *attrib,
368 struct target_ops *target);
c906108c 369
507f3c78 370 void (*to_files_info) (struct target_ops *);
a6d9a66e
UW
371 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
372 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7 373 int (*to_can_use_hw_breakpoint) (int, int, int);
a6d9a66e
UW
374 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
375 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7
GS
376 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
377 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
378 int (*to_stopped_by_watchpoint) (void);
74174d2e 379 int to_have_steppable_watchpoint;
7df1a324 380 int to_have_continuable_watchpoint;
4aa7a7f5 381 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
382 int (*to_watchpoint_addr_within_range) (struct target_ops *,
383 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 384 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
385 void (*to_terminal_init) (void);
386 void (*to_terminal_inferior) (void);
387 void (*to_terminal_ours_for_output) (void);
388 void (*to_terminal_ours) (void);
a790ad35 389 void (*to_terminal_save_ours) (void);
507f3c78 390 void (*to_terminal_info) (char *, int);
7d85a9c0 391 void (*to_kill) (struct target_ops *);
507f3c78
KB
392 void (*to_load) (char *, int);
393 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
394 void (*to_create_inferior) (struct target_ops *,
395 char *, char *, char **, int);
39f77062 396 void (*to_post_startup_inferior) (ptid_t);
507f3c78 397 void (*to_acknowledge_created_inferior) (int);
fa113d1a 398 void (*to_insert_fork_catchpoint) (int);
507f3c78 399 int (*to_remove_fork_catchpoint) (int);
fa113d1a 400 void (*to_insert_vfork_catchpoint) (int);
507f3c78 401 int (*to_remove_vfork_catchpoint) (int);
ee057212 402 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 403 void (*to_insert_exec_catchpoint) (int);
507f3c78 404 int (*to_remove_exec_catchpoint) (int);
507f3c78 405 int (*to_has_exited) (int, int, int *);
136d6dae 406 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 407 int (*to_can_run) (void);
39f77062 408 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
409 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
410 void (*to_find_new_threads) (struct target_ops *);
117de6a9 411 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 412 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 413 void (*to_stop) (ptid_t);
d9fcf2fb 414 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 415 char *(*to_pid_to_exec_file) (int pid);
49d03eab 416 void (*to_log_command) (const char *);
07b82ea5 417 struct target_section_table *(*to_get_section_table) (struct target_ops *);
c5aa993b 418 enum strata to_stratum;
c35b1492
PA
419 int (*to_has_all_memory) (struct target_ops *);
420 int (*to_has_memory) (struct target_ops *);
421 int (*to_has_stack) (struct target_ops *);
422 int (*to_has_registers) (struct target_ops *);
423 int (*to_has_execution) (struct target_ops *);
c5aa993b 424 int to_has_thread_control; /* control thread execution */
dc177b7a 425 int to_attach_no_wait;
6426a772
JM
426 /* ASYNC target controls */
427 int (*to_can_async_p) (void);
428 int (*to_is_async_p) (void);
b84876c2
PA
429 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
430 int (*to_async_mask) (int);
9908b566 431 int (*to_supports_non_stop) (void);
2146d243
RM
432 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
433 unsigned long,
434 int, int, int,
435 void *),
be4d1333
MS
436 void *);
437 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
438
439 /* Return the thread-local address at OFFSET in the
440 thread-local storage for the thread PTID and the shared library
441 or executable file given by OBJFILE. If that block of
442 thread-local storage hasn't been allocated yet, this function
443 may return an error. */
117de6a9
PA
444 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
445 ptid_t ptid,
b2756930 446 CORE_ADDR load_module_addr,
3f47be5c
EZ
447 CORE_ADDR offset);
448
13547ab6
DJ
449 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
450 OBJECT. The OFFSET, for a seekable object, specifies the
451 starting point. The ANNEX can be used to provide additional
452 data-specific information to the target.
453
454 Return the number of bytes actually transfered, zero when no
455 further transfer is possible, and -1 when the transfer is not
456 supported. Return of a positive value smaller than LEN does
457 not indicate the end of the object, only the end of the
458 transfer; higher level code should continue transferring if
459 desired. This is handled in target.c.
460
461 The interface does not support a "retry" mechanism. Instead it
462 assumes that at least one byte will be transfered on each
463 successful call.
464
465 NOTE: cagney/2003-10-17: The current interface can lead to
466 fragmented transfers. Lower target levels should not implement
467 hacks, such as enlarging the transfer, in an attempt to
468 compensate for this. Instead, the target stack should be
469 extended so that it implements supply/collect methods and a
470 look-aside object cache. With that available, the lowest
471 target can safely and freely "push" data up the stack.
472
473 See target_read and target_write for more information. One,
474 and only one, of readbuf or writebuf must be non-NULL. */
475
4b8a223f 476 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 477 enum target_object object, const char *annex,
1b0ba102 478 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 479 ULONGEST offset, LONGEST len);
1e3ff5ad 480
fd79ecee
DJ
481 /* Returns the memory map for the target. A return value of NULL
482 means that no memory map is available. If a memory address
483 does not fall within any returned regions, it's assumed to be
484 RAM. The returned memory regions should not overlap.
485
486 The order of regions does not matter; target_memory_map will
487 sort regions by starting address. For that reason, this
488 function should not be called directly except via
489 target_memory_map.
490
491 This method should not cache data; if the memory map could
492 change unexpectedly, it should be invalidated, and higher
493 layers will re-fetch it. */
494 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
495
a76d924d
DJ
496 /* Erases the region of flash memory starting at ADDRESS, of
497 length LENGTH.
498
499 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
500 on flash block boundaries, as reported by 'to_memory_map'. */
501 void (*to_flash_erase) (struct target_ops *,
502 ULONGEST address, LONGEST length);
503
504 /* Finishes a flash memory write sequence. After this operation
505 all flash memory should be available for writing and the result
506 of reading from areas written by 'to_flash_write' should be
507 equal to what was written. */
508 void (*to_flash_done) (struct target_ops *);
509
424163ea
DJ
510 /* Describe the architecture-specific features of this target.
511 Returns the description found, or NULL if no description
512 was available. */
513 const struct target_desc *(*to_read_description) (struct target_ops *ops);
514
0ef643c8
JB
515 /* Build the PTID of the thread on which a given task is running,
516 based on LWP and THREAD. These values are extracted from the
517 task Private_Data section of the Ada Task Control Block, and
518 their interpretation depends on the target. */
519 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
520
c47ffbe3
VP
521 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
522 Return 0 if *READPTR is already at the end of the buffer.
523 Return -1 if there is insufficient buffer for a whole entry.
524 Return 1 if an entry was read into *TYPEP and *VALP. */
525 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
526 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
527
08388c79
DE
528 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
529 sequence of bytes in PATTERN with length PATTERN_LEN.
530
531 The result is 1 if found, 0 if not found, and -1 if there was an error
532 requiring halting of the search (e.g. memory read error).
533 If the pattern is found the address is recorded in FOUND_ADDRP. */
534 int (*to_search_memory) (struct target_ops *ops,
535 CORE_ADDR start_addr, ULONGEST search_space_len,
536 const gdb_byte *pattern, ULONGEST pattern_len,
537 CORE_ADDR *found_addrp);
538
b2175913 539 /* Can target execute in reverse? */
2c0b251b 540 int (*to_can_execute_reverse) (void);
b2175913 541
8a305172
PA
542 /* Does this target support debugging multiple processes
543 simultaneously? */
544 int (*to_supports_multi_process) (void);
545
c2250ad1
UW
546 /* Determine current architecture of thread PTID. */
547 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
548
c5aa993b 549 int to_magic;
0d06e24b
JM
550 /* Need sub-structure for target machine related rather than comm related?
551 */
c5aa993b 552 };
c906108c
SS
553
554/* Magic number for checking ops size. If a struct doesn't end with this
555 number, somebody changed the declaration but didn't change all the
556 places that initialize one. */
557
558#define OPS_MAGIC 3840
559
560/* The ops structure for our "current" target process. This should
561 never be NULL. If there is no target, it points to the dummy_target. */
562
c5aa993b 563extern struct target_ops current_target;
c906108c 564
c906108c
SS
565/* Define easy words for doing these operations on our current target. */
566
567#define target_shortname (current_target.to_shortname)
568#define target_longname (current_target.to_longname)
569
f1c07ab0
AC
570/* Does whatever cleanup is required for a target that we are no
571 longer going to be calling. QUITTING indicates that GDB is exiting
572 and should not get hung on an error (otherwise it is important to
573 perform clean termination, even if it takes a while). This routine
574 is automatically always called when popping the target off the
575 target stack (to_beneath is undefined). Closing file descriptors
576 and freeing all memory allocated memory are typical things it
577 should do. */
578
579void target_close (struct target_ops *targ, int quitting);
c906108c
SS
580
581/* Attaches to a process on the target side. Arguments are as passed
582 to the `attach' command by the user. This routine can be called
583 when the target is not on the target-stack, if the target_can_run
2146d243 584 routine returns 1; in that case, it must push itself onto the stack.
c906108c 585 Upon exit, the target should be ready for normal operations, and
2146d243 586 should be ready to deliver the status of the process immediately
c906108c
SS
587 (without waiting) to an upcoming target_wait call. */
588
136d6dae 589void target_attach (char *, int);
c906108c 590
dc177b7a
PA
591/* Some targets don't generate traps when attaching to the inferior,
592 or their target_attach implementation takes care of the waiting.
593 These targets must set to_attach_no_wait. */
594
595#define target_attach_no_wait \
596 (current_target.to_attach_no_wait)
597
c906108c
SS
598/* The target_attach operation places a process under debugger control,
599 and stops the process.
600
601 This operation provides a target-specific hook that allows the
0d06e24b 602 necessary bookkeeping to be performed after an attach completes. */
c906108c 603#define target_post_attach(pid) \
0d06e24b 604 (*current_target.to_post_attach) (pid)
c906108c 605
c906108c
SS
606/* Takes a program previously attached to and detaches it.
607 The program may resume execution (some targets do, some don't) and will
608 no longer stop on signals, etc. We better not have left any breakpoints
609 in the program or it'll die when it hits one. ARGS is arguments
610 typed by the user (e.g. a signal to send the process). FROM_TTY
611 says whether to be verbose or not. */
612
a14ed312 613extern void target_detach (char *, int);
c906108c 614
6ad8ae5c
DJ
615/* Disconnect from the current target without resuming it (leaving it
616 waiting for a debugger). */
617
618extern void target_disconnect (char *, int);
619
39f77062 620/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
621 single-step or to run free; SIGGNAL is the signal to be given to
622 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
623 pass TARGET_SIGNAL_DEFAULT. */
624
e1ac3328 625extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 626
b5a2688f
AC
627/* Wait for process pid to do something. PTID = -1 to wait for any
628 pid to do something. Return pid of child, or -1 in case of error;
c906108c 629 store status through argument pointer STATUS. Note that it is
b5a2688f 630 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
631 the debugging target from the stack; GDB isn't prepared to get back
632 to the prompt with a debugging target but without the frame cache,
47608cb1
PA
633 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
634 options. */
c906108c 635
47608cb1
PA
636extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
637 int options);
c906108c 638
17dee195 639/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 640
28439f5e 641extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
642
643/* Store at least register REGNO, or all regs if REGNO == -1.
644 It can store as many registers as it wants to, so target_prepare_to_store
645 must have been previously called. Calls error() if there are problems. */
646
28439f5e 647extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
648
649/* Get ready to modify the registers array. On machines which store
650 individual registers, this doesn't need to do anything. On machines
651 which store all the registers in one fell swoop, this makes sure
652 that REGISTERS contains all the registers from the program being
653 debugged. */
654
316f2060
UW
655#define target_prepare_to_store(regcache) \
656 (*current_target.to_prepare_to_store) (regcache)
c906108c 657
8a305172
PA
658/* Returns true if this target can debug multiple processes
659 simultaneously. */
660
661#define target_supports_multi_process() \
662 (*current_target.to_supports_multi_process) ()
663
4930751a
C
664extern DCACHE *target_dcache;
665
a14ed312 666extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 667
fc1a4b47 668extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 669
fc1a4b47 670extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 671 int len);
c906108c 672
fd79ecee
DJ
673/* Fetches the target's memory map. If one is found it is sorted
674 and returned, after some consistency checking. Otherwise, NULL
675 is returned. */
676VEC(mem_region_s) *target_memory_map (void);
677
a76d924d
DJ
678/* Erase the specified flash region. */
679void target_flash_erase (ULONGEST address, LONGEST length);
680
681/* Finish a sequence of flash operations. */
682void target_flash_done (void);
683
684/* Describes a request for a memory write operation. */
685struct memory_write_request
686 {
687 /* Begining address that must be written. */
688 ULONGEST begin;
689 /* Past-the-end address. */
690 ULONGEST end;
691 /* The data to write. */
692 gdb_byte *data;
693 /* A callback baton for progress reporting for this request. */
694 void *baton;
695 };
696typedef struct memory_write_request memory_write_request_s;
697DEF_VEC_O(memory_write_request_s);
698
699/* Enumeration specifying different flash preservation behaviour. */
700enum flash_preserve_mode
701 {
702 flash_preserve,
703 flash_discard
704 };
705
706/* Write several memory blocks at once. This version can be more
707 efficient than making several calls to target_write_memory, in
708 particular because it can optimize accesses to flash memory.
709
710 Moreover, this is currently the only memory access function in gdb
711 that supports writing to flash memory, and it should be used for
712 all cases where access to flash memory is desirable.
713
714 REQUESTS is the vector (see vec.h) of memory_write_request.
715 PRESERVE_FLASH_P indicates what to do with blocks which must be
716 erased, but not completely rewritten.
717 PROGRESS_CB is a function that will be periodically called to provide
718 feedback to user. It will be called with the baton corresponding
719 to the request currently being written. It may also be called
720 with a NULL baton, when preserved flash sectors are being rewritten.
721
722 The function returns 0 on success, and error otherwise. */
723int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
724 enum flash_preserve_mode preserve_flash_p,
725 void (*progress_cb) (ULONGEST, void *));
726
47932f85
DJ
727/* From infrun.c. */
728
3a3e9ee3 729extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 730
3a3e9ee3 731extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 732
3a3e9ee3 733extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 734
c906108c
SS
735/* Print a line about the current target. */
736
737#define target_files_info() \
0d06e24b 738 (*current_target.to_files_info) (&current_target)
c906108c 739
8181d85f
DJ
740/* Insert a breakpoint at address BP_TGT->placed_address in the target
741 machine. Result is 0 for success, or an errno value. */
c906108c 742
a6d9a66e
UW
743#define target_insert_breakpoint(gdbarch, bp_tgt) \
744 (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
c906108c 745
8181d85f
DJ
746/* Remove a breakpoint at address BP_TGT->placed_address in the target
747 machine. Result is 0 for success, or an errno value. */
c906108c 748
a6d9a66e
UW
749#define target_remove_breakpoint(gdbarch, bp_tgt) \
750 (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
c906108c
SS
751
752/* Initialize the terminal settings we record for the inferior,
753 before we actually run the inferior. */
754
755#define target_terminal_init() \
0d06e24b 756 (*current_target.to_terminal_init) ()
c906108c
SS
757
758/* Put the inferior's terminal settings into effect.
759 This is preparation for starting or resuming the inferior. */
760
d9d2d8b6 761extern void target_terminal_inferior (void);
c906108c
SS
762
763/* Put some of our terminal settings into effect,
764 enough to get proper results from our output,
765 but do not change into or out of RAW mode
766 so that no input is discarded.
767
768 After doing this, either terminal_ours or terminal_inferior
769 should be called to get back to a normal state of affairs. */
770
771#define target_terminal_ours_for_output() \
0d06e24b 772 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
773
774/* Put our terminal settings into effect.
775 First record the inferior's terminal settings
776 so they can be restored properly later. */
777
778#define target_terminal_ours() \
0d06e24b 779 (*current_target.to_terminal_ours) ()
c906108c 780
a790ad35
SC
781/* Save our terminal settings.
782 This is called from TUI after entering or leaving the curses
783 mode. Since curses modifies our terminal this call is here
784 to take this change into account. */
785
786#define target_terminal_save_ours() \
787 (*current_target.to_terminal_save_ours) ()
788
c906108c
SS
789/* Print useful information about our terminal status, if such a thing
790 exists. */
791
792#define target_terminal_info(arg, from_tty) \
0d06e24b 793 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
794
795/* Kill the inferior process. Make it go away. */
796
7d85a9c0 797extern void target_kill (void);
c906108c 798
0d06e24b
JM
799/* Load an executable file into the target process. This is expected
800 to not only bring new code into the target process, but also to
1986bccd
AS
801 update GDB's symbol tables to match.
802
803 ARG contains command-line arguments, to be broken down with
804 buildargv (). The first non-switch argument is the filename to
805 load, FILE; the second is a number (as parsed by strtoul (..., ...,
806 0)), which is an offset to apply to the load addresses of FILE's
807 sections. The target may define switches, or other non-switch
808 arguments, as it pleases. */
c906108c 809
11cf8741 810extern void target_load (char *arg, int from_tty);
c906108c
SS
811
812/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
813 name. ADDRP is a CORE_ADDR * pointing to where the value of the
814 symbol should be returned. The result is 0 if successful, nonzero
815 if the symbol does not exist in the target environment. This
816 function should not call error() if communication with the target
817 is interrupted, since it is called from symbol reading, but should
818 return nonzero, possibly doing a complain(). */
c906108c 819
0d06e24b
JM
820#define target_lookup_symbol(name, addrp) \
821 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 822
39f77062 823/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
824 EXEC_FILE is the file to run.
825 ALLARGS is a string containing the arguments to the program.
826 ENV is the environment vector to pass. Errors reported with error().
827 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 828
136d6dae
VP
829void target_create_inferior (char *exec_file, char *args,
830 char **env, int from_tty);
c906108c
SS
831
832/* Some targets (such as ttrace-based HPUX) don't allow us to request
833 notification of inferior events such as fork and vork immediately
834 after the inferior is created. (This because of how gdb gets an
835 inferior created via invoking a shell to do it. In such a scenario,
836 if the shell init file has commands in it, the shell will fork and
837 exec for each of those commands, and we will see each such fork
838 event. Very bad.)
c5aa993b 839
0d06e24b
JM
840 Such targets will supply an appropriate definition for this function. */
841
39f77062
KB
842#define target_post_startup_inferior(ptid) \
843 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
844
845/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
846 some synchronization between gdb and the new inferior process, PID. */
847
c906108c 848#define target_acknowledge_created_inferior(pid) \
0d06e24b 849 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 850
0d06e24b
JM
851/* On some targets, we can catch an inferior fork or vfork event when
852 it occurs. These functions insert/remove an already-created
853 catchpoint for such events. */
c906108c 854
c906108c 855#define target_insert_fork_catchpoint(pid) \
0d06e24b 856 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
857
858#define target_remove_fork_catchpoint(pid) \
0d06e24b 859 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
860
861#define target_insert_vfork_catchpoint(pid) \
0d06e24b 862 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
863
864#define target_remove_vfork_catchpoint(pid) \
0d06e24b 865 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 866
6604731b
DJ
867/* If the inferior forks or vforks, this function will be called at
868 the next resume in order to perform any bookkeeping and fiddling
869 necessary to continue debugging either the parent or child, as
870 requested, and releasing the other. Information about the fork
871 or vfork event is available via get_last_target_status ().
872 This function returns 1 if the inferior should not be resumed
873 (i.e. there is another event pending). */
0d06e24b 874
ee057212 875int target_follow_fork (int follow_child);
c906108c
SS
876
877/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
878 occurs. These functions insert/remove an already-created
879 catchpoint for such events. */
880
c906108c 881#define target_insert_exec_catchpoint(pid) \
0d06e24b 882 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 883
c906108c 884#define target_remove_exec_catchpoint(pid) \
0d06e24b 885 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 886
c906108c 887/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
888 exit code of PID, if any. */
889
c906108c 890#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 891 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
892
893/* The debugger has completed a blocking wait() call. There is now
2146d243 894 some process event that must be processed. This function should
c906108c 895 be defined by those targets that require the debugger to perform
0d06e24b 896 cleanup or internal state changes in response to the process event. */
c906108c
SS
897
898/* The inferior process has died. Do what is right. */
899
136d6dae 900void target_mourn_inferior (void);
c906108c
SS
901
902/* Does target have enough data to do a run or attach command? */
903
904#define target_can_run(t) \
0d06e24b 905 ((t)->to_can_run) ()
c906108c
SS
906
907/* post process changes to signal handling in the inferior. */
908
39f77062
KB
909#define target_notice_signals(ptid) \
910 (*current_target.to_notice_signals) (ptid)
c906108c
SS
911
912/* Check to see if a thread is still alive. */
913
28439f5e 914extern int target_thread_alive (ptid_t ptid);
c906108c 915
b83266a0
SS
916/* Query for new threads and add them to the thread list. */
917
28439f5e 918extern void target_find_new_threads (void);
b83266a0 919
0d06e24b
JM
920/* Make target stop in a continuable fashion. (For instance, under
921 Unix, this should act like SIGSTOP). This function is normally
922 used by GUIs to implement a stop button. */
c906108c 923
94cc34af 924#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 925
96baa820
JM
926/* Send the specified COMMAND to the target's monitor
927 (shell,interpreter) for execution. The result of the query is
0d06e24b 928 placed in OUTBUF. */
96baa820
JM
929
930#define target_rcmd(command, outbuf) \
931 (*current_target.to_rcmd) (command, outbuf)
932
933
c906108c
SS
934/* Does the target include all of memory, or only part of it? This
935 determines whether we look up the target chain for other parts of
936 memory if this target can't satisfy a request. */
937
c35b1492
PA
938extern int target_has_all_memory_1 (void);
939#define target_has_all_memory target_has_all_memory_1 ()
c906108c
SS
940
941/* Does the target include memory? (Dummy targets don't.) */
942
c35b1492
PA
943extern int target_has_memory_1 (void);
944#define target_has_memory target_has_memory_1 ()
c906108c
SS
945
946/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
947 we start a process.) */
c5aa993b 948
c35b1492
PA
949extern int target_has_stack_1 (void);
950#define target_has_stack target_has_stack_1 ()
c906108c
SS
951
952/* Does the target have registers? (Exec files don't.) */
953
c35b1492
PA
954extern int target_has_registers_1 (void);
955#define target_has_registers target_has_registers_1 ()
c906108c
SS
956
957/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
958 hoops), or pop its stack a few times? This means that the current
959 target is currently executing; for some targets, that's the same as
960 whether or not the target is capable of execution, but there are
961 also targets which can be current while not executing. In that
962 case this will become true after target_create_inferior or
963 target_attach. */
c906108c 964
c35b1492
PA
965extern int target_has_execution_1 (void);
966#define target_has_execution target_has_execution_1 ()
967
968/* Default implementations for process_stratum targets. Return true
969 if there's a selected inferior, false otherwise. */
970
971extern int default_child_has_all_memory (struct target_ops *ops);
972extern int default_child_has_memory (struct target_ops *ops);
973extern int default_child_has_stack (struct target_ops *ops);
974extern int default_child_has_registers (struct target_ops *ops);
975extern int default_child_has_execution (struct target_ops *ops);
c906108c
SS
976
977/* Can the target support the debugger control of thread execution?
d6350901 978 Can it lock the thread scheduler? */
c906108c
SS
979
980#define target_can_lock_scheduler \
0d06e24b 981 (current_target.to_has_thread_control & tc_schedlock)
c906108c 982
c6ebd6cf
VP
983/* Should the target enable async mode if it is supported? Temporary
984 cludge until async mode is a strict superset of sync mode. */
985extern int target_async_permitted;
986
6426a772
JM
987/* Can the target support asynchronous execution? */
988#define target_can_async_p() (current_target.to_can_async_p ())
989
990/* Is the target in asynchronous execution mode? */
b84876c2 991#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 992
9908b566
VP
993int target_supports_non_stop (void);
994
6426a772 995/* Put the target in async mode with the specified callback function. */
0d06e24b 996#define target_async(CALLBACK,CONTEXT) \
b84876c2 997 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 998
04714b91
AC
999/* This is to be used ONLY within call_function_by_hand(). It provides
1000 a workaround, to have inferior function calls done in sychronous
1001 mode, even though the target is asynchronous. After
ed9a39eb
JM
1002 target_async_mask(0) is called, calls to target_can_async_p() will
1003 return FALSE , so that target_resume() will not try to start the
1004 target asynchronously. After the inferior stops, we IMMEDIATELY
1005 restore the previous nature of the target, by calling
1006 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1007 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1008
1009 FIXME ezannoni 1999-12-13: we won't need this once we move
1010 the turning async on and off to the single execution commands,
0d06e24b 1011 from where it is done currently, in remote_resume(). */
ed9a39eb 1012
b84876c2
PA
1013#define target_async_mask(MASK) \
1014 (current_target.to_async_mask (MASK))
ed9a39eb 1015
c906108c
SS
1016/* Converts a process id to a string. Usually, the string just contains
1017 `process xyz', but on some systems it may contain
1018 `process xyz thread abc'. */
1019
117de6a9 1020extern char *target_pid_to_str (ptid_t ptid);
c906108c 1021
39f77062 1022extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1023
0d06e24b
JM
1024/* Return a short string describing extra information about PID,
1025 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1026 is okay. */
1027
1028#define target_extra_thread_info(TP) \
1029 (current_target.to_extra_thread_info (TP))
ed9a39eb 1030
c906108c
SS
1031/* Attempts to find the pathname of the executable file
1032 that was run to create a specified process.
1033
1034 The process PID must be stopped when this operation is used.
c5aa993b 1035
c906108c
SS
1036 If the executable file cannot be determined, NULL is returned.
1037
1038 Else, a pointer to a character string containing the pathname
1039 is returned. This string should be copied into a buffer by
1040 the client if the string will not be immediately used, or if
0d06e24b 1041 it must persist. */
c906108c
SS
1042
1043#define target_pid_to_exec_file(pid) \
0d06e24b 1044 (current_target.to_pid_to_exec_file) (pid)
c906108c 1045
c2250ad1
UW
1046/* Determine current architecture of thread PTID. */
1047
1048#define target_thread_architecture(ptid) \
1049 (current_target.to_thread_architecture (&current_target, ptid))
1050
be4d1333
MS
1051/*
1052 * Iterator function for target memory regions.
1053 * Calls a callback function once for each memory region 'mapped'
1054 * in the child process. Defined as a simple macro rather than
2146d243 1055 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1056 */
1057
1058#define target_find_memory_regions(FUNC, DATA) \
1059 (current_target.to_find_memory_regions) (FUNC, DATA)
1060
1061/*
1062 * Compose corefile .note section.
1063 */
1064
1065#define target_make_corefile_notes(BFD, SIZE_P) \
1066 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1067
c906108c
SS
1068/* Hardware watchpoint interfaces. */
1069
1070/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1071 write). */
1072
d92524f1
PM
1073#define target_stopped_by_watchpoint \
1074 (*current_target.to_stopped_by_watchpoint)
7df1a324 1075
74174d2e
UW
1076/* Non-zero if we have steppable watchpoints */
1077
d92524f1 1078#define target_have_steppable_watchpoint \
74174d2e 1079 (current_target.to_have_steppable_watchpoint)
74174d2e 1080
7df1a324
KW
1081/* Non-zero if we have continuable watchpoints */
1082
d92524f1 1083#define target_have_continuable_watchpoint \
7df1a324 1084 (current_target.to_have_continuable_watchpoint)
c906108c 1085
ccaa32c7 1086/* Provide defaults for hardware watchpoint functions. */
c906108c 1087
2146d243 1088/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1089 elsewhere use the definitions in the target vector. */
c906108c
SS
1090
1091/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1092 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1093 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1094 (including this one?). OTHERTYPE is who knows what... */
1095
d92524f1 1096#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
ccaa32c7 1097 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
c906108c 1098
d92524f1 1099#define target_region_ok_for_hw_watchpoint(addr, len) \
e0d24f8d 1100 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
e0d24f8d 1101
c906108c
SS
1102
1103/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1104 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1105 success, non-zero for failure. */
1106
ccaa32c7
GS
1107#define target_insert_watchpoint(addr, len, type) \
1108 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1109
ccaa32c7
GS
1110#define target_remove_watchpoint(addr, len, type) \
1111 (*current_target.to_remove_watchpoint) (addr, len, type)
c906108c 1112
a6d9a66e
UW
1113#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1114 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
ccaa32c7 1115
a6d9a66e
UW
1116#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1117 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
c906108c 1118
4aa7a7f5
JJ
1119#define target_stopped_data_address(target, x) \
1120 (*target.to_stopped_data_address) (target, x)
c906108c 1121
5009afc5
AS
1122#define target_watchpoint_addr_within_range(target, addr, start, length) \
1123 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1124
b2175913
MS
1125/* Target can execute in reverse? */
1126#define target_can_execute_reverse \
1127 (current_target.to_can_execute_reverse ? \
1128 current_target.to_can_execute_reverse () : 0)
1129
424163ea
DJ
1130extern const struct target_desc *target_read_description (struct target_ops *);
1131
0ef643c8
JB
1132#define target_get_ada_task_ptid(lwp, tid) \
1133 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1134
08388c79
DE
1135/* Utility implementation of searching memory. */
1136extern int simple_search_memory (struct target_ops* ops,
1137 CORE_ADDR start_addr,
1138 ULONGEST search_space_len,
1139 const gdb_byte *pattern,
1140 ULONGEST pattern_len,
1141 CORE_ADDR *found_addrp);
1142
1143/* Main entry point for searching memory. */
1144extern int target_search_memory (CORE_ADDR start_addr,
1145 ULONGEST search_space_len,
1146 const gdb_byte *pattern,
1147 ULONGEST pattern_len,
1148 CORE_ADDR *found_addrp);
1149
49d03eab
MR
1150/* Command logging facility. */
1151
1152#define target_log_command(p) \
1153 do \
1154 if (current_target.to_log_command) \
1155 (*current_target.to_log_command) (p); \
1156 while (0)
1157
c906108c
SS
1158/* Routines for maintenance of the target structures...
1159
1160 add_target: Add a target to the list of all possible targets.
1161
1162 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1163 targets, within its particular stratum of the stack. Result
1164 is 0 if now atop the stack, nonzero if not on top (maybe
1165 should warn user).
c906108c
SS
1166
1167 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1168 no matter where it is on the list. Returns 0 if no
1169 change, 1 if removed from stack.
c906108c 1170
c5aa993b 1171 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1172
a14ed312 1173extern void add_target (struct target_ops *);
c906108c 1174
a14ed312 1175extern int push_target (struct target_ops *);
c906108c 1176
a14ed312 1177extern int unpush_target (struct target_ops *);
c906108c 1178
fd79ecee
DJ
1179extern void target_pre_inferior (int);
1180
a14ed312 1181extern void target_preopen (int);
c906108c 1182
a14ed312 1183extern void pop_target (void);
c906108c 1184
aa76d38d
PA
1185/* Does whatever cleanup is required to get rid of all pushed targets.
1186 QUITTING is propagated to target_close; it indicates that GDB is
1187 exiting and should not get hung on an error (otherwise it is
1188 important to perform clean termination, even if it takes a
1189 while). */
1190extern void pop_all_targets (int quitting);
1191
87ab71f0
PA
1192/* Like pop_all_targets, but pops only targets whose stratum is
1193 strictly above ABOVE_STRATUM. */
1194extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1195
9e35dae4
DJ
1196extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1197 CORE_ADDR offset);
1198
0542c86d 1199/* Struct target_section maps address ranges to file sections. It is
c906108c
SS
1200 mostly used with BFD files, but can be used without (e.g. for handling
1201 raw disks, or files not in formats handled by BFD). */
1202
0542c86d 1203struct target_section
c5aa993b
JM
1204 {
1205 CORE_ADDR addr; /* Lowest address in section */
1206 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1207
7be0c536 1208 struct bfd_section *the_bfd_section;
c906108c 1209
c5aa993b
JM
1210 bfd *bfd; /* BFD file pointer */
1211 };
c906108c 1212
07b82ea5
PA
1213/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1214
1215struct target_section_table
1216{
1217 struct target_section *sections;
1218 struct target_section *sections_end;
1219};
1220
8db32d44 1221/* Return the "section" containing the specified address. */
0542c86d
PA
1222struct target_section *target_section_by_addr (struct target_ops *target,
1223 CORE_ADDR addr);
8db32d44 1224
07b82ea5
PA
1225/* Return the target section table this target (or the targets
1226 beneath) currently manipulate. */
1227
1228extern struct target_section_table *target_get_section_table
1229 (struct target_ops *target);
1230
c906108c
SS
1231/* From mem-break.c */
1232
a6d9a66e 1233extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1234
a6d9a66e 1235extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1236
ae4b2284 1237extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1238
ae4b2284 1239extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1240
c906108c
SS
1241
1242/* From target.c */
1243
a14ed312 1244extern void initialize_targets (void);
c906108c 1245
117de6a9 1246extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1247
8edfe269
DJ
1248extern void target_require_runnable (void);
1249
136d6dae 1250extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1251
136d6dae
VP
1252extern void find_default_create_inferior (struct target_ops *,
1253 char *, char *, char **, int);
c906108c 1254
a14ed312 1255extern struct target_ops *find_run_target (void);
7a292a7a 1256
a14ed312 1257extern struct target_ops *find_core_target (void);
6426a772 1258
a14ed312 1259extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1260
e0665bc8
PA
1261/* Read OS data object of type TYPE from the target, and return it in
1262 XML format. The result is NUL-terminated and returned as a string,
1263 allocated using xmalloc. If an error occurs or the transfer is
1264 unsupported, NULL is returned. Empty objects are returned as
1265 allocated but empty strings. */
1266
07e059b5
VP
1267extern char *target_get_osdata (const char *type);
1268
c906108c
SS
1269\f
1270/* Stuff that should be shared among the various remote targets. */
1271
1272/* Debugging level. 0 is off, and non-zero values mean to print some debug
1273 information (higher values, more information). */
1274extern int remote_debug;
1275
1276/* Speed in bits per second, or -1 which means don't mess with the speed. */
1277extern int baud_rate;
1278/* Timeout limit for response from target. */
1279extern int remote_timeout;
1280
c906108c
SS
1281\f
1282/* Functions for helping to write a native target. */
1283
1284/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1285extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1286
2aecd87f 1287/* These are in common/signals.c, but they're only used by gdb. */
1cded358
AR
1288extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1289 int);
1290extern int default_target_signal_to_host (struct gdbarch *,
1291 enum target_signal);
1292
c906108c 1293/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1294extern enum target_signal target_signal_from_command (int);
2aecd87f 1295/* End of files in common/signals.c. */
c906108c 1296
8defab1a
DJ
1297/* Set the show memory breakpoints mode to show, and installs a cleanup
1298 to restore it back to the current value. */
1299extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1300
c906108c
SS
1301\f
1302/* Imported from machine dependent code */
1303
c906108c 1304/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1305void target_ignore (void);
c906108c 1306
1df84f13 1307extern struct target_ops deprecated_child_ops;
5ac10fd1 1308
c5aa993b 1309#endif /* !defined (TARGET_H) */
This page took 1.118043 seconds and 4 git commands to generate.