*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
07b82ea5 33struct target_section_table;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
fd79ecee 58#include "vec.h"
2aecd87f 59#include "gdb_signals.h"
c906108c 60
c5aa993b
JM
61enum strata
62 {
63 dummy_stratum, /* The lowest of the low */
64 file_stratum, /* Executable files, etc */
4d8ac244 65 core_stratum, /* Core dump files */
d4f3574e 66 process_stratum, /* Executing processes */
81e64f55 67 thread_stratum, /* Executing threads */
85e747d2
UW
68 record_stratum, /* Support record debugging */
69 arch_stratum /* Architecture overrides */
c5aa993b 70 };
c906108c 71
c5aa993b
JM
72enum thread_control_capabilities
73 {
0d06e24b
JM
74 tc_none = 0, /* Default: can't control thread execution. */
75 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 76 };
c906108c
SS
77
78/* Stuff for target_wait. */
79
80/* Generally, what has the program done? */
c5aa993b
JM
81enum target_waitkind
82 {
83 /* The program has exited. The exit status is in value.integer. */
84 TARGET_WAITKIND_EXITED,
c906108c 85
0d06e24b
JM
86 /* The program has stopped with a signal. Which signal is in
87 value.sig. */
c5aa993b 88 TARGET_WAITKIND_STOPPED,
c906108c 89
c5aa993b
JM
90 /* The program has terminated with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_SIGNALLED,
c906108c 93
c5aa993b
JM
94 /* The program is letting us know that it dynamically loaded something
95 (e.g. it called load(2) on AIX). */
96 TARGET_WAITKIND_LOADED,
c906108c 97
3a3e9ee3 98 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
99 value.related_pid. I.e., if the child forks, value.related_pid
100 is the parent's ID. */
101
c5aa993b 102 TARGET_WAITKIND_FORKED,
c906108c 103
3a3e9ee3 104 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
105 value.related_pid. */
106
c5aa993b 107 TARGET_WAITKIND_VFORKED,
c906108c 108
0d06e24b
JM
109 /* The program has exec'ed a new executable file. The new file's
110 pathname is pointed to by value.execd_pathname. */
111
c5aa993b 112 TARGET_WAITKIND_EXECD,
c906108c 113
0d06e24b
JM
114 /* The program has entered or returned from a system call. On
115 HP-UX, this is used in the hardware watchpoint implementation.
116 The syscall's unique integer ID number is in value.syscall_id */
117
c5aa993b
JM
118 TARGET_WAITKIND_SYSCALL_ENTRY,
119 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 120
c5aa993b
JM
121 /* Nothing happened, but we stopped anyway. This perhaps should be handled
122 within target_wait, but I'm not sure target_wait should be resuming the
123 inferior. */
c4093a6a
JM
124 TARGET_WAITKIND_SPURIOUS,
125
8e7d2c16
DJ
126 /* An event has occured, but we should wait again.
127 Remote_async_wait() returns this when there is an event
c4093a6a
JM
128 on the inferior, but the rest of the world is not interested in
129 it. The inferior has not stopped, but has just sent some output
130 to the console, for instance. In this case, we want to go back
131 to the event loop and wait there for another event from the
132 inferior, rather than being stuck in the remote_async_wait()
133 function. This way the event loop is responsive to other events,
0d06e24b 134 like for instance the user typing. */
b2175913
MS
135 TARGET_WAITKIND_IGNORE,
136
137 /* The target has run out of history information,
138 and cannot run backward any further. */
139 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
140 };
141
c5aa993b
JM
142struct target_waitstatus
143 {
144 enum target_waitkind kind;
145
146 /* Forked child pid, execd pathname, exit status or signal number. */
147 union
148 {
149 int integer;
150 enum target_signal sig;
3a3e9ee3 151 ptid_t related_pid;
c5aa993b
JM
152 char *execd_pathname;
153 int syscall_id;
154 }
155 value;
156 };
c906108c 157
47608cb1
PA
158/* Options that can be passed to target_wait. */
159
160/* Return immediately if there's no event already queued. If this
161 options is not requested, target_wait blocks waiting for an
162 event. */
163#define TARGET_WNOHANG 1
164
f00150c9
DE
165/* Return a pretty printed form of target_waitstatus.
166 Space for the result is malloc'd, caller must free. */
167extern char *target_waitstatus_to_string (const struct target_waitstatus *);
168
2acceee2 169/* Possible types of events that the inferior handler will have to
0d06e24b 170 deal with. */
2acceee2
JM
171enum inferior_event_type
172 {
0d06e24b 173 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
174 INF_QUIT_REQ,
175 /* Process a normal inferior event which will result in target_wait
0d06e24b 176 being called. */
2146d243 177 INF_REG_EVENT,
0d06e24b 178 /* Deal with an error on the inferior. */
2acceee2 179 INF_ERROR,
0d06e24b 180 /* We are called because a timer went off. */
2acceee2 181 INF_TIMER,
0d06e24b 182 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
183 INF_EXEC_COMPLETE,
184 /* We are called to do some stuff after the inferior stops, but we
185 are expected to reenter the proceed() and
186 handle_inferior_event() functions. This is used only in case of
0d06e24b 187 'step n' like commands. */
c2d11a7d 188 INF_EXEC_CONTINUE
2acceee2 189 };
c906108c 190\f
13547ab6
DJ
191/* Target objects which can be transfered using target_read,
192 target_write, et cetera. */
1e3ff5ad
AC
193
194enum target_object
195{
1e3ff5ad
AC
196 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
197 TARGET_OBJECT_AVR,
23d964e7
UW
198 /* SPU target specific transfer. See "spu-tdep.c". */
199 TARGET_OBJECT_SPU,
1e3ff5ad 200 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 201 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
202 /* Memory, avoiding GDB's data cache and trusting the executable.
203 Target implementations of to_xfer_partial never need to handle
204 this object, and most callers should not use it. */
205 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
206 /* Kernel Unwind Table. See "ia64-tdep.c". */
207 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
208 /* Transfer auxilliary vector. */
209 TARGET_OBJECT_AUXV,
baf92889 210 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
211 TARGET_OBJECT_WCOOKIE,
212 /* Target memory map in XML format. */
213 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
214 /* Flash memory. This object can be used to write contents to
215 a previously erased flash memory. Using it without erasing
216 flash can have unexpected results. Addresses are physical
217 address on target, and not relative to flash start. */
23181151
DJ
218 TARGET_OBJECT_FLASH,
219 /* Available target-specific features, e.g. registers and coprocessors.
220 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
221 TARGET_OBJECT_AVAILABLE_FEATURES,
222 /* Currently loaded libraries, in XML format. */
07e059b5
VP
223 TARGET_OBJECT_LIBRARIES,
224 /* Get OS specific data. The ANNEX specifies the type (running
225 processes, etc.). */
4aa995e1
PA
226 TARGET_OBJECT_OSDATA,
227 /* Extra signal info. Usually the contents of `siginfo_t' on unix
228 platforms. */
229 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 230 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
231};
232
13547ab6
DJ
233/* Request that OPS transfer up to LEN 8-bit bytes of the target's
234 OBJECT. The OFFSET, for a seekable object, specifies the
235 starting point. The ANNEX can be used to provide additional
236 data-specific information to the target.
1e3ff5ad 237
13547ab6
DJ
238 Return the number of bytes actually transfered, or -1 if the
239 transfer is not supported or otherwise fails. Return of a positive
240 value less than LEN indicates that no further transfer is possible.
241 Unlike the raw to_xfer_partial interface, callers of these
242 functions do not need to retry partial transfers. */
1e3ff5ad 243
1e3ff5ad
AC
244extern LONGEST target_read (struct target_ops *ops,
245 enum target_object object,
1b0ba102 246 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
247 ULONGEST offset, LONGEST len);
248
d5086790
VP
249extern LONGEST target_read_until_error (struct target_ops *ops,
250 enum target_object object,
251 const char *annex, gdb_byte *buf,
252 ULONGEST offset, LONGEST len);
253
1e3ff5ad
AC
254extern LONGEST target_write (struct target_ops *ops,
255 enum target_object object,
1b0ba102 256 const char *annex, const gdb_byte *buf,
1e3ff5ad 257 ULONGEST offset, LONGEST len);
b6591e8b 258
a76d924d
DJ
259/* Similar to target_write, except that it also calls PROGRESS with
260 the number of bytes written and the opaque BATON after every
261 successful partial write (and before the first write). This is
262 useful for progress reporting and user interaction while writing
263 data. To abort the transfer, the progress callback can throw an
264 exception. */
265
cf7a04e8
DJ
266LONGEST target_write_with_progress (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, const gdb_byte *buf,
269 ULONGEST offset, LONGEST len,
270 void (*progress) (ULONGEST, void *),
271 void *baton);
272
13547ab6
DJ
273/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
274 be read using OPS. The return value will be -1 if the transfer
275 fails or is not supported; 0 if the object is empty; or the length
276 of the object otherwise. If a positive value is returned, a
277 sufficiently large buffer will be allocated using xmalloc and
278 returned in *BUF_P containing the contents of the object.
279
280 This method should be used for objects sufficiently small to store
281 in a single xmalloc'd buffer, when no fixed bound on the object's
282 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
283 through this function. */
284
285extern LONGEST target_read_alloc (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte **buf_p);
288
159f81f3
DJ
289/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
290 returned as a string, allocated using xmalloc. If an error occurs
291 or the transfer is unsupported, NULL is returned. Empty objects
292 are returned as allocated but empty strings. A warning is issued
293 if the result contains any embedded NUL bytes. */
294
295extern char *target_read_stralloc (struct target_ops *ops,
296 enum target_object object,
297 const char *annex);
298
b6591e8b
AC
299/* Wrappers to target read/write that perform memory transfers. They
300 throw an error if the memory transfer fails.
301
302 NOTE: cagney/2003-10-23: The naming schema is lifted from
303 "frame.h". The parameter order is lifted from get_frame_memory,
304 which in turn lifted it from read_memory. */
305
306extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 307 gdb_byte *buf, LONGEST len);
b6591e8b 308extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
e17a4113
UW
309 CORE_ADDR addr, int len,
310 enum bfd_endian byte_order);
1e3ff5ad 311\f
0d06e24b
JM
312struct thread_info; /* fwd decl for parameter list below: */
313
c906108c 314struct target_ops
c5aa993b 315 {
258b763a 316 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
317 char *to_shortname; /* Name this target type */
318 char *to_longname; /* Name for printing */
319 char *to_doc; /* Documentation. Does not include trailing
c906108c 320 newline, and starts with a one-line descrip-
0d06e24b 321 tion (probably similar to to_longname). */
bba2d28d
AC
322 /* Per-target scratch pad. */
323 void *to_data;
f1c07ab0
AC
324 /* The open routine takes the rest of the parameters from the
325 command, and (if successful) pushes a new target onto the
326 stack. Targets should supply this routine, if only to provide
327 an error message. */
507f3c78 328 void (*to_open) (char *, int);
f1c07ab0
AC
329 /* Old targets with a static target vector provide "to_close".
330 New re-entrant targets provide "to_xclose" and that is expected
331 to xfree everything (including the "struct target_ops"). */
332 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 333 void (*to_close) (int);
136d6dae 334 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 335 void (*to_post_attach) (int);
136d6dae 336 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 337 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 338 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9 339 ptid_t (*to_wait) (struct target_ops *,
47608cb1 340 ptid_t, struct target_waitstatus *, int);
28439f5e
PA
341 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
342 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 343 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
344
345 /* Transfer LEN bytes of memory between GDB address MYADDR and
346 target address MEMADDR. If WRITE, transfer them to the target, else
347 transfer them from the target. TARGET is the target from which we
348 get this function.
349
350 Return value, N, is one of the following:
351
352 0 means that we can't handle this. If errno has been set, it is the
353 error which prevented us from doing it (FIXME: What about bfd_error?).
354
355 positive (call it N) means that we have transferred N bytes
356 starting at MEMADDR. We might be able to handle more bytes
357 beyond this length, but no promises.
358
359 negative (call its absolute value N) means that we cannot
360 transfer right at MEMADDR, but we could transfer at least
c8e73a31 361 something at MEMADDR + N.
c5aa993b 362
c8e73a31
AC
363 NOTE: cagney/2004-10-01: This has been entirely superseeded by
364 to_xfer_partial and inferior inheritance. */
365
1b0ba102 366 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
367 int len, int write,
368 struct mem_attrib *attrib,
369 struct target_ops *target);
c906108c 370
507f3c78 371 void (*to_files_info) (struct target_ops *);
a6d9a66e
UW
372 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
373 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7 374 int (*to_can_use_hw_breakpoint) (int, int, int);
a6d9a66e
UW
375 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
376 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7
GS
377 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
378 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
379 int (*to_stopped_by_watchpoint) (void);
74174d2e 380 int to_have_steppable_watchpoint;
7df1a324 381 int to_have_continuable_watchpoint;
4aa7a7f5 382 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
383 int (*to_watchpoint_addr_within_range) (struct target_ops *,
384 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 385 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
386 void (*to_terminal_init) (void);
387 void (*to_terminal_inferior) (void);
388 void (*to_terminal_ours_for_output) (void);
389 void (*to_terminal_ours) (void);
a790ad35 390 void (*to_terminal_save_ours) (void);
507f3c78 391 void (*to_terminal_info) (char *, int);
7d85a9c0 392 void (*to_kill) (struct target_ops *);
507f3c78
KB
393 void (*to_load) (char *, int);
394 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
395 void (*to_create_inferior) (struct target_ops *,
396 char *, char *, char **, int);
39f77062 397 void (*to_post_startup_inferior) (ptid_t);
507f3c78 398 void (*to_acknowledge_created_inferior) (int);
fa113d1a 399 void (*to_insert_fork_catchpoint) (int);
507f3c78 400 int (*to_remove_fork_catchpoint) (int);
fa113d1a 401 void (*to_insert_vfork_catchpoint) (int);
507f3c78 402 int (*to_remove_vfork_catchpoint) (int);
ee057212 403 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 404 void (*to_insert_exec_catchpoint) (int);
507f3c78 405 int (*to_remove_exec_catchpoint) (int);
507f3c78 406 int (*to_has_exited) (int, int, int *);
136d6dae 407 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 408 int (*to_can_run) (void);
39f77062 409 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
410 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
411 void (*to_find_new_threads) (struct target_ops *);
117de6a9 412 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 413 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 414 void (*to_stop) (ptid_t);
d9fcf2fb 415 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 416 char *(*to_pid_to_exec_file) (int pid);
49d03eab 417 void (*to_log_command) (const char *);
07b82ea5 418 struct target_section_table *(*to_get_section_table) (struct target_ops *);
c5aa993b 419 enum strata to_stratum;
c35b1492
PA
420 int (*to_has_all_memory) (struct target_ops *);
421 int (*to_has_memory) (struct target_ops *);
422 int (*to_has_stack) (struct target_ops *);
423 int (*to_has_registers) (struct target_ops *);
424 int (*to_has_execution) (struct target_ops *);
c5aa993b 425 int to_has_thread_control; /* control thread execution */
dc177b7a 426 int to_attach_no_wait;
6426a772
JM
427 /* ASYNC target controls */
428 int (*to_can_async_p) (void);
429 int (*to_is_async_p) (void);
b84876c2
PA
430 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
431 int (*to_async_mask) (int);
9908b566 432 int (*to_supports_non_stop) (void);
2146d243
RM
433 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
434 unsigned long,
435 int, int, int,
436 void *),
be4d1333
MS
437 void *);
438 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
439
440 /* Return the thread-local address at OFFSET in the
441 thread-local storage for the thread PTID and the shared library
442 or executable file given by OBJFILE. If that block of
443 thread-local storage hasn't been allocated yet, this function
444 may return an error. */
117de6a9
PA
445 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
446 ptid_t ptid,
b2756930 447 CORE_ADDR load_module_addr,
3f47be5c
EZ
448 CORE_ADDR offset);
449
13547ab6
DJ
450 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
451 OBJECT. The OFFSET, for a seekable object, specifies the
452 starting point. The ANNEX can be used to provide additional
453 data-specific information to the target.
454
455 Return the number of bytes actually transfered, zero when no
456 further transfer is possible, and -1 when the transfer is not
457 supported. Return of a positive value smaller than LEN does
458 not indicate the end of the object, only the end of the
459 transfer; higher level code should continue transferring if
460 desired. This is handled in target.c.
461
462 The interface does not support a "retry" mechanism. Instead it
463 assumes that at least one byte will be transfered on each
464 successful call.
465
466 NOTE: cagney/2003-10-17: The current interface can lead to
467 fragmented transfers. Lower target levels should not implement
468 hacks, such as enlarging the transfer, in an attempt to
469 compensate for this. Instead, the target stack should be
470 extended so that it implements supply/collect methods and a
471 look-aside object cache. With that available, the lowest
472 target can safely and freely "push" data up the stack.
473
474 See target_read and target_write for more information. One,
475 and only one, of readbuf or writebuf must be non-NULL. */
476
4b8a223f 477 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 478 enum target_object object, const char *annex,
1b0ba102 479 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 480 ULONGEST offset, LONGEST len);
1e3ff5ad 481
fd79ecee
DJ
482 /* Returns the memory map for the target. A return value of NULL
483 means that no memory map is available. If a memory address
484 does not fall within any returned regions, it's assumed to be
485 RAM. The returned memory regions should not overlap.
486
487 The order of regions does not matter; target_memory_map will
488 sort regions by starting address. For that reason, this
489 function should not be called directly except via
490 target_memory_map.
491
492 This method should not cache data; if the memory map could
493 change unexpectedly, it should be invalidated, and higher
494 layers will re-fetch it. */
495 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
496
a76d924d
DJ
497 /* Erases the region of flash memory starting at ADDRESS, of
498 length LENGTH.
499
500 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
501 on flash block boundaries, as reported by 'to_memory_map'. */
502 void (*to_flash_erase) (struct target_ops *,
503 ULONGEST address, LONGEST length);
504
505 /* Finishes a flash memory write sequence. After this operation
506 all flash memory should be available for writing and the result
507 of reading from areas written by 'to_flash_write' should be
508 equal to what was written. */
509 void (*to_flash_done) (struct target_ops *);
510
424163ea
DJ
511 /* Describe the architecture-specific features of this target.
512 Returns the description found, or NULL if no description
513 was available. */
514 const struct target_desc *(*to_read_description) (struct target_ops *ops);
515
0ef643c8
JB
516 /* Build the PTID of the thread on which a given task is running,
517 based on LWP and THREAD. These values are extracted from the
518 task Private_Data section of the Ada Task Control Block, and
519 their interpretation depends on the target. */
520 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
521
c47ffbe3
VP
522 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
523 Return 0 if *READPTR is already at the end of the buffer.
524 Return -1 if there is insufficient buffer for a whole entry.
525 Return 1 if an entry was read into *TYPEP and *VALP. */
526 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
527 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
528
08388c79
DE
529 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
530 sequence of bytes in PATTERN with length PATTERN_LEN.
531
532 The result is 1 if found, 0 if not found, and -1 if there was an error
533 requiring halting of the search (e.g. memory read error).
534 If the pattern is found the address is recorded in FOUND_ADDRP. */
535 int (*to_search_memory) (struct target_ops *ops,
536 CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp);
539
b2175913 540 /* Can target execute in reverse? */
2c0b251b 541 int (*to_can_execute_reverse) (void);
b2175913 542
8a305172
PA
543 /* Does this target support debugging multiple processes
544 simultaneously? */
545 int (*to_supports_multi_process) (void);
546
3a8f7b07
JK
547 /* Determine current architecture of thread PTID.
548
549 The target is supposed to determine the architecture of the code where
550 the target is currently stopped at (on Cell, if a target is in spu_run,
551 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
552 This is architecture used to perform decr_pc_after_break adjustment,
553 and also determines the frame architecture of the innermost frame.
554 ptrace operations need to operate according to target_gdbarch.
555
556 The default implementation always returns target_gdbarch. */
c2250ad1
UW
557 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
558
c5aa993b 559 int to_magic;
0d06e24b
JM
560 /* Need sub-structure for target machine related rather than comm related?
561 */
c5aa993b 562 };
c906108c
SS
563
564/* Magic number for checking ops size. If a struct doesn't end with this
565 number, somebody changed the declaration but didn't change all the
566 places that initialize one. */
567
568#define OPS_MAGIC 3840
569
570/* The ops structure for our "current" target process. This should
571 never be NULL. If there is no target, it points to the dummy_target. */
572
c5aa993b 573extern struct target_ops current_target;
c906108c 574
c906108c
SS
575/* Define easy words for doing these operations on our current target. */
576
577#define target_shortname (current_target.to_shortname)
578#define target_longname (current_target.to_longname)
579
f1c07ab0
AC
580/* Does whatever cleanup is required for a target that we are no
581 longer going to be calling. QUITTING indicates that GDB is exiting
582 and should not get hung on an error (otherwise it is important to
583 perform clean termination, even if it takes a while). This routine
584 is automatically always called when popping the target off the
585 target stack (to_beneath is undefined). Closing file descriptors
586 and freeing all memory allocated memory are typical things it
587 should do. */
588
589void target_close (struct target_ops *targ, int quitting);
c906108c
SS
590
591/* Attaches to a process on the target side. Arguments are as passed
592 to the `attach' command by the user. This routine can be called
593 when the target is not on the target-stack, if the target_can_run
2146d243 594 routine returns 1; in that case, it must push itself onto the stack.
c906108c 595 Upon exit, the target should be ready for normal operations, and
2146d243 596 should be ready to deliver the status of the process immediately
c906108c
SS
597 (without waiting) to an upcoming target_wait call. */
598
136d6dae 599void target_attach (char *, int);
c906108c 600
dc177b7a
PA
601/* Some targets don't generate traps when attaching to the inferior,
602 or their target_attach implementation takes care of the waiting.
603 These targets must set to_attach_no_wait. */
604
605#define target_attach_no_wait \
606 (current_target.to_attach_no_wait)
607
c906108c
SS
608/* The target_attach operation places a process under debugger control,
609 and stops the process.
610
611 This operation provides a target-specific hook that allows the
0d06e24b 612 necessary bookkeeping to be performed after an attach completes. */
c906108c 613#define target_post_attach(pid) \
0d06e24b 614 (*current_target.to_post_attach) (pid)
c906108c 615
c906108c
SS
616/* Takes a program previously attached to and detaches it.
617 The program may resume execution (some targets do, some don't) and will
618 no longer stop on signals, etc. We better not have left any breakpoints
619 in the program or it'll die when it hits one. ARGS is arguments
620 typed by the user (e.g. a signal to send the process). FROM_TTY
621 says whether to be verbose or not. */
622
a14ed312 623extern void target_detach (char *, int);
c906108c 624
6ad8ae5c
DJ
625/* Disconnect from the current target without resuming it (leaving it
626 waiting for a debugger). */
627
628extern void target_disconnect (char *, int);
629
39f77062 630/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
631 single-step or to run free; SIGGNAL is the signal to be given to
632 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
633 pass TARGET_SIGNAL_DEFAULT. */
634
e1ac3328 635extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 636
b5a2688f
AC
637/* Wait for process pid to do something. PTID = -1 to wait for any
638 pid to do something. Return pid of child, or -1 in case of error;
c906108c 639 store status through argument pointer STATUS. Note that it is
b5a2688f 640 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
641 the debugging target from the stack; GDB isn't prepared to get back
642 to the prompt with a debugging target but without the frame cache,
47608cb1
PA
643 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
644 options. */
c906108c 645
47608cb1
PA
646extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
647 int options);
c906108c 648
17dee195 649/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 650
28439f5e 651extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
652
653/* Store at least register REGNO, or all regs if REGNO == -1.
654 It can store as many registers as it wants to, so target_prepare_to_store
655 must have been previously called. Calls error() if there are problems. */
656
28439f5e 657extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
658
659/* Get ready to modify the registers array. On machines which store
660 individual registers, this doesn't need to do anything. On machines
661 which store all the registers in one fell swoop, this makes sure
662 that REGISTERS contains all the registers from the program being
663 debugged. */
664
316f2060
UW
665#define target_prepare_to_store(regcache) \
666 (*current_target.to_prepare_to_store) (regcache)
c906108c 667
8a305172
PA
668/* Returns true if this target can debug multiple processes
669 simultaneously. */
670
671#define target_supports_multi_process() \
672 (*current_target.to_supports_multi_process) ()
673
4930751a
C
674extern DCACHE *target_dcache;
675
a14ed312 676extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 677
fc1a4b47 678extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 679
fc1a4b47 680extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 681 int len);
c906108c 682
fd79ecee
DJ
683/* Fetches the target's memory map. If one is found it is sorted
684 and returned, after some consistency checking. Otherwise, NULL
685 is returned. */
686VEC(mem_region_s) *target_memory_map (void);
687
a76d924d
DJ
688/* Erase the specified flash region. */
689void target_flash_erase (ULONGEST address, LONGEST length);
690
691/* Finish a sequence of flash operations. */
692void target_flash_done (void);
693
694/* Describes a request for a memory write operation. */
695struct memory_write_request
696 {
697 /* Begining address that must be written. */
698 ULONGEST begin;
699 /* Past-the-end address. */
700 ULONGEST end;
701 /* The data to write. */
702 gdb_byte *data;
703 /* A callback baton for progress reporting for this request. */
704 void *baton;
705 };
706typedef struct memory_write_request memory_write_request_s;
707DEF_VEC_O(memory_write_request_s);
708
709/* Enumeration specifying different flash preservation behaviour. */
710enum flash_preserve_mode
711 {
712 flash_preserve,
713 flash_discard
714 };
715
716/* Write several memory blocks at once. This version can be more
717 efficient than making several calls to target_write_memory, in
718 particular because it can optimize accesses to flash memory.
719
720 Moreover, this is currently the only memory access function in gdb
721 that supports writing to flash memory, and it should be used for
722 all cases where access to flash memory is desirable.
723
724 REQUESTS is the vector (see vec.h) of memory_write_request.
725 PRESERVE_FLASH_P indicates what to do with blocks which must be
726 erased, but not completely rewritten.
727 PROGRESS_CB is a function that will be periodically called to provide
728 feedback to user. It will be called with the baton corresponding
729 to the request currently being written. It may also be called
730 with a NULL baton, when preserved flash sectors are being rewritten.
731
732 The function returns 0 on success, and error otherwise. */
733int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
734 enum flash_preserve_mode preserve_flash_p,
735 void (*progress_cb) (ULONGEST, void *));
736
47932f85
DJ
737/* From infrun.c. */
738
3a3e9ee3 739extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 740
3a3e9ee3 741extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 742
3a3e9ee3 743extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 744
c906108c
SS
745/* Print a line about the current target. */
746
747#define target_files_info() \
0d06e24b 748 (*current_target.to_files_info) (&current_target)
c906108c 749
8181d85f
DJ
750/* Insert a breakpoint at address BP_TGT->placed_address in the target
751 machine. Result is 0 for success, or an errno value. */
c906108c 752
a6d9a66e
UW
753#define target_insert_breakpoint(gdbarch, bp_tgt) \
754 (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
c906108c 755
8181d85f
DJ
756/* Remove a breakpoint at address BP_TGT->placed_address in the target
757 machine. Result is 0 for success, or an errno value. */
c906108c 758
a6d9a66e
UW
759#define target_remove_breakpoint(gdbarch, bp_tgt) \
760 (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
c906108c
SS
761
762/* Initialize the terminal settings we record for the inferior,
763 before we actually run the inferior. */
764
765#define target_terminal_init() \
0d06e24b 766 (*current_target.to_terminal_init) ()
c906108c
SS
767
768/* Put the inferior's terminal settings into effect.
769 This is preparation for starting or resuming the inferior. */
770
d9d2d8b6 771extern void target_terminal_inferior (void);
c906108c
SS
772
773/* Put some of our terminal settings into effect,
774 enough to get proper results from our output,
775 but do not change into or out of RAW mode
776 so that no input is discarded.
777
778 After doing this, either terminal_ours or terminal_inferior
779 should be called to get back to a normal state of affairs. */
780
781#define target_terminal_ours_for_output() \
0d06e24b 782 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
783
784/* Put our terminal settings into effect.
785 First record the inferior's terminal settings
786 so they can be restored properly later. */
787
788#define target_terminal_ours() \
0d06e24b 789 (*current_target.to_terminal_ours) ()
c906108c 790
a790ad35
SC
791/* Save our terminal settings.
792 This is called from TUI after entering or leaving the curses
793 mode. Since curses modifies our terminal this call is here
794 to take this change into account. */
795
796#define target_terminal_save_ours() \
797 (*current_target.to_terminal_save_ours) ()
798
c906108c
SS
799/* Print useful information about our terminal status, if such a thing
800 exists. */
801
802#define target_terminal_info(arg, from_tty) \
0d06e24b 803 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
804
805/* Kill the inferior process. Make it go away. */
806
7d85a9c0 807extern void target_kill (void);
c906108c 808
0d06e24b
JM
809/* Load an executable file into the target process. This is expected
810 to not only bring new code into the target process, but also to
1986bccd
AS
811 update GDB's symbol tables to match.
812
813 ARG contains command-line arguments, to be broken down with
814 buildargv (). The first non-switch argument is the filename to
815 load, FILE; the second is a number (as parsed by strtoul (..., ...,
816 0)), which is an offset to apply to the load addresses of FILE's
817 sections. The target may define switches, or other non-switch
818 arguments, as it pleases. */
c906108c 819
11cf8741 820extern void target_load (char *arg, int from_tty);
c906108c
SS
821
822/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
823 name. ADDRP is a CORE_ADDR * pointing to where the value of the
824 symbol should be returned. The result is 0 if successful, nonzero
825 if the symbol does not exist in the target environment. This
826 function should not call error() if communication with the target
827 is interrupted, since it is called from symbol reading, but should
828 return nonzero, possibly doing a complain(). */
c906108c 829
0d06e24b
JM
830#define target_lookup_symbol(name, addrp) \
831 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 832
39f77062 833/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
834 EXEC_FILE is the file to run.
835 ALLARGS is a string containing the arguments to the program.
836 ENV is the environment vector to pass. Errors reported with error().
837 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 838
136d6dae
VP
839void target_create_inferior (char *exec_file, char *args,
840 char **env, int from_tty);
c906108c
SS
841
842/* Some targets (such as ttrace-based HPUX) don't allow us to request
843 notification of inferior events such as fork and vork immediately
844 after the inferior is created. (This because of how gdb gets an
845 inferior created via invoking a shell to do it. In such a scenario,
846 if the shell init file has commands in it, the shell will fork and
847 exec for each of those commands, and we will see each such fork
848 event. Very bad.)
c5aa993b 849
0d06e24b
JM
850 Such targets will supply an appropriate definition for this function. */
851
39f77062
KB
852#define target_post_startup_inferior(ptid) \
853 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
854
855/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
856 some synchronization between gdb and the new inferior process, PID. */
857
c906108c 858#define target_acknowledge_created_inferior(pid) \
0d06e24b 859 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 860
0d06e24b
JM
861/* On some targets, we can catch an inferior fork or vfork event when
862 it occurs. These functions insert/remove an already-created
863 catchpoint for such events. */
c906108c 864
c906108c 865#define target_insert_fork_catchpoint(pid) \
0d06e24b 866 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
867
868#define target_remove_fork_catchpoint(pid) \
0d06e24b 869 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
870
871#define target_insert_vfork_catchpoint(pid) \
0d06e24b 872 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
873
874#define target_remove_vfork_catchpoint(pid) \
0d06e24b 875 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 876
6604731b
DJ
877/* If the inferior forks or vforks, this function will be called at
878 the next resume in order to perform any bookkeeping and fiddling
879 necessary to continue debugging either the parent or child, as
880 requested, and releasing the other. Information about the fork
881 or vfork event is available via get_last_target_status ().
882 This function returns 1 if the inferior should not be resumed
883 (i.e. there is another event pending). */
0d06e24b 884
ee057212 885int target_follow_fork (int follow_child);
c906108c
SS
886
887/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
888 occurs. These functions insert/remove an already-created
889 catchpoint for such events. */
890
c906108c 891#define target_insert_exec_catchpoint(pid) \
0d06e24b 892 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 893
c906108c 894#define target_remove_exec_catchpoint(pid) \
0d06e24b 895 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 896
c906108c 897/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
898 exit code of PID, if any. */
899
c906108c 900#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 901 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
902
903/* The debugger has completed a blocking wait() call. There is now
2146d243 904 some process event that must be processed. This function should
c906108c 905 be defined by those targets that require the debugger to perform
0d06e24b 906 cleanup or internal state changes in response to the process event. */
c906108c
SS
907
908/* The inferior process has died. Do what is right. */
909
136d6dae 910void target_mourn_inferior (void);
c906108c
SS
911
912/* Does target have enough data to do a run or attach command? */
913
914#define target_can_run(t) \
0d06e24b 915 ((t)->to_can_run) ()
c906108c
SS
916
917/* post process changes to signal handling in the inferior. */
918
39f77062
KB
919#define target_notice_signals(ptid) \
920 (*current_target.to_notice_signals) (ptid)
c906108c
SS
921
922/* Check to see if a thread is still alive. */
923
28439f5e 924extern int target_thread_alive (ptid_t ptid);
c906108c 925
b83266a0
SS
926/* Query for new threads and add them to the thread list. */
927
28439f5e 928extern void target_find_new_threads (void);
b83266a0 929
0d06e24b
JM
930/* Make target stop in a continuable fashion. (For instance, under
931 Unix, this should act like SIGSTOP). This function is normally
932 used by GUIs to implement a stop button. */
c906108c 933
94cc34af 934#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 935
96baa820
JM
936/* Send the specified COMMAND to the target's monitor
937 (shell,interpreter) for execution. The result of the query is
0d06e24b 938 placed in OUTBUF. */
96baa820
JM
939
940#define target_rcmd(command, outbuf) \
941 (*current_target.to_rcmd) (command, outbuf)
942
943
c906108c
SS
944/* Does the target include all of memory, or only part of it? This
945 determines whether we look up the target chain for other parts of
946 memory if this target can't satisfy a request. */
947
c35b1492
PA
948extern int target_has_all_memory_1 (void);
949#define target_has_all_memory target_has_all_memory_1 ()
c906108c
SS
950
951/* Does the target include memory? (Dummy targets don't.) */
952
c35b1492
PA
953extern int target_has_memory_1 (void);
954#define target_has_memory target_has_memory_1 ()
c906108c
SS
955
956/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
957 we start a process.) */
c5aa993b 958
c35b1492
PA
959extern int target_has_stack_1 (void);
960#define target_has_stack target_has_stack_1 ()
c906108c
SS
961
962/* Does the target have registers? (Exec files don't.) */
963
c35b1492
PA
964extern int target_has_registers_1 (void);
965#define target_has_registers target_has_registers_1 ()
c906108c
SS
966
967/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
968 hoops), or pop its stack a few times? This means that the current
969 target is currently executing; for some targets, that's the same as
970 whether or not the target is capable of execution, but there are
971 also targets which can be current while not executing. In that
972 case this will become true after target_create_inferior or
973 target_attach. */
c906108c 974
c35b1492
PA
975extern int target_has_execution_1 (void);
976#define target_has_execution target_has_execution_1 ()
977
978/* Default implementations for process_stratum targets. Return true
979 if there's a selected inferior, false otherwise. */
980
981extern int default_child_has_all_memory (struct target_ops *ops);
982extern int default_child_has_memory (struct target_ops *ops);
983extern int default_child_has_stack (struct target_ops *ops);
984extern int default_child_has_registers (struct target_ops *ops);
985extern int default_child_has_execution (struct target_ops *ops);
c906108c
SS
986
987/* Can the target support the debugger control of thread execution?
d6350901 988 Can it lock the thread scheduler? */
c906108c
SS
989
990#define target_can_lock_scheduler \
0d06e24b 991 (current_target.to_has_thread_control & tc_schedlock)
c906108c 992
c6ebd6cf
VP
993/* Should the target enable async mode if it is supported? Temporary
994 cludge until async mode is a strict superset of sync mode. */
995extern int target_async_permitted;
996
6426a772
JM
997/* Can the target support asynchronous execution? */
998#define target_can_async_p() (current_target.to_can_async_p ())
999
1000/* Is the target in asynchronous execution mode? */
b84876c2 1001#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 1002
9908b566
VP
1003int target_supports_non_stop (void);
1004
6426a772 1005/* Put the target in async mode with the specified callback function. */
0d06e24b 1006#define target_async(CALLBACK,CONTEXT) \
b84876c2 1007 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 1008
04714b91
AC
1009/* This is to be used ONLY within call_function_by_hand(). It provides
1010 a workaround, to have inferior function calls done in sychronous
1011 mode, even though the target is asynchronous. After
ed9a39eb
JM
1012 target_async_mask(0) is called, calls to target_can_async_p() will
1013 return FALSE , so that target_resume() will not try to start the
1014 target asynchronously. After the inferior stops, we IMMEDIATELY
1015 restore the previous nature of the target, by calling
1016 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1017 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1018
1019 FIXME ezannoni 1999-12-13: we won't need this once we move
1020 the turning async on and off to the single execution commands,
0d06e24b 1021 from where it is done currently, in remote_resume(). */
ed9a39eb 1022
b84876c2
PA
1023#define target_async_mask(MASK) \
1024 (current_target.to_async_mask (MASK))
ed9a39eb 1025
c906108c
SS
1026/* Converts a process id to a string. Usually, the string just contains
1027 `process xyz', but on some systems it may contain
1028 `process xyz thread abc'. */
1029
117de6a9 1030extern char *target_pid_to_str (ptid_t ptid);
c906108c 1031
39f77062 1032extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1033
0d06e24b
JM
1034/* Return a short string describing extra information about PID,
1035 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1036 is okay. */
1037
1038#define target_extra_thread_info(TP) \
1039 (current_target.to_extra_thread_info (TP))
ed9a39eb 1040
c906108c
SS
1041/* Attempts to find the pathname of the executable file
1042 that was run to create a specified process.
1043
1044 The process PID must be stopped when this operation is used.
c5aa993b 1045
c906108c
SS
1046 If the executable file cannot be determined, NULL is returned.
1047
1048 Else, a pointer to a character string containing the pathname
1049 is returned. This string should be copied into a buffer by
1050 the client if the string will not be immediately used, or if
0d06e24b 1051 it must persist. */
c906108c
SS
1052
1053#define target_pid_to_exec_file(pid) \
0d06e24b 1054 (current_target.to_pid_to_exec_file) (pid)
c906108c 1055
3a8f7b07 1056/* See the to_thread_architecture description in struct target_ops. */
c2250ad1
UW
1057
1058#define target_thread_architecture(ptid) \
1059 (current_target.to_thread_architecture (&current_target, ptid))
1060
be4d1333
MS
1061/*
1062 * Iterator function for target memory regions.
1063 * Calls a callback function once for each memory region 'mapped'
1064 * in the child process. Defined as a simple macro rather than
2146d243 1065 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1066 */
1067
1068#define target_find_memory_regions(FUNC, DATA) \
1069 (current_target.to_find_memory_regions) (FUNC, DATA)
1070
1071/*
1072 * Compose corefile .note section.
1073 */
1074
1075#define target_make_corefile_notes(BFD, SIZE_P) \
1076 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1077
c906108c
SS
1078/* Hardware watchpoint interfaces. */
1079
1080/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1081 write). */
1082
d92524f1
PM
1083#define target_stopped_by_watchpoint \
1084 (*current_target.to_stopped_by_watchpoint)
7df1a324 1085
74174d2e
UW
1086/* Non-zero if we have steppable watchpoints */
1087
d92524f1 1088#define target_have_steppable_watchpoint \
74174d2e 1089 (current_target.to_have_steppable_watchpoint)
74174d2e 1090
7df1a324
KW
1091/* Non-zero if we have continuable watchpoints */
1092
d92524f1 1093#define target_have_continuable_watchpoint \
7df1a324 1094 (current_target.to_have_continuable_watchpoint)
c906108c 1095
ccaa32c7 1096/* Provide defaults for hardware watchpoint functions. */
c906108c 1097
2146d243 1098/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1099 elsewhere use the definitions in the target vector. */
c906108c
SS
1100
1101/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1102 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1103 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1104 (including this one?). OTHERTYPE is who knows what... */
1105
d92524f1 1106#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
ccaa32c7 1107 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
c906108c 1108
d92524f1 1109#define target_region_ok_for_hw_watchpoint(addr, len) \
e0d24f8d 1110 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
e0d24f8d 1111
c906108c
SS
1112
1113/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1114 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1115 success, non-zero for failure. */
1116
ccaa32c7
GS
1117#define target_insert_watchpoint(addr, len, type) \
1118 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1119
ccaa32c7
GS
1120#define target_remove_watchpoint(addr, len, type) \
1121 (*current_target.to_remove_watchpoint) (addr, len, type)
c906108c 1122
a6d9a66e
UW
1123#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1124 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
ccaa32c7 1125
a6d9a66e
UW
1126#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1127 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
c906108c 1128
4aa7a7f5
JJ
1129#define target_stopped_data_address(target, x) \
1130 (*target.to_stopped_data_address) (target, x)
c906108c 1131
5009afc5
AS
1132#define target_watchpoint_addr_within_range(target, addr, start, length) \
1133 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1134
b2175913
MS
1135/* Target can execute in reverse? */
1136#define target_can_execute_reverse \
1137 (current_target.to_can_execute_reverse ? \
1138 current_target.to_can_execute_reverse () : 0)
1139
424163ea
DJ
1140extern const struct target_desc *target_read_description (struct target_ops *);
1141
0ef643c8
JB
1142#define target_get_ada_task_ptid(lwp, tid) \
1143 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1144
08388c79
DE
1145/* Utility implementation of searching memory. */
1146extern int simple_search_memory (struct target_ops* ops,
1147 CORE_ADDR start_addr,
1148 ULONGEST search_space_len,
1149 const gdb_byte *pattern,
1150 ULONGEST pattern_len,
1151 CORE_ADDR *found_addrp);
1152
1153/* Main entry point for searching memory. */
1154extern int target_search_memory (CORE_ADDR start_addr,
1155 ULONGEST search_space_len,
1156 const gdb_byte *pattern,
1157 ULONGEST pattern_len,
1158 CORE_ADDR *found_addrp);
1159
49d03eab
MR
1160/* Command logging facility. */
1161
1162#define target_log_command(p) \
1163 do \
1164 if (current_target.to_log_command) \
1165 (*current_target.to_log_command) (p); \
1166 while (0)
1167
c906108c
SS
1168/* Routines for maintenance of the target structures...
1169
1170 add_target: Add a target to the list of all possible targets.
1171
1172 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1173 targets, within its particular stratum of the stack. Result
1174 is 0 if now atop the stack, nonzero if not on top (maybe
1175 should warn user).
c906108c
SS
1176
1177 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1178 no matter where it is on the list. Returns 0 if no
1179 change, 1 if removed from stack.
c906108c 1180
c5aa993b 1181 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1182
a14ed312 1183extern void add_target (struct target_ops *);
c906108c 1184
a14ed312 1185extern int push_target (struct target_ops *);
c906108c 1186
a14ed312 1187extern int unpush_target (struct target_ops *);
c906108c 1188
fd79ecee
DJ
1189extern void target_pre_inferior (int);
1190
a14ed312 1191extern void target_preopen (int);
c906108c 1192
a14ed312 1193extern void pop_target (void);
c906108c 1194
aa76d38d
PA
1195/* Does whatever cleanup is required to get rid of all pushed targets.
1196 QUITTING is propagated to target_close; it indicates that GDB is
1197 exiting and should not get hung on an error (otherwise it is
1198 important to perform clean termination, even if it takes a
1199 while). */
1200extern void pop_all_targets (int quitting);
1201
87ab71f0
PA
1202/* Like pop_all_targets, but pops only targets whose stratum is
1203 strictly above ABOVE_STRATUM. */
1204extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1205
9e35dae4
DJ
1206extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1207 CORE_ADDR offset);
1208
0542c86d 1209/* Struct target_section maps address ranges to file sections. It is
c906108c
SS
1210 mostly used with BFD files, but can be used without (e.g. for handling
1211 raw disks, or files not in formats handled by BFD). */
1212
0542c86d 1213struct target_section
c5aa993b
JM
1214 {
1215 CORE_ADDR addr; /* Lowest address in section */
1216 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1217
7be0c536 1218 struct bfd_section *the_bfd_section;
c906108c 1219
c5aa993b
JM
1220 bfd *bfd; /* BFD file pointer */
1221 };
c906108c 1222
07b82ea5
PA
1223/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1224
1225struct target_section_table
1226{
1227 struct target_section *sections;
1228 struct target_section *sections_end;
1229};
1230
8db32d44 1231/* Return the "section" containing the specified address. */
0542c86d
PA
1232struct target_section *target_section_by_addr (struct target_ops *target,
1233 CORE_ADDR addr);
8db32d44 1234
07b82ea5
PA
1235/* Return the target section table this target (or the targets
1236 beneath) currently manipulate. */
1237
1238extern struct target_section_table *target_get_section_table
1239 (struct target_ops *target);
1240
c906108c
SS
1241/* From mem-break.c */
1242
a6d9a66e 1243extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1244
a6d9a66e 1245extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1246
ae4b2284 1247extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1248
ae4b2284 1249extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1250
c906108c
SS
1251
1252/* From target.c */
1253
a14ed312 1254extern void initialize_targets (void);
c906108c 1255
117de6a9 1256extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1257
8edfe269
DJ
1258extern void target_require_runnable (void);
1259
136d6dae 1260extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1261
136d6dae
VP
1262extern void find_default_create_inferior (struct target_ops *,
1263 char *, char *, char **, int);
c906108c 1264
a14ed312 1265extern struct target_ops *find_run_target (void);
7a292a7a 1266
a14ed312 1267extern struct target_ops *find_core_target (void);
6426a772 1268
a14ed312 1269extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1270
e0665bc8
PA
1271/* Read OS data object of type TYPE from the target, and return it in
1272 XML format. The result is NUL-terminated and returned as a string,
1273 allocated using xmalloc. If an error occurs or the transfer is
1274 unsupported, NULL is returned. Empty objects are returned as
1275 allocated but empty strings. */
1276
07e059b5
VP
1277extern char *target_get_osdata (const char *type);
1278
c906108c
SS
1279\f
1280/* Stuff that should be shared among the various remote targets. */
1281
1282/* Debugging level. 0 is off, and non-zero values mean to print some debug
1283 information (higher values, more information). */
1284extern int remote_debug;
1285
1286/* Speed in bits per second, or -1 which means don't mess with the speed. */
1287extern int baud_rate;
1288/* Timeout limit for response from target. */
1289extern int remote_timeout;
1290
c906108c
SS
1291\f
1292/* Functions for helping to write a native target. */
1293
1294/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1295extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1296
2aecd87f 1297/* These are in common/signals.c, but they're only used by gdb. */
1cded358
AR
1298extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1299 int);
1300extern int default_target_signal_to_host (struct gdbarch *,
1301 enum target_signal);
1302
c906108c 1303/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1304extern enum target_signal target_signal_from_command (int);
2aecd87f 1305/* End of files in common/signals.c. */
c906108c 1306
8defab1a
DJ
1307/* Set the show memory breakpoints mode to show, and installs a cleanup
1308 to restore it back to the current value. */
1309extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1310
c906108c
SS
1311\f
1312/* Imported from machine dependent code */
1313
c906108c 1314/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1315void target_ignore (void);
c906108c 1316
1df84f13 1317extern struct target_ops deprecated_child_ops;
5ac10fd1 1318
c5aa993b 1319#endif /* !defined (TARGET_H) */
This page took 1.07182 seconds and 4 git commands to generate.