2003-09-16 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
da3331ec
AC
26struct objfile;
27struct ui_file;
28struct mem_attrib;
29
c906108c
SS
30/* This include file defines the interface between the main part
31 of the debugger, and the part which is target-specific, or
32 specific to the communications interface between us and the
33 target.
34
35 A TARGET is an interface between the debugger and a particular
36 kind of file or process. Targets can be STACKED in STRATA,
37 so that more than one target can potentially respond to a request.
38 In particular, memory accesses will walk down the stack of targets
39 until they find a target that is interested in handling that particular
40 address. STRATA are artificial boundaries on the stack, within
41 which particular kinds of targets live. Strata exist so that
42 people don't get confused by pushing e.g. a process target and then
43 a file target, and wondering why they can't see the current values
44 of variables any more (the file target is handling them and they
45 never get to the process target). So when you push a file target,
46 it goes into the file stratum, which is always below the process
47 stratum. */
48
49#include "bfd.h"
50#include "symtab.h"
4930751a 51#include "dcache.h"
29e57380 52#include "memattr.h"
c906108c 53
c5aa993b
JM
54enum strata
55 {
56 dummy_stratum, /* The lowest of the low */
57 file_stratum, /* Executable files, etc */
58 core_stratum, /* Core dump files */
59 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
60 process_stratum, /* Executing processes */
61 thread_stratum /* Executing threads */
c5aa993b 62 };
c906108c 63
c5aa993b
JM
64enum thread_control_capabilities
65 {
0d06e24b
JM
66 tc_none = 0, /* Default: can't control thread execution. */
67 tc_schedlock = 1, /* Can lock the thread scheduler. */
68 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 69 };
c906108c
SS
70
71/* Stuff for target_wait. */
72
73/* Generally, what has the program done? */
c5aa993b
JM
74enum target_waitkind
75 {
76 /* The program has exited. The exit status is in value.integer. */
77 TARGET_WAITKIND_EXITED,
c906108c 78
0d06e24b
JM
79 /* The program has stopped with a signal. Which signal is in
80 value.sig. */
c5aa993b 81 TARGET_WAITKIND_STOPPED,
c906108c 82
c5aa993b
JM
83 /* The program has terminated with a signal. Which signal is in
84 value.sig. */
85 TARGET_WAITKIND_SIGNALLED,
c906108c 86
c5aa993b
JM
87 /* The program is letting us know that it dynamically loaded something
88 (e.g. it called load(2) on AIX). */
89 TARGET_WAITKIND_LOADED,
c906108c 90
0d06e24b
JM
91 /* The program has forked. A "related" process' ID is in
92 value.related_pid. I.e., if the child forks, value.related_pid
93 is the parent's ID. */
94
c5aa993b 95 TARGET_WAITKIND_FORKED,
c906108c 96
0d06e24b
JM
97 /* The program has vforked. A "related" process's ID is in
98 value.related_pid. */
99
c5aa993b 100 TARGET_WAITKIND_VFORKED,
c906108c 101
0d06e24b
JM
102 /* The program has exec'ed a new executable file. The new file's
103 pathname is pointed to by value.execd_pathname. */
104
c5aa993b 105 TARGET_WAITKIND_EXECD,
c906108c 106
0d06e24b
JM
107 /* The program has entered or returned from a system call. On
108 HP-UX, this is used in the hardware watchpoint implementation.
109 The syscall's unique integer ID number is in value.syscall_id */
110
c5aa993b
JM
111 TARGET_WAITKIND_SYSCALL_ENTRY,
112 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 113
c5aa993b
JM
114 /* Nothing happened, but we stopped anyway. This perhaps should be handled
115 within target_wait, but I'm not sure target_wait should be resuming the
116 inferior. */
c4093a6a
JM
117 TARGET_WAITKIND_SPURIOUS,
118
8e7d2c16
DJ
119 /* An event has occured, but we should wait again.
120 Remote_async_wait() returns this when there is an event
c4093a6a
JM
121 on the inferior, but the rest of the world is not interested in
122 it. The inferior has not stopped, but has just sent some output
123 to the console, for instance. In this case, we want to go back
124 to the event loop and wait there for another event from the
125 inferior, rather than being stuck in the remote_async_wait()
126 function. This way the event loop is responsive to other events,
0d06e24b 127 like for instance the user typing. */
c4093a6a 128 TARGET_WAITKIND_IGNORE
c906108c
SS
129 };
130
c5aa993b
JM
131struct target_waitstatus
132 {
133 enum target_waitkind kind;
134
135 /* Forked child pid, execd pathname, exit status or signal number. */
136 union
137 {
138 int integer;
139 enum target_signal sig;
140 int related_pid;
141 char *execd_pathname;
142 int syscall_id;
143 }
144 value;
145 };
c906108c 146
2acceee2 147/* Possible types of events that the inferior handler will have to
0d06e24b 148 deal with. */
2acceee2
JM
149enum inferior_event_type
150 {
0d06e24b 151 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
152 INF_QUIT_REQ,
153 /* Process a normal inferior event which will result in target_wait
0d06e24b 154 being called. */
2acceee2 155 INF_REG_EVENT,
0d06e24b 156 /* Deal with an error on the inferior. */
2acceee2 157 INF_ERROR,
0d06e24b 158 /* We are called because a timer went off. */
2acceee2 159 INF_TIMER,
0d06e24b 160 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
161 INF_EXEC_COMPLETE,
162 /* We are called to do some stuff after the inferior stops, but we
163 are expected to reenter the proceed() and
164 handle_inferior_event() functions. This is used only in case of
0d06e24b 165 'step n' like commands. */
c2d11a7d 166 INF_EXEC_CONTINUE
2acceee2
JM
167 };
168
c906108c 169/* Return the string for a signal. */
a14ed312 170extern char *target_signal_to_string (enum target_signal);
c906108c
SS
171
172/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 173extern char *target_signal_to_name (enum target_signal);
c906108c
SS
174
175/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 176enum target_signal target_signal_from_name (char *);
c906108c 177\f
c5aa993b 178
c906108c
SS
179/* If certain kinds of activity happen, target_wait should perform
180 callbacks. */
181/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 182 on TARGET_ACTIVITY_FD. */
c906108c
SS
183extern int target_activity_fd;
184/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 185extern int (*target_activity_function) (void);
c906108c 186\f
0d06e24b
JM
187struct thread_info; /* fwd decl for parameter list below: */
188
c906108c 189struct target_ops
c5aa993b
JM
190 {
191 char *to_shortname; /* Name this target type */
192 char *to_longname; /* Name for printing */
193 char *to_doc; /* Documentation. Does not include trailing
c906108c 194 newline, and starts with a one-line descrip-
0d06e24b 195 tion (probably similar to to_longname). */
507f3c78
KB
196 void (*to_open) (char *, int);
197 void (*to_close) (int);
198 void (*to_attach) (char *, int);
199 void (*to_post_attach) (int);
507f3c78 200 void (*to_detach) (char *, int);
6ad8ae5c 201 void (*to_disconnect) (char *, int);
39f77062
KB
202 void (*to_resume) (ptid_t, int, enum target_signal);
203 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
204 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
205 void (*to_fetch_registers) (int);
206 void (*to_store_registers) (int);
207 void (*to_prepare_to_store) (void);
c5aa993b
JM
208
209 /* Transfer LEN bytes of memory between GDB address MYADDR and
210 target address MEMADDR. If WRITE, transfer them to the target, else
211 transfer them from the target. TARGET is the target from which we
212 get this function.
213
214 Return value, N, is one of the following:
215
216 0 means that we can't handle this. If errno has been set, it is the
217 error which prevented us from doing it (FIXME: What about bfd_error?).
218
219 positive (call it N) means that we have transferred N bytes
220 starting at MEMADDR. We might be able to handle more bytes
221 beyond this length, but no promises.
222
223 negative (call its absolute value N) means that we cannot
224 transfer right at MEMADDR, but we could transfer at least
225 something at MEMADDR + N. */
226
507f3c78 227 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
228 int len, int write,
229 struct mem_attrib *attrib,
230 struct target_ops *target);
c906108c
SS
231
232#if 0
c5aa993b 233 /* Enable this after 4.12. */
c906108c 234
c5aa993b
JM
235 /* Search target memory. Start at STARTADDR and take LEN bytes of
236 target memory, and them with MASK, and compare to DATA. If they
237 match, set *ADDR_FOUND to the address we found it at, store the data
238 we found at LEN bytes starting at DATA_FOUND, and return. If
239 not, add INCREMENT to the search address and keep trying until
240 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 241
0d06e24b
JM
242 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
243 return. */
244
507f3c78
KB
245 void (*to_search) (int len, char *data, char *mask,
246 CORE_ADDR startaddr, int increment,
247 CORE_ADDR lorange, CORE_ADDR hirange,
248 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
249
250#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
251 (*current_target.to_search) (len, data, mask, startaddr, increment, \
252 lorange, hirange, addr_found, data_found)
c5aa993b
JM
253#endif /* 0 */
254
507f3c78
KB
255 void (*to_files_info) (struct target_ops *);
256 int (*to_insert_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_breakpoint) (CORE_ADDR, char *);
ccaa32c7
GS
258 int (*to_can_use_hw_breakpoint) (int, int, int);
259 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
260 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
261 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
262 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
263 int (*to_stopped_by_watchpoint) (void);
7df1a324 264 int to_have_continuable_watchpoint;
ccaa32c7
GS
265 CORE_ADDR (*to_stopped_data_address) (void);
266 int (*to_region_size_ok_for_hw_watchpoint) (int);
507f3c78
KB
267 void (*to_terminal_init) (void);
268 void (*to_terminal_inferior) (void);
269 void (*to_terminal_ours_for_output) (void);
270 void (*to_terminal_ours) (void);
a790ad35 271 void (*to_terminal_save_ours) (void);
507f3c78
KB
272 void (*to_terminal_info) (char *, int);
273 void (*to_kill) (void);
274 void (*to_load) (char *, int);
275 int (*to_lookup_symbol) (char *, CORE_ADDR *);
276 void (*to_create_inferior) (char *, char *, char **);
39f77062 277 void (*to_post_startup_inferior) (ptid_t);
507f3c78 278 void (*to_acknowledge_created_inferior) (int);
507f3c78
KB
279 int (*to_insert_fork_catchpoint) (int);
280 int (*to_remove_fork_catchpoint) (int);
281 int (*to_insert_vfork_catchpoint) (int);
282 int (*to_remove_vfork_catchpoint) (int);
6604731b 283 int (*to_follow_fork) (int);
507f3c78
KB
284 int (*to_insert_exec_catchpoint) (int);
285 int (*to_remove_exec_catchpoint) (int);
507f3c78 286 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
287 int (*to_has_exited) (int, int, int *);
288 void (*to_mourn_inferior) (void);
289 int (*to_can_run) (void);
39f77062
KB
290 void (*to_notice_signals) (ptid_t ptid);
291 int (*to_thread_alive) (ptid_t ptid);
507f3c78 292 void (*to_find_new_threads) (void);
39f77062 293 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
294 char *(*to_extra_thread_info) (struct thread_info *);
295 void (*to_stop) (void);
296 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 297 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
298 struct symtab_and_line *(*to_enable_exception_callback) (enum
299 exception_event_kind,
300 int);
301 struct exception_event_record *(*to_get_current_exception_event) (void);
302 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 303 enum strata to_stratum;
c5aa993b
JM
304 int to_has_all_memory;
305 int to_has_memory;
306 int to_has_stack;
307 int to_has_registers;
308 int to_has_execution;
309 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
310 struct section_table
311 *to_sections;
312 struct section_table
313 *to_sections_end;
6426a772
JM
314 /* ASYNC target controls */
315 int (*to_can_async_p) (void);
316 int (*to_is_async_p) (void);
0d06e24b
JM
317 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
318 void *context);
ed9a39eb 319 int to_async_mask_value;
be4d1333
MS
320 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
321 unsigned long,
322 int, int, int,
323 void *),
324 void *);
325 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
326
327 /* Return the thread-local address at OFFSET in the
328 thread-local storage for the thread PTID and the shared library
329 or executable file given by OBJFILE. If that block of
330 thread-local storage hasn't been allocated yet, this function
331 may return an error. */
332 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
333 struct objfile *objfile,
334 CORE_ADDR offset);
335
c5aa993b 336 int to_magic;
0d06e24b
JM
337 /* Need sub-structure for target machine related rather than comm related?
338 */
c5aa993b 339 };
c906108c
SS
340
341/* Magic number for checking ops size. If a struct doesn't end with this
342 number, somebody changed the declaration but didn't change all the
343 places that initialize one. */
344
345#define OPS_MAGIC 3840
346
347/* The ops structure for our "current" target process. This should
348 never be NULL. If there is no target, it points to the dummy_target. */
349
c5aa993b 350extern struct target_ops current_target;
c906108c
SS
351
352/* An item on the target stack. */
353
354struct target_stack_item
c5aa993b
JM
355 {
356 struct target_stack_item *next;
357 struct target_ops *target_ops;
358 };
c906108c
SS
359
360/* The target stack. */
361
362extern struct target_stack_item *target_stack;
363
364/* Define easy words for doing these operations on our current target. */
365
366#define target_shortname (current_target.to_shortname)
367#define target_longname (current_target.to_longname)
368
369/* The open routine takes the rest of the parameters from the command,
370 and (if successful) pushes a new target onto the stack.
371 Targets should supply this routine, if only to provide an error message. */
0d06e24b 372
4930751a
C
373#define target_open(name, from_tty) \
374 do { \
375 dcache_invalidate (target_dcache); \
376 (*current_target.to_open) (name, from_tty); \
377 } while (0)
c906108c
SS
378
379/* Does whatever cleanup is required for a target that we are no longer
380 going to be calling. Argument says whether we are quitting gdb and
381 should not get hung in case of errors, or whether we want a clean
382 termination even if it takes a while. This routine is automatically
383 always called just before a routine is popped off the target stack.
384 Closing file descriptors and freeing memory are typical things it should
385 do. */
386
387#define target_close(quitting) \
0d06e24b 388 (*current_target.to_close) (quitting)
c906108c
SS
389
390/* Attaches to a process on the target side. Arguments are as passed
391 to the `attach' command by the user. This routine can be called
392 when the target is not on the target-stack, if the target_can_run
393 routine returns 1; in that case, it must push itself onto the stack.
394 Upon exit, the target should be ready for normal operations, and
395 should be ready to deliver the status of the process immediately
396 (without waiting) to an upcoming target_wait call. */
397
398#define target_attach(args, from_tty) \
0d06e24b 399 (*current_target.to_attach) (args, from_tty)
c906108c
SS
400
401/* The target_attach operation places a process under debugger control,
402 and stops the process.
403
404 This operation provides a target-specific hook that allows the
0d06e24b 405 necessary bookkeeping to be performed after an attach completes. */
c906108c 406#define target_post_attach(pid) \
0d06e24b 407 (*current_target.to_post_attach) (pid)
c906108c 408
c906108c
SS
409/* Takes a program previously attached to and detaches it.
410 The program may resume execution (some targets do, some don't) and will
411 no longer stop on signals, etc. We better not have left any breakpoints
412 in the program or it'll die when it hits one. ARGS is arguments
413 typed by the user (e.g. a signal to send the process). FROM_TTY
414 says whether to be verbose or not. */
415
a14ed312 416extern void target_detach (char *, int);
c906108c 417
6ad8ae5c
DJ
418/* Disconnect from the current target without resuming it (leaving it
419 waiting for a debugger). */
420
421extern void target_disconnect (char *, int);
422
39f77062 423/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
424 single-step or to run free; SIGGNAL is the signal to be given to
425 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
426 pass TARGET_SIGNAL_DEFAULT. */
427
39f77062 428#define target_resume(ptid, step, siggnal) \
4930751a
C
429 do { \
430 dcache_invalidate(target_dcache); \
39f77062 431 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 432 } while (0)
c906108c 433
b5a2688f
AC
434/* Wait for process pid to do something. PTID = -1 to wait for any
435 pid to do something. Return pid of child, or -1 in case of error;
c906108c 436 store status through argument pointer STATUS. Note that it is
b5a2688f 437 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
438 the debugging target from the stack; GDB isn't prepared to get back
439 to the prompt with a debugging target but without the frame cache,
440 stop_pc, etc., set up. */
441
39f77062
KB
442#define target_wait(ptid, status) \
443 (*current_target.to_wait) (ptid, status)
c906108c
SS
444
445/* The target_wait operation waits for a process event to occur, and
446 thereby stop the process.
447
448 On some targets, certain events may happen in sequences. gdb's
449 correct response to any single event of such a sequence may require
450 knowledge of what earlier events in the sequence have been seen.
451
452 This operation provides a target-specific hook that allows the
0d06e24b 453 necessary bookkeeping to be performed to track such sequences. */
c906108c 454
39f77062
KB
455#define target_post_wait(ptid, status) \
456 (*current_target.to_post_wait) (ptid, status)
c906108c 457
17dee195 458/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
459
460#define target_fetch_registers(regno) \
0d06e24b 461 (*current_target.to_fetch_registers) (regno)
c906108c
SS
462
463/* Store at least register REGNO, or all regs if REGNO == -1.
464 It can store as many registers as it wants to, so target_prepare_to_store
465 must have been previously called. Calls error() if there are problems. */
466
467#define target_store_registers(regs) \
0d06e24b 468 (*current_target.to_store_registers) (regs)
c906108c
SS
469
470/* Get ready to modify the registers array. On machines which store
471 individual registers, this doesn't need to do anything. On machines
472 which store all the registers in one fell swoop, this makes sure
473 that REGISTERS contains all the registers from the program being
474 debugged. */
475
476#define target_prepare_to_store() \
0d06e24b 477 (*current_target.to_prepare_to_store) ()
c906108c 478
4930751a
C
479extern DCACHE *target_dcache;
480
29e57380
C
481extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
482 struct mem_attrib *attrib);
4930751a 483
a14ed312 484extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 485
a14ed312 486extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 487
4930751a 488extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 489
29e57380
C
490extern int xfer_memory (CORE_ADDR, char *, int, int,
491 struct mem_attrib *, struct target_ops *);
c906108c 492
29e57380
C
493extern int child_xfer_memory (CORE_ADDR, char *, int, int,
494 struct mem_attrib *, struct target_ops *);
c906108c 495
917317f4
JM
496/* Make a single attempt at transfering LEN bytes. On a successful
497 transfer, the number of bytes actually transfered is returned and
498 ERR is set to 0. When a transfer fails, -1 is returned (the number
499 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 500 non-zero error indication. */
917317f4 501
570b8f7c
AC
502extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
503 int *err);
917317f4 504
570b8f7c
AC
505extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
506 int *err);
917317f4 507
a14ed312 508extern char *child_pid_to_exec_file (int);
c906108c 509
a14ed312 510extern char *child_core_file_to_sym_file (char *);
c906108c
SS
511
512#if defined(CHILD_POST_ATTACH)
a14ed312 513extern void child_post_attach (int);
c906108c
SS
514#endif
515
39f77062 516extern void child_post_wait (ptid_t, int);
c906108c 517
39f77062 518extern void child_post_startup_inferior (ptid_t);
c906108c 519
a14ed312 520extern void child_acknowledge_created_inferior (int);
c906108c 521
a14ed312 522extern int child_insert_fork_catchpoint (int);
c906108c 523
a14ed312 524extern int child_remove_fork_catchpoint (int);
c906108c 525
a14ed312 526extern int child_insert_vfork_catchpoint (int);
c906108c 527
a14ed312 528extern int child_remove_vfork_catchpoint (int);
c906108c 529
a14ed312 530extern void child_acknowledge_created_inferior (int);
c906108c 531
6604731b 532extern int child_follow_fork (int);
c906108c 533
a14ed312 534extern int child_insert_exec_catchpoint (int);
c906108c 535
a14ed312 536extern int child_remove_exec_catchpoint (int);
c906108c 537
a14ed312 538extern int child_reported_exec_events_per_exec_call (void);
c906108c 539
a14ed312 540extern int child_has_exited (int, int, int *);
c906108c 541
39f77062 542extern int child_thread_alive (ptid_t);
c906108c 543
47932f85
DJ
544/* From infrun.c. */
545
546extern int inferior_has_forked (int pid, int *child_pid);
547
548extern int inferior_has_vforked (int pid, int *child_pid);
549
550extern int inferior_has_execd (int pid, char **execd_pathname);
551
c906108c
SS
552/* From exec.c */
553
a14ed312 554extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
555
556/* Print a line about the current target. */
557
558#define target_files_info() \
0d06e24b 559 (*current_target.to_files_info) (&current_target)
c906108c 560
aaab4dba
AC
561/* Insert a breakpoint at address ADDR in the target machine. SAVE is
562 a pointer to memory allocated for saving the target contents. It
563 is guaranteed by the caller to be long enough to save the number of
564 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
565 success, or an errno value. */
c906108c
SS
566
567#define target_insert_breakpoint(addr, save) \
0d06e24b 568 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
569
570/* Remove a breakpoint at address ADDR in the target machine.
571 SAVE is a pointer to the same save area
572 that was previously passed to target_insert_breakpoint.
573 Result is 0 for success, or an errno value. */
574
575#define target_remove_breakpoint(addr, save) \
0d06e24b 576 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
577
578/* Initialize the terminal settings we record for the inferior,
579 before we actually run the inferior. */
580
581#define target_terminal_init() \
0d06e24b 582 (*current_target.to_terminal_init) ()
c906108c
SS
583
584/* Put the inferior's terminal settings into effect.
585 This is preparation for starting or resuming the inferior. */
586
587#define target_terminal_inferior() \
0d06e24b 588 (*current_target.to_terminal_inferior) ()
c906108c
SS
589
590/* Put some of our terminal settings into effect,
591 enough to get proper results from our output,
592 but do not change into or out of RAW mode
593 so that no input is discarded.
594
595 After doing this, either terminal_ours or terminal_inferior
596 should be called to get back to a normal state of affairs. */
597
598#define target_terminal_ours_for_output() \
0d06e24b 599 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
600
601/* Put our terminal settings into effect.
602 First record the inferior's terminal settings
603 so they can be restored properly later. */
604
605#define target_terminal_ours() \
0d06e24b 606 (*current_target.to_terminal_ours) ()
c906108c 607
a790ad35
SC
608/* Save our terminal settings.
609 This is called from TUI after entering or leaving the curses
610 mode. Since curses modifies our terminal this call is here
611 to take this change into account. */
612
613#define target_terminal_save_ours() \
614 (*current_target.to_terminal_save_ours) ()
615
c906108c
SS
616/* Print useful information about our terminal status, if such a thing
617 exists. */
618
619#define target_terminal_info(arg, from_tty) \
0d06e24b 620 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
621
622/* Kill the inferior process. Make it go away. */
623
624#define target_kill() \
0d06e24b 625 (*current_target.to_kill) ()
c906108c 626
0d06e24b
JM
627/* Load an executable file into the target process. This is expected
628 to not only bring new code into the target process, but also to
629 update GDB's symbol tables to match. */
c906108c 630
11cf8741 631extern void target_load (char *arg, int from_tty);
c906108c
SS
632
633/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
634 name. ADDRP is a CORE_ADDR * pointing to where the value of the
635 symbol should be returned. The result is 0 if successful, nonzero
636 if the symbol does not exist in the target environment. This
637 function should not call error() if communication with the target
638 is interrupted, since it is called from symbol reading, but should
639 return nonzero, possibly doing a complain(). */
c906108c 640
0d06e24b
JM
641#define target_lookup_symbol(name, addrp) \
642 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 643
39f77062 644/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
645 EXEC_FILE is the file to run.
646 ALLARGS is a string containing the arguments to the program.
647 ENV is the environment vector to pass. Errors reported with error().
648 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 649
c906108c 650#define target_create_inferior(exec_file, args, env) \
0d06e24b 651 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
652
653
654/* Some targets (such as ttrace-based HPUX) don't allow us to request
655 notification of inferior events such as fork and vork immediately
656 after the inferior is created. (This because of how gdb gets an
657 inferior created via invoking a shell to do it. In such a scenario,
658 if the shell init file has commands in it, the shell will fork and
659 exec for each of those commands, and we will see each such fork
660 event. Very bad.)
c5aa993b 661
0d06e24b
JM
662 Such targets will supply an appropriate definition for this function. */
663
39f77062
KB
664#define target_post_startup_inferior(ptid) \
665 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
666
667/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
668 some synchronization between gdb and the new inferior process, PID. */
669
c906108c 670#define target_acknowledge_created_inferior(pid) \
0d06e24b 671 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 672
0d06e24b
JM
673/* On some targets, we can catch an inferior fork or vfork event when
674 it occurs. These functions insert/remove an already-created
675 catchpoint for such events. */
c906108c 676
c906108c 677#define target_insert_fork_catchpoint(pid) \
0d06e24b 678 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
679
680#define target_remove_fork_catchpoint(pid) \
0d06e24b 681 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
682
683#define target_insert_vfork_catchpoint(pid) \
0d06e24b 684 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
685
686#define target_remove_vfork_catchpoint(pid) \
0d06e24b 687 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 688
6604731b
DJ
689/* If the inferior forks or vforks, this function will be called at
690 the next resume in order to perform any bookkeeping and fiddling
691 necessary to continue debugging either the parent or child, as
692 requested, and releasing the other. Information about the fork
693 or vfork event is available via get_last_target_status ().
694 This function returns 1 if the inferior should not be resumed
695 (i.e. there is another event pending). */
0d06e24b 696
6604731b
DJ
697#define target_follow_fork(follow_child) \
698 (*current_target.to_follow_fork) (follow_child)
c906108c
SS
699
700/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
701 occurs. These functions insert/remove an already-created
702 catchpoint for such events. */
703
c906108c 704#define target_insert_exec_catchpoint(pid) \
0d06e24b 705 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 706
c906108c 707#define target_remove_exec_catchpoint(pid) \
0d06e24b 708 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 709
c906108c
SS
710/* Returns the number of exec events that are reported when a process
711 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
712 events are being reported. */
713
c906108c 714#define target_reported_exec_events_per_exec_call() \
0d06e24b 715 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 716
c906108c 717/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
718 exit code of PID, if any. */
719
c906108c 720#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 721 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
722
723/* The debugger has completed a blocking wait() call. There is now
0d06e24b 724 some process event that must be processed. This function should
c906108c 725 be defined by those targets that require the debugger to perform
0d06e24b 726 cleanup or internal state changes in response to the process event. */
c906108c
SS
727
728/* The inferior process has died. Do what is right. */
729
730#define target_mourn_inferior() \
0d06e24b 731 (*current_target.to_mourn_inferior) ()
c906108c
SS
732
733/* Does target have enough data to do a run or attach command? */
734
735#define target_can_run(t) \
0d06e24b 736 ((t)->to_can_run) ()
c906108c
SS
737
738/* post process changes to signal handling in the inferior. */
739
39f77062
KB
740#define target_notice_signals(ptid) \
741 (*current_target.to_notice_signals) (ptid)
c906108c
SS
742
743/* Check to see if a thread is still alive. */
744
39f77062
KB
745#define target_thread_alive(ptid) \
746 (*current_target.to_thread_alive) (ptid)
c906108c 747
b83266a0
SS
748/* Query for new threads and add them to the thread list. */
749
750#define target_find_new_threads() \
0d06e24b 751 (*current_target.to_find_new_threads) (); \
b83266a0 752
0d06e24b
JM
753/* Make target stop in a continuable fashion. (For instance, under
754 Unix, this should act like SIGSTOP). This function is normally
755 used by GUIs to implement a stop button. */
c906108c
SS
756
757#define target_stop current_target.to_stop
758
759/* Queries the target side for some information. The first argument is a
760 letter specifying the type of the query, which is used to determine who
761 should process it. The second argument is a string that specifies which
762 information is desired and the third is a buffer that carries back the
763 response from the target side. The fourth parameter is the size of the
0d06e24b 764 output buffer supplied. */
c5aa993b 765
c906108c 766#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 767 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 768
96baa820
JM
769/* Send the specified COMMAND to the target's monitor
770 (shell,interpreter) for execution. The result of the query is
0d06e24b 771 placed in OUTBUF. */
96baa820
JM
772
773#define target_rcmd(command, outbuf) \
774 (*current_target.to_rcmd) (command, outbuf)
775
776
c906108c
SS
777/* Get the symbol information for a breakpointable routine called when
778 an exception event occurs.
779 Intended mainly for C++, and for those
780 platforms/implementations where such a callback mechanism is available,
781 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 782 different mechanisms for debugging exceptions. */
c906108c
SS
783
784#define target_enable_exception_callback(kind, enable) \
0d06e24b 785 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 786
0d06e24b 787/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 788
c906108c 789#define target_get_current_exception_event() \
0d06e24b 790 (*current_target.to_get_current_exception_event) ()
c906108c 791
c906108c
SS
792/* Does the target include all of memory, or only part of it? This
793 determines whether we look up the target chain for other parts of
794 memory if this target can't satisfy a request. */
795
796#define target_has_all_memory \
0d06e24b 797 (current_target.to_has_all_memory)
c906108c
SS
798
799/* Does the target include memory? (Dummy targets don't.) */
800
801#define target_has_memory \
0d06e24b 802 (current_target.to_has_memory)
c906108c
SS
803
804/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
805 we start a process.) */
c5aa993b 806
c906108c 807#define target_has_stack \
0d06e24b 808 (current_target.to_has_stack)
c906108c
SS
809
810/* Does the target have registers? (Exec files don't.) */
811
812#define target_has_registers \
0d06e24b 813 (current_target.to_has_registers)
c906108c
SS
814
815/* Does the target have execution? Can we make it jump (through
816 hoops), or pop its stack a few times? FIXME: If this is to work that
817 way, it needs to check whether an inferior actually exists.
818 remote-udi.c and probably other targets can be the current target
819 when the inferior doesn't actually exist at the moment. Right now
820 this just tells us whether this target is *capable* of execution. */
821
822#define target_has_execution \
0d06e24b 823 (current_target.to_has_execution)
c906108c
SS
824
825/* Can the target support the debugger control of thread execution?
826 a) Can it lock the thread scheduler?
827 b) Can it switch the currently running thread? */
828
829#define target_can_lock_scheduler \
0d06e24b 830 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
831
832#define target_can_switch_threads \
0d06e24b 833 (current_target.to_has_thread_control & tc_switch)
c906108c 834
6426a772
JM
835/* Can the target support asynchronous execution? */
836#define target_can_async_p() (current_target.to_can_async_p ())
837
838/* Is the target in asynchronous execution mode? */
839#define target_is_async_p() (current_target.to_is_async_p())
840
841/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
842#define target_async(CALLBACK,CONTEXT) \
843 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 844
04714b91
AC
845/* This is to be used ONLY within call_function_by_hand(). It provides
846 a workaround, to have inferior function calls done in sychronous
847 mode, even though the target is asynchronous. After
ed9a39eb
JM
848 target_async_mask(0) is called, calls to target_can_async_p() will
849 return FALSE , so that target_resume() will not try to start the
850 target asynchronously. After the inferior stops, we IMMEDIATELY
851 restore the previous nature of the target, by calling
852 target_async_mask(1). After that, target_can_async_p() will return
04714b91 853 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
854
855 FIXME ezannoni 1999-12-13: we won't need this once we move
856 the turning async on and off to the single execution commands,
0d06e24b 857 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
858
859#define target_async_mask_value \
0d06e24b 860 (current_target.to_async_mask_value)
ed9a39eb
JM
861
862extern int target_async_mask (int mask);
863
a14ed312 864extern void target_link (char *, CORE_ADDR *);
c906108c
SS
865
866/* Converts a process id to a string. Usually, the string just contains
867 `process xyz', but on some systems it may contain
868 `process xyz thread abc'. */
869
ed9a39eb
JM
870#undef target_pid_to_str
871#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
872
873#ifndef target_tid_to_str
874#define target_tid_to_str(PID) \
0d06e24b 875 target_pid_to_str (PID)
39f77062 876extern char *normal_pid_to_str (ptid_t ptid);
c906108c 877#endif
c5aa993b 878
0d06e24b
JM
879/* Return a short string describing extra information about PID,
880 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
881 is okay. */
882
883#define target_extra_thread_info(TP) \
884 (current_target.to_extra_thread_info (TP))
ed9a39eb 885
11cf8741
JM
886/*
887 * New Objfile Event Hook:
888 *
889 * Sometimes a GDB component wants to get notified whenever a new
890 * objfile is loaded. Mainly this is used by thread-debugging
891 * implementations that need to know when symbols for the target
892 * thread implemenation are available.
893 *
894 * The old way of doing this is to define a macro 'target_new_objfile'
895 * that points to the function that you want to be called on every
896 * objfile/shlib load.
897 *
898 * The new way is to grab the function pointer, 'target_new_objfile_hook',
899 * and point it to the function that you want to be called on every
900 * objfile/shlib load.
901 *
902 * If multiple clients are willing to be cooperative, they can each
903 * save a pointer to the previous value of target_new_objfile_hook
904 * before modifying it, and arrange for their function to call the
905 * previous function in the chain. In that way, multiple clients
906 * can receive this notification (something like with signal handlers).
907 */
c906108c 908
507f3c78 909extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
910
911#ifndef target_pid_or_tid_to_str
912#define target_pid_or_tid_to_str(ID) \
0d06e24b 913 target_pid_to_str (ID)
c906108c
SS
914#endif
915
916/* Attempts to find the pathname of the executable file
917 that was run to create a specified process.
918
919 The process PID must be stopped when this operation is used.
c5aa993b 920
c906108c
SS
921 If the executable file cannot be determined, NULL is returned.
922
923 Else, a pointer to a character string containing the pathname
924 is returned. This string should be copied into a buffer by
925 the client if the string will not be immediately used, or if
0d06e24b 926 it must persist. */
c906108c
SS
927
928#define target_pid_to_exec_file(pid) \
0d06e24b 929 (current_target.to_pid_to_exec_file) (pid)
c906108c 930
be4d1333
MS
931/*
932 * Iterator function for target memory regions.
933 * Calls a callback function once for each memory region 'mapped'
934 * in the child process. Defined as a simple macro rather than
935 * as a function macro so that it can be tested for nullity.
936 */
937
938#define target_find_memory_regions(FUNC, DATA) \
939 (current_target.to_find_memory_regions) (FUNC, DATA)
940
941/*
942 * Compose corefile .note section.
943 */
944
945#define target_make_corefile_notes(BFD, SIZE_P) \
946 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
947
3f47be5c
EZ
948/* Thread-local values. */
949#define target_get_thread_local_address \
950 (current_target.to_get_thread_local_address)
951#define target_get_thread_local_address_p() \
952 (target_get_thread_local_address != NULL)
953
9d8a64cb 954/* Hook to call target dependent code just after inferior target process has
c906108c
SS
955 started. */
956
957#ifndef TARGET_CREATE_INFERIOR_HOOK
958#define TARGET_CREATE_INFERIOR_HOOK(PID)
959#endif
960
961/* Hardware watchpoint interfaces. */
962
963/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
964 write). */
965
966#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
967#define STOPPED_BY_WATCHPOINT(w) \
968 (*current_target.to_stopped_by_watchpoint) ()
c906108c 969#endif
7df1a324
KW
970
971/* Non-zero if we have continuable watchpoints */
972
973#ifndef HAVE_CONTINUABLE_WATCHPOINT
974#define HAVE_CONTINUABLE_WATCHPOINT \
975 (current_target.to_have_continuable_watchpoint)
976#endif
c906108c
SS
977
978/* HP-UX supplies these operations, which respectively disable and enable
979 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
980 on that platform. See wait_for_inferior's use of these. */
981
c906108c
SS
982#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
983#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
984#endif
985
986#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
987#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
988#endif
989
ccaa32c7 990/* Provide defaults for hardware watchpoint functions. */
c906108c 991
ccaa32c7
GS
992/* If the *_hw_beakpoint functions have not been defined
993 elsewhere use the definitions in the target vector. */
c906108c
SS
994
995/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
996 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
997 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
998 (including this one?). OTHERTYPE is who knows what... */
999
ccaa32c7
GS
1000#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1001#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1002 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1003#endif
c906108c
SS
1004
1005#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1006#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
ccaa32c7 1007 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
c906108c
SS
1008#endif
1009
c906108c
SS
1010
1011/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1012 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1013 success, non-zero for failure. */
1014
ccaa32c7
GS
1015#ifndef target_insert_watchpoint
1016#define target_insert_watchpoint(addr, len, type) \
1017 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1018
ccaa32c7
GS
1019#define target_remove_watchpoint(addr, len, type) \
1020 (*current_target.to_remove_watchpoint) (addr, len, type)
1021#endif
c906108c
SS
1022
1023#ifndef target_insert_hw_breakpoint
ccaa32c7
GS
1024#define target_insert_hw_breakpoint(addr, save) \
1025 (*current_target.to_insert_hw_breakpoint) (addr, save)
1026
1027#define target_remove_hw_breakpoint(addr, save) \
1028 (*current_target.to_remove_hw_breakpoint) (addr, save)
c906108c
SS
1029#endif
1030
1031#ifndef target_stopped_data_address
ccaa32c7
GS
1032#define target_stopped_data_address() \
1033 (*current_target.to_stopped_data_address) ()
c906108c
SS
1034#endif
1035
1036/* If defined, then we need to decr pc by this much after a hardware break-
1037 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1038
1039#ifndef DECR_PC_AFTER_HW_BREAK
1040#define DECR_PC_AFTER_HW_BREAK 0
1041#endif
1042
1043/* Sometimes gdb may pick up what appears to be a valid target address
1044 from a minimal symbol, but the value really means, essentially,
1045 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1046 is run. Therefore, do not attempt to use this as a PC." */
1047
c906108c
SS
1048#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1049#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1050#endif
1051
1052/* This will only be defined by a target that supports catching vfork events,
1053 such as HP-UX.
1054
1055 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1056 child process after it has exec'd, causes the parent process to resume as
1057 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1058 define this to a function that prevents that from happening. */
c906108c
SS
1059#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1060#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1061#endif
1062
1063/* This will only be defined by a target that supports catching vfork events,
1064 such as HP-UX.
1065
1066 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1067 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1068 vfork event will be delivered to us. */
1069
c906108c
SS
1070#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1071#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1072#endif
1073
1074/* Routines for maintenance of the target structures...
1075
1076 add_target: Add a target to the list of all possible targets.
1077
1078 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1079 targets, within its particular stratum of the stack. Result
1080 is 0 if now atop the stack, nonzero if not on top (maybe
1081 should warn user).
c906108c
SS
1082
1083 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1084 no matter where it is on the list. Returns 0 if no
1085 change, 1 if removed from stack.
c906108c 1086
c5aa993b 1087 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1088
a14ed312 1089extern void add_target (struct target_ops *);
c906108c 1090
a14ed312 1091extern int push_target (struct target_ops *);
c906108c 1092
a14ed312 1093extern int unpush_target (struct target_ops *);
c906108c 1094
a14ed312 1095extern void target_preopen (int);
c906108c 1096
a14ed312 1097extern void pop_target (void);
c906108c
SS
1098
1099/* Struct section_table maps address ranges to file sections. It is
1100 mostly used with BFD files, but can be used without (e.g. for handling
1101 raw disks, or files not in formats handled by BFD). */
1102
c5aa993b
JM
1103struct section_table
1104 {
1105 CORE_ADDR addr; /* Lowest address in section */
1106 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1107
c5aa993b 1108 sec_ptr the_bfd_section;
c906108c 1109
c5aa993b
JM
1110 bfd *bfd; /* BFD file pointer */
1111 };
c906108c
SS
1112
1113/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1114 Returns 0 if OK, 1 on error. */
1115
570b8f7c
AC
1116extern int build_section_table (bfd *, struct section_table **,
1117 struct section_table **);
c906108c
SS
1118
1119/* From mem-break.c */
1120
a14ed312 1121extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1122
a14ed312 1123extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1124
a14ed312 1125extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1126
a14ed312 1127extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1128
c906108c
SS
1129
1130/* From target.c */
1131
a14ed312 1132extern void initialize_targets (void);
c906108c 1133
a14ed312 1134extern void noprocess (void);
c906108c 1135
a14ed312 1136extern void find_default_attach (char *, int);
c906108c 1137
a14ed312 1138extern void find_default_create_inferior (char *, char *, char **);
c906108c 1139
a14ed312 1140extern struct target_ops *find_run_target (void);
7a292a7a 1141
a14ed312 1142extern struct target_ops *find_core_target (void);
6426a772 1143
a14ed312 1144extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1145
570b8f7c
AC
1146extern int target_resize_to_sections (struct target_ops *target,
1147 int num_added);
07cd4b97
JB
1148
1149extern void remove_target_sections (bfd *abfd);
1150
c906108c
SS
1151\f
1152/* Stuff that should be shared among the various remote targets. */
1153
1154/* Debugging level. 0 is off, and non-zero values mean to print some debug
1155 information (higher values, more information). */
1156extern int remote_debug;
1157
1158/* Speed in bits per second, or -1 which means don't mess with the speed. */
1159extern int baud_rate;
1160/* Timeout limit for response from target. */
1161extern int remote_timeout;
1162
c906108c
SS
1163\f
1164/* Functions for helping to write a native target. */
1165
1166/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1167extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1168
c2d11a7d 1169/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1170 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1171/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1172 to the shorter target_signal_p() because it is far less ambigious.
1173 In this context ``target_signal'' refers to GDB's internal
1174 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1175 refers to the target operating system's signal. Confused? */
1176
c2d11a7d
JM
1177extern int target_signal_to_host_p (enum target_signal signo);
1178
1179/* Convert between host signal numbers and enum target_signal's.
1180 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1181 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1182/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1183 refering to the target operating system's signal numbering.
1184 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1185 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1186 internal representation of a target operating system's signal. */
1187
a14ed312
KB
1188extern enum target_signal target_signal_from_host (int);
1189extern int target_signal_to_host (enum target_signal);
c906108c
SS
1190
1191/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1192extern enum target_signal target_signal_from_command (int);
c906108c
SS
1193
1194/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1195extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1196\f
1197/* Imported from machine dependent code */
1198
c906108c 1199/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1200void target_ignore (void);
c906108c 1201
c5aa993b 1202#endif /* !defined (TARGET_H) */
This page took 0.626923 seconds and 4 git commands to generate.