New "find" command.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
0d06e24b
JM
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
0d06e24b
JM
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
c4093a6a 131 TARGET_WAITKIND_IGNORE
c906108c
SS
132 };
133
c5aa993b
JM
134struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
c906108c 149
2acceee2 150/* Possible types of events that the inferior handler will have to
0d06e24b 151 deal with. */
2acceee2
JM
152enum inferior_event_type
153 {
0d06e24b 154 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
0d06e24b 157 being called. */
2146d243 158 INF_REG_EVENT,
0d06e24b 159 /* Deal with an error on the inferior. */
2acceee2 160 INF_ERROR,
0d06e24b 161 /* We are called because a timer went off. */
2acceee2 162 INF_TIMER,
0d06e24b 163 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
0d06e24b 168 'step n' like commands. */
c2d11a7d 169 INF_EXEC_CONTINUE
2acceee2
JM
170 };
171
c906108c 172/* Return the string for a signal. */
a14ed312 173extern char *target_signal_to_string (enum target_signal);
c906108c
SS
174
175/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 176extern char *target_signal_to_name (enum target_signal);
c906108c
SS
177
178/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 179enum target_signal target_signal_from_name (char *);
c906108c 180\f
13547ab6
DJ
181/* Target objects which can be transfered using target_read,
182 target_write, et cetera. */
1e3ff5ad
AC
183
184enum target_object
185{
1e3ff5ad
AC
186 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
187 TARGET_OBJECT_AVR,
23d964e7
UW
188 /* SPU target specific transfer. See "spu-tdep.c". */
189 TARGET_OBJECT_SPU,
1e3ff5ad 190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 191 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
baf92889 200 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
201 TARGET_OBJECT_WCOOKIE,
202 /* Target memory map in XML format. */
203 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
204 /* Flash memory. This object can be used to write contents to
205 a previously erased flash memory. Using it without erasing
206 flash can have unexpected results. Addresses are physical
207 address on target, and not relative to flash start. */
23181151
DJ
208 TARGET_OBJECT_FLASH,
209 /* Available target-specific features, e.g. registers and coprocessors.
210 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
211 TARGET_OBJECT_AVAILABLE_FEATURES,
212 /* Currently loaded libraries, in XML format. */
213 TARGET_OBJECT_LIBRARIES
2146d243 214 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
215};
216
13547ab6
DJ
217/* Request that OPS transfer up to LEN 8-bit bytes of the target's
218 OBJECT. The OFFSET, for a seekable object, specifies the
219 starting point. The ANNEX can be used to provide additional
220 data-specific information to the target.
1e3ff5ad 221
13547ab6
DJ
222 Return the number of bytes actually transfered, or -1 if the
223 transfer is not supported or otherwise fails. Return of a positive
224 value less than LEN indicates that no further transfer is possible.
225 Unlike the raw to_xfer_partial interface, callers of these
226 functions do not need to retry partial transfers. */
1e3ff5ad 227
1e3ff5ad
AC
228extern LONGEST target_read (struct target_ops *ops,
229 enum target_object object,
1b0ba102 230 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
231 ULONGEST offset, LONGEST len);
232
233extern LONGEST target_write (struct target_ops *ops,
234 enum target_object object,
1b0ba102 235 const char *annex, const gdb_byte *buf,
1e3ff5ad 236 ULONGEST offset, LONGEST len);
b6591e8b 237
a76d924d
DJ
238/* Similar to target_write, except that it also calls PROGRESS with
239 the number of bytes written and the opaque BATON after every
240 successful partial write (and before the first write). This is
241 useful for progress reporting and user interaction while writing
242 data. To abort the transfer, the progress callback can throw an
243 exception. */
244
cf7a04e8
DJ
245LONGEST target_write_with_progress (struct target_ops *ops,
246 enum target_object object,
247 const char *annex, const gdb_byte *buf,
248 ULONGEST offset, LONGEST len,
249 void (*progress) (ULONGEST, void *),
250 void *baton);
251
13547ab6
DJ
252/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
253 be read using OPS. The return value will be -1 if the transfer
254 fails or is not supported; 0 if the object is empty; or the length
255 of the object otherwise. If a positive value is returned, a
256 sufficiently large buffer will be allocated using xmalloc and
257 returned in *BUF_P containing the contents of the object.
258
259 This method should be used for objects sufficiently small to store
260 in a single xmalloc'd buffer, when no fixed bound on the object's
261 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
262 through this function. */
263
264extern LONGEST target_read_alloc (struct target_ops *ops,
265 enum target_object object,
266 const char *annex, gdb_byte **buf_p);
267
159f81f3
DJ
268/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
269 returned as a string, allocated using xmalloc. If an error occurs
270 or the transfer is unsupported, NULL is returned. Empty objects
271 are returned as allocated but empty strings. A warning is issued
272 if the result contains any embedded NUL bytes. */
273
274extern char *target_read_stralloc (struct target_ops *ops,
275 enum target_object object,
276 const char *annex);
277
b6591e8b
AC
278/* Wrappers to target read/write that perform memory transfers. They
279 throw an error if the memory transfer fails.
280
281 NOTE: cagney/2003-10-23: The naming schema is lifted from
282 "frame.h". The parameter order is lifted from get_frame_memory,
283 which in turn lifted it from read_memory. */
284
285extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 286 gdb_byte *buf, LONGEST len);
b6591e8b
AC
287extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
288 CORE_ADDR addr, int len);
1e3ff5ad 289\f
c5aa993b 290
c906108c
SS
291/* If certain kinds of activity happen, target_wait should perform
292 callbacks. */
293/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 294 on TARGET_ACTIVITY_FD. */
c906108c
SS
295extern int target_activity_fd;
296/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 297extern int (*target_activity_function) (void);
c906108c 298\f
0d06e24b
JM
299struct thread_info; /* fwd decl for parameter list below: */
300
c906108c 301struct target_ops
c5aa993b 302 {
258b763a 303 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
304 char *to_shortname; /* Name this target type */
305 char *to_longname; /* Name for printing */
306 char *to_doc; /* Documentation. Does not include trailing
c906108c 307 newline, and starts with a one-line descrip-
0d06e24b 308 tion (probably similar to to_longname). */
bba2d28d
AC
309 /* Per-target scratch pad. */
310 void *to_data;
f1c07ab0
AC
311 /* The open routine takes the rest of the parameters from the
312 command, and (if successful) pushes a new target onto the
313 stack. Targets should supply this routine, if only to provide
314 an error message. */
507f3c78 315 void (*to_open) (char *, int);
f1c07ab0
AC
316 /* Old targets with a static target vector provide "to_close".
317 New re-entrant targets provide "to_xclose" and that is expected
318 to xfree everything (including the "struct target_ops"). */
319 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
320 void (*to_close) (int);
321 void (*to_attach) (char *, int);
322 void (*to_post_attach) (int);
507f3c78 323 void (*to_detach) (char *, int);
597320e7 324 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
325 void (*to_resume) (ptid_t, int, enum target_signal);
326 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
327 void (*to_fetch_registers) (struct regcache *, int);
328 void (*to_store_registers) (struct regcache *, int);
316f2060 329 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
330
331 /* Transfer LEN bytes of memory between GDB address MYADDR and
332 target address MEMADDR. If WRITE, transfer them to the target, else
333 transfer them from the target. TARGET is the target from which we
334 get this function.
335
336 Return value, N, is one of the following:
337
338 0 means that we can't handle this. If errno has been set, it is the
339 error which prevented us from doing it (FIXME: What about bfd_error?).
340
341 positive (call it N) means that we have transferred N bytes
342 starting at MEMADDR. We might be able to handle more bytes
343 beyond this length, but no promises.
344
345 negative (call its absolute value N) means that we cannot
346 transfer right at MEMADDR, but we could transfer at least
c8e73a31 347 something at MEMADDR + N.
c5aa993b 348
c8e73a31
AC
349 NOTE: cagney/2004-10-01: This has been entirely superseeded by
350 to_xfer_partial and inferior inheritance. */
351
1b0ba102 352 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
353 int len, int write,
354 struct mem_attrib *attrib,
355 struct target_ops *target);
c906108c 356
507f3c78 357 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
358 int (*to_insert_breakpoint) (struct bp_target_info *);
359 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 360 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
361 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
362 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
363 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
364 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
365 int (*to_stopped_by_watchpoint) (void);
74174d2e 366 int to_have_steppable_watchpoint;
7df1a324 367 int to_have_continuable_watchpoint;
4aa7a7f5 368 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
369 int (*to_watchpoint_addr_within_range) (struct target_ops *,
370 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 371 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
372 void (*to_terminal_init) (void);
373 void (*to_terminal_inferior) (void);
374 void (*to_terminal_ours_for_output) (void);
375 void (*to_terminal_ours) (void);
a790ad35 376 void (*to_terminal_save_ours) (void);
507f3c78
KB
377 void (*to_terminal_info) (char *, int);
378 void (*to_kill) (void);
379 void (*to_load) (char *, int);
380 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 381 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 382 void (*to_post_startup_inferior) (ptid_t);
507f3c78 383 void (*to_acknowledge_created_inferior) (int);
fa113d1a 384 void (*to_insert_fork_catchpoint) (int);
507f3c78 385 int (*to_remove_fork_catchpoint) (int);
fa113d1a 386 void (*to_insert_vfork_catchpoint) (int);
507f3c78 387 int (*to_remove_vfork_catchpoint) (int);
ee057212 388 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 389 void (*to_insert_exec_catchpoint) (int);
507f3c78 390 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
391 int (*to_has_exited) (int, int, int *);
392 void (*to_mourn_inferior) (void);
393 int (*to_can_run) (void);
39f77062
KB
394 void (*to_notice_signals) (ptid_t ptid);
395 int (*to_thread_alive) (ptid_t ptid);
507f3c78 396 void (*to_find_new_threads) (void);
39f77062 397 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
398 char *(*to_extra_thread_info) (struct thread_info *);
399 void (*to_stop) (void);
d9fcf2fb 400 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 401 char *(*to_pid_to_exec_file) (int pid);
49d03eab 402 void (*to_log_command) (const char *);
c5aa993b 403 enum strata to_stratum;
c5aa993b
JM
404 int to_has_all_memory;
405 int to_has_memory;
406 int to_has_stack;
407 int to_has_registers;
408 int to_has_execution;
409 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
410 struct section_table
411 *to_sections;
412 struct section_table
413 *to_sections_end;
6426a772
JM
414 /* ASYNC target controls */
415 int (*to_can_async_p) (void);
416 int (*to_is_async_p) (void);
b84876c2
PA
417 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
418 int (*to_async_mask) (int);
2146d243
RM
419 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
420 unsigned long,
421 int, int, int,
422 void *),
be4d1333
MS
423 void *);
424 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
425
426 /* Return the thread-local address at OFFSET in the
427 thread-local storage for the thread PTID and the shared library
428 or executable file given by OBJFILE. If that block of
429 thread-local storage hasn't been allocated yet, this function
430 may return an error. */
431 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 432 CORE_ADDR load_module_addr,
3f47be5c
EZ
433 CORE_ADDR offset);
434
13547ab6
DJ
435 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
436 OBJECT. The OFFSET, for a seekable object, specifies the
437 starting point. The ANNEX can be used to provide additional
438 data-specific information to the target.
439
440 Return the number of bytes actually transfered, zero when no
441 further transfer is possible, and -1 when the transfer is not
442 supported. Return of a positive value smaller than LEN does
443 not indicate the end of the object, only the end of the
444 transfer; higher level code should continue transferring if
445 desired. This is handled in target.c.
446
447 The interface does not support a "retry" mechanism. Instead it
448 assumes that at least one byte will be transfered on each
449 successful call.
450
451 NOTE: cagney/2003-10-17: The current interface can lead to
452 fragmented transfers. Lower target levels should not implement
453 hacks, such as enlarging the transfer, in an attempt to
454 compensate for this. Instead, the target stack should be
455 extended so that it implements supply/collect methods and a
456 look-aside object cache. With that available, the lowest
457 target can safely and freely "push" data up the stack.
458
459 See target_read and target_write for more information. One,
460 and only one, of readbuf or writebuf must be non-NULL. */
461
4b8a223f 462 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 463 enum target_object object, const char *annex,
1b0ba102 464 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 465 ULONGEST offset, LONGEST len);
1e3ff5ad 466
fd79ecee
DJ
467 /* Returns the memory map for the target. A return value of NULL
468 means that no memory map is available. If a memory address
469 does not fall within any returned regions, it's assumed to be
470 RAM. The returned memory regions should not overlap.
471
472 The order of regions does not matter; target_memory_map will
473 sort regions by starting address. For that reason, this
474 function should not be called directly except via
475 target_memory_map.
476
477 This method should not cache data; if the memory map could
478 change unexpectedly, it should be invalidated, and higher
479 layers will re-fetch it. */
480 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
481
a76d924d
DJ
482 /* Erases the region of flash memory starting at ADDRESS, of
483 length LENGTH.
484
485 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
486 on flash block boundaries, as reported by 'to_memory_map'. */
487 void (*to_flash_erase) (struct target_ops *,
488 ULONGEST address, LONGEST length);
489
490 /* Finishes a flash memory write sequence. After this operation
491 all flash memory should be available for writing and the result
492 of reading from areas written by 'to_flash_write' should be
493 equal to what was written. */
494 void (*to_flash_done) (struct target_ops *);
495
424163ea
DJ
496 /* Describe the architecture-specific features of this target.
497 Returns the description found, or NULL if no description
498 was available. */
499 const struct target_desc *(*to_read_description) (struct target_ops *ops);
500
c47ffbe3
VP
501 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
502 Return 0 if *READPTR is already at the end of the buffer.
503 Return -1 if there is insufficient buffer for a whole entry.
504 Return 1 if an entry was read into *TYPEP and *VALP. */
505 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
506 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
507
08388c79
DE
508 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
509 sequence of bytes in PATTERN with length PATTERN_LEN.
510
511 The result is 1 if found, 0 if not found, and -1 if there was an error
512 requiring halting of the search (e.g. memory read error).
513 If the pattern is found the address is recorded in FOUND_ADDRP. */
514 int (*to_search_memory) (struct target_ops *ops,
515 CORE_ADDR start_addr, ULONGEST search_space_len,
516 const gdb_byte *pattern, ULONGEST pattern_len,
517 CORE_ADDR *found_addrp);
518
c5aa993b 519 int to_magic;
0d06e24b
JM
520 /* Need sub-structure for target machine related rather than comm related?
521 */
c5aa993b 522 };
c906108c
SS
523
524/* Magic number for checking ops size. If a struct doesn't end with this
525 number, somebody changed the declaration but didn't change all the
526 places that initialize one. */
527
528#define OPS_MAGIC 3840
529
530/* The ops structure for our "current" target process. This should
531 never be NULL. If there is no target, it points to the dummy_target. */
532
c5aa993b 533extern struct target_ops current_target;
c906108c 534
c906108c
SS
535/* Define easy words for doing these operations on our current target. */
536
537#define target_shortname (current_target.to_shortname)
538#define target_longname (current_target.to_longname)
539
f1c07ab0
AC
540/* Does whatever cleanup is required for a target that we are no
541 longer going to be calling. QUITTING indicates that GDB is exiting
542 and should not get hung on an error (otherwise it is important to
543 perform clean termination, even if it takes a while). This routine
544 is automatically always called when popping the target off the
545 target stack (to_beneath is undefined). Closing file descriptors
546 and freeing all memory allocated memory are typical things it
547 should do. */
548
549void target_close (struct target_ops *targ, int quitting);
c906108c
SS
550
551/* Attaches to a process on the target side. Arguments are as passed
552 to the `attach' command by the user. This routine can be called
553 when the target is not on the target-stack, if the target_can_run
2146d243 554 routine returns 1; in that case, it must push itself onto the stack.
c906108c 555 Upon exit, the target should be ready for normal operations, and
2146d243 556 should be ready to deliver the status of the process immediately
c906108c
SS
557 (without waiting) to an upcoming target_wait call. */
558
559#define target_attach(args, from_tty) \
0d06e24b 560 (*current_target.to_attach) (args, from_tty)
c906108c
SS
561
562/* The target_attach operation places a process under debugger control,
563 and stops the process.
564
565 This operation provides a target-specific hook that allows the
0d06e24b 566 necessary bookkeeping to be performed after an attach completes. */
c906108c 567#define target_post_attach(pid) \
0d06e24b 568 (*current_target.to_post_attach) (pid)
c906108c 569
c906108c
SS
570/* Takes a program previously attached to and detaches it.
571 The program may resume execution (some targets do, some don't) and will
572 no longer stop on signals, etc. We better not have left any breakpoints
573 in the program or it'll die when it hits one. ARGS is arguments
574 typed by the user (e.g. a signal to send the process). FROM_TTY
575 says whether to be verbose or not. */
576
a14ed312 577extern void target_detach (char *, int);
c906108c 578
6ad8ae5c
DJ
579/* Disconnect from the current target without resuming it (leaving it
580 waiting for a debugger). */
581
582extern void target_disconnect (char *, int);
583
39f77062 584/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
585 single-step or to run free; SIGGNAL is the signal to be given to
586 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
587 pass TARGET_SIGNAL_DEFAULT. */
588
39f77062 589#define target_resume(ptid, step, siggnal) \
4930751a
C
590 do { \
591 dcache_invalidate(target_dcache); \
39f77062 592 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 593 } while (0)
c906108c 594
b5a2688f
AC
595/* Wait for process pid to do something. PTID = -1 to wait for any
596 pid to do something. Return pid of child, or -1 in case of error;
c906108c 597 store status through argument pointer STATUS. Note that it is
b5a2688f 598 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
599 the debugging target from the stack; GDB isn't prepared to get back
600 to the prompt with a debugging target but without the frame cache,
601 stop_pc, etc., set up. */
602
39f77062
KB
603#define target_wait(ptid, status) \
604 (*current_target.to_wait) (ptid, status)
c906108c 605
17dee195 606/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 607
56be3814
UW
608#define target_fetch_registers(regcache, regno) \
609 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
610
611/* Store at least register REGNO, or all regs if REGNO == -1.
612 It can store as many registers as it wants to, so target_prepare_to_store
613 must have been previously called. Calls error() if there are problems. */
614
56be3814
UW
615#define target_store_registers(regcache, regs) \
616 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
617
618/* Get ready to modify the registers array. On machines which store
619 individual registers, this doesn't need to do anything. On machines
620 which store all the registers in one fell swoop, this makes sure
621 that REGISTERS contains all the registers from the program being
622 debugged. */
623
316f2060
UW
624#define target_prepare_to_store(regcache) \
625 (*current_target.to_prepare_to_store) (regcache)
c906108c 626
4930751a
C
627extern DCACHE *target_dcache;
628
a14ed312 629extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 630
fc1a4b47 631extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 632
fc1a4b47 633extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 634 int len);
c906108c 635
1b0ba102 636extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 637 struct mem_attrib *, struct target_ops *);
c906108c 638
fd79ecee
DJ
639/* Fetches the target's memory map. If one is found it is sorted
640 and returned, after some consistency checking. Otherwise, NULL
641 is returned. */
642VEC(mem_region_s) *target_memory_map (void);
643
a76d924d
DJ
644/* Erase the specified flash region. */
645void target_flash_erase (ULONGEST address, LONGEST length);
646
647/* Finish a sequence of flash operations. */
648void target_flash_done (void);
649
650/* Describes a request for a memory write operation. */
651struct memory_write_request
652 {
653 /* Begining address that must be written. */
654 ULONGEST begin;
655 /* Past-the-end address. */
656 ULONGEST end;
657 /* The data to write. */
658 gdb_byte *data;
659 /* A callback baton for progress reporting for this request. */
660 void *baton;
661 };
662typedef struct memory_write_request memory_write_request_s;
663DEF_VEC_O(memory_write_request_s);
664
665/* Enumeration specifying different flash preservation behaviour. */
666enum flash_preserve_mode
667 {
668 flash_preserve,
669 flash_discard
670 };
671
672/* Write several memory blocks at once. This version can be more
673 efficient than making several calls to target_write_memory, in
674 particular because it can optimize accesses to flash memory.
675
676 Moreover, this is currently the only memory access function in gdb
677 that supports writing to flash memory, and it should be used for
678 all cases where access to flash memory is desirable.
679
680 REQUESTS is the vector (see vec.h) of memory_write_request.
681 PRESERVE_FLASH_P indicates what to do with blocks which must be
682 erased, but not completely rewritten.
683 PROGRESS_CB is a function that will be periodically called to provide
684 feedback to user. It will be called with the baton corresponding
685 to the request currently being written. It may also be called
686 with a NULL baton, when preserved flash sectors are being rewritten.
687
688 The function returns 0 on success, and error otherwise. */
689int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
690 enum flash_preserve_mode preserve_flash_p,
691 void (*progress_cb) (ULONGEST, void *));
692
47932f85
DJ
693/* From infrun.c. */
694
695extern int inferior_has_forked (int pid, int *child_pid);
696
697extern int inferior_has_vforked (int pid, int *child_pid);
698
699extern int inferior_has_execd (int pid, char **execd_pathname);
700
c906108c
SS
701/* From exec.c */
702
a14ed312 703extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
704
705/* Print a line about the current target. */
706
707#define target_files_info() \
0d06e24b 708 (*current_target.to_files_info) (&current_target)
c906108c 709
8181d85f
DJ
710/* Insert a breakpoint at address BP_TGT->placed_address in the target
711 machine. Result is 0 for success, or an errno value. */
c906108c 712
8181d85f
DJ
713#define target_insert_breakpoint(bp_tgt) \
714 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 715
8181d85f
DJ
716/* Remove a breakpoint at address BP_TGT->placed_address in the target
717 machine. Result is 0 for success, or an errno value. */
c906108c 718
8181d85f
DJ
719#define target_remove_breakpoint(bp_tgt) \
720 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
721
722/* Initialize the terminal settings we record for the inferior,
723 before we actually run the inferior. */
724
725#define target_terminal_init() \
0d06e24b 726 (*current_target.to_terminal_init) ()
c906108c
SS
727
728/* Put the inferior's terminal settings into effect.
729 This is preparation for starting or resuming the inferior. */
730
731#define target_terminal_inferior() \
0d06e24b 732 (*current_target.to_terminal_inferior) ()
c906108c
SS
733
734/* Put some of our terminal settings into effect,
735 enough to get proper results from our output,
736 but do not change into or out of RAW mode
737 so that no input is discarded.
738
739 After doing this, either terminal_ours or terminal_inferior
740 should be called to get back to a normal state of affairs. */
741
742#define target_terminal_ours_for_output() \
0d06e24b 743 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
744
745/* Put our terminal settings into effect.
746 First record the inferior's terminal settings
747 so they can be restored properly later. */
748
749#define target_terminal_ours() \
0d06e24b 750 (*current_target.to_terminal_ours) ()
c906108c 751
a790ad35
SC
752/* Save our terminal settings.
753 This is called from TUI after entering or leaving the curses
754 mode. Since curses modifies our terminal this call is here
755 to take this change into account. */
756
757#define target_terminal_save_ours() \
758 (*current_target.to_terminal_save_ours) ()
759
c906108c
SS
760/* Print useful information about our terminal status, if such a thing
761 exists. */
762
763#define target_terminal_info(arg, from_tty) \
0d06e24b 764 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
765
766/* Kill the inferior process. Make it go away. */
767
768#define target_kill() \
0d06e24b 769 (*current_target.to_kill) ()
c906108c 770
0d06e24b
JM
771/* Load an executable file into the target process. This is expected
772 to not only bring new code into the target process, but also to
1986bccd
AS
773 update GDB's symbol tables to match.
774
775 ARG contains command-line arguments, to be broken down with
776 buildargv (). The first non-switch argument is the filename to
777 load, FILE; the second is a number (as parsed by strtoul (..., ...,
778 0)), which is an offset to apply to the load addresses of FILE's
779 sections. The target may define switches, or other non-switch
780 arguments, as it pleases. */
c906108c 781
11cf8741 782extern void target_load (char *arg, int from_tty);
c906108c
SS
783
784/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
785 name. ADDRP is a CORE_ADDR * pointing to where the value of the
786 symbol should be returned. The result is 0 if successful, nonzero
787 if the symbol does not exist in the target environment. This
788 function should not call error() if communication with the target
789 is interrupted, since it is called from symbol reading, but should
790 return nonzero, possibly doing a complain(). */
c906108c 791
0d06e24b
JM
792#define target_lookup_symbol(name, addrp) \
793 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 794
39f77062 795/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
796 EXEC_FILE is the file to run.
797 ALLARGS is a string containing the arguments to the program.
798 ENV is the environment vector to pass. Errors reported with error().
799 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 800
c27cda74
AC
801#define target_create_inferior(exec_file, args, env, FROM_TTY) \
802 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
803
804
805/* Some targets (such as ttrace-based HPUX) don't allow us to request
806 notification of inferior events such as fork and vork immediately
807 after the inferior is created. (This because of how gdb gets an
808 inferior created via invoking a shell to do it. In such a scenario,
809 if the shell init file has commands in it, the shell will fork and
810 exec for each of those commands, and we will see each such fork
811 event. Very bad.)
c5aa993b 812
0d06e24b
JM
813 Such targets will supply an appropriate definition for this function. */
814
39f77062
KB
815#define target_post_startup_inferior(ptid) \
816 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
817
818/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
819 some synchronization between gdb and the new inferior process, PID. */
820
c906108c 821#define target_acknowledge_created_inferior(pid) \
0d06e24b 822 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 823
0d06e24b
JM
824/* On some targets, we can catch an inferior fork or vfork event when
825 it occurs. These functions insert/remove an already-created
826 catchpoint for such events. */
c906108c 827
c906108c 828#define target_insert_fork_catchpoint(pid) \
0d06e24b 829 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
830
831#define target_remove_fork_catchpoint(pid) \
0d06e24b 832 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
833
834#define target_insert_vfork_catchpoint(pid) \
0d06e24b 835 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
836
837#define target_remove_vfork_catchpoint(pid) \
0d06e24b 838 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 839
6604731b
DJ
840/* If the inferior forks or vforks, this function will be called at
841 the next resume in order to perform any bookkeeping and fiddling
842 necessary to continue debugging either the parent or child, as
843 requested, and releasing the other. Information about the fork
844 or vfork event is available via get_last_target_status ().
845 This function returns 1 if the inferior should not be resumed
846 (i.e. there is another event pending). */
0d06e24b 847
ee057212 848int target_follow_fork (int follow_child);
c906108c
SS
849
850/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
851 occurs. These functions insert/remove an already-created
852 catchpoint for such events. */
853
c906108c 854#define target_insert_exec_catchpoint(pid) \
0d06e24b 855 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 856
c906108c 857#define target_remove_exec_catchpoint(pid) \
0d06e24b 858 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 859
c906108c 860/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
861 exit code of PID, if any. */
862
c906108c 863#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 864 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
865
866/* The debugger has completed a blocking wait() call. There is now
2146d243 867 some process event that must be processed. This function should
c906108c 868 be defined by those targets that require the debugger to perform
0d06e24b 869 cleanup or internal state changes in response to the process event. */
c906108c
SS
870
871/* The inferior process has died. Do what is right. */
872
873#define target_mourn_inferior() \
0d06e24b 874 (*current_target.to_mourn_inferior) ()
c906108c
SS
875
876/* Does target have enough data to do a run or attach command? */
877
878#define target_can_run(t) \
0d06e24b 879 ((t)->to_can_run) ()
c906108c
SS
880
881/* post process changes to signal handling in the inferior. */
882
39f77062
KB
883#define target_notice_signals(ptid) \
884 (*current_target.to_notice_signals) (ptid)
c906108c
SS
885
886/* Check to see if a thread is still alive. */
887
39f77062
KB
888#define target_thread_alive(ptid) \
889 (*current_target.to_thread_alive) (ptid)
c906108c 890
b83266a0
SS
891/* Query for new threads and add them to the thread list. */
892
893#define target_find_new_threads() \
4becf47c 894 (*current_target.to_find_new_threads) ()
b83266a0 895
0d06e24b
JM
896/* Make target stop in a continuable fashion. (For instance, under
897 Unix, this should act like SIGSTOP). This function is normally
898 used by GUIs to implement a stop button. */
c906108c
SS
899
900#define target_stop current_target.to_stop
901
96baa820
JM
902/* Send the specified COMMAND to the target's monitor
903 (shell,interpreter) for execution. The result of the query is
0d06e24b 904 placed in OUTBUF. */
96baa820
JM
905
906#define target_rcmd(command, outbuf) \
907 (*current_target.to_rcmd) (command, outbuf)
908
909
c906108c
SS
910/* Does the target include all of memory, or only part of it? This
911 determines whether we look up the target chain for other parts of
912 memory if this target can't satisfy a request. */
913
914#define target_has_all_memory \
0d06e24b 915 (current_target.to_has_all_memory)
c906108c
SS
916
917/* Does the target include memory? (Dummy targets don't.) */
918
919#define target_has_memory \
0d06e24b 920 (current_target.to_has_memory)
c906108c
SS
921
922/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
923 we start a process.) */
c5aa993b 924
c906108c 925#define target_has_stack \
0d06e24b 926 (current_target.to_has_stack)
c906108c
SS
927
928/* Does the target have registers? (Exec files don't.) */
929
930#define target_has_registers \
0d06e24b 931 (current_target.to_has_registers)
c906108c
SS
932
933/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
934 hoops), or pop its stack a few times? This means that the current
935 target is currently executing; for some targets, that's the same as
936 whether or not the target is capable of execution, but there are
937 also targets which can be current while not executing. In that
938 case this will become true after target_create_inferior or
939 target_attach. */
c906108c
SS
940
941#define target_has_execution \
0d06e24b 942 (current_target.to_has_execution)
c906108c
SS
943
944/* Can the target support the debugger control of thread execution?
d6350901 945 Can it lock the thread scheduler? */
c906108c
SS
946
947#define target_can_lock_scheduler \
0d06e24b 948 (current_target.to_has_thread_control & tc_schedlock)
c906108c 949
6426a772
JM
950/* Can the target support asynchronous execution? */
951#define target_can_async_p() (current_target.to_can_async_p ())
952
953/* Is the target in asynchronous execution mode? */
b84876c2 954#define target_is_async_p() (current_target.to_is_async_p ())
6426a772
JM
955
956/* Put the target in async mode with the specified callback function. */
0d06e24b 957#define target_async(CALLBACK,CONTEXT) \
b84876c2 958 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 959
04714b91
AC
960/* This is to be used ONLY within call_function_by_hand(). It provides
961 a workaround, to have inferior function calls done in sychronous
962 mode, even though the target is asynchronous. After
ed9a39eb
JM
963 target_async_mask(0) is called, calls to target_can_async_p() will
964 return FALSE , so that target_resume() will not try to start the
965 target asynchronously. After the inferior stops, we IMMEDIATELY
966 restore the previous nature of the target, by calling
967 target_async_mask(1). After that, target_can_async_p() will return
04714b91 968 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
969
970 FIXME ezannoni 1999-12-13: we won't need this once we move
971 the turning async on and off to the single execution commands,
0d06e24b 972 from where it is done currently, in remote_resume(). */
ed9a39eb 973
b84876c2
PA
974#define target_async_mask(MASK) \
975 (current_target.to_async_mask (MASK))
ed9a39eb 976
c906108c
SS
977/* Converts a process id to a string. Usually, the string just contains
978 `process xyz', but on some systems it may contain
979 `process xyz thread abc'. */
980
ed9a39eb
JM
981#undef target_pid_to_str
982#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
983
984#ifndef target_tid_to_str
985#define target_tid_to_str(PID) \
0d06e24b 986 target_pid_to_str (PID)
39f77062 987extern char *normal_pid_to_str (ptid_t ptid);
c906108c 988#endif
c5aa993b 989
0d06e24b
JM
990/* Return a short string describing extra information about PID,
991 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
992 is okay. */
993
994#define target_extra_thread_info(TP) \
995 (current_target.to_extra_thread_info (TP))
ed9a39eb 996
c906108c
SS
997/* Attempts to find the pathname of the executable file
998 that was run to create a specified process.
999
1000 The process PID must be stopped when this operation is used.
c5aa993b 1001
c906108c
SS
1002 If the executable file cannot be determined, NULL is returned.
1003
1004 Else, a pointer to a character string containing the pathname
1005 is returned. This string should be copied into a buffer by
1006 the client if the string will not be immediately used, or if
0d06e24b 1007 it must persist. */
c906108c
SS
1008
1009#define target_pid_to_exec_file(pid) \
0d06e24b 1010 (current_target.to_pid_to_exec_file) (pid)
c906108c 1011
be4d1333
MS
1012/*
1013 * Iterator function for target memory regions.
1014 * Calls a callback function once for each memory region 'mapped'
1015 * in the child process. Defined as a simple macro rather than
2146d243 1016 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1017 */
1018
1019#define target_find_memory_regions(FUNC, DATA) \
1020 (current_target.to_find_memory_regions) (FUNC, DATA)
1021
1022/*
1023 * Compose corefile .note section.
1024 */
1025
1026#define target_make_corefile_notes(BFD, SIZE_P) \
1027 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1028
3f47be5c
EZ
1029/* Thread-local values. */
1030#define target_get_thread_local_address \
1031 (current_target.to_get_thread_local_address)
1032#define target_get_thread_local_address_p() \
1033 (target_get_thread_local_address != NULL)
1034
c906108c
SS
1035
1036/* Hardware watchpoint interfaces. */
1037
1038/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1039 write). */
1040
1041#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1042#define STOPPED_BY_WATCHPOINT(w) \
1043 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1044#endif
7df1a324 1045
74174d2e
UW
1046/* Non-zero if we have steppable watchpoints */
1047
1048#ifndef HAVE_STEPPABLE_WATCHPOINT
1049#define HAVE_STEPPABLE_WATCHPOINT \
1050 (current_target.to_have_steppable_watchpoint)
1051#endif
1052
7df1a324
KW
1053/* Non-zero if we have continuable watchpoints */
1054
1055#ifndef HAVE_CONTINUABLE_WATCHPOINT
1056#define HAVE_CONTINUABLE_WATCHPOINT \
1057 (current_target.to_have_continuable_watchpoint)
1058#endif
c906108c 1059
ccaa32c7 1060/* Provide defaults for hardware watchpoint functions. */
c906108c 1061
2146d243 1062/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1063 elsewhere use the definitions in the target vector. */
c906108c
SS
1064
1065/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1066 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1067 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1068 (including this one?). OTHERTYPE is who knows what... */
1069
ccaa32c7
GS
1070#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1071#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1072 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1073#endif
c906108c 1074
e0d24f8d
WZ
1075#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1076#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1077 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1078#endif
1079
c906108c
SS
1080
1081/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1082 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1083 success, non-zero for failure. */
1084
ccaa32c7
GS
1085#ifndef target_insert_watchpoint
1086#define target_insert_watchpoint(addr, len, type) \
1087 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1088
ccaa32c7
GS
1089#define target_remove_watchpoint(addr, len, type) \
1090 (*current_target.to_remove_watchpoint) (addr, len, type)
1091#endif
c906108c
SS
1092
1093#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1094#define target_insert_hw_breakpoint(bp_tgt) \
1095 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1096
8181d85f
DJ
1097#define target_remove_hw_breakpoint(bp_tgt) \
1098 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1099#endif
1100
4aa7a7f5
JJ
1101extern int target_stopped_data_address_p (struct target_ops *);
1102
c906108c 1103#ifndef target_stopped_data_address
4aa7a7f5
JJ
1104#define target_stopped_data_address(target, x) \
1105 (*target.to_stopped_data_address) (target, x)
1106#else
1107/* Horrible hack to get around existing macros :-(. */
1108#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1109#endif
1110
5009afc5
AS
1111#define target_watchpoint_addr_within_range(target, addr, start, length) \
1112 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1113
424163ea
DJ
1114extern const struct target_desc *target_read_description (struct target_ops *);
1115
08388c79
DE
1116/* Utility implementation of searching memory. */
1117extern int simple_search_memory (struct target_ops* ops,
1118 CORE_ADDR start_addr,
1119 ULONGEST search_space_len,
1120 const gdb_byte *pattern,
1121 ULONGEST pattern_len,
1122 CORE_ADDR *found_addrp);
1123
1124/* Main entry point for searching memory. */
1125extern int target_search_memory (CORE_ADDR start_addr,
1126 ULONGEST search_space_len,
1127 const gdb_byte *pattern,
1128 ULONGEST pattern_len,
1129 CORE_ADDR *found_addrp);
1130
49d03eab
MR
1131/* Command logging facility. */
1132
1133#define target_log_command(p) \
1134 do \
1135 if (current_target.to_log_command) \
1136 (*current_target.to_log_command) (p); \
1137 while (0)
1138
c906108c
SS
1139/* Routines for maintenance of the target structures...
1140
1141 add_target: Add a target to the list of all possible targets.
1142
1143 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1144 targets, within its particular stratum of the stack. Result
1145 is 0 if now atop the stack, nonzero if not on top (maybe
1146 should warn user).
c906108c
SS
1147
1148 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1149 no matter where it is on the list. Returns 0 if no
1150 change, 1 if removed from stack.
c906108c 1151
c5aa993b 1152 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1153
a14ed312 1154extern void add_target (struct target_ops *);
c906108c 1155
a14ed312 1156extern int push_target (struct target_ops *);
c906108c 1157
a14ed312 1158extern int unpush_target (struct target_ops *);
c906108c 1159
fd79ecee
DJ
1160extern void target_pre_inferior (int);
1161
a14ed312 1162extern void target_preopen (int);
c906108c 1163
a14ed312 1164extern void pop_target (void);
c906108c 1165
9e35dae4
DJ
1166extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1167 CORE_ADDR offset);
1168
52bb452f
DJ
1169/* Mark a pushed target as running or exited, for targets which do not
1170 automatically pop when not active. */
1171
1172void target_mark_running (struct target_ops *);
1173
1174void target_mark_exited (struct target_ops *);
1175
c906108c
SS
1176/* Struct section_table maps address ranges to file sections. It is
1177 mostly used with BFD files, but can be used without (e.g. for handling
1178 raw disks, or files not in formats handled by BFD). */
1179
c5aa993b
JM
1180struct section_table
1181 {
1182 CORE_ADDR addr; /* Lowest address in section */
1183 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1184
7be0c536 1185 struct bfd_section *the_bfd_section;
c906108c 1186
c5aa993b
JM
1187 bfd *bfd; /* BFD file pointer */
1188 };
c906108c 1189
8db32d44
AC
1190/* Return the "section" containing the specified address. */
1191struct section_table *target_section_by_addr (struct target_ops *target,
1192 CORE_ADDR addr);
1193
1194
c906108c
SS
1195/* From mem-break.c */
1196
8181d85f 1197extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1198
8181d85f 1199extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1200
ae4b2284 1201extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1202
ae4b2284 1203extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1204
c906108c
SS
1205
1206/* From target.c */
1207
a14ed312 1208extern void initialize_targets (void);
c906108c 1209
a14ed312 1210extern void noprocess (void);
c906108c 1211
8edfe269
DJ
1212extern void target_require_runnable (void);
1213
a14ed312 1214extern void find_default_attach (char *, int);
c906108c 1215
c27cda74 1216extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1217
a14ed312 1218extern struct target_ops *find_run_target (void);
7a292a7a 1219
a14ed312 1220extern struct target_ops *find_core_target (void);
6426a772 1221
a14ed312 1222extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1223
570b8f7c
AC
1224extern int target_resize_to_sections (struct target_ops *target,
1225 int num_added);
07cd4b97
JB
1226
1227extern void remove_target_sections (bfd *abfd);
1228
c906108c
SS
1229\f
1230/* Stuff that should be shared among the various remote targets. */
1231
1232/* Debugging level. 0 is off, and non-zero values mean to print some debug
1233 information (higher values, more information). */
1234extern int remote_debug;
1235
1236/* Speed in bits per second, or -1 which means don't mess with the speed. */
1237extern int baud_rate;
1238/* Timeout limit for response from target. */
1239extern int remote_timeout;
1240
c906108c
SS
1241\f
1242/* Functions for helping to write a native target. */
1243
1244/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1245extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1246
c2d11a7d 1247/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1248 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1249/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1250 to the shorter target_signal_p() because it is far less ambigious.
1251 In this context ``target_signal'' refers to GDB's internal
1252 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1253 refers to the target operating system's signal. Confused? */
1254
c2d11a7d
JM
1255extern int target_signal_to_host_p (enum target_signal signo);
1256
1257/* Convert between host signal numbers and enum target_signal's.
1258 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1259 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1260/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1261 refering to the target operating system's signal numbering.
1262 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1263 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1264 internal representation of a target operating system's signal. */
1265
a14ed312
KB
1266extern enum target_signal target_signal_from_host (int);
1267extern int target_signal_to_host (enum target_signal);
c906108c 1268
1cded358
AR
1269extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1270 int);
1271extern int default_target_signal_to_host (struct gdbarch *,
1272 enum target_signal);
1273
c906108c 1274/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1275extern enum target_signal target_signal_from_command (int);
c906108c
SS
1276
1277/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1278extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1279
1280/* Set the show memory breakpoints mode to show, and installs a cleanup
1281 to restore it back to the current value. */
1282extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1283
c906108c
SS
1284\f
1285/* Imported from machine dependent code */
1286
c906108c 1287/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1288void target_ignore (void);
c906108c 1289
1df84f13 1290extern struct target_ops deprecated_child_ops;
5ac10fd1 1291
c5aa993b 1292#endif /* !defined (TARGET_H) */
This page took 0.825477 seconds and 4 git commands to generate.