* gdbarch.sh (process_record): This interface point to the
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
2aecd87f 58#include "gdb_signals.h"
c906108c 59
c5aa993b
JM
60enum strata
61 {
62 dummy_stratum, /* The lowest of the low */
63 file_stratum, /* Executable files, etc */
4d8ac244 64 core_stratum, /* Core dump files */
d4f3574e
SS
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
c5aa993b 67 };
c906108c 68
c5aa993b
JM
69enum thread_control_capabilities
70 {
0d06e24b
JM
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 73 };
c906108c
SS
74
75/* Stuff for target_wait. */
76
77/* Generally, what has the program done? */
c5aa993b
JM
78enum target_waitkind
79 {
80 /* The program has exited. The exit status is in value.integer. */
81 TARGET_WAITKIND_EXITED,
c906108c 82
0d06e24b
JM
83 /* The program has stopped with a signal. Which signal is in
84 value.sig. */
c5aa993b 85 TARGET_WAITKIND_STOPPED,
c906108c 86
c5aa993b
JM
87 /* The program has terminated with a signal. Which signal is in
88 value.sig. */
89 TARGET_WAITKIND_SIGNALLED,
c906108c 90
c5aa993b
JM
91 /* The program is letting us know that it dynamically loaded something
92 (e.g. it called load(2) on AIX). */
93 TARGET_WAITKIND_LOADED,
c906108c 94
3a3e9ee3 95 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
96 value.related_pid. I.e., if the child forks, value.related_pid
97 is the parent's ID. */
98
c5aa993b 99 TARGET_WAITKIND_FORKED,
c906108c 100
3a3e9ee3 101 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
102 value.related_pid. */
103
c5aa993b 104 TARGET_WAITKIND_VFORKED,
c906108c 105
0d06e24b
JM
106 /* The program has exec'ed a new executable file. The new file's
107 pathname is pointed to by value.execd_pathname. */
108
c5aa993b 109 TARGET_WAITKIND_EXECD,
c906108c 110
0d06e24b
JM
111 /* The program has entered or returned from a system call. On
112 HP-UX, this is used in the hardware watchpoint implementation.
113 The syscall's unique integer ID number is in value.syscall_id */
114
c5aa993b
JM
115 TARGET_WAITKIND_SYSCALL_ENTRY,
116 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 117
c5aa993b
JM
118 /* Nothing happened, but we stopped anyway. This perhaps should be handled
119 within target_wait, but I'm not sure target_wait should be resuming the
120 inferior. */
c4093a6a
JM
121 TARGET_WAITKIND_SPURIOUS,
122
8e7d2c16
DJ
123 /* An event has occured, but we should wait again.
124 Remote_async_wait() returns this when there is an event
c4093a6a
JM
125 on the inferior, but the rest of the world is not interested in
126 it. The inferior has not stopped, but has just sent some output
127 to the console, for instance. In this case, we want to go back
128 to the event loop and wait there for another event from the
129 inferior, rather than being stuck in the remote_async_wait()
130 function. This way the event loop is responsive to other events,
0d06e24b 131 like for instance the user typing. */
b2175913
MS
132 TARGET_WAITKIND_IGNORE,
133
134 /* The target has run out of history information,
135 and cannot run backward any further. */
136 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
137 };
138
c5aa993b
JM
139struct target_waitstatus
140 {
141 enum target_waitkind kind;
142
143 /* Forked child pid, execd pathname, exit status or signal number. */
144 union
145 {
146 int integer;
147 enum target_signal sig;
3a3e9ee3 148 ptid_t related_pid;
c5aa993b
JM
149 char *execd_pathname;
150 int syscall_id;
151 }
152 value;
153 };
c906108c 154
f00150c9
DE
155/* Return a pretty printed form of target_waitstatus.
156 Space for the result is malloc'd, caller must free. */
157extern char *target_waitstatus_to_string (const struct target_waitstatus *);
158
2acceee2 159/* Possible types of events that the inferior handler will have to
0d06e24b 160 deal with. */
2acceee2
JM
161enum inferior_event_type
162 {
0d06e24b 163 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
164 INF_QUIT_REQ,
165 /* Process a normal inferior event which will result in target_wait
0d06e24b 166 being called. */
2146d243 167 INF_REG_EVENT,
0d06e24b 168 /* Deal with an error on the inferior. */
2acceee2 169 INF_ERROR,
0d06e24b 170 /* We are called because a timer went off. */
2acceee2 171 INF_TIMER,
0d06e24b 172 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
173 INF_EXEC_COMPLETE,
174 /* We are called to do some stuff after the inferior stops, but we
175 are expected to reenter the proceed() and
176 handle_inferior_event() functions. This is used only in case of
0d06e24b 177 'step n' like commands. */
c2d11a7d 178 INF_EXEC_CONTINUE
2acceee2 179 };
c906108c 180\f
13547ab6
DJ
181/* Target objects which can be transfered using target_read,
182 target_write, et cetera. */
1e3ff5ad
AC
183
184enum target_object
185{
1e3ff5ad
AC
186 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
187 TARGET_OBJECT_AVR,
23d964e7
UW
188 /* SPU target specific transfer. See "spu-tdep.c". */
189 TARGET_OBJECT_SPU,
1e3ff5ad 190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 191 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
baf92889 200 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
201 TARGET_OBJECT_WCOOKIE,
202 /* Target memory map in XML format. */
203 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
204 /* Flash memory. This object can be used to write contents to
205 a previously erased flash memory. Using it without erasing
206 flash can have unexpected results. Addresses are physical
207 address on target, and not relative to flash start. */
23181151
DJ
208 TARGET_OBJECT_FLASH,
209 /* Available target-specific features, e.g. registers and coprocessors.
210 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
211 TARGET_OBJECT_AVAILABLE_FEATURES,
212 /* Currently loaded libraries, in XML format. */
07e059b5
VP
213 TARGET_OBJECT_LIBRARIES,
214 /* Get OS specific data. The ANNEX specifies the type (running
215 processes, etc.). */
4aa995e1
PA
216 TARGET_OBJECT_OSDATA,
217 /* Extra signal info. Usually the contents of `siginfo_t' on unix
218 platforms. */
219 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 220 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
221};
222
13547ab6
DJ
223/* Request that OPS transfer up to LEN 8-bit bytes of the target's
224 OBJECT. The OFFSET, for a seekable object, specifies the
225 starting point. The ANNEX can be used to provide additional
226 data-specific information to the target.
1e3ff5ad 227
13547ab6
DJ
228 Return the number of bytes actually transfered, or -1 if the
229 transfer is not supported or otherwise fails. Return of a positive
230 value less than LEN indicates that no further transfer is possible.
231 Unlike the raw to_xfer_partial interface, callers of these
232 functions do not need to retry partial transfers. */
1e3ff5ad 233
1e3ff5ad
AC
234extern LONGEST target_read (struct target_ops *ops,
235 enum target_object object,
1b0ba102 236 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
237 ULONGEST offset, LONGEST len);
238
d5086790
VP
239extern LONGEST target_read_until_error (struct target_ops *ops,
240 enum target_object object,
241 const char *annex, gdb_byte *buf,
242 ULONGEST offset, LONGEST len);
243
1e3ff5ad
AC
244extern LONGEST target_write (struct target_ops *ops,
245 enum target_object object,
1b0ba102 246 const char *annex, const gdb_byte *buf,
1e3ff5ad 247 ULONGEST offset, LONGEST len);
b6591e8b 248
a76d924d
DJ
249/* Similar to target_write, except that it also calls PROGRESS with
250 the number of bytes written and the opaque BATON after every
251 successful partial write (and before the first write). This is
252 useful for progress reporting and user interaction while writing
253 data. To abort the transfer, the progress callback can throw an
254 exception. */
255
cf7a04e8
DJ
256LONGEST target_write_with_progress (struct target_ops *ops,
257 enum target_object object,
258 const char *annex, const gdb_byte *buf,
259 ULONGEST offset, LONGEST len,
260 void (*progress) (ULONGEST, void *),
261 void *baton);
262
13547ab6
DJ
263/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
264 be read using OPS. The return value will be -1 if the transfer
265 fails or is not supported; 0 if the object is empty; or the length
266 of the object otherwise. If a positive value is returned, a
267 sufficiently large buffer will be allocated using xmalloc and
268 returned in *BUF_P containing the contents of the object.
269
270 This method should be used for objects sufficiently small to store
271 in a single xmalloc'd buffer, when no fixed bound on the object's
272 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
273 through this function. */
274
275extern LONGEST target_read_alloc (struct target_ops *ops,
276 enum target_object object,
277 const char *annex, gdb_byte **buf_p);
278
159f81f3
DJ
279/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
280 returned as a string, allocated using xmalloc. If an error occurs
281 or the transfer is unsupported, NULL is returned. Empty objects
282 are returned as allocated but empty strings. A warning is issued
283 if the result contains any embedded NUL bytes. */
284
285extern char *target_read_stralloc (struct target_ops *ops,
286 enum target_object object,
287 const char *annex);
288
b6591e8b
AC
289/* Wrappers to target read/write that perform memory transfers. They
290 throw an error if the memory transfer fails.
291
292 NOTE: cagney/2003-10-23: The naming schema is lifted from
293 "frame.h". The parameter order is lifted from get_frame_memory,
294 which in turn lifted it from read_memory. */
295
296extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 297 gdb_byte *buf, LONGEST len);
b6591e8b
AC
298extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
299 CORE_ADDR addr, int len);
1e3ff5ad 300\f
0d06e24b
JM
301struct thread_info; /* fwd decl for parameter list below: */
302
c906108c 303struct target_ops
c5aa993b 304 {
258b763a 305 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
306 char *to_shortname; /* Name this target type */
307 char *to_longname; /* Name for printing */
308 char *to_doc; /* Documentation. Does not include trailing
c906108c 309 newline, and starts with a one-line descrip-
0d06e24b 310 tion (probably similar to to_longname). */
bba2d28d
AC
311 /* Per-target scratch pad. */
312 void *to_data;
f1c07ab0
AC
313 /* The open routine takes the rest of the parameters from the
314 command, and (if successful) pushes a new target onto the
315 stack. Targets should supply this routine, if only to provide
316 an error message. */
507f3c78 317 void (*to_open) (char *, int);
f1c07ab0
AC
318 /* Old targets with a static target vector provide "to_close".
319 New re-entrant targets provide "to_xclose" and that is expected
320 to xfree everything (including the "struct target_ops"). */
321 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 322 void (*to_close) (int);
136d6dae 323 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 324 void (*to_post_attach) (int);
136d6dae 325 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 326 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 327 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9
PA
328 ptid_t (*to_wait) (struct target_ops *,
329 ptid_t, struct target_waitstatus *);
28439f5e
PA
330 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
331 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 332 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
333
334 /* Transfer LEN bytes of memory between GDB address MYADDR and
335 target address MEMADDR. If WRITE, transfer them to the target, else
336 transfer them from the target. TARGET is the target from which we
337 get this function.
338
339 Return value, N, is one of the following:
340
341 0 means that we can't handle this. If errno has been set, it is the
342 error which prevented us from doing it (FIXME: What about bfd_error?).
343
344 positive (call it N) means that we have transferred N bytes
345 starting at MEMADDR. We might be able to handle more bytes
346 beyond this length, but no promises.
347
348 negative (call its absolute value N) means that we cannot
349 transfer right at MEMADDR, but we could transfer at least
c8e73a31 350 something at MEMADDR + N.
c5aa993b 351
c8e73a31
AC
352 NOTE: cagney/2004-10-01: This has been entirely superseeded by
353 to_xfer_partial and inferior inheritance. */
354
1b0ba102 355 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
356 int len, int write,
357 struct mem_attrib *attrib,
358 struct target_ops *target);
c906108c 359
507f3c78 360 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
361 int (*to_insert_breakpoint) (struct bp_target_info *);
362 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 363 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
364 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
365 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
366 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
367 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
368 int (*to_stopped_by_watchpoint) (void);
74174d2e 369 int to_have_steppable_watchpoint;
7df1a324 370 int to_have_continuable_watchpoint;
4aa7a7f5 371 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
372 int (*to_watchpoint_addr_within_range) (struct target_ops *,
373 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 374 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
375 void (*to_terminal_init) (void);
376 void (*to_terminal_inferior) (void);
377 void (*to_terminal_ours_for_output) (void);
378 void (*to_terminal_ours) (void);
a790ad35 379 void (*to_terminal_save_ours) (void);
507f3c78 380 void (*to_terminal_info) (char *, int);
7d85a9c0 381 void (*to_kill) (struct target_ops *);
507f3c78
KB
382 void (*to_load) (char *, int);
383 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
384 void (*to_create_inferior) (struct target_ops *,
385 char *, char *, char **, int);
39f77062 386 void (*to_post_startup_inferior) (ptid_t);
507f3c78 387 void (*to_acknowledge_created_inferior) (int);
fa113d1a 388 void (*to_insert_fork_catchpoint) (int);
507f3c78 389 int (*to_remove_fork_catchpoint) (int);
fa113d1a 390 void (*to_insert_vfork_catchpoint) (int);
507f3c78 391 int (*to_remove_vfork_catchpoint) (int);
ee057212 392 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 393 void (*to_insert_exec_catchpoint) (int);
507f3c78 394 int (*to_remove_exec_catchpoint) (int);
507f3c78 395 int (*to_has_exited) (int, int, int *);
136d6dae 396 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 397 int (*to_can_run) (void);
39f77062 398 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
399 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
400 void (*to_find_new_threads) (struct target_ops *);
117de6a9 401 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 402 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 403 void (*to_stop) (ptid_t);
d9fcf2fb 404 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 405 char *(*to_pid_to_exec_file) (int pid);
49d03eab 406 void (*to_log_command) (const char *);
c5aa993b 407 enum strata to_stratum;
c5aa993b
JM
408 int to_has_all_memory;
409 int to_has_memory;
410 int to_has_stack;
411 int to_has_registers;
412 int to_has_execution;
413 int to_has_thread_control; /* control thread execution */
dc177b7a 414 int to_attach_no_wait;
c5aa993b
JM
415 struct section_table
416 *to_sections;
417 struct section_table
418 *to_sections_end;
6426a772
JM
419 /* ASYNC target controls */
420 int (*to_can_async_p) (void);
421 int (*to_is_async_p) (void);
b84876c2
PA
422 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
423 int (*to_async_mask) (int);
9908b566 424 int (*to_supports_non_stop) (void);
2146d243
RM
425 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
426 unsigned long,
427 int, int, int,
428 void *),
be4d1333
MS
429 void *);
430 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
431
432 /* Return the thread-local address at OFFSET in the
433 thread-local storage for the thread PTID and the shared library
434 or executable file given by OBJFILE. If that block of
435 thread-local storage hasn't been allocated yet, this function
436 may return an error. */
117de6a9
PA
437 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
438 ptid_t ptid,
b2756930 439 CORE_ADDR load_module_addr,
3f47be5c
EZ
440 CORE_ADDR offset);
441
13547ab6
DJ
442 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
443 OBJECT. The OFFSET, for a seekable object, specifies the
444 starting point. The ANNEX can be used to provide additional
445 data-specific information to the target.
446
447 Return the number of bytes actually transfered, zero when no
448 further transfer is possible, and -1 when the transfer is not
449 supported. Return of a positive value smaller than LEN does
450 not indicate the end of the object, only the end of the
451 transfer; higher level code should continue transferring if
452 desired. This is handled in target.c.
453
454 The interface does not support a "retry" mechanism. Instead it
455 assumes that at least one byte will be transfered on each
456 successful call.
457
458 NOTE: cagney/2003-10-17: The current interface can lead to
459 fragmented transfers. Lower target levels should not implement
460 hacks, such as enlarging the transfer, in an attempt to
461 compensate for this. Instead, the target stack should be
462 extended so that it implements supply/collect methods and a
463 look-aside object cache. With that available, the lowest
464 target can safely and freely "push" data up the stack.
465
466 See target_read and target_write for more information. One,
467 and only one, of readbuf or writebuf must be non-NULL. */
468
4b8a223f 469 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 470 enum target_object object, const char *annex,
1b0ba102 471 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 472 ULONGEST offset, LONGEST len);
1e3ff5ad 473
fd79ecee
DJ
474 /* Returns the memory map for the target. A return value of NULL
475 means that no memory map is available. If a memory address
476 does not fall within any returned regions, it's assumed to be
477 RAM. The returned memory regions should not overlap.
478
479 The order of regions does not matter; target_memory_map will
480 sort regions by starting address. For that reason, this
481 function should not be called directly except via
482 target_memory_map.
483
484 This method should not cache data; if the memory map could
485 change unexpectedly, it should be invalidated, and higher
486 layers will re-fetch it. */
487 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
488
a76d924d
DJ
489 /* Erases the region of flash memory starting at ADDRESS, of
490 length LENGTH.
491
492 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
493 on flash block boundaries, as reported by 'to_memory_map'. */
494 void (*to_flash_erase) (struct target_ops *,
495 ULONGEST address, LONGEST length);
496
497 /* Finishes a flash memory write sequence. After this operation
498 all flash memory should be available for writing and the result
499 of reading from areas written by 'to_flash_write' should be
500 equal to what was written. */
501 void (*to_flash_done) (struct target_ops *);
502
424163ea
DJ
503 /* Describe the architecture-specific features of this target.
504 Returns the description found, or NULL if no description
505 was available. */
506 const struct target_desc *(*to_read_description) (struct target_ops *ops);
507
0ef643c8
JB
508 /* Build the PTID of the thread on which a given task is running,
509 based on LWP and THREAD. These values are extracted from the
510 task Private_Data section of the Ada Task Control Block, and
511 their interpretation depends on the target. */
512 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
513
c47ffbe3
VP
514 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
515 Return 0 if *READPTR is already at the end of the buffer.
516 Return -1 if there is insufficient buffer for a whole entry.
517 Return 1 if an entry was read into *TYPEP and *VALP. */
518 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
519 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
520
08388c79
DE
521 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
522 sequence of bytes in PATTERN with length PATTERN_LEN.
523
524 The result is 1 if found, 0 if not found, and -1 if there was an error
525 requiring halting of the search (e.g. memory read error).
526 If the pattern is found the address is recorded in FOUND_ADDRP. */
527 int (*to_search_memory) (struct target_ops *ops,
528 CORE_ADDR start_addr, ULONGEST search_space_len,
529 const gdb_byte *pattern, ULONGEST pattern_len,
530 CORE_ADDR *found_addrp);
531
b2175913 532 /* Can target execute in reverse? */
2c0b251b 533 int (*to_can_execute_reverse) (void);
b2175913 534
8a305172
PA
535 /* Does this target support debugging multiple processes
536 simultaneously? */
537 int (*to_supports_multi_process) (void);
538
c5aa993b 539 int to_magic;
0d06e24b
JM
540 /* Need sub-structure for target machine related rather than comm related?
541 */
c5aa993b 542 };
c906108c
SS
543
544/* Magic number for checking ops size. If a struct doesn't end with this
545 number, somebody changed the declaration but didn't change all the
546 places that initialize one. */
547
548#define OPS_MAGIC 3840
549
550/* The ops structure for our "current" target process. This should
551 never be NULL. If there is no target, it points to the dummy_target. */
552
c5aa993b 553extern struct target_ops current_target;
c906108c 554
c906108c
SS
555/* Define easy words for doing these operations on our current target. */
556
557#define target_shortname (current_target.to_shortname)
558#define target_longname (current_target.to_longname)
559
f1c07ab0
AC
560/* Does whatever cleanup is required for a target that we are no
561 longer going to be calling. QUITTING indicates that GDB is exiting
562 and should not get hung on an error (otherwise it is important to
563 perform clean termination, even if it takes a while). This routine
564 is automatically always called when popping the target off the
565 target stack (to_beneath is undefined). Closing file descriptors
566 and freeing all memory allocated memory are typical things it
567 should do. */
568
569void target_close (struct target_ops *targ, int quitting);
c906108c
SS
570
571/* Attaches to a process on the target side. Arguments are as passed
572 to the `attach' command by the user. This routine can be called
573 when the target is not on the target-stack, if the target_can_run
2146d243 574 routine returns 1; in that case, it must push itself onto the stack.
c906108c 575 Upon exit, the target should be ready for normal operations, and
2146d243 576 should be ready to deliver the status of the process immediately
c906108c
SS
577 (without waiting) to an upcoming target_wait call. */
578
136d6dae 579void target_attach (char *, int);
c906108c 580
dc177b7a
PA
581/* Some targets don't generate traps when attaching to the inferior,
582 or their target_attach implementation takes care of the waiting.
583 These targets must set to_attach_no_wait. */
584
585#define target_attach_no_wait \
586 (current_target.to_attach_no_wait)
587
c906108c
SS
588/* The target_attach operation places a process under debugger control,
589 and stops the process.
590
591 This operation provides a target-specific hook that allows the
0d06e24b 592 necessary bookkeeping to be performed after an attach completes. */
c906108c 593#define target_post_attach(pid) \
0d06e24b 594 (*current_target.to_post_attach) (pid)
c906108c 595
c906108c
SS
596/* Takes a program previously attached to and detaches it.
597 The program may resume execution (some targets do, some don't) and will
598 no longer stop on signals, etc. We better not have left any breakpoints
599 in the program or it'll die when it hits one. ARGS is arguments
600 typed by the user (e.g. a signal to send the process). FROM_TTY
601 says whether to be verbose or not. */
602
a14ed312 603extern void target_detach (char *, int);
c906108c 604
6ad8ae5c
DJ
605/* Disconnect from the current target without resuming it (leaving it
606 waiting for a debugger). */
607
608extern void target_disconnect (char *, int);
609
39f77062 610/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
611 single-step or to run free; SIGGNAL is the signal to be given to
612 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
613 pass TARGET_SIGNAL_DEFAULT. */
614
e1ac3328 615extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 616
b5a2688f
AC
617/* Wait for process pid to do something. PTID = -1 to wait for any
618 pid to do something. Return pid of child, or -1 in case of error;
c906108c 619 store status through argument pointer STATUS. Note that it is
b5a2688f 620 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
621 the debugging target from the stack; GDB isn't prepared to get back
622 to the prompt with a debugging target but without the frame cache,
623 stop_pc, etc., set up. */
624
117de6a9 625extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status);
c906108c 626
17dee195 627/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 628
28439f5e 629extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
630
631/* Store at least register REGNO, or all regs if REGNO == -1.
632 It can store as many registers as it wants to, so target_prepare_to_store
633 must have been previously called. Calls error() if there are problems. */
634
28439f5e 635extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
636
637/* Get ready to modify the registers array. On machines which store
638 individual registers, this doesn't need to do anything. On machines
639 which store all the registers in one fell swoop, this makes sure
640 that REGISTERS contains all the registers from the program being
641 debugged. */
642
316f2060
UW
643#define target_prepare_to_store(regcache) \
644 (*current_target.to_prepare_to_store) (regcache)
c906108c 645
8a305172
PA
646/* Returns true if this target can debug multiple processes
647 simultaneously. */
648
649#define target_supports_multi_process() \
650 (*current_target.to_supports_multi_process) ()
651
4930751a
C
652extern DCACHE *target_dcache;
653
a14ed312 654extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 655
fc1a4b47 656extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 657
fc1a4b47 658extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 659 int len);
c906108c 660
1b0ba102 661extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 662 struct mem_attrib *, struct target_ops *);
c906108c 663
fd79ecee
DJ
664/* Fetches the target's memory map. If one is found it is sorted
665 and returned, after some consistency checking. Otherwise, NULL
666 is returned. */
667VEC(mem_region_s) *target_memory_map (void);
668
a76d924d
DJ
669/* Erase the specified flash region. */
670void target_flash_erase (ULONGEST address, LONGEST length);
671
672/* Finish a sequence of flash operations. */
673void target_flash_done (void);
674
675/* Describes a request for a memory write operation. */
676struct memory_write_request
677 {
678 /* Begining address that must be written. */
679 ULONGEST begin;
680 /* Past-the-end address. */
681 ULONGEST end;
682 /* The data to write. */
683 gdb_byte *data;
684 /* A callback baton for progress reporting for this request. */
685 void *baton;
686 };
687typedef struct memory_write_request memory_write_request_s;
688DEF_VEC_O(memory_write_request_s);
689
690/* Enumeration specifying different flash preservation behaviour. */
691enum flash_preserve_mode
692 {
693 flash_preserve,
694 flash_discard
695 };
696
697/* Write several memory blocks at once. This version can be more
698 efficient than making several calls to target_write_memory, in
699 particular because it can optimize accesses to flash memory.
700
701 Moreover, this is currently the only memory access function in gdb
702 that supports writing to flash memory, and it should be used for
703 all cases where access to flash memory is desirable.
704
705 REQUESTS is the vector (see vec.h) of memory_write_request.
706 PRESERVE_FLASH_P indicates what to do with blocks which must be
707 erased, but not completely rewritten.
708 PROGRESS_CB is a function that will be periodically called to provide
709 feedback to user. It will be called with the baton corresponding
710 to the request currently being written. It may also be called
711 with a NULL baton, when preserved flash sectors are being rewritten.
712
713 The function returns 0 on success, and error otherwise. */
714int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
715 enum flash_preserve_mode preserve_flash_p,
716 void (*progress_cb) (ULONGEST, void *));
717
47932f85
DJ
718/* From infrun.c. */
719
3a3e9ee3 720extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 721
3a3e9ee3 722extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 723
3a3e9ee3 724extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 725
c906108c
SS
726/* From exec.c */
727
a14ed312 728extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
729
730/* Print a line about the current target. */
731
732#define target_files_info() \
0d06e24b 733 (*current_target.to_files_info) (&current_target)
c906108c 734
8181d85f
DJ
735/* Insert a breakpoint at address BP_TGT->placed_address in the target
736 machine. Result is 0 for success, or an errno value. */
c906108c 737
8181d85f
DJ
738#define target_insert_breakpoint(bp_tgt) \
739 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 740
8181d85f
DJ
741/* Remove a breakpoint at address BP_TGT->placed_address in the target
742 machine. Result is 0 for success, or an errno value. */
c906108c 743
8181d85f
DJ
744#define target_remove_breakpoint(bp_tgt) \
745 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
746
747/* Initialize the terminal settings we record for the inferior,
748 before we actually run the inferior. */
749
750#define target_terminal_init() \
0d06e24b 751 (*current_target.to_terminal_init) ()
c906108c
SS
752
753/* Put the inferior's terminal settings into effect.
754 This is preparation for starting or resuming the inferior. */
755
756#define target_terminal_inferior() \
0d06e24b 757 (*current_target.to_terminal_inferior) ()
c906108c
SS
758
759/* Put some of our terminal settings into effect,
760 enough to get proper results from our output,
761 but do not change into or out of RAW mode
762 so that no input is discarded.
763
764 After doing this, either terminal_ours or terminal_inferior
765 should be called to get back to a normal state of affairs. */
766
767#define target_terminal_ours_for_output() \
0d06e24b 768 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
769
770/* Put our terminal settings into effect.
771 First record the inferior's terminal settings
772 so they can be restored properly later. */
773
774#define target_terminal_ours() \
0d06e24b 775 (*current_target.to_terminal_ours) ()
c906108c 776
a790ad35
SC
777/* Save our terminal settings.
778 This is called from TUI after entering or leaving the curses
779 mode. Since curses modifies our terminal this call is here
780 to take this change into account. */
781
782#define target_terminal_save_ours() \
783 (*current_target.to_terminal_save_ours) ()
784
c906108c
SS
785/* Print useful information about our terminal status, if such a thing
786 exists. */
787
788#define target_terminal_info(arg, from_tty) \
0d06e24b 789 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
790
791/* Kill the inferior process. Make it go away. */
792
7d85a9c0 793extern void target_kill (void);
c906108c 794
0d06e24b
JM
795/* Load an executable file into the target process. This is expected
796 to not only bring new code into the target process, but also to
1986bccd
AS
797 update GDB's symbol tables to match.
798
799 ARG contains command-line arguments, to be broken down with
800 buildargv (). The first non-switch argument is the filename to
801 load, FILE; the second is a number (as parsed by strtoul (..., ...,
802 0)), which is an offset to apply to the load addresses of FILE's
803 sections. The target may define switches, or other non-switch
804 arguments, as it pleases. */
c906108c 805
11cf8741 806extern void target_load (char *arg, int from_tty);
c906108c
SS
807
808/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
809 name. ADDRP is a CORE_ADDR * pointing to where the value of the
810 symbol should be returned. The result is 0 if successful, nonzero
811 if the symbol does not exist in the target environment. This
812 function should not call error() if communication with the target
813 is interrupted, since it is called from symbol reading, but should
814 return nonzero, possibly doing a complain(). */
c906108c 815
0d06e24b
JM
816#define target_lookup_symbol(name, addrp) \
817 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 818
39f77062 819/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
820 EXEC_FILE is the file to run.
821 ALLARGS is a string containing the arguments to the program.
822 ENV is the environment vector to pass. Errors reported with error().
823 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 824
136d6dae
VP
825void target_create_inferior (char *exec_file, char *args,
826 char **env, int from_tty);
c906108c
SS
827
828/* Some targets (such as ttrace-based HPUX) don't allow us to request
829 notification of inferior events such as fork and vork immediately
830 after the inferior is created. (This because of how gdb gets an
831 inferior created via invoking a shell to do it. In such a scenario,
832 if the shell init file has commands in it, the shell will fork and
833 exec for each of those commands, and we will see each such fork
834 event. Very bad.)
c5aa993b 835
0d06e24b
JM
836 Such targets will supply an appropriate definition for this function. */
837
39f77062
KB
838#define target_post_startup_inferior(ptid) \
839 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
840
841/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
842 some synchronization between gdb and the new inferior process, PID. */
843
c906108c 844#define target_acknowledge_created_inferior(pid) \
0d06e24b 845 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 846
0d06e24b
JM
847/* On some targets, we can catch an inferior fork or vfork event when
848 it occurs. These functions insert/remove an already-created
849 catchpoint for such events. */
c906108c 850
c906108c 851#define target_insert_fork_catchpoint(pid) \
0d06e24b 852 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
853
854#define target_remove_fork_catchpoint(pid) \
0d06e24b 855 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
856
857#define target_insert_vfork_catchpoint(pid) \
0d06e24b 858 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
859
860#define target_remove_vfork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 862
6604731b
DJ
863/* If the inferior forks or vforks, this function will be called at
864 the next resume in order to perform any bookkeeping and fiddling
865 necessary to continue debugging either the parent or child, as
866 requested, and releasing the other. Information about the fork
867 or vfork event is available via get_last_target_status ().
868 This function returns 1 if the inferior should not be resumed
869 (i.e. there is another event pending). */
0d06e24b 870
ee057212 871int target_follow_fork (int follow_child);
c906108c
SS
872
873/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
874 occurs. These functions insert/remove an already-created
875 catchpoint for such events. */
876
c906108c 877#define target_insert_exec_catchpoint(pid) \
0d06e24b 878 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 879
c906108c 880#define target_remove_exec_catchpoint(pid) \
0d06e24b 881 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 882
c906108c 883/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
884 exit code of PID, if any. */
885
c906108c 886#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 887 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
888
889/* The debugger has completed a blocking wait() call. There is now
2146d243 890 some process event that must be processed. This function should
c906108c 891 be defined by those targets that require the debugger to perform
0d06e24b 892 cleanup or internal state changes in response to the process event. */
c906108c
SS
893
894/* The inferior process has died. Do what is right. */
895
136d6dae 896void target_mourn_inferior (void);
c906108c
SS
897
898/* Does target have enough data to do a run or attach command? */
899
900#define target_can_run(t) \
0d06e24b 901 ((t)->to_can_run) ()
c906108c
SS
902
903/* post process changes to signal handling in the inferior. */
904
39f77062
KB
905#define target_notice_signals(ptid) \
906 (*current_target.to_notice_signals) (ptid)
c906108c
SS
907
908/* Check to see if a thread is still alive. */
909
28439f5e 910extern int target_thread_alive (ptid_t ptid);
c906108c 911
b83266a0
SS
912/* Query for new threads and add them to the thread list. */
913
28439f5e 914extern void target_find_new_threads (void);
b83266a0 915
0d06e24b
JM
916/* Make target stop in a continuable fashion. (For instance, under
917 Unix, this should act like SIGSTOP). This function is normally
918 used by GUIs to implement a stop button. */
c906108c 919
94cc34af 920#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 921
96baa820
JM
922/* Send the specified COMMAND to the target's monitor
923 (shell,interpreter) for execution. The result of the query is
0d06e24b 924 placed in OUTBUF. */
96baa820
JM
925
926#define target_rcmd(command, outbuf) \
927 (*current_target.to_rcmd) (command, outbuf)
928
929
c906108c
SS
930/* Does the target include all of memory, or only part of it? This
931 determines whether we look up the target chain for other parts of
932 memory if this target can't satisfy a request. */
933
934#define target_has_all_memory \
0d06e24b 935 (current_target.to_has_all_memory)
c906108c
SS
936
937/* Does the target include memory? (Dummy targets don't.) */
938
939#define target_has_memory \
0d06e24b 940 (current_target.to_has_memory)
c906108c
SS
941
942/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
943 we start a process.) */
c5aa993b 944
c906108c 945#define target_has_stack \
0d06e24b 946 (current_target.to_has_stack)
c906108c
SS
947
948/* Does the target have registers? (Exec files don't.) */
949
950#define target_has_registers \
0d06e24b 951 (current_target.to_has_registers)
c906108c
SS
952
953/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
954 hoops), or pop its stack a few times? This means that the current
955 target is currently executing; for some targets, that's the same as
956 whether or not the target is capable of execution, but there are
957 also targets which can be current while not executing. In that
958 case this will become true after target_create_inferior or
959 target_attach. */
c906108c
SS
960
961#define target_has_execution \
0d06e24b 962 (current_target.to_has_execution)
c906108c
SS
963
964/* Can the target support the debugger control of thread execution?
d6350901 965 Can it lock the thread scheduler? */
c906108c
SS
966
967#define target_can_lock_scheduler \
0d06e24b 968 (current_target.to_has_thread_control & tc_schedlock)
c906108c 969
c6ebd6cf
VP
970/* Should the target enable async mode if it is supported? Temporary
971 cludge until async mode is a strict superset of sync mode. */
972extern int target_async_permitted;
973
6426a772
JM
974/* Can the target support asynchronous execution? */
975#define target_can_async_p() (current_target.to_can_async_p ())
976
977/* Is the target in asynchronous execution mode? */
b84876c2 978#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 979
9908b566
VP
980int target_supports_non_stop (void);
981
6426a772 982/* Put the target in async mode with the specified callback function. */
0d06e24b 983#define target_async(CALLBACK,CONTEXT) \
b84876c2 984 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 985
04714b91
AC
986/* This is to be used ONLY within call_function_by_hand(). It provides
987 a workaround, to have inferior function calls done in sychronous
988 mode, even though the target is asynchronous. After
ed9a39eb
JM
989 target_async_mask(0) is called, calls to target_can_async_p() will
990 return FALSE , so that target_resume() will not try to start the
991 target asynchronously. After the inferior stops, we IMMEDIATELY
992 restore the previous nature of the target, by calling
993 target_async_mask(1). After that, target_can_async_p() will return
04714b91 994 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
995
996 FIXME ezannoni 1999-12-13: we won't need this once we move
997 the turning async on and off to the single execution commands,
0d06e24b 998 from where it is done currently, in remote_resume(). */
ed9a39eb 999
b84876c2
PA
1000#define target_async_mask(MASK) \
1001 (current_target.to_async_mask (MASK))
ed9a39eb 1002
c906108c
SS
1003/* Converts a process id to a string. Usually, the string just contains
1004 `process xyz', but on some systems it may contain
1005 `process xyz thread abc'. */
1006
117de6a9 1007extern char *target_pid_to_str (ptid_t ptid);
c906108c 1008
39f77062 1009extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1010
0d06e24b
JM
1011/* Return a short string describing extra information about PID,
1012 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1013 is okay. */
1014
1015#define target_extra_thread_info(TP) \
1016 (current_target.to_extra_thread_info (TP))
ed9a39eb 1017
c906108c
SS
1018/* Attempts to find the pathname of the executable file
1019 that was run to create a specified process.
1020
1021 The process PID must be stopped when this operation is used.
c5aa993b 1022
c906108c
SS
1023 If the executable file cannot be determined, NULL is returned.
1024
1025 Else, a pointer to a character string containing the pathname
1026 is returned. This string should be copied into a buffer by
1027 the client if the string will not be immediately used, or if
0d06e24b 1028 it must persist. */
c906108c
SS
1029
1030#define target_pid_to_exec_file(pid) \
0d06e24b 1031 (current_target.to_pid_to_exec_file) (pid)
c906108c 1032
be4d1333
MS
1033/*
1034 * Iterator function for target memory regions.
1035 * Calls a callback function once for each memory region 'mapped'
1036 * in the child process. Defined as a simple macro rather than
2146d243 1037 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1038 */
1039
1040#define target_find_memory_regions(FUNC, DATA) \
1041 (current_target.to_find_memory_regions) (FUNC, DATA)
1042
1043/*
1044 * Compose corefile .note section.
1045 */
1046
1047#define target_make_corefile_notes(BFD, SIZE_P) \
1048 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1049
c906108c
SS
1050/* Hardware watchpoint interfaces. */
1051
1052/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1053 write). */
1054
1055#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1056#define STOPPED_BY_WATCHPOINT(w) \
1057 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1058#endif
7df1a324 1059
74174d2e
UW
1060/* Non-zero if we have steppable watchpoints */
1061
1062#ifndef HAVE_STEPPABLE_WATCHPOINT
1063#define HAVE_STEPPABLE_WATCHPOINT \
1064 (current_target.to_have_steppable_watchpoint)
1065#endif
1066
7df1a324
KW
1067/* Non-zero if we have continuable watchpoints */
1068
1069#ifndef HAVE_CONTINUABLE_WATCHPOINT
1070#define HAVE_CONTINUABLE_WATCHPOINT \
1071 (current_target.to_have_continuable_watchpoint)
1072#endif
c906108c 1073
ccaa32c7 1074/* Provide defaults for hardware watchpoint functions. */
c906108c 1075
2146d243 1076/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1077 elsewhere use the definitions in the target vector. */
c906108c
SS
1078
1079/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1080 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1081 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1082 (including this one?). OTHERTYPE is who knows what... */
1083
ccaa32c7
GS
1084#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1085#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1086 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1087#endif
c906108c 1088
e0d24f8d
WZ
1089#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1090#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1091 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1092#endif
1093
c906108c
SS
1094
1095/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1096 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1097 success, non-zero for failure. */
1098
ccaa32c7
GS
1099#ifndef target_insert_watchpoint
1100#define target_insert_watchpoint(addr, len, type) \
1101 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1102
ccaa32c7
GS
1103#define target_remove_watchpoint(addr, len, type) \
1104 (*current_target.to_remove_watchpoint) (addr, len, type)
1105#endif
c906108c
SS
1106
1107#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1108#define target_insert_hw_breakpoint(bp_tgt) \
1109 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1110
8181d85f
DJ
1111#define target_remove_hw_breakpoint(bp_tgt) \
1112 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1113#endif
1114
1115#ifndef target_stopped_data_address
4aa7a7f5
JJ
1116#define target_stopped_data_address(target, x) \
1117 (*target.to_stopped_data_address) (target, x)
c906108c
SS
1118#endif
1119
5009afc5
AS
1120#define target_watchpoint_addr_within_range(target, addr, start, length) \
1121 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1122
b2175913
MS
1123/* Target can execute in reverse? */
1124#define target_can_execute_reverse \
1125 (current_target.to_can_execute_reverse ? \
1126 current_target.to_can_execute_reverse () : 0)
1127
424163ea
DJ
1128extern const struct target_desc *target_read_description (struct target_ops *);
1129
0ef643c8
JB
1130#define target_get_ada_task_ptid(lwp, tid) \
1131 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1132
08388c79
DE
1133/* Utility implementation of searching memory. */
1134extern int simple_search_memory (struct target_ops* ops,
1135 CORE_ADDR start_addr,
1136 ULONGEST search_space_len,
1137 const gdb_byte *pattern,
1138 ULONGEST pattern_len,
1139 CORE_ADDR *found_addrp);
1140
1141/* Main entry point for searching memory. */
1142extern int target_search_memory (CORE_ADDR start_addr,
1143 ULONGEST search_space_len,
1144 const gdb_byte *pattern,
1145 ULONGEST pattern_len,
1146 CORE_ADDR *found_addrp);
1147
49d03eab
MR
1148/* Command logging facility. */
1149
1150#define target_log_command(p) \
1151 do \
1152 if (current_target.to_log_command) \
1153 (*current_target.to_log_command) (p); \
1154 while (0)
1155
c906108c
SS
1156/* Routines for maintenance of the target structures...
1157
1158 add_target: Add a target to the list of all possible targets.
1159
1160 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1161 targets, within its particular stratum of the stack. Result
1162 is 0 if now atop the stack, nonzero if not on top (maybe
1163 should warn user).
c906108c
SS
1164
1165 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1166 no matter where it is on the list. Returns 0 if no
1167 change, 1 if removed from stack.
c906108c 1168
c5aa993b 1169 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1170
a14ed312 1171extern void add_target (struct target_ops *);
c906108c 1172
a14ed312 1173extern int push_target (struct target_ops *);
c906108c 1174
a14ed312 1175extern int unpush_target (struct target_ops *);
c906108c 1176
fd79ecee
DJ
1177extern void target_pre_inferior (int);
1178
a14ed312 1179extern void target_preopen (int);
c906108c 1180
a14ed312 1181extern void pop_target (void);
c906108c 1182
aa76d38d
PA
1183/* Does whatever cleanup is required to get rid of all pushed targets.
1184 QUITTING is propagated to target_close; it indicates that GDB is
1185 exiting and should not get hung on an error (otherwise it is
1186 important to perform clean termination, even if it takes a
1187 while). */
1188extern void pop_all_targets (int quitting);
1189
87ab71f0
PA
1190/* Like pop_all_targets, but pops only targets whose stratum is
1191 strictly above ABOVE_STRATUM. */
1192extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1193
9e35dae4
DJ
1194extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1195 CORE_ADDR offset);
1196
52bb452f
DJ
1197/* Mark a pushed target as running or exited, for targets which do not
1198 automatically pop when not active. */
1199
1200void target_mark_running (struct target_ops *);
1201
1202void target_mark_exited (struct target_ops *);
1203
c906108c
SS
1204/* Struct section_table maps address ranges to file sections. It is
1205 mostly used with BFD files, but can be used without (e.g. for handling
1206 raw disks, or files not in formats handled by BFD). */
1207
c5aa993b
JM
1208struct section_table
1209 {
1210 CORE_ADDR addr; /* Lowest address in section */
1211 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1212
7be0c536 1213 struct bfd_section *the_bfd_section;
c906108c 1214
c5aa993b
JM
1215 bfd *bfd; /* BFD file pointer */
1216 };
c906108c 1217
8db32d44
AC
1218/* Return the "section" containing the specified address. */
1219struct section_table *target_section_by_addr (struct target_ops *target,
1220 CORE_ADDR addr);
1221
1222
c906108c
SS
1223/* From mem-break.c */
1224
8181d85f 1225extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1226
8181d85f 1227extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1228
ae4b2284 1229extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1230
ae4b2284 1231extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1232
c906108c
SS
1233
1234/* From target.c */
1235
a14ed312 1236extern void initialize_targets (void);
c906108c 1237
117de6a9 1238extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1239
8edfe269
DJ
1240extern void target_require_runnable (void);
1241
136d6dae 1242extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1243
136d6dae
VP
1244extern void find_default_create_inferior (struct target_ops *,
1245 char *, char *, char **, int);
c906108c 1246
a14ed312 1247extern struct target_ops *find_run_target (void);
7a292a7a 1248
a14ed312 1249extern struct target_ops *find_core_target (void);
6426a772 1250
a14ed312 1251extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1252
570b8f7c
AC
1253extern int target_resize_to_sections (struct target_ops *target,
1254 int num_added);
07cd4b97
JB
1255
1256extern void remove_target_sections (bfd *abfd);
1257
e0665bc8
PA
1258/* Read OS data object of type TYPE from the target, and return it in
1259 XML format. The result is NUL-terminated and returned as a string,
1260 allocated using xmalloc. If an error occurs or the transfer is
1261 unsupported, NULL is returned. Empty objects are returned as
1262 allocated but empty strings. */
1263
07e059b5
VP
1264extern char *target_get_osdata (const char *type);
1265
c906108c
SS
1266\f
1267/* Stuff that should be shared among the various remote targets. */
1268
1269/* Debugging level. 0 is off, and non-zero values mean to print some debug
1270 information (higher values, more information). */
1271extern int remote_debug;
1272
1273/* Speed in bits per second, or -1 which means don't mess with the speed. */
1274extern int baud_rate;
1275/* Timeout limit for response from target. */
1276extern int remote_timeout;
1277
c906108c
SS
1278\f
1279/* Functions for helping to write a native target. */
1280
1281/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1282extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1283
2aecd87f 1284/* These are in common/signals.c, but they're only used by gdb. */
1cded358
AR
1285extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1286 int);
1287extern int default_target_signal_to_host (struct gdbarch *,
1288 enum target_signal);
1289
c906108c 1290/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1291extern enum target_signal target_signal_from_command (int);
2aecd87f 1292/* End of files in common/signals.c. */
c906108c 1293
8defab1a
DJ
1294/* Set the show memory breakpoints mode to show, and installs a cleanup
1295 to restore it back to the current value. */
1296extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1297
c906108c
SS
1298\f
1299/* Imported from machine dependent code */
1300
c906108c 1301/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1302void target_ignore (void);
c906108c 1303
1df84f13 1304extern struct target_ops deprecated_child_ops;
5ac10fd1 1305
c5aa993b 1306#endif /* !defined (TARGET_H) */
This page took 1.259441 seconds and 4 git commands to generate.