rebuild with patched automake
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
53 process_stratum /* Executing processes */
54 };
c906108c 55
c5aa993b
JM
56enum thread_control_capabilities
57 {
58 tc_none = 0, /* Default: can't control thread execution. */
59 tc_schedlock = 1, /* Can lock the thread scheduler. */
60 tc_switch = 2 /* Can switch the running thread on demand. */
61 };
c906108c
SS
62
63/* Stuff for target_wait. */
64
65/* Generally, what has the program done? */
c5aa993b
JM
66enum target_waitkind
67 {
68 /* The program has exited. The exit status is in value.integer. */
69 TARGET_WAITKIND_EXITED,
c906108c 70
c5aa993b
JM
71 /* The program has stopped with a signal. Which signal is in value.sig. */
72 TARGET_WAITKIND_STOPPED,
c906108c 73
c5aa993b
JM
74 /* The program has terminated with a signal. Which signal is in
75 value.sig. */
76 TARGET_WAITKIND_SIGNALLED,
c906108c 77
c5aa993b
JM
78 /* The program is letting us know that it dynamically loaded something
79 (e.g. it called load(2) on AIX). */
80 TARGET_WAITKIND_LOADED,
c906108c 81
c5aa993b
JM
82 /* The program has forked. A "related" process' ID is in value.related_pid.
83 I.e., if the child forks, value.related_pid is the parent's ID.
c906108c 84 */
c5aa993b 85 TARGET_WAITKIND_FORKED,
c906108c 86
c5aa993b 87 /* The program has vforked. A "related" process's ID is in value.related_pid.
c906108c 88 */
c5aa993b 89 TARGET_WAITKIND_VFORKED,
c906108c 90
c5aa993b
JM
91 /* The program has exec'ed a new executable file. The new file's pathname
92 is pointed to by value.execd_pathname.
c906108c 93 */
c5aa993b 94 TARGET_WAITKIND_EXECD,
c906108c 95
c5aa993b
JM
96 /* The program has entered or returned from a system call. On HP-UX, this
97 is used in the hardware watchpoint implementation. The syscall's unique
98 integer ID number is in value.syscall_id;
c906108c 99 */
c5aa993b
JM
100 TARGET_WAITKIND_SYSCALL_ENTRY,
101 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 102
c5aa993b
JM
103 /* Nothing happened, but we stopped anyway. This perhaps should be handled
104 within target_wait, but I'm not sure target_wait should be resuming the
105 inferior. */
106 TARGET_WAITKIND_SPURIOUS
c906108c
SS
107 };
108
109/* The numbering of these signals is chosen to match traditional unix
110 signals (insofar as various unices use the same numbers, anyway).
111 It is also the numbering of the GDB remote protocol. Other remote
112 protocols, if they use a different numbering, should make sure to
cd0fc7c3 113 translate appropriately.
c906108c 114
cd0fc7c3
SS
115 Since these numbers have actually made it out into other software
116 (stubs, etc.), you mustn't disturb the assigned numbering. If you
117 need to add new signals here, add them to the end of the explicitly
118 numbered signals.
119
120 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
121 (1) This set of signals represents a widely-accepted attempt to
122 represent events of this sort in a portable fashion, (2) we want a
123 signal to make it from wait to child_wait to the user intact, (3) many
124 remote protocols use a similar encoding. However, it is
125 recognized that this set of signals has limitations (such as not
126 distinguishing between various kinds of SIGSEGV, or not
127 distinguishing hitting a breakpoint from finishing a single step).
128 So in the future we may get around this either by adding additional
129 signals for breakpoint, single-step, etc., or by adding signal
130 codes; the latter seems more in the spirit of what BSD, System V,
131 etc. are doing to address these issues. */
132
133/* For an explanation of what each signal means, see
134 target_signal_to_string. */
135
c5aa993b
JM
136enum target_signal
137 {
138 /* Used some places (e.g. stop_signal) to record the concept that
139 there is no signal. */
140 TARGET_SIGNAL_0 = 0,
141 TARGET_SIGNAL_FIRST = 0,
142 TARGET_SIGNAL_HUP = 1,
143 TARGET_SIGNAL_INT = 2,
144 TARGET_SIGNAL_QUIT = 3,
145 TARGET_SIGNAL_ILL = 4,
146 TARGET_SIGNAL_TRAP = 5,
147 TARGET_SIGNAL_ABRT = 6,
148 TARGET_SIGNAL_EMT = 7,
149 TARGET_SIGNAL_FPE = 8,
150 TARGET_SIGNAL_KILL = 9,
151 TARGET_SIGNAL_BUS = 10,
152 TARGET_SIGNAL_SEGV = 11,
153 TARGET_SIGNAL_SYS = 12,
154 TARGET_SIGNAL_PIPE = 13,
155 TARGET_SIGNAL_ALRM = 14,
156 TARGET_SIGNAL_TERM = 15,
157 TARGET_SIGNAL_URG = 16,
158 TARGET_SIGNAL_STOP = 17,
159 TARGET_SIGNAL_TSTP = 18,
160 TARGET_SIGNAL_CONT = 19,
161 TARGET_SIGNAL_CHLD = 20,
162 TARGET_SIGNAL_TTIN = 21,
163 TARGET_SIGNAL_TTOU = 22,
164 TARGET_SIGNAL_IO = 23,
165 TARGET_SIGNAL_XCPU = 24,
166 TARGET_SIGNAL_XFSZ = 25,
167 TARGET_SIGNAL_VTALRM = 26,
168 TARGET_SIGNAL_PROF = 27,
169 TARGET_SIGNAL_WINCH = 28,
170 TARGET_SIGNAL_LOST = 29,
171 TARGET_SIGNAL_USR1 = 30,
172 TARGET_SIGNAL_USR2 = 31,
173 TARGET_SIGNAL_PWR = 32,
174 /* Similar to SIGIO. Perhaps they should have the same number. */
175 TARGET_SIGNAL_POLL = 33,
176 TARGET_SIGNAL_WIND = 34,
177 TARGET_SIGNAL_PHONE = 35,
178 TARGET_SIGNAL_WAITING = 36,
179 TARGET_SIGNAL_LWP = 37,
180 TARGET_SIGNAL_DANGER = 38,
181 TARGET_SIGNAL_GRANT = 39,
182 TARGET_SIGNAL_RETRACT = 40,
183 TARGET_SIGNAL_MSG = 41,
184 TARGET_SIGNAL_SOUND = 42,
185 TARGET_SIGNAL_SAK = 43,
186 TARGET_SIGNAL_PRIO = 44,
187 TARGET_SIGNAL_REALTIME_33 = 45,
188 TARGET_SIGNAL_REALTIME_34 = 46,
189 TARGET_SIGNAL_REALTIME_35 = 47,
190 TARGET_SIGNAL_REALTIME_36 = 48,
191 TARGET_SIGNAL_REALTIME_37 = 49,
192 TARGET_SIGNAL_REALTIME_38 = 50,
193 TARGET_SIGNAL_REALTIME_39 = 51,
194 TARGET_SIGNAL_REALTIME_40 = 52,
195 TARGET_SIGNAL_REALTIME_41 = 53,
196 TARGET_SIGNAL_REALTIME_42 = 54,
197 TARGET_SIGNAL_REALTIME_43 = 55,
198 TARGET_SIGNAL_REALTIME_44 = 56,
199 TARGET_SIGNAL_REALTIME_45 = 57,
200 TARGET_SIGNAL_REALTIME_46 = 58,
201 TARGET_SIGNAL_REALTIME_47 = 59,
202 TARGET_SIGNAL_REALTIME_48 = 60,
203 TARGET_SIGNAL_REALTIME_49 = 61,
204 TARGET_SIGNAL_REALTIME_50 = 62,
205 TARGET_SIGNAL_REALTIME_51 = 63,
206 TARGET_SIGNAL_REALTIME_52 = 64,
207 TARGET_SIGNAL_REALTIME_53 = 65,
208 TARGET_SIGNAL_REALTIME_54 = 66,
209 TARGET_SIGNAL_REALTIME_55 = 67,
210 TARGET_SIGNAL_REALTIME_56 = 68,
211 TARGET_SIGNAL_REALTIME_57 = 69,
212 TARGET_SIGNAL_REALTIME_58 = 70,
213 TARGET_SIGNAL_REALTIME_59 = 71,
214 TARGET_SIGNAL_REALTIME_60 = 72,
215 TARGET_SIGNAL_REALTIME_61 = 73,
216 TARGET_SIGNAL_REALTIME_62 = 74,
217 TARGET_SIGNAL_REALTIME_63 = 75,
218
219 /* Used internally by Solaris threads. See signal(5) on Solaris. */
220 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 221
c906108c 222#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
223 /* Mach exceptions */
224 TARGET_EXC_BAD_ACCESS,
225 TARGET_EXC_BAD_INSTRUCTION,
226 TARGET_EXC_ARITHMETIC,
227 TARGET_EXC_EMULATION,
228 TARGET_EXC_SOFTWARE,
229 TARGET_EXC_BREAKPOINT,
c906108c 230#endif
c5aa993b 231 TARGET_SIGNAL_INFO,
c906108c 232
c5aa993b
JM
233 /* Some signal we don't know about. */
234 TARGET_SIGNAL_UNKNOWN,
c906108c 235
c5aa993b
JM
236 /* Use whatever signal we use when one is not specifically specified
237 (for passing to proceed and so on). */
238 TARGET_SIGNAL_DEFAULT,
c906108c 239
c5aa993b
JM
240 /* Last and unused enum value, for sizing arrays, etc. */
241 TARGET_SIGNAL_LAST
242 };
c906108c 243
c5aa993b
JM
244struct target_waitstatus
245 {
246 enum target_waitkind kind;
247
248 /* Forked child pid, execd pathname, exit status or signal number. */
249 union
250 {
251 int integer;
252 enum target_signal sig;
253 int related_pid;
254 char *execd_pathname;
255 int syscall_id;
256 }
257 value;
258 };
c906108c
SS
259
260/* Return the string for a signal. */
261extern char *target_signal_to_string PARAMS ((enum target_signal));
262
263/* Return the name (SIGHUP, etc.) for a signal. */
264extern char *target_signal_to_name PARAMS ((enum target_signal));
265
266/* Given a name (SIGHUP, etc.), return its signal. */
267enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 268\f
c5aa993b 269
c906108c
SS
270/* If certain kinds of activity happen, target_wait should perform
271 callbacks. */
272/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
273 on TARGET_ACTIVITY_FD. */
274extern int target_activity_fd;
275/* Returns zero to leave the inferior alone, one to interrupt it. */
276extern int (*target_activity_function) PARAMS ((void));
277\f
278struct target_ops
c5aa993b
JM
279 {
280 char *to_shortname; /* Name this target type */
281 char *to_longname; /* Name for printing */
282 char *to_doc; /* Documentation. Does not include trailing
c906108c
SS
283 newline, and starts with a one-line descrip-
284 tion (probably similar to to_longname). */
c5aa993b
JM
285 void (*to_open) PARAMS ((char *, int));
286 void (*to_close) PARAMS ((int));
287 void (*to_attach) PARAMS ((char *, int));
288 void (*to_post_attach) PARAMS ((int));
289 void (*to_require_attach) PARAMS ((char *, int));
290 void (*to_detach) PARAMS ((char *, int));
291 void (*to_require_detach) PARAMS ((int, char *, int));
292 void (*to_resume) PARAMS ((int, int, enum target_signal));
293 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
294 void (*to_post_wait) PARAMS ((int, int));
295 void (*to_fetch_registers) PARAMS ((int));
296 void (*to_store_registers) PARAMS ((int));
297 void (*to_prepare_to_store) PARAMS ((void));
298
299 /* Transfer LEN bytes of memory between GDB address MYADDR and
300 target address MEMADDR. If WRITE, transfer them to the target, else
301 transfer them from the target. TARGET is the target from which we
302 get this function.
303
304 Return value, N, is one of the following:
305
306 0 means that we can't handle this. If errno has been set, it is the
307 error which prevented us from doing it (FIXME: What about bfd_error?).
308
309 positive (call it N) means that we have transferred N bytes
310 starting at MEMADDR. We might be able to handle more bytes
311 beyond this length, but no promises.
312
313 negative (call its absolute value N) means that we cannot
314 transfer right at MEMADDR, but we could transfer at least
315 something at MEMADDR + N. */
316
317 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
318 int len, int write,
319 struct target_ops * target));
c906108c
SS
320
321#if 0
c5aa993b 322 /* Enable this after 4.12. */
c906108c 323
c5aa993b
JM
324 /* Search target memory. Start at STARTADDR and take LEN bytes of
325 target memory, and them with MASK, and compare to DATA. If they
326 match, set *ADDR_FOUND to the address we found it at, store the data
327 we found at LEN bytes starting at DATA_FOUND, and return. If
328 not, add INCREMENT to the search address and keep trying until
329 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 330
c5aa993b
JM
331 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
332 void (*to_search) PARAMS ((int len, char *data, char *mask,
333 CORE_ADDR startaddr, int increment,
334 CORE_ADDR lorange, CORE_ADDR hirange,
335 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
336
337#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
338 (*current_target.to_search) (len, data, mask, startaddr, increment, \
339 lorange, hirange, addr_found, data_found)
c5aa993b
JM
340#endif /* 0 */
341
342 void (*to_files_info) PARAMS ((struct target_ops *));
343 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
344 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
345 void (*to_terminal_init) PARAMS ((void));
346 void (*to_terminal_inferior) PARAMS ((void));
347 void (*to_terminal_ours_for_output) PARAMS ((void));
348 void (*to_terminal_ours) PARAMS ((void));
349 void (*to_terminal_info) PARAMS ((char *, int));
350 void (*to_kill) PARAMS ((void));
351 void (*to_load) PARAMS ((char *, int));
352 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
353 void (*to_create_inferior) PARAMS ((char *, char *, char **));
354 void (*to_post_startup_inferior) PARAMS ((int));
355 void (*to_acknowledge_created_inferior) PARAMS ((int));
356 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
357 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
358 int (*to_insert_fork_catchpoint) PARAMS ((int));
359 int (*to_remove_fork_catchpoint) PARAMS ((int));
360 int (*to_insert_vfork_catchpoint) PARAMS ((int));
361 int (*to_remove_vfork_catchpoint) PARAMS ((int));
362 int (*to_has_forked) PARAMS ((int, int *));
363 int (*to_has_vforked) PARAMS ((int, int *));
364 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
365 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
366 int (*to_insert_exec_catchpoint) PARAMS ((int));
367 int (*to_remove_exec_catchpoint) PARAMS ((int));
368 int (*to_has_execd) PARAMS ((int, char **));
369 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
370 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
371 int (*to_has_exited) PARAMS ((int, int, int *));
372 void (*to_mourn_inferior) PARAMS ((void));
373 int (*to_can_run) PARAMS ((void));
374 void (*to_notice_signals) PARAMS ((int pid));
375 int (*to_thread_alive) PARAMS ((int pid));
376 void (*to_find_new_threads) PARAMS ((void));
377 void (*to_stop) PARAMS ((void));
378 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
379 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
380 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
381 char *(*to_pid_to_exec_file) PARAMS ((int pid));
382 char *(*to_core_file_to_sym_file) PARAMS ((char *));
383 enum strata to_stratum;
384 struct target_ops
385 *DONT_USE; /* formerly to_next */
386 int to_has_all_memory;
387 int to_has_memory;
388 int to_has_stack;
389 int to_has_registers;
390 int to_has_execution;
391 int to_has_thread_control; /* control thread execution */
392 int to_has_async_exec;
393 struct section_table
394 *to_sections;
395 struct section_table
396 *to_sections_end;
397 int to_magic;
398 /* Need sub-structure for target machine related rather than comm related? */
399 };
c906108c
SS
400
401/* Magic number for checking ops size. If a struct doesn't end with this
402 number, somebody changed the declaration but didn't change all the
403 places that initialize one. */
404
405#define OPS_MAGIC 3840
406
407/* The ops structure for our "current" target process. This should
408 never be NULL. If there is no target, it points to the dummy_target. */
409
c5aa993b 410extern struct target_ops current_target;
c906108c
SS
411
412/* An item on the target stack. */
413
414struct target_stack_item
c5aa993b
JM
415 {
416 struct target_stack_item *next;
417 struct target_ops *target_ops;
418 };
c906108c
SS
419
420/* The target stack. */
421
422extern struct target_stack_item *target_stack;
423
424/* Define easy words for doing these operations on our current target. */
425
426#define target_shortname (current_target.to_shortname)
427#define target_longname (current_target.to_longname)
428
429/* The open routine takes the rest of the parameters from the command,
430 and (if successful) pushes a new target onto the stack.
431 Targets should supply this routine, if only to provide an error message. */
432#define target_open(name, from_tty) \
433 (*current_target.to_open) (name, from_tty)
434
435/* Does whatever cleanup is required for a target that we are no longer
436 going to be calling. Argument says whether we are quitting gdb and
437 should not get hung in case of errors, or whether we want a clean
438 termination even if it takes a while. This routine is automatically
439 always called just before a routine is popped off the target stack.
440 Closing file descriptors and freeing memory are typical things it should
441 do. */
442
443#define target_close(quitting) \
444 (*current_target.to_close) (quitting)
445
446/* Attaches to a process on the target side. Arguments are as passed
447 to the `attach' command by the user. This routine can be called
448 when the target is not on the target-stack, if the target_can_run
449 routine returns 1; in that case, it must push itself onto the stack.
450 Upon exit, the target should be ready for normal operations, and
451 should be ready to deliver the status of the process immediately
452 (without waiting) to an upcoming target_wait call. */
453
454#define target_attach(args, from_tty) \
455 (*current_target.to_attach) (args, from_tty)
456
457/* The target_attach operation places a process under debugger control,
458 and stops the process.
459
460 This operation provides a target-specific hook that allows the
461 necessary bookkeeping to be performed after an attach completes.
c5aa993b 462 */
c906108c
SS
463#define target_post_attach(pid) \
464 (*current_target.to_post_attach) (pid)
465
466/* Attaches to a process on the target side, if not already attached.
467 (If already attached, takes no action.)
468
469 This operation can be used to follow the child process of a fork.
470 On some targets, such child processes of an original inferior process
471 are automatically under debugger control, and thus do not require an
472 actual attach operation. */
473
474#define target_require_attach(args, from_tty) \
475 (*current_target.to_require_attach) (args, from_tty)
476
477/* Takes a program previously attached to and detaches it.
478 The program may resume execution (some targets do, some don't) and will
479 no longer stop on signals, etc. We better not have left any breakpoints
480 in the program or it'll die when it hits one. ARGS is arguments
481 typed by the user (e.g. a signal to send the process). FROM_TTY
482 says whether to be verbose or not. */
483
484extern void
485target_detach PARAMS ((char *, int));
486
487/* Detaches from a process on the target side, if not already dettached.
488 (If already detached, takes no action.)
489
490 This operation can be used to follow the parent process of a fork.
491 On some targets, such child processes of an original inferior process
492 are automatically under debugger control, and thus do require an actual
493 detach operation.
494
495 PID is the process id of the child to detach from.
496 ARGS is arguments typed by the user (e.g. a signal to send the process).
497 FROM_TTY says whether to be verbose or not. */
498
499#define target_require_detach(pid, args, from_tty) \
500 (*current_target.to_require_detach) (pid, args, from_tty)
501
502/* Resume execution of the target process PID. STEP says whether to
503 single-step or to run free; SIGGNAL is the signal to be given to
504 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
505 pass TARGET_SIGNAL_DEFAULT. */
506
507#define target_resume(pid, step, siggnal) \
508 (*current_target.to_resume) (pid, step, siggnal)
509
510/* Wait for process pid to do something. Pid = -1 to wait for any pid
511 to do something. Return pid of child, or -1 in case of error;
512 store status through argument pointer STATUS. Note that it is
513 *not* OK to return_to_top_level out of target_wait without popping
514 the debugging target from the stack; GDB isn't prepared to get back
515 to the prompt with a debugging target but without the frame cache,
516 stop_pc, etc., set up. */
517
518#define target_wait(pid, status) \
519 (*current_target.to_wait) (pid, status)
520
521/* The target_wait operation waits for a process event to occur, and
522 thereby stop the process.
523
524 On some targets, certain events may happen in sequences. gdb's
525 correct response to any single event of such a sequence may require
526 knowledge of what earlier events in the sequence have been seen.
527
528 This operation provides a target-specific hook that allows the
529 necessary bookkeeping to be performed to track such sequences.
c5aa993b 530 */
c906108c
SS
531
532#define target_post_wait(pid, status) \
533 (*current_target.to_post_wait) (pid, status)
534
535/* Fetch register REGNO, or all regs if regno == -1. No result. */
536
537#define target_fetch_registers(regno) \
538 (*current_target.to_fetch_registers) (regno)
539
540/* Store at least register REGNO, or all regs if REGNO == -1.
541 It can store as many registers as it wants to, so target_prepare_to_store
542 must have been previously called. Calls error() if there are problems. */
543
544#define target_store_registers(regs) \
545 (*current_target.to_store_registers) (regs)
546
547/* Get ready to modify the registers array. On machines which store
548 individual registers, this doesn't need to do anything. On machines
549 which store all the registers in one fell swoop, this makes sure
550 that REGISTERS contains all the registers from the program being
551 debugged. */
552
553#define target_prepare_to_store() \
554 (*current_target.to_prepare_to_store) ()
555
556extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
557
558extern int
559target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
560
561extern int
562target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 563 asection * bfd_section));
c906108c
SS
564
565extern int
566target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
567
568extern int
569target_write_memory PARAMS ((CORE_ADDR, char *, int));
570
571extern int
572xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
573
574extern int
575child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
576
577extern char *
c5aa993b 578 child_pid_to_exec_file PARAMS ((int));
c906108c
SS
579
580extern char *
c5aa993b 581 child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
582
583#if defined(CHILD_POST_ATTACH)
584extern void
585child_post_attach PARAMS ((int));
586#endif
587
588extern void
589child_post_wait PARAMS ((int, int));
590
591extern void
592child_post_startup_inferior PARAMS ((int));
593
594extern void
595child_acknowledge_created_inferior PARAMS ((int));
596
597extern void
598child_clone_and_follow_inferior PARAMS ((int, int *));
599
600extern void
601child_post_follow_inferior_by_clone PARAMS ((void));
602
603extern int
604child_insert_fork_catchpoint PARAMS ((int));
605
606extern int
607child_remove_fork_catchpoint PARAMS ((int));
608
609extern int
610child_insert_vfork_catchpoint PARAMS ((int));
611
612extern int
613child_remove_vfork_catchpoint PARAMS ((int));
614
615extern int
616child_has_forked PARAMS ((int, int *));
617
618extern int
619child_has_vforked PARAMS ((int, int *));
620
621extern void
622child_acknowledge_created_inferior PARAMS ((int));
623
624extern int
625child_can_follow_vfork_prior_to_exec PARAMS ((void));
626
627extern void
628child_post_follow_vfork PARAMS ((int, int, int, int));
629
630extern int
631child_insert_exec_catchpoint PARAMS ((int));
632
633extern int
634child_remove_exec_catchpoint PARAMS ((int));
635
636extern int
637child_has_execd PARAMS ((int, char **));
638
639extern int
640child_reported_exec_events_per_exec_call PARAMS ((void));
641
642extern int
643child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
644
645extern int
646child_has_exited PARAMS ((int, int, int *));
647
648extern int
649child_thread_alive PARAMS ((int));
650
651/* From exec.c */
652
653extern void
654print_section_info PARAMS ((struct target_ops *, bfd *));
655
656/* Print a line about the current target. */
657
658#define target_files_info() \
659 (*current_target.to_files_info) (&current_target)
660
661/* Insert a breakpoint at address ADDR in the target machine.
662 SAVE is a pointer to memory allocated for saving the
663 target contents. It is guaranteed by the caller to be long enough
664 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
665 an errno value. */
666
667#define target_insert_breakpoint(addr, save) \
668 (*current_target.to_insert_breakpoint) (addr, save)
669
670/* Remove a breakpoint at address ADDR in the target machine.
671 SAVE is a pointer to the same save area
672 that was previously passed to target_insert_breakpoint.
673 Result is 0 for success, or an errno value. */
674
675#define target_remove_breakpoint(addr, save) \
676 (*current_target.to_remove_breakpoint) (addr, save)
677
678/* Initialize the terminal settings we record for the inferior,
679 before we actually run the inferior. */
680
681#define target_terminal_init() \
682 (*current_target.to_terminal_init) ()
683
684/* Put the inferior's terminal settings into effect.
685 This is preparation for starting or resuming the inferior. */
686
687#define target_terminal_inferior() \
688 (*current_target.to_terminal_inferior) ()
689
690/* Put some of our terminal settings into effect,
691 enough to get proper results from our output,
692 but do not change into or out of RAW mode
693 so that no input is discarded.
694
695 After doing this, either terminal_ours or terminal_inferior
696 should be called to get back to a normal state of affairs. */
697
698#define target_terminal_ours_for_output() \
699 (*current_target.to_terminal_ours_for_output) ()
700
701/* Put our terminal settings into effect.
702 First record the inferior's terminal settings
703 so they can be restored properly later. */
704
705#define target_terminal_ours() \
706 (*current_target.to_terminal_ours) ()
707
708/* Print useful information about our terminal status, if such a thing
709 exists. */
710
711#define target_terminal_info(arg, from_tty) \
712 (*current_target.to_terminal_info) (arg, from_tty)
713
714/* Kill the inferior process. Make it go away. */
715
716#define target_kill() \
717 (*current_target.to_kill) ()
718
719/* Load an executable file into the target process. This is expected to
720 not only bring new code into the target process, but also to update
721 GDB's symbol tables to match. */
722
723#define target_load(arg, from_tty) \
724 (*current_target.to_load) (arg, from_tty)
725
726/* Look up a symbol in the target's symbol table. NAME is the symbol
727 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
728 should be returned. The result is 0 if successful, nonzero if the
729 symbol does not exist in the target environment. This function should
730 not call error() if communication with the target is interrupted, since
731 it is called from symbol reading, but should return nonzero, possibly
732 doing a complain(). */
733
734#define target_lookup_symbol(name, addrp) \
735 (*current_target.to_lookup_symbol) (name, addrp)
736
737/* Start an inferior process and set inferior_pid to its pid.
738 EXEC_FILE is the file to run.
739 ALLARGS is a string containing the arguments to the program.
740 ENV is the environment vector to pass. Errors reported with error().
741 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 742
c906108c
SS
743#define target_create_inferior(exec_file, args, env) \
744 (*current_target.to_create_inferior) (exec_file, args, env)
745
746
747/* Some targets (such as ttrace-based HPUX) don't allow us to request
748 notification of inferior events such as fork and vork immediately
749 after the inferior is created. (This because of how gdb gets an
750 inferior created via invoking a shell to do it. In such a scenario,
751 if the shell init file has commands in it, the shell will fork and
752 exec for each of those commands, and we will see each such fork
753 event. Very bad.)
c5aa993b 754
c906108c 755 Such targets will supply an appropriate definition for this function.
c5aa993b 756 */
c906108c
SS
757#define target_post_startup_inferior(pid) \
758 (*current_target.to_post_startup_inferior) (pid)
759
760/* On some targets, the sequence of starting up an inferior requires
761 some synchronization between gdb and the new inferior process, PID.
c5aa993b 762 */
c906108c
SS
763#define target_acknowledge_created_inferior(pid) \
764 (*current_target.to_acknowledge_created_inferior) (pid)
765
766/* An inferior process has been created via a fork() or similar
767 system call. This function will clone the debugger, then ensure
768 that CHILD_PID is attached to by that debugger.
769
770 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
771 and FALSE otherwise. (The original and clone debuggers can use this
772 to determine which they are, if need be.)
773
774 (This is not a terribly useful feature without a GUI to prevent
775 the two debuggers from competing for shell input.)
c5aa993b 776 */
c906108c
SS
777#define target_clone_and_follow_inferior(child_pid,followed_child) \
778 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
779
780/* This operation is intended to be used as the last in a sequence of
781 steps taken when following both parent and child of a fork. This
782 is used by a clone of the debugger, which will follow the child.
783
784 The original debugger has detached from this process, and the
785 clone has attached to it.
786
787 On some targets, this requires a bit of cleanup to make it work
788 correctly.
c5aa993b 789 */
c906108c
SS
790#define target_post_follow_inferior_by_clone() \
791 (*current_target.to_post_follow_inferior_by_clone) ()
792
793/* On some targets, we can catch an inferior fork or vfork event when it
794 occurs. These functions insert/remove an already-created catchpoint for
795 such events.
c5aa993b 796 */
c906108c
SS
797#define target_insert_fork_catchpoint(pid) \
798 (*current_target.to_insert_fork_catchpoint) (pid)
799
800#define target_remove_fork_catchpoint(pid) \
801 (*current_target.to_remove_fork_catchpoint) (pid)
802
803#define target_insert_vfork_catchpoint(pid) \
804 (*current_target.to_insert_vfork_catchpoint) (pid)
805
806#define target_remove_vfork_catchpoint(pid) \
807 (*current_target.to_remove_vfork_catchpoint) (pid)
808
809/* Returns TRUE if PID has invoked the fork() system call. And,
810 also sets CHILD_PID to the process id of the other ("child")
811 inferior process that was created by that call.
c5aa993b 812 */
c906108c
SS
813#define target_has_forked(pid,child_pid) \
814 (*current_target.to_has_forked) (pid,child_pid)
815
816/* Returns TRUE if PID has invoked the vfork() system call. And,
817 also sets CHILD_PID to the process id of the other ("child")
818 inferior process that was created by that call.
c5aa993b 819 */
c906108c
SS
820#define target_has_vforked(pid,child_pid) \
821 (*current_target.to_has_vforked) (pid,child_pid)
822
823/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
824 anything to a vforked child before it subsequently calls exec().
825 On such platforms, we say that the debugger cannot "follow" the
826 child until it has vforked.
827
828 This function should be defined to return 1 by those targets
829 which can allow the debugger to immediately follow a vforked
830 child, and 0 if they cannot.
c5aa993b 831 */
c906108c
SS
832#define target_can_follow_vfork_prior_to_exec() \
833 (*current_target.to_can_follow_vfork_prior_to_exec) ()
834
835/* An inferior process has been created via a vfork() system call.
836 The debugger has followed the parent, the child, or both. The
837 process of setting up for that follow may have required some
838 target-specific trickery to track the sequence of reported events.
839 If so, this function should be defined by those targets that
840 require the debugger to perform cleanup or initialization after
841 the vfork follow.
c5aa993b 842 */
c906108c
SS
843#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
844 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
845
846/* On some targets, we can catch an inferior exec event when it
847 occurs. These functions insert/remove an already-created catchpoint
848 for such events.
c5aa993b 849 */
c906108c
SS
850#define target_insert_exec_catchpoint(pid) \
851 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 852
c906108c
SS
853#define target_remove_exec_catchpoint(pid) \
854 (*current_target.to_remove_exec_catchpoint) (pid)
855
856/* Returns TRUE if PID has invoked a flavor of the exec() system call.
857 And, also sets EXECD_PATHNAME to the pathname of the executable file
858 that was passed to exec(), and is now being executed.
c5aa993b 859 */
c906108c
SS
860#define target_has_execd(pid,execd_pathname) \
861 (*current_target.to_has_execd) (pid,execd_pathname)
862
863/* Returns the number of exec events that are reported when a process
864 invokes a flavor of the exec() system call on this target, if exec
865 events are being reported.
c5aa993b 866 */
c906108c
SS
867#define target_reported_exec_events_per_exec_call() \
868 (*current_target.to_reported_exec_events_per_exec_call) ()
869
870/* Returns TRUE if PID has reported a syscall event. And, also sets
871 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
872 the unique integer ID of the syscall.
c5aa993b 873 */
c906108c
SS
874#define target_has_syscall_event(pid,kind,syscall_id) \
875 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
876
877/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
878 exit code of PID, if any.
c5aa993b 879 */
c906108c
SS
880#define target_has_exited(pid,wait_status,exit_status) \
881 (*current_target.to_has_exited) (pid,wait_status,exit_status)
882
883/* The debugger has completed a blocking wait() call. There is now
884 some process event that must be processed. This function should
885 be defined by those targets that require the debugger to perform
886 cleanup or internal state changes in response to the process event.
c5aa993b 887 */
c906108c
SS
888
889/* The inferior process has died. Do what is right. */
890
891#define target_mourn_inferior() \
892 (*current_target.to_mourn_inferior) ()
893
894/* Does target have enough data to do a run or attach command? */
895
896#define target_can_run(t) \
897 ((t)->to_can_run) ()
898
899/* post process changes to signal handling in the inferior. */
900
901#define target_notice_signals(pid) \
902 (*current_target.to_notice_signals) (pid)
903
904/* Check to see if a thread is still alive. */
905
906#define target_thread_alive(pid) \
907 (*current_target.to_thread_alive) (pid)
908
b83266a0
SS
909/* Query for new threads and add them to the thread list. */
910
911#define target_find_new_threads() \
912 do { \
913 if (current_target.to_find_new_threads) \
914 (*current_target.to_find_new_threads) (); \
915 } while (0);
916
c906108c
SS
917/* Make target stop in a continuable fashion. (For instance, under Unix, this
918 should act like SIGSTOP). This function is normally used by GUIs to
919 implement a stop button. */
920
921#define target_stop current_target.to_stop
922
923/* Queries the target side for some information. The first argument is a
924 letter specifying the type of the query, which is used to determine who
925 should process it. The second argument is a string that specifies which
926 information is desired and the third is a buffer that carries back the
927 response from the target side. The fourth parameter is the size of the
928 output buffer supplied. */
c5aa993b 929
c906108c
SS
930#define target_query(query_type, query, resp_buffer, bufffer_size) \
931 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
932
933/* Get the symbol information for a breakpointable routine called when
934 an exception event occurs.
935 Intended mainly for C++, and for those
936 platforms/implementations where such a callback mechanism is available,
937 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
938 different mechanisms for debugging exceptions. */
939
940#define target_enable_exception_callback(kind, enable) \
941 (*current_target.to_enable_exception_callback) (kind, enable)
942
943/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 944
c906108c
SS
945#define target_get_current_exception_event() \
946 (*current_target.to_get_current_exception_event) ()
947
948/* Pointer to next target in the chain, e.g. a core file and an exec file. */
949
950#define target_next \
951 (current_target.to_next)
952
953/* Does the target include all of memory, or only part of it? This
954 determines whether we look up the target chain for other parts of
955 memory if this target can't satisfy a request. */
956
957#define target_has_all_memory \
958 (current_target.to_has_all_memory)
959
960/* Does the target include memory? (Dummy targets don't.) */
961
962#define target_has_memory \
963 (current_target.to_has_memory)
964
965/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
966 we start a process.) */
c5aa993b 967
c906108c
SS
968#define target_has_stack \
969 (current_target.to_has_stack)
970
971/* Does the target have registers? (Exec files don't.) */
972
973#define target_has_registers \
974 (current_target.to_has_registers)
975
976/* Does the target have execution? Can we make it jump (through
977 hoops), or pop its stack a few times? FIXME: If this is to work that
978 way, it needs to check whether an inferior actually exists.
979 remote-udi.c and probably other targets can be the current target
980 when the inferior doesn't actually exist at the moment. Right now
981 this just tells us whether this target is *capable* of execution. */
982
983#define target_has_execution \
984 (current_target.to_has_execution)
985
986/* Can the target support the debugger control of thread execution?
987 a) Can it lock the thread scheduler?
988 b) Can it switch the currently running thread? */
989
990#define target_can_lock_scheduler \
991 (current_target.to_has_thread_control & tc_schedlock)
992
993#define target_can_switch_threads \
994 (current_target.to_has_thread_control & tc_switch)
995
43ff13b4
JM
996/* Does the target support asynchronous execution? */
997#define target_has_async \
998 (current_target.to_has_async_exec)
999
c906108c
SS
1000extern void target_link PARAMS ((char *, CORE_ADDR *));
1001
1002/* Converts a process id to a string. Usually, the string just contains
1003 `process xyz', but on some systems it may contain
1004 `process xyz thread abc'. */
1005
1006#ifndef target_pid_to_str
1007#define target_pid_to_str(PID) \
1008 normal_pid_to_str (PID)
1009extern char *normal_pid_to_str PARAMS ((int pid));
1010#endif
1011
1012#ifndef target_tid_to_str
1013#define target_tid_to_str(PID) \
1014 normal_pid_to_str (PID)
1015extern char *normal_pid_to_str PARAMS ((int pid));
1016#endif
c5aa993b 1017
c906108c
SS
1018
1019#ifndef target_new_objfile
1020#define target_new_objfile(OBJFILE)
1021#endif
1022
1023#ifndef target_pid_or_tid_to_str
1024#define target_pid_or_tid_to_str(ID) \
1025 normal_pid_to_str (ID)
1026#endif
1027
1028/* Attempts to find the pathname of the executable file
1029 that was run to create a specified process.
1030
1031 The process PID must be stopped when this operation is used.
c5aa993b 1032
c906108c
SS
1033 If the executable file cannot be determined, NULL is returned.
1034
1035 Else, a pointer to a character string containing the pathname
1036 is returned. This string should be copied into a buffer by
1037 the client if the string will not be immediately used, or if
1038 it must persist.
c5aa993b 1039 */
c906108c
SS
1040
1041#define target_pid_to_exec_file(pid) \
1042 (current_target.to_pid_to_exec_file) (pid)
1043
1044/* Hook to call target-dependant code after reading in a new symbol table. */
1045
1046#ifndef TARGET_SYMFILE_POSTREAD
1047#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1048#endif
1049
1050/* Hook to call target dependant code just after inferior target process has
1051 started. */
1052
1053#ifndef TARGET_CREATE_INFERIOR_HOOK
1054#define TARGET_CREATE_INFERIOR_HOOK(PID)
1055#endif
1056
1057/* Hardware watchpoint interfaces. */
1058
1059/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1060 write). */
1061
1062#ifndef STOPPED_BY_WATCHPOINT
1063#define STOPPED_BY_WATCHPOINT(w) 0
1064#endif
1065
1066/* HP-UX supplies these operations, which respectively disable and enable
1067 the memory page-protections that are used to implement hardware watchpoints
1068 on that platform. See wait_for_inferior's use of these.
c5aa993b 1069 */
c906108c
SS
1070#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1071#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1072#endif
1073
1074#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1075#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1076#endif
1077
1078/* Provide defaults for systems that don't support hardware watchpoints. */
1079
1080#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1081
1082/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1083 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1084 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1085 (including this one?). OTHERTYPE is who knows what... */
1086
1087#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1088
1089#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1090#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1091 (LONGEST)(byte_count) <= REGISTER_SIZE
1092#endif
1093
1094/* However, some addresses may not be profitable to use hardware to watch,
1095 or may be difficult to understand when the addressed object is out of
1096 scope, and hence should be unwatched. On some targets, this may have
1097 severe performance penalties, such that we might as well use regular
1098 watchpoints, and save (possibly precious) hardware watchpoints for other
1099 locations.
c5aa993b 1100 */
c906108c
SS
1101#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1102#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1103#endif
1104
1105
1106/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1107 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1108 success, non-zero for failure. */
1109
1110#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1111#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1112
1113#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1114
1115#ifndef target_insert_hw_breakpoint
1116#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1117#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1118#endif
1119
1120#ifndef target_stopped_data_address
1121#define target_stopped_data_address() 0
1122#endif
1123
1124/* If defined, then we need to decr pc by this much after a hardware break-
1125 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1126
1127#ifndef DECR_PC_AFTER_HW_BREAK
1128#define DECR_PC_AFTER_HW_BREAK 0
1129#endif
1130
1131/* Sometimes gdb may pick up what appears to be a valid target address
1132 from a minimal symbol, but the value really means, essentially,
1133 "This is an index into a table which is populated when the inferior
1134 is run. Therefore, do not attempt to use this as a PC."
c5aa993b 1135 */
c906108c
SS
1136#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1137#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1138#endif
1139
1140/* This will only be defined by a target that supports catching vfork events,
1141 such as HP-UX.
1142
1143 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1144 child process after it has exec'd, causes the parent process to resume as
1145 well. To prevent the parent from running spontaneously, such targets should
1146 define this to a function that prevents that from happening.
c5aa993b 1147 */
c906108c
SS
1148#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1149#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1150#endif
1151
1152/* This will only be defined by a target that supports catching vfork events,
1153 such as HP-UX.
1154
1155 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1156 process must be resumed when it delivers its exec event, before the parent
1157 vfork event will be delivered to us.
c5aa993b 1158 */
c906108c
SS
1159#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1160#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1161#endif
1162
1163/* Routines for maintenance of the target structures...
1164
1165 add_target: Add a target to the list of all possible targets.
1166
1167 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1168 targets, within its particular stratum of the stack. Result
1169 is 0 if now atop the stack, nonzero if not on top (maybe
1170 should warn user).
c906108c
SS
1171
1172 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1173 no matter where it is on the list. Returns 0 if no
1174 change, 1 if removed from stack.
c906108c 1175
c5aa993b 1176 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1177
1178extern void
1179add_target PARAMS ((struct target_ops *));
1180
1181extern int
1182push_target PARAMS ((struct target_ops *));
1183
1184extern int
1185unpush_target PARAMS ((struct target_ops *));
1186
1187extern void
1188target_preopen PARAMS ((int));
1189
1190extern void
1191pop_target PARAMS ((void));
1192
1193/* Struct section_table maps address ranges to file sections. It is
1194 mostly used with BFD files, but can be used without (e.g. for handling
1195 raw disks, or files not in formats handled by BFD). */
1196
c5aa993b
JM
1197struct section_table
1198 {
1199 CORE_ADDR addr; /* Lowest address in section */
1200 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1201
c5aa993b 1202 sec_ptr the_bfd_section;
c906108c 1203
c5aa993b
JM
1204 bfd *bfd; /* BFD file pointer */
1205 };
c906108c
SS
1206
1207/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1208 Returns 0 if OK, 1 on error. */
1209
1210extern int
1211build_section_table PARAMS ((bfd *, struct section_table **,
1212 struct section_table **));
1213
1214/* From mem-break.c */
1215
1216extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1217
1218extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1219
1220extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1221#ifndef BREAKPOINT_FROM_PC
1222#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1223#endif
1224
1225
1226/* From target.c */
1227
1228extern void
1229initialize_targets PARAMS ((void));
1230
1231extern void
1232noprocess PARAMS ((void));
1233
1234extern void
1235find_default_attach PARAMS ((char *, int));
1236
1237void
1238find_default_require_attach PARAMS ((char *, int));
1239
1240void
1241find_default_require_detach PARAMS ((int, char *, int));
1242
1243extern void
1244find_default_create_inferior PARAMS ((char *, char *, char **));
1245
1246void
1247find_default_clone_and_follow_inferior PARAMS ((int, int *));
1248
7a292a7a
SS
1249extern struct target_ops *find_run_target PARAMS ((void));
1250
c906108c 1251extern struct target_ops *
c5aa993b 1252 find_core_target PARAMS ((void));
c906108c
SS
1253\f
1254/* Stuff that should be shared among the various remote targets. */
1255
1256/* Debugging level. 0 is off, and non-zero values mean to print some debug
1257 information (higher values, more information). */
1258extern int remote_debug;
1259
1260/* Speed in bits per second, or -1 which means don't mess with the speed. */
1261extern int baud_rate;
1262/* Timeout limit for response from target. */
1263extern int remote_timeout;
1264
1265extern asection *target_memory_bfd_section;
1266\f
1267/* Functions for helping to write a native target. */
1268
1269/* This is for native targets which use a unix/POSIX-style waitstatus. */
1270extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1271
1272/* Convert between host signal numbers and enum target_signal's. */
1273extern enum target_signal target_signal_from_host PARAMS ((int));
1274extern int target_signal_to_host PARAMS ((enum target_signal));
1275
1276/* Convert from a number used in a GDB command to an enum target_signal. */
1277extern enum target_signal target_signal_from_command PARAMS ((int));
1278
1279/* Any target can call this to switch to remote protocol (in remote.c). */
1280extern void push_remote_target PARAMS ((char *name, int from_tty));
1281\f
1282/* Imported from machine dependent code */
1283
1284#ifndef SOFTWARE_SINGLE_STEP_P
1285#define SOFTWARE_SINGLE_STEP_P 0
1286#define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1287#endif /* SOFTWARE_SINGLE_STEP_P */
1288
1289/* Blank target vector entries are initialized to target_ignore. */
1290void target_ignore PARAMS ((void));
1291
1292/* Macro for getting target's idea of a frame pointer.
1293 FIXME: GDB's whole scheme for dealing with "frames" and
1294 "frame pointers" needs a serious shakedown. */
1295#ifndef TARGET_VIRTUAL_FRAME_POINTER
1296#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1297 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1298#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1299
c5aa993b 1300#endif /* !defined (TARGET_H) */
This page took 0.083588 seconds and 4 git commands to generate.