2002-04-18 Pierre Muller <muller@ics.u-strasbg.fr>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
26/* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45#include "bfd.h"
46#include "symtab.h"
4930751a 47#include "dcache.h"
29e57380 48#include "memattr.h"
c906108c 49
c5aa993b
JM
50enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
c5aa993b 58 };
c906108c 59
c5aa993b
JM
60enum thread_control_capabilities
61 {
0d06e24b
JM
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 65 };
c906108c
SS
66
67/* Stuff for target_wait. */
68
69/* Generally, what has the program done? */
c5aa993b
JM
70enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
c906108c 74
0d06e24b
JM
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
c5aa993b 77 TARGET_WAITKIND_STOPPED,
c906108c 78
c5aa993b
JM
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
c906108c 82
c5aa993b
JM
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
c906108c 86
0d06e24b
JM
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
c5aa993b 91 TARGET_WAITKIND_FORKED,
c906108c 92
0d06e24b
JM
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
c5aa993b 96 TARGET_WAITKIND_VFORKED,
c906108c 97
0d06e24b
JM
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
c5aa993b 101 TARGET_WAITKIND_EXECD,
c906108c 102
0d06e24b
JM
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
c5aa993b
JM
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 109
c5aa993b
JM
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
c4093a6a
JM
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
0d06e24b 123 like for instance the user typing. */
c4093a6a 124 TARGET_WAITKIND_IGNORE
c906108c
SS
125 };
126
c5aa993b
JM
127struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
c906108c 142
2acceee2 143/* Possible types of events that the inferior handler will have to
0d06e24b 144 deal with. */
2acceee2
JM
145enum inferior_event_type
146 {
0d06e24b 147 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
0d06e24b 150 being called. */
2acceee2 151 INF_REG_EVENT,
0d06e24b 152 /* Deal with an error on the inferior. */
2acceee2 153 INF_ERROR,
0d06e24b 154 /* We are called because a timer went off. */
2acceee2 155 INF_TIMER,
0d06e24b 156 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
0d06e24b 161 'step n' like commands. */
c2d11a7d 162 INF_EXEC_CONTINUE
2acceee2
JM
163 };
164
c906108c 165/* Return the string for a signal. */
a14ed312 166extern char *target_signal_to_string (enum target_signal);
c906108c
SS
167
168/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 169extern char *target_signal_to_name (enum target_signal);
c906108c
SS
170
171/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 172enum target_signal target_signal_from_name (char *);
c906108c 173\f
c5aa993b 174
c906108c
SS
175/* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 178 on TARGET_ACTIVITY_FD. */
c906108c
SS
179extern int target_activity_fd;
180/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 181extern int (*target_activity_function) (void);
c906108c 182\f
0d06e24b
JM
183struct thread_info; /* fwd decl for parameter list below: */
184
c906108c 185struct target_ops
c5aa993b
JM
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
c906108c 190 newline, and starts with a one-line descrip-
0d06e24b 191 tion (probably similar to to_longname). */
507f3c78
KB
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
39f77062
KB
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
c5aa993b
JM
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
507f3c78 224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
c906108c
SS
228
229#if 0
c5aa993b 230 /* Enable this after 4.12. */
c906108c 231
c5aa993b
JM
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 238
0d06e24b
JM
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
507f3c78
KB
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
246
247#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
c5aa993b
JM
250#endif /* 0 */
251
507f3c78
KB
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
255 void (*to_terminal_init) (void);
256 void (*to_terminal_inferior) (void);
257 void (*to_terminal_ours_for_output) (void);
258 void (*to_terminal_ours) (void);
259 void (*to_terminal_info) (char *, int);
260 void (*to_kill) (void);
261 void (*to_load) (char *, int);
262 int (*to_lookup_symbol) (char *, CORE_ADDR *);
263 void (*to_create_inferior) (char *, char *, char **);
39f77062 264 void (*to_post_startup_inferior) (ptid_t);
507f3c78
KB
265 void (*to_acknowledge_created_inferior) (int);
266 void (*to_clone_and_follow_inferior) (int, int *);
267 void (*to_post_follow_inferior_by_clone) (void);
268 int (*to_insert_fork_catchpoint) (int);
269 int (*to_remove_fork_catchpoint) (int);
270 int (*to_insert_vfork_catchpoint) (int);
271 int (*to_remove_vfork_catchpoint) (int);
272 int (*to_has_forked) (int, int *);
273 int (*to_has_vforked) (int, int *);
274 int (*to_can_follow_vfork_prior_to_exec) (void);
275 void (*to_post_follow_vfork) (int, int, int, int);
276 int (*to_insert_exec_catchpoint) (int);
277 int (*to_remove_exec_catchpoint) (int);
278 int (*to_has_execd) (int, char **);
279 int (*to_reported_exec_events_per_exec_call) (void);
280 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
281 int (*to_has_exited) (int, int, int *);
282 void (*to_mourn_inferior) (void);
283 int (*to_can_run) (void);
39f77062
KB
284 void (*to_notice_signals) (ptid_t ptid);
285 int (*to_thread_alive) (ptid_t ptid);
507f3c78 286 void (*to_find_new_threads) (void);
39f77062 287 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
288 char *(*to_extra_thread_info) (struct thread_info *);
289 void (*to_stop) (void);
290 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 291 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
292 struct symtab_and_line *(*to_enable_exception_callback) (enum
293 exception_event_kind,
294 int);
295 struct exception_event_record *(*to_get_current_exception_event) (void);
296 char *(*to_pid_to_exec_file) (int pid);
c5aa993b
JM
297 enum strata to_stratum;
298 struct target_ops
299 *DONT_USE; /* formerly to_next */
300 int to_has_all_memory;
301 int to_has_memory;
302 int to_has_stack;
303 int to_has_registers;
304 int to_has_execution;
305 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
306 struct section_table
307 *to_sections;
308 struct section_table
309 *to_sections_end;
6426a772
JM
310 /* ASYNC target controls */
311 int (*to_can_async_p) (void);
312 int (*to_is_async_p) (void);
0d06e24b
JM
313 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
314 void *context);
ed9a39eb 315 int to_async_mask_value;
be4d1333
MS
316 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
317 unsigned long,
318 int, int, int,
319 void *),
320 void *);
321 char * (*to_make_corefile_notes) (bfd *, int *);
c5aa993b 322 int to_magic;
0d06e24b
JM
323 /* Need sub-structure for target machine related rather than comm related?
324 */
c5aa993b 325 };
c906108c
SS
326
327/* Magic number for checking ops size. If a struct doesn't end with this
328 number, somebody changed the declaration but didn't change all the
329 places that initialize one. */
330
331#define OPS_MAGIC 3840
332
333/* The ops structure for our "current" target process. This should
334 never be NULL. If there is no target, it points to the dummy_target. */
335
c5aa993b 336extern struct target_ops current_target;
c906108c
SS
337
338/* An item on the target stack. */
339
340struct target_stack_item
c5aa993b
JM
341 {
342 struct target_stack_item *next;
343 struct target_ops *target_ops;
344 };
c906108c
SS
345
346/* The target stack. */
347
348extern struct target_stack_item *target_stack;
349
350/* Define easy words for doing these operations on our current target. */
351
352#define target_shortname (current_target.to_shortname)
353#define target_longname (current_target.to_longname)
354
355/* The open routine takes the rest of the parameters from the command,
356 and (if successful) pushes a new target onto the stack.
357 Targets should supply this routine, if only to provide an error message. */
0d06e24b 358
4930751a
C
359#define target_open(name, from_tty) \
360 do { \
361 dcache_invalidate (target_dcache); \
362 (*current_target.to_open) (name, from_tty); \
363 } while (0)
c906108c
SS
364
365/* Does whatever cleanup is required for a target that we are no longer
366 going to be calling. Argument says whether we are quitting gdb and
367 should not get hung in case of errors, or whether we want a clean
368 termination even if it takes a while. This routine is automatically
369 always called just before a routine is popped off the target stack.
370 Closing file descriptors and freeing memory are typical things it should
371 do. */
372
373#define target_close(quitting) \
0d06e24b 374 (*current_target.to_close) (quitting)
c906108c
SS
375
376/* Attaches to a process on the target side. Arguments are as passed
377 to the `attach' command by the user. This routine can be called
378 when the target is not on the target-stack, if the target_can_run
379 routine returns 1; in that case, it must push itself onto the stack.
380 Upon exit, the target should be ready for normal operations, and
381 should be ready to deliver the status of the process immediately
382 (without waiting) to an upcoming target_wait call. */
383
384#define target_attach(args, from_tty) \
0d06e24b 385 (*current_target.to_attach) (args, from_tty)
c906108c
SS
386
387/* The target_attach operation places a process under debugger control,
388 and stops the process.
389
390 This operation provides a target-specific hook that allows the
0d06e24b 391 necessary bookkeeping to be performed after an attach completes. */
c906108c 392#define target_post_attach(pid) \
0d06e24b 393 (*current_target.to_post_attach) (pid)
c906108c
SS
394
395/* Attaches to a process on the target side, if not already attached.
396 (If already attached, takes no action.)
397
398 This operation can be used to follow the child process of a fork.
399 On some targets, such child processes of an original inferior process
400 are automatically under debugger control, and thus do not require an
401 actual attach operation. */
402
403#define target_require_attach(args, from_tty) \
0d06e24b 404 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
405
406/* Takes a program previously attached to and detaches it.
407 The program may resume execution (some targets do, some don't) and will
408 no longer stop on signals, etc. We better not have left any breakpoints
409 in the program or it'll die when it hits one. ARGS is arguments
410 typed by the user (e.g. a signal to send the process). FROM_TTY
411 says whether to be verbose or not. */
412
a14ed312 413extern void target_detach (char *, int);
c906108c
SS
414
415/* Detaches from a process on the target side, if not already dettached.
416 (If already detached, takes no action.)
417
418 This operation can be used to follow the parent process of a fork.
419 On some targets, such child processes of an original inferior process
420 are automatically under debugger control, and thus do require an actual
421 detach operation.
422
423 PID is the process id of the child to detach from.
424 ARGS is arguments typed by the user (e.g. a signal to send the process).
425 FROM_TTY says whether to be verbose or not. */
426
0d06e24b
JM
427#define target_require_detach(pid, args, from_tty) \
428 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c 429
39f77062 430/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
431 single-step or to run free; SIGGNAL is the signal to be given to
432 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
433 pass TARGET_SIGNAL_DEFAULT. */
434
39f77062 435#define target_resume(ptid, step, siggnal) \
4930751a
C
436 do { \
437 dcache_invalidate(target_dcache); \
39f77062 438 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 439 } while (0)
c906108c 440
b5a2688f
AC
441/* Wait for process pid to do something. PTID = -1 to wait for any
442 pid to do something. Return pid of child, or -1 in case of error;
c906108c 443 store status through argument pointer STATUS. Note that it is
b5a2688f 444 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
445 the debugging target from the stack; GDB isn't prepared to get back
446 to the prompt with a debugging target but without the frame cache,
447 stop_pc, etc., set up. */
448
39f77062
KB
449#define target_wait(ptid, status) \
450 (*current_target.to_wait) (ptid, status)
c906108c
SS
451
452/* The target_wait operation waits for a process event to occur, and
453 thereby stop the process.
454
455 On some targets, certain events may happen in sequences. gdb's
456 correct response to any single event of such a sequence may require
457 knowledge of what earlier events in the sequence have been seen.
458
459 This operation provides a target-specific hook that allows the
0d06e24b 460 necessary bookkeeping to be performed to track such sequences. */
c906108c 461
39f77062
KB
462#define target_post_wait(ptid, status) \
463 (*current_target.to_post_wait) (ptid, status)
c906108c 464
17dee195 465/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
466
467#define target_fetch_registers(regno) \
0d06e24b 468 (*current_target.to_fetch_registers) (regno)
c906108c
SS
469
470/* Store at least register REGNO, or all regs if REGNO == -1.
471 It can store as many registers as it wants to, so target_prepare_to_store
472 must have been previously called. Calls error() if there are problems. */
473
474#define target_store_registers(regs) \
0d06e24b 475 (*current_target.to_store_registers) (regs)
c906108c
SS
476
477/* Get ready to modify the registers array. On machines which store
478 individual registers, this doesn't need to do anything. On machines
479 which store all the registers in one fell swoop, this makes sure
480 that REGISTERS contains all the registers from the program being
481 debugged. */
482
483#define target_prepare_to_store() \
0d06e24b 484 (*current_target.to_prepare_to_store) ()
c906108c 485
4930751a
C
486extern DCACHE *target_dcache;
487
29e57380
C
488extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
489 struct mem_attrib *attrib);
4930751a 490
a14ed312 491extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 492
a14ed312 493extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 494
4930751a 495extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 496
29e57380
C
497extern int xfer_memory (CORE_ADDR, char *, int, int,
498 struct mem_attrib *, struct target_ops *);
c906108c 499
29e57380
C
500extern int child_xfer_memory (CORE_ADDR, char *, int, int,
501 struct mem_attrib *, struct target_ops *);
c906108c 502
917317f4
JM
503/* Make a single attempt at transfering LEN bytes. On a successful
504 transfer, the number of bytes actually transfered is returned and
505 ERR is set to 0. When a transfer fails, -1 is returned (the number
506 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 507 non-zero error indication. */
917317f4 508
ed9a39eb
JM
509extern int
510target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 511
ed9a39eb
JM
512extern int
513target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 514
a14ed312 515extern char *child_pid_to_exec_file (int);
c906108c 516
a14ed312 517extern char *child_core_file_to_sym_file (char *);
c906108c
SS
518
519#if defined(CHILD_POST_ATTACH)
a14ed312 520extern void child_post_attach (int);
c906108c
SS
521#endif
522
39f77062 523extern void child_post_wait (ptid_t, int);
c906108c 524
39f77062 525extern void child_post_startup_inferior (ptid_t);
c906108c 526
a14ed312 527extern void child_acknowledge_created_inferior (int);
c906108c 528
a14ed312 529extern void child_clone_and_follow_inferior (int, int *);
c906108c 530
a14ed312 531extern void child_post_follow_inferior_by_clone (void);
c906108c 532
a14ed312 533extern int child_insert_fork_catchpoint (int);
c906108c 534
a14ed312 535extern int child_remove_fork_catchpoint (int);
c906108c 536
a14ed312 537extern int child_insert_vfork_catchpoint (int);
c906108c 538
a14ed312 539extern int child_remove_vfork_catchpoint (int);
c906108c 540
a14ed312 541extern int child_has_forked (int, int *);
c906108c 542
a14ed312 543extern int child_has_vforked (int, int *);
c906108c 544
a14ed312 545extern void child_acknowledge_created_inferior (int);
c906108c 546
a14ed312 547extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 548
a14ed312 549extern void child_post_follow_vfork (int, int, int, int);
c906108c 550
a14ed312 551extern int child_insert_exec_catchpoint (int);
c906108c 552
a14ed312 553extern int child_remove_exec_catchpoint (int);
c906108c 554
a14ed312 555extern int child_has_execd (int, char **);
c906108c 556
a14ed312 557extern int child_reported_exec_events_per_exec_call (void);
c906108c 558
a14ed312 559extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 560
a14ed312 561extern int child_has_exited (int, int, int *);
c906108c 562
39f77062 563extern int child_thread_alive (ptid_t);
c906108c
SS
564
565/* From exec.c */
566
a14ed312 567extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
568
569/* Print a line about the current target. */
570
571#define target_files_info() \
0d06e24b 572 (*current_target.to_files_info) (&current_target)
c906108c
SS
573
574/* Insert a breakpoint at address ADDR in the target machine.
575 SAVE is a pointer to memory allocated for saving the
576 target contents. It is guaranteed by the caller to be long enough
577 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
578 an errno value. */
579
580#define target_insert_breakpoint(addr, save) \
0d06e24b 581 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
582
583/* Remove a breakpoint at address ADDR in the target machine.
584 SAVE is a pointer to the same save area
585 that was previously passed to target_insert_breakpoint.
586 Result is 0 for success, or an errno value. */
587
588#define target_remove_breakpoint(addr, save) \
0d06e24b 589 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
590
591/* Initialize the terminal settings we record for the inferior,
592 before we actually run the inferior. */
593
594#define target_terminal_init() \
0d06e24b 595 (*current_target.to_terminal_init) ()
c906108c
SS
596
597/* Put the inferior's terminal settings into effect.
598 This is preparation for starting or resuming the inferior. */
599
600#define target_terminal_inferior() \
0d06e24b 601 (*current_target.to_terminal_inferior) ()
c906108c
SS
602
603/* Put some of our terminal settings into effect,
604 enough to get proper results from our output,
605 but do not change into or out of RAW mode
606 so that no input is discarded.
607
608 After doing this, either terminal_ours or terminal_inferior
609 should be called to get back to a normal state of affairs. */
610
611#define target_terminal_ours_for_output() \
0d06e24b 612 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
613
614/* Put our terminal settings into effect.
615 First record the inferior's terminal settings
616 so they can be restored properly later. */
617
618#define target_terminal_ours() \
0d06e24b 619 (*current_target.to_terminal_ours) ()
c906108c
SS
620
621/* Print useful information about our terminal status, if such a thing
622 exists. */
623
624#define target_terminal_info(arg, from_tty) \
0d06e24b 625 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
626
627/* Kill the inferior process. Make it go away. */
628
629#define target_kill() \
0d06e24b 630 (*current_target.to_kill) ()
c906108c 631
0d06e24b
JM
632/* Load an executable file into the target process. This is expected
633 to not only bring new code into the target process, but also to
634 update GDB's symbol tables to match. */
c906108c 635
11cf8741 636extern void target_load (char *arg, int from_tty);
c906108c
SS
637
638/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
639 name. ADDRP is a CORE_ADDR * pointing to where the value of the
640 symbol should be returned. The result is 0 if successful, nonzero
641 if the symbol does not exist in the target environment. This
642 function should not call error() if communication with the target
643 is interrupted, since it is called from symbol reading, but should
644 return nonzero, possibly doing a complain(). */
c906108c 645
0d06e24b
JM
646#define target_lookup_symbol(name, addrp) \
647 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 648
39f77062 649/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
650 EXEC_FILE is the file to run.
651 ALLARGS is a string containing the arguments to the program.
652 ENV is the environment vector to pass. Errors reported with error().
653 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 654
c906108c 655#define target_create_inferior(exec_file, args, env) \
0d06e24b 656 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
657
658
659/* Some targets (such as ttrace-based HPUX) don't allow us to request
660 notification of inferior events such as fork and vork immediately
661 after the inferior is created. (This because of how gdb gets an
662 inferior created via invoking a shell to do it. In such a scenario,
663 if the shell init file has commands in it, the shell will fork and
664 exec for each of those commands, and we will see each such fork
665 event. Very bad.)
c5aa993b 666
0d06e24b
JM
667 Such targets will supply an appropriate definition for this function. */
668
39f77062
KB
669#define target_post_startup_inferior(ptid) \
670 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
671
672/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
673 some synchronization between gdb and the new inferior process, PID. */
674
c906108c 675#define target_acknowledge_created_inferior(pid) \
0d06e24b 676 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
677
678/* An inferior process has been created via a fork() or similar
679 system call. This function will clone the debugger, then ensure
680 that CHILD_PID is attached to by that debugger.
681
682 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
683 and FALSE otherwise. (The original and clone debuggers can use this
684 to determine which they are, if need be.)
685
686 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
687 the two debuggers from competing for shell input.) */
688
c906108c 689#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 690 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
691
692/* This operation is intended to be used as the last in a sequence of
693 steps taken when following both parent and child of a fork. This
694 is used by a clone of the debugger, which will follow the child.
695
696 The original debugger has detached from this process, and the
697 clone has attached to it.
698
699 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
700 correctly. */
701
c906108c 702#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
703 (*current_target.to_post_follow_inferior_by_clone) ()
704
705/* On some targets, we can catch an inferior fork or vfork event when
706 it occurs. These functions insert/remove an already-created
707 catchpoint for such events. */
c906108c 708
c906108c 709#define target_insert_fork_catchpoint(pid) \
0d06e24b 710 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
711
712#define target_remove_fork_catchpoint(pid) \
0d06e24b 713 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
714
715#define target_insert_vfork_catchpoint(pid) \
0d06e24b 716 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
717
718#define target_remove_vfork_catchpoint(pid) \
0d06e24b 719 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
720
721/* Returns TRUE if PID has invoked the fork() system call. And,
722 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
723 inferior process that was created by that call. */
724
c906108c 725#define target_has_forked(pid,child_pid) \
0d06e24b
JM
726 (*current_target.to_has_forked) (pid,child_pid)
727
728/* Returns TRUE if PID has invoked the vfork() system call. And,
729 also sets CHILD_PID to the process id of the other ("child")
730 inferior process that was created by that call. */
c906108c 731
c906108c 732#define target_has_vforked(pid,child_pid) \
0d06e24b 733 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
734
735/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
736 anything to a vforked child before it subsequently calls exec().
737 On such platforms, we say that the debugger cannot "follow" the
738 child until it has vforked.
739
740 This function should be defined to return 1 by those targets
741 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
742 child, and 0 if they cannot. */
743
c906108c 744#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 745 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
746
747/* An inferior process has been created via a vfork() system call.
748 The debugger has followed the parent, the child, or both. The
749 process of setting up for that follow may have required some
750 target-specific trickery to track the sequence of reported events.
751 If so, this function should be defined by those targets that
752 require the debugger to perform cleanup or initialization after
0d06e24b
JM
753 the vfork follow. */
754
c906108c 755#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 756 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
757
758/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
759 occurs. These functions insert/remove an already-created
760 catchpoint for such events. */
761
c906108c 762#define target_insert_exec_catchpoint(pid) \
0d06e24b 763 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 764
c906108c 765#define target_remove_exec_catchpoint(pid) \
0d06e24b 766 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
767
768/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
769 And, also sets EXECD_PATHNAME to the pathname of the executable
770 file that was passed to exec(), and is now being executed. */
771
c906108c 772#define target_has_execd(pid,execd_pathname) \
0d06e24b 773 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
774
775/* Returns the number of exec events that are reported when a process
776 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
777 events are being reported. */
778
c906108c 779#define target_reported_exec_events_per_exec_call() \
0d06e24b 780 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
781
782/* Returns TRUE if PID has reported a syscall event. And, also sets
783 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
784 the unique integer ID of the syscall. */
785
c906108c 786#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 787 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
788
789/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
790 exit code of PID, if any. */
791
c906108c 792#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 793 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
794
795/* The debugger has completed a blocking wait() call. There is now
0d06e24b 796 some process event that must be processed. This function should
c906108c 797 be defined by those targets that require the debugger to perform
0d06e24b 798 cleanup or internal state changes in response to the process event. */
c906108c
SS
799
800/* The inferior process has died. Do what is right. */
801
802#define target_mourn_inferior() \
0d06e24b 803 (*current_target.to_mourn_inferior) ()
c906108c
SS
804
805/* Does target have enough data to do a run or attach command? */
806
807#define target_can_run(t) \
0d06e24b 808 ((t)->to_can_run) ()
c906108c
SS
809
810/* post process changes to signal handling in the inferior. */
811
39f77062
KB
812#define target_notice_signals(ptid) \
813 (*current_target.to_notice_signals) (ptid)
c906108c
SS
814
815/* Check to see if a thread is still alive. */
816
39f77062
KB
817#define target_thread_alive(ptid) \
818 (*current_target.to_thread_alive) (ptid)
c906108c 819
b83266a0
SS
820/* Query for new threads and add them to the thread list. */
821
822#define target_find_new_threads() \
0d06e24b 823 (*current_target.to_find_new_threads) (); \
b83266a0 824
0d06e24b
JM
825/* Make target stop in a continuable fashion. (For instance, under
826 Unix, this should act like SIGSTOP). This function is normally
827 used by GUIs to implement a stop button. */
c906108c
SS
828
829#define target_stop current_target.to_stop
830
831/* Queries the target side for some information. The first argument is a
832 letter specifying the type of the query, which is used to determine who
833 should process it. The second argument is a string that specifies which
834 information is desired and the third is a buffer that carries back the
835 response from the target side. The fourth parameter is the size of the
0d06e24b 836 output buffer supplied. */
c5aa993b 837
c906108c 838#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 839 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 840
96baa820
JM
841/* Send the specified COMMAND to the target's monitor
842 (shell,interpreter) for execution. The result of the query is
0d06e24b 843 placed in OUTBUF. */
96baa820
JM
844
845#define target_rcmd(command, outbuf) \
846 (*current_target.to_rcmd) (command, outbuf)
847
848
c906108c
SS
849/* Get the symbol information for a breakpointable routine called when
850 an exception event occurs.
851 Intended mainly for C++, and for those
852 platforms/implementations where such a callback mechanism is available,
853 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 854 different mechanisms for debugging exceptions. */
c906108c
SS
855
856#define target_enable_exception_callback(kind, enable) \
0d06e24b 857 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 858
0d06e24b 859/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 860
c906108c 861#define target_get_current_exception_event() \
0d06e24b 862 (*current_target.to_get_current_exception_event) ()
c906108c
SS
863
864/* Pointer to next target in the chain, e.g. a core file and an exec file. */
865
866#define target_next \
0d06e24b 867 (current_target.to_next)
c906108c
SS
868
869/* Does the target include all of memory, or only part of it? This
870 determines whether we look up the target chain for other parts of
871 memory if this target can't satisfy a request. */
872
873#define target_has_all_memory \
0d06e24b 874 (current_target.to_has_all_memory)
c906108c
SS
875
876/* Does the target include memory? (Dummy targets don't.) */
877
878#define target_has_memory \
0d06e24b 879 (current_target.to_has_memory)
c906108c
SS
880
881/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
882 we start a process.) */
c5aa993b 883
c906108c 884#define target_has_stack \
0d06e24b 885 (current_target.to_has_stack)
c906108c
SS
886
887/* Does the target have registers? (Exec files don't.) */
888
889#define target_has_registers \
0d06e24b 890 (current_target.to_has_registers)
c906108c
SS
891
892/* Does the target have execution? Can we make it jump (through
893 hoops), or pop its stack a few times? FIXME: If this is to work that
894 way, it needs to check whether an inferior actually exists.
895 remote-udi.c and probably other targets can be the current target
896 when the inferior doesn't actually exist at the moment. Right now
897 this just tells us whether this target is *capable* of execution. */
898
899#define target_has_execution \
0d06e24b 900 (current_target.to_has_execution)
c906108c
SS
901
902/* Can the target support the debugger control of thread execution?
903 a) Can it lock the thread scheduler?
904 b) Can it switch the currently running thread? */
905
906#define target_can_lock_scheduler \
0d06e24b 907 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
908
909#define target_can_switch_threads \
0d06e24b 910 (current_target.to_has_thread_control & tc_switch)
c906108c 911
6426a772
JM
912/* Can the target support asynchronous execution? */
913#define target_can_async_p() (current_target.to_can_async_p ())
914
915/* Is the target in asynchronous execution mode? */
916#define target_is_async_p() (current_target.to_is_async_p())
917
918/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
919#define target_async(CALLBACK,CONTEXT) \
920 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 921
ed9a39eb
JM
922/* This is to be used ONLY within run_stack_dummy(). It
923 provides a workaround, to have inferior function calls done in
924 sychronous mode, even though the target is asynchronous. After
925 target_async_mask(0) is called, calls to target_can_async_p() will
926 return FALSE , so that target_resume() will not try to start the
927 target asynchronously. After the inferior stops, we IMMEDIATELY
928 restore the previous nature of the target, by calling
929 target_async_mask(1). After that, target_can_async_p() will return
930 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
931
932 FIXME ezannoni 1999-12-13: we won't need this once we move
933 the turning async on and off to the single execution commands,
0d06e24b 934 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
935
936#define target_async_mask_value \
0d06e24b 937 (current_target.to_async_mask_value)
ed9a39eb
JM
938
939extern int target_async_mask (int mask);
940
a14ed312 941extern void target_link (char *, CORE_ADDR *);
c906108c
SS
942
943/* Converts a process id to a string. Usually, the string just contains
944 `process xyz', but on some systems it may contain
945 `process xyz thread abc'. */
946
ed9a39eb
JM
947#undef target_pid_to_str
948#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
949
950#ifndef target_tid_to_str
951#define target_tid_to_str(PID) \
0d06e24b 952 target_pid_to_str (PID)
39f77062 953extern char *normal_pid_to_str (ptid_t ptid);
c906108c 954#endif
c5aa993b 955
0d06e24b
JM
956/* Return a short string describing extra information about PID,
957 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
958 is okay. */
959
960#define target_extra_thread_info(TP) \
961 (current_target.to_extra_thread_info (TP))
ed9a39eb 962
11cf8741
JM
963/*
964 * New Objfile Event Hook:
965 *
966 * Sometimes a GDB component wants to get notified whenever a new
967 * objfile is loaded. Mainly this is used by thread-debugging
968 * implementations that need to know when symbols for the target
969 * thread implemenation are available.
970 *
971 * The old way of doing this is to define a macro 'target_new_objfile'
972 * that points to the function that you want to be called on every
973 * objfile/shlib load.
974 *
975 * The new way is to grab the function pointer, 'target_new_objfile_hook',
976 * and point it to the function that you want to be called on every
977 * objfile/shlib load.
978 *
979 * If multiple clients are willing to be cooperative, they can each
980 * save a pointer to the previous value of target_new_objfile_hook
981 * before modifying it, and arrange for their function to call the
982 * previous function in the chain. In that way, multiple clients
983 * can receive this notification (something like with signal handlers).
984 */
c906108c 985
507f3c78 986extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
987
988#ifndef target_pid_or_tid_to_str
989#define target_pid_or_tid_to_str(ID) \
0d06e24b 990 target_pid_to_str (ID)
c906108c
SS
991#endif
992
993/* Attempts to find the pathname of the executable file
994 that was run to create a specified process.
995
996 The process PID must be stopped when this operation is used.
c5aa993b 997
c906108c
SS
998 If the executable file cannot be determined, NULL is returned.
999
1000 Else, a pointer to a character string containing the pathname
1001 is returned. This string should be copied into a buffer by
1002 the client if the string will not be immediately used, or if
0d06e24b 1003 it must persist. */
c906108c
SS
1004
1005#define target_pid_to_exec_file(pid) \
0d06e24b 1006 (current_target.to_pid_to_exec_file) (pid)
c906108c 1007
be4d1333
MS
1008/*
1009 * Iterator function for target memory regions.
1010 * Calls a callback function once for each memory region 'mapped'
1011 * in the child process. Defined as a simple macro rather than
1012 * as a function macro so that it can be tested for nullity.
1013 */
1014
1015#define target_find_memory_regions(FUNC, DATA) \
1016 (current_target.to_find_memory_regions) (FUNC, DATA)
1017
1018/*
1019 * Compose corefile .note section.
1020 */
1021
1022#define target_make_corefile_notes(BFD, SIZE_P) \
1023 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1024
9d8a64cb 1025/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
1026
1027#ifndef TARGET_SYMFILE_POSTREAD
1028#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1029#endif
1030
9d8a64cb 1031/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1032 started. */
1033
1034#ifndef TARGET_CREATE_INFERIOR_HOOK
1035#define TARGET_CREATE_INFERIOR_HOOK(PID)
1036#endif
1037
1038/* Hardware watchpoint interfaces. */
1039
1040/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1041 write). */
1042
1043#ifndef STOPPED_BY_WATCHPOINT
1044#define STOPPED_BY_WATCHPOINT(w) 0
1045#endif
1046
1047/* HP-UX supplies these operations, which respectively disable and enable
1048 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1049 on that platform. See wait_for_inferior's use of these. */
1050
c906108c
SS
1051#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1052#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1053#endif
1054
1055#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1056#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1057#endif
1058
0d06e24b 1059/* Provide defaults for systems that don't support hardware watchpoints. */
c906108c
SS
1060
1061#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1062
1063/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1064 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1065 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1066 (including this one?). OTHERTYPE is who knows what... */
1067
1068#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1069
1070#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1071#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
6ab3a9c9 1072 ((LONGEST)(byte_count) <= REGISTER_SIZE)
c906108c
SS
1073#endif
1074
c906108c
SS
1075
1076/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1077 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1078 success, non-zero for failure. */
1079
1080#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1081#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1082
1083#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1084
1085#ifndef target_insert_hw_breakpoint
1086#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1087#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1088#endif
1089
1090#ifndef target_stopped_data_address
1091#define target_stopped_data_address() 0
1092#endif
1093
1094/* If defined, then we need to decr pc by this much after a hardware break-
1095 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1096
1097#ifndef DECR_PC_AFTER_HW_BREAK
1098#define DECR_PC_AFTER_HW_BREAK 0
1099#endif
1100
1101/* Sometimes gdb may pick up what appears to be a valid target address
1102 from a minimal symbol, but the value really means, essentially,
1103 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1104 is run. Therefore, do not attempt to use this as a PC." */
1105
c906108c
SS
1106#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1107#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1108#endif
1109
1110/* This will only be defined by a target that supports catching vfork events,
1111 such as HP-UX.
1112
1113 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1114 child process after it has exec'd, causes the parent process to resume as
1115 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1116 define this to a function that prevents that from happening. */
c906108c
SS
1117#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1118#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1119#endif
1120
1121/* This will only be defined by a target that supports catching vfork events,
1122 such as HP-UX.
1123
1124 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1125 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1126 vfork event will be delivered to us. */
1127
c906108c
SS
1128#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1129#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1130#endif
1131
1132/* Routines for maintenance of the target structures...
1133
1134 add_target: Add a target to the list of all possible targets.
1135
1136 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1137 targets, within its particular stratum of the stack. Result
1138 is 0 if now atop the stack, nonzero if not on top (maybe
1139 should warn user).
c906108c
SS
1140
1141 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1142 no matter where it is on the list. Returns 0 if no
1143 change, 1 if removed from stack.
c906108c 1144
c5aa993b 1145 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1146
a14ed312 1147extern void add_target (struct target_ops *);
c906108c 1148
a14ed312 1149extern int push_target (struct target_ops *);
c906108c 1150
a14ed312 1151extern int unpush_target (struct target_ops *);
c906108c 1152
a14ed312 1153extern void target_preopen (int);
c906108c 1154
a14ed312 1155extern void pop_target (void);
c906108c
SS
1156
1157/* Struct section_table maps address ranges to file sections. It is
1158 mostly used with BFD files, but can be used without (e.g. for handling
1159 raw disks, or files not in formats handled by BFD). */
1160
c5aa993b
JM
1161struct section_table
1162 {
1163 CORE_ADDR addr; /* Lowest address in section */
1164 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1165
c5aa993b 1166 sec_ptr the_bfd_section;
c906108c 1167
c5aa993b
JM
1168 bfd *bfd; /* BFD file pointer */
1169 };
c906108c
SS
1170
1171/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1172 Returns 0 if OK, 1 on error. */
1173
1174extern int
a14ed312 1175build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1176
1177/* From mem-break.c */
1178
a14ed312 1179extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1180
a14ed312 1181extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1182
a14ed312 1183extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1184
a14ed312 1185extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1186
c906108c 1187extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
c906108c
SS
1188
1189
1190/* From target.c */
1191
a14ed312 1192extern void initialize_targets (void);
c906108c 1193
a14ed312 1194extern void noprocess (void);
c906108c 1195
a14ed312 1196extern void find_default_attach (char *, int);
c906108c 1197
a14ed312 1198extern void find_default_require_attach (char *, int);
c906108c 1199
a14ed312 1200extern void find_default_require_detach (int, char *, int);
c906108c 1201
a14ed312 1202extern void find_default_create_inferior (char *, char *, char **);
c906108c 1203
a14ed312 1204extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1205
a14ed312 1206extern struct target_ops *find_run_target (void);
7a292a7a 1207
a14ed312 1208extern struct target_ops *find_core_target (void);
6426a772 1209
a14ed312 1210extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1211
1212extern int
a14ed312 1213target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1214
1215extern void remove_target_sections (bfd *abfd);
1216
c906108c
SS
1217\f
1218/* Stuff that should be shared among the various remote targets. */
1219
1220/* Debugging level. 0 is off, and non-zero values mean to print some debug
1221 information (higher values, more information). */
1222extern int remote_debug;
1223
1224/* Speed in bits per second, or -1 which means don't mess with the speed. */
1225extern int baud_rate;
1226/* Timeout limit for response from target. */
1227extern int remote_timeout;
1228
c906108c
SS
1229\f
1230/* Functions for helping to write a native target. */
1231
1232/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1233extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1234
c2d11a7d 1235/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1236 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1237/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1238 to the shorter target_signal_p() because it is far less ambigious.
1239 In this context ``target_signal'' refers to GDB's internal
1240 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1241 refers to the target operating system's signal. Confused? */
1242
c2d11a7d
JM
1243extern int target_signal_to_host_p (enum target_signal signo);
1244
1245/* Convert between host signal numbers and enum target_signal's.
1246 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1247 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1248/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1249 refering to the target operating system's signal numbering.
1250 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1251 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1252 internal representation of a target operating system's signal. */
1253
a14ed312
KB
1254extern enum target_signal target_signal_from_host (int);
1255extern int target_signal_to_host (enum target_signal);
c906108c
SS
1256
1257/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1258extern enum target_signal target_signal_from_command (int);
c906108c
SS
1259
1260/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1261extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1262\f
1263/* Imported from machine dependent code */
1264
c906108c 1265/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1266void target_ignore (void);
c906108c 1267
c5aa993b 1268#endif /* !defined (TARGET_H) */
This page took 0.26902 seconds and 4 git commands to generate.