* target.h (struct regcache): Add forward declaration.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#if !defined (TARGET_H)
27#define TARGET_H
28
da3331ec
AC
29struct objfile;
30struct ui_file;
31struct mem_attrib;
1e3ff5ad 32struct target_ops;
8181d85f 33struct bp_target_info;
56be3814 34struct regcache;
da3331ec 35
c906108c
SS
36/* This include file defines the interface between the main part
37 of the debugger, and the part which is target-specific, or
38 specific to the communications interface between us and the
39 target.
40
2146d243
RM
41 A TARGET is an interface between the debugger and a particular
42 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
43 so that more than one target can potentially respond to a request.
44 In particular, memory accesses will walk down the stack of targets
45 until they find a target that is interested in handling that particular
46 address. STRATA are artificial boundaries on the stack, within
47 which particular kinds of targets live. Strata exist so that
48 people don't get confused by pushing e.g. a process target and then
49 a file target, and wondering why they can't see the current values
50 of variables any more (the file target is handling them and they
51 never get to the process target). So when you push a file target,
52 it goes into the file stratum, which is always below the process
53 stratum. */
54
55#include "bfd.h"
56#include "symtab.h"
4930751a 57#include "dcache.h"
29e57380 58#include "memattr.h"
fd79ecee 59#include "vec.h"
c906108c 60
c5aa993b
JM
61enum strata
62 {
63 dummy_stratum, /* The lowest of the low */
64 file_stratum, /* Executable files, etc */
65 core_stratum, /* Core dump files */
66 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
67 process_stratum, /* Executing processes */
68 thread_stratum /* Executing threads */
c5aa993b 69 };
c906108c 70
c5aa993b
JM
71enum thread_control_capabilities
72 {
0d06e24b
JM
73 tc_none = 0, /* Default: can't control thread execution. */
74 tc_schedlock = 1, /* Can lock the thread scheduler. */
75 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 76 };
c906108c
SS
77
78/* Stuff for target_wait. */
79
80/* Generally, what has the program done? */
c5aa993b
JM
81enum target_waitkind
82 {
83 /* The program has exited. The exit status is in value.integer. */
84 TARGET_WAITKIND_EXITED,
c906108c 85
0d06e24b
JM
86 /* The program has stopped with a signal. Which signal is in
87 value.sig. */
c5aa993b 88 TARGET_WAITKIND_STOPPED,
c906108c 89
c5aa993b
JM
90 /* The program has terminated with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_SIGNALLED,
c906108c 93
c5aa993b
JM
94 /* The program is letting us know that it dynamically loaded something
95 (e.g. it called load(2) on AIX). */
96 TARGET_WAITKIND_LOADED,
c906108c 97
0d06e24b
JM
98 /* The program has forked. A "related" process' ID is in
99 value.related_pid. I.e., if the child forks, value.related_pid
100 is the parent's ID. */
101
c5aa993b 102 TARGET_WAITKIND_FORKED,
c906108c 103
0d06e24b
JM
104 /* The program has vforked. A "related" process's ID is in
105 value.related_pid. */
106
c5aa993b 107 TARGET_WAITKIND_VFORKED,
c906108c 108
0d06e24b
JM
109 /* The program has exec'ed a new executable file. The new file's
110 pathname is pointed to by value.execd_pathname. */
111
c5aa993b 112 TARGET_WAITKIND_EXECD,
c906108c 113
0d06e24b
JM
114 /* The program has entered or returned from a system call. On
115 HP-UX, this is used in the hardware watchpoint implementation.
116 The syscall's unique integer ID number is in value.syscall_id */
117
c5aa993b
JM
118 TARGET_WAITKIND_SYSCALL_ENTRY,
119 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 120
c5aa993b
JM
121 /* Nothing happened, but we stopped anyway. This perhaps should be handled
122 within target_wait, but I'm not sure target_wait should be resuming the
123 inferior. */
c4093a6a
JM
124 TARGET_WAITKIND_SPURIOUS,
125
8e7d2c16
DJ
126 /* An event has occured, but we should wait again.
127 Remote_async_wait() returns this when there is an event
c4093a6a
JM
128 on the inferior, but the rest of the world is not interested in
129 it. The inferior has not stopped, but has just sent some output
130 to the console, for instance. In this case, we want to go back
131 to the event loop and wait there for another event from the
132 inferior, rather than being stuck in the remote_async_wait()
133 function. This way the event loop is responsive to other events,
0d06e24b 134 like for instance the user typing. */
c4093a6a 135 TARGET_WAITKIND_IGNORE
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
147 int related_pid;
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
2acceee2 154/* Possible types of events that the inferior handler will have to
0d06e24b 155 deal with. */
2acceee2
JM
156enum inferior_event_type
157 {
0d06e24b 158 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
159 INF_QUIT_REQ,
160 /* Process a normal inferior event which will result in target_wait
0d06e24b 161 being called. */
2146d243 162 INF_REG_EVENT,
0d06e24b 163 /* Deal with an error on the inferior. */
2acceee2 164 INF_ERROR,
0d06e24b 165 /* We are called because a timer went off. */
2acceee2 166 INF_TIMER,
0d06e24b 167 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
168 INF_EXEC_COMPLETE,
169 /* We are called to do some stuff after the inferior stops, but we
170 are expected to reenter the proceed() and
171 handle_inferior_event() functions. This is used only in case of
0d06e24b 172 'step n' like commands. */
c2d11a7d 173 INF_EXEC_CONTINUE
2acceee2
JM
174 };
175
c906108c 176/* Return the string for a signal. */
a14ed312 177extern char *target_signal_to_string (enum target_signal);
c906108c
SS
178
179/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 180extern char *target_signal_to_name (enum target_signal);
c906108c
SS
181
182/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 183enum target_signal target_signal_from_name (char *);
c906108c 184\f
13547ab6
DJ
185/* Target objects which can be transfered using target_read,
186 target_write, et cetera. */
1e3ff5ad
AC
187
188enum target_object
189{
1e3ff5ad
AC
190 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
191 TARGET_OBJECT_AVR,
192 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 193 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
194 /* Memory, avoiding GDB's data cache and trusting the executable.
195 Target implementations of to_xfer_partial never need to handle
196 this object, and most callers should not use it. */
197 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
198 /* Kernel Unwind Table. See "ia64-tdep.c". */
199 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
200 /* Transfer auxilliary vector. */
201 TARGET_OBJECT_AUXV,
baf92889 202 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
203 TARGET_OBJECT_WCOOKIE,
204 /* Target memory map in XML format. */
205 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
206 /* Flash memory. This object can be used to write contents to
207 a previously erased flash memory. Using it without erasing
208 flash can have unexpected results. Addresses are physical
209 address on target, and not relative to flash start. */
23181151
DJ
210 TARGET_OBJECT_FLASH,
211 /* Available target-specific features, e.g. registers and coprocessors.
212 See "target-descriptions.c". ANNEX should never be empty. */
213 TARGET_OBJECT_AVAILABLE_FEATURES
2146d243 214 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
215};
216
13547ab6
DJ
217/* Request that OPS transfer up to LEN 8-bit bytes of the target's
218 OBJECT. The OFFSET, for a seekable object, specifies the
219 starting point. The ANNEX can be used to provide additional
220 data-specific information to the target.
1e3ff5ad 221
13547ab6
DJ
222 Return the number of bytes actually transfered, or -1 if the
223 transfer is not supported or otherwise fails. Return of a positive
224 value less than LEN indicates that no further transfer is possible.
225 Unlike the raw to_xfer_partial interface, callers of these
226 functions do not need to retry partial transfers. */
1e3ff5ad 227
1e3ff5ad
AC
228extern LONGEST target_read (struct target_ops *ops,
229 enum target_object object,
1b0ba102 230 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
231 ULONGEST offset, LONGEST len);
232
233extern LONGEST target_write (struct target_ops *ops,
234 enum target_object object,
1b0ba102 235 const char *annex, const gdb_byte *buf,
1e3ff5ad 236 ULONGEST offset, LONGEST len);
b6591e8b 237
a76d924d
DJ
238/* Similar to target_write, except that it also calls PROGRESS with
239 the number of bytes written and the opaque BATON after every
240 successful partial write (and before the first write). This is
241 useful for progress reporting and user interaction while writing
242 data. To abort the transfer, the progress callback can throw an
243 exception. */
244
cf7a04e8
DJ
245LONGEST target_write_with_progress (struct target_ops *ops,
246 enum target_object object,
247 const char *annex, const gdb_byte *buf,
248 ULONGEST offset, LONGEST len,
249 void (*progress) (ULONGEST, void *),
250 void *baton);
251
13547ab6
DJ
252/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
253 be read using OPS. The return value will be -1 if the transfer
254 fails or is not supported; 0 if the object is empty; or the length
255 of the object otherwise. If a positive value is returned, a
256 sufficiently large buffer will be allocated using xmalloc and
257 returned in *BUF_P containing the contents of the object.
258
259 This method should be used for objects sufficiently small to store
260 in a single xmalloc'd buffer, when no fixed bound on the object's
261 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
262 through this function. */
263
264extern LONGEST target_read_alloc (struct target_ops *ops,
265 enum target_object object,
266 const char *annex, gdb_byte **buf_p);
267
159f81f3
DJ
268/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
269 returned as a string, allocated using xmalloc. If an error occurs
270 or the transfer is unsupported, NULL is returned. Empty objects
271 are returned as allocated but empty strings. A warning is issued
272 if the result contains any embedded NUL bytes. */
273
274extern char *target_read_stralloc (struct target_ops *ops,
275 enum target_object object,
276 const char *annex);
277
b6591e8b
AC
278/* Wrappers to target read/write that perform memory transfers. They
279 throw an error if the memory transfer fails.
280
281 NOTE: cagney/2003-10-23: The naming schema is lifted from
282 "frame.h". The parameter order is lifted from get_frame_memory,
283 which in turn lifted it from read_memory. */
284
285extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 286 gdb_byte *buf, LONGEST len);
b6591e8b
AC
287extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
288 CORE_ADDR addr, int len);
1e3ff5ad 289\f
c5aa993b 290
c906108c
SS
291/* If certain kinds of activity happen, target_wait should perform
292 callbacks. */
293/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 294 on TARGET_ACTIVITY_FD. */
c906108c
SS
295extern int target_activity_fd;
296/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 297extern int (*target_activity_function) (void);
c906108c 298\f
0d06e24b
JM
299struct thread_info; /* fwd decl for parameter list below: */
300
c906108c 301struct target_ops
c5aa993b 302 {
258b763a 303 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
304 char *to_shortname; /* Name this target type */
305 char *to_longname; /* Name for printing */
306 char *to_doc; /* Documentation. Does not include trailing
c906108c 307 newline, and starts with a one-line descrip-
0d06e24b 308 tion (probably similar to to_longname). */
bba2d28d
AC
309 /* Per-target scratch pad. */
310 void *to_data;
f1c07ab0
AC
311 /* The open routine takes the rest of the parameters from the
312 command, and (if successful) pushes a new target onto the
313 stack. Targets should supply this routine, if only to provide
314 an error message. */
507f3c78 315 void (*to_open) (char *, int);
f1c07ab0
AC
316 /* Old targets with a static target vector provide "to_close".
317 New re-entrant targets provide "to_xclose" and that is expected
318 to xfree everything (including the "struct target_ops"). */
319 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
320 void (*to_close) (int);
321 void (*to_attach) (char *, int);
322 void (*to_post_attach) (int);
507f3c78 323 void (*to_detach) (char *, int);
597320e7 324 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
325 void (*to_resume) (ptid_t, int, enum target_signal);
326 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
327 void (*to_fetch_registers) (struct regcache *, int);
328 void (*to_store_registers) (struct regcache *, int);
507f3c78 329 void (*to_prepare_to_store) (void);
c5aa993b
JM
330
331 /* Transfer LEN bytes of memory between GDB address MYADDR and
332 target address MEMADDR. If WRITE, transfer them to the target, else
333 transfer them from the target. TARGET is the target from which we
334 get this function.
335
336 Return value, N, is one of the following:
337
338 0 means that we can't handle this. If errno has been set, it is the
339 error which prevented us from doing it (FIXME: What about bfd_error?).
340
341 positive (call it N) means that we have transferred N bytes
342 starting at MEMADDR. We might be able to handle more bytes
343 beyond this length, but no promises.
344
345 negative (call its absolute value N) means that we cannot
346 transfer right at MEMADDR, but we could transfer at least
c8e73a31 347 something at MEMADDR + N.
c5aa993b 348
c8e73a31
AC
349 NOTE: cagney/2004-10-01: This has been entirely superseeded by
350 to_xfer_partial and inferior inheritance. */
351
1b0ba102 352 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
353 int len, int write,
354 struct mem_attrib *attrib,
355 struct target_ops *target);
c906108c 356
507f3c78 357 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
358 int (*to_insert_breakpoint) (struct bp_target_info *);
359 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 360 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
361 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
362 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
363 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
364 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
365 int (*to_stopped_by_watchpoint) (void);
74174d2e 366 int to_have_steppable_watchpoint;
7df1a324 367 int to_have_continuable_watchpoint;
4aa7a7f5 368 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 369 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
370 void (*to_terminal_init) (void);
371 void (*to_terminal_inferior) (void);
372 void (*to_terminal_ours_for_output) (void);
373 void (*to_terminal_ours) (void);
a790ad35 374 void (*to_terminal_save_ours) (void);
507f3c78
KB
375 void (*to_terminal_info) (char *, int);
376 void (*to_kill) (void);
377 void (*to_load) (char *, int);
378 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 379 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 380 void (*to_post_startup_inferior) (ptid_t);
507f3c78 381 void (*to_acknowledge_created_inferior) (int);
fa113d1a 382 void (*to_insert_fork_catchpoint) (int);
507f3c78 383 int (*to_remove_fork_catchpoint) (int);
fa113d1a 384 void (*to_insert_vfork_catchpoint) (int);
507f3c78 385 int (*to_remove_vfork_catchpoint) (int);
ee057212 386 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 387 void (*to_insert_exec_catchpoint) (int);
507f3c78 388 int (*to_remove_exec_catchpoint) (int);
507f3c78 389 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
390 int (*to_has_exited) (int, int, int *);
391 void (*to_mourn_inferior) (void);
392 int (*to_can_run) (void);
39f77062
KB
393 void (*to_notice_signals) (ptid_t ptid);
394 int (*to_thread_alive) (ptid_t ptid);
507f3c78 395 void (*to_find_new_threads) (void);
39f77062 396 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
397 char *(*to_extra_thread_info) (struct thread_info *);
398 void (*to_stop) (void);
d9fcf2fb 399 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
400 struct symtab_and_line *(*to_enable_exception_callback) (enum
401 exception_event_kind,
402 int);
403 struct exception_event_record *(*to_get_current_exception_event) (void);
404 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 405 enum strata to_stratum;
c5aa993b
JM
406 int to_has_all_memory;
407 int to_has_memory;
408 int to_has_stack;
409 int to_has_registers;
410 int to_has_execution;
411 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
412 struct section_table
413 *to_sections;
414 struct section_table
415 *to_sections_end;
6426a772
JM
416 /* ASYNC target controls */
417 int (*to_can_async_p) (void);
418 int (*to_is_async_p) (void);
0d06e24b
JM
419 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
420 void *context);
ed9a39eb 421 int to_async_mask_value;
2146d243
RM
422 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
423 unsigned long,
424 int, int, int,
425 void *),
be4d1333
MS
426 void *);
427 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
428
429 /* Return the thread-local address at OFFSET in the
430 thread-local storage for the thread PTID and the shared library
431 or executable file given by OBJFILE. If that block of
432 thread-local storage hasn't been allocated yet, this function
433 may return an error. */
434 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 435 CORE_ADDR load_module_addr,
3f47be5c
EZ
436 CORE_ADDR offset);
437
13547ab6
DJ
438 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
439 OBJECT. The OFFSET, for a seekable object, specifies the
440 starting point. The ANNEX can be used to provide additional
441 data-specific information to the target.
442
443 Return the number of bytes actually transfered, zero when no
444 further transfer is possible, and -1 when the transfer is not
445 supported. Return of a positive value smaller than LEN does
446 not indicate the end of the object, only the end of the
447 transfer; higher level code should continue transferring if
448 desired. This is handled in target.c.
449
450 The interface does not support a "retry" mechanism. Instead it
451 assumes that at least one byte will be transfered on each
452 successful call.
453
454 NOTE: cagney/2003-10-17: The current interface can lead to
455 fragmented transfers. Lower target levels should not implement
456 hacks, such as enlarging the transfer, in an attempt to
457 compensate for this. Instead, the target stack should be
458 extended so that it implements supply/collect methods and a
459 look-aside object cache. With that available, the lowest
460 target can safely and freely "push" data up the stack.
461
462 See target_read and target_write for more information. One,
463 and only one, of readbuf or writebuf must be non-NULL. */
464
4b8a223f 465 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 466 enum target_object object, const char *annex,
1b0ba102 467 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 468 ULONGEST offset, LONGEST len);
1e3ff5ad 469
fd79ecee
DJ
470 /* Returns the memory map for the target. A return value of NULL
471 means that no memory map is available. If a memory address
472 does not fall within any returned regions, it's assumed to be
473 RAM. The returned memory regions should not overlap.
474
475 The order of regions does not matter; target_memory_map will
476 sort regions by starting address. For that reason, this
477 function should not be called directly except via
478 target_memory_map.
479
480 This method should not cache data; if the memory map could
481 change unexpectedly, it should be invalidated, and higher
482 layers will re-fetch it. */
483 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
484
a76d924d
DJ
485 /* Erases the region of flash memory starting at ADDRESS, of
486 length LENGTH.
487
488 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
489 on flash block boundaries, as reported by 'to_memory_map'. */
490 void (*to_flash_erase) (struct target_ops *,
491 ULONGEST address, LONGEST length);
492
493 /* Finishes a flash memory write sequence. After this operation
494 all flash memory should be available for writing and the result
495 of reading from areas written by 'to_flash_write' should be
496 equal to what was written. */
497 void (*to_flash_done) (struct target_ops *);
498
424163ea
DJ
499 /* Describe the architecture-specific features of this target.
500 Returns the description found, or NULL if no description
501 was available. */
502 const struct target_desc *(*to_read_description) (struct target_ops *ops);
503
c5aa993b 504 int to_magic;
0d06e24b
JM
505 /* Need sub-structure for target machine related rather than comm related?
506 */
c5aa993b 507 };
c906108c
SS
508
509/* Magic number for checking ops size. If a struct doesn't end with this
510 number, somebody changed the declaration but didn't change all the
511 places that initialize one. */
512
513#define OPS_MAGIC 3840
514
515/* The ops structure for our "current" target process. This should
516 never be NULL. If there is no target, it points to the dummy_target. */
517
c5aa993b 518extern struct target_ops current_target;
c906108c 519
c906108c
SS
520/* Define easy words for doing these operations on our current target. */
521
522#define target_shortname (current_target.to_shortname)
523#define target_longname (current_target.to_longname)
524
f1c07ab0
AC
525/* Does whatever cleanup is required for a target that we are no
526 longer going to be calling. QUITTING indicates that GDB is exiting
527 and should not get hung on an error (otherwise it is important to
528 perform clean termination, even if it takes a while). This routine
529 is automatically always called when popping the target off the
530 target stack (to_beneath is undefined). Closing file descriptors
531 and freeing all memory allocated memory are typical things it
532 should do. */
533
534void target_close (struct target_ops *targ, int quitting);
c906108c
SS
535
536/* Attaches to a process on the target side. Arguments are as passed
537 to the `attach' command by the user. This routine can be called
538 when the target is not on the target-stack, if the target_can_run
2146d243 539 routine returns 1; in that case, it must push itself onto the stack.
c906108c 540 Upon exit, the target should be ready for normal operations, and
2146d243 541 should be ready to deliver the status of the process immediately
c906108c
SS
542 (without waiting) to an upcoming target_wait call. */
543
544#define target_attach(args, from_tty) \
0d06e24b 545 (*current_target.to_attach) (args, from_tty)
c906108c
SS
546
547/* The target_attach operation places a process under debugger control,
548 and stops the process.
549
550 This operation provides a target-specific hook that allows the
0d06e24b 551 necessary bookkeeping to be performed after an attach completes. */
c906108c 552#define target_post_attach(pid) \
0d06e24b 553 (*current_target.to_post_attach) (pid)
c906108c 554
c906108c
SS
555/* Takes a program previously attached to and detaches it.
556 The program may resume execution (some targets do, some don't) and will
557 no longer stop on signals, etc. We better not have left any breakpoints
558 in the program or it'll die when it hits one. ARGS is arguments
559 typed by the user (e.g. a signal to send the process). FROM_TTY
560 says whether to be verbose or not. */
561
a14ed312 562extern void target_detach (char *, int);
c906108c 563
6ad8ae5c
DJ
564/* Disconnect from the current target without resuming it (leaving it
565 waiting for a debugger). */
566
567extern void target_disconnect (char *, int);
568
39f77062 569/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
570 single-step or to run free; SIGGNAL is the signal to be given to
571 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
572 pass TARGET_SIGNAL_DEFAULT. */
573
39f77062 574#define target_resume(ptid, step, siggnal) \
4930751a
C
575 do { \
576 dcache_invalidate(target_dcache); \
39f77062 577 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 578 } while (0)
c906108c 579
b5a2688f
AC
580/* Wait for process pid to do something. PTID = -1 to wait for any
581 pid to do something. Return pid of child, or -1 in case of error;
c906108c 582 store status through argument pointer STATUS. Note that it is
b5a2688f 583 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
584 the debugging target from the stack; GDB isn't prepared to get back
585 to the prompt with a debugging target but without the frame cache,
586 stop_pc, etc., set up. */
587
39f77062
KB
588#define target_wait(ptid, status) \
589 (*current_target.to_wait) (ptid, status)
c906108c 590
17dee195 591/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 592
56be3814
UW
593#define target_fetch_registers(regcache, regno) \
594 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
595
596/* Store at least register REGNO, or all regs if REGNO == -1.
597 It can store as many registers as it wants to, so target_prepare_to_store
598 must have been previously called. Calls error() if there are problems. */
599
56be3814
UW
600#define target_store_registers(regcache, regs) \
601 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
602
603/* Get ready to modify the registers array. On machines which store
604 individual registers, this doesn't need to do anything. On machines
605 which store all the registers in one fell swoop, this makes sure
606 that REGISTERS contains all the registers from the program being
607 debugged. */
608
609#define target_prepare_to_store() \
0d06e24b 610 (*current_target.to_prepare_to_store) ()
c906108c 611
4930751a
C
612extern DCACHE *target_dcache;
613
a14ed312 614extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 615
fc1a4b47 616extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 617
fc1a4b47 618extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 619 int len);
c906108c 620
1b0ba102 621extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 622 struct mem_attrib *, struct target_ops *);
c906108c 623
6c932e54 624extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 625 struct mem_attrib *, struct target_ops *);
c906108c 626
fd79ecee
DJ
627/* Fetches the target's memory map. If one is found it is sorted
628 and returned, after some consistency checking. Otherwise, NULL
629 is returned. */
630VEC(mem_region_s) *target_memory_map (void);
631
a76d924d
DJ
632/* Erase the specified flash region. */
633void target_flash_erase (ULONGEST address, LONGEST length);
634
635/* Finish a sequence of flash operations. */
636void target_flash_done (void);
637
638/* Describes a request for a memory write operation. */
639struct memory_write_request
640 {
641 /* Begining address that must be written. */
642 ULONGEST begin;
643 /* Past-the-end address. */
644 ULONGEST end;
645 /* The data to write. */
646 gdb_byte *data;
647 /* A callback baton for progress reporting for this request. */
648 void *baton;
649 };
650typedef struct memory_write_request memory_write_request_s;
651DEF_VEC_O(memory_write_request_s);
652
653/* Enumeration specifying different flash preservation behaviour. */
654enum flash_preserve_mode
655 {
656 flash_preserve,
657 flash_discard
658 };
659
660/* Write several memory blocks at once. This version can be more
661 efficient than making several calls to target_write_memory, in
662 particular because it can optimize accesses to flash memory.
663
664 Moreover, this is currently the only memory access function in gdb
665 that supports writing to flash memory, and it should be used for
666 all cases where access to flash memory is desirable.
667
668 REQUESTS is the vector (see vec.h) of memory_write_request.
669 PRESERVE_FLASH_P indicates what to do with blocks which must be
670 erased, but not completely rewritten.
671 PROGRESS_CB is a function that will be periodically called to provide
672 feedback to user. It will be called with the baton corresponding
673 to the request currently being written. It may also be called
674 with a NULL baton, when preserved flash sectors are being rewritten.
675
676 The function returns 0 on success, and error otherwise. */
677int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
678 enum flash_preserve_mode preserve_flash_p,
679 void (*progress_cb) (ULONGEST, void *));
680
681
a14ed312 682extern char *child_pid_to_exec_file (int);
c906108c 683
a14ed312 684extern char *child_core_file_to_sym_file (char *);
c906108c
SS
685
686#if defined(CHILD_POST_ATTACH)
a14ed312 687extern void child_post_attach (int);
c906108c
SS
688#endif
689
39f77062 690extern void child_post_startup_inferior (ptid_t);
c906108c 691
a14ed312 692extern void child_acknowledge_created_inferior (int);
c906108c 693
fa113d1a 694extern void child_insert_fork_catchpoint (int);
c906108c 695
a14ed312 696extern int child_remove_fork_catchpoint (int);
c906108c 697
fa113d1a 698extern void child_insert_vfork_catchpoint (int);
c906108c 699
a14ed312 700extern int child_remove_vfork_catchpoint (int);
c906108c 701
a14ed312 702extern void child_acknowledge_created_inferior (int);
c906108c 703
ee057212 704extern int child_follow_fork (struct target_ops *, int);
c906108c 705
fa113d1a 706extern void child_insert_exec_catchpoint (int);
c906108c 707
a14ed312 708extern int child_remove_exec_catchpoint (int);
c906108c 709
a14ed312 710extern int child_reported_exec_events_per_exec_call (void);
c906108c 711
a14ed312 712extern int child_has_exited (int, int, int *);
c906108c 713
39f77062 714extern int child_thread_alive (ptid_t);
c906108c 715
47932f85
DJ
716/* From infrun.c. */
717
718extern int inferior_has_forked (int pid, int *child_pid);
719
720extern int inferior_has_vforked (int pid, int *child_pid);
721
722extern int inferior_has_execd (int pid, char **execd_pathname);
723
c906108c
SS
724/* From exec.c */
725
a14ed312 726extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
727
728/* Print a line about the current target. */
729
730#define target_files_info() \
0d06e24b 731 (*current_target.to_files_info) (&current_target)
c906108c 732
8181d85f
DJ
733/* Insert a breakpoint at address BP_TGT->placed_address in the target
734 machine. Result is 0 for success, or an errno value. */
c906108c 735
8181d85f
DJ
736#define target_insert_breakpoint(bp_tgt) \
737 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 738
8181d85f
DJ
739/* Remove a breakpoint at address BP_TGT->placed_address in the target
740 machine. Result is 0 for success, or an errno value. */
c906108c 741
8181d85f
DJ
742#define target_remove_breakpoint(bp_tgt) \
743 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
744
745/* Initialize the terminal settings we record for the inferior,
746 before we actually run the inferior. */
747
748#define target_terminal_init() \
0d06e24b 749 (*current_target.to_terminal_init) ()
c906108c
SS
750
751/* Put the inferior's terminal settings into effect.
752 This is preparation for starting or resuming the inferior. */
753
754#define target_terminal_inferior() \
0d06e24b 755 (*current_target.to_terminal_inferior) ()
c906108c
SS
756
757/* Put some of our terminal settings into effect,
758 enough to get proper results from our output,
759 but do not change into or out of RAW mode
760 so that no input is discarded.
761
762 After doing this, either terminal_ours or terminal_inferior
763 should be called to get back to a normal state of affairs. */
764
765#define target_terminal_ours_for_output() \
0d06e24b 766 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
767
768/* Put our terminal settings into effect.
769 First record the inferior's terminal settings
770 so they can be restored properly later. */
771
772#define target_terminal_ours() \
0d06e24b 773 (*current_target.to_terminal_ours) ()
c906108c 774
a790ad35
SC
775/* Save our terminal settings.
776 This is called from TUI after entering or leaving the curses
777 mode. Since curses modifies our terminal this call is here
778 to take this change into account. */
779
780#define target_terminal_save_ours() \
781 (*current_target.to_terminal_save_ours) ()
782
c906108c
SS
783/* Print useful information about our terminal status, if such a thing
784 exists. */
785
786#define target_terminal_info(arg, from_tty) \
0d06e24b 787 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
788
789/* Kill the inferior process. Make it go away. */
790
791#define target_kill() \
0d06e24b 792 (*current_target.to_kill) ()
c906108c 793
0d06e24b
JM
794/* Load an executable file into the target process. This is expected
795 to not only bring new code into the target process, but also to
1986bccd
AS
796 update GDB's symbol tables to match.
797
798 ARG contains command-line arguments, to be broken down with
799 buildargv (). The first non-switch argument is the filename to
800 load, FILE; the second is a number (as parsed by strtoul (..., ...,
801 0)), which is an offset to apply to the load addresses of FILE's
802 sections. The target may define switches, or other non-switch
803 arguments, as it pleases. */
c906108c 804
11cf8741 805extern void target_load (char *arg, int from_tty);
c906108c
SS
806
807/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
808 name. ADDRP is a CORE_ADDR * pointing to where the value of the
809 symbol should be returned. The result is 0 if successful, nonzero
810 if the symbol does not exist in the target environment. This
811 function should not call error() if communication with the target
812 is interrupted, since it is called from symbol reading, but should
813 return nonzero, possibly doing a complain(). */
c906108c 814
0d06e24b
JM
815#define target_lookup_symbol(name, addrp) \
816 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 817
39f77062 818/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
819 EXEC_FILE is the file to run.
820 ALLARGS is a string containing the arguments to the program.
821 ENV is the environment vector to pass. Errors reported with error().
822 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 823
c27cda74
AC
824#define target_create_inferior(exec_file, args, env, FROM_TTY) \
825 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
826
827
828/* Some targets (such as ttrace-based HPUX) don't allow us to request
829 notification of inferior events such as fork and vork immediately
830 after the inferior is created. (This because of how gdb gets an
831 inferior created via invoking a shell to do it. In such a scenario,
832 if the shell init file has commands in it, the shell will fork and
833 exec for each of those commands, and we will see each such fork
834 event. Very bad.)
c5aa993b 835
0d06e24b
JM
836 Such targets will supply an appropriate definition for this function. */
837
39f77062
KB
838#define target_post_startup_inferior(ptid) \
839 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
840
841/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
842 some synchronization between gdb and the new inferior process, PID. */
843
c906108c 844#define target_acknowledge_created_inferior(pid) \
0d06e24b 845 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 846
0d06e24b
JM
847/* On some targets, we can catch an inferior fork or vfork event when
848 it occurs. These functions insert/remove an already-created
849 catchpoint for such events. */
c906108c 850
c906108c 851#define target_insert_fork_catchpoint(pid) \
0d06e24b 852 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
853
854#define target_remove_fork_catchpoint(pid) \
0d06e24b 855 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
856
857#define target_insert_vfork_catchpoint(pid) \
0d06e24b 858 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
859
860#define target_remove_vfork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 862
6604731b
DJ
863/* If the inferior forks or vforks, this function will be called at
864 the next resume in order to perform any bookkeeping and fiddling
865 necessary to continue debugging either the parent or child, as
866 requested, and releasing the other. Information about the fork
867 or vfork event is available via get_last_target_status ().
868 This function returns 1 if the inferior should not be resumed
869 (i.e. there is another event pending). */
0d06e24b 870
ee057212 871int target_follow_fork (int follow_child);
c906108c
SS
872
873/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
874 occurs. These functions insert/remove an already-created
875 catchpoint for such events. */
876
c906108c 877#define target_insert_exec_catchpoint(pid) \
0d06e24b 878 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 879
c906108c 880#define target_remove_exec_catchpoint(pid) \
0d06e24b 881 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 882
c906108c
SS
883/* Returns the number of exec events that are reported when a process
884 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
885 events are being reported. */
886
c906108c 887#define target_reported_exec_events_per_exec_call() \
0d06e24b 888 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 889
c906108c 890/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
891 exit code of PID, if any. */
892
c906108c 893#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 894 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
895
896/* The debugger has completed a blocking wait() call. There is now
2146d243 897 some process event that must be processed. This function should
c906108c 898 be defined by those targets that require the debugger to perform
0d06e24b 899 cleanup or internal state changes in response to the process event. */
c906108c
SS
900
901/* The inferior process has died. Do what is right. */
902
903#define target_mourn_inferior() \
0d06e24b 904 (*current_target.to_mourn_inferior) ()
c906108c
SS
905
906/* Does target have enough data to do a run or attach command? */
907
908#define target_can_run(t) \
0d06e24b 909 ((t)->to_can_run) ()
c906108c
SS
910
911/* post process changes to signal handling in the inferior. */
912
39f77062
KB
913#define target_notice_signals(ptid) \
914 (*current_target.to_notice_signals) (ptid)
c906108c
SS
915
916/* Check to see if a thread is still alive. */
917
39f77062
KB
918#define target_thread_alive(ptid) \
919 (*current_target.to_thread_alive) (ptid)
c906108c 920
b83266a0
SS
921/* Query for new threads and add them to the thread list. */
922
923#define target_find_new_threads() \
0d06e24b 924 (*current_target.to_find_new_threads) (); \
b83266a0 925
0d06e24b
JM
926/* Make target stop in a continuable fashion. (For instance, under
927 Unix, this should act like SIGSTOP). This function is normally
928 used by GUIs to implement a stop button. */
c906108c
SS
929
930#define target_stop current_target.to_stop
931
96baa820
JM
932/* Send the specified COMMAND to the target's monitor
933 (shell,interpreter) for execution. The result of the query is
0d06e24b 934 placed in OUTBUF. */
96baa820
JM
935
936#define target_rcmd(command, outbuf) \
937 (*current_target.to_rcmd) (command, outbuf)
938
939
c906108c 940/* Get the symbol information for a breakpointable routine called when
2146d243 941 an exception event occurs.
c906108c
SS
942 Intended mainly for C++, and for those
943 platforms/implementations where such a callback mechanism is available,
944 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 945 different mechanisms for debugging exceptions. */
c906108c
SS
946
947#define target_enable_exception_callback(kind, enable) \
0d06e24b 948 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 949
0d06e24b 950/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 951
c906108c 952#define target_get_current_exception_event() \
0d06e24b 953 (*current_target.to_get_current_exception_event) ()
c906108c 954
c906108c
SS
955/* Does the target include all of memory, or only part of it? This
956 determines whether we look up the target chain for other parts of
957 memory if this target can't satisfy a request. */
958
959#define target_has_all_memory \
0d06e24b 960 (current_target.to_has_all_memory)
c906108c
SS
961
962/* Does the target include memory? (Dummy targets don't.) */
963
964#define target_has_memory \
0d06e24b 965 (current_target.to_has_memory)
c906108c
SS
966
967/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
968 we start a process.) */
c5aa993b 969
c906108c 970#define target_has_stack \
0d06e24b 971 (current_target.to_has_stack)
c906108c
SS
972
973/* Does the target have registers? (Exec files don't.) */
974
975#define target_has_registers \
0d06e24b 976 (current_target.to_has_registers)
c906108c
SS
977
978/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
979 hoops), or pop its stack a few times? This means that the current
980 target is currently executing; for some targets, that's the same as
981 whether or not the target is capable of execution, but there are
982 also targets which can be current while not executing. In that
983 case this will become true after target_create_inferior or
984 target_attach. */
c906108c
SS
985
986#define target_has_execution \
0d06e24b 987 (current_target.to_has_execution)
c906108c
SS
988
989/* Can the target support the debugger control of thread execution?
990 a) Can it lock the thread scheduler?
991 b) Can it switch the currently running thread? */
992
993#define target_can_lock_scheduler \
0d06e24b 994 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
995
996#define target_can_switch_threads \
0d06e24b 997 (current_target.to_has_thread_control & tc_switch)
c906108c 998
6426a772
JM
999/* Can the target support asynchronous execution? */
1000#define target_can_async_p() (current_target.to_can_async_p ())
1001
1002/* Is the target in asynchronous execution mode? */
1003#define target_is_async_p() (current_target.to_is_async_p())
1004
1005/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1006#define target_async(CALLBACK,CONTEXT) \
1007 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1008
04714b91
AC
1009/* This is to be used ONLY within call_function_by_hand(). It provides
1010 a workaround, to have inferior function calls done in sychronous
1011 mode, even though the target is asynchronous. After
ed9a39eb
JM
1012 target_async_mask(0) is called, calls to target_can_async_p() will
1013 return FALSE , so that target_resume() will not try to start the
1014 target asynchronously. After the inferior stops, we IMMEDIATELY
1015 restore the previous nature of the target, by calling
1016 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1017 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1018
1019 FIXME ezannoni 1999-12-13: we won't need this once we move
1020 the turning async on and off to the single execution commands,
0d06e24b 1021 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1022
1023#define target_async_mask_value \
0d06e24b 1024 (current_target.to_async_mask_value)
ed9a39eb 1025
2146d243 1026extern int target_async_mask (int mask);
ed9a39eb 1027
c906108c
SS
1028/* Converts a process id to a string. Usually, the string just contains
1029 `process xyz', but on some systems it may contain
1030 `process xyz thread abc'. */
1031
ed9a39eb
JM
1032#undef target_pid_to_str
1033#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1034
1035#ifndef target_tid_to_str
1036#define target_tid_to_str(PID) \
0d06e24b 1037 target_pid_to_str (PID)
39f77062 1038extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1039#endif
c5aa993b 1040
0d06e24b
JM
1041/* Return a short string describing extra information about PID,
1042 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1043 is okay. */
1044
1045#define target_extra_thread_info(TP) \
1046 (current_target.to_extra_thread_info (TP))
ed9a39eb 1047
11cf8741
JM
1048/*
1049 * New Objfile Event Hook:
1050 *
1051 * Sometimes a GDB component wants to get notified whenever a new
2146d243 1052 * objfile is loaded. Mainly this is used by thread-debugging
11cf8741
JM
1053 * implementations that need to know when symbols for the target
1054 * thread implemenation are available.
1055 *
1056 * The old way of doing this is to define a macro 'target_new_objfile'
1057 * that points to the function that you want to be called on every
1058 * objfile/shlib load.
9a4105ab
AC
1059
1060 The new way is to grab the function pointer,
1061 'deprecated_target_new_objfile_hook', and point it to the function
1062 that you want to be called on every objfile/shlib load.
1063
1064 If multiple clients are willing to be cooperative, they can each
1065 save a pointer to the previous value of
1066 deprecated_target_new_objfile_hook before modifying it, and arrange
1067 for their function to call the previous function in the chain. In
1068 that way, multiple clients can receive this notification (something
1069 like with signal handlers). */
1070
1071extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c
SS
1072
1073#ifndef target_pid_or_tid_to_str
1074#define target_pid_or_tid_to_str(ID) \
0d06e24b 1075 target_pid_to_str (ID)
c906108c
SS
1076#endif
1077
1078/* Attempts to find the pathname of the executable file
1079 that was run to create a specified process.
1080
1081 The process PID must be stopped when this operation is used.
c5aa993b 1082
c906108c
SS
1083 If the executable file cannot be determined, NULL is returned.
1084
1085 Else, a pointer to a character string containing the pathname
1086 is returned. This string should be copied into a buffer by
1087 the client if the string will not be immediately used, or if
0d06e24b 1088 it must persist. */
c906108c
SS
1089
1090#define target_pid_to_exec_file(pid) \
0d06e24b 1091 (current_target.to_pid_to_exec_file) (pid)
c906108c 1092
be4d1333
MS
1093/*
1094 * Iterator function for target memory regions.
1095 * Calls a callback function once for each memory region 'mapped'
1096 * in the child process. Defined as a simple macro rather than
2146d243 1097 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1098 */
1099
1100#define target_find_memory_regions(FUNC, DATA) \
1101 (current_target.to_find_memory_regions) (FUNC, DATA)
1102
1103/*
1104 * Compose corefile .note section.
1105 */
1106
1107#define target_make_corefile_notes(BFD, SIZE_P) \
1108 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1109
3f47be5c
EZ
1110/* Thread-local values. */
1111#define target_get_thread_local_address \
1112 (current_target.to_get_thread_local_address)
1113#define target_get_thread_local_address_p() \
1114 (target_get_thread_local_address != NULL)
1115
c906108c
SS
1116
1117/* Hardware watchpoint interfaces. */
1118
1119/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1120 write). */
1121
1122#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1123#define STOPPED_BY_WATCHPOINT(w) \
1124 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1125#endif
7df1a324 1126
74174d2e
UW
1127/* Non-zero if we have steppable watchpoints */
1128
1129#ifndef HAVE_STEPPABLE_WATCHPOINT
1130#define HAVE_STEPPABLE_WATCHPOINT \
1131 (current_target.to_have_steppable_watchpoint)
1132#endif
1133
7df1a324
KW
1134/* Non-zero if we have continuable watchpoints */
1135
1136#ifndef HAVE_CONTINUABLE_WATCHPOINT
1137#define HAVE_CONTINUABLE_WATCHPOINT \
1138 (current_target.to_have_continuable_watchpoint)
1139#endif
c906108c 1140
ccaa32c7 1141/* Provide defaults for hardware watchpoint functions. */
c906108c 1142
2146d243 1143/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1144 elsewhere use the definitions in the target vector. */
c906108c
SS
1145
1146/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1147 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1148 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1149 (including this one?). OTHERTYPE is who knows what... */
1150
ccaa32c7
GS
1151#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1152#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1153 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1154#endif
c906108c 1155
e0d24f8d
WZ
1156#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1157#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1158 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1159#endif
1160
c906108c
SS
1161
1162/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1163 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1164 success, non-zero for failure. */
1165
ccaa32c7
GS
1166#ifndef target_insert_watchpoint
1167#define target_insert_watchpoint(addr, len, type) \
1168 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1169
ccaa32c7
GS
1170#define target_remove_watchpoint(addr, len, type) \
1171 (*current_target.to_remove_watchpoint) (addr, len, type)
1172#endif
c906108c
SS
1173
1174#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1175#define target_insert_hw_breakpoint(bp_tgt) \
1176 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1177
8181d85f
DJ
1178#define target_remove_hw_breakpoint(bp_tgt) \
1179 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1180#endif
1181
4aa7a7f5
JJ
1182extern int target_stopped_data_address_p (struct target_ops *);
1183
c906108c 1184#ifndef target_stopped_data_address
4aa7a7f5
JJ
1185#define target_stopped_data_address(target, x) \
1186 (*target.to_stopped_data_address) (target, x)
1187#else
1188/* Horrible hack to get around existing macros :-(. */
1189#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1190#endif
1191
424163ea
DJ
1192extern const struct target_desc *target_read_description (struct target_ops *);
1193
c906108c
SS
1194/* Routines for maintenance of the target structures...
1195
1196 add_target: Add a target to the list of all possible targets.
1197
1198 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1199 targets, within its particular stratum of the stack. Result
1200 is 0 if now atop the stack, nonzero if not on top (maybe
1201 should warn user).
c906108c
SS
1202
1203 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1204 no matter where it is on the list. Returns 0 if no
1205 change, 1 if removed from stack.
c906108c 1206
c5aa993b 1207 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1208
a14ed312 1209extern void add_target (struct target_ops *);
c906108c 1210
a14ed312 1211extern int push_target (struct target_ops *);
c906108c 1212
a14ed312 1213extern int unpush_target (struct target_ops *);
c906108c 1214
fd79ecee
DJ
1215extern void target_pre_inferior (int);
1216
a14ed312 1217extern void target_preopen (int);
c906108c 1218
a14ed312 1219extern void pop_target (void);
c906108c 1220
9e35dae4
DJ
1221extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1222 CORE_ADDR offset);
1223
52bb452f
DJ
1224/* Mark a pushed target as running or exited, for targets which do not
1225 automatically pop when not active. */
1226
1227void target_mark_running (struct target_ops *);
1228
1229void target_mark_exited (struct target_ops *);
1230
c906108c
SS
1231/* Struct section_table maps address ranges to file sections. It is
1232 mostly used with BFD files, but can be used without (e.g. for handling
1233 raw disks, or files not in formats handled by BFD). */
1234
c5aa993b
JM
1235struct section_table
1236 {
1237 CORE_ADDR addr; /* Lowest address in section */
1238 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1239
7be0c536 1240 struct bfd_section *the_bfd_section;
c906108c 1241
c5aa993b
JM
1242 bfd *bfd; /* BFD file pointer */
1243 };
c906108c 1244
8db32d44
AC
1245/* Return the "section" containing the specified address. */
1246struct section_table *target_section_by_addr (struct target_ops *target,
1247 CORE_ADDR addr);
1248
1249
c906108c
SS
1250/* From mem-break.c */
1251
8181d85f 1252extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1253
8181d85f 1254extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1255
8181d85f 1256extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1257
8181d85f 1258extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1259
c906108c
SS
1260
1261/* From target.c */
1262
a14ed312 1263extern void initialize_targets (void);
c906108c 1264
a14ed312 1265extern void noprocess (void);
c906108c 1266
a14ed312 1267extern void find_default_attach (char *, int);
c906108c 1268
c27cda74 1269extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1270
a14ed312 1271extern struct target_ops *find_run_target (void);
7a292a7a 1272
a14ed312 1273extern struct target_ops *find_core_target (void);
6426a772 1274
a14ed312 1275extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1276
570b8f7c
AC
1277extern int target_resize_to_sections (struct target_ops *target,
1278 int num_added);
07cd4b97
JB
1279
1280extern void remove_target_sections (bfd *abfd);
1281
c906108c
SS
1282\f
1283/* Stuff that should be shared among the various remote targets. */
1284
1285/* Debugging level. 0 is off, and non-zero values mean to print some debug
1286 information (higher values, more information). */
1287extern int remote_debug;
1288
1289/* Speed in bits per second, or -1 which means don't mess with the speed. */
1290extern int baud_rate;
1291/* Timeout limit for response from target. */
1292extern int remote_timeout;
1293
c906108c
SS
1294\f
1295/* Functions for helping to write a native target. */
1296
1297/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1298extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1299
c2d11a7d 1300/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1301 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1302/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1303 to the shorter target_signal_p() because it is far less ambigious.
1304 In this context ``target_signal'' refers to GDB's internal
1305 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1306 refers to the target operating system's signal. Confused? */
1307
c2d11a7d
JM
1308extern int target_signal_to_host_p (enum target_signal signo);
1309
1310/* Convert between host signal numbers and enum target_signal's.
1311 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1312 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1313/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1314 refering to the target operating system's signal numbering.
1315 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1316 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1317 internal representation of a target operating system's signal. */
1318
a14ed312
KB
1319extern enum target_signal target_signal_from_host (int);
1320extern int target_signal_to_host (enum target_signal);
c906108c
SS
1321
1322/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1323extern enum target_signal target_signal_from_command (int);
c906108c
SS
1324
1325/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1326extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1327\f
1328/* Imported from machine dependent code */
1329
c906108c 1330/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1331void target_ignore (void);
c906108c 1332
1df84f13 1333extern struct target_ops deprecated_child_ops;
5ac10fd1 1334
c5aa993b 1335#endif /* !defined (TARGET_H) */
This page took 1.089898 seconds and 4 git commands to generate.