* i386-tdep.c (i386_displaced_step_fixup): Condition log printing
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
0d06e24b
JM
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
0d06e24b
JM
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
c4093a6a 131 TARGET_WAITKIND_IGNORE
c906108c
SS
132 };
133
c5aa993b
JM
134struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
c906108c 149
2acceee2 150/* Possible types of events that the inferior handler will have to
0d06e24b 151 deal with. */
2acceee2
JM
152enum inferior_event_type
153 {
0d06e24b 154 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
0d06e24b 157 being called. */
2146d243 158 INF_REG_EVENT,
0d06e24b 159 /* Deal with an error on the inferior. */
2acceee2 160 INF_ERROR,
0d06e24b 161 /* We are called because a timer went off. */
2acceee2 162 INF_TIMER,
0d06e24b 163 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
0d06e24b 168 'step n' like commands. */
c2d11a7d 169 INF_EXEC_CONTINUE
2acceee2
JM
170 };
171
c906108c 172/* Return the string for a signal. */
a14ed312 173extern char *target_signal_to_string (enum target_signal);
c906108c
SS
174
175/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 176extern char *target_signal_to_name (enum target_signal);
c906108c
SS
177
178/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 179enum target_signal target_signal_from_name (char *);
c906108c 180\f
13547ab6
DJ
181/* Target objects which can be transfered using target_read,
182 target_write, et cetera. */
1e3ff5ad
AC
183
184enum target_object
185{
1e3ff5ad
AC
186 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
187 TARGET_OBJECT_AVR,
23d964e7
UW
188 /* SPU target specific transfer. See "spu-tdep.c". */
189 TARGET_OBJECT_SPU,
1e3ff5ad 190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 191 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
baf92889 200 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
201 TARGET_OBJECT_WCOOKIE,
202 /* Target memory map in XML format. */
203 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
204 /* Flash memory. This object can be used to write contents to
205 a previously erased flash memory. Using it without erasing
206 flash can have unexpected results. Addresses are physical
207 address on target, and not relative to flash start. */
23181151
DJ
208 TARGET_OBJECT_FLASH,
209 /* Available target-specific features, e.g. registers and coprocessors.
210 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
211 TARGET_OBJECT_AVAILABLE_FEATURES,
212 /* Currently loaded libraries, in XML format. */
213 TARGET_OBJECT_LIBRARIES
2146d243 214 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
215};
216
13547ab6
DJ
217/* Request that OPS transfer up to LEN 8-bit bytes of the target's
218 OBJECT. The OFFSET, for a seekable object, specifies the
219 starting point. The ANNEX can be used to provide additional
220 data-specific information to the target.
1e3ff5ad 221
13547ab6
DJ
222 Return the number of bytes actually transfered, or -1 if the
223 transfer is not supported or otherwise fails. Return of a positive
224 value less than LEN indicates that no further transfer is possible.
225 Unlike the raw to_xfer_partial interface, callers of these
226 functions do not need to retry partial transfers. */
1e3ff5ad 227
1e3ff5ad
AC
228extern LONGEST target_read (struct target_ops *ops,
229 enum target_object object,
1b0ba102 230 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
231 ULONGEST offset, LONGEST len);
232
d5086790
VP
233extern LONGEST target_read_until_error (struct target_ops *ops,
234 enum target_object object,
235 const char *annex, gdb_byte *buf,
236 ULONGEST offset, LONGEST len);
237
1e3ff5ad
AC
238extern LONGEST target_write (struct target_ops *ops,
239 enum target_object object,
1b0ba102 240 const char *annex, const gdb_byte *buf,
1e3ff5ad 241 ULONGEST offset, LONGEST len);
b6591e8b 242
a76d924d
DJ
243/* Similar to target_write, except that it also calls PROGRESS with
244 the number of bytes written and the opaque BATON after every
245 successful partial write (and before the first write). This is
246 useful for progress reporting and user interaction while writing
247 data. To abort the transfer, the progress callback can throw an
248 exception. */
249
cf7a04e8
DJ
250LONGEST target_write_with_progress (struct target_ops *ops,
251 enum target_object object,
252 const char *annex, const gdb_byte *buf,
253 ULONGEST offset, LONGEST len,
254 void (*progress) (ULONGEST, void *),
255 void *baton);
256
13547ab6
DJ
257/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
258 be read using OPS. The return value will be -1 if the transfer
259 fails or is not supported; 0 if the object is empty; or the length
260 of the object otherwise. If a positive value is returned, a
261 sufficiently large buffer will be allocated using xmalloc and
262 returned in *BUF_P containing the contents of the object.
263
264 This method should be used for objects sufficiently small to store
265 in a single xmalloc'd buffer, when no fixed bound on the object's
266 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
267 through this function. */
268
269extern LONGEST target_read_alloc (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte **buf_p);
272
159f81f3
DJ
273/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
274 returned as a string, allocated using xmalloc. If an error occurs
275 or the transfer is unsupported, NULL is returned. Empty objects
276 are returned as allocated but empty strings. A warning is issued
277 if the result contains any embedded NUL bytes. */
278
279extern char *target_read_stralloc (struct target_ops *ops,
280 enum target_object object,
281 const char *annex);
282
b6591e8b
AC
283/* Wrappers to target read/write that perform memory transfers. They
284 throw an error if the memory transfer fails.
285
286 NOTE: cagney/2003-10-23: The naming schema is lifted from
287 "frame.h". The parameter order is lifted from get_frame_memory,
288 which in turn lifted it from read_memory. */
289
290extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 291 gdb_byte *buf, LONGEST len);
b6591e8b
AC
292extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
293 CORE_ADDR addr, int len);
1e3ff5ad 294\f
c5aa993b 295
c906108c
SS
296/* If certain kinds of activity happen, target_wait should perform
297 callbacks. */
298/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 299 on TARGET_ACTIVITY_FD. */
c906108c
SS
300extern int target_activity_fd;
301/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 302extern int (*target_activity_function) (void);
c906108c 303\f
0d06e24b
JM
304struct thread_info; /* fwd decl for parameter list below: */
305
c906108c 306struct target_ops
c5aa993b 307 {
258b763a 308 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
309 char *to_shortname; /* Name this target type */
310 char *to_longname; /* Name for printing */
311 char *to_doc; /* Documentation. Does not include trailing
c906108c 312 newline, and starts with a one-line descrip-
0d06e24b 313 tion (probably similar to to_longname). */
bba2d28d
AC
314 /* Per-target scratch pad. */
315 void *to_data;
f1c07ab0
AC
316 /* The open routine takes the rest of the parameters from the
317 command, and (if successful) pushes a new target onto the
318 stack. Targets should supply this routine, if only to provide
319 an error message. */
507f3c78 320 void (*to_open) (char *, int);
f1c07ab0
AC
321 /* Old targets with a static target vector provide "to_close".
322 New re-entrant targets provide "to_xclose" and that is expected
323 to xfree everything (including the "struct target_ops"). */
324 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
325 void (*to_close) (int);
326 void (*to_attach) (char *, int);
327 void (*to_post_attach) (int);
507f3c78 328 void (*to_detach) (char *, int);
597320e7 329 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
330 void (*to_resume) (ptid_t, int, enum target_signal);
331 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
332 void (*to_fetch_registers) (struct regcache *, int);
333 void (*to_store_registers) (struct regcache *, int);
316f2060 334 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
335
336 /* Transfer LEN bytes of memory between GDB address MYADDR and
337 target address MEMADDR. If WRITE, transfer them to the target, else
338 transfer them from the target. TARGET is the target from which we
339 get this function.
340
341 Return value, N, is one of the following:
342
343 0 means that we can't handle this. If errno has been set, it is the
344 error which prevented us from doing it (FIXME: What about bfd_error?).
345
346 positive (call it N) means that we have transferred N bytes
347 starting at MEMADDR. We might be able to handle more bytes
348 beyond this length, but no promises.
349
350 negative (call its absolute value N) means that we cannot
351 transfer right at MEMADDR, but we could transfer at least
c8e73a31 352 something at MEMADDR + N.
c5aa993b 353
c8e73a31
AC
354 NOTE: cagney/2004-10-01: This has been entirely superseeded by
355 to_xfer_partial and inferior inheritance. */
356
1b0ba102 357 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
358 int len, int write,
359 struct mem_attrib *attrib,
360 struct target_ops *target);
c906108c 361
507f3c78 362 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
363 int (*to_insert_breakpoint) (struct bp_target_info *);
364 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 365 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
366 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
367 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
368 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
369 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
370 int (*to_stopped_by_watchpoint) (void);
74174d2e 371 int to_have_steppable_watchpoint;
7df1a324 372 int to_have_continuable_watchpoint;
4aa7a7f5 373 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
374 int (*to_watchpoint_addr_within_range) (struct target_ops *,
375 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 376 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
377 void (*to_terminal_init) (void);
378 void (*to_terminal_inferior) (void);
379 void (*to_terminal_ours_for_output) (void);
380 void (*to_terminal_ours) (void);
a790ad35 381 void (*to_terminal_save_ours) (void);
507f3c78
KB
382 void (*to_terminal_info) (char *, int);
383 void (*to_kill) (void);
384 void (*to_load) (char *, int);
385 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 386 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 387 void (*to_post_startup_inferior) (ptid_t);
507f3c78 388 void (*to_acknowledge_created_inferior) (int);
fa113d1a 389 void (*to_insert_fork_catchpoint) (int);
507f3c78 390 int (*to_remove_fork_catchpoint) (int);
fa113d1a 391 void (*to_insert_vfork_catchpoint) (int);
507f3c78 392 int (*to_remove_vfork_catchpoint) (int);
ee057212 393 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 394 void (*to_insert_exec_catchpoint) (int);
507f3c78 395 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
396 int (*to_has_exited) (int, int, int *);
397 void (*to_mourn_inferior) (void);
398 int (*to_can_run) (void);
39f77062
KB
399 void (*to_notice_signals) (ptid_t ptid);
400 int (*to_thread_alive) (ptid_t ptid);
507f3c78 401 void (*to_find_new_threads) (void);
39f77062 402 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
403 char *(*to_extra_thread_info) (struct thread_info *);
404 void (*to_stop) (void);
d9fcf2fb 405 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 406 char *(*to_pid_to_exec_file) (int pid);
49d03eab 407 void (*to_log_command) (const char *);
c5aa993b 408 enum strata to_stratum;
c5aa993b
JM
409 int to_has_all_memory;
410 int to_has_memory;
411 int to_has_stack;
412 int to_has_registers;
413 int to_has_execution;
414 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
415 struct section_table
416 *to_sections;
417 struct section_table
418 *to_sections_end;
6426a772
JM
419 /* ASYNC target controls */
420 int (*to_can_async_p) (void);
421 int (*to_is_async_p) (void);
b84876c2
PA
422 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
423 int (*to_async_mask) (int);
2146d243
RM
424 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
425 unsigned long,
426 int, int, int,
427 void *),
be4d1333
MS
428 void *);
429 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
430
431 /* Return the thread-local address at OFFSET in the
432 thread-local storage for the thread PTID and the shared library
433 or executable file given by OBJFILE. If that block of
434 thread-local storage hasn't been allocated yet, this function
435 may return an error. */
436 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 437 CORE_ADDR load_module_addr,
3f47be5c
EZ
438 CORE_ADDR offset);
439
13547ab6
DJ
440 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
441 OBJECT. The OFFSET, for a seekable object, specifies the
442 starting point. The ANNEX can be used to provide additional
443 data-specific information to the target.
444
445 Return the number of bytes actually transfered, zero when no
446 further transfer is possible, and -1 when the transfer is not
447 supported. Return of a positive value smaller than LEN does
448 not indicate the end of the object, only the end of the
449 transfer; higher level code should continue transferring if
450 desired. This is handled in target.c.
451
452 The interface does not support a "retry" mechanism. Instead it
453 assumes that at least one byte will be transfered on each
454 successful call.
455
456 NOTE: cagney/2003-10-17: The current interface can lead to
457 fragmented transfers. Lower target levels should not implement
458 hacks, such as enlarging the transfer, in an attempt to
459 compensate for this. Instead, the target stack should be
460 extended so that it implements supply/collect methods and a
461 look-aside object cache. With that available, the lowest
462 target can safely and freely "push" data up the stack.
463
464 See target_read and target_write for more information. One,
465 and only one, of readbuf or writebuf must be non-NULL. */
466
4b8a223f 467 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 468 enum target_object object, const char *annex,
1b0ba102 469 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 470 ULONGEST offset, LONGEST len);
1e3ff5ad 471
fd79ecee
DJ
472 /* Returns the memory map for the target. A return value of NULL
473 means that no memory map is available. If a memory address
474 does not fall within any returned regions, it's assumed to be
475 RAM. The returned memory regions should not overlap.
476
477 The order of regions does not matter; target_memory_map will
478 sort regions by starting address. For that reason, this
479 function should not be called directly except via
480 target_memory_map.
481
482 This method should not cache data; if the memory map could
483 change unexpectedly, it should be invalidated, and higher
484 layers will re-fetch it. */
485 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
486
a76d924d
DJ
487 /* Erases the region of flash memory starting at ADDRESS, of
488 length LENGTH.
489
490 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
491 on flash block boundaries, as reported by 'to_memory_map'. */
492 void (*to_flash_erase) (struct target_ops *,
493 ULONGEST address, LONGEST length);
494
495 /* Finishes a flash memory write sequence. After this operation
496 all flash memory should be available for writing and the result
497 of reading from areas written by 'to_flash_write' should be
498 equal to what was written. */
499 void (*to_flash_done) (struct target_ops *);
500
424163ea
DJ
501 /* Describe the architecture-specific features of this target.
502 Returns the description found, or NULL if no description
503 was available. */
504 const struct target_desc *(*to_read_description) (struct target_ops *ops);
505
c47ffbe3
VP
506 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
507 Return 0 if *READPTR is already at the end of the buffer.
508 Return -1 if there is insufficient buffer for a whole entry.
509 Return 1 if an entry was read into *TYPEP and *VALP. */
510 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
511 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
512
08388c79
DE
513 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
514 sequence of bytes in PATTERN with length PATTERN_LEN.
515
516 The result is 1 if found, 0 if not found, and -1 if there was an error
517 requiring halting of the search (e.g. memory read error).
518 If the pattern is found the address is recorded in FOUND_ADDRP. */
519 int (*to_search_memory) (struct target_ops *ops,
520 CORE_ADDR start_addr, ULONGEST search_space_len,
521 const gdb_byte *pattern, ULONGEST pattern_len,
522 CORE_ADDR *found_addrp);
523
c5aa993b 524 int to_magic;
0d06e24b
JM
525 /* Need sub-structure for target machine related rather than comm related?
526 */
c5aa993b 527 };
c906108c
SS
528
529/* Magic number for checking ops size. If a struct doesn't end with this
530 number, somebody changed the declaration but didn't change all the
531 places that initialize one. */
532
533#define OPS_MAGIC 3840
534
535/* The ops structure for our "current" target process. This should
536 never be NULL. If there is no target, it points to the dummy_target. */
537
c5aa993b 538extern struct target_ops current_target;
c906108c 539
c906108c
SS
540/* Define easy words for doing these operations on our current target. */
541
542#define target_shortname (current_target.to_shortname)
543#define target_longname (current_target.to_longname)
544
f1c07ab0
AC
545/* Does whatever cleanup is required for a target that we are no
546 longer going to be calling. QUITTING indicates that GDB is exiting
547 and should not get hung on an error (otherwise it is important to
548 perform clean termination, even if it takes a while). This routine
549 is automatically always called when popping the target off the
550 target stack (to_beneath is undefined). Closing file descriptors
551 and freeing all memory allocated memory are typical things it
552 should do. */
553
554void target_close (struct target_ops *targ, int quitting);
c906108c
SS
555
556/* Attaches to a process on the target side. Arguments are as passed
557 to the `attach' command by the user. This routine can be called
558 when the target is not on the target-stack, if the target_can_run
2146d243 559 routine returns 1; in that case, it must push itself onto the stack.
c906108c 560 Upon exit, the target should be ready for normal operations, and
2146d243 561 should be ready to deliver the status of the process immediately
c906108c
SS
562 (without waiting) to an upcoming target_wait call. */
563
564#define target_attach(args, from_tty) \
0d06e24b 565 (*current_target.to_attach) (args, from_tty)
c906108c
SS
566
567/* The target_attach operation places a process under debugger control,
568 and stops the process.
569
570 This operation provides a target-specific hook that allows the
0d06e24b 571 necessary bookkeeping to be performed after an attach completes. */
c906108c 572#define target_post_attach(pid) \
0d06e24b 573 (*current_target.to_post_attach) (pid)
c906108c 574
c906108c
SS
575/* Takes a program previously attached to and detaches it.
576 The program may resume execution (some targets do, some don't) and will
577 no longer stop on signals, etc. We better not have left any breakpoints
578 in the program or it'll die when it hits one. ARGS is arguments
579 typed by the user (e.g. a signal to send the process). FROM_TTY
580 says whether to be verbose or not. */
581
a14ed312 582extern void target_detach (char *, int);
c906108c 583
6ad8ae5c
DJ
584/* Disconnect from the current target without resuming it (leaving it
585 waiting for a debugger). */
586
587extern void target_disconnect (char *, int);
588
39f77062 589/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
590 single-step or to run free; SIGGNAL is the signal to be given to
591 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
592 pass TARGET_SIGNAL_DEFAULT. */
593
e1ac3328 594extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 595
b5a2688f
AC
596/* Wait for process pid to do something. PTID = -1 to wait for any
597 pid to do something. Return pid of child, or -1 in case of error;
c906108c 598 store status through argument pointer STATUS. Note that it is
b5a2688f 599 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
600 the debugging target from the stack; GDB isn't prepared to get back
601 to the prompt with a debugging target but without the frame cache,
602 stop_pc, etc., set up. */
603
39f77062
KB
604#define target_wait(ptid, status) \
605 (*current_target.to_wait) (ptid, status)
c906108c 606
17dee195 607/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 608
56be3814
UW
609#define target_fetch_registers(regcache, regno) \
610 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
611
612/* Store at least register REGNO, or all regs if REGNO == -1.
613 It can store as many registers as it wants to, so target_prepare_to_store
614 must have been previously called. Calls error() if there are problems. */
615
56be3814
UW
616#define target_store_registers(regcache, regs) \
617 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
618
619/* Get ready to modify the registers array. On machines which store
620 individual registers, this doesn't need to do anything. On machines
621 which store all the registers in one fell swoop, this makes sure
622 that REGISTERS contains all the registers from the program being
623 debugged. */
624
316f2060
UW
625#define target_prepare_to_store(regcache) \
626 (*current_target.to_prepare_to_store) (regcache)
c906108c 627
4930751a
C
628extern DCACHE *target_dcache;
629
a14ed312 630extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 631
fc1a4b47 632extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 633
fc1a4b47 634extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 635 int len);
c906108c 636
1b0ba102 637extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 638 struct mem_attrib *, struct target_ops *);
c906108c 639
fd79ecee
DJ
640/* Fetches the target's memory map. If one is found it is sorted
641 and returned, after some consistency checking. Otherwise, NULL
642 is returned. */
643VEC(mem_region_s) *target_memory_map (void);
644
a76d924d
DJ
645/* Erase the specified flash region. */
646void target_flash_erase (ULONGEST address, LONGEST length);
647
648/* Finish a sequence of flash operations. */
649void target_flash_done (void);
650
651/* Describes a request for a memory write operation. */
652struct memory_write_request
653 {
654 /* Begining address that must be written. */
655 ULONGEST begin;
656 /* Past-the-end address. */
657 ULONGEST end;
658 /* The data to write. */
659 gdb_byte *data;
660 /* A callback baton for progress reporting for this request. */
661 void *baton;
662 };
663typedef struct memory_write_request memory_write_request_s;
664DEF_VEC_O(memory_write_request_s);
665
666/* Enumeration specifying different flash preservation behaviour. */
667enum flash_preserve_mode
668 {
669 flash_preserve,
670 flash_discard
671 };
672
673/* Write several memory blocks at once. This version can be more
674 efficient than making several calls to target_write_memory, in
675 particular because it can optimize accesses to flash memory.
676
677 Moreover, this is currently the only memory access function in gdb
678 that supports writing to flash memory, and it should be used for
679 all cases where access to flash memory is desirable.
680
681 REQUESTS is the vector (see vec.h) of memory_write_request.
682 PRESERVE_FLASH_P indicates what to do with blocks which must be
683 erased, but not completely rewritten.
684 PROGRESS_CB is a function that will be periodically called to provide
685 feedback to user. It will be called with the baton corresponding
686 to the request currently being written. It may also be called
687 with a NULL baton, when preserved flash sectors are being rewritten.
688
689 The function returns 0 on success, and error otherwise. */
690int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
691 enum flash_preserve_mode preserve_flash_p,
692 void (*progress_cb) (ULONGEST, void *));
693
47932f85
DJ
694/* From infrun.c. */
695
696extern int inferior_has_forked (int pid, int *child_pid);
697
698extern int inferior_has_vforked (int pid, int *child_pid);
699
700extern int inferior_has_execd (int pid, char **execd_pathname);
701
c906108c
SS
702/* From exec.c */
703
a14ed312 704extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
705
706/* Print a line about the current target. */
707
708#define target_files_info() \
0d06e24b 709 (*current_target.to_files_info) (&current_target)
c906108c 710
8181d85f
DJ
711/* Insert a breakpoint at address BP_TGT->placed_address in the target
712 machine. Result is 0 for success, or an errno value. */
c906108c 713
8181d85f
DJ
714#define target_insert_breakpoint(bp_tgt) \
715 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 716
8181d85f
DJ
717/* Remove a breakpoint at address BP_TGT->placed_address in the target
718 machine. Result is 0 for success, or an errno value. */
c906108c 719
8181d85f
DJ
720#define target_remove_breakpoint(bp_tgt) \
721 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
722
723/* Initialize the terminal settings we record for the inferior,
724 before we actually run the inferior. */
725
726#define target_terminal_init() \
0d06e24b 727 (*current_target.to_terminal_init) ()
c906108c
SS
728
729/* Put the inferior's terminal settings into effect.
730 This is preparation for starting or resuming the inferior. */
731
732#define target_terminal_inferior() \
0d06e24b 733 (*current_target.to_terminal_inferior) ()
c906108c
SS
734
735/* Put some of our terminal settings into effect,
736 enough to get proper results from our output,
737 but do not change into or out of RAW mode
738 so that no input is discarded.
739
740 After doing this, either terminal_ours or terminal_inferior
741 should be called to get back to a normal state of affairs. */
742
743#define target_terminal_ours_for_output() \
0d06e24b 744 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
745
746/* Put our terminal settings into effect.
747 First record the inferior's terminal settings
748 so they can be restored properly later. */
749
750#define target_terminal_ours() \
0d06e24b 751 (*current_target.to_terminal_ours) ()
c906108c 752
a790ad35
SC
753/* Save our terminal settings.
754 This is called from TUI after entering or leaving the curses
755 mode. Since curses modifies our terminal this call is here
756 to take this change into account. */
757
758#define target_terminal_save_ours() \
759 (*current_target.to_terminal_save_ours) ()
760
c906108c
SS
761/* Print useful information about our terminal status, if such a thing
762 exists. */
763
764#define target_terminal_info(arg, from_tty) \
0d06e24b 765 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
766
767/* Kill the inferior process. Make it go away. */
768
769#define target_kill() \
0d06e24b 770 (*current_target.to_kill) ()
c906108c 771
0d06e24b
JM
772/* Load an executable file into the target process. This is expected
773 to not only bring new code into the target process, but also to
1986bccd
AS
774 update GDB's symbol tables to match.
775
776 ARG contains command-line arguments, to be broken down with
777 buildargv (). The first non-switch argument is the filename to
778 load, FILE; the second is a number (as parsed by strtoul (..., ...,
779 0)), which is an offset to apply to the load addresses of FILE's
780 sections. The target may define switches, or other non-switch
781 arguments, as it pleases. */
c906108c 782
11cf8741 783extern void target_load (char *arg, int from_tty);
c906108c
SS
784
785/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
786 name. ADDRP is a CORE_ADDR * pointing to where the value of the
787 symbol should be returned. The result is 0 if successful, nonzero
788 if the symbol does not exist in the target environment. This
789 function should not call error() if communication with the target
790 is interrupted, since it is called from symbol reading, but should
791 return nonzero, possibly doing a complain(). */
c906108c 792
0d06e24b
JM
793#define target_lookup_symbol(name, addrp) \
794 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 795
39f77062 796/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
797 EXEC_FILE is the file to run.
798 ALLARGS is a string containing the arguments to the program.
799 ENV is the environment vector to pass. Errors reported with error().
800 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 801
c27cda74
AC
802#define target_create_inferior(exec_file, args, env, FROM_TTY) \
803 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
804
805
806/* Some targets (such as ttrace-based HPUX) don't allow us to request
807 notification of inferior events such as fork and vork immediately
808 after the inferior is created. (This because of how gdb gets an
809 inferior created via invoking a shell to do it. In such a scenario,
810 if the shell init file has commands in it, the shell will fork and
811 exec for each of those commands, and we will see each such fork
812 event. Very bad.)
c5aa993b 813
0d06e24b
JM
814 Such targets will supply an appropriate definition for this function. */
815
39f77062
KB
816#define target_post_startup_inferior(ptid) \
817 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
818
819/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
820 some synchronization between gdb and the new inferior process, PID. */
821
c906108c 822#define target_acknowledge_created_inferior(pid) \
0d06e24b 823 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 824
0d06e24b
JM
825/* On some targets, we can catch an inferior fork or vfork event when
826 it occurs. These functions insert/remove an already-created
827 catchpoint for such events. */
c906108c 828
c906108c 829#define target_insert_fork_catchpoint(pid) \
0d06e24b 830 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
831
832#define target_remove_fork_catchpoint(pid) \
0d06e24b 833 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
834
835#define target_insert_vfork_catchpoint(pid) \
0d06e24b 836 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
837
838#define target_remove_vfork_catchpoint(pid) \
0d06e24b 839 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 840
6604731b
DJ
841/* If the inferior forks or vforks, this function will be called at
842 the next resume in order to perform any bookkeeping and fiddling
843 necessary to continue debugging either the parent or child, as
844 requested, and releasing the other. Information about the fork
845 or vfork event is available via get_last_target_status ().
846 This function returns 1 if the inferior should not be resumed
847 (i.e. there is another event pending). */
0d06e24b 848
ee057212 849int target_follow_fork (int follow_child);
c906108c
SS
850
851/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
852 occurs. These functions insert/remove an already-created
853 catchpoint for such events. */
854
c906108c 855#define target_insert_exec_catchpoint(pid) \
0d06e24b 856 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 857
c906108c 858#define target_remove_exec_catchpoint(pid) \
0d06e24b 859 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 860
c906108c 861/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
862 exit code of PID, if any. */
863
c906108c 864#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 865 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
866
867/* The debugger has completed a blocking wait() call. There is now
2146d243 868 some process event that must be processed. This function should
c906108c 869 be defined by those targets that require the debugger to perform
0d06e24b 870 cleanup or internal state changes in response to the process event. */
c906108c
SS
871
872/* The inferior process has died. Do what is right. */
873
874#define target_mourn_inferior() \
0d06e24b 875 (*current_target.to_mourn_inferior) ()
c906108c
SS
876
877/* Does target have enough data to do a run or attach command? */
878
879#define target_can_run(t) \
0d06e24b 880 ((t)->to_can_run) ()
c906108c
SS
881
882/* post process changes to signal handling in the inferior. */
883
39f77062
KB
884#define target_notice_signals(ptid) \
885 (*current_target.to_notice_signals) (ptid)
c906108c
SS
886
887/* Check to see if a thread is still alive. */
888
39f77062
KB
889#define target_thread_alive(ptid) \
890 (*current_target.to_thread_alive) (ptid)
c906108c 891
b83266a0
SS
892/* Query for new threads and add them to the thread list. */
893
894#define target_find_new_threads() \
4becf47c 895 (*current_target.to_find_new_threads) ()
b83266a0 896
0d06e24b
JM
897/* Make target stop in a continuable fashion. (For instance, under
898 Unix, this should act like SIGSTOP). This function is normally
899 used by GUIs to implement a stop button. */
c906108c
SS
900
901#define target_stop current_target.to_stop
902
96baa820
JM
903/* Send the specified COMMAND to the target's monitor
904 (shell,interpreter) for execution. The result of the query is
0d06e24b 905 placed in OUTBUF. */
96baa820
JM
906
907#define target_rcmd(command, outbuf) \
908 (*current_target.to_rcmd) (command, outbuf)
909
910
c906108c
SS
911/* Does the target include all of memory, or only part of it? This
912 determines whether we look up the target chain for other parts of
913 memory if this target can't satisfy a request. */
914
915#define target_has_all_memory \
0d06e24b 916 (current_target.to_has_all_memory)
c906108c
SS
917
918/* Does the target include memory? (Dummy targets don't.) */
919
920#define target_has_memory \
0d06e24b 921 (current_target.to_has_memory)
c906108c
SS
922
923/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
924 we start a process.) */
c5aa993b 925
c906108c 926#define target_has_stack \
0d06e24b 927 (current_target.to_has_stack)
c906108c
SS
928
929/* Does the target have registers? (Exec files don't.) */
930
931#define target_has_registers \
0d06e24b 932 (current_target.to_has_registers)
c906108c
SS
933
934/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
935 hoops), or pop its stack a few times? This means that the current
936 target is currently executing; for some targets, that's the same as
937 whether or not the target is capable of execution, but there are
938 also targets which can be current while not executing. In that
939 case this will become true after target_create_inferior or
940 target_attach. */
c906108c
SS
941
942#define target_has_execution \
0d06e24b 943 (current_target.to_has_execution)
c906108c
SS
944
945/* Can the target support the debugger control of thread execution?
d6350901 946 Can it lock the thread scheduler? */
c906108c
SS
947
948#define target_can_lock_scheduler \
0d06e24b 949 (current_target.to_has_thread_control & tc_schedlock)
c906108c 950
6426a772
JM
951/* Can the target support asynchronous execution? */
952#define target_can_async_p() (current_target.to_can_async_p ())
953
954/* Is the target in asynchronous execution mode? */
b84876c2 955#define target_is_async_p() (current_target.to_is_async_p ())
6426a772
JM
956
957/* Put the target in async mode with the specified callback function. */
0d06e24b 958#define target_async(CALLBACK,CONTEXT) \
b84876c2 959 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 960
04714b91
AC
961/* This is to be used ONLY within call_function_by_hand(). It provides
962 a workaround, to have inferior function calls done in sychronous
963 mode, even though the target is asynchronous. After
ed9a39eb
JM
964 target_async_mask(0) is called, calls to target_can_async_p() will
965 return FALSE , so that target_resume() will not try to start the
966 target asynchronously. After the inferior stops, we IMMEDIATELY
967 restore the previous nature of the target, by calling
968 target_async_mask(1). After that, target_can_async_p() will return
04714b91 969 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
970
971 FIXME ezannoni 1999-12-13: we won't need this once we move
972 the turning async on and off to the single execution commands,
0d06e24b 973 from where it is done currently, in remote_resume(). */
ed9a39eb 974
b84876c2
PA
975#define target_async_mask(MASK) \
976 (current_target.to_async_mask (MASK))
ed9a39eb 977
c906108c
SS
978/* Converts a process id to a string. Usually, the string just contains
979 `process xyz', but on some systems it may contain
980 `process xyz thread abc'. */
981
ed9a39eb
JM
982#undef target_pid_to_str
983#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
984
985#ifndef target_tid_to_str
986#define target_tid_to_str(PID) \
0d06e24b 987 target_pid_to_str (PID)
39f77062 988extern char *normal_pid_to_str (ptid_t ptid);
c906108c 989#endif
c5aa993b 990
0d06e24b
JM
991/* Return a short string describing extra information about PID,
992 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
993 is okay. */
994
995#define target_extra_thread_info(TP) \
996 (current_target.to_extra_thread_info (TP))
ed9a39eb 997
c906108c
SS
998/* Attempts to find the pathname of the executable file
999 that was run to create a specified process.
1000
1001 The process PID must be stopped when this operation is used.
c5aa993b 1002
c906108c
SS
1003 If the executable file cannot be determined, NULL is returned.
1004
1005 Else, a pointer to a character string containing the pathname
1006 is returned. This string should be copied into a buffer by
1007 the client if the string will not be immediately used, or if
0d06e24b 1008 it must persist. */
c906108c
SS
1009
1010#define target_pid_to_exec_file(pid) \
0d06e24b 1011 (current_target.to_pid_to_exec_file) (pid)
c906108c 1012
be4d1333
MS
1013/*
1014 * Iterator function for target memory regions.
1015 * Calls a callback function once for each memory region 'mapped'
1016 * in the child process. Defined as a simple macro rather than
2146d243 1017 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1018 */
1019
1020#define target_find_memory_regions(FUNC, DATA) \
1021 (current_target.to_find_memory_regions) (FUNC, DATA)
1022
1023/*
1024 * Compose corefile .note section.
1025 */
1026
1027#define target_make_corefile_notes(BFD, SIZE_P) \
1028 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1029
3f47be5c
EZ
1030/* Thread-local values. */
1031#define target_get_thread_local_address \
1032 (current_target.to_get_thread_local_address)
1033#define target_get_thread_local_address_p() \
1034 (target_get_thread_local_address != NULL)
1035
c906108c
SS
1036
1037/* Hardware watchpoint interfaces. */
1038
1039/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1040 write). */
1041
1042#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1043#define STOPPED_BY_WATCHPOINT(w) \
1044 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1045#endif
7df1a324 1046
74174d2e
UW
1047/* Non-zero if we have steppable watchpoints */
1048
1049#ifndef HAVE_STEPPABLE_WATCHPOINT
1050#define HAVE_STEPPABLE_WATCHPOINT \
1051 (current_target.to_have_steppable_watchpoint)
1052#endif
1053
7df1a324
KW
1054/* Non-zero if we have continuable watchpoints */
1055
1056#ifndef HAVE_CONTINUABLE_WATCHPOINT
1057#define HAVE_CONTINUABLE_WATCHPOINT \
1058 (current_target.to_have_continuable_watchpoint)
1059#endif
c906108c 1060
ccaa32c7 1061/* Provide defaults for hardware watchpoint functions. */
c906108c 1062
2146d243 1063/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1064 elsewhere use the definitions in the target vector. */
c906108c
SS
1065
1066/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1067 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1068 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1069 (including this one?). OTHERTYPE is who knows what... */
1070
ccaa32c7
GS
1071#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1072#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1073 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1074#endif
c906108c 1075
e0d24f8d
WZ
1076#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1077#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1078 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1079#endif
1080
c906108c
SS
1081
1082/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1083 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1084 success, non-zero for failure. */
1085
ccaa32c7
GS
1086#ifndef target_insert_watchpoint
1087#define target_insert_watchpoint(addr, len, type) \
1088 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1089
ccaa32c7
GS
1090#define target_remove_watchpoint(addr, len, type) \
1091 (*current_target.to_remove_watchpoint) (addr, len, type)
1092#endif
c906108c
SS
1093
1094#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1095#define target_insert_hw_breakpoint(bp_tgt) \
1096 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1097
8181d85f
DJ
1098#define target_remove_hw_breakpoint(bp_tgt) \
1099 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1100#endif
1101
4aa7a7f5
JJ
1102extern int target_stopped_data_address_p (struct target_ops *);
1103
c906108c 1104#ifndef target_stopped_data_address
4aa7a7f5
JJ
1105#define target_stopped_data_address(target, x) \
1106 (*target.to_stopped_data_address) (target, x)
1107#else
1108/* Horrible hack to get around existing macros :-(. */
1109#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1110#endif
1111
5009afc5
AS
1112#define target_watchpoint_addr_within_range(target, addr, start, length) \
1113 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1114
424163ea
DJ
1115extern const struct target_desc *target_read_description (struct target_ops *);
1116
08388c79
DE
1117/* Utility implementation of searching memory. */
1118extern int simple_search_memory (struct target_ops* ops,
1119 CORE_ADDR start_addr,
1120 ULONGEST search_space_len,
1121 const gdb_byte *pattern,
1122 ULONGEST pattern_len,
1123 CORE_ADDR *found_addrp);
1124
1125/* Main entry point for searching memory. */
1126extern int target_search_memory (CORE_ADDR start_addr,
1127 ULONGEST search_space_len,
1128 const gdb_byte *pattern,
1129 ULONGEST pattern_len,
1130 CORE_ADDR *found_addrp);
1131
49d03eab
MR
1132/* Command logging facility. */
1133
1134#define target_log_command(p) \
1135 do \
1136 if (current_target.to_log_command) \
1137 (*current_target.to_log_command) (p); \
1138 while (0)
1139
c906108c
SS
1140/* Routines for maintenance of the target structures...
1141
1142 add_target: Add a target to the list of all possible targets.
1143
1144 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1145 targets, within its particular stratum of the stack. Result
1146 is 0 if now atop the stack, nonzero if not on top (maybe
1147 should warn user).
c906108c
SS
1148
1149 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1150 no matter where it is on the list. Returns 0 if no
1151 change, 1 if removed from stack.
c906108c 1152
c5aa993b 1153 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1154
a14ed312 1155extern void add_target (struct target_ops *);
c906108c 1156
a14ed312 1157extern int push_target (struct target_ops *);
c906108c 1158
a14ed312 1159extern int unpush_target (struct target_ops *);
c906108c 1160
fd79ecee
DJ
1161extern void target_pre_inferior (int);
1162
a14ed312 1163extern void target_preopen (int);
c906108c 1164
a14ed312 1165extern void pop_target (void);
c906108c 1166
9e35dae4
DJ
1167extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1168 CORE_ADDR offset);
1169
52bb452f
DJ
1170/* Mark a pushed target as running or exited, for targets which do not
1171 automatically pop when not active. */
1172
1173void target_mark_running (struct target_ops *);
1174
1175void target_mark_exited (struct target_ops *);
1176
c906108c
SS
1177/* Struct section_table maps address ranges to file sections. It is
1178 mostly used with BFD files, but can be used without (e.g. for handling
1179 raw disks, or files not in formats handled by BFD). */
1180
c5aa993b
JM
1181struct section_table
1182 {
1183 CORE_ADDR addr; /* Lowest address in section */
1184 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1185
7be0c536 1186 struct bfd_section *the_bfd_section;
c906108c 1187
c5aa993b
JM
1188 bfd *bfd; /* BFD file pointer */
1189 };
c906108c 1190
8db32d44
AC
1191/* Return the "section" containing the specified address. */
1192struct section_table *target_section_by_addr (struct target_ops *target,
1193 CORE_ADDR addr);
1194
1195
c906108c
SS
1196/* From mem-break.c */
1197
8181d85f 1198extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1199
8181d85f 1200extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1201
ae4b2284 1202extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1203
ae4b2284 1204extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1205
c906108c
SS
1206
1207/* From target.c */
1208
a14ed312 1209extern void initialize_targets (void);
c906108c 1210
a14ed312 1211extern void noprocess (void);
c906108c 1212
8edfe269
DJ
1213extern void target_require_runnable (void);
1214
a14ed312 1215extern void find_default_attach (char *, int);
c906108c 1216
c27cda74 1217extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1218
a14ed312 1219extern struct target_ops *find_run_target (void);
7a292a7a 1220
a14ed312 1221extern struct target_ops *find_core_target (void);
6426a772 1222
a14ed312 1223extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1224
570b8f7c
AC
1225extern int target_resize_to_sections (struct target_ops *target,
1226 int num_added);
07cd4b97
JB
1227
1228extern void remove_target_sections (bfd *abfd);
1229
c906108c
SS
1230\f
1231/* Stuff that should be shared among the various remote targets. */
1232
1233/* Debugging level. 0 is off, and non-zero values mean to print some debug
1234 information (higher values, more information). */
1235extern int remote_debug;
1236
1237/* Speed in bits per second, or -1 which means don't mess with the speed. */
1238extern int baud_rate;
1239/* Timeout limit for response from target. */
1240extern int remote_timeout;
1241
c906108c
SS
1242\f
1243/* Functions for helping to write a native target. */
1244
1245/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1246extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1247
c2d11a7d 1248/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1249 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1250/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1251 to the shorter target_signal_p() because it is far less ambigious.
1252 In this context ``target_signal'' refers to GDB's internal
1253 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1254 refers to the target operating system's signal. Confused? */
1255
c2d11a7d
JM
1256extern int target_signal_to_host_p (enum target_signal signo);
1257
1258/* Convert between host signal numbers and enum target_signal's.
1259 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1260 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1261/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1262 refering to the target operating system's signal numbering.
1263 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1264 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1265 internal representation of a target operating system's signal. */
1266
a14ed312
KB
1267extern enum target_signal target_signal_from_host (int);
1268extern int target_signal_to_host (enum target_signal);
c906108c 1269
1cded358
AR
1270extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1271 int);
1272extern int default_target_signal_to_host (struct gdbarch *,
1273 enum target_signal);
1274
c906108c 1275/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1276extern enum target_signal target_signal_from_command (int);
c906108c
SS
1277
1278/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1279extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1280
1281/* Set the show memory breakpoints mode to show, and installs a cleanup
1282 to restore it back to the current value. */
1283extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1284
c906108c
SS
1285\f
1286/* Imported from machine dependent code */
1287
c906108c 1288/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1289void target_ignore (void);
c906108c 1290
1df84f13 1291extern struct target_ops deprecated_child_ops;
5ac10fd1 1292
c5aa993b 1293#endif /* !defined (TARGET_H) */
This page took 1.223777 seconds and 4 git commands to generate.