2003-10-23 Kei Sakamoto <sakamoto.kei@renesas.com>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
da3331ec
AC
26struct objfile;
27struct ui_file;
28struct mem_attrib;
1e3ff5ad 29struct target_ops;
da3331ec 30
c906108c
SS
31/* This include file defines the interface between the main part
32 of the debugger, and the part which is target-specific, or
33 specific to the communications interface between us and the
34 target.
35
36 A TARGET is an interface between the debugger and a particular
37 kind of file or process. Targets can be STACKED in STRATA,
38 so that more than one target can potentially respond to a request.
39 In particular, memory accesses will walk down the stack of targets
40 until they find a target that is interested in handling that particular
41 address. STRATA are artificial boundaries on the stack, within
42 which particular kinds of targets live. Strata exist so that
43 people don't get confused by pushing e.g. a process target and then
44 a file target, and wondering why they can't see the current values
45 of variables any more (the file target is handling them and they
46 never get to the process target). So when you push a file target,
47 it goes into the file stratum, which is always below the process
48 stratum. */
49
50#include "bfd.h"
51#include "symtab.h"
4930751a 52#include "dcache.h"
29e57380 53#include "memattr.h"
c906108c 54
c5aa993b
JM
55enum strata
56 {
57 dummy_stratum, /* The lowest of the low */
58 file_stratum, /* Executable files, etc */
59 core_stratum, /* Core dump files */
60 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
61 process_stratum, /* Executing processes */
62 thread_stratum /* Executing threads */
c5aa993b 63 };
c906108c 64
c5aa993b
JM
65enum thread_control_capabilities
66 {
0d06e24b
JM
67 tc_none = 0, /* Default: can't control thread execution. */
68 tc_schedlock = 1, /* Can lock the thread scheduler. */
69 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 70 };
c906108c
SS
71
72/* Stuff for target_wait. */
73
74/* Generally, what has the program done? */
c5aa993b
JM
75enum target_waitkind
76 {
77 /* The program has exited. The exit status is in value.integer. */
78 TARGET_WAITKIND_EXITED,
c906108c 79
0d06e24b
JM
80 /* The program has stopped with a signal. Which signal is in
81 value.sig. */
c5aa993b 82 TARGET_WAITKIND_STOPPED,
c906108c 83
c5aa993b
JM
84 /* The program has terminated with a signal. Which signal is in
85 value.sig. */
86 TARGET_WAITKIND_SIGNALLED,
c906108c 87
c5aa993b
JM
88 /* The program is letting us know that it dynamically loaded something
89 (e.g. it called load(2) on AIX). */
90 TARGET_WAITKIND_LOADED,
c906108c 91
0d06e24b
JM
92 /* The program has forked. A "related" process' ID is in
93 value.related_pid. I.e., if the child forks, value.related_pid
94 is the parent's ID. */
95
c5aa993b 96 TARGET_WAITKIND_FORKED,
c906108c 97
0d06e24b
JM
98 /* The program has vforked. A "related" process's ID is in
99 value.related_pid. */
100
c5aa993b 101 TARGET_WAITKIND_VFORKED,
c906108c 102
0d06e24b
JM
103 /* The program has exec'ed a new executable file. The new file's
104 pathname is pointed to by value.execd_pathname. */
105
c5aa993b 106 TARGET_WAITKIND_EXECD,
c906108c 107
0d06e24b
JM
108 /* The program has entered or returned from a system call. On
109 HP-UX, this is used in the hardware watchpoint implementation.
110 The syscall's unique integer ID number is in value.syscall_id */
111
c5aa993b
JM
112 TARGET_WAITKIND_SYSCALL_ENTRY,
113 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 114
c5aa993b
JM
115 /* Nothing happened, but we stopped anyway. This perhaps should be handled
116 within target_wait, but I'm not sure target_wait should be resuming the
117 inferior. */
c4093a6a
JM
118 TARGET_WAITKIND_SPURIOUS,
119
8e7d2c16
DJ
120 /* An event has occured, but we should wait again.
121 Remote_async_wait() returns this when there is an event
c4093a6a
JM
122 on the inferior, but the rest of the world is not interested in
123 it. The inferior has not stopped, but has just sent some output
124 to the console, for instance. In this case, we want to go back
125 to the event loop and wait there for another event from the
126 inferior, rather than being stuck in the remote_async_wait()
127 function. This way the event loop is responsive to other events,
0d06e24b 128 like for instance the user typing. */
c4093a6a 129 TARGET_WAITKIND_IGNORE
c906108c
SS
130 };
131
c5aa993b
JM
132struct target_waitstatus
133 {
134 enum target_waitkind kind;
135
136 /* Forked child pid, execd pathname, exit status or signal number. */
137 union
138 {
139 int integer;
140 enum target_signal sig;
141 int related_pid;
142 char *execd_pathname;
143 int syscall_id;
144 }
145 value;
146 };
c906108c 147
2acceee2 148/* Possible types of events that the inferior handler will have to
0d06e24b 149 deal with. */
2acceee2
JM
150enum inferior_event_type
151 {
0d06e24b 152 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
153 INF_QUIT_REQ,
154 /* Process a normal inferior event which will result in target_wait
0d06e24b 155 being called. */
2acceee2 156 INF_REG_EVENT,
0d06e24b 157 /* Deal with an error on the inferior. */
2acceee2 158 INF_ERROR,
0d06e24b 159 /* We are called because a timer went off. */
2acceee2 160 INF_TIMER,
0d06e24b 161 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
162 INF_EXEC_COMPLETE,
163 /* We are called to do some stuff after the inferior stops, but we
164 are expected to reenter the proceed() and
165 handle_inferior_event() functions. This is used only in case of
0d06e24b 166 'step n' like commands. */
c2d11a7d 167 INF_EXEC_CONTINUE
2acceee2
JM
168 };
169
c906108c 170/* Return the string for a signal. */
a14ed312 171extern char *target_signal_to_string (enum target_signal);
c906108c
SS
172
173/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 174extern char *target_signal_to_name (enum target_signal);
c906108c
SS
175
176/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 177enum target_signal target_signal_from_name (char *);
c906108c 178\f
1e3ff5ad
AC
179/* Request the transfer of up to LEN 8-bit bytes of the target's
180 OBJECT. The OFFSET, for a seekable object, specifies the starting
181 point. The ANNEX can be used to provide additional data-specific
182 information to the target.
183
184 Return the number of bytes actually transfered, zero when no
185 further transfer is possible, and -1 when the transfer is not
186 supported.
187
188 NOTE: cagney/2003-10-17: The current interface does not support a
189 "retry" mechanism. Instead it assumes that at least one byte will
190 be transfered on each call.
191
192 NOTE: cagney/2003-10-17: The current interface can lead to
193 fragmented transfers. Lower target levels should not implement
194 hacks, such as enlarging the transfer, in an attempt to compensate
195 for this. Instead, the target stack should be extended so that it
196 implements supply/collect methods and a look-aside object cache.
197 With that available, the lowest target can safely and freely "push"
198 data up the stack.
199
200 NOTE: cagney/2003-10-17: Unlike the old query and the memory
201 transfer mechanisms, these methods are explicitly parameterized by
202 the target that it should be applied to.
203
204 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
205 methods, these new methods perform partial transfers. The only
206 difference is that these new methods thought to include "partial"
207 in the name. The old code's failure to do this lead to much
208 confusion and duplication of effort as each target object attempted
209 to locally take responsibility for something it didn't have to
210 worry about.
211
212 NOTE: cagney/2003-10-17: For backward compatibility with the
213 "target_query" method that this replaced, when BUF, OFFSET and LEN
214 are NULL/zero, return the "minimum" buffer size. See "remote.c"
215 for further information. */
216
217enum target_object
218{
219 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
220 TARGET_OBJECT_KOD,
221 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
222 TARGET_OBJECT_AVR,
223 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
224 TARGET_OBJECT_MEORY
225 /* Possible future ojbects: TARGET_OJBECT_FILE, TARGET_OBJECT_PROC,
226 TARGET_OBJECT_AUXV, ... */
227};
228
229extern LONGEST target_read_partial (struct target_ops *ops,
230 enum target_object object,
231 const char *annex, void *buf,
232 ULONGEST offset, LONGEST len);
233
234extern LONGEST target_write_partial (struct target_ops *ops,
235 enum target_object object,
236 const char *annex, const void *buf,
237 ULONGEST offset, LONGEST len);
238
239/* Wrappers to perform the full transfer. */
240extern LONGEST target_read (struct target_ops *ops,
241 enum target_object object,
242 const char *annex, void *buf,
243 ULONGEST offset, LONGEST len);
244
245extern LONGEST target_write (struct target_ops *ops,
246 enum target_object object,
247 const char *annex, const void *buf,
248 ULONGEST offset, LONGEST len);
249\f
c5aa993b 250
c906108c
SS
251/* If certain kinds of activity happen, target_wait should perform
252 callbacks. */
253/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 254 on TARGET_ACTIVITY_FD. */
c906108c
SS
255extern int target_activity_fd;
256/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 257extern int (*target_activity_function) (void);
c906108c 258\f
0d06e24b
JM
259struct thread_info; /* fwd decl for parameter list below: */
260
c906108c 261struct target_ops
c5aa993b 262 {
258b763a 263 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
264 char *to_shortname; /* Name this target type */
265 char *to_longname; /* Name for printing */
266 char *to_doc; /* Documentation. Does not include trailing
c906108c 267 newline, and starts with a one-line descrip-
0d06e24b 268 tion (probably similar to to_longname). */
f1c07ab0
AC
269 /* The open routine takes the rest of the parameters from the
270 command, and (if successful) pushes a new target onto the
271 stack. Targets should supply this routine, if only to provide
272 an error message. */
507f3c78 273 void (*to_open) (char *, int);
f1c07ab0
AC
274 /* Old targets with a static target vector provide "to_close".
275 New re-entrant targets provide "to_xclose" and that is expected
276 to xfree everything (including the "struct target_ops"). */
277 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
278 void (*to_close) (int);
279 void (*to_attach) (char *, int);
280 void (*to_post_attach) (int);
507f3c78 281 void (*to_detach) (char *, int);
6ad8ae5c 282 void (*to_disconnect) (char *, int);
39f77062
KB
283 void (*to_resume) (ptid_t, int, enum target_signal);
284 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
285 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
286 void (*to_fetch_registers) (int);
287 void (*to_store_registers) (int);
288 void (*to_prepare_to_store) (void);
c5aa993b
JM
289
290 /* Transfer LEN bytes of memory between GDB address MYADDR and
291 target address MEMADDR. If WRITE, transfer them to the target, else
292 transfer them from the target. TARGET is the target from which we
293 get this function.
294
295 Return value, N, is one of the following:
296
297 0 means that we can't handle this. If errno has been set, it is the
298 error which prevented us from doing it (FIXME: What about bfd_error?).
299
300 positive (call it N) means that we have transferred N bytes
301 starting at MEMADDR. We might be able to handle more bytes
302 beyond this length, but no promises.
303
304 negative (call its absolute value N) means that we cannot
305 transfer right at MEMADDR, but we could transfer at least
306 something at MEMADDR + N. */
307
507f3c78 308 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
309 int len, int write,
310 struct mem_attrib *attrib,
311 struct target_ops *target);
c906108c 312
507f3c78
KB
313 void (*to_files_info) (struct target_ops *);
314 int (*to_insert_breakpoint) (CORE_ADDR, char *);
315 int (*to_remove_breakpoint) (CORE_ADDR, char *);
ccaa32c7
GS
316 int (*to_can_use_hw_breakpoint) (int, int, int);
317 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
318 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
319 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
320 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
321 int (*to_stopped_by_watchpoint) (void);
7df1a324 322 int to_have_continuable_watchpoint;
ccaa32c7
GS
323 CORE_ADDR (*to_stopped_data_address) (void);
324 int (*to_region_size_ok_for_hw_watchpoint) (int);
507f3c78
KB
325 void (*to_terminal_init) (void);
326 void (*to_terminal_inferior) (void);
327 void (*to_terminal_ours_for_output) (void);
328 void (*to_terminal_ours) (void);
a790ad35 329 void (*to_terminal_save_ours) (void);
507f3c78
KB
330 void (*to_terminal_info) (char *, int);
331 void (*to_kill) (void);
332 void (*to_load) (char *, int);
333 int (*to_lookup_symbol) (char *, CORE_ADDR *);
334 void (*to_create_inferior) (char *, char *, char **);
39f77062 335 void (*to_post_startup_inferior) (ptid_t);
507f3c78 336 void (*to_acknowledge_created_inferior) (int);
507f3c78
KB
337 int (*to_insert_fork_catchpoint) (int);
338 int (*to_remove_fork_catchpoint) (int);
339 int (*to_insert_vfork_catchpoint) (int);
340 int (*to_remove_vfork_catchpoint) (int);
6604731b 341 int (*to_follow_fork) (int);
507f3c78
KB
342 int (*to_insert_exec_catchpoint) (int);
343 int (*to_remove_exec_catchpoint) (int);
507f3c78 344 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
345 int (*to_has_exited) (int, int, int *);
346 void (*to_mourn_inferior) (void);
347 int (*to_can_run) (void);
39f77062
KB
348 void (*to_notice_signals) (ptid_t ptid);
349 int (*to_thread_alive) (ptid_t ptid);
507f3c78 350 void (*to_find_new_threads) (void);
39f77062 351 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
352 char *(*to_extra_thread_info) (struct thread_info *);
353 void (*to_stop) (void);
d9fcf2fb 354 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
355 struct symtab_and_line *(*to_enable_exception_callback) (enum
356 exception_event_kind,
357 int);
358 struct exception_event_record *(*to_get_current_exception_event) (void);
359 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 360 enum strata to_stratum;
c5aa993b
JM
361 int to_has_all_memory;
362 int to_has_memory;
363 int to_has_stack;
364 int to_has_registers;
365 int to_has_execution;
366 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
367 struct section_table
368 *to_sections;
369 struct section_table
370 *to_sections_end;
6426a772
JM
371 /* ASYNC target controls */
372 int (*to_can_async_p) (void);
373 int (*to_is_async_p) (void);
0d06e24b
JM
374 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
375 void *context);
ed9a39eb 376 int to_async_mask_value;
be4d1333
MS
377 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
378 unsigned long,
379 int, int, int,
380 void *),
381 void *);
382 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
383
384 /* Return the thread-local address at OFFSET in the
385 thread-local storage for the thread PTID and the shared library
386 or executable file given by OBJFILE. If that block of
387 thread-local storage hasn't been allocated yet, this function
388 may return an error. */
389 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
390 struct objfile *objfile,
391 CORE_ADDR offset);
392
1e3ff5ad
AC
393 /* See above. */
394 LONGEST (*to_read_partial) (struct target_ops *ops,
395 enum target_object object,
396 const char *annex, void *buf,
397 ULONGEST offset, LONGEST len);
398 LONGEST (*to_write_partial) (struct target_ops *ops,
399 enum target_object object,
400 const char *annex, const void *buf,
401 ULONGEST offset, LONGEST len);
402
c5aa993b 403 int to_magic;
0d06e24b
JM
404 /* Need sub-structure for target machine related rather than comm related?
405 */
c5aa993b 406 };
c906108c
SS
407
408/* Magic number for checking ops size. If a struct doesn't end with this
409 number, somebody changed the declaration but didn't change all the
410 places that initialize one. */
411
412#define OPS_MAGIC 3840
413
414/* The ops structure for our "current" target process. This should
415 never be NULL. If there is no target, it points to the dummy_target. */
416
c5aa993b 417extern struct target_ops current_target;
c906108c 418
c906108c
SS
419/* Define easy words for doing these operations on our current target. */
420
421#define target_shortname (current_target.to_shortname)
422#define target_longname (current_target.to_longname)
423
f1c07ab0
AC
424/* Does whatever cleanup is required for a target that we are no
425 longer going to be calling. QUITTING indicates that GDB is exiting
426 and should not get hung on an error (otherwise it is important to
427 perform clean termination, even if it takes a while). This routine
428 is automatically always called when popping the target off the
429 target stack (to_beneath is undefined). Closing file descriptors
430 and freeing all memory allocated memory are typical things it
431 should do. */
432
433void target_close (struct target_ops *targ, int quitting);
c906108c
SS
434
435/* Attaches to a process on the target side. Arguments are as passed
436 to the `attach' command by the user. This routine can be called
437 when the target is not on the target-stack, if the target_can_run
438 routine returns 1; in that case, it must push itself onto the stack.
439 Upon exit, the target should be ready for normal operations, and
440 should be ready to deliver the status of the process immediately
441 (without waiting) to an upcoming target_wait call. */
442
443#define target_attach(args, from_tty) \
0d06e24b 444 (*current_target.to_attach) (args, from_tty)
c906108c
SS
445
446/* The target_attach operation places a process under debugger control,
447 and stops the process.
448
449 This operation provides a target-specific hook that allows the
0d06e24b 450 necessary bookkeeping to be performed after an attach completes. */
c906108c 451#define target_post_attach(pid) \
0d06e24b 452 (*current_target.to_post_attach) (pid)
c906108c 453
c906108c
SS
454/* Takes a program previously attached to and detaches it.
455 The program may resume execution (some targets do, some don't) and will
456 no longer stop on signals, etc. We better not have left any breakpoints
457 in the program or it'll die when it hits one. ARGS is arguments
458 typed by the user (e.g. a signal to send the process). FROM_TTY
459 says whether to be verbose or not. */
460
a14ed312 461extern void target_detach (char *, int);
c906108c 462
6ad8ae5c
DJ
463/* Disconnect from the current target without resuming it (leaving it
464 waiting for a debugger). */
465
466extern void target_disconnect (char *, int);
467
39f77062 468/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
469 single-step or to run free; SIGGNAL is the signal to be given to
470 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
471 pass TARGET_SIGNAL_DEFAULT. */
472
39f77062 473#define target_resume(ptid, step, siggnal) \
4930751a
C
474 do { \
475 dcache_invalidate(target_dcache); \
39f77062 476 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 477 } while (0)
c906108c 478
b5a2688f
AC
479/* Wait for process pid to do something. PTID = -1 to wait for any
480 pid to do something. Return pid of child, or -1 in case of error;
c906108c 481 store status through argument pointer STATUS. Note that it is
b5a2688f 482 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
483 the debugging target from the stack; GDB isn't prepared to get back
484 to the prompt with a debugging target but without the frame cache,
485 stop_pc, etc., set up. */
486
39f77062
KB
487#define target_wait(ptid, status) \
488 (*current_target.to_wait) (ptid, status)
c906108c
SS
489
490/* The target_wait operation waits for a process event to occur, and
491 thereby stop the process.
492
493 On some targets, certain events may happen in sequences. gdb's
494 correct response to any single event of such a sequence may require
495 knowledge of what earlier events in the sequence have been seen.
496
497 This operation provides a target-specific hook that allows the
0d06e24b 498 necessary bookkeeping to be performed to track such sequences. */
c906108c 499
39f77062
KB
500#define target_post_wait(ptid, status) \
501 (*current_target.to_post_wait) (ptid, status)
c906108c 502
17dee195 503/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
504
505#define target_fetch_registers(regno) \
0d06e24b 506 (*current_target.to_fetch_registers) (regno)
c906108c
SS
507
508/* Store at least register REGNO, or all regs if REGNO == -1.
509 It can store as many registers as it wants to, so target_prepare_to_store
510 must have been previously called. Calls error() if there are problems. */
511
512#define target_store_registers(regs) \
0d06e24b 513 (*current_target.to_store_registers) (regs)
c906108c
SS
514
515/* Get ready to modify the registers array. On machines which store
516 individual registers, this doesn't need to do anything. On machines
517 which store all the registers in one fell swoop, this makes sure
518 that REGISTERS contains all the registers from the program being
519 debugged. */
520
521#define target_prepare_to_store() \
0d06e24b 522 (*current_target.to_prepare_to_store) ()
c906108c 523
4930751a
C
524extern DCACHE *target_dcache;
525
29e57380
C
526extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
527 struct mem_attrib *attrib);
4930751a 528
a14ed312 529extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 530
a14ed312 531extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 532
4930751a 533extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 534
29e57380
C
535extern int xfer_memory (CORE_ADDR, char *, int, int,
536 struct mem_attrib *, struct target_ops *);
c906108c 537
29e57380
C
538extern int child_xfer_memory (CORE_ADDR, char *, int, int,
539 struct mem_attrib *, struct target_ops *);
c906108c 540
917317f4
JM
541/* Make a single attempt at transfering LEN bytes. On a successful
542 transfer, the number of bytes actually transfered is returned and
543 ERR is set to 0. When a transfer fails, -1 is returned (the number
544 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 545 non-zero error indication. */
917317f4 546
570b8f7c
AC
547extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
548 int *err);
917317f4 549
570b8f7c
AC
550extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
551 int *err);
917317f4 552
a14ed312 553extern char *child_pid_to_exec_file (int);
c906108c 554
a14ed312 555extern char *child_core_file_to_sym_file (char *);
c906108c
SS
556
557#if defined(CHILD_POST_ATTACH)
a14ed312 558extern void child_post_attach (int);
c906108c
SS
559#endif
560
39f77062 561extern void child_post_wait (ptid_t, int);
c906108c 562
39f77062 563extern void child_post_startup_inferior (ptid_t);
c906108c 564
a14ed312 565extern void child_acknowledge_created_inferior (int);
c906108c 566
a14ed312 567extern int child_insert_fork_catchpoint (int);
c906108c 568
a14ed312 569extern int child_remove_fork_catchpoint (int);
c906108c 570
a14ed312 571extern int child_insert_vfork_catchpoint (int);
c906108c 572
a14ed312 573extern int child_remove_vfork_catchpoint (int);
c906108c 574
a14ed312 575extern void child_acknowledge_created_inferior (int);
c906108c 576
6604731b 577extern int child_follow_fork (int);
c906108c 578
a14ed312 579extern int child_insert_exec_catchpoint (int);
c906108c 580
a14ed312 581extern int child_remove_exec_catchpoint (int);
c906108c 582
a14ed312 583extern int child_reported_exec_events_per_exec_call (void);
c906108c 584
a14ed312 585extern int child_has_exited (int, int, int *);
c906108c 586
39f77062 587extern int child_thread_alive (ptid_t);
c906108c 588
47932f85
DJ
589/* From infrun.c. */
590
591extern int inferior_has_forked (int pid, int *child_pid);
592
593extern int inferior_has_vforked (int pid, int *child_pid);
594
595extern int inferior_has_execd (int pid, char **execd_pathname);
596
c906108c
SS
597/* From exec.c */
598
a14ed312 599extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
600
601/* Print a line about the current target. */
602
603#define target_files_info() \
0d06e24b 604 (*current_target.to_files_info) (&current_target)
c906108c 605
aaab4dba
AC
606/* Insert a breakpoint at address ADDR in the target machine. SAVE is
607 a pointer to memory allocated for saving the target contents. It
608 is guaranteed by the caller to be long enough to save the number of
609 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
610 success, or an errno value. */
c906108c
SS
611
612#define target_insert_breakpoint(addr, save) \
0d06e24b 613 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
614
615/* Remove a breakpoint at address ADDR in the target machine.
616 SAVE is a pointer to the same save area
617 that was previously passed to target_insert_breakpoint.
618 Result is 0 for success, or an errno value. */
619
620#define target_remove_breakpoint(addr, save) \
0d06e24b 621 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
622
623/* Initialize the terminal settings we record for the inferior,
624 before we actually run the inferior. */
625
626#define target_terminal_init() \
0d06e24b 627 (*current_target.to_terminal_init) ()
c906108c
SS
628
629/* Put the inferior's terminal settings into effect.
630 This is preparation for starting or resuming the inferior. */
631
632#define target_terminal_inferior() \
0d06e24b 633 (*current_target.to_terminal_inferior) ()
c906108c
SS
634
635/* Put some of our terminal settings into effect,
636 enough to get proper results from our output,
637 but do not change into or out of RAW mode
638 so that no input is discarded.
639
640 After doing this, either terminal_ours or terminal_inferior
641 should be called to get back to a normal state of affairs. */
642
643#define target_terminal_ours_for_output() \
0d06e24b 644 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
645
646/* Put our terminal settings into effect.
647 First record the inferior's terminal settings
648 so they can be restored properly later. */
649
650#define target_terminal_ours() \
0d06e24b 651 (*current_target.to_terminal_ours) ()
c906108c 652
a790ad35
SC
653/* Save our terminal settings.
654 This is called from TUI after entering or leaving the curses
655 mode. Since curses modifies our terminal this call is here
656 to take this change into account. */
657
658#define target_terminal_save_ours() \
659 (*current_target.to_terminal_save_ours) ()
660
c906108c
SS
661/* Print useful information about our terminal status, if such a thing
662 exists. */
663
664#define target_terminal_info(arg, from_tty) \
0d06e24b 665 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
666
667/* Kill the inferior process. Make it go away. */
668
669#define target_kill() \
0d06e24b 670 (*current_target.to_kill) ()
c906108c 671
0d06e24b
JM
672/* Load an executable file into the target process. This is expected
673 to not only bring new code into the target process, but also to
674 update GDB's symbol tables to match. */
c906108c 675
11cf8741 676extern void target_load (char *arg, int from_tty);
c906108c
SS
677
678/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
679 name. ADDRP is a CORE_ADDR * pointing to where the value of the
680 symbol should be returned. The result is 0 if successful, nonzero
681 if the symbol does not exist in the target environment. This
682 function should not call error() if communication with the target
683 is interrupted, since it is called from symbol reading, but should
684 return nonzero, possibly doing a complain(). */
c906108c 685
0d06e24b
JM
686#define target_lookup_symbol(name, addrp) \
687 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 688
39f77062 689/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
690 EXEC_FILE is the file to run.
691 ALLARGS is a string containing the arguments to the program.
692 ENV is the environment vector to pass. Errors reported with error().
693 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 694
c906108c 695#define target_create_inferior(exec_file, args, env) \
0d06e24b 696 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
697
698
699/* Some targets (such as ttrace-based HPUX) don't allow us to request
700 notification of inferior events such as fork and vork immediately
701 after the inferior is created. (This because of how gdb gets an
702 inferior created via invoking a shell to do it. In such a scenario,
703 if the shell init file has commands in it, the shell will fork and
704 exec for each of those commands, and we will see each such fork
705 event. Very bad.)
c5aa993b 706
0d06e24b
JM
707 Such targets will supply an appropriate definition for this function. */
708
39f77062
KB
709#define target_post_startup_inferior(ptid) \
710 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
711
712/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
713 some synchronization between gdb and the new inferior process, PID. */
714
c906108c 715#define target_acknowledge_created_inferior(pid) \
0d06e24b 716 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 717
0d06e24b
JM
718/* On some targets, we can catch an inferior fork or vfork event when
719 it occurs. These functions insert/remove an already-created
720 catchpoint for such events. */
c906108c 721
c906108c 722#define target_insert_fork_catchpoint(pid) \
0d06e24b 723 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
724
725#define target_remove_fork_catchpoint(pid) \
0d06e24b 726 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
727
728#define target_insert_vfork_catchpoint(pid) \
0d06e24b 729 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
730
731#define target_remove_vfork_catchpoint(pid) \
0d06e24b 732 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 733
6604731b
DJ
734/* If the inferior forks or vforks, this function will be called at
735 the next resume in order to perform any bookkeeping and fiddling
736 necessary to continue debugging either the parent or child, as
737 requested, and releasing the other. Information about the fork
738 or vfork event is available via get_last_target_status ().
739 This function returns 1 if the inferior should not be resumed
740 (i.e. there is another event pending). */
0d06e24b 741
6604731b
DJ
742#define target_follow_fork(follow_child) \
743 (*current_target.to_follow_fork) (follow_child)
c906108c
SS
744
745/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
746 occurs. These functions insert/remove an already-created
747 catchpoint for such events. */
748
c906108c 749#define target_insert_exec_catchpoint(pid) \
0d06e24b 750 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 751
c906108c 752#define target_remove_exec_catchpoint(pid) \
0d06e24b 753 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 754
c906108c
SS
755/* Returns the number of exec events that are reported when a process
756 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
757 events are being reported. */
758
c906108c 759#define target_reported_exec_events_per_exec_call() \
0d06e24b 760 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 761
c906108c 762/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
763 exit code of PID, if any. */
764
c906108c 765#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 766 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
767
768/* The debugger has completed a blocking wait() call. There is now
0d06e24b 769 some process event that must be processed. This function should
c906108c 770 be defined by those targets that require the debugger to perform
0d06e24b 771 cleanup or internal state changes in response to the process event. */
c906108c
SS
772
773/* The inferior process has died. Do what is right. */
774
775#define target_mourn_inferior() \
0d06e24b 776 (*current_target.to_mourn_inferior) ()
c906108c
SS
777
778/* Does target have enough data to do a run or attach command? */
779
780#define target_can_run(t) \
0d06e24b 781 ((t)->to_can_run) ()
c906108c
SS
782
783/* post process changes to signal handling in the inferior. */
784
39f77062
KB
785#define target_notice_signals(ptid) \
786 (*current_target.to_notice_signals) (ptid)
c906108c
SS
787
788/* Check to see if a thread is still alive. */
789
39f77062
KB
790#define target_thread_alive(ptid) \
791 (*current_target.to_thread_alive) (ptid)
c906108c 792
b83266a0
SS
793/* Query for new threads and add them to the thread list. */
794
795#define target_find_new_threads() \
0d06e24b 796 (*current_target.to_find_new_threads) (); \
b83266a0 797
0d06e24b
JM
798/* Make target stop in a continuable fashion. (For instance, under
799 Unix, this should act like SIGSTOP). This function is normally
800 used by GUIs to implement a stop button. */
c906108c
SS
801
802#define target_stop current_target.to_stop
803
96baa820
JM
804/* Send the specified COMMAND to the target's monitor
805 (shell,interpreter) for execution. The result of the query is
0d06e24b 806 placed in OUTBUF. */
96baa820
JM
807
808#define target_rcmd(command, outbuf) \
809 (*current_target.to_rcmd) (command, outbuf)
810
811
c906108c
SS
812/* Get the symbol information for a breakpointable routine called when
813 an exception event occurs.
814 Intended mainly for C++, and for those
815 platforms/implementations where such a callback mechanism is available,
816 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 817 different mechanisms for debugging exceptions. */
c906108c
SS
818
819#define target_enable_exception_callback(kind, enable) \
0d06e24b 820 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 821
0d06e24b 822/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 823
c906108c 824#define target_get_current_exception_event() \
0d06e24b 825 (*current_target.to_get_current_exception_event) ()
c906108c 826
c906108c
SS
827/* Does the target include all of memory, or only part of it? This
828 determines whether we look up the target chain for other parts of
829 memory if this target can't satisfy a request. */
830
831#define target_has_all_memory \
0d06e24b 832 (current_target.to_has_all_memory)
c906108c
SS
833
834/* Does the target include memory? (Dummy targets don't.) */
835
836#define target_has_memory \
0d06e24b 837 (current_target.to_has_memory)
c906108c
SS
838
839/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
840 we start a process.) */
c5aa993b 841
c906108c 842#define target_has_stack \
0d06e24b 843 (current_target.to_has_stack)
c906108c
SS
844
845/* Does the target have registers? (Exec files don't.) */
846
847#define target_has_registers \
0d06e24b 848 (current_target.to_has_registers)
c906108c
SS
849
850/* Does the target have execution? Can we make it jump (through
851 hoops), or pop its stack a few times? FIXME: If this is to work that
852 way, it needs to check whether an inferior actually exists.
853 remote-udi.c and probably other targets can be the current target
854 when the inferior doesn't actually exist at the moment. Right now
855 this just tells us whether this target is *capable* of execution. */
856
857#define target_has_execution \
0d06e24b 858 (current_target.to_has_execution)
c906108c
SS
859
860/* Can the target support the debugger control of thread execution?
861 a) Can it lock the thread scheduler?
862 b) Can it switch the currently running thread? */
863
864#define target_can_lock_scheduler \
0d06e24b 865 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
866
867#define target_can_switch_threads \
0d06e24b 868 (current_target.to_has_thread_control & tc_switch)
c906108c 869
6426a772
JM
870/* Can the target support asynchronous execution? */
871#define target_can_async_p() (current_target.to_can_async_p ())
872
873/* Is the target in asynchronous execution mode? */
874#define target_is_async_p() (current_target.to_is_async_p())
875
876/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
877#define target_async(CALLBACK,CONTEXT) \
878 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 879
04714b91
AC
880/* This is to be used ONLY within call_function_by_hand(). It provides
881 a workaround, to have inferior function calls done in sychronous
882 mode, even though the target is asynchronous. After
ed9a39eb
JM
883 target_async_mask(0) is called, calls to target_can_async_p() will
884 return FALSE , so that target_resume() will not try to start the
885 target asynchronously. After the inferior stops, we IMMEDIATELY
886 restore the previous nature of the target, by calling
887 target_async_mask(1). After that, target_can_async_p() will return
04714b91 888 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
889
890 FIXME ezannoni 1999-12-13: we won't need this once we move
891 the turning async on and off to the single execution commands,
0d06e24b 892 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
893
894#define target_async_mask_value \
0d06e24b 895 (current_target.to_async_mask_value)
ed9a39eb
JM
896
897extern int target_async_mask (int mask);
898
a14ed312 899extern void target_link (char *, CORE_ADDR *);
c906108c
SS
900
901/* Converts a process id to a string. Usually, the string just contains
902 `process xyz', but on some systems it may contain
903 `process xyz thread abc'. */
904
ed9a39eb
JM
905#undef target_pid_to_str
906#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
907
908#ifndef target_tid_to_str
909#define target_tid_to_str(PID) \
0d06e24b 910 target_pid_to_str (PID)
39f77062 911extern char *normal_pid_to_str (ptid_t ptid);
c906108c 912#endif
c5aa993b 913
0d06e24b
JM
914/* Return a short string describing extra information about PID,
915 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
916 is okay. */
917
918#define target_extra_thread_info(TP) \
919 (current_target.to_extra_thread_info (TP))
ed9a39eb 920
11cf8741
JM
921/*
922 * New Objfile Event Hook:
923 *
924 * Sometimes a GDB component wants to get notified whenever a new
925 * objfile is loaded. Mainly this is used by thread-debugging
926 * implementations that need to know when symbols for the target
927 * thread implemenation are available.
928 *
929 * The old way of doing this is to define a macro 'target_new_objfile'
930 * that points to the function that you want to be called on every
931 * objfile/shlib load.
932 *
933 * The new way is to grab the function pointer, 'target_new_objfile_hook',
934 * and point it to the function that you want to be called on every
935 * objfile/shlib load.
936 *
937 * If multiple clients are willing to be cooperative, they can each
938 * save a pointer to the previous value of target_new_objfile_hook
939 * before modifying it, and arrange for their function to call the
940 * previous function in the chain. In that way, multiple clients
941 * can receive this notification (something like with signal handlers).
942 */
c906108c 943
507f3c78 944extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
945
946#ifndef target_pid_or_tid_to_str
947#define target_pid_or_tid_to_str(ID) \
0d06e24b 948 target_pid_to_str (ID)
c906108c
SS
949#endif
950
951/* Attempts to find the pathname of the executable file
952 that was run to create a specified process.
953
954 The process PID must be stopped when this operation is used.
c5aa993b 955
c906108c
SS
956 If the executable file cannot be determined, NULL is returned.
957
958 Else, a pointer to a character string containing the pathname
959 is returned. This string should be copied into a buffer by
960 the client if the string will not be immediately used, or if
0d06e24b 961 it must persist. */
c906108c
SS
962
963#define target_pid_to_exec_file(pid) \
0d06e24b 964 (current_target.to_pid_to_exec_file) (pid)
c906108c 965
be4d1333
MS
966/*
967 * Iterator function for target memory regions.
968 * Calls a callback function once for each memory region 'mapped'
969 * in the child process. Defined as a simple macro rather than
970 * as a function macro so that it can be tested for nullity.
971 */
972
973#define target_find_memory_regions(FUNC, DATA) \
974 (current_target.to_find_memory_regions) (FUNC, DATA)
975
976/*
977 * Compose corefile .note section.
978 */
979
980#define target_make_corefile_notes(BFD, SIZE_P) \
981 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
982
3f47be5c
EZ
983/* Thread-local values. */
984#define target_get_thread_local_address \
985 (current_target.to_get_thread_local_address)
986#define target_get_thread_local_address_p() \
987 (target_get_thread_local_address != NULL)
988
9d8a64cb 989/* Hook to call target dependent code just after inferior target process has
c906108c
SS
990 started. */
991
992#ifndef TARGET_CREATE_INFERIOR_HOOK
993#define TARGET_CREATE_INFERIOR_HOOK(PID)
994#endif
995
996/* Hardware watchpoint interfaces. */
997
998/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
999 write). */
1000
1001#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1002#define STOPPED_BY_WATCHPOINT(w) \
1003 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1004#endif
7df1a324
KW
1005
1006/* Non-zero if we have continuable watchpoints */
1007
1008#ifndef HAVE_CONTINUABLE_WATCHPOINT
1009#define HAVE_CONTINUABLE_WATCHPOINT \
1010 (current_target.to_have_continuable_watchpoint)
1011#endif
c906108c
SS
1012
1013/* HP-UX supplies these operations, which respectively disable and enable
1014 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1015 on that platform. See wait_for_inferior's use of these. */
1016
c906108c
SS
1017#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1018#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1019#endif
1020
1021#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1022#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1023#endif
1024
ccaa32c7 1025/* Provide defaults for hardware watchpoint functions. */
c906108c 1026
ccaa32c7
GS
1027/* If the *_hw_beakpoint functions have not been defined
1028 elsewhere use the definitions in the target vector. */
c906108c
SS
1029
1030/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1031 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1032 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1033 (including this one?). OTHERTYPE is who knows what... */
1034
ccaa32c7
GS
1035#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1036#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1037 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1038#endif
c906108c
SS
1039
1040#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1041#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
ccaa32c7 1042 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
c906108c
SS
1043#endif
1044
c906108c
SS
1045
1046/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1047 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1048 success, non-zero for failure. */
1049
ccaa32c7
GS
1050#ifndef target_insert_watchpoint
1051#define target_insert_watchpoint(addr, len, type) \
1052 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1053
ccaa32c7
GS
1054#define target_remove_watchpoint(addr, len, type) \
1055 (*current_target.to_remove_watchpoint) (addr, len, type)
1056#endif
c906108c
SS
1057
1058#ifndef target_insert_hw_breakpoint
ccaa32c7
GS
1059#define target_insert_hw_breakpoint(addr, save) \
1060 (*current_target.to_insert_hw_breakpoint) (addr, save)
1061
1062#define target_remove_hw_breakpoint(addr, save) \
1063 (*current_target.to_remove_hw_breakpoint) (addr, save)
c906108c
SS
1064#endif
1065
1066#ifndef target_stopped_data_address
ccaa32c7
GS
1067#define target_stopped_data_address() \
1068 (*current_target.to_stopped_data_address) ()
c906108c
SS
1069#endif
1070
1071/* If defined, then we need to decr pc by this much after a hardware break-
1072 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1073
1074#ifndef DECR_PC_AFTER_HW_BREAK
1075#define DECR_PC_AFTER_HW_BREAK 0
1076#endif
1077
1078/* Sometimes gdb may pick up what appears to be a valid target address
1079 from a minimal symbol, but the value really means, essentially,
1080 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1081 is run. Therefore, do not attempt to use this as a PC." */
1082
c906108c
SS
1083#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1084#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1085#endif
1086
1087/* This will only be defined by a target that supports catching vfork events,
1088 such as HP-UX.
1089
1090 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1091 child process after it has exec'd, causes the parent process to resume as
1092 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1093 define this to a function that prevents that from happening. */
c906108c
SS
1094#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1095#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1096#endif
1097
1098/* This will only be defined by a target that supports catching vfork events,
1099 such as HP-UX.
1100
1101 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1102 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1103 vfork event will be delivered to us. */
1104
c906108c
SS
1105#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1106#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1107#endif
1108
1109/* Routines for maintenance of the target structures...
1110
1111 add_target: Add a target to the list of all possible targets.
1112
1113 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1114 targets, within its particular stratum of the stack. Result
1115 is 0 if now atop the stack, nonzero if not on top (maybe
1116 should warn user).
c906108c
SS
1117
1118 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1119 no matter where it is on the list. Returns 0 if no
1120 change, 1 if removed from stack.
c906108c 1121
c5aa993b 1122 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1123
a14ed312 1124extern void add_target (struct target_ops *);
c906108c 1125
a14ed312 1126extern int push_target (struct target_ops *);
c906108c 1127
a14ed312 1128extern int unpush_target (struct target_ops *);
c906108c 1129
a14ed312 1130extern void target_preopen (int);
c906108c 1131
a14ed312 1132extern void pop_target (void);
c906108c
SS
1133
1134/* Struct section_table maps address ranges to file sections. It is
1135 mostly used with BFD files, but can be used without (e.g. for handling
1136 raw disks, or files not in formats handled by BFD). */
1137
c5aa993b
JM
1138struct section_table
1139 {
1140 CORE_ADDR addr; /* Lowest address in section */
1141 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1142
c5aa993b 1143 sec_ptr the_bfd_section;
c906108c 1144
c5aa993b
JM
1145 bfd *bfd; /* BFD file pointer */
1146 };
c906108c 1147
8db32d44
AC
1148/* Return the "section" containing the specified address. */
1149struct section_table *target_section_by_addr (struct target_ops *target,
1150 CORE_ADDR addr);
1151
1152
c906108c
SS
1153/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1154 Returns 0 if OK, 1 on error. */
1155
570b8f7c
AC
1156extern int build_section_table (bfd *, struct section_table **,
1157 struct section_table **);
c906108c
SS
1158
1159/* From mem-break.c */
1160
a14ed312 1161extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1162
a14ed312 1163extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1164
a14ed312 1165extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1166
a14ed312 1167extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1168
c906108c
SS
1169
1170/* From target.c */
1171
a14ed312 1172extern void initialize_targets (void);
c906108c 1173
a14ed312 1174extern void noprocess (void);
c906108c 1175
a14ed312 1176extern void find_default_attach (char *, int);
c906108c 1177
a14ed312 1178extern void find_default_create_inferior (char *, char *, char **);
c906108c 1179
a14ed312 1180extern struct target_ops *find_run_target (void);
7a292a7a 1181
a14ed312 1182extern struct target_ops *find_core_target (void);
6426a772 1183
a14ed312 1184extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1185
570b8f7c
AC
1186extern int target_resize_to_sections (struct target_ops *target,
1187 int num_added);
07cd4b97
JB
1188
1189extern void remove_target_sections (bfd *abfd);
1190
c906108c
SS
1191\f
1192/* Stuff that should be shared among the various remote targets. */
1193
1194/* Debugging level. 0 is off, and non-zero values mean to print some debug
1195 information (higher values, more information). */
1196extern int remote_debug;
1197
1198/* Speed in bits per second, or -1 which means don't mess with the speed. */
1199extern int baud_rate;
1200/* Timeout limit for response from target. */
1201extern int remote_timeout;
1202
c906108c
SS
1203\f
1204/* Functions for helping to write a native target. */
1205
1206/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1207extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1208
c2d11a7d 1209/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1210 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1211/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1212 to the shorter target_signal_p() because it is far less ambigious.
1213 In this context ``target_signal'' refers to GDB's internal
1214 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1215 refers to the target operating system's signal. Confused? */
1216
c2d11a7d
JM
1217extern int target_signal_to_host_p (enum target_signal signo);
1218
1219/* Convert between host signal numbers and enum target_signal's.
1220 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1221 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1222/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1223 refering to the target operating system's signal numbering.
1224 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1225 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1226 internal representation of a target operating system's signal. */
1227
a14ed312
KB
1228extern enum target_signal target_signal_from_host (int);
1229extern int target_signal_to_host (enum target_signal);
c906108c
SS
1230
1231/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1232extern enum target_signal target_signal_from_command (int);
c906108c
SS
1233
1234/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1235extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1236\f
1237/* Imported from machine dependent code */
1238
c906108c 1239/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1240void target_ignore (void);
c906108c 1241
c5aa993b 1242#endif /* !defined (TARGET_H) */
This page took 0.650056 seconds and 4 git commands to generate.