Intel 386 Mach host port
[deliverable/binutils-gdb.git] / gdb / tm-tahoe.h
CommitLineData
cb173f45
JK
1/* Definitions to make GDB target for a tahoe running 4.3-Reno.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
99a7de40 6This program is free software; you can redistribute it and/or modify
cb173f45 7it under the terms of the GNU General Public License as published by
99a7de40
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
cb173f45 10
99a7de40 11This program is distributed in the hope that it will be useful,
cb173f45
JK
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
99a7de40
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
cb173f45
JK
19
20/*
21 * Ported by the State University of New York at Buffalo by the Distributed
22 * Computer Systems Lab, Department of Computer Science, 1991.
23 */
24
25#define TARGET_BYTE_ORDER BIG_ENDIAN
26#define BITS_BIG_ENDIAN 0
27
28/* Define this if the C compiler puts an underscore at the front
29 of external names before giving them to the linker. */
30
31#define NAMES_HAVE_UNDERSCORE
32
33/* Debugger information will be in DBX format. */
34
35#define READ_DBX_FORMAT
36
37/* Offset from address of function to start of its code.
38 Zero on most machines. */
39
40#define FUNCTION_START_OFFSET 2
41
42/* Advance PC across any function entry prologue instructions
43 to reach some "real" code. */
44
45#define SKIP_PROLOGUE(pc) \
46{ register int op = (unsigned char) read_memory_integer (pc, 1); \
47 if (op == 0x11) pc += 2; /* skip brb */ \
48 if (op == 0x13) pc += 3; /* skip brw */ \
49 if (op == 0x2c && \
50 ((unsigned char) read_memory_integer (pc+2, 1)) == 0x5e) \
51 pc += 3; /* skip subl2 */ \
52 if (op == 0xe9 && \
53 ((unsigned char) read_memory_integer (pc+1, 1)) == 0xae && \
54 ((unsigned char) read_memory_integer(pc+3, 1)) == 0x5e) \
55 pc += 4; /* skip movab */ \
56 if (op == 0xe9 && \
57 ((unsigned char) read_memory_integer (pc+1, 1)) == 0xce && \
58 ((unsigned char) read_memory_integer(pc+4, 1)) == 0x5e) \
59 pc += 5; /* skip movab */ \
60 if (op == 0xe9 && \
61 ((unsigned char) read_memory_integer (pc+1, 1)) == 0xee && \
62 ((unsigned char) read_memory_integer(pc+6, 1)) == 0x5e) \
63 pc += 7; /* skip movab */ \
64}
65
66/* Immediately after a function call, return the saved pc.
67 Can't always go through the frames for this because on some machines
68 the new frame is not set up until the new function executes
69 some instructions. */
70
71#define SAVED_PC_AFTER_CALL(frame) FRAME_SAVED_PC(frame)
72
73/* Wrong for cross-debugging. I don't know the real values. */
0c540082 74#include <machine/param.h>
cb173f45
JK
75#define TARGET_UPAGES UPAGES
76#define TARGET_NBPG NBPG
77
78/* This is the amount to subtract from u.u_ar0
79 to get the offset in the core file of the register values. */
80
81#define KERNEL_U_ADDR (0xc0000000 - (TARGET_UPAGES * TARGET_NBPG))
82
83/* Address of end of stack space. */
84
85#define STACK_END_ADDR (0xc0000000 - (TARGET_UPAGES * TARGET_NBPG))
86
87/* On BSD, sigtramp is in the u area. Can't check the exact
88 addresses because for cross-debugging we don't have target include
89 files around. This should be close enough. */
90#define IN_SIGTRAMP(pc, name) ((pc) >= STACK_END_ADDR && (pc < 0xc0000000))
91
92/* Stack grows downward. */
93
94#define INNER_THAN <
95
96/* Sequence of bytes for breakpoint instruction. */
97
98#define BREAKPOINT {0x30}
99
100/* Amount PC must be decremented by after a breakpoint.
101 This is often the number of bytes in BREAKPOINT
102 but not always. */
103
104#define DECR_PC_AFTER_BREAK 0
105
106/* Nonzero if instruction at PC is a return instruction. */
107
108#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x40)
109
110/* Return 1 if P points to an invalid floating point value.
111 LEN is the length in bytes -- not relevant on the Tahoe. */
112
113#define INVALID_FLOAT(p, len) ((*(short *) p & 0xff80) == 0x8000)
114
115/* Say how long (ordinary) registers are. */
116
117#define REGISTER_TYPE long
118
119/* Number of machine registers */
120
121#define NUM_REGS 19
122
123/* Initializer for an array of names of registers.
124 There should be NUM_REGS strings in this initializer. */
125
126#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "fp", "sp", "pc", "ps", "al", "ah"}
127
128#define FP_REGNUM 13 /* Contains address of executing stack frame */
129#define SP_REGNUM 14 /* Contains address of top of stack */
130#define PC_REGNUM 15 /* Contains program counter */
131#define PS_REGNUM 16 /* Contains processor status */
132
133#define AL_REGNUM 17 /* Contains accumulator */
134#define AH_REGNUM 18
135
136/* Total amount of space needed to store our copies of the machine's
137 register state, the array `registers'. */
138
139#define REGISTER_BYTES (19*4)
140
141/* Index within `registers' of the first byte of the space for
142 register N. */
143
144#define REGISTER_BYTE(N) ((N) * 4)
145
146/* Number of bytes of storage in the actual machine representation
147 for register N. On the tahoe, all regs are 4 bytes. */
148
149#define REGISTER_RAW_SIZE(N) 4
150
151/* Number of bytes of storage in the program's representation
152 for register N. On the tahoe, all regs are 4 bytes. */
153
154#define REGISTER_VIRTUAL_SIZE(N) 4
155
156/* Largest value REGISTER_RAW_SIZE can have. */
157
158#define MAX_REGISTER_RAW_SIZE 4
159
160/* Largest value REGISTER_VIRTUAL_SIZE can have. */
161
162#define MAX_REGISTER_VIRTUAL_SIZE 4
163
164/* Nonzero if register N requires conversion
165 from raw format to virtual format. */
166
167#define REGISTER_CONVERTIBLE(N) 0
168
169/* Convert data from raw format for register REGNUM
170 to virtual format for register REGNUM. */
171
172#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
173 bcopy ((FROM), (TO), 4);
174
175/* Convert data from virtual format for register REGNUM
176 to raw format for register REGNUM. */
177
178#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
179 bcopy ((FROM), (TO), 4);
180
181/* Return the GDB type object for the "standard" data type
182 of data in register N. */
183
184#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
185
186/* Store the address of the place in which to copy the structure the
187 subroutine will return. This is called from call_function. */
188
189#define STORE_STRUCT_RETURN(ADDR, SP) \
190 { write_register (1, (ADDR)); }
191
192/* Extract from an array REGBUF containing the (raw) register state
193 a function return value of type TYPE, and copy that, in virtual format,
194 into VALBUF. */
195
196#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
197 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
198
199/* Write into appropriate registers a function return value
200 of type TYPE, given in virtual format. */
201
202#define STORE_RETURN_VALUE(TYPE,VALBUF) \
203 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
204
205/* Extract from an array REGBUF containing the (raw) register state
206 the address in which a function should return its structure value,
207 as a CORE_ADDR (or an expression that can be used as one). */
208
209#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
210
211/* Describe the pointer in each stack frame to the previous stack frame
212 (its caller).
213
214 FRAME_CHAIN takes a frame's nominal address
215 and produces the frame's chain-pointer.
216
217 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
218 and produces the nominal address of the caller frame.
219
220 However, if FRAME_CHAIN_VALID returns zero,
221 it means the given frame is the outermost one and has no caller.
222 In that case, FRAME_CHAIN_COMBINE is not used. */
223
224/* In the case of the Tahoe, the frame's nominal address is the FP value,
225 and it points to the old FP */
226
227#define FRAME_CHAIN(thisframe) \
228 (outside_startup_file ((thisframe)->pc) ? \
229 read_memory_integer ((thisframe)->frame, 4) :\
230 0)
231
232#define FRAME_CHAIN_VALID(chain, thisframe) \
233 (chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
234
235#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
236
237/* Define other aspects of the stack frame. */
238
239/* Saved PC */
240
241#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame - 8, 4))
242
243/* In most of GDB, getting the args address is too important to
244 just say "I don't know". */
245
246#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame+4)
247
248/* Address to use as an anchor for finding local variables */
249
250#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
251
252/* Return number of args passed to a frame.
253 Can return -1, meaning no way to tell. */
254
255#define FRAME_NUM_ARGS(numargs, fi) \
256{ numargs = ((0xffff & read_memory_integer(((fi)->frame-4),4)) - 4) >> 2; }
257
258/* Return number of bytes at start of arglist that are not really args. */
259
260#define FRAME_ARGS_SKIP 0
261
262/* Put here the code to store, into a struct frame_saved_regs,
263 the addresses of the saved registers of frame described by FRAME_INFO.
264 This includes special registers such as pc and fp saved in special
265 ways in the stack frame. sp is even more special:
266 the address we return for it IS the sp for the next frame. */
267
268#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
269{ register int regnum; \
270 register int rmask = read_memory_integer ((frame_info)->frame-4, 4) >> 16;\
271 register CORE_ADDR next_addr; \
272 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
273 next_addr = (frame_info)->frame - 8; \
274 for (regnum = 12; regnum >= 0; regnum--, rmask <<= 1) \
275 (frame_saved_regs).regs[regnum] = (rmask & 0x1000) ? (next_addr -= 4) : 0;\
276 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4; \
277 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame - 8; \
278 (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
279}
280
281/* Things needed for making the inferior call functions. */
282
283/* Push an empty stack frame, to record the current PC, etc. */
284
285#define PUSH_DUMMY_FRAME \
286{ register CORE_ADDR sp = read_register (SP_REGNUM); \
287 register int regnum; \
288printf("PUSH_DUMMY_FRAME\n"); \
289 sp = push_word (sp, read_register (FP_REGNUM)); \
290 write_register (FP_REGNUM, sp); \
291 sp = push_word (sp, 0x1fff0004); /*SAVE MASK*/ \
292 sp = push_word (sp, read_register (PC_REGNUM)); \
293 for (regnum = 12; regnum >= 0; regnum--) \
294 sp = push_word (sp, read_register (regnum)); \
295 write_register (SP_REGNUM, sp); \
296}
297
298/* Discard from the stack the innermost frame, restoring all registers. */
299
300#define POP_FRAME \
301{ register CORE_ADDR fp = read_register (FP_REGNUM); \
302 register int regnum; \
303 register int regmask = read_memory_integer (fp-4, 4); \
304printf("POP_FRAME\n"); \
305 regmask >>= 16; \
306 write_register (SP_REGNUM, fp+4); \
307 write_register (PC_REGNUM, read_memory_integer(fp-8, 4)); \
308 write_register (FP_REGNUM, read_memory_integer(fp, 4)); \
309 fp -= 8; \
310 for (regnum = 12; regnum >= 0; regnum--, regmask <<= 1) \
311 if (regmask & 0x1000) \
312 write_register (regnum, read_memory_integer (fp-=4, 4)); \
313 flush_cached_frames (); \
314 set_current_frame (create_new_frame (read_register (FP_REGNUM), \
315 read_pc ())); }
316
317/* This sequence of words is the instructions
318 calls #69, @#32323232
319 bpt
320 Note this is 8 bytes. */
321
322#define CALL_DUMMY {0xbf699f32, 0x32323230}
323
324/* Start execution at beginning of dummy */
325
326#define CALL_DUMMY_START_OFFSET 0
327
328/* Insert the specified number of args and function address
329 into a call sequence of the above form stored at DUMMYNAME. */
330
0c540082 331#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, valtype, using_gcc) \
cb173f45
JK
332{ int temp = (int) fun; \
333 *((char *) dummyname + 1) = nargs; \
334 bcopy(&temp,(char *)dummyname+3,4); }
335
This page took 0.046751 seconds and 4 git commands to generate.