Commit | Line | Data |
---|---|---|
c906108c | 1 | /* General utility routines for GDB, the GNU debugger. |
4fcf66da | 2 | Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000, 2001 |
d9fcf2fb | 3 | Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include <ctype.h> | |
24 | #include "gdb_string.h" | |
c2c6d25f | 25 | #include "event-top.h" |
c906108c SS |
26 | |
27 | #ifdef HAVE_CURSES_H | |
28 | #include <curses.h> | |
29 | #endif | |
30 | #ifdef HAVE_TERM_H | |
31 | #include <term.h> | |
32 | #endif | |
33 | ||
9d271fd8 AC |
34 | #ifdef __GO32__ |
35 | #include <pc.h> | |
36 | #endif | |
37 | ||
c906108c SS |
38 | /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */ |
39 | #ifdef reg | |
40 | #undef reg | |
41 | #endif | |
42 | ||
042be3a9 | 43 | #include <signal.h> |
c906108c SS |
44 | #include "gdbcmd.h" |
45 | #include "serial.h" | |
46 | #include "bfd.h" | |
47 | #include "target.h" | |
48 | #include "demangle.h" | |
49 | #include "expression.h" | |
50 | #include "language.h" | |
51 | #include "annotate.h" | |
52 | ||
ac2e2ef7 AC |
53 | #include "inferior.h" /* for signed_pointer_to_address */ |
54 | ||
c906108c SS |
55 | #include <readline/readline.h> |
56 | ||
917317f4 JM |
57 | #undef XMALLOC |
58 | #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) | |
59 | ||
c906108c SS |
60 | /* readline defines this. */ |
61 | #undef savestring | |
62 | ||
507f3c78 | 63 | void (*error_begin_hook) (void); |
c906108c | 64 | |
2acceee2 JM |
65 | /* Holds the last error message issued by gdb */ |
66 | ||
d9fcf2fb | 67 | static struct ui_file *gdb_lasterr; |
2acceee2 | 68 | |
c906108c SS |
69 | /* Prototypes for local functions */ |
70 | ||
d9fcf2fb JM |
71 | static void vfprintf_maybe_filtered (struct ui_file *, const char *, |
72 | va_list, int); | |
c906108c | 73 | |
d9fcf2fb | 74 | static void fputs_maybe_filtered (const char *, struct ui_file *, int); |
c906108c SS |
75 | |
76 | #if defined (USE_MMALLOC) && !defined (NO_MMCHECK) | |
a14ed312 | 77 | static void malloc_botch (void); |
c906108c SS |
78 | #endif |
79 | ||
a14ed312 | 80 | static void prompt_for_continue (void); |
c906108c | 81 | |
a14ed312 | 82 | static void set_width_command (char *, int, struct cmd_list_element *); |
c906108c | 83 | |
a14ed312 | 84 | static void set_width (void); |
c906108c | 85 | |
c906108c SS |
86 | /* Chain of cleanup actions established with make_cleanup, |
87 | to be executed if an error happens. */ | |
88 | ||
c5aa993b JM |
89 | static struct cleanup *cleanup_chain; /* cleaned up after a failed command */ |
90 | static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */ | |
91 | static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */ | |
92 | static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */ | |
6426a772 JM |
93 | /* cleaned up on each error from within an execution command */ |
94 | static struct cleanup *exec_error_cleanup_chain; | |
43ff13b4 JM |
95 | |
96 | /* Pointer to what is left to do for an execution command after the | |
97 | target stops. Used only in asynchronous mode, by targets that | |
98 | support async execution. The finish and until commands use it. So | |
99 | does the target extended-remote command. */ | |
100 | struct continuation *cmd_continuation; | |
c2d11a7d | 101 | struct continuation *intermediate_continuation; |
c906108c SS |
102 | |
103 | /* Nonzero if we have job control. */ | |
104 | ||
105 | int job_control; | |
106 | ||
107 | /* Nonzero means a quit has been requested. */ | |
108 | ||
109 | int quit_flag; | |
110 | ||
111 | /* Nonzero means quit immediately if Control-C is typed now, rather | |
112 | than waiting until QUIT is executed. Be careful in setting this; | |
113 | code which executes with immediate_quit set has to be very careful | |
114 | about being able to deal with being interrupted at any time. It is | |
115 | almost always better to use QUIT; the only exception I can think of | |
116 | is being able to quit out of a system call (using EINTR loses if | |
117 | the SIGINT happens between the previous QUIT and the system call). | |
118 | To immediately quit in the case in which a SIGINT happens between | |
119 | the previous QUIT and setting immediate_quit (desirable anytime we | |
120 | expect to block), call QUIT after setting immediate_quit. */ | |
121 | ||
122 | int immediate_quit; | |
123 | ||
124 | /* Nonzero means that encoded C++ names should be printed out in their | |
125 | C++ form rather than raw. */ | |
126 | ||
127 | int demangle = 1; | |
128 | ||
129 | /* Nonzero means that encoded C++ names should be printed out in their | |
130 | C++ form even in assembler language displays. If this is set, but | |
131 | DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */ | |
132 | ||
133 | int asm_demangle = 0; | |
134 | ||
135 | /* Nonzero means that strings with character values >0x7F should be printed | |
136 | as octal escapes. Zero means just print the value (e.g. it's an | |
137 | international character, and the terminal or window can cope.) */ | |
138 | ||
139 | int sevenbit_strings = 0; | |
140 | ||
141 | /* String to be printed before error messages, if any. */ | |
142 | ||
143 | char *error_pre_print; | |
144 | ||
145 | /* String to be printed before quit messages, if any. */ | |
146 | ||
147 | char *quit_pre_print; | |
148 | ||
149 | /* String to be printed before warning messages, if any. */ | |
150 | ||
151 | char *warning_pre_print = "\nwarning: "; | |
152 | ||
153 | int pagination_enabled = 1; | |
c906108c | 154 | \f |
c5aa993b | 155 | |
c906108c SS |
156 | /* Add a new cleanup to the cleanup_chain, |
157 | and return the previous chain pointer | |
158 | to be passed later to do_cleanups or discard_cleanups. | |
159 | Args are FUNCTION to clean up with, and ARG to pass to it. */ | |
160 | ||
161 | struct cleanup * | |
e4005526 | 162 | make_cleanup (make_cleanup_ftype *function, void *arg) |
c906108c | 163 | { |
c5aa993b | 164 | return make_my_cleanup (&cleanup_chain, function, arg); |
c906108c SS |
165 | } |
166 | ||
167 | struct cleanup * | |
e4005526 | 168 | make_final_cleanup (make_cleanup_ftype *function, void *arg) |
c906108c | 169 | { |
c5aa993b | 170 | return make_my_cleanup (&final_cleanup_chain, function, arg); |
c906108c | 171 | } |
7a292a7a | 172 | |
c906108c | 173 | struct cleanup * |
e4005526 | 174 | make_run_cleanup (make_cleanup_ftype *function, void *arg) |
c906108c | 175 | { |
c5aa993b | 176 | return make_my_cleanup (&run_cleanup_chain, function, arg); |
c906108c | 177 | } |
7a292a7a | 178 | |
43ff13b4 | 179 | struct cleanup * |
e4005526 | 180 | make_exec_cleanup (make_cleanup_ftype *function, void *arg) |
43ff13b4 | 181 | { |
c5aa993b | 182 | return make_my_cleanup (&exec_cleanup_chain, function, arg); |
43ff13b4 JM |
183 | } |
184 | ||
6426a772 | 185 | struct cleanup * |
e4005526 | 186 | make_exec_error_cleanup (make_cleanup_ftype *function, void *arg) |
6426a772 JM |
187 | { |
188 | return make_my_cleanup (&exec_error_cleanup_chain, function, arg); | |
189 | } | |
190 | ||
7a292a7a | 191 | static void |
fba45db2 | 192 | do_freeargv (void *arg) |
7a292a7a | 193 | { |
c5aa993b | 194 | freeargv ((char **) arg); |
7a292a7a SS |
195 | } |
196 | ||
197 | struct cleanup * | |
fba45db2 | 198 | make_cleanup_freeargv (char **arg) |
7a292a7a SS |
199 | { |
200 | return make_my_cleanup (&cleanup_chain, do_freeargv, arg); | |
201 | } | |
202 | ||
5c65bbb6 AC |
203 | static void |
204 | do_bfd_close_cleanup (void *arg) | |
205 | { | |
206 | bfd_close (arg); | |
207 | } | |
208 | ||
209 | struct cleanup * | |
210 | make_cleanup_bfd_close (bfd *abfd) | |
211 | { | |
212 | return make_cleanup (do_bfd_close_cleanup, abfd); | |
213 | } | |
214 | ||
f5ff8c83 AC |
215 | static void |
216 | do_close_cleanup (void *arg) | |
217 | { | |
218 | close ((int) arg); | |
219 | } | |
220 | ||
221 | struct cleanup * | |
222 | make_cleanup_close (int fd) | |
223 | { | |
224 | /* int into void*. Outch!! */ | |
225 | return make_cleanup (do_close_cleanup, (void *) fd); | |
226 | } | |
227 | ||
11cf8741 | 228 | static void |
d9fcf2fb | 229 | do_ui_file_delete (void *arg) |
11cf8741 | 230 | { |
d9fcf2fb | 231 | ui_file_delete (arg); |
11cf8741 JM |
232 | } |
233 | ||
234 | struct cleanup * | |
d9fcf2fb | 235 | make_cleanup_ui_file_delete (struct ui_file *arg) |
11cf8741 | 236 | { |
d9fcf2fb | 237 | return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg); |
11cf8741 JM |
238 | } |
239 | ||
c906108c | 240 | struct cleanup * |
e4005526 AC |
241 | make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function, |
242 | void *arg) | |
c906108c SS |
243 | { |
244 | register struct cleanup *new | |
c5aa993b | 245 | = (struct cleanup *) xmalloc (sizeof (struct cleanup)); |
c906108c SS |
246 | register struct cleanup *old_chain = *pmy_chain; |
247 | ||
248 | new->next = *pmy_chain; | |
249 | new->function = function; | |
250 | new->arg = arg; | |
251 | *pmy_chain = new; | |
252 | ||
253 | return old_chain; | |
254 | } | |
255 | ||
256 | /* Discard cleanups and do the actions they describe | |
257 | until we get back to the point OLD_CHAIN in the cleanup_chain. */ | |
258 | ||
259 | void | |
fba45db2 | 260 | do_cleanups (register struct cleanup *old_chain) |
c906108c | 261 | { |
c5aa993b | 262 | do_my_cleanups (&cleanup_chain, old_chain); |
c906108c SS |
263 | } |
264 | ||
265 | void | |
fba45db2 | 266 | do_final_cleanups (register struct cleanup *old_chain) |
c906108c | 267 | { |
c5aa993b | 268 | do_my_cleanups (&final_cleanup_chain, old_chain); |
c906108c SS |
269 | } |
270 | ||
271 | void | |
fba45db2 | 272 | do_run_cleanups (register struct cleanup *old_chain) |
c906108c | 273 | { |
c5aa993b | 274 | do_my_cleanups (&run_cleanup_chain, old_chain); |
c906108c SS |
275 | } |
276 | ||
43ff13b4 | 277 | void |
fba45db2 | 278 | do_exec_cleanups (register struct cleanup *old_chain) |
43ff13b4 | 279 | { |
c5aa993b | 280 | do_my_cleanups (&exec_cleanup_chain, old_chain); |
43ff13b4 JM |
281 | } |
282 | ||
6426a772 | 283 | void |
fba45db2 | 284 | do_exec_error_cleanups (register struct cleanup *old_chain) |
6426a772 JM |
285 | { |
286 | do_my_cleanups (&exec_error_cleanup_chain, old_chain); | |
287 | } | |
288 | ||
c906108c | 289 | void |
fba45db2 KB |
290 | do_my_cleanups (register struct cleanup **pmy_chain, |
291 | register struct cleanup *old_chain) | |
c906108c SS |
292 | { |
293 | register struct cleanup *ptr; | |
294 | while ((ptr = *pmy_chain) != old_chain) | |
295 | { | |
296 | *pmy_chain = ptr->next; /* Do this first incase recursion */ | |
297 | (*ptr->function) (ptr->arg); | |
b8c9b27d | 298 | xfree (ptr); |
c906108c SS |
299 | } |
300 | } | |
301 | ||
302 | /* Discard cleanups, not doing the actions they describe, | |
303 | until we get back to the point OLD_CHAIN in the cleanup_chain. */ | |
304 | ||
305 | void | |
fba45db2 | 306 | discard_cleanups (register struct cleanup *old_chain) |
c906108c | 307 | { |
c5aa993b | 308 | discard_my_cleanups (&cleanup_chain, old_chain); |
c906108c SS |
309 | } |
310 | ||
311 | void | |
fba45db2 | 312 | discard_final_cleanups (register struct cleanup *old_chain) |
c906108c | 313 | { |
c5aa993b | 314 | discard_my_cleanups (&final_cleanup_chain, old_chain); |
c906108c SS |
315 | } |
316 | ||
6426a772 | 317 | void |
fba45db2 | 318 | discard_exec_error_cleanups (register struct cleanup *old_chain) |
6426a772 JM |
319 | { |
320 | discard_my_cleanups (&exec_error_cleanup_chain, old_chain); | |
321 | } | |
322 | ||
c906108c | 323 | void |
fba45db2 KB |
324 | discard_my_cleanups (register struct cleanup **pmy_chain, |
325 | register struct cleanup *old_chain) | |
c906108c SS |
326 | { |
327 | register struct cleanup *ptr; | |
328 | while ((ptr = *pmy_chain) != old_chain) | |
329 | { | |
330 | *pmy_chain = ptr->next; | |
b8c9b27d | 331 | xfree (ptr); |
c906108c SS |
332 | } |
333 | } | |
334 | ||
335 | /* Set the cleanup_chain to 0, and return the old cleanup chain. */ | |
336 | struct cleanup * | |
fba45db2 | 337 | save_cleanups (void) |
c906108c | 338 | { |
c5aa993b | 339 | return save_my_cleanups (&cleanup_chain); |
c906108c SS |
340 | } |
341 | ||
342 | struct cleanup * | |
fba45db2 | 343 | save_final_cleanups (void) |
c906108c | 344 | { |
c5aa993b | 345 | return save_my_cleanups (&final_cleanup_chain); |
c906108c SS |
346 | } |
347 | ||
348 | struct cleanup * | |
fba45db2 | 349 | save_my_cleanups (struct cleanup **pmy_chain) |
c906108c SS |
350 | { |
351 | struct cleanup *old_chain = *pmy_chain; | |
352 | ||
353 | *pmy_chain = 0; | |
354 | return old_chain; | |
355 | } | |
356 | ||
357 | /* Restore the cleanup chain from a previously saved chain. */ | |
358 | void | |
fba45db2 | 359 | restore_cleanups (struct cleanup *chain) |
c906108c | 360 | { |
c5aa993b | 361 | restore_my_cleanups (&cleanup_chain, chain); |
c906108c SS |
362 | } |
363 | ||
364 | void | |
fba45db2 | 365 | restore_final_cleanups (struct cleanup *chain) |
c906108c | 366 | { |
c5aa993b | 367 | restore_my_cleanups (&final_cleanup_chain, chain); |
c906108c SS |
368 | } |
369 | ||
370 | void | |
fba45db2 | 371 | restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain) |
c906108c SS |
372 | { |
373 | *pmy_chain = chain; | |
374 | } | |
375 | ||
376 | /* This function is useful for cleanups. | |
377 | Do | |
378 | ||
c5aa993b JM |
379 | foo = xmalloc (...); |
380 | old_chain = make_cleanup (free_current_contents, &foo); | |
c906108c SS |
381 | |
382 | to arrange to free the object thus allocated. */ | |
383 | ||
384 | void | |
2f9429ae | 385 | free_current_contents (void *ptr) |
c906108c | 386 | { |
2f9429ae | 387 | void **location = ptr; |
e2f9c474 AC |
388 | if (location == NULL) |
389 | internal_error ("free_current_contents: NULL pointer"); | |
2f9429ae | 390 | if (*location != NULL) |
e2f9c474 | 391 | { |
b8c9b27d | 392 | xfree (*location); |
e2f9c474 AC |
393 | *location = NULL; |
394 | } | |
c906108c SS |
395 | } |
396 | ||
397 | /* Provide a known function that does nothing, to use as a base for | |
398 | for a possibly long chain of cleanups. This is useful where we | |
399 | use the cleanup chain for handling normal cleanups as well as dealing | |
400 | with cleanups that need to be done as a result of a call to error(). | |
401 | In such cases, we may not be certain where the first cleanup is, unless | |
402 | we have a do-nothing one to always use as the base. */ | |
403 | ||
404 | /* ARGSUSED */ | |
405 | void | |
e4005526 | 406 | null_cleanup (void *arg) |
c906108c SS |
407 | { |
408 | } | |
409 | ||
74f832da | 410 | /* Add a continuation to the continuation list, the global list |
c2d11a7d | 411 | cmd_continuation. The new continuation will be added at the front.*/ |
43ff13b4 | 412 | void |
74f832da KB |
413 | add_continuation (void (*continuation_hook) (struct continuation_arg *), |
414 | struct continuation_arg *arg_list) | |
43ff13b4 | 415 | { |
c5aa993b | 416 | struct continuation *continuation_ptr; |
43ff13b4 | 417 | |
c5aa993b JM |
418 | continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation)); |
419 | continuation_ptr->continuation_hook = continuation_hook; | |
420 | continuation_ptr->arg_list = arg_list; | |
421 | continuation_ptr->next = cmd_continuation; | |
422 | cmd_continuation = continuation_ptr; | |
43ff13b4 JM |
423 | } |
424 | ||
425 | /* Walk down the cmd_continuation list, and execute all the | |
c2d11a7d JM |
426 | continuations. There is a problem though. In some cases new |
427 | continuations may be added while we are in the middle of this | |
428 | loop. If this happens they will be added in the front, and done | |
429 | before we have a chance of exhausting those that were already | |
430 | there. We need to then save the beginning of the list in a pointer | |
431 | and do the continuations from there on, instead of using the | |
432 | global beginning of list as our iteration pointer.*/ | |
c5aa993b | 433 | void |
fba45db2 | 434 | do_all_continuations (void) |
c2d11a7d JM |
435 | { |
436 | struct continuation *continuation_ptr; | |
437 | struct continuation *saved_continuation; | |
438 | ||
439 | /* Copy the list header into another pointer, and set the global | |
440 | list header to null, so that the global list can change as a side | |
441 | effect of invoking the continuations and the processing of | |
442 | the preexisting continuations will not be affected. */ | |
443 | continuation_ptr = cmd_continuation; | |
444 | cmd_continuation = NULL; | |
445 | ||
446 | /* Work now on the list we have set aside. */ | |
447 | while (continuation_ptr) | |
448 | { | |
449 | (continuation_ptr->continuation_hook) (continuation_ptr->arg_list); | |
450 | saved_continuation = continuation_ptr; | |
451 | continuation_ptr = continuation_ptr->next; | |
b8c9b27d | 452 | xfree (saved_continuation); |
c2d11a7d JM |
453 | } |
454 | } | |
455 | ||
456 | /* Walk down the cmd_continuation list, and get rid of all the | |
457 | continuations. */ | |
458 | void | |
fba45db2 | 459 | discard_all_continuations (void) |
43ff13b4 | 460 | { |
c5aa993b | 461 | struct continuation *continuation_ptr; |
43ff13b4 | 462 | |
c5aa993b JM |
463 | while (cmd_continuation) |
464 | { | |
c5aa993b JM |
465 | continuation_ptr = cmd_continuation; |
466 | cmd_continuation = continuation_ptr->next; | |
b8c9b27d | 467 | xfree (continuation_ptr); |
c5aa993b | 468 | } |
43ff13b4 | 469 | } |
c2c6d25f | 470 | |
57e687d9 | 471 | /* Add a continuation to the continuation list, the global list |
c2d11a7d JM |
472 | intermediate_continuation. The new continuation will be added at the front.*/ |
473 | void | |
74f832da KB |
474 | add_intermediate_continuation (void (*continuation_hook) |
475 | (struct continuation_arg *), | |
476 | struct continuation_arg *arg_list) | |
c2d11a7d JM |
477 | { |
478 | struct continuation *continuation_ptr; | |
479 | ||
480 | continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation)); | |
481 | continuation_ptr->continuation_hook = continuation_hook; | |
482 | continuation_ptr->arg_list = arg_list; | |
483 | continuation_ptr->next = intermediate_continuation; | |
484 | intermediate_continuation = continuation_ptr; | |
485 | } | |
486 | ||
487 | /* Walk down the cmd_continuation list, and execute all the | |
488 | continuations. There is a problem though. In some cases new | |
489 | continuations may be added while we are in the middle of this | |
490 | loop. If this happens they will be added in the front, and done | |
491 | before we have a chance of exhausting those that were already | |
492 | there. We need to then save the beginning of the list in a pointer | |
493 | and do the continuations from there on, instead of using the | |
494 | global beginning of list as our iteration pointer.*/ | |
495 | void | |
fba45db2 | 496 | do_all_intermediate_continuations (void) |
c2d11a7d JM |
497 | { |
498 | struct continuation *continuation_ptr; | |
499 | struct continuation *saved_continuation; | |
500 | ||
501 | /* Copy the list header into another pointer, and set the global | |
502 | list header to null, so that the global list can change as a side | |
503 | effect of invoking the continuations and the processing of | |
504 | the preexisting continuations will not be affected. */ | |
505 | continuation_ptr = intermediate_continuation; | |
506 | intermediate_continuation = NULL; | |
507 | ||
508 | /* Work now on the list we have set aside. */ | |
509 | while (continuation_ptr) | |
510 | { | |
511 | (continuation_ptr->continuation_hook) (continuation_ptr->arg_list); | |
512 | saved_continuation = continuation_ptr; | |
513 | continuation_ptr = continuation_ptr->next; | |
b8c9b27d | 514 | xfree (saved_continuation); |
c2d11a7d JM |
515 | } |
516 | } | |
517 | ||
c2c6d25f JM |
518 | /* Walk down the cmd_continuation list, and get rid of all the |
519 | continuations. */ | |
520 | void | |
fba45db2 | 521 | discard_all_intermediate_continuations (void) |
c2c6d25f JM |
522 | { |
523 | struct continuation *continuation_ptr; | |
524 | ||
c2d11a7d | 525 | while (intermediate_continuation) |
c2c6d25f | 526 | { |
c2d11a7d JM |
527 | continuation_ptr = intermediate_continuation; |
528 | intermediate_continuation = continuation_ptr->next; | |
b8c9b27d | 529 | xfree (continuation_ptr); |
c2c6d25f JM |
530 | } |
531 | } | |
532 | ||
c906108c | 533 | \f |
c5aa993b | 534 | |
c906108c SS |
535 | /* Print a warning message. Way to use this is to call warning_begin, |
536 | output the warning message (use unfiltered output to gdb_stderr), | |
537 | ending in a newline. There is not currently a warning_end that you | |
538 | call afterwards, but such a thing might be added if it is useful | |
539 | for a GUI to separate warning messages from other output. | |
540 | ||
541 | FIXME: Why do warnings use unfiltered output and errors filtered? | |
542 | Is this anything other than a historical accident? */ | |
543 | ||
544 | void | |
fba45db2 | 545 | warning_begin (void) |
c906108c SS |
546 | { |
547 | target_terminal_ours (); | |
c5aa993b | 548 | wrap_here (""); /* Force out any buffered output */ |
c906108c SS |
549 | gdb_flush (gdb_stdout); |
550 | if (warning_pre_print) | |
551 | fprintf_unfiltered (gdb_stderr, warning_pre_print); | |
552 | } | |
553 | ||
554 | /* Print a warning message. | |
555 | The first argument STRING is the warning message, used as a fprintf string, | |
556 | and the remaining args are passed as arguments to it. | |
557 | The primary difference between warnings and errors is that a warning | |
558 | does not force the return to command level. */ | |
559 | ||
c906108c | 560 | void |
c5aa993b | 561 | warning (const char *string,...) |
c906108c SS |
562 | { |
563 | va_list args; | |
c906108c | 564 | va_start (args, string); |
c906108c SS |
565 | if (warning_hook) |
566 | (*warning_hook) (string, args); | |
567 | else | |
c5aa993b JM |
568 | { |
569 | warning_begin (); | |
570 | vfprintf_unfiltered (gdb_stderr, string, args); | |
571 | fprintf_unfiltered (gdb_stderr, "\n"); | |
572 | va_end (args); | |
573 | } | |
c906108c SS |
574 | } |
575 | ||
576 | /* Start the printing of an error message. Way to use this is to call | |
577 | this, output the error message (use filtered output to gdb_stderr | |
578 | (FIXME: Some callers, like memory_error, use gdb_stdout)), ending | |
579 | in a newline, and then call return_to_top_level (RETURN_ERROR). | |
580 | error() provides a convenient way to do this for the special case | |
581 | that the error message can be formatted with a single printf call, | |
582 | but this is more general. */ | |
583 | void | |
fba45db2 | 584 | error_begin (void) |
c906108c SS |
585 | { |
586 | if (error_begin_hook) | |
587 | error_begin_hook (); | |
588 | ||
589 | target_terminal_ours (); | |
c5aa993b | 590 | wrap_here (""); /* Force out any buffered output */ |
c906108c SS |
591 | gdb_flush (gdb_stdout); |
592 | ||
593 | annotate_error_begin (); | |
594 | ||
595 | if (error_pre_print) | |
596 | fprintf_filtered (gdb_stderr, error_pre_print); | |
597 | } | |
598 | ||
599 | /* Print an error message and return to command level. | |
600 | The first argument STRING is the error message, used as a fprintf string, | |
601 | and the remaining args are passed as arguments to it. */ | |
602 | ||
4ce44c66 JM |
603 | NORETURN void |
604 | verror (const char *string, va_list args) | |
605 | { | |
c2d11a7d JM |
606 | char *err_string; |
607 | struct cleanup *err_string_cleanup; | |
4ce44c66 | 608 | /* FIXME: cagney/1999-11-10: All error calls should come here. |
e26cc349 | 609 | Unfortunately some code uses the sequence: error_begin(); print |
4ce44c66 JM |
610 | error message; return_to_top_level. That code should be |
611 | flushed. */ | |
612 | error_begin (); | |
c2d11a7d JM |
613 | /* NOTE: It's tempting to just do the following... |
614 | vfprintf_filtered (gdb_stderr, string, args); | |
615 | and then follow with a similar looking statement to cause the message | |
616 | to also go to gdb_lasterr. But if we do this, we'll be traversing the | |
617 | va_list twice which works on some platforms and fails miserably on | |
618 | others. */ | |
619 | /* Save it as the last error */ | |
d9fcf2fb | 620 | ui_file_rewind (gdb_lasterr); |
4ce44c66 | 621 | vfprintf_filtered (gdb_lasterr, string, args); |
c2d11a7d JM |
622 | /* Retrieve the last error and print it to gdb_stderr */ |
623 | err_string = error_last_message (); | |
b8c9b27d | 624 | err_string_cleanup = make_cleanup (xfree, err_string); |
c2d11a7d JM |
625 | fputs_filtered (err_string, gdb_stderr); |
626 | fprintf_filtered (gdb_stderr, "\n"); | |
627 | do_cleanups (err_string_cleanup); | |
4ce44c66 JM |
628 | return_to_top_level (RETURN_ERROR); |
629 | } | |
630 | ||
c906108c | 631 | NORETURN void |
c5aa993b | 632 | error (const char *string,...) |
c906108c SS |
633 | { |
634 | va_list args; | |
c906108c | 635 | va_start (args, string); |
4ce44c66 JM |
636 | verror (string, args); |
637 | va_end (args); | |
c906108c SS |
638 | } |
639 | ||
2acceee2 | 640 | NORETURN void |
d9fcf2fb | 641 | error_stream (struct ui_file *stream) |
2acceee2 | 642 | { |
4ce44c66 | 643 | long size; |
d9fcf2fb | 644 | char *msg = ui_file_xstrdup (stream, &size); |
b8c9b27d | 645 | make_cleanup (xfree, msg); |
4ce44c66 | 646 | error ("%s", msg); |
2acceee2 JM |
647 | } |
648 | ||
649 | /* Get the last error message issued by gdb */ | |
650 | ||
651 | char * | |
652 | error_last_message (void) | |
653 | { | |
4ce44c66 | 654 | long len; |
d9fcf2fb | 655 | return ui_file_xstrdup (gdb_lasterr, &len); |
2acceee2 | 656 | } |
4ce44c66 | 657 | |
2acceee2 JM |
658 | /* This is to be called by main() at the very beginning */ |
659 | ||
660 | void | |
661 | error_init (void) | |
662 | { | |
4ce44c66 | 663 | gdb_lasterr = mem_fileopen (); |
2acceee2 | 664 | } |
c906108c | 665 | |
96baa820 JM |
666 | /* Print a message reporting an internal error. Ask the user if they |
667 | want to continue, dump core, or just exit. */ | |
c906108c | 668 | |
c906108c | 669 | NORETURN void |
4ce44c66 | 670 | internal_verror (const char *fmt, va_list ap) |
c906108c | 671 | { |
96baa820 JM |
672 | static char msg[] = "Internal GDB error: recursive internal error.\n"; |
673 | static int dejavu = 0; | |
7be570e7 JM |
674 | int continue_p; |
675 | int dump_core_p; | |
c906108c | 676 | |
96baa820 JM |
677 | /* don't allow infinite error recursion. */ |
678 | switch (dejavu) | |
679 | { | |
680 | case 0: | |
681 | dejavu = 1; | |
682 | break; | |
683 | case 1: | |
684 | dejavu = 2; | |
685 | fputs_unfiltered (msg, gdb_stderr); | |
686 | abort (); | |
687 | default: | |
688 | dejavu = 3; | |
689 | write (STDERR_FILENO, msg, sizeof (msg)); | |
690 | exit (1); | |
691 | } | |
c906108c | 692 | |
96baa820 | 693 | /* Try to get the message out */ |
4261bedc | 694 | target_terminal_ours (); |
7be570e7 | 695 | fputs_unfiltered ("gdb-internal-error: ", gdb_stderr); |
4ce44c66 | 696 | vfprintf_unfiltered (gdb_stderr, fmt, ap); |
96baa820 | 697 | fputs_unfiltered ("\n", gdb_stderr); |
c906108c | 698 | |
7be570e7 JM |
699 | /* Default (no case) is to quit GDB. When in batch mode this |
700 | lessens the likelhood of GDB going into an infinate loop. */ | |
701 | continue_p = query ("\ | |
62fd9fad | 702 | An internal GDB error was detected. This may make further\n\ |
7be570e7 JM |
703 | debugging unreliable. Continue this debugging session? "); |
704 | ||
705 | /* Default (no case) is to not dump core. Lessen the chance of GDB | |
706 | leaving random core files around. */ | |
707 | dump_core_p = query ("\ | |
708 | Create a core file containing the current state of GDB? "); | |
709 | ||
710 | if (continue_p) | |
711 | { | |
712 | if (dump_core_p) | |
713 | { | |
714 | if (fork () == 0) | |
715 | abort (); | |
716 | } | |
717 | } | |
718 | else | |
719 | { | |
720 | if (dump_core_p) | |
721 | abort (); | |
722 | else | |
723 | exit (1); | |
724 | } | |
96baa820 JM |
725 | |
726 | dejavu = 0; | |
727 | return_to_top_level (RETURN_ERROR); | |
c906108c SS |
728 | } |
729 | ||
4ce44c66 JM |
730 | NORETURN void |
731 | internal_error (char *string, ...) | |
732 | { | |
733 | va_list ap; | |
734 | va_start (ap, string); | |
4261bedc | 735 | |
4ce44c66 JM |
736 | internal_verror (string, ap); |
737 | va_end (ap); | |
738 | } | |
739 | ||
c906108c SS |
740 | /* The strerror() function can return NULL for errno values that are |
741 | out of range. Provide a "safe" version that always returns a | |
742 | printable string. */ | |
743 | ||
744 | char * | |
fba45db2 | 745 | safe_strerror (int errnum) |
c906108c SS |
746 | { |
747 | char *msg; | |
748 | static char buf[32]; | |
749 | ||
750 | if ((msg = strerror (errnum)) == NULL) | |
751 | { | |
752 | sprintf (buf, "(undocumented errno %d)", errnum); | |
753 | msg = buf; | |
754 | } | |
755 | return (msg); | |
756 | } | |
757 | ||
c906108c SS |
758 | /* Print the system error message for errno, and also mention STRING |
759 | as the file name for which the error was encountered. | |
760 | Then return to command level. */ | |
761 | ||
762 | NORETURN void | |
fba45db2 | 763 | perror_with_name (char *string) |
c906108c SS |
764 | { |
765 | char *err; | |
766 | char *combined; | |
767 | ||
768 | err = safe_strerror (errno); | |
769 | combined = (char *) alloca (strlen (err) + strlen (string) + 3); | |
770 | strcpy (combined, string); | |
771 | strcat (combined, ": "); | |
772 | strcat (combined, err); | |
773 | ||
774 | /* I understand setting these is a matter of taste. Still, some people | |
775 | may clear errno but not know about bfd_error. Doing this here is not | |
776 | unreasonable. */ | |
777 | bfd_set_error (bfd_error_no_error); | |
778 | errno = 0; | |
779 | ||
c5aa993b | 780 | error ("%s.", combined); |
c906108c SS |
781 | } |
782 | ||
783 | /* Print the system error message for ERRCODE, and also mention STRING | |
784 | as the file name for which the error was encountered. */ | |
785 | ||
786 | void | |
fba45db2 | 787 | print_sys_errmsg (char *string, int errcode) |
c906108c SS |
788 | { |
789 | char *err; | |
790 | char *combined; | |
791 | ||
792 | err = safe_strerror (errcode); | |
793 | combined = (char *) alloca (strlen (err) + strlen (string) + 3); | |
794 | strcpy (combined, string); | |
795 | strcat (combined, ": "); | |
796 | strcat (combined, err); | |
797 | ||
798 | /* We want anything which was printed on stdout to come out first, before | |
799 | this message. */ | |
800 | gdb_flush (gdb_stdout); | |
801 | fprintf_unfiltered (gdb_stderr, "%s.\n", combined); | |
802 | } | |
803 | ||
804 | /* Control C eventually causes this to be called, at a convenient time. */ | |
805 | ||
806 | void | |
fba45db2 | 807 | quit (void) |
c906108c SS |
808 | { |
809 | serial_t gdb_stdout_serial = serial_fdopen (1); | |
810 | ||
811 | target_terminal_ours (); | |
812 | ||
813 | /* We want all output to appear now, before we print "Quit". We | |
814 | have 3 levels of buffering we have to flush (it's possible that | |
815 | some of these should be changed to flush the lower-level ones | |
816 | too): */ | |
817 | ||
818 | /* 1. The _filtered buffer. */ | |
c5aa993b | 819 | wrap_here ((char *) 0); |
c906108c SS |
820 | |
821 | /* 2. The stdio buffer. */ | |
822 | gdb_flush (gdb_stdout); | |
823 | gdb_flush (gdb_stderr); | |
824 | ||
825 | /* 3. The system-level buffer. */ | |
826 | SERIAL_DRAIN_OUTPUT (gdb_stdout_serial); | |
827 | SERIAL_UN_FDOPEN (gdb_stdout_serial); | |
828 | ||
829 | annotate_error_begin (); | |
830 | ||
831 | /* Don't use *_filtered; we don't want to prompt the user to continue. */ | |
832 | if (quit_pre_print) | |
833 | fprintf_unfiltered (gdb_stderr, quit_pre_print); | |
834 | ||
7be570e7 JM |
835 | #ifdef __MSDOS__ |
836 | /* No steenking SIGINT will ever be coming our way when the | |
837 | program is resumed. Don't lie. */ | |
838 | fprintf_unfiltered (gdb_stderr, "Quit\n"); | |
839 | #else | |
c906108c | 840 | if (job_control |
c5aa993b JM |
841 | /* If there is no terminal switching for this target, then we can't |
842 | possibly get screwed by the lack of job control. */ | |
c906108c SS |
843 | || current_target.to_terminal_ours == NULL) |
844 | fprintf_unfiltered (gdb_stderr, "Quit\n"); | |
845 | else | |
846 | fprintf_unfiltered (gdb_stderr, | |
c5aa993b | 847 | "Quit (expect signal SIGINT when the program is resumed)\n"); |
7be570e7 | 848 | #endif |
c906108c SS |
849 | return_to_top_level (RETURN_QUIT); |
850 | } | |
851 | ||
852 | ||
7be570e7 | 853 | #if defined(_MSC_VER) /* should test for wingdb instead? */ |
c906108c SS |
854 | |
855 | /* | |
856 | * Windows translates all keyboard and mouse events | |
857 | * into a message which is appended to the message | |
858 | * queue for the process. | |
859 | */ | |
860 | ||
c5aa993b | 861 | void |
fba45db2 | 862 | notice_quit (void) |
c906108c | 863 | { |
c5aa993b | 864 | int k = win32pollquit (); |
c906108c SS |
865 | if (k == 1) |
866 | quit_flag = 1; | |
867 | else if (k == 2) | |
868 | immediate_quit = 1; | |
869 | } | |
870 | ||
4ce44c66 | 871 | #else /* !defined(_MSC_VER) */ |
c906108c | 872 | |
c5aa993b | 873 | void |
fba45db2 | 874 | notice_quit (void) |
c906108c SS |
875 | { |
876 | /* Done by signals */ | |
877 | } | |
878 | ||
4ce44c66 | 879 | #endif /* !defined(_MSC_VER) */ |
c906108c | 880 | |
c906108c | 881 | /* Control C comes here */ |
c906108c | 882 | void |
fba45db2 | 883 | request_quit (int signo) |
c906108c SS |
884 | { |
885 | quit_flag = 1; | |
886 | /* Restore the signal handler. Harmless with BSD-style signals, needed | |
887 | for System V-style signals. So just always do it, rather than worrying | |
888 | about USG defines and stuff like that. */ | |
889 | signal (signo, request_quit); | |
890 | ||
891 | #ifdef REQUEST_QUIT | |
892 | REQUEST_QUIT; | |
893 | #else | |
c5aa993b | 894 | if (immediate_quit) |
c906108c SS |
895 | quit (); |
896 | #endif | |
897 | } | |
c906108c SS |
898 | \f |
899 | /* Memory management stuff (malloc friends). */ | |
900 | ||
901 | /* Make a substitute size_t for non-ANSI compilers. */ | |
902 | ||
903 | #ifndef HAVE_STDDEF_H | |
904 | #ifndef size_t | |
905 | #define size_t unsigned int | |
906 | #endif | |
907 | #endif | |
908 | ||
909 | #if !defined (USE_MMALLOC) | |
910 | ||
082faf24 AC |
911 | PTR |
912 | mcalloc (PTR md, size_t number, size_t size) | |
ed9a39eb JM |
913 | { |
914 | return calloc (number, size); | |
915 | } | |
916 | ||
c906108c | 917 | PTR |
fba45db2 | 918 | mmalloc (PTR md, size_t size) |
c906108c SS |
919 | { |
920 | return malloc (size); | |
921 | } | |
922 | ||
923 | PTR | |
fba45db2 | 924 | mrealloc (PTR md, PTR ptr, size_t size) |
c906108c | 925 | { |
c5aa993b | 926 | if (ptr == 0) /* Guard against old realloc's */ |
c906108c SS |
927 | return malloc (size); |
928 | else | |
929 | return realloc (ptr, size); | |
930 | } | |
931 | ||
932 | void | |
fba45db2 | 933 | mfree (PTR md, PTR ptr) |
c906108c | 934 | { |
b8c9b27d | 935 | xfree (ptr); |
c906108c SS |
936 | } |
937 | ||
c5aa993b | 938 | #endif /* USE_MMALLOC */ |
c906108c SS |
939 | |
940 | #if !defined (USE_MMALLOC) || defined (NO_MMCHECK) | |
941 | ||
942 | void | |
082faf24 | 943 | init_malloc (void *md) |
c906108c SS |
944 | { |
945 | } | |
946 | ||
947 | #else /* Have mmalloc and want corruption checking */ | |
948 | ||
949 | static void | |
fba45db2 | 950 | malloc_botch (void) |
c906108c | 951 | { |
96baa820 JM |
952 | fprintf_unfiltered (gdb_stderr, "Memory corruption\n"); |
953 | abort (); | |
c906108c SS |
954 | } |
955 | ||
956 | /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified | |
957 | by MD, to detect memory corruption. Note that MD may be NULL to specify | |
958 | the default heap that grows via sbrk. | |
959 | ||
960 | Note that for freshly created regions, we must call mmcheckf prior to any | |
961 | mallocs in the region. Otherwise, any region which was allocated prior to | |
962 | installing the checking hooks, which is later reallocated or freed, will | |
963 | fail the checks! The mmcheck function only allows initial hooks to be | |
964 | installed before the first mmalloc. However, anytime after we have called | |
965 | mmcheck the first time to install the checking hooks, we can call it again | |
966 | to update the function pointer to the memory corruption handler. | |
967 | ||
968 | Returns zero on failure, non-zero on success. */ | |
969 | ||
970 | #ifndef MMCHECK_FORCE | |
971 | #define MMCHECK_FORCE 0 | |
972 | #endif | |
973 | ||
974 | void | |
082faf24 | 975 | init_malloc (void *md) |
c906108c SS |
976 | { |
977 | if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE)) | |
978 | { | |
979 | /* Don't use warning(), which relies on current_target being set | |
c5aa993b JM |
980 | to something other than dummy_target, until after |
981 | initialize_all_files(). */ | |
c906108c SS |
982 | |
983 | fprintf_unfiltered | |
984 | (gdb_stderr, "warning: failed to install memory consistency checks; "); | |
985 | fprintf_unfiltered | |
986 | (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n"); | |
987 | } | |
988 | ||
989 | mmtrace (); | |
990 | } | |
991 | ||
992 | #endif /* Have mmalloc and want corruption checking */ | |
993 | ||
994 | /* Called when a memory allocation fails, with the number of bytes of | |
995 | memory requested in SIZE. */ | |
996 | ||
997 | NORETURN void | |
fba45db2 | 998 | nomem (long size) |
c906108c SS |
999 | { |
1000 | if (size > 0) | |
1001 | { | |
96baa820 | 1002 | internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size); |
c906108c SS |
1003 | } |
1004 | else | |
1005 | { | |
96baa820 | 1006 | internal_error ("virtual memory exhausted."); |
c906108c SS |
1007 | } |
1008 | } | |
1009 | ||
1010 | /* Like mmalloc but get error if no storage available, and protect against | |
1011 | the caller wanting to allocate zero bytes. Whether to return NULL for | |
1012 | a zero byte request, or translate the request into a request for one | |
1013 | byte of zero'd storage, is a religious issue. */ | |
1014 | ||
1015 | PTR | |
fba45db2 | 1016 | xmmalloc (PTR md, long size) |
c906108c SS |
1017 | { |
1018 | register PTR val; | |
1019 | ||
1020 | if (size == 0) | |
1021 | { | |
1022 | val = NULL; | |
1023 | } | |
1024 | else if ((val = mmalloc (md, size)) == NULL) | |
1025 | { | |
1026 | nomem (size); | |
1027 | } | |
1028 | return (val); | |
1029 | } | |
1030 | ||
1031 | /* Like mrealloc but get error if no storage available. */ | |
1032 | ||
1033 | PTR | |
fba45db2 | 1034 | xmrealloc (PTR md, PTR ptr, long size) |
c906108c SS |
1035 | { |
1036 | register PTR val; | |
1037 | ||
1038 | if (ptr != NULL) | |
1039 | { | |
1040 | val = mrealloc (md, ptr, size); | |
1041 | } | |
1042 | else | |
1043 | { | |
1044 | val = mmalloc (md, size); | |
1045 | } | |
1046 | if (val == NULL) | |
1047 | { | |
1048 | nomem (size); | |
1049 | } | |
1050 | return (val); | |
1051 | } | |
1052 | ||
1053 | /* Like malloc but get error if no storage available, and protect against | |
1054 | the caller wanting to allocate zero bytes. */ | |
1055 | ||
1056 | PTR | |
fba45db2 | 1057 | xmalloc (size_t size) |
c906108c SS |
1058 | { |
1059 | return (xmmalloc ((PTR) NULL, size)); | |
1060 | } | |
1061 | ||
ed9a39eb JM |
1062 | /* Like calloc but get error if no storage available */ |
1063 | ||
1064 | PTR | |
1065 | xcalloc (size_t number, size_t size) | |
1066 | { | |
1067 | void *mem = mcalloc (NULL, number, size); | |
1068 | if (mem == NULL) | |
1069 | nomem (number * size); | |
1070 | return mem; | |
1071 | } | |
1072 | ||
c906108c SS |
1073 | /* Like mrealloc but get error if no storage available. */ |
1074 | ||
1075 | PTR | |
fba45db2 | 1076 | xrealloc (PTR ptr, size_t size) |
c906108c SS |
1077 | { |
1078 | return (xmrealloc ((PTR) NULL, ptr, size)); | |
1079 | } | |
b8c9b27d KB |
1080 | |
1081 | /* Free up space allocated by one of xmalloc(), xcalloc(), or | |
1082 | xrealloc(). */ | |
1083 | ||
1084 | void | |
1085 | xfree (void *ptr) | |
1086 | { | |
1087 | if (ptr != NULL) | |
1088 | free (ptr); | |
1089 | } | |
c906108c | 1090 | \f |
c5aa993b | 1091 | |
76995688 AC |
1092 | /* Like asprintf/vasprintf but get an internal_error if the call |
1093 | fails. */ | |
1094 | ||
1095 | void | |
1096 | xasprintf (char **ret, const char *format, ...) | |
1097 | { | |
1098 | va_list args; | |
1099 | va_start (args, format); | |
1100 | xvasprintf (ret, format, args); | |
1101 | va_end (args); | |
1102 | } | |
1103 | ||
1104 | void | |
1105 | xvasprintf (char **ret, const char *format, va_list ap) | |
1106 | { | |
1107 | int status = vasprintf (ret, format, ap); | |
1108 | /* NULL could be returned due to a memory allocation problem; a | |
1109 | badly format string; or something else. */ | |
1110 | if ((*ret) == NULL) | |
1111 | internal_error ("%s:%d: vasprintf returned NULL buffer (errno %d)", | |
1112 | __FILE__, __LINE__, errno); | |
1113 | /* A negative status with a non-NULL buffer shouldn't never | |
1114 | happen. But to be sure. */ | |
1115 | if (status < 0) | |
1116 | internal_error ("%s:%d: vasprintf call failed (errno %d)", | |
1117 | __FILE__, __LINE__, errno); | |
1118 | } | |
1119 | ||
1120 | ||
c906108c SS |
1121 | /* My replacement for the read system call. |
1122 | Used like `read' but keeps going if `read' returns too soon. */ | |
1123 | ||
1124 | int | |
fba45db2 | 1125 | myread (int desc, char *addr, int len) |
c906108c SS |
1126 | { |
1127 | register int val; | |
1128 | int orglen = len; | |
1129 | ||
1130 | while (len > 0) | |
1131 | { | |
1132 | val = read (desc, addr, len); | |
1133 | if (val < 0) | |
1134 | return val; | |
1135 | if (val == 0) | |
1136 | return orglen - len; | |
1137 | len -= val; | |
1138 | addr += val; | |
1139 | } | |
1140 | return orglen; | |
1141 | } | |
1142 | \f | |
1143 | /* Make a copy of the string at PTR with SIZE characters | |
1144 | (and add a null character at the end in the copy). | |
1145 | Uses malloc to get the space. Returns the address of the copy. */ | |
1146 | ||
1147 | char * | |
fba45db2 | 1148 | savestring (const char *ptr, int size) |
c906108c SS |
1149 | { |
1150 | register char *p = (char *) xmalloc (size + 1); | |
1151 | memcpy (p, ptr, size); | |
1152 | p[size] = 0; | |
1153 | return p; | |
1154 | } | |
1155 | ||
1156 | char * | |
082faf24 | 1157 | msavestring (void *md, const char *ptr, int size) |
c906108c SS |
1158 | { |
1159 | register char *p = (char *) xmmalloc (md, size + 1); | |
1160 | memcpy (p, ptr, size); | |
1161 | p[size] = 0; | |
1162 | return p; | |
1163 | } | |
1164 | ||
c906108c | 1165 | char * |
082faf24 | 1166 | mstrsave (void *md, const char *ptr) |
c906108c SS |
1167 | { |
1168 | return (msavestring (md, ptr, strlen (ptr))); | |
1169 | } | |
1170 | ||
1171 | void | |
fba45db2 | 1172 | print_spaces (register int n, register struct ui_file *file) |
c906108c | 1173 | { |
392a587b | 1174 | fputs_unfiltered (n_spaces (n), file); |
c906108c SS |
1175 | } |
1176 | ||
1177 | /* Print a host address. */ | |
1178 | ||
1179 | void | |
d9fcf2fb | 1180 | gdb_print_host_address (void *addr, struct ui_file *stream) |
c906108c SS |
1181 | { |
1182 | ||
1183 | /* We could use the %p conversion specifier to fprintf if we had any | |
1184 | way of knowing whether this host supports it. But the following | |
1185 | should work on the Alpha and on 32 bit machines. */ | |
1186 | ||
c5aa993b | 1187 | fprintf_filtered (stream, "0x%lx", (unsigned long) addr); |
c906108c SS |
1188 | } |
1189 | ||
1190 | /* Ask user a y-or-n question and return 1 iff answer is yes. | |
1191 | Takes three args which are given to printf to print the question. | |
1192 | The first, a control string, should end in "? ". | |
1193 | It should not say how to answer, because we do that. */ | |
1194 | ||
1195 | /* VARARGS */ | |
1196 | int | |
c5aa993b | 1197 | query (char *ctlstr,...) |
c906108c SS |
1198 | { |
1199 | va_list args; | |
1200 | register int answer; | |
1201 | register int ans2; | |
1202 | int retval; | |
1203 | ||
c906108c | 1204 | va_start (args, ctlstr); |
c906108c SS |
1205 | |
1206 | if (query_hook) | |
1207 | { | |
1208 | return query_hook (ctlstr, args); | |
1209 | } | |
1210 | ||
1211 | /* Automatically answer "yes" if input is not from a terminal. */ | |
1212 | if (!input_from_terminal_p ()) | |
1213 | return 1; | |
1214 | #ifdef MPW | |
1215 | /* FIXME Automatically answer "yes" if called from MacGDB. */ | |
1216 | if (mac_app) | |
1217 | return 1; | |
1218 | #endif /* MPW */ | |
1219 | ||
1220 | while (1) | |
1221 | { | |
1222 | wrap_here (""); /* Flush any buffered output */ | |
1223 | gdb_flush (gdb_stdout); | |
1224 | ||
1225 | if (annotation_level > 1) | |
1226 | printf_filtered ("\n\032\032pre-query\n"); | |
1227 | ||
1228 | vfprintf_filtered (gdb_stdout, ctlstr, args); | |
1229 | printf_filtered ("(y or n) "); | |
1230 | ||
1231 | if (annotation_level > 1) | |
1232 | printf_filtered ("\n\032\032query\n"); | |
1233 | ||
1234 | #ifdef MPW | |
1235 | /* If not in MacGDB, move to a new line so the entered line doesn't | |
c5aa993b | 1236 | have a prompt on the front of it. */ |
c906108c SS |
1237 | if (!mac_app) |
1238 | fputs_unfiltered ("\n", gdb_stdout); | |
1239 | #endif /* MPW */ | |
1240 | ||
c5aa993b | 1241 | wrap_here (""); |
c906108c SS |
1242 | gdb_flush (gdb_stdout); |
1243 | ||
1244 | #if defined(TUI) | |
c5aa993b | 1245 | if (!tui_version || cmdWin == tuiWinWithFocus ()) |
c906108c SS |
1246 | #endif |
1247 | answer = fgetc (stdin); | |
1248 | #if defined(TUI) | |
1249 | else | |
c5aa993b | 1250 | answer = (unsigned char) tuiBufferGetc (); |
c906108c SS |
1251 | |
1252 | #endif | |
1253 | clearerr (stdin); /* in case of C-d */ | |
1254 | if (answer == EOF) /* C-d */ | |
c5aa993b | 1255 | { |
c906108c SS |
1256 | retval = 1; |
1257 | break; | |
1258 | } | |
1259 | /* Eat rest of input line, to EOF or newline */ | |
1260 | if ((answer != '\n') || (tui_version && answer != '\r')) | |
c5aa993b | 1261 | do |
c906108c SS |
1262 | { |
1263 | #if defined(TUI) | |
c5aa993b | 1264 | if (!tui_version || cmdWin == tuiWinWithFocus ()) |
c906108c SS |
1265 | #endif |
1266 | ans2 = fgetc (stdin); | |
1267 | #if defined(TUI) | |
1268 | else | |
c5aa993b | 1269 | ans2 = (unsigned char) tuiBufferGetc (); |
c906108c SS |
1270 | #endif |
1271 | clearerr (stdin); | |
1272 | } | |
c5aa993b JM |
1273 | while (ans2 != EOF && ans2 != '\n' && ans2 != '\r'); |
1274 | TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1)); | |
c906108c SS |
1275 | |
1276 | if (answer >= 'a') | |
1277 | answer -= 040; | |
1278 | if (answer == 'Y') | |
1279 | { | |
1280 | retval = 1; | |
1281 | break; | |
1282 | } | |
1283 | if (answer == 'N') | |
1284 | { | |
1285 | retval = 0; | |
1286 | break; | |
1287 | } | |
1288 | printf_filtered ("Please answer y or n.\n"); | |
1289 | } | |
1290 | ||
1291 | if (annotation_level > 1) | |
1292 | printf_filtered ("\n\032\032post-query\n"); | |
1293 | return retval; | |
1294 | } | |
c906108c | 1295 | \f |
c5aa993b | 1296 | |
c906108c SS |
1297 | /* Parse a C escape sequence. STRING_PTR points to a variable |
1298 | containing a pointer to the string to parse. That pointer | |
1299 | should point to the character after the \. That pointer | |
1300 | is updated past the characters we use. The value of the | |
1301 | escape sequence is returned. | |
1302 | ||
1303 | A negative value means the sequence \ newline was seen, | |
1304 | which is supposed to be equivalent to nothing at all. | |
1305 | ||
1306 | If \ is followed by a null character, we return a negative | |
1307 | value and leave the string pointer pointing at the null character. | |
1308 | ||
1309 | If \ is followed by 000, we return 0 and leave the string pointer | |
1310 | after the zeros. A value of 0 does not mean end of string. */ | |
1311 | ||
1312 | int | |
fba45db2 | 1313 | parse_escape (char **string_ptr) |
c906108c SS |
1314 | { |
1315 | register int c = *(*string_ptr)++; | |
1316 | switch (c) | |
1317 | { | |
1318 | case 'a': | |
1319 | return 007; /* Bell (alert) char */ | |
1320 | case 'b': | |
1321 | return '\b'; | |
1322 | case 'e': /* Escape character */ | |
1323 | return 033; | |
1324 | case 'f': | |
1325 | return '\f'; | |
1326 | case 'n': | |
1327 | return '\n'; | |
1328 | case 'r': | |
1329 | return '\r'; | |
1330 | case 't': | |
1331 | return '\t'; | |
1332 | case 'v': | |
1333 | return '\v'; | |
1334 | case '\n': | |
1335 | return -2; | |
1336 | case 0: | |
1337 | (*string_ptr)--; | |
1338 | return 0; | |
1339 | case '^': | |
1340 | c = *(*string_ptr)++; | |
1341 | if (c == '\\') | |
1342 | c = parse_escape (string_ptr); | |
1343 | if (c == '?') | |
1344 | return 0177; | |
1345 | return (c & 0200) | (c & 037); | |
c5aa993b | 1346 | |
c906108c SS |
1347 | case '0': |
1348 | case '1': | |
1349 | case '2': | |
1350 | case '3': | |
1351 | case '4': | |
1352 | case '5': | |
1353 | case '6': | |
1354 | case '7': | |
1355 | { | |
1356 | register int i = c - '0'; | |
1357 | register int count = 0; | |
1358 | while (++count < 3) | |
1359 | { | |
1360 | if ((c = *(*string_ptr)++) >= '0' && c <= '7') | |
1361 | { | |
1362 | i *= 8; | |
1363 | i += c - '0'; | |
1364 | } | |
1365 | else | |
1366 | { | |
1367 | (*string_ptr)--; | |
1368 | break; | |
1369 | } | |
1370 | } | |
1371 | return i; | |
1372 | } | |
1373 | default: | |
1374 | return c; | |
1375 | } | |
1376 | } | |
1377 | \f | |
1378 | /* Print the character C on STREAM as part of the contents of a literal | |
1379 | string whose delimiter is QUOTER. Note that this routine should only | |
1380 | be call for printing things which are independent of the language | |
1381 | of the program being debugged. */ | |
1382 | ||
43e526b9 | 1383 | static void |
74f832da KB |
1384 | printchar (int c, void (*do_fputs) (const char *, struct ui_file *), |
1385 | void (*do_fprintf) (struct ui_file *, const char *, ...), | |
1386 | struct ui_file *stream, int quoter) | |
c906108c SS |
1387 | { |
1388 | ||
1389 | c &= 0xFF; /* Avoid sign bit follies */ | |
1390 | ||
c5aa993b JM |
1391 | if (c < 0x20 || /* Low control chars */ |
1392 | (c >= 0x7F && c < 0xA0) || /* DEL, High controls */ | |
1393 | (sevenbit_strings && c >= 0x80)) | |
1394 | { /* high order bit set */ | |
1395 | switch (c) | |
1396 | { | |
1397 | case '\n': | |
43e526b9 | 1398 | do_fputs ("\\n", stream); |
c5aa993b JM |
1399 | break; |
1400 | case '\b': | |
43e526b9 | 1401 | do_fputs ("\\b", stream); |
c5aa993b JM |
1402 | break; |
1403 | case '\t': | |
43e526b9 | 1404 | do_fputs ("\\t", stream); |
c5aa993b JM |
1405 | break; |
1406 | case '\f': | |
43e526b9 | 1407 | do_fputs ("\\f", stream); |
c5aa993b JM |
1408 | break; |
1409 | case '\r': | |
43e526b9 | 1410 | do_fputs ("\\r", stream); |
c5aa993b JM |
1411 | break; |
1412 | case '\033': | |
43e526b9 | 1413 | do_fputs ("\\e", stream); |
c5aa993b JM |
1414 | break; |
1415 | case '\007': | |
43e526b9 | 1416 | do_fputs ("\\a", stream); |
c5aa993b JM |
1417 | break; |
1418 | default: | |
43e526b9 | 1419 | do_fprintf (stream, "\\%.3o", (unsigned int) c); |
c5aa993b JM |
1420 | break; |
1421 | } | |
1422 | } | |
1423 | else | |
1424 | { | |
1425 | if (c == '\\' || c == quoter) | |
43e526b9 JM |
1426 | do_fputs ("\\", stream); |
1427 | do_fprintf (stream, "%c", c); | |
c5aa993b | 1428 | } |
c906108c | 1429 | } |
43e526b9 JM |
1430 | |
1431 | /* Print the character C on STREAM as part of the contents of a | |
1432 | literal string whose delimiter is QUOTER. Note that these routines | |
1433 | should only be call for printing things which are independent of | |
1434 | the language of the program being debugged. */ | |
1435 | ||
1436 | void | |
fba45db2 | 1437 | fputstr_filtered (const char *str, int quoter, struct ui_file *stream) |
43e526b9 JM |
1438 | { |
1439 | while (*str) | |
1440 | printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter); | |
1441 | } | |
1442 | ||
1443 | void | |
fba45db2 | 1444 | fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream) |
43e526b9 JM |
1445 | { |
1446 | while (*str) | |
1447 | printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter); | |
1448 | } | |
1449 | ||
1450 | void | |
fba45db2 | 1451 | fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream) |
43e526b9 JM |
1452 | { |
1453 | int i; | |
1454 | for (i = 0; i < n; i++) | |
1455 | printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter); | |
1456 | } | |
1457 | ||
c906108c | 1458 | \f |
c5aa993b | 1459 | |
c906108c SS |
1460 | /* Number of lines per page or UINT_MAX if paging is disabled. */ |
1461 | static unsigned int lines_per_page; | |
cbfbd72a | 1462 | /* Number of chars per line or UINT_MAX if line folding is disabled. */ |
c906108c SS |
1463 | static unsigned int chars_per_line; |
1464 | /* Current count of lines printed on this page, chars on this line. */ | |
1465 | static unsigned int lines_printed, chars_printed; | |
1466 | ||
1467 | /* Buffer and start column of buffered text, for doing smarter word- | |
1468 | wrapping. When someone calls wrap_here(), we start buffering output | |
1469 | that comes through fputs_filtered(). If we see a newline, we just | |
1470 | spit it out and forget about the wrap_here(). If we see another | |
1471 | wrap_here(), we spit it out and remember the newer one. If we see | |
1472 | the end of the line, we spit out a newline, the indent, and then | |
1473 | the buffered output. */ | |
1474 | ||
1475 | /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which | |
1476 | are waiting to be output (they have already been counted in chars_printed). | |
1477 | When wrap_buffer[0] is null, the buffer is empty. */ | |
1478 | static char *wrap_buffer; | |
1479 | ||
1480 | /* Pointer in wrap_buffer to the next character to fill. */ | |
1481 | static char *wrap_pointer; | |
1482 | ||
1483 | /* String to indent by if the wrap occurs. Must not be NULL if wrap_column | |
1484 | is non-zero. */ | |
1485 | static char *wrap_indent; | |
1486 | ||
1487 | /* Column number on the screen where wrap_buffer begins, or 0 if wrapping | |
1488 | is not in effect. */ | |
1489 | static int wrap_column; | |
c906108c | 1490 | \f |
c5aa993b | 1491 | |
c906108c SS |
1492 | /* Inialize the lines and chars per page */ |
1493 | void | |
fba45db2 | 1494 | init_page_info (void) |
c906108c SS |
1495 | { |
1496 | #if defined(TUI) | |
c5aa993b | 1497 | if (tui_version && m_winPtrNotNull (cmdWin)) |
c906108c SS |
1498 | { |
1499 | lines_per_page = cmdWin->generic.height; | |
1500 | chars_per_line = cmdWin->generic.width; | |
1501 | } | |
1502 | else | |
1503 | #endif | |
1504 | { | |
1505 | /* These defaults will be used if we are unable to get the correct | |
1506 | values from termcap. */ | |
1507 | #if defined(__GO32__) | |
c5aa993b JM |
1508 | lines_per_page = ScreenRows (); |
1509 | chars_per_line = ScreenCols (); | |
1510 | #else | |
c906108c SS |
1511 | lines_per_page = 24; |
1512 | chars_per_line = 80; | |
1513 | ||
1514 | #if !defined (MPW) && !defined (_WIN32) | |
1515 | /* No termcap under MPW, although might be cool to do something | |
1516 | by looking at worksheet or console window sizes. */ | |
1517 | /* Initialize the screen height and width from termcap. */ | |
1518 | { | |
c5aa993b | 1519 | char *termtype = getenv ("TERM"); |
c906108c | 1520 | |
c5aa993b JM |
1521 | /* Positive means success, nonpositive means failure. */ |
1522 | int status; | |
c906108c | 1523 | |
c5aa993b JM |
1524 | /* 2048 is large enough for all known terminals, according to the |
1525 | GNU termcap manual. */ | |
1526 | char term_buffer[2048]; | |
c906108c | 1527 | |
c5aa993b JM |
1528 | if (termtype) |
1529 | { | |
c906108c SS |
1530 | status = tgetent (term_buffer, termtype); |
1531 | if (status > 0) | |
1532 | { | |
c5aa993b | 1533 | int val; |
c906108c | 1534 | int running_in_emacs = getenv ("EMACS") != NULL; |
c5aa993b JM |
1535 | |
1536 | val = tgetnum ("li"); | |
1537 | if (val >= 0 && !running_in_emacs) | |
1538 | lines_per_page = val; | |
1539 | else | |
1540 | /* The number of lines per page is not mentioned | |
c906108c SS |
1541 | in the terminal description. This probably means |
1542 | that paging is not useful (e.g. emacs shell window), | |
1543 | so disable paging. */ | |
c5aa993b JM |
1544 | lines_per_page = UINT_MAX; |
1545 | ||
1546 | val = tgetnum ("co"); | |
1547 | if (val >= 0) | |
1548 | chars_per_line = val; | |
c906108c | 1549 | } |
c5aa993b | 1550 | } |
c906108c SS |
1551 | } |
1552 | #endif /* MPW */ | |
1553 | ||
1554 | #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER) | |
1555 | ||
1556 | /* If there is a better way to determine the window size, use it. */ | |
1557 | SIGWINCH_HANDLER (SIGWINCH); | |
1558 | #endif | |
1559 | #endif | |
1560 | /* If the output is not a terminal, don't paginate it. */ | |
d9fcf2fb | 1561 | if (!ui_file_isatty (gdb_stdout)) |
c5aa993b JM |
1562 | lines_per_page = UINT_MAX; |
1563 | } /* the command_line_version */ | |
1564 | set_width (); | |
c906108c SS |
1565 | } |
1566 | ||
1567 | static void | |
fba45db2 | 1568 | set_width (void) |
c906108c SS |
1569 | { |
1570 | if (chars_per_line == 0) | |
c5aa993b | 1571 | init_page_info (); |
c906108c SS |
1572 | |
1573 | if (!wrap_buffer) | |
1574 | { | |
1575 | wrap_buffer = (char *) xmalloc (chars_per_line + 2); | |
1576 | wrap_buffer[0] = '\0'; | |
1577 | } | |
1578 | else | |
1579 | wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2); | |
c5aa993b | 1580 | wrap_pointer = wrap_buffer; /* Start it at the beginning */ |
c906108c SS |
1581 | } |
1582 | ||
1583 | /* ARGSUSED */ | |
c5aa993b | 1584 | static void |
fba45db2 | 1585 | set_width_command (char *args, int from_tty, struct cmd_list_element *c) |
c906108c SS |
1586 | { |
1587 | set_width (); | |
1588 | } | |
1589 | ||
1590 | /* Wait, so the user can read what's on the screen. Prompt the user | |
1591 | to continue by pressing RETURN. */ | |
1592 | ||
1593 | static void | |
fba45db2 | 1594 | prompt_for_continue (void) |
c906108c SS |
1595 | { |
1596 | char *ignore; | |
1597 | char cont_prompt[120]; | |
1598 | ||
1599 | if (annotation_level > 1) | |
1600 | printf_unfiltered ("\n\032\032pre-prompt-for-continue\n"); | |
1601 | ||
1602 | strcpy (cont_prompt, | |
1603 | "---Type <return> to continue, or q <return> to quit---"); | |
1604 | if (annotation_level > 1) | |
1605 | strcat (cont_prompt, "\n\032\032prompt-for-continue\n"); | |
1606 | ||
1607 | /* We must do this *before* we call gdb_readline, else it will eventually | |
1608 | call us -- thinking that we're trying to print beyond the end of the | |
1609 | screen. */ | |
1610 | reinitialize_more_filter (); | |
1611 | ||
1612 | immediate_quit++; | |
1613 | /* On a real operating system, the user can quit with SIGINT. | |
1614 | But not on GO32. | |
1615 | ||
1616 | 'q' is provided on all systems so users don't have to change habits | |
1617 | from system to system, and because telling them what to do in | |
1618 | the prompt is more user-friendly than expecting them to think of | |
1619 | SIGINT. */ | |
1620 | /* Call readline, not gdb_readline, because GO32 readline handles control-C | |
1621 | whereas control-C to gdb_readline will cause the user to get dumped | |
1622 | out to DOS. */ | |
1623 | ignore = readline (cont_prompt); | |
1624 | ||
1625 | if (annotation_level > 1) | |
1626 | printf_unfiltered ("\n\032\032post-prompt-for-continue\n"); | |
1627 | ||
1628 | if (ignore) | |
1629 | { | |
1630 | char *p = ignore; | |
1631 | while (*p == ' ' || *p == '\t') | |
1632 | ++p; | |
1633 | if (p[0] == 'q') | |
0f71a2f6 | 1634 | { |
6426a772 | 1635 | if (!event_loop_p) |
0f71a2f6 JM |
1636 | request_quit (SIGINT); |
1637 | else | |
c5aa993b | 1638 | async_request_quit (0); |
0f71a2f6 | 1639 | } |
b8c9b27d | 1640 | xfree (ignore); |
c906108c SS |
1641 | } |
1642 | immediate_quit--; | |
1643 | ||
1644 | /* Now we have to do this again, so that GDB will know that it doesn't | |
1645 | need to save the ---Type <return>--- line at the top of the screen. */ | |
1646 | reinitialize_more_filter (); | |
1647 | ||
1648 | dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */ | |
1649 | } | |
1650 | ||
1651 | /* Reinitialize filter; ie. tell it to reset to original values. */ | |
1652 | ||
1653 | void | |
fba45db2 | 1654 | reinitialize_more_filter (void) |
c906108c SS |
1655 | { |
1656 | lines_printed = 0; | |
1657 | chars_printed = 0; | |
1658 | } | |
1659 | ||
1660 | /* Indicate that if the next sequence of characters overflows the line, | |
1661 | a newline should be inserted here rather than when it hits the end. | |
1662 | If INDENT is non-null, it is a string to be printed to indent the | |
1663 | wrapped part on the next line. INDENT must remain accessible until | |
1664 | the next call to wrap_here() or until a newline is printed through | |
1665 | fputs_filtered(). | |
1666 | ||
1667 | If the line is already overfull, we immediately print a newline and | |
1668 | the indentation, and disable further wrapping. | |
1669 | ||
1670 | If we don't know the width of lines, but we know the page height, | |
1671 | we must not wrap words, but should still keep track of newlines | |
1672 | that were explicitly printed. | |
1673 | ||
1674 | INDENT should not contain tabs, as that will mess up the char count | |
1675 | on the next line. FIXME. | |
1676 | ||
1677 | This routine is guaranteed to force out any output which has been | |
1678 | squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be | |
1679 | used to force out output from the wrap_buffer. */ | |
1680 | ||
1681 | void | |
fba45db2 | 1682 | wrap_here (char *indent) |
c906108c SS |
1683 | { |
1684 | /* This should have been allocated, but be paranoid anyway. */ | |
1685 | if (!wrap_buffer) | |
1686 | abort (); | |
1687 | ||
1688 | if (wrap_buffer[0]) | |
1689 | { | |
1690 | *wrap_pointer = '\0'; | |
1691 | fputs_unfiltered (wrap_buffer, gdb_stdout); | |
1692 | } | |
1693 | wrap_pointer = wrap_buffer; | |
1694 | wrap_buffer[0] = '\0'; | |
c5aa993b | 1695 | if (chars_per_line == UINT_MAX) /* No line overflow checking */ |
c906108c SS |
1696 | { |
1697 | wrap_column = 0; | |
1698 | } | |
1699 | else if (chars_printed >= chars_per_line) | |
1700 | { | |
1701 | puts_filtered ("\n"); | |
1702 | if (indent != NULL) | |
1703 | puts_filtered (indent); | |
1704 | wrap_column = 0; | |
1705 | } | |
1706 | else | |
1707 | { | |
1708 | wrap_column = chars_printed; | |
1709 | if (indent == NULL) | |
1710 | wrap_indent = ""; | |
1711 | else | |
1712 | wrap_indent = indent; | |
1713 | } | |
1714 | } | |
1715 | ||
1716 | /* Ensure that whatever gets printed next, using the filtered output | |
1717 | commands, starts at the beginning of the line. I.E. if there is | |
1718 | any pending output for the current line, flush it and start a new | |
1719 | line. Otherwise do nothing. */ | |
1720 | ||
1721 | void | |
fba45db2 | 1722 | begin_line (void) |
c906108c SS |
1723 | { |
1724 | if (chars_printed > 0) | |
1725 | { | |
1726 | puts_filtered ("\n"); | |
1727 | } | |
1728 | } | |
1729 | ||
ac9a91a7 | 1730 | |
c906108c SS |
1731 | /* Like fputs but if FILTER is true, pause after every screenful. |
1732 | ||
1733 | Regardless of FILTER can wrap at points other than the final | |
1734 | character of a line. | |
1735 | ||
1736 | Unlike fputs, fputs_maybe_filtered does not return a value. | |
1737 | It is OK for LINEBUFFER to be NULL, in which case just don't print | |
1738 | anything. | |
1739 | ||
1740 | Note that a longjmp to top level may occur in this routine (only if | |
1741 | FILTER is true) (since prompt_for_continue may do so) so this | |
1742 | routine should not be called when cleanups are not in place. */ | |
1743 | ||
1744 | static void | |
fba45db2 KB |
1745 | fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream, |
1746 | int filter) | |
c906108c SS |
1747 | { |
1748 | const char *lineptr; | |
1749 | ||
1750 | if (linebuffer == 0) | |
1751 | return; | |
1752 | ||
1753 | /* Don't do any filtering if it is disabled. */ | |
7a292a7a | 1754 | if ((stream != gdb_stdout) || !pagination_enabled |
c5aa993b | 1755 | || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX)) |
c906108c SS |
1756 | { |
1757 | fputs_unfiltered (linebuffer, stream); | |
1758 | return; | |
1759 | } | |
1760 | ||
1761 | /* Go through and output each character. Show line extension | |
1762 | when this is necessary; prompt user for new page when this is | |
1763 | necessary. */ | |
c5aa993b | 1764 | |
c906108c SS |
1765 | lineptr = linebuffer; |
1766 | while (*lineptr) | |
1767 | { | |
1768 | /* Possible new page. */ | |
1769 | if (filter && | |
1770 | (lines_printed >= lines_per_page - 1)) | |
1771 | prompt_for_continue (); | |
1772 | ||
1773 | while (*lineptr && *lineptr != '\n') | |
1774 | { | |
1775 | /* Print a single line. */ | |
1776 | if (*lineptr == '\t') | |
1777 | { | |
1778 | if (wrap_column) | |
1779 | *wrap_pointer++ = '\t'; | |
1780 | else | |
1781 | fputc_unfiltered ('\t', stream); | |
1782 | /* Shifting right by 3 produces the number of tab stops | |
1783 | we have already passed, and then adding one and | |
c5aa993b | 1784 | shifting left 3 advances to the next tab stop. */ |
c906108c SS |
1785 | chars_printed = ((chars_printed >> 3) + 1) << 3; |
1786 | lineptr++; | |
1787 | } | |
1788 | else | |
1789 | { | |
1790 | if (wrap_column) | |
1791 | *wrap_pointer++ = *lineptr; | |
1792 | else | |
c5aa993b | 1793 | fputc_unfiltered (*lineptr, stream); |
c906108c SS |
1794 | chars_printed++; |
1795 | lineptr++; | |
1796 | } | |
c5aa993b | 1797 | |
c906108c SS |
1798 | if (chars_printed >= chars_per_line) |
1799 | { | |
1800 | unsigned int save_chars = chars_printed; | |
1801 | ||
1802 | chars_printed = 0; | |
1803 | lines_printed++; | |
1804 | /* If we aren't actually wrapping, don't output newline -- | |
c5aa993b JM |
1805 | if chars_per_line is right, we probably just overflowed |
1806 | anyway; if it's wrong, let us keep going. */ | |
c906108c SS |
1807 | if (wrap_column) |
1808 | fputc_unfiltered ('\n', stream); | |
1809 | ||
1810 | /* Possible new page. */ | |
1811 | if (lines_printed >= lines_per_page - 1) | |
1812 | prompt_for_continue (); | |
1813 | ||
1814 | /* Now output indentation and wrapped string */ | |
1815 | if (wrap_column) | |
1816 | { | |
1817 | fputs_unfiltered (wrap_indent, stream); | |
c5aa993b JM |
1818 | *wrap_pointer = '\0'; /* Null-terminate saved stuff */ |
1819 | fputs_unfiltered (wrap_buffer, stream); /* and eject it */ | |
c906108c SS |
1820 | /* FIXME, this strlen is what prevents wrap_indent from |
1821 | containing tabs. However, if we recurse to print it | |
1822 | and count its chars, we risk trouble if wrap_indent is | |
1823 | longer than (the user settable) chars_per_line. | |
1824 | Note also that this can set chars_printed > chars_per_line | |
1825 | if we are printing a long string. */ | |
1826 | chars_printed = strlen (wrap_indent) | |
c5aa993b | 1827 | + (save_chars - wrap_column); |
c906108c SS |
1828 | wrap_pointer = wrap_buffer; /* Reset buffer */ |
1829 | wrap_buffer[0] = '\0'; | |
c5aa993b JM |
1830 | wrap_column = 0; /* And disable fancy wrap */ |
1831 | } | |
c906108c SS |
1832 | } |
1833 | } | |
1834 | ||
1835 | if (*lineptr == '\n') | |
1836 | { | |
1837 | chars_printed = 0; | |
c5aa993b | 1838 | wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */ |
c906108c SS |
1839 | lines_printed++; |
1840 | fputc_unfiltered ('\n', stream); | |
1841 | lineptr++; | |
1842 | } | |
1843 | } | |
1844 | } | |
1845 | ||
1846 | void | |
fba45db2 | 1847 | fputs_filtered (const char *linebuffer, struct ui_file *stream) |
c906108c SS |
1848 | { |
1849 | fputs_maybe_filtered (linebuffer, stream, 1); | |
1850 | } | |
1851 | ||
1852 | int | |
fba45db2 | 1853 | putchar_unfiltered (int c) |
c906108c | 1854 | { |
11cf8741 | 1855 | char buf = c; |
d9fcf2fb | 1856 | ui_file_write (gdb_stdout, &buf, 1); |
c906108c SS |
1857 | return c; |
1858 | } | |
1859 | ||
d1f4cff8 AC |
1860 | /* Write character C to gdb_stdout using GDB's paging mechanism and return C. |
1861 | May return nonlocally. */ | |
1862 | ||
1863 | int | |
1864 | putchar_filtered (int c) | |
1865 | { | |
1866 | return fputc_filtered (c, gdb_stdout); | |
1867 | } | |
1868 | ||
c906108c | 1869 | int |
fba45db2 | 1870 | fputc_unfiltered (int c, struct ui_file *stream) |
c906108c | 1871 | { |
11cf8741 | 1872 | char buf = c; |
d9fcf2fb | 1873 | ui_file_write (stream, &buf, 1); |
c906108c SS |
1874 | return c; |
1875 | } | |
1876 | ||
1877 | int | |
fba45db2 | 1878 | fputc_filtered (int c, struct ui_file *stream) |
c906108c SS |
1879 | { |
1880 | char buf[2]; | |
1881 | ||
1882 | buf[0] = c; | |
1883 | buf[1] = 0; | |
1884 | fputs_filtered (buf, stream); | |
1885 | return c; | |
1886 | } | |
1887 | ||
1888 | /* puts_debug is like fputs_unfiltered, except it prints special | |
1889 | characters in printable fashion. */ | |
1890 | ||
1891 | void | |
fba45db2 | 1892 | puts_debug (char *prefix, char *string, char *suffix) |
c906108c SS |
1893 | { |
1894 | int ch; | |
1895 | ||
1896 | /* Print prefix and suffix after each line. */ | |
1897 | static int new_line = 1; | |
1898 | static int return_p = 0; | |
1899 | static char *prev_prefix = ""; | |
1900 | static char *prev_suffix = ""; | |
1901 | ||
1902 | if (*string == '\n') | |
1903 | return_p = 0; | |
1904 | ||
1905 | /* If the prefix is changing, print the previous suffix, a new line, | |
1906 | and the new prefix. */ | |
c5aa993b | 1907 | if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line) |
c906108c | 1908 | { |
9846de1b JM |
1909 | fputs_unfiltered (prev_suffix, gdb_stdlog); |
1910 | fputs_unfiltered ("\n", gdb_stdlog); | |
1911 | fputs_unfiltered (prefix, gdb_stdlog); | |
c906108c SS |
1912 | } |
1913 | ||
1914 | /* Print prefix if we printed a newline during the previous call. */ | |
1915 | if (new_line) | |
1916 | { | |
1917 | new_line = 0; | |
9846de1b | 1918 | fputs_unfiltered (prefix, gdb_stdlog); |
c906108c SS |
1919 | } |
1920 | ||
1921 | prev_prefix = prefix; | |
1922 | prev_suffix = suffix; | |
1923 | ||
1924 | /* Output characters in a printable format. */ | |
1925 | while ((ch = *string++) != '\0') | |
1926 | { | |
1927 | switch (ch) | |
c5aa993b | 1928 | { |
c906108c SS |
1929 | default: |
1930 | if (isprint (ch)) | |
9846de1b | 1931 | fputc_unfiltered (ch, gdb_stdlog); |
c906108c SS |
1932 | |
1933 | else | |
9846de1b | 1934 | fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff); |
c906108c SS |
1935 | break; |
1936 | ||
c5aa993b JM |
1937 | case '\\': |
1938 | fputs_unfiltered ("\\\\", gdb_stdlog); | |
1939 | break; | |
1940 | case '\b': | |
1941 | fputs_unfiltered ("\\b", gdb_stdlog); | |
1942 | break; | |
1943 | case '\f': | |
1944 | fputs_unfiltered ("\\f", gdb_stdlog); | |
1945 | break; | |
1946 | case '\n': | |
1947 | new_line = 1; | |
1948 | fputs_unfiltered ("\\n", gdb_stdlog); | |
1949 | break; | |
1950 | case '\r': | |
1951 | fputs_unfiltered ("\\r", gdb_stdlog); | |
1952 | break; | |
1953 | case '\t': | |
1954 | fputs_unfiltered ("\\t", gdb_stdlog); | |
1955 | break; | |
1956 | case '\v': | |
1957 | fputs_unfiltered ("\\v", gdb_stdlog); | |
1958 | break; | |
1959 | } | |
c906108c SS |
1960 | |
1961 | return_p = ch == '\r'; | |
1962 | } | |
1963 | ||
1964 | /* Print suffix if we printed a newline. */ | |
1965 | if (new_line) | |
1966 | { | |
9846de1b JM |
1967 | fputs_unfiltered (suffix, gdb_stdlog); |
1968 | fputs_unfiltered ("\n", gdb_stdlog); | |
c906108c SS |
1969 | } |
1970 | } | |
1971 | ||
1972 | ||
1973 | /* Print a variable number of ARGS using format FORMAT. If this | |
1974 | information is going to put the amount written (since the last call | |
1975 | to REINITIALIZE_MORE_FILTER or the last page break) over the page size, | |
1976 | call prompt_for_continue to get the users permision to continue. | |
1977 | ||
1978 | Unlike fprintf, this function does not return a value. | |
1979 | ||
1980 | We implement three variants, vfprintf (takes a vararg list and stream), | |
1981 | fprintf (takes a stream to write on), and printf (the usual). | |
1982 | ||
1983 | Note also that a longjmp to top level may occur in this routine | |
1984 | (since prompt_for_continue may do so) so this routine should not be | |
1985 | called when cleanups are not in place. */ | |
1986 | ||
1987 | static void | |
fba45db2 KB |
1988 | vfprintf_maybe_filtered (struct ui_file *stream, const char *format, |
1989 | va_list args, int filter) | |
c906108c SS |
1990 | { |
1991 | char *linebuffer; | |
1992 | struct cleanup *old_cleanups; | |
1993 | ||
76995688 | 1994 | xvasprintf (&linebuffer, format, args); |
b8c9b27d | 1995 | old_cleanups = make_cleanup (xfree, linebuffer); |
c906108c SS |
1996 | fputs_maybe_filtered (linebuffer, stream, filter); |
1997 | do_cleanups (old_cleanups); | |
1998 | } | |
1999 | ||
2000 | ||
2001 | void | |
fba45db2 | 2002 | vfprintf_filtered (struct ui_file *stream, const char *format, va_list args) |
c906108c SS |
2003 | { |
2004 | vfprintf_maybe_filtered (stream, format, args, 1); | |
2005 | } | |
2006 | ||
2007 | void | |
fba45db2 | 2008 | vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args) |
c906108c SS |
2009 | { |
2010 | char *linebuffer; | |
2011 | struct cleanup *old_cleanups; | |
2012 | ||
76995688 | 2013 | xvasprintf (&linebuffer, format, args); |
b8c9b27d | 2014 | old_cleanups = make_cleanup (xfree, linebuffer); |
c906108c SS |
2015 | fputs_unfiltered (linebuffer, stream); |
2016 | do_cleanups (old_cleanups); | |
2017 | } | |
2018 | ||
2019 | void | |
fba45db2 | 2020 | vprintf_filtered (const char *format, va_list args) |
c906108c SS |
2021 | { |
2022 | vfprintf_maybe_filtered (gdb_stdout, format, args, 1); | |
2023 | } | |
2024 | ||
2025 | void | |
fba45db2 | 2026 | vprintf_unfiltered (const char *format, va_list args) |
c906108c SS |
2027 | { |
2028 | vfprintf_unfiltered (gdb_stdout, format, args); | |
2029 | } | |
2030 | ||
c906108c | 2031 | void |
d9fcf2fb | 2032 | fprintf_filtered (struct ui_file * stream, const char *format,...) |
c906108c SS |
2033 | { |
2034 | va_list args; | |
c906108c | 2035 | va_start (args, format); |
c906108c SS |
2036 | vfprintf_filtered (stream, format, args); |
2037 | va_end (args); | |
2038 | } | |
2039 | ||
c906108c | 2040 | void |
d9fcf2fb | 2041 | fprintf_unfiltered (struct ui_file * stream, const char *format,...) |
c906108c SS |
2042 | { |
2043 | va_list args; | |
c906108c | 2044 | va_start (args, format); |
c906108c SS |
2045 | vfprintf_unfiltered (stream, format, args); |
2046 | va_end (args); | |
2047 | } | |
2048 | ||
2049 | /* Like fprintf_filtered, but prints its result indented. | |
2050 | Called as fprintfi_filtered (spaces, stream, format, ...); */ | |
2051 | ||
c906108c | 2052 | void |
d9fcf2fb | 2053 | fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...) |
c906108c SS |
2054 | { |
2055 | va_list args; | |
c906108c | 2056 | va_start (args, format); |
c906108c SS |
2057 | print_spaces_filtered (spaces, stream); |
2058 | ||
2059 | vfprintf_filtered (stream, format, args); | |
2060 | va_end (args); | |
2061 | } | |
2062 | ||
2063 | ||
c906108c | 2064 | void |
c5aa993b | 2065 | printf_filtered (const char *format,...) |
c906108c SS |
2066 | { |
2067 | va_list args; | |
c906108c | 2068 | va_start (args, format); |
c906108c SS |
2069 | vfprintf_filtered (gdb_stdout, format, args); |
2070 | va_end (args); | |
2071 | } | |
2072 | ||
2073 | ||
c906108c | 2074 | void |
c5aa993b | 2075 | printf_unfiltered (const char *format,...) |
c906108c SS |
2076 | { |
2077 | va_list args; | |
c906108c | 2078 | va_start (args, format); |
c906108c SS |
2079 | vfprintf_unfiltered (gdb_stdout, format, args); |
2080 | va_end (args); | |
2081 | } | |
2082 | ||
2083 | /* Like printf_filtered, but prints it's result indented. | |
2084 | Called as printfi_filtered (spaces, format, ...); */ | |
2085 | ||
c906108c | 2086 | void |
c5aa993b | 2087 | printfi_filtered (int spaces, const char *format,...) |
c906108c SS |
2088 | { |
2089 | va_list args; | |
c906108c | 2090 | va_start (args, format); |
c906108c SS |
2091 | print_spaces_filtered (spaces, gdb_stdout); |
2092 | vfprintf_filtered (gdb_stdout, format, args); | |
2093 | va_end (args); | |
2094 | } | |
2095 | ||
2096 | /* Easy -- but watch out! | |
2097 | ||
2098 | This routine is *not* a replacement for puts()! puts() appends a newline. | |
2099 | This one doesn't, and had better not! */ | |
2100 | ||
2101 | void | |
fba45db2 | 2102 | puts_filtered (const char *string) |
c906108c SS |
2103 | { |
2104 | fputs_filtered (string, gdb_stdout); | |
2105 | } | |
2106 | ||
2107 | void | |
fba45db2 | 2108 | puts_unfiltered (const char *string) |
c906108c SS |
2109 | { |
2110 | fputs_unfiltered (string, gdb_stdout); | |
2111 | } | |
2112 | ||
2113 | /* Return a pointer to N spaces and a null. The pointer is good | |
2114 | until the next call to here. */ | |
2115 | char * | |
fba45db2 | 2116 | n_spaces (int n) |
c906108c | 2117 | { |
392a587b JM |
2118 | char *t; |
2119 | static char *spaces = 0; | |
2120 | static int max_spaces = -1; | |
c906108c SS |
2121 | |
2122 | if (n > max_spaces) | |
2123 | { | |
2124 | if (spaces) | |
b8c9b27d | 2125 | xfree (spaces); |
c5aa993b JM |
2126 | spaces = (char *) xmalloc (n + 1); |
2127 | for (t = spaces + n; t != spaces;) | |
c906108c SS |
2128 | *--t = ' '; |
2129 | spaces[n] = '\0'; | |
2130 | max_spaces = n; | |
2131 | } | |
2132 | ||
2133 | return spaces + max_spaces - n; | |
2134 | } | |
2135 | ||
2136 | /* Print N spaces. */ | |
2137 | void | |
fba45db2 | 2138 | print_spaces_filtered (int n, struct ui_file *stream) |
c906108c SS |
2139 | { |
2140 | fputs_filtered (n_spaces (n), stream); | |
2141 | } | |
2142 | \f | |
2143 | /* C++ demangler stuff. */ | |
2144 | ||
2145 | /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language | |
2146 | LANG, using demangling args ARG_MODE, and print it filtered to STREAM. | |
2147 | If the name is not mangled, or the language for the name is unknown, or | |
2148 | demangling is off, the name is printed in its "raw" form. */ | |
2149 | ||
2150 | void | |
fba45db2 KB |
2151 | fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang, |
2152 | int arg_mode) | |
c906108c SS |
2153 | { |
2154 | char *demangled; | |
2155 | ||
2156 | if (name != NULL) | |
2157 | { | |
2158 | /* If user wants to see raw output, no problem. */ | |
2159 | if (!demangle) | |
2160 | { | |
2161 | fputs_filtered (name, stream); | |
2162 | } | |
2163 | else | |
2164 | { | |
2165 | switch (lang) | |
2166 | { | |
2167 | case language_cplus: | |
2168 | demangled = cplus_demangle (name, arg_mode); | |
2169 | break; | |
2170 | case language_java: | |
2171 | demangled = cplus_demangle (name, arg_mode | DMGL_JAVA); | |
2172 | break; | |
2173 | case language_chill: | |
2174 | demangled = chill_demangle (name); | |
2175 | break; | |
2176 | default: | |
2177 | demangled = NULL; | |
2178 | break; | |
2179 | } | |
2180 | fputs_filtered (demangled ? demangled : name, stream); | |
2181 | if (demangled != NULL) | |
2182 | { | |
b8c9b27d | 2183 | xfree (demangled); |
c906108c SS |
2184 | } |
2185 | } | |
2186 | } | |
2187 | } | |
2188 | ||
2189 | /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any | |
2190 | differences in whitespace. Returns 0 if they match, non-zero if they | |
2191 | don't (slightly different than strcmp()'s range of return values). | |
c5aa993b | 2192 | |
c906108c SS |
2193 | As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO". |
2194 | This "feature" is useful when searching for matching C++ function names | |
2195 | (such as if the user types 'break FOO', where FOO is a mangled C++ | |
2196 | function). */ | |
2197 | ||
2198 | int | |
fba45db2 | 2199 | strcmp_iw (const char *string1, const char *string2) |
c906108c SS |
2200 | { |
2201 | while ((*string1 != '\0') && (*string2 != '\0')) | |
2202 | { | |
2203 | while (isspace (*string1)) | |
2204 | { | |
2205 | string1++; | |
2206 | } | |
2207 | while (isspace (*string2)) | |
2208 | { | |
2209 | string2++; | |
2210 | } | |
2211 | if (*string1 != *string2) | |
2212 | { | |
2213 | break; | |
2214 | } | |
2215 | if (*string1 != '\0') | |
2216 | { | |
2217 | string1++; | |
2218 | string2++; | |
2219 | } | |
2220 | } | |
2221 | return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0'); | |
2222 | } | |
c906108c | 2223 | \f |
c5aa993b | 2224 | |
c906108c | 2225 | /* |
c5aa993b JM |
2226 | ** subset_compare() |
2227 | ** Answer whether string_to_compare is a full or partial match to | |
2228 | ** template_string. The partial match must be in sequence starting | |
2229 | ** at index 0. | |
2230 | */ | |
c906108c | 2231 | int |
fba45db2 | 2232 | subset_compare (char *string_to_compare, char *template_string) |
7a292a7a SS |
2233 | { |
2234 | int match; | |
c5aa993b JM |
2235 | if (template_string != (char *) NULL && string_to_compare != (char *) NULL && |
2236 | strlen (string_to_compare) <= strlen (template_string)) | |
2237 | match = (strncmp (template_string, | |
2238 | string_to_compare, | |
2239 | strlen (string_to_compare)) == 0); | |
7a292a7a SS |
2240 | else |
2241 | match = 0; | |
2242 | return match; | |
2243 | } | |
c906108c SS |
2244 | |
2245 | ||
a14ed312 | 2246 | static void pagination_on_command (char *arg, int from_tty); |
7a292a7a | 2247 | static void |
fba45db2 | 2248 | pagination_on_command (char *arg, int from_tty) |
c906108c SS |
2249 | { |
2250 | pagination_enabled = 1; | |
2251 | } | |
2252 | ||
a14ed312 | 2253 | static void pagination_on_command (char *arg, int from_tty); |
7a292a7a | 2254 | static void |
fba45db2 | 2255 | pagination_off_command (char *arg, int from_tty) |
c906108c SS |
2256 | { |
2257 | pagination_enabled = 0; | |
2258 | } | |
c906108c | 2259 | \f |
c5aa993b | 2260 | |
c906108c | 2261 | void |
fba45db2 | 2262 | initialize_utils (void) |
c906108c SS |
2263 | { |
2264 | struct cmd_list_element *c; | |
2265 | ||
c5aa993b JM |
2266 | c = add_set_cmd ("width", class_support, var_uinteger, |
2267 | (char *) &chars_per_line, | |
2268 | "Set number of characters gdb thinks are in a line.", | |
2269 | &setlist); | |
c906108c SS |
2270 | add_show_from_set (c, &showlist); |
2271 | c->function.sfunc = set_width_command; | |
2272 | ||
2273 | add_show_from_set | |
2274 | (add_set_cmd ("height", class_support, | |
c5aa993b | 2275 | var_uinteger, (char *) &lines_per_page, |
c906108c SS |
2276 | "Set number of lines gdb thinks are in a page.", &setlist), |
2277 | &showlist); | |
c5aa993b | 2278 | |
c906108c SS |
2279 | init_page_info (); |
2280 | ||
2281 | /* If the output is not a terminal, don't paginate it. */ | |
d9fcf2fb | 2282 | if (!ui_file_isatty (gdb_stdout)) |
c906108c SS |
2283 | lines_per_page = UINT_MAX; |
2284 | ||
c5aa993b | 2285 | set_width_command ((char *) NULL, 0, c); |
c906108c SS |
2286 | |
2287 | add_show_from_set | |
c5aa993b JM |
2288 | (add_set_cmd ("demangle", class_support, var_boolean, |
2289 | (char *) &demangle, | |
2290 | "Set demangling of encoded C++ names when displaying symbols.", | |
c906108c SS |
2291 | &setprintlist), |
2292 | &showprintlist); | |
2293 | ||
2294 | add_show_from_set | |
2295 | (add_set_cmd ("pagination", class_support, | |
c5aa993b | 2296 | var_boolean, (char *) &pagination_enabled, |
c906108c SS |
2297 | "Set state of pagination.", &setlist), |
2298 | &showlist); | |
4261bedc | 2299 | |
c906108c SS |
2300 | if (xdb_commands) |
2301 | { | |
c5aa993b JM |
2302 | add_com ("am", class_support, pagination_on_command, |
2303 | "Enable pagination"); | |
2304 | add_com ("sm", class_support, pagination_off_command, | |
2305 | "Disable pagination"); | |
c906108c SS |
2306 | } |
2307 | ||
2308 | add_show_from_set | |
c5aa993b JM |
2309 | (add_set_cmd ("sevenbit-strings", class_support, var_boolean, |
2310 | (char *) &sevenbit_strings, | |
2311 | "Set printing of 8-bit characters in strings as \\nnn.", | |
c906108c SS |
2312 | &setprintlist), |
2313 | &showprintlist); | |
2314 | ||
2315 | add_show_from_set | |
c5aa993b JM |
2316 | (add_set_cmd ("asm-demangle", class_support, var_boolean, |
2317 | (char *) &asm_demangle, | |
2318 | "Set demangling of C++ names in disassembly listings.", | |
c906108c SS |
2319 | &setprintlist), |
2320 | &showprintlist); | |
2321 | } | |
2322 | ||
2323 | /* Machine specific function to handle SIGWINCH signal. */ | |
2324 | ||
2325 | #ifdef SIGWINCH_HANDLER_BODY | |
c5aa993b | 2326 | SIGWINCH_HANDLER_BODY |
c906108c SS |
2327 | #endif |
2328 | \f | |
2329 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
2330 | ||
2331 | /* XXX - This code should really be in libiberty/floatformat.c, however | |
2332 | configuration issues with libiberty made this very difficult to do in the | |
2333 | available time. */ | |
2334 | ||
2335 | #include "floatformat.h" | |
2336 | #include <math.h> /* ldexp */ | |
2337 | ||
2338 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
2339 | going to bother with trying to muck around with whether it is defined in | |
2340 | a system header, what we do if not, etc. */ | |
2341 | #define FLOATFORMAT_CHAR_BIT 8 | |
2342 | ||
a14ed312 KB |
2343 | static unsigned long get_field (unsigned char *, |
2344 | enum floatformat_byteorders, | |
2345 | unsigned int, unsigned int, unsigned int); | |
c906108c SS |
2346 | |
2347 | /* Extract a field which starts at START and is LEN bytes long. DATA and | |
2348 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
2349 | static unsigned long | |
fba45db2 KB |
2350 | get_field (unsigned char *data, enum floatformat_byteorders order, |
2351 | unsigned int total_len, unsigned int start, unsigned int len) | |
c906108c SS |
2352 | { |
2353 | unsigned long result; | |
2354 | unsigned int cur_byte; | |
2355 | int cur_bitshift; | |
2356 | ||
2357 | /* Start at the least significant part of the field. */ | |
c906108c | 2358 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) |
0fda6bd2 JM |
2359 | { |
2360 | /* We start counting from the other end (i.e, from the high bytes | |
2361 | rather than the low bytes). As such, we need to be concerned | |
2362 | with what happens if bit 0 doesn't start on a byte boundary. | |
2363 | I.e, we need to properly handle the case where total_len is | |
2364 | not evenly divisible by 8. So we compute ``excess'' which | |
2365 | represents the number of bits from the end of our starting | |
2366 | byte needed to get to bit 0. */ | |
2367 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
2368 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
2369 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
2370 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
2371 | - FLOATFORMAT_CHAR_BIT; | |
2372 | } | |
2373 | else | |
2374 | { | |
2375 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
2376 | cur_bitshift = | |
2377 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
2378 | } | |
2379 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
2380 | result = *(data + cur_byte) >> (-cur_bitshift); | |
2381 | else | |
2382 | result = 0; | |
c906108c SS |
2383 | cur_bitshift += FLOATFORMAT_CHAR_BIT; |
2384 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
2385 | ++cur_byte; | |
2386 | else | |
2387 | --cur_byte; | |
2388 | ||
2389 | /* Move towards the most significant part of the field. */ | |
2390 | while (cur_bitshift < len) | |
2391 | { | |
0fda6bd2 | 2392 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; |
c906108c SS |
2393 | cur_bitshift += FLOATFORMAT_CHAR_BIT; |
2394 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
2395 | ++cur_byte; | |
2396 | else | |
2397 | --cur_byte; | |
2398 | } | |
0fda6bd2 JM |
2399 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) |
2400 | /* Mask out bits which are not part of the field */ | |
2401 | result &= ((1UL << len) - 1); | |
c906108c SS |
2402 | return result; |
2403 | } | |
c5aa993b | 2404 | |
c906108c SS |
2405 | /* Convert from FMT to a DOUBLEST. |
2406 | FROM is the address of the extended float. | |
2407 | Store the DOUBLEST in *TO. */ | |
2408 | ||
2409 | void | |
fba45db2 KB |
2410 | floatformat_to_doublest (const struct floatformat *fmt, char *from, |
2411 | DOUBLEST *to) | |
c906108c | 2412 | { |
c5aa993b | 2413 | unsigned char *ufrom = (unsigned char *) from; |
c906108c SS |
2414 | DOUBLEST dto; |
2415 | long exponent; | |
2416 | unsigned long mant; | |
2417 | unsigned int mant_bits, mant_off; | |
2418 | int mant_bits_left; | |
2419 | int special_exponent; /* It's a NaN, denorm or zero */ | |
2420 | ||
2421 | /* If the mantissa bits are not contiguous from one end of the | |
2422 | mantissa to the other, we need to make a private copy of the | |
2423 | source bytes that is in the right order since the unpacking | |
2424 | algorithm assumes that the bits are contiguous. | |
2425 | ||
2426 | Swap the bytes individually rather than accessing them through | |
2427 | "long *" since we have no guarantee that they start on a long | |
2428 | alignment, and also sizeof(long) for the host could be different | |
2429 | than sizeof(long) for the target. FIXME: Assumes sizeof(long) | |
2430 | for the target is 4. */ | |
2431 | ||
c5aa993b | 2432 | if (fmt->byteorder == floatformat_littlebyte_bigword) |
c906108c SS |
2433 | { |
2434 | static unsigned char *newfrom; | |
2435 | unsigned char *swapin, *swapout; | |
2436 | int longswaps; | |
2437 | ||
c5aa993b | 2438 | longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT; |
c906108c | 2439 | longswaps >>= 3; |
c5aa993b | 2440 | |
c906108c SS |
2441 | if (newfrom == NULL) |
2442 | { | |
c5aa993b | 2443 | newfrom = (unsigned char *) xmalloc (fmt->totalsize); |
c906108c SS |
2444 | } |
2445 | swapout = newfrom; | |
2446 | swapin = ufrom; | |
2447 | ufrom = newfrom; | |
2448 | while (longswaps-- > 0) | |
2449 | { | |
2450 | /* This is ugly, but efficient */ | |
2451 | *swapout++ = swapin[4]; | |
2452 | *swapout++ = swapin[5]; | |
2453 | *swapout++ = swapin[6]; | |
2454 | *swapout++ = swapin[7]; | |
2455 | *swapout++ = swapin[0]; | |
2456 | *swapout++ = swapin[1]; | |
2457 | *swapout++ = swapin[2]; | |
2458 | *swapout++ = swapin[3]; | |
2459 | swapin += 8; | |
2460 | } | |
2461 | } | |
2462 | ||
2463 | exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, | |
2464 | fmt->exp_start, fmt->exp_len); | |
2465 | /* Note that if exponent indicates a NaN, we can't really do anything useful | |
2466 | (not knowing if the host has NaN's, or how to build one). So it will | |
2467 | end up as an infinity or something close; that is OK. */ | |
2468 | ||
2469 | mant_bits_left = fmt->man_len; | |
2470 | mant_off = fmt->man_start; | |
2471 | dto = 0.0; | |
2472 | ||
2473 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
2474 | ||
11cf8741 JM |
2475 | /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity, |
2476 | we don't check for zero as the exponent doesn't matter. */ | |
c906108c SS |
2477 | if (!special_exponent) |
2478 | exponent -= fmt->exp_bias; | |
11cf8741 JM |
2479 | else if (exponent == 0) |
2480 | exponent = 1 - fmt->exp_bias; | |
c906108c SS |
2481 | |
2482 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
2483 | who cares. */ | |
2484 | ||
2485 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
2486 | increment the exponent by one to account for the integer bit. */ | |
2487 | ||
2488 | if (!special_exponent) | |
7a292a7a SS |
2489 | { |
2490 | if (fmt->intbit == floatformat_intbit_no) | |
2491 | dto = ldexp (1.0, exponent); | |
2492 | else | |
2493 | exponent++; | |
2494 | } | |
c906108c SS |
2495 | |
2496 | while (mant_bits_left > 0) | |
2497 | { | |
2498 | mant_bits = min (mant_bits_left, 32); | |
2499 | ||
2500 | mant = get_field (ufrom, fmt->byteorder, fmt->totalsize, | |
c5aa993b | 2501 | mant_off, mant_bits); |
c906108c | 2502 | |
c5aa993b | 2503 | dto += ldexp ((double) mant, exponent - mant_bits); |
c906108c SS |
2504 | exponent -= mant_bits; |
2505 | mant_off += mant_bits; | |
2506 | mant_bits_left -= mant_bits; | |
2507 | } | |
2508 | ||
2509 | /* Negate it if negative. */ | |
2510 | if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1)) | |
2511 | dto = -dto; | |
2512 | *to = dto; | |
2513 | } | |
2514 | \f | |
a14ed312 KB |
2515 | static void put_field (unsigned char *, enum floatformat_byteorders, |
2516 | unsigned int, | |
2517 | unsigned int, unsigned int, unsigned long); | |
c906108c SS |
2518 | |
2519 | /* Set a field which starts at START and is LEN bytes long. DATA and | |
2520 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
2521 | static void | |
fba45db2 KB |
2522 | put_field (unsigned char *data, enum floatformat_byteorders order, |
2523 | unsigned int total_len, unsigned int start, unsigned int len, | |
2524 | unsigned long stuff_to_put) | |
c906108c SS |
2525 | { |
2526 | unsigned int cur_byte; | |
2527 | int cur_bitshift; | |
2528 | ||
2529 | /* Start at the least significant part of the field. */ | |
c906108c | 2530 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) |
0fda6bd2 JM |
2531 | { |
2532 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
2533 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
2534 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
2535 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
2536 | - FLOATFORMAT_CHAR_BIT; | |
2537 | } | |
2538 | else | |
2539 | { | |
2540 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
2541 | cur_bitshift = | |
2542 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
2543 | } | |
2544 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
2545 | { | |
2546 | *(data + cur_byte) &= | |
2547 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
2548 | << (-cur_bitshift)); | |
2549 | *(data + cur_byte) |= | |
2550 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
2551 | } | |
c906108c SS |
2552 | cur_bitshift += FLOATFORMAT_CHAR_BIT; |
2553 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
2554 | ++cur_byte; | |
2555 | else | |
2556 | --cur_byte; | |
2557 | ||
2558 | /* Move towards the most significant part of the field. */ | |
2559 | while (cur_bitshift < len) | |
2560 | { | |
2561 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
2562 | { | |
2563 | /* This is the last byte. */ | |
2564 | *(data + cur_byte) &= | |
2565 | ~((1 << (len - cur_bitshift)) - 1); | |
2566 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
2567 | } | |
2568 | else | |
2569 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
2570 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
2571 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
2572 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
2573 | ++cur_byte; | |
2574 | else | |
2575 | --cur_byte; | |
2576 | } | |
2577 | } | |
2578 | ||
2579 | #ifdef HAVE_LONG_DOUBLE | |
2580 | /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. | |
2581 | The range of the returned value is >= 0.5 and < 1.0. This is equivalent to | |
2582 | frexp, but operates on the long double data type. */ | |
2583 | ||
a14ed312 | 2584 | static long double ldfrexp (long double value, int *eptr); |
c906108c SS |
2585 | |
2586 | static long double | |
fba45db2 | 2587 | ldfrexp (long double value, int *eptr) |
c906108c SS |
2588 | { |
2589 | long double tmp; | |
2590 | int exp; | |
2591 | ||
2592 | /* Unfortunately, there are no portable functions for extracting the exponent | |
2593 | of a long double, so we have to do it iteratively by multiplying or dividing | |
2594 | by two until the fraction is between 0.5 and 1.0. */ | |
2595 | ||
2596 | if (value < 0.0l) | |
2597 | value = -value; | |
2598 | ||
2599 | tmp = 1.0l; | |
2600 | exp = 0; | |
2601 | ||
2602 | if (value >= tmp) /* Value >= 1.0 */ | |
2603 | while (value >= tmp) | |
2604 | { | |
2605 | tmp *= 2.0l; | |
2606 | exp++; | |
2607 | } | |
2608 | else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ | |
2609 | { | |
2610 | while (value < tmp) | |
2611 | { | |
2612 | tmp /= 2.0l; | |
2613 | exp--; | |
2614 | } | |
2615 | tmp *= 2.0l; | |
2616 | exp++; | |
2617 | } | |
2618 | ||
2619 | *eptr = exp; | |
c5aa993b | 2620 | return value / tmp; |
c906108c SS |
2621 | } |
2622 | #endif /* HAVE_LONG_DOUBLE */ | |
2623 | ||
2624 | ||
2625 | /* The converse: convert the DOUBLEST *FROM to an extended float | |
2626 | and store where TO points. Neither FROM nor TO have any alignment | |
2627 | restrictions. */ | |
2628 | ||
2629 | void | |
fba45db2 KB |
2630 | floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from, |
2631 | char *to) | |
c906108c SS |
2632 | { |
2633 | DOUBLEST dfrom; | |
2634 | int exponent; | |
2635 | DOUBLEST mant; | |
2636 | unsigned int mant_bits, mant_off; | |
2637 | int mant_bits_left; | |
c5aa993b | 2638 | unsigned char *uto = (unsigned char *) to; |
c906108c SS |
2639 | |
2640 | memcpy (&dfrom, from, sizeof (dfrom)); | |
ba8966d6 KB |
2641 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) |
2642 | / FLOATFORMAT_CHAR_BIT); | |
c906108c SS |
2643 | if (dfrom == 0) |
2644 | return; /* Result is zero */ | |
2645 | if (dfrom != dfrom) /* Result is NaN */ | |
2646 | { | |
2647 | /* From is NaN */ | |
2648 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, | |
2649 | fmt->exp_len, fmt->exp_nan); | |
2650 | /* Be sure it's not infinity, but NaN value is irrel */ | |
2651 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, | |
2652 | 32, 1); | |
2653 | return; | |
2654 | } | |
2655 | ||
2656 | /* If negative, set the sign bit. */ | |
2657 | if (dfrom < 0) | |
2658 | { | |
2659 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1); | |
2660 | dfrom = -dfrom; | |
2661 | } | |
2662 | ||
2663 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */ | |
2664 | { | |
2665 | /* Infinity exponent is same as NaN's. */ | |
2666 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, | |
2667 | fmt->exp_len, fmt->exp_nan); | |
2668 | /* Infinity mantissa is all zeroes. */ | |
2669 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, | |
2670 | fmt->man_len, 0); | |
2671 | return; | |
2672 | } | |
2673 | ||
2674 | #ifdef HAVE_LONG_DOUBLE | |
2675 | mant = ldfrexp (dfrom, &exponent); | |
2676 | #else | |
2677 | mant = frexp (dfrom, &exponent); | |
2678 | #endif | |
2679 | ||
2680 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len, | |
2681 | exponent + fmt->exp_bias - 1); | |
2682 | ||
2683 | mant_bits_left = fmt->man_len; | |
2684 | mant_off = fmt->man_start; | |
2685 | while (mant_bits_left > 0) | |
2686 | { | |
2687 | unsigned long mant_long; | |
2688 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; | |
2689 | ||
2690 | mant *= 4294967296.0; | |
ba8966d6 | 2691 | mant_long = ((unsigned long) mant) & 0xffffffffL; |
c906108c SS |
2692 | mant -= mant_long; |
2693 | ||
2694 | /* If the integer bit is implicit, then we need to discard it. | |
c5aa993b JM |
2695 | If we are discarding a zero, we should be (but are not) creating |
2696 | a denormalized number which means adjusting the exponent | |
2697 | (I think). */ | |
c906108c SS |
2698 | if (mant_bits_left == fmt->man_len |
2699 | && fmt->intbit == floatformat_intbit_no) | |
2700 | { | |
2701 | mant_long <<= 1; | |
ba8966d6 | 2702 | mant_long &= 0xffffffffL; |
c906108c SS |
2703 | mant_bits -= 1; |
2704 | } | |
2705 | ||
2706 | if (mant_bits < 32) | |
2707 | { | |
2708 | /* The bits we want are in the most significant MANT_BITS bits of | |
2709 | mant_long. Move them to the least significant. */ | |
2710 | mant_long >>= 32 - mant_bits; | |
2711 | } | |
2712 | ||
2713 | put_field (uto, fmt->byteorder, fmt->totalsize, | |
2714 | mant_off, mant_bits, mant_long); | |
2715 | mant_off += mant_bits; | |
2716 | mant_bits_left -= mant_bits; | |
2717 | } | |
c5aa993b | 2718 | if (fmt->byteorder == floatformat_littlebyte_bigword) |
c906108c SS |
2719 | { |
2720 | int count; | |
2721 | unsigned char *swaplow = uto; | |
2722 | unsigned char *swaphigh = uto + 4; | |
2723 | unsigned char tmp; | |
2724 | ||
2725 | for (count = 0; count < 4; count++) | |
2726 | { | |
2727 | tmp = *swaplow; | |
2728 | *swaplow++ = *swaphigh; | |
2729 | *swaphigh++ = tmp; | |
2730 | } | |
2731 | } | |
2732 | } | |
2733 | ||
5683e87a AC |
2734 | /* print routines to handle variable size regs, etc. */ |
2735 | ||
c906108c SS |
2736 | /* temporary storage using circular buffer */ |
2737 | #define NUMCELLS 16 | |
2738 | #define CELLSIZE 32 | |
c5aa993b | 2739 | static char * |
fba45db2 | 2740 | get_cell (void) |
c906108c SS |
2741 | { |
2742 | static char buf[NUMCELLS][CELLSIZE]; | |
c5aa993b JM |
2743 | static int cell = 0; |
2744 | if (++cell >= NUMCELLS) | |
2745 | cell = 0; | |
c906108c SS |
2746 | return buf[cell]; |
2747 | } | |
2748 | ||
d4f3574e SS |
2749 | int |
2750 | strlen_paddr (void) | |
2751 | { | |
79496e2f | 2752 | return (TARGET_ADDR_BIT / 8 * 2); |
d4f3574e SS |
2753 | } |
2754 | ||
c5aa993b | 2755 | char * |
104c1213 | 2756 | paddr (CORE_ADDR addr) |
c906108c | 2757 | { |
79496e2f | 2758 | return phex (addr, TARGET_ADDR_BIT / 8); |
c906108c SS |
2759 | } |
2760 | ||
c5aa993b | 2761 | char * |
104c1213 | 2762 | paddr_nz (CORE_ADDR addr) |
c906108c | 2763 | { |
79496e2f | 2764 | return phex_nz (addr, TARGET_ADDR_BIT / 8); |
c906108c SS |
2765 | } |
2766 | ||
104c1213 JM |
2767 | static void |
2768 | decimal2str (char *paddr_str, char *sign, ULONGEST addr) | |
2769 | { | |
2770 | /* steal code from valprint.c:print_decimal(). Should this worry | |
2771 | about the real size of addr as the above does? */ | |
2772 | unsigned long temp[3]; | |
2773 | int i = 0; | |
2774 | do | |
2775 | { | |
2776 | temp[i] = addr % (1000 * 1000 * 1000); | |
2777 | addr /= (1000 * 1000 * 1000); | |
2778 | i++; | |
2779 | } | |
2780 | while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0]))); | |
2781 | switch (i) | |
2782 | { | |
2783 | case 1: | |
2784 | sprintf (paddr_str, "%s%lu", | |
2785 | sign, temp[0]); | |
2786 | break; | |
2787 | case 2: | |
2788 | sprintf (paddr_str, "%s%lu%09lu", | |
2789 | sign, temp[1], temp[0]); | |
2790 | break; | |
2791 | case 3: | |
2792 | sprintf (paddr_str, "%s%lu%09lu%09lu", | |
2793 | sign, temp[2], temp[1], temp[0]); | |
2794 | break; | |
2795 | default: | |
2796 | abort (); | |
2797 | } | |
2798 | } | |
2799 | ||
2800 | char * | |
2801 | paddr_u (CORE_ADDR addr) | |
2802 | { | |
2803 | char *paddr_str = get_cell (); | |
2804 | decimal2str (paddr_str, "", addr); | |
2805 | return paddr_str; | |
2806 | } | |
2807 | ||
2808 | char * | |
2809 | paddr_d (LONGEST addr) | |
2810 | { | |
2811 | char *paddr_str = get_cell (); | |
2812 | if (addr < 0) | |
2813 | decimal2str (paddr_str, "-", -addr); | |
2814 | else | |
2815 | decimal2str (paddr_str, "", addr); | |
2816 | return paddr_str; | |
2817 | } | |
2818 | ||
5683e87a AC |
2819 | /* eliminate warning from compiler on 32-bit systems */ |
2820 | static int thirty_two = 32; | |
2821 | ||
104c1213 | 2822 | char * |
5683e87a | 2823 | phex (ULONGEST l, int sizeof_l) |
104c1213 | 2824 | { |
5683e87a AC |
2825 | char *str = get_cell (); |
2826 | switch (sizeof_l) | |
104c1213 JM |
2827 | { |
2828 | case 8: | |
5683e87a AC |
2829 | sprintf (str, "%08lx%08lx", |
2830 | (unsigned long) (l >> thirty_two), | |
2831 | (unsigned long) (l & 0xffffffff)); | |
104c1213 JM |
2832 | break; |
2833 | case 4: | |
5683e87a | 2834 | sprintf (str, "%08lx", (unsigned long) l); |
104c1213 JM |
2835 | break; |
2836 | case 2: | |
5683e87a | 2837 | sprintf (str, "%04x", (unsigned short) (l & 0xffff)); |
104c1213 JM |
2838 | break; |
2839 | default: | |
5683e87a AC |
2840 | phex (l, sizeof (l)); |
2841 | break; | |
104c1213 | 2842 | } |
5683e87a | 2843 | return str; |
104c1213 JM |
2844 | } |
2845 | ||
c5aa993b | 2846 | char * |
5683e87a | 2847 | phex_nz (ULONGEST l, int sizeof_l) |
c906108c | 2848 | { |
5683e87a AC |
2849 | char *str = get_cell (); |
2850 | switch (sizeof_l) | |
c906108c | 2851 | { |
c5aa993b JM |
2852 | case 8: |
2853 | { | |
5683e87a | 2854 | unsigned long high = (unsigned long) (l >> thirty_two); |
c5aa993b | 2855 | if (high == 0) |
5683e87a | 2856 | sprintf (str, "%lx", (unsigned long) (l & 0xffffffff)); |
c5aa993b | 2857 | else |
5683e87a AC |
2858 | sprintf (str, "%lx%08lx", |
2859 | high, (unsigned long) (l & 0xffffffff)); | |
c906108c | 2860 | break; |
c5aa993b JM |
2861 | } |
2862 | case 4: | |
5683e87a | 2863 | sprintf (str, "%lx", (unsigned long) l); |
c5aa993b JM |
2864 | break; |
2865 | case 2: | |
5683e87a | 2866 | sprintf (str, "%x", (unsigned short) (l & 0xffff)); |
c5aa993b JM |
2867 | break; |
2868 | default: | |
5683e87a AC |
2869 | phex_nz (l, sizeof (l)); |
2870 | break; | |
c906108c | 2871 | } |
5683e87a | 2872 | return str; |
c906108c | 2873 | } |
ac2e2ef7 AC |
2874 | |
2875 | ||
2876 | /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR | |
2877 | using the target's conversion routines. */ | |
2878 | CORE_ADDR | |
2879 | host_pointer_to_address (void *ptr) | |
2880 | { | |
2881 | if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr)) | |
2882 | internal_error ("core_addr_to_void_ptr: bad cast"); | |
2883 | return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr); | |
2884 | } | |
2885 | ||
2886 | void * | |
2887 | address_to_host_pointer (CORE_ADDR addr) | |
2888 | { | |
2889 | void *ptr; | |
2890 | if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr)) | |
2891 | internal_error ("core_addr_to_void_ptr: bad cast"); | |
2892 | ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr); | |
2893 | return ptr; | |
2894 | } |