Oops, lost update to defs.h:null_cleanup().
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
d9fcf2fb
JM
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include <ctype.h>
24#include "gdb_string.h"
c2c6d25f 25#include "event-top.h"
c906108c
SS
26
27#ifdef HAVE_CURSES_H
28#include <curses.h>
29#endif
30#ifdef HAVE_TERM_H
31#include <term.h>
32#endif
33
9d271fd8
AC
34#ifdef __GO32__
35#include <pc.h>
36#endif
37
c906108c
SS
38/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39#ifdef reg
40#undef reg
41#endif
42
43#include "signals.h"
44#include "gdbcmd.h"
45#include "serial.h"
46#include "bfd.h"
47#include "target.h"
48#include "demangle.h"
49#include "expression.h"
50#include "language.h"
51#include "annotate.h"
52
53#include <readline/readline.h>
54
917317f4
JM
55#undef XMALLOC
56#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
c906108c
SS
58/* readline defines this. */
59#undef savestring
60
61void (*error_begin_hook) PARAMS ((void));
62
2acceee2
JM
63/* Holds the last error message issued by gdb */
64
d9fcf2fb 65static struct ui_file *gdb_lasterr;
2acceee2 66
c906108c
SS
67/* Prototypes for local functions */
68
d9fcf2fb
JM
69static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
c906108c 71
d9fcf2fb 72static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
73
74#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75static void malloc_botch PARAMS ((void));
76#endif
77
c906108c
SS
78static void
79prompt_for_continue PARAMS ((void));
80
c5aa993b 81static void
c906108c
SS
82set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84static void
85set_width PARAMS ((void));
86
c906108c
SS
87/* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
c5aa993b
JM
90static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
94/* cleaned up on each error from within an execution command */
95static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
96
97/* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101struct continuation *cmd_continuation;
c2d11a7d 102struct continuation *intermediate_continuation;
c906108c
SS
103
104/* Nonzero if we have job control. */
105
106int job_control;
107
108/* Nonzero means a quit has been requested. */
109
110int quit_flag;
111
112/* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123int immediate_quit;
124
125/* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128int demangle = 1;
129
130/* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134int asm_demangle = 0;
135
136/* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140int sevenbit_strings = 0;
141
142/* String to be printed before error messages, if any. */
143
144char *error_pre_print;
145
146/* String to be printed before quit messages, if any. */
147
148char *quit_pre_print;
149
150/* String to be printed before warning messages, if any. */
151
152char *warning_pre_print = "\nwarning: ";
153
154int pagination_enabled = 1;
c906108c 155\f
c5aa993b 156
c906108c
SS
157/* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162struct cleanup *
e4005526 163make_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 164{
c5aa993b 165 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
166}
167
168struct cleanup *
e4005526 169make_final_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 170{
c5aa993b 171 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 172}
7a292a7a 173
c906108c 174struct cleanup *
e4005526 175make_run_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 176{
c5aa993b 177 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 178}
7a292a7a 179
43ff13b4 180struct cleanup *
e4005526 181make_exec_cleanup (make_cleanup_ftype *function, void *arg)
43ff13b4 182{
c5aa993b 183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
184}
185
6426a772 186struct cleanup *
e4005526 187make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
6426a772
JM
188{
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
190}
191
7a292a7a
SS
192static void
193do_freeargv (arg)
194 void *arg;
195{
c5aa993b 196 freeargv ((char **) arg);
7a292a7a
SS
197}
198
199struct cleanup *
200make_cleanup_freeargv (arg)
201 char **arg;
202{
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
204}
205
11cf8741 206static void
d9fcf2fb 207do_ui_file_delete (void *arg)
11cf8741 208{
d9fcf2fb 209 ui_file_delete (arg);
11cf8741
JM
210}
211
212struct cleanup *
d9fcf2fb 213make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 214{
d9fcf2fb 215 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
216}
217
c906108c 218struct cleanup *
e4005526
AC
219make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
220 void *arg)
c906108c
SS
221{
222 register struct cleanup *new
c5aa993b 223 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
224 register struct cleanup *old_chain = *pmy_chain;
225
226 new->next = *pmy_chain;
227 new->function = function;
228 new->arg = arg;
229 *pmy_chain = new;
230
231 return old_chain;
232}
233
234/* Discard cleanups and do the actions they describe
235 until we get back to the point OLD_CHAIN in the cleanup_chain. */
236
237void
238do_cleanups (old_chain)
239 register struct cleanup *old_chain;
240{
c5aa993b 241 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
242}
243
244void
245do_final_cleanups (old_chain)
246 register struct cleanup *old_chain;
247{
c5aa993b 248 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
249}
250
251void
252do_run_cleanups (old_chain)
253 register struct cleanup *old_chain;
254{
c5aa993b 255 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
256}
257
43ff13b4
JM
258void
259do_exec_cleanups (old_chain)
260 register struct cleanup *old_chain;
261{
c5aa993b 262 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
263}
264
6426a772
JM
265void
266do_exec_error_cleanups (old_chain)
267 register struct cleanup *old_chain;
268{
269 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
270}
271
c906108c
SS
272void
273do_my_cleanups (pmy_chain, old_chain)
274 register struct cleanup **pmy_chain;
275 register struct cleanup *old_chain;
276{
277 register struct cleanup *ptr;
278 while ((ptr = *pmy_chain) != old_chain)
279 {
280 *pmy_chain = ptr->next; /* Do this first incase recursion */
281 (*ptr->function) (ptr->arg);
282 free (ptr);
283 }
284}
285
286/* Discard cleanups, not doing the actions they describe,
287 until we get back to the point OLD_CHAIN in the cleanup_chain. */
288
289void
290discard_cleanups (old_chain)
291 register struct cleanup *old_chain;
292{
c5aa993b 293 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
294}
295
296void
297discard_final_cleanups (old_chain)
298 register struct cleanup *old_chain;
299{
c5aa993b 300 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
301}
302
6426a772
JM
303void
304discard_exec_error_cleanups (old_chain)
305 register struct cleanup *old_chain;
306{
307 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
308}
309
c906108c
SS
310void
311discard_my_cleanups (pmy_chain, old_chain)
312 register struct cleanup **pmy_chain;
313 register struct cleanup *old_chain;
314{
315 register struct cleanup *ptr;
316 while ((ptr = *pmy_chain) != old_chain)
317 {
318 *pmy_chain = ptr->next;
e4005526 319 free (ptr);
c906108c
SS
320 }
321}
322
323/* Set the cleanup_chain to 0, and return the old cleanup chain. */
324struct cleanup *
325save_cleanups ()
326{
c5aa993b 327 return save_my_cleanups (&cleanup_chain);
c906108c
SS
328}
329
330struct cleanup *
331save_final_cleanups ()
332{
c5aa993b 333 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
334}
335
336struct cleanup *
337save_my_cleanups (pmy_chain)
c5aa993b 338 struct cleanup **pmy_chain;
c906108c
SS
339{
340 struct cleanup *old_chain = *pmy_chain;
341
342 *pmy_chain = 0;
343 return old_chain;
344}
345
346/* Restore the cleanup chain from a previously saved chain. */
347void
348restore_cleanups (chain)
349 struct cleanup *chain;
350{
c5aa993b 351 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
352}
353
354void
355restore_final_cleanups (chain)
356 struct cleanup *chain;
357{
c5aa993b 358 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
359}
360
361void
362restore_my_cleanups (pmy_chain, chain)
363 struct cleanup **pmy_chain;
364 struct cleanup *chain;
365{
366 *pmy_chain = chain;
367}
368
369/* This function is useful for cleanups.
370 Do
371
c5aa993b
JM
372 foo = xmalloc (...);
373 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
374
375 to arrange to free the object thus allocated. */
376
377void
378free_current_contents (location)
379 char **location;
380{
381 free (*location);
382}
383
384/* Provide a known function that does nothing, to use as a base for
385 for a possibly long chain of cleanups. This is useful where we
386 use the cleanup chain for handling normal cleanups as well as dealing
387 with cleanups that need to be done as a result of a call to error().
388 In such cases, we may not be certain where the first cleanup is, unless
389 we have a do-nothing one to always use as the base. */
390
391/* ARGSUSED */
392void
e4005526 393null_cleanup (void *arg)
c906108c
SS
394{
395}
396
43ff13b4 397/* Add a continuation to the continuation list, the gloabl list
c2d11a7d 398 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4
JM
399void
400add_continuation (continuation_hook, arg_list)
c5aa993b
JM
401 void (*continuation_hook) PARAMS ((struct continuation_arg *));
402 struct continuation_arg *arg_list;
43ff13b4 403{
c5aa993b 404 struct continuation *continuation_ptr;
43ff13b4 405
c5aa993b
JM
406 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
407 continuation_ptr->continuation_hook = continuation_hook;
408 continuation_ptr->arg_list = arg_list;
409 continuation_ptr->next = cmd_continuation;
410 cmd_continuation = continuation_ptr;
43ff13b4
JM
411}
412
413/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
414 continuations. There is a problem though. In some cases new
415 continuations may be added while we are in the middle of this
416 loop. If this happens they will be added in the front, and done
417 before we have a chance of exhausting those that were already
418 there. We need to then save the beginning of the list in a pointer
419 and do the continuations from there on, instead of using the
420 global beginning of list as our iteration pointer.*/
c5aa993b 421void
43ff13b4 422do_all_continuations ()
c2d11a7d
JM
423{
424 struct continuation *continuation_ptr;
425 struct continuation *saved_continuation;
426
427 /* Copy the list header into another pointer, and set the global
428 list header to null, so that the global list can change as a side
429 effect of invoking the continuations and the processing of
430 the preexisting continuations will not be affected. */
431 continuation_ptr = cmd_continuation;
432 cmd_continuation = NULL;
433
434 /* Work now on the list we have set aside. */
435 while (continuation_ptr)
436 {
437 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
438 saved_continuation = continuation_ptr;
439 continuation_ptr = continuation_ptr->next;
440 free (saved_continuation);
441 }
442}
443
444/* Walk down the cmd_continuation list, and get rid of all the
445 continuations. */
446void
447discard_all_continuations ()
43ff13b4 448{
c5aa993b 449 struct continuation *continuation_ptr;
43ff13b4 450
c5aa993b
JM
451 while (cmd_continuation)
452 {
c5aa993b
JM
453 continuation_ptr = cmd_continuation;
454 cmd_continuation = continuation_ptr->next;
455 free (continuation_ptr);
456 }
43ff13b4 457}
c2c6d25f 458
c2d11a7d
JM
459/* Add a continuation to the continuation list, the gloabl list
460 intermediate_continuation. The new continuation will be added at the front.*/
461void
462add_intermediate_continuation (continuation_hook, arg_list)
463 void (*continuation_hook) PARAMS ((struct continuation_arg *));
464 struct continuation_arg *arg_list;
465{
466 struct continuation *continuation_ptr;
467
468 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
469 continuation_ptr->continuation_hook = continuation_hook;
470 continuation_ptr->arg_list = arg_list;
471 continuation_ptr->next = intermediate_continuation;
472 intermediate_continuation = continuation_ptr;
473}
474
475/* Walk down the cmd_continuation list, and execute all the
476 continuations. There is a problem though. In some cases new
477 continuations may be added while we are in the middle of this
478 loop. If this happens they will be added in the front, and done
479 before we have a chance of exhausting those that were already
480 there. We need to then save the beginning of the list in a pointer
481 and do the continuations from there on, instead of using the
482 global beginning of list as our iteration pointer.*/
483void
484do_all_intermediate_continuations ()
485{
486 struct continuation *continuation_ptr;
487 struct continuation *saved_continuation;
488
489 /* Copy the list header into another pointer, and set the global
490 list header to null, so that the global list can change as a side
491 effect of invoking the continuations and the processing of
492 the preexisting continuations will not be affected. */
493 continuation_ptr = intermediate_continuation;
494 intermediate_continuation = NULL;
495
496 /* Work now on the list we have set aside. */
497 while (continuation_ptr)
498 {
499 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
500 saved_continuation = continuation_ptr;
501 continuation_ptr = continuation_ptr->next;
502 free (saved_continuation);
503 }
504}
505
c2c6d25f
JM
506/* Walk down the cmd_continuation list, and get rid of all the
507 continuations. */
508void
c2d11a7d 509discard_all_intermediate_continuations ()
c2c6d25f
JM
510{
511 struct continuation *continuation_ptr;
512
c2d11a7d 513 while (intermediate_continuation)
c2c6d25f 514 {
c2d11a7d
JM
515 continuation_ptr = intermediate_continuation;
516 intermediate_continuation = continuation_ptr->next;
c2c6d25f
JM
517 free (continuation_ptr);
518 }
519}
520
c906108c 521\f
c5aa993b 522
c906108c
SS
523/* Print a warning message. Way to use this is to call warning_begin,
524 output the warning message (use unfiltered output to gdb_stderr),
525 ending in a newline. There is not currently a warning_end that you
526 call afterwards, but such a thing might be added if it is useful
527 for a GUI to separate warning messages from other output.
528
529 FIXME: Why do warnings use unfiltered output and errors filtered?
530 Is this anything other than a historical accident? */
531
532void
533warning_begin ()
534{
535 target_terminal_ours ();
c5aa993b 536 wrap_here (""); /* Force out any buffered output */
c906108c
SS
537 gdb_flush (gdb_stdout);
538 if (warning_pre_print)
539 fprintf_unfiltered (gdb_stderr, warning_pre_print);
540}
541
542/* Print a warning message.
543 The first argument STRING is the warning message, used as a fprintf string,
544 and the remaining args are passed as arguments to it.
545 The primary difference between warnings and errors is that a warning
546 does not force the return to command level. */
547
c906108c 548void
c5aa993b 549warning (const char *string,...)
c906108c
SS
550{
551 va_list args;
c906108c 552 va_start (args, string);
c906108c
SS
553 if (warning_hook)
554 (*warning_hook) (string, args);
555 else
c5aa993b
JM
556 {
557 warning_begin ();
558 vfprintf_unfiltered (gdb_stderr, string, args);
559 fprintf_unfiltered (gdb_stderr, "\n");
560 va_end (args);
561 }
c906108c
SS
562}
563
564/* Start the printing of an error message. Way to use this is to call
565 this, output the error message (use filtered output to gdb_stderr
566 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
567 in a newline, and then call return_to_top_level (RETURN_ERROR).
568 error() provides a convenient way to do this for the special case
569 that the error message can be formatted with a single printf call,
570 but this is more general. */
571void
572error_begin ()
573{
574 if (error_begin_hook)
575 error_begin_hook ();
576
577 target_terminal_ours ();
c5aa993b 578 wrap_here (""); /* Force out any buffered output */
c906108c
SS
579 gdb_flush (gdb_stdout);
580
581 annotate_error_begin ();
582
583 if (error_pre_print)
584 fprintf_filtered (gdb_stderr, error_pre_print);
585}
586
587/* Print an error message and return to command level.
588 The first argument STRING is the error message, used as a fprintf string,
589 and the remaining args are passed as arguments to it. */
590
4ce44c66
JM
591NORETURN void
592verror (const char *string, va_list args)
593{
c2d11a7d
JM
594 char *err_string;
595 struct cleanup *err_string_cleanup;
4ce44c66
JM
596 /* FIXME: cagney/1999-11-10: All error calls should come here.
597 Unfortunatly some code uses the sequence: error_begin(); print
598 error message; return_to_top_level. That code should be
599 flushed. */
600 error_begin ();
c2d11a7d
JM
601 /* NOTE: It's tempting to just do the following...
602 vfprintf_filtered (gdb_stderr, string, args);
603 and then follow with a similar looking statement to cause the message
604 to also go to gdb_lasterr. But if we do this, we'll be traversing the
605 va_list twice which works on some platforms and fails miserably on
606 others. */
607 /* Save it as the last error */
d9fcf2fb 608 ui_file_rewind (gdb_lasterr);
4ce44c66 609 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
610 /* Retrieve the last error and print it to gdb_stderr */
611 err_string = error_last_message ();
612 err_string_cleanup = make_cleanup (free, err_string);
613 fputs_filtered (err_string, gdb_stderr);
614 fprintf_filtered (gdb_stderr, "\n");
615 do_cleanups (err_string_cleanup);
4ce44c66
JM
616 return_to_top_level (RETURN_ERROR);
617}
618
c906108c 619NORETURN void
c5aa993b 620error (const char *string,...)
c906108c
SS
621{
622 va_list args;
c906108c 623 va_start (args, string);
4ce44c66
JM
624 verror (string, args);
625 va_end (args);
c906108c
SS
626}
627
2acceee2 628NORETURN void
d9fcf2fb 629error_stream (struct ui_file *stream)
2acceee2 630{
4ce44c66 631 long size;
d9fcf2fb 632 char *msg = ui_file_xstrdup (stream, &size);
4ce44c66
JM
633 make_cleanup (free, msg);
634 error ("%s", msg);
2acceee2
JM
635}
636
637/* Get the last error message issued by gdb */
638
639char *
640error_last_message (void)
641{
4ce44c66 642 long len;
d9fcf2fb 643 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 644}
4ce44c66 645
2acceee2
JM
646/* This is to be called by main() at the very beginning */
647
648void
649error_init (void)
650{
4ce44c66 651 gdb_lasterr = mem_fileopen ();
2acceee2 652}
c906108c 653
96baa820
JM
654/* Print a message reporting an internal error. Ask the user if they
655 want to continue, dump core, or just exit. */
c906108c 656
c906108c 657NORETURN void
4ce44c66 658internal_verror (const char *fmt, va_list ap)
c906108c 659{
96baa820
JM
660 static char msg[] = "Internal GDB error: recursive internal error.\n";
661 static int dejavu = 0;
7be570e7
JM
662 int continue_p;
663 int dump_core_p;
c906108c 664
96baa820
JM
665 /* don't allow infinite error recursion. */
666 switch (dejavu)
667 {
668 case 0:
669 dejavu = 1;
670 break;
671 case 1:
672 dejavu = 2;
673 fputs_unfiltered (msg, gdb_stderr);
674 abort ();
675 default:
676 dejavu = 3;
677 write (STDERR_FILENO, msg, sizeof (msg));
678 exit (1);
679 }
c906108c 680
96baa820 681 /* Try to get the message out */
7be570e7 682 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
4ce44c66 683 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 684 fputs_unfiltered ("\n", gdb_stderr);
c906108c 685
7be570e7
JM
686 /* Default (no case) is to quit GDB. When in batch mode this
687 lessens the likelhood of GDB going into an infinate loop. */
688 continue_p = query ("\
689An internal GDB error was detected. This may make make further\n\
690debugging unreliable. Continue this debugging session? ");
691
692 /* Default (no case) is to not dump core. Lessen the chance of GDB
693 leaving random core files around. */
694 dump_core_p = query ("\
695Create a core file containing the current state of GDB? ");
696
697 if (continue_p)
698 {
699 if (dump_core_p)
700 {
701 if (fork () == 0)
702 abort ();
703 }
704 }
705 else
706 {
707 if (dump_core_p)
708 abort ();
709 else
710 exit (1);
711 }
96baa820
JM
712
713 dejavu = 0;
714 return_to_top_level (RETURN_ERROR);
c906108c
SS
715}
716
4ce44c66
JM
717NORETURN void
718internal_error (char *string, ...)
719{
720 va_list ap;
721 va_start (ap, string);
722 internal_verror (string, ap);
723 va_end (ap);
724}
725
c906108c
SS
726/* The strerror() function can return NULL for errno values that are
727 out of range. Provide a "safe" version that always returns a
728 printable string. */
729
730char *
731safe_strerror (errnum)
732 int errnum;
733{
734 char *msg;
735 static char buf[32];
736
737 if ((msg = strerror (errnum)) == NULL)
738 {
739 sprintf (buf, "(undocumented errno %d)", errnum);
740 msg = buf;
741 }
742 return (msg);
743}
744
745/* The strsignal() function can return NULL for signal values that are
746 out of range. Provide a "safe" version that always returns a
747 printable string. */
748
749char *
750safe_strsignal (signo)
751 int signo;
752{
753 char *msg;
754 static char buf[32];
755
756 if ((msg = strsignal (signo)) == NULL)
757 {
758 sprintf (buf, "(undocumented signal %d)", signo);
759 msg = buf;
760 }
761 return (msg);
762}
763
764
765/* Print the system error message for errno, and also mention STRING
766 as the file name for which the error was encountered.
767 Then return to command level. */
768
769NORETURN void
770perror_with_name (string)
771 char *string;
772{
773 char *err;
774 char *combined;
775
776 err = safe_strerror (errno);
777 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
778 strcpy (combined, string);
779 strcat (combined, ": ");
780 strcat (combined, err);
781
782 /* I understand setting these is a matter of taste. Still, some people
783 may clear errno but not know about bfd_error. Doing this here is not
784 unreasonable. */
785 bfd_set_error (bfd_error_no_error);
786 errno = 0;
787
c5aa993b 788 error ("%s.", combined);
c906108c
SS
789}
790
791/* Print the system error message for ERRCODE, and also mention STRING
792 as the file name for which the error was encountered. */
793
794void
795print_sys_errmsg (string, errcode)
796 char *string;
797 int errcode;
798{
799 char *err;
800 char *combined;
801
802 err = safe_strerror (errcode);
803 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
804 strcpy (combined, string);
805 strcat (combined, ": ");
806 strcat (combined, err);
807
808 /* We want anything which was printed on stdout to come out first, before
809 this message. */
810 gdb_flush (gdb_stdout);
811 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
812}
813
814/* Control C eventually causes this to be called, at a convenient time. */
815
816void
817quit ()
818{
819 serial_t gdb_stdout_serial = serial_fdopen (1);
820
821 target_terminal_ours ();
822
823 /* We want all output to appear now, before we print "Quit". We
824 have 3 levels of buffering we have to flush (it's possible that
825 some of these should be changed to flush the lower-level ones
826 too): */
827
828 /* 1. The _filtered buffer. */
c5aa993b 829 wrap_here ((char *) 0);
c906108c
SS
830
831 /* 2. The stdio buffer. */
832 gdb_flush (gdb_stdout);
833 gdb_flush (gdb_stderr);
834
835 /* 3. The system-level buffer. */
836 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
837 SERIAL_UN_FDOPEN (gdb_stdout_serial);
838
839 annotate_error_begin ();
840
841 /* Don't use *_filtered; we don't want to prompt the user to continue. */
842 if (quit_pre_print)
843 fprintf_unfiltered (gdb_stderr, quit_pre_print);
844
7be570e7
JM
845#ifdef __MSDOS__
846 /* No steenking SIGINT will ever be coming our way when the
847 program is resumed. Don't lie. */
848 fprintf_unfiltered (gdb_stderr, "Quit\n");
849#else
c906108c 850 if (job_control
c5aa993b
JM
851 /* If there is no terminal switching for this target, then we can't
852 possibly get screwed by the lack of job control. */
c906108c
SS
853 || current_target.to_terminal_ours == NULL)
854 fprintf_unfiltered (gdb_stderr, "Quit\n");
855 else
856 fprintf_unfiltered (gdb_stderr,
c5aa993b 857 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 858#endif
c906108c
SS
859 return_to_top_level (RETURN_QUIT);
860}
861
862
7be570e7 863#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
864
865/*
866 * Windows translates all keyboard and mouse events
867 * into a message which is appended to the message
868 * queue for the process.
869 */
870
c5aa993b
JM
871void
872notice_quit ()
c906108c 873{
c5aa993b 874 int k = win32pollquit ();
c906108c
SS
875 if (k == 1)
876 quit_flag = 1;
877 else if (k == 2)
878 immediate_quit = 1;
879}
880
4ce44c66 881#else /* !defined(_MSC_VER) */
c906108c 882
c5aa993b
JM
883void
884notice_quit ()
c906108c
SS
885{
886 /* Done by signals */
887}
888
4ce44c66 889#endif /* !defined(_MSC_VER) */
c906108c 890
c906108c 891/* Control C comes here */
c906108c
SS
892void
893request_quit (signo)
894 int signo;
895{
896 quit_flag = 1;
897 /* Restore the signal handler. Harmless with BSD-style signals, needed
898 for System V-style signals. So just always do it, rather than worrying
899 about USG defines and stuff like that. */
900 signal (signo, request_quit);
901
902#ifdef REQUEST_QUIT
903 REQUEST_QUIT;
904#else
c5aa993b 905 if (immediate_quit)
c906108c
SS
906 quit ();
907#endif
908}
c906108c
SS
909\f
910/* Memory management stuff (malloc friends). */
911
912/* Make a substitute size_t for non-ANSI compilers. */
913
914#ifndef HAVE_STDDEF_H
915#ifndef size_t
916#define size_t unsigned int
917#endif
918#endif
919
920#if !defined (USE_MMALLOC)
921
ed9a39eb
JM
922void *
923mcalloc (void *md, size_t number, size_t size)
924{
925 return calloc (number, size);
926}
927
c906108c
SS
928PTR
929mmalloc (md, size)
930 PTR md;
931 size_t size;
932{
933 return malloc (size);
934}
935
936PTR
937mrealloc (md, ptr, size)
938 PTR md;
939 PTR ptr;
940 size_t size;
941{
c5aa993b 942 if (ptr == 0) /* Guard against old realloc's */
c906108c
SS
943 return malloc (size);
944 else
945 return realloc (ptr, size);
946}
947
948void
949mfree (md, ptr)
950 PTR md;
951 PTR ptr;
952{
953 free (ptr);
954}
955
c5aa993b 956#endif /* USE_MMALLOC */
c906108c
SS
957
958#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
959
960void
961init_malloc (md)
962 PTR md;
963{
964}
965
966#else /* Have mmalloc and want corruption checking */
967
968static void
969malloc_botch ()
970{
96baa820
JM
971 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
972 abort ();
c906108c
SS
973}
974
975/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
976 by MD, to detect memory corruption. Note that MD may be NULL to specify
977 the default heap that grows via sbrk.
978
979 Note that for freshly created regions, we must call mmcheckf prior to any
980 mallocs in the region. Otherwise, any region which was allocated prior to
981 installing the checking hooks, which is later reallocated or freed, will
982 fail the checks! The mmcheck function only allows initial hooks to be
983 installed before the first mmalloc. However, anytime after we have called
984 mmcheck the first time to install the checking hooks, we can call it again
985 to update the function pointer to the memory corruption handler.
986
987 Returns zero on failure, non-zero on success. */
988
989#ifndef MMCHECK_FORCE
990#define MMCHECK_FORCE 0
991#endif
992
993void
994init_malloc (md)
995 PTR md;
996{
997 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
998 {
999 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
1000 to something other than dummy_target, until after
1001 initialize_all_files(). */
c906108c
SS
1002
1003 fprintf_unfiltered
1004 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1005 fprintf_unfiltered
1006 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1007 }
1008
1009 mmtrace ();
1010}
1011
1012#endif /* Have mmalloc and want corruption checking */
1013
1014/* Called when a memory allocation fails, with the number of bytes of
1015 memory requested in SIZE. */
1016
1017NORETURN void
1018nomem (size)
1019 long size;
1020{
1021 if (size > 0)
1022 {
96baa820 1023 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1024 }
1025 else
1026 {
96baa820 1027 internal_error ("virtual memory exhausted.");
c906108c
SS
1028 }
1029}
1030
1031/* Like mmalloc but get error if no storage available, and protect against
1032 the caller wanting to allocate zero bytes. Whether to return NULL for
1033 a zero byte request, or translate the request into a request for one
1034 byte of zero'd storage, is a religious issue. */
1035
1036PTR
1037xmmalloc (md, size)
1038 PTR md;
1039 long size;
1040{
1041 register PTR val;
1042
1043 if (size == 0)
1044 {
1045 val = NULL;
1046 }
1047 else if ((val = mmalloc (md, size)) == NULL)
1048 {
1049 nomem (size);
1050 }
1051 return (val);
1052}
1053
1054/* Like mrealloc but get error if no storage available. */
1055
1056PTR
1057xmrealloc (md, ptr, size)
1058 PTR md;
1059 PTR ptr;
1060 long size;
1061{
1062 register PTR val;
1063
1064 if (ptr != NULL)
1065 {
1066 val = mrealloc (md, ptr, size);
1067 }
1068 else
1069 {
1070 val = mmalloc (md, size);
1071 }
1072 if (val == NULL)
1073 {
1074 nomem (size);
1075 }
1076 return (val);
1077}
1078
1079/* Like malloc but get error if no storage available, and protect against
1080 the caller wanting to allocate zero bytes. */
1081
1082PTR
1083xmalloc (size)
1084 size_t size;
1085{
1086 return (xmmalloc ((PTR) NULL, size));
1087}
1088
ed9a39eb
JM
1089/* Like calloc but get error if no storage available */
1090
1091PTR
1092xcalloc (size_t number, size_t size)
1093{
1094 void *mem = mcalloc (NULL, number, size);
1095 if (mem == NULL)
1096 nomem (number * size);
1097 return mem;
1098}
1099
c906108c
SS
1100/* Like mrealloc but get error if no storage available. */
1101
1102PTR
1103xrealloc (ptr, size)
1104 PTR ptr;
1105 size_t size;
1106{
1107 return (xmrealloc ((PTR) NULL, ptr, size));
1108}
c906108c 1109\f
c5aa993b 1110
c906108c
SS
1111/* My replacement for the read system call.
1112 Used like `read' but keeps going if `read' returns too soon. */
1113
1114int
1115myread (desc, addr, len)
1116 int desc;
1117 char *addr;
1118 int len;
1119{
1120 register int val;
1121 int orglen = len;
1122
1123 while (len > 0)
1124 {
1125 val = read (desc, addr, len);
1126 if (val < 0)
1127 return val;
1128 if (val == 0)
1129 return orglen - len;
1130 len -= val;
1131 addr += val;
1132 }
1133 return orglen;
1134}
1135\f
1136/* Make a copy of the string at PTR with SIZE characters
1137 (and add a null character at the end in the copy).
1138 Uses malloc to get the space. Returns the address of the copy. */
1139
1140char *
1141savestring (ptr, size)
1142 const char *ptr;
1143 int size;
1144{
1145 register char *p = (char *) xmalloc (size + 1);
1146 memcpy (p, ptr, size);
1147 p[size] = 0;
1148 return p;
1149}
1150
1151char *
1152msavestring (md, ptr, size)
1153 PTR md;
1154 const char *ptr;
1155 int size;
1156{
1157 register char *p = (char *) xmmalloc (md, size + 1);
1158 memcpy (p, ptr, size);
1159 p[size] = 0;
1160 return p;
1161}
1162
1163/* The "const" is so it compiles under DGUX (which prototypes strsave
1164 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1165 Doesn't real strsave return NULL if out of memory? */
1166char *
1167strsave (ptr)
1168 const char *ptr;
1169{
1170 return savestring (ptr, strlen (ptr));
1171}
1172
1173char *
1174mstrsave (md, ptr)
1175 PTR md;
1176 const char *ptr;
1177{
1178 return (msavestring (md, ptr, strlen (ptr)));
1179}
1180
1181void
1182print_spaces (n, file)
1183 register int n;
d9fcf2fb 1184 register struct ui_file *file;
c906108c 1185{
392a587b 1186 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1187}
1188
1189/* Print a host address. */
1190
1191void
d9fcf2fb 1192gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1193{
1194
1195 /* We could use the %p conversion specifier to fprintf if we had any
1196 way of knowing whether this host supports it. But the following
1197 should work on the Alpha and on 32 bit machines. */
1198
c5aa993b 1199 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1200}
1201
1202/* Ask user a y-or-n question and return 1 iff answer is yes.
1203 Takes three args which are given to printf to print the question.
1204 The first, a control string, should end in "? ".
1205 It should not say how to answer, because we do that. */
1206
1207/* VARARGS */
1208int
c5aa993b 1209query (char *ctlstr,...)
c906108c
SS
1210{
1211 va_list args;
1212 register int answer;
1213 register int ans2;
1214 int retval;
1215
c906108c 1216 va_start (args, ctlstr);
c906108c
SS
1217
1218 if (query_hook)
1219 {
1220 return query_hook (ctlstr, args);
1221 }
1222
1223 /* Automatically answer "yes" if input is not from a terminal. */
1224 if (!input_from_terminal_p ())
1225 return 1;
1226#ifdef MPW
1227 /* FIXME Automatically answer "yes" if called from MacGDB. */
1228 if (mac_app)
1229 return 1;
1230#endif /* MPW */
1231
1232 while (1)
1233 {
1234 wrap_here (""); /* Flush any buffered output */
1235 gdb_flush (gdb_stdout);
1236
1237 if (annotation_level > 1)
1238 printf_filtered ("\n\032\032pre-query\n");
1239
1240 vfprintf_filtered (gdb_stdout, ctlstr, args);
1241 printf_filtered ("(y or n) ");
1242
1243 if (annotation_level > 1)
1244 printf_filtered ("\n\032\032query\n");
1245
1246#ifdef MPW
1247 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1248 have a prompt on the front of it. */
c906108c
SS
1249 if (!mac_app)
1250 fputs_unfiltered ("\n", gdb_stdout);
1251#endif /* MPW */
1252
c5aa993b 1253 wrap_here ("");
c906108c
SS
1254 gdb_flush (gdb_stdout);
1255
1256#if defined(TUI)
c5aa993b 1257 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1258#endif
1259 answer = fgetc (stdin);
1260#if defined(TUI)
1261 else
c5aa993b 1262 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1263
1264#endif
1265 clearerr (stdin); /* in case of C-d */
1266 if (answer == EOF) /* C-d */
c5aa993b 1267 {
c906108c
SS
1268 retval = 1;
1269 break;
1270 }
1271 /* Eat rest of input line, to EOF or newline */
1272 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1273 do
c906108c
SS
1274 {
1275#if defined(TUI)
c5aa993b 1276 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1277#endif
1278 ans2 = fgetc (stdin);
1279#if defined(TUI)
1280 else
c5aa993b 1281 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1282#endif
1283 clearerr (stdin);
1284 }
c5aa993b
JM
1285 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1286 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1287
1288 if (answer >= 'a')
1289 answer -= 040;
1290 if (answer == 'Y')
1291 {
1292 retval = 1;
1293 break;
1294 }
1295 if (answer == 'N')
1296 {
1297 retval = 0;
1298 break;
1299 }
1300 printf_filtered ("Please answer y or n.\n");
1301 }
1302
1303 if (annotation_level > 1)
1304 printf_filtered ("\n\032\032post-query\n");
1305 return retval;
1306}
c906108c 1307\f
c5aa993b 1308
c906108c
SS
1309/* Parse a C escape sequence. STRING_PTR points to a variable
1310 containing a pointer to the string to parse. That pointer
1311 should point to the character after the \. That pointer
1312 is updated past the characters we use. The value of the
1313 escape sequence is returned.
1314
1315 A negative value means the sequence \ newline was seen,
1316 which is supposed to be equivalent to nothing at all.
1317
1318 If \ is followed by a null character, we return a negative
1319 value and leave the string pointer pointing at the null character.
1320
1321 If \ is followed by 000, we return 0 and leave the string pointer
1322 after the zeros. A value of 0 does not mean end of string. */
1323
1324int
1325parse_escape (string_ptr)
1326 char **string_ptr;
1327{
1328 register int c = *(*string_ptr)++;
1329 switch (c)
1330 {
1331 case 'a':
1332 return 007; /* Bell (alert) char */
1333 case 'b':
1334 return '\b';
1335 case 'e': /* Escape character */
1336 return 033;
1337 case 'f':
1338 return '\f';
1339 case 'n':
1340 return '\n';
1341 case 'r':
1342 return '\r';
1343 case 't':
1344 return '\t';
1345 case 'v':
1346 return '\v';
1347 case '\n':
1348 return -2;
1349 case 0:
1350 (*string_ptr)--;
1351 return 0;
1352 case '^':
1353 c = *(*string_ptr)++;
1354 if (c == '\\')
1355 c = parse_escape (string_ptr);
1356 if (c == '?')
1357 return 0177;
1358 return (c & 0200) | (c & 037);
c5aa993b 1359
c906108c
SS
1360 case '0':
1361 case '1':
1362 case '2':
1363 case '3':
1364 case '4':
1365 case '5':
1366 case '6':
1367 case '7':
1368 {
1369 register int i = c - '0';
1370 register int count = 0;
1371 while (++count < 3)
1372 {
1373 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1374 {
1375 i *= 8;
1376 i += c - '0';
1377 }
1378 else
1379 {
1380 (*string_ptr)--;
1381 break;
1382 }
1383 }
1384 return i;
1385 }
1386 default:
1387 return c;
1388 }
1389}
1390\f
1391/* Print the character C on STREAM as part of the contents of a literal
1392 string whose delimiter is QUOTER. Note that this routine should only
1393 be call for printing things which are independent of the language
1394 of the program being debugged. */
1395
d9fcf2fb 1396static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
43e526b9
JM
1397
1398static void
1399printchar (c, do_fputs, do_fprintf, stream, quoter)
1400 int c;
d9fcf2fb
JM
1401 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1402 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1403 struct ui_file *stream;
c906108c
SS
1404 int quoter;
1405{
1406
1407 c &= 0xFF; /* Avoid sign bit follies */
1408
c5aa993b
JM
1409 if (c < 0x20 || /* Low control chars */
1410 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1411 (sevenbit_strings && c >= 0x80))
1412 { /* high order bit set */
1413 switch (c)
1414 {
1415 case '\n':
43e526b9 1416 do_fputs ("\\n", stream);
c5aa993b
JM
1417 break;
1418 case '\b':
43e526b9 1419 do_fputs ("\\b", stream);
c5aa993b
JM
1420 break;
1421 case '\t':
43e526b9 1422 do_fputs ("\\t", stream);
c5aa993b
JM
1423 break;
1424 case '\f':
43e526b9 1425 do_fputs ("\\f", stream);
c5aa993b
JM
1426 break;
1427 case '\r':
43e526b9 1428 do_fputs ("\\r", stream);
c5aa993b
JM
1429 break;
1430 case '\033':
43e526b9 1431 do_fputs ("\\e", stream);
c5aa993b
JM
1432 break;
1433 case '\007':
43e526b9 1434 do_fputs ("\\a", stream);
c5aa993b
JM
1435 break;
1436 default:
43e526b9 1437 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1438 break;
1439 }
1440 }
1441 else
1442 {
1443 if (c == '\\' || c == quoter)
43e526b9
JM
1444 do_fputs ("\\", stream);
1445 do_fprintf (stream, "%c", c);
c5aa993b 1446 }
c906108c 1447}
43e526b9
JM
1448
1449/* Print the character C on STREAM as part of the contents of a
1450 literal string whose delimiter is QUOTER. Note that these routines
1451 should only be call for printing things which are independent of
1452 the language of the program being debugged. */
1453
1454void
1455fputstr_filtered (str, quoter, stream)
1456 const char *str;
1457 int quoter;
d9fcf2fb 1458 struct ui_file *stream;
43e526b9
JM
1459{
1460 while (*str)
1461 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1462}
1463
1464void
1465fputstr_unfiltered (str, quoter, stream)
1466 const char *str;
1467 int quoter;
d9fcf2fb 1468 struct ui_file *stream;
43e526b9
JM
1469{
1470 while (*str)
1471 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1472}
1473
1474void
1475fputstrn_unfiltered (str, n, quoter, stream)
1476 const char *str;
1477 int n;
1478 int quoter;
d9fcf2fb 1479 struct ui_file *stream;
43e526b9
JM
1480{
1481 int i;
1482 for (i = 0; i < n; i++)
1483 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1484}
1485
c906108c 1486\f
c5aa993b 1487
c906108c
SS
1488/* Number of lines per page or UINT_MAX if paging is disabled. */
1489static unsigned int lines_per_page;
e514a9d6 1490/* Number of chars per line or UNIT_MAX if line folding is disabled. */
c906108c
SS
1491static unsigned int chars_per_line;
1492/* Current count of lines printed on this page, chars on this line. */
1493static unsigned int lines_printed, chars_printed;
1494
1495/* Buffer and start column of buffered text, for doing smarter word-
1496 wrapping. When someone calls wrap_here(), we start buffering output
1497 that comes through fputs_filtered(). If we see a newline, we just
1498 spit it out and forget about the wrap_here(). If we see another
1499 wrap_here(), we spit it out and remember the newer one. If we see
1500 the end of the line, we spit out a newline, the indent, and then
1501 the buffered output. */
1502
1503/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1504 are waiting to be output (they have already been counted in chars_printed).
1505 When wrap_buffer[0] is null, the buffer is empty. */
1506static char *wrap_buffer;
1507
1508/* Pointer in wrap_buffer to the next character to fill. */
1509static char *wrap_pointer;
1510
1511/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1512 is non-zero. */
1513static char *wrap_indent;
1514
1515/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1516 is not in effect. */
1517static int wrap_column;
c906108c 1518\f
c5aa993b 1519
c906108c
SS
1520/* Inialize the lines and chars per page */
1521void
c5aa993b 1522init_page_info ()
c906108c
SS
1523{
1524#if defined(TUI)
c5aa993b 1525 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1526 {
1527 lines_per_page = cmdWin->generic.height;
1528 chars_per_line = cmdWin->generic.width;
1529 }
1530 else
1531#endif
1532 {
1533 /* These defaults will be used if we are unable to get the correct
1534 values from termcap. */
1535#if defined(__GO32__)
c5aa993b
JM
1536 lines_per_page = ScreenRows ();
1537 chars_per_line = ScreenCols ();
1538#else
c906108c
SS
1539 lines_per_page = 24;
1540 chars_per_line = 80;
1541
1542#if !defined (MPW) && !defined (_WIN32)
1543 /* No termcap under MPW, although might be cool to do something
1544 by looking at worksheet or console window sizes. */
1545 /* Initialize the screen height and width from termcap. */
1546 {
c5aa993b 1547 char *termtype = getenv ("TERM");
c906108c 1548
c5aa993b
JM
1549 /* Positive means success, nonpositive means failure. */
1550 int status;
c906108c 1551
c5aa993b
JM
1552 /* 2048 is large enough for all known terminals, according to the
1553 GNU termcap manual. */
1554 char term_buffer[2048];
c906108c 1555
c5aa993b
JM
1556 if (termtype)
1557 {
c906108c
SS
1558 status = tgetent (term_buffer, termtype);
1559 if (status > 0)
1560 {
c5aa993b 1561 int val;
c906108c 1562 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1563
1564 val = tgetnum ("li");
1565 if (val >= 0 && !running_in_emacs)
1566 lines_per_page = val;
1567 else
1568 /* The number of lines per page is not mentioned
c906108c
SS
1569 in the terminal description. This probably means
1570 that paging is not useful (e.g. emacs shell window),
1571 so disable paging. */
c5aa993b
JM
1572 lines_per_page = UINT_MAX;
1573
1574 val = tgetnum ("co");
1575 if (val >= 0)
1576 chars_per_line = val;
c906108c 1577 }
c5aa993b 1578 }
c906108c
SS
1579 }
1580#endif /* MPW */
1581
1582#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1583
1584 /* If there is a better way to determine the window size, use it. */
1585 SIGWINCH_HANDLER (SIGWINCH);
1586#endif
1587#endif
1588 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1589 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1590 lines_per_page = UINT_MAX;
1591 } /* the command_line_version */
1592 set_width ();
c906108c
SS
1593}
1594
1595static void
c5aa993b 1596set_width ()
c906108c
SS
1597{
1598 if (chars_per_line == 0)
c5aa993b 1599 init_page_info ();
c906108c
SS
1600
1601 if (!wrap_buffer)
1602 {
1603 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1604 wrap_buffer[0] = '\0';
1605 }
1606 else
1607 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1608 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1609}
1610
1611/* ARGSUSED */
c5aa993b 1612static void
c906108c
SS
1613set_width_command (args, from_tty, c)
1614 char *args;
1615 int from_tty;
1616 struct cmd_list_element *c;
1617{
1618 set_width ();
1619}
1620
1621/* Wait, so the user can read what's on the screen. Prompt the user
1622 to continue by pressing RETURN. */
1623
1624static void
1625prompt_for_continue ()
1626{
1627 char *ignore;
1628 char cont_prompt[120];
1629
1630 if (annotation_level > 1)
1631 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1632
1633 strcpy (cont_prompt,
1634 "---Type <return> to continue, or q <return> to quit---");
1635 if (annotation_level > 1)
1636 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1637
1638 /* We must do this *before* we call gdb_readline, else it will eventually
1639 call us -- thinking that we're trying to print beyond the end of the
1640 screen. */
1641 reinitialize_more_filter ();
1642
1643 immediate_quit++;
1644 /* On a real operating system, the user can quit with SIGINT.
1645 But not on GO32.
1646
1647 'q' is provided on all systems so users don't have to change habits
1648 from system to system, and because telling them what to do in
1649 the prompt is more user-friendly than expecting them to think of
1650 SIGINT. */
1651 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1652 whereas control-C to gdb_readline will cause the user to get dumped
1653 out to DOS. */
1654 ignore = readline (cont_prompt);
1655
1656 if (annotation_level > 1)
1657 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1658
1659 if (ignore)
1660 {
1661 char *p = ignore;
1662 while (*p == ' ' || *p == '\t')
1663 ++p;
1664 if (p[0] == 'q')
0f71a2f6 1665 {
6426a772 1666 if (!event_loop_p)
0f71a2f6
JM
1667 request_quit (SIGINT);
1668 else
c5aa993b 1669 async_request_quit (0);
0f71a2f6 1670 }
c906108c
SS
1671 free (ignore);
1672 }
1673 immediate_quit--;
1674
1675 /* Now we have to do this again, so that GDB will know that it doesn't
1676 need to save the ---Type <return>--- line at the top of the screen. */
1677 reinitialize_more_filter ();
1678
1679 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1680}
1681
1682/* Reinitialize filter; ie. tell it to reset to original values. */
1683
1684void
1685reinitialize_more_filter ()
1686{
1687 lines_printed = 0;
1688 chars_printed = 0;
1689}
1690
1691/* Indicate that if the next sequence of characters overflows the line,
1692 a newline should be inserted here rather than when it hits the end.
1693 If INDENT is non-null, it is a string to be printed to indent the
1694 wrapped part on the next line. INDENT must remain accessible until
1695 the next call to wrap_here() or until a newline is printed through
1696 fputs_filtered().
1697
1698 If the line is already overfull, we immediately print a newline and
1699 the indentation, and disable further wrapping.
1700
1701 If we don't know the width of lines, but we know the page height,
1702 we must not wrap words, but should still keep track of newlines
1703 that were explicitly printed.
1704
1705 INDENT should not contain tabs, as that will mess up the char count
1706 on the next line. FIXME.
1707
1708 This routine is guaranteed to force out any output which has been
1709 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1710 used to force out output from the wrap_buffer. */
1711
1712void
c5aa993b 1713wrap_here (indent)
c906108c
SS
1714 char *indent;
1715{
1716 /* This should have been allocated, but be paranoid anyway. */
1717 if (!wrap_buffer)
1718 abort ();
1719
1720 if (wrap_buffer[0])
1721 {
1722 *wrap_pointer = '\0';
1723 fputs_unfiltered (wrap_buffer, gdb_stdout);
1724 }
1725 wrap_pointer = wrap_buffer;
1726 wrap_buffer[0] = '\0';
c5aa993b 1727 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1728 {
1729 wrap_column = 0;
1730 }
1731 else if (chars_printed >= chars_per_line)
1732 {
1733 puts_filtered ("\n");
1734 if (indent != NULL)
1735 puts_filtered (indent);
1736 wrap_column = 0;
1737 }
1738 else
1739 {
1740 wrap_column = chars_printed;
1741 if (indent == NULL)
1742 wrap_indent = "";
1743 else
1744 wrap_indent = indent;
1745 }
1746}
1747
1748/* Ensure that whatever gets printed next, using the filtered output
1749 commands, starts at the beginning of the line. I.E. if there is
1750 any pending output for the current line, flush it and start a new
1751 line. Otherwise do nothing. */
1752
1753void
1754begin_line ()
1755{
1756 if (chars_printed > 0)
1757 {
1758 puts_filtered ("\n");
1759 }
1760}
1761
ac9a91a7 1762
c906108c
SS
1763/* Like fputs but if FILTER is true, pause after every screenful.
1764
1765 Regardless of FILTER can wrap at points other than the final
1766 character of a line.
1767
1768 Unlike fputs, fputs_maybe_filtered does not return a value.
1769 It is OK for LINEBUFFER to be NULL, in which case just don't print
1770 anything.
1771
1772 Note that a longjmp to top level may occur in this routine (only if
1773 FILTER is true) (since prompt_for_continue may do so) so this
1774 routine should not be called when cleanups are not in place. */
1775
1776static void
1777fputs_maybe_filtered (linebuffer, stream, filter)
1778 const char *linebuffer;
d9fcf2fb 1779 struct ui_file *stream;
c906108c
SS
1780 int filter;
1781{
1782 const char *lineptr;
1783
1784 if (linebuffer == 0)
1785 return;
1786
1787 /* Don't do any filtering if it is disabled. */
7a292a7a 1788 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1789 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1790 {
1791 fputs_unfiltered (linebuffer, stream);
1792 return;
1793 }
1794
1795 /* Go through and output each character. Show line extension
1796 when this is necessary; prompt user for new page when this is
1797 necessary. */
c5aa993b 1798
c906108c
SS
1799 lineptr = linebuffer;
1800 while (*lineptr)
1801 {
1802 /* Possible new page. */
1803 if (filter &&
1804 (lines_printed >= lines_per_page - 1))
1805 prompt_for_continue ();
1806
1807 while (*lineptr && *lineptr != '\n')
1808 {
1809 /* Print a single line. */
1810 if (*lineptr == '\t')
1811 {
1812 if (wrap_column)
1813 *wrap_pointer++ = '\t';
1814 else
1815 fputc_unfiltered ('\t', stream);
1816 /* Shifting right by 3 produces the number of tab stops
1817 we have already passed, and then adding one and
c5aa993b 1818 shifting left 3 advances to the next tab stop. */
c906108c
SS
1819 chars_printed = ((chars_printed >> 3) + 1) << 3;
1820 lineptr++;
1821 }
1822 else
1823 {
1824 if (wrap_column)
1825 *wrap_pointer++ = *lineptr;
1826 else
c5aa993b 1827 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1828 chars_printed++;
1829 lineptr++;
1830 }
c5aa993b 1831
c906108c
SS
1832 if (chars_printed >= chars_per_line)
1833 {
1834 unsigned int save_chars = chars_printed;
1835
1836 chars_printed = 0;
1837 lines_printed++;
1838 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1839 if chars_per_line is right, we probably just overflowed
1840 anyway; if it's wrong, let us keep going. */
c906108c
SS
1841 if (wrap_column)
1842 fputc_unfiltered ('\n', stream);
1843
1844 /* Possible new page. */
1845 if (lines_printed >= lines_per_page - 1)
1846 prompt_for_continue ();
1847
1848 /* Now output indentation and wrapped string */
1849 if (wrap_column)
1850 {
1851 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1852 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1853 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1854 /* FIXME, this strlen is what prevents wrap_indent from
1855 containing tabs. However, if we recurse to print it
1856 and count its chars, we risk trouble if wrap_indent is
1857 longer than (the user settable) chars_per_line.
1858 Note also that this can set chars_printed > chars_per_line
1859 if we are printing a long string. */
1860 chars_printed = strlen (wrap_indent)
c5aa993b 1861 + (save_chars - wrap_column);
c906108c
SS
1862 wrap_pointer = wrap_buffer; /* Reset buffer */
1863 wrap_buffer[0] = '\0';
c5aa993b
JM
1864 wrap_column = 0; /* And disable fancy wrap */
1865 }
c906108c
SS
1866 }
1867 }
1868
1869 if (*lineptr == '\n')
1870 {
1871 chars_printed = 0;
c5aa993b 1872 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1873 lines_printed++;
1874 fputc_unfiltered ('\n', stream);
1875 lineptr++;
1876 }
1877 }
1878}
1879
1880void
1881fputs_filtered (linebuffer, stream)
1882 const char *linebuffer;
d9fcf2fb 1883 struct ui_file *stream;
c906108c
SS
1884{
1885 fputs_maybe_filtered (linebuffer, stream, 1);
1886}
1887
1888int
1889putchar_unfiltered (c)
1890 int c;
1891{
11cf8741 1892 char buf = c;
d9fcf2fb 1893 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1894 return c;
1895}
1896
1897int
1898fputc_unfiltered (c, stream)
1899 int c;
d9fcf2fb 1900 struct ui_file *stream;
c906108c 1901{
11cf8741 1902 char buf = c;
d9fcf2fb 1903 ui_file_write (stream, &buf, 1);
c906108c
SS
1904 return c;
1905}
1906
1907int
1908fputc_filtered (c, stream)
1909 int c;
d9fcf2fb 1910 struct ui_file *stream;
c906108c
SS
1911{
1912 char buf[2];
1913
1914 buf[0] = c;
1915 buf[1] = 0;
1916 fputs_filtered (buf, stream);
1917 return c;
1918}
1919
1920/* puts_debug is like fputs_unfiltered, except it prints special
1921 characters in printable fashion. */
1922
1923void
1924puts_debug (prefix, string, suffix)
1925 char *prefix;
1926 char *string;
1927 char *suffix;
1928{
1929 int ch;
1930
1931 /* Print prefix and suffix after each line. */
1932 static int new_line = 1;
1933 static int return_p = 0;
1934 static char *prev_prefix = "";
1935 static char *prev_suffix = "";
1936
1937 if (*string == '\n')
1938 return_p = 0;
1939
1940 /* If the prefix is changing, print the previous suffix, a new line,
1941 and the new prefix. */
c5aa993b 1942 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1943 {
9846de1b
JM
1944 fputs_unfiltered (prev_suffix, gdb_stdlog);
1945 fputs_unfiltered ("\n", gdb_stdlog);
1946 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1947 }
1948
1949 /* Print prefix if we printed a newline during the previous call. */
1950 if (new_line)
1951 {
1952 new_line = 0;
9846de1b 1953 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1954 }
1955
1956 prev_prefix = prefix;
1957 prev_suffix = suffix;
1958
1959 /* Output characters in a printable format. */
1960 while ((ch = *string++) != '\0')
1961 {
1962 switch (ch)
c5aa993b 1963 {
c906108c
SS
1964 default:
1965 if (isprint (ch))
9846de1b 1966 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1967
1968 else
9846de1b 1969 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1970 break;
1971
c5aa993b
JM
1972 case '\\':
1973 fputs_unfiltered ("\\\\", gdb_stdlog);
1974 break;
1975 case '\b':
1976 fputs_unfiltered ("\\b", gdb_stdlog);
1977 break;
1978 case '\f':
1979 fputs_unfiltered ("\\f", gdb_stdlog);
1980 break;
1981 case '\n':
1982 new_line = 1;
1983 fputs_unfiltered ("\\n", gdb_stdlog);
1984 break;
1985 case '\r':
1986 fputs_unfiltered ("\\r", gdb_stdlog);
1987 break;
1988 case '\t':
1989 fputs_unfiltered ("\\t", gdb_stdlog);
1990 break;
1991 case '\v':
1992 fputs_unfiltered ("\\v", gdb_stdlog);
1993 break;
1994 }
c906108c
SS
1995
1996 return_p = ch == '\r';
1997 }
1998
1999 /* Print suffix if we printed a newline. */
2000 if (new_line)
2001 {
9846de1b
JM
2002 fputs_unfiltered (suffix, gdb_stdlog);
2003 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2004 }
2005}
2006
2007
2008/* Print a variable number of ARGS using format FORMAT. If this
2009 information is going to put the amount written (since the last call
2010 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2011 call prompt_for_continue to get the users permision to continue.
2012
2013 Unlike fprintf, this function does not return a value.
2014
2015 We implement three variants, vfprintf (takes a vararg list and stream),
2016 fprintf (takes a stream to write on), and printf (the usual).
2017
2018 Note also that a longjmp to top level may occur in this routine
2019 (since prompt_for_continue may do so) so this routine should not be
2020 called when cleanups are not in place. */
2021
2022static void
2023vfprintf_maybe_filtered (stream, format, args, filter)
d9fcf2fb 2024 struct ui_file *stream;
c906108c
SS
2025 const char *format;
2026 va_list args;
2027 int filter;
2028{
2029 char *linebuffer;
2030 struct cleanup *old_cleanups;
2031
2032 vasprintf (&linebuffer, format, args);
2033 if (linebuffer == NULL)
2034 {
2035 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2036 exit (1);
2037 }
2038 old_cleanups = make_cleanup (free, linebuffer);
2039 fputs_maybe_filtered (linebuffer, stream, filter);
2040 do_cleanups (old_cleanups);
2041}
2042
2043
2044void
2045vfprintf_filtered (stream, format, args)
d9fcf2fb 2046 struct ui_file *stream;
c906108c
SS
2047 const char *format;
2048 va_list args;
2049{
2050 vfprintf_maybe_filtered (stream, format, args, 1);
2051}
2052
2053void
2054vfprintf_unfiltered (stream, format, args)
d9fcf2fb 2055 struct ui_file *stream;
c906108c
SS
2056 const char *format;
2057 va_list args;
2058{
2059 char *linebuffer;
2060 struct cleanup *old_cleanups;
2061
2062 vasprintf (&linebuffer, format, args);
2063 if (linebuffer == NULL)
2064 {
2065 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2066 exit (1);
2067 }
2068 old_cleanups = make_cleanup (free, linebuffer);
2069 fputs_unfiltered (linebuffer, stream);
2070 do_cleanups (old_cleanups);
2071}
2072
2073void
2074vprintf_filtered (format, args)
2075 const char *format;
2076 va_list args;
2077{
2078 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2079}
2080
2081void
2082vprintf_unfiltered (format, args)
2083 const char *format;
2084 va_list args;
2085{
2086 vfprintf_unfiltered (gdb_stdout, format, args);
2087}
2088
c906108c 2089void
d9fcf2fb 2090fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2091{
2092 va_list args;
c906108c 2093 va_start (args, format);
c906108c
SS
2094 vfprintf_filtered (stream, format, args);
2095 va_end (args);
2096}
2097
c906108c 2098void
d9fcf2fb 2099fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2100{
2101 va_list args;
c906108c 2102 va_start (args, format);
c906108c
SS
2103 vfprintf_unfiltered (stream, format, args);
2104 va_end (args);
2105}
2106
2107/* Like fprintf_filtered, but prints its result indented.
2108 Called as fprintfi_filtered (spaces, stream, format, ...); */
2109
c906108c 2110void
d9fcf2fb 2111fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2112{
2113 va_list args;
c906108c 2114 va_start (args, format);
c906108c
SS
2115 print_spaces_filtered (spaces, stream);
2116
2117 vfprintf_filtered (stream, format, args);
2118 va_end (args);
2119}
2120
2121
c906108c 2122void
c5aa993b 2123printf_filtered (const char *format,...)
c906108c
SS
2124{
2125 va_list args;
c906108c 2126 va_start (args, format);
c906108c
SS
2127 vfprintf_filtered (gdb_stdout, format, args);
2128 va_end (args);
2129}
2130
2131
c906108c 2132void
c5aa993b 2133printf_unfiltered (const char *format,...)
c906108c
SS
2134{
2135 va_list args;
c906108c 2136 va_start (args, format);
c906108c
SS
2137 vfprintf_unfiltered (gdb_stdout, format, args);
2138 va_end (args);
2139}
2140
2141/* Like printf_filtered, but prints it's result indented.
2142 Called as printfi_filtered (spaces, format, ...); */
2143
c906108c 2144void
c5aa993b 2145printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2146{
2147 va_list args;
c906108c 2148 va_start (args, format);
c906108c
SS
2149 print_spaces_filtered (spaces, gdb_stdout);
2150 vfprintf_filtered (gdb_stdout, format, args);
2151 va_end (args);
2152}
2153
2154/* Easy -- but watch out!
2155
2156 This routine is *not* a replacement for puts()! puts() appends a newline.
2157 This one doesn't, and had better not! */
2158
2159void
2160puts_filtered (string)
2161 const char *string;
2162{
2163 fputs_filtered (string, gdb_stdout);
2164}
2165
2166void
2167puts_unfiltered (string)
2168 const char *string;
2169{
2170 fputs_unfiltered (string, gdb_stdout);
2171}
2172
2173/* Return a pointer to N spaces and a null. The pointer is good
2174 until the next call to here. */
2175char *
2176n_spaces (n)
2177 int n;
2178{
392a587b
JM
2179 char *t;
2180 static char *spaces = 0;
2181 static int max_spaces = -1;
c906108c
SS
2182
2183 if (n > max_spaces)
2184 {
2185 if (spaces)
2186 free (spaces);
c5aa993b
JM
2187 spaces = (char *) xmalloc (n + 1);
2188 for (t = spaces + n; t != spaces;)
c906108c
SS
2189 *--t = ' ';
2190 spaces[n] = '\0';
2191 max_spaces = n;
2192 }
2193
2194 return spaces + max_spaces - n;
2195}
2196
2197/* Print N spaces. */
2198void
2199print_spaces_filtered (n, stream)
2200 int n;
d9fcf2fb 2201 struct ui_file *stream;
c906108c
SS
2202{
2203 fputs_filtered (n_spaces (n), stream);
2204}
2205\f
2206/* C++ demangler stuff. */
2207
2208/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2209 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2210 If the name is not mangled, or the language for the name is unknown, or
2211 demangling is off, the name is printed in its "raw" form. */
2212
2213void
2214fprintf_symbol_filtered (stream, name, lang, arg_mode)
d9fcf2fb 2215 struct ui_file *stream;
c906108c
SS
2216 char *name;
2217 enum language lang;
2218 int arg_mode;
2219{
2220 char *demangled;
2221
2222 if (name != NULL)
2223 {
2224 /* If user wants to see raw output, no problem. */
2225 if (!demangle)
2226 {
2227 fputs_filtered (name, stream);
2228 }
2229 else
2230 {
2231 switch (lang)
2232 {
2233 case language_cplus:
2234 demangled = cplus_demangle (name, arg_mode);
2235 break;
2236 case language_java:
2237 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2238 break;
2239 case language_chill:
2240 demangled = chill_demangle (name);
2241 break;
2242 default:
2243 demangled = NULL;
2244 break;
2245 }
2246 fputs_filtered (demangled ? demangled : name, stream);
2247 if (demangled != NULL)
2248 {
2249 free (demangled);
2250 }
2251 }
2252 }
2253}
2254
2255/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2256 differences in whitespace. Returns 0 if they match, non-zero if they
2257 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2258
c906108c
SS
2259 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2260 This "feature" is useful when searching for matching C++ function names
2261 (such as if the user types 'break FOO', where FOO is a mangled C++
2262 function). */
2263
2264int
2265strcmp_iw (string1, string2)
2266 const char *string1;
2267 const char *string2;
2268{
2269 while ((*string1 != '\0') && (*string2 != '\0'))
2270 {
2271 while (isspace (*string1))
2272 {
2273 string1++;
2274 }
2275 while (isspace (*string2))
2276 {
2277 string2++;
2278 }
2279 if (*string1 != *string2)
2280 {
2281 break;
2282 }
2283 if (*string1 != '\0')
2284 {
2285 string1++;
2286 string2++;
2287 }
2288 }
2289 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2290}
c906108c 2291\f
c5aa993b 2292
c906108c 2293/*
c5aa993b
JM
2294 ** subset_compare()
2295 ** Answer whether string_to_compare is a full or partial match to
2296 ** template_string. The partial match must be in sequence starting
2297 ** at index 0.
2298 */
c906108c 2299int
7a292a7a 2300subset_compare (string_to_compare, template_string)
c5aa993b
JM
2301 char *string_to_compare;
2302 char *template_string;
7a292a7a
SS
2303{
2304 int match;
c5aa993b
JM
2305 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2306 strlen (string_to_compare) <= strlen (template_string))
2307 match = (strncmp (template_string,
2308 string_to_compare,
2309 strlen (string_to_compare)) == 0);
7a292a7a
SS
2310 else
2311 match = 0;
2312 return match;
2313}
c906108c
SS
2314
2315
7a292a7a
SS
2316static void pagination_on_command PARAMS ((char *arg, int from_tty));
2317static void
2318pagination_on_command (arg, from_tty)
c5aa993b
JM
2319 char *arg;
2320 int from_tty;
c906108c
SS
2321{
2322 pagination_enabled = 1;
2323}
2324
7a292a7a
SS
2325static void pagination_on_command PARAMS ((char *arg, int from_tty));
2326static void
2327pagination_off_command (arg, from_tty)
c5aa993b
JM
2328 char *arg;
2329 int from_tty;
c906108c
SS
2330{
2331 pagination_enabled = 0;
2332}
c906108c 2333\f
c5aa993b 2334
c906108c
SS
2335void
2336initialize_utils ()
2337{
2338 struct cmd_list_element *c;
2339
c5aa993b
JM
2340 c = add_set_cmd ("width", class_support, var_uinteger,
2341 (char *) &chars_per_line,
2342 "Set number of characters gdb thinks are in a line.",
2343 &setlist);
c906108c
SS
2344 add_show_from_set (c, &showlist);
2345 c->function.sfunc = set_width_command;
2346
2347 add_show_from_set
2348 (add_set_cmd ("height", class_support,
c5aa993b 2349 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2350 "Set number of lines gdb thinks are in a page.", &setlist),
2351 &showlist);
c5aa993b 2352
c906108c
SS
2353 init_page_info ();
2354
2355 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2356 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2357 lines_per_page = UINT_MAX;
2358
c5aa993b 2359 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2360
2361 add_show_from_set
c5aa993b
JM
2362 (add_set_cmd ("demangle", class_support, var_boolean,
2363 (char *) &demangle,
2364 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2365 &setprintlist),
2366 &showprintlist);
2367
2368 add_show_from_set
2369 (add_set_cmd ("pagination", class_support,
c5aa993b 2370 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2371 "Set state of pagination.", &setlist),
2372 &showlist);
2373 if (xdb_commands)
2374 {
c5aa993b
JM
2375 add_com ("am", class_support, pagination_on_command,
2376 "Enable pagination");
2377 add_com ("sm", class_support, pagination_off_command,
2378 "Disable pagination");
c906108c
SS
2379 }
2380
2381 add_show_from_set
c5aa993b
JM
2382 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2383 (char *) &sevenbit_strings,
2384 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2385 &setprintlist),
2386 &showprintlist);
2387
2388 add_show_from_set
c5aa993b
JM
2389 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2390 (char *) &asm_demangle,
2391 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2392 &setprintlist),
2393 &showprintlist);
2394}
2395
2396/* Machine specific function to handle SIGWINCH signal. */
2397
2398#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2399SIGWINCH_HANDLER_BODY
c906108c
SS
2400#endif
2401\f
2402/* Support for converting target fp numbers into host DOUBLEST format. */
2403
2404/* XXX - This code should really be in libiberty/floatformat.c, however
2405 configuration issues with libiberty made this very difficult to do in the
2406 available time. */
2407
2408#include "floatformat.h"
2409#include <math.h> /* ldexp */
2410
2411/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2412 going to bother with trying to muck around with whether it is defined in
2413 a system header, what we do if not, etc. */
2414#define FLOATFORMAT_CHAR_BIT 8
2415
2416static unsigned long get_field PARAMS ((unsigned char *,
2417 enum floatformat_byteorders,
2418 unsigned int,
2419 unsigned int,
2420 unsigned int));
2421
2422/* Extract a field which starts at START and is LEN bytes long. DATA and
2423 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2424static unsigned long
2425get_field (data, order, total_len, start, len)
2426 unsigned char *data;
2427 enum floatformat_byteorders order;
2428 unsigned int total_len;
2429 unsigned int start;
2430 unsigned int len;
2431{
2432 unsigned long result;
2433 unsigned int cur_byte;
2434 int cur_bitshift;
2435
2436 /* Start at the least significant part of the field. */
c906108c 2437 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2438 {
2439 /* We start counting from the other end (i.e, from the high bytes
2440 rather than the low bytes). As such, we need to be concerned
2441 with what happens if bit 0 doesn't start on a byte boundary.
2442 I.e, we need to properly handle the case where total_len is
2443 not evenly divisible by 8. So we compute ``excess'' which
2444 represents the number of bits from the end of our starting
2445 byte needed to get to bit 0. */
2446 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2447 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2448 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2449 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2450 - FLOATFORMAT_CHAR_BIT;
2451 }
2452 else
2453 {
2454 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2455 cur_bitshift =
2456 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2457 }
2458 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2459 result = *(data + cur_byte) >> (-cur_bitshift);
2460 else
2461 result = 0;
c906108c
SS
2462 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2463 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2464 ++cur_byte;
2465 else
2466 --cur_byte;
2467
2468 /* Move towards the most significant part of the field. */
2469 while (cur_bitshift < len)
2470 {
0fda6bd2 2471 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2472 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2473 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2474 ++cur_byte;
2475 else
2476 --cur_byte;
2477 }
0fda6bd2
JM
2478 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2479 /* Mask out bits which are not part of the field */
2480 result &= ((1UL << len) - 1);
c906108c
SS
2481 return result;
2482}
c5aa993b 2483
c906108c
SS
2484/* Convert from FMT to a DOUBLEST.
2485 FROM is the address of the extended float.
2486 Store the DOUBLEST in *TO. */
2487
2488void
2489floatformat_to_doublest (fmt, from, to)
2490 const struct floatformat *fmt;
2491 char *from;
2492 DOUBLEST *to;
2493{
c5aa993b 2494 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2495 DOUBLEST dto;
2496 long exponent;
2497 unsigned long mant;
2498 unsigned int mant_bits, mant_off;
2499 int mant_bits_left;
2500 int special_exponent; /* It's a NaN, denorm or zero */
2501
2502 /* If the mantissa bits are not contiguous from one end of the
2503 mantissa to the other, we need to make a private copy of the
2504 source bytes that is in the right order since the unpacking
2505 algorithm assumes that the bits are contiguous.
2506
2507 Swap the bytes individually rather than accessing them through
2508 "long *" since we have no guarantee that they start on a long
2509 alignment, and also sizeof(long) for the host could be different
2510 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2511 for the target is 4. */
2512
c5aa993b 2513 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2514 {
2515 static unsigned char *newfrom;
2516 unsigned char *swapin, *swapout;
2517 int longswaps;
2518
c5aa993b 2519 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2520 longswaps >>= 3;
c5aa993b 2521
c906108c
SS
2522 if (newfrom == NULL)
2523 {
c5aa993b 2524 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2525 }
2526 swapout = newfrom;
2527 swapin = ufrom;
2528 ufrom = newfrom;
2529 while (longswaps-- > 0)
2530 {
2531 /* This is ugly, but efficient */
2532 *swapout++ = swapin[4];
2533 *swapout++ = swapin[5];
2534 *swapout++ = swapin[6];
2535 *swapout++ = swapin[7];
2536 *swapout++ = swapin[0];
2537 *swapout++ = swapin[1];
2538 *swapout++ = swapin[2];
2539 *swapout++ = swapin[3];
2540 swapin += 8;
2541 }
2542 }
2543
2544 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2545 fmt->exp_start, fmt->exp_len);
2546 /* Note that if exponent indicates a NaN, we can't really do anything useful
2547 (not knowing if the host has NaN's, or how to build one). So it will
2548 end up as an infinity or something close; that is OK. */
2549
2550 mant_bits_left = fmt->man_len;
2551 mant_off = fmt->man_start;
2552 dto = 0.0;
2553
2554 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2555
11cf8741
JM
2556/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2557 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2558 if (!special_exponent)
2559 exponent -= fmt->exp_bias;
11cf8741
JM
2560 else if (exponent == 0)
2561 exponent = 1 - fmt->exp_bias;
c906108c
SS
2562
2563 /* Build the result algebraically. Might go infinite, underflow, etc;
2564 who cares. */
2565
2566/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2567 increment the exponent by one to account for the integer bit. */
2568
2569 if (!special_exponent)
7a292a7a
SS
2570 {
2571 if (fmt->intbit == floatformat_intbit_no)
2572 dto = ldexp (1.0, exponent);
2573 else
2574 exponent++;
2575 }
c906108c
SS
2576
2577 while (mant_bits_left > 0)
2578 {
2579 mant_bits = min (mant_bits_left, 32);
2580
2581 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2582 mant_off, mant_bits);
c906108c 2583
c5aa993b 2584 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2585 exponent -= mant_bits;
2586 mant_off += mant_bits;
2587 mant_bits_left -= mant_bits;
2588 }
2589
2590 /* Negate it if negative. */
2591 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2592 dto = -dto;
2593 *to = dto;
2594}
2595\f
2596static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2597 unsigned int,
2598 unsigned int,
2599 unsigned int,
2600 unsigned long));
2601
2602/* Set a field which starts at START and is LEN bytes long. DATA and
2603 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2604static void
2605put_field (data, order, total_len, start, len, stuff_to_put)
2606 unsigned char *data;
2607 enum floatformat_byteorders order;
2608 unsigned int total_len;
2609 unsigned int start;
2610 unsigned int len;
2611 unsigned long stuff_to_put;
2612{
2613 unsigned int cur_byte;
2614 int cur_bitshift;
2615
2616 /* Start at the least significant part of the field. */
c906108c 2617 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2618 {
2619 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2620 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2621 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2622 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2623 - FLOATFORMAT_CHAR_BIT;
2624 }
2625 else
2626 {
2627 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2628 cur_bitshift =
2629 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2630 }
2631 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2632 {
2633 *(data + cur_byte) &=
2634 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2635 << (-cur_bitshift));
2636 *(data + cur_byte) |=
2637 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2638 }
c906108c
SS
2639 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2640 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2641 ++cur_byte;
2642 else
2643 --cur_byte;
2644
2645 /* Move towards the most significant part of the field. */
2646 while (cur_bitshift < len)
2647 {
2648 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2649 {
2650 /* This is the last byte. */
2651 *(data + cur_byte) &=
2652 ~((1 << (len - cur_bitshift)) - 1);
2653 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2654 }
2655 else
2656 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2657 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2658 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2659 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2660 ++cur_byte;
2661 else
2662 --cur_byte;
2663 }
2664}
2665
2666#ifdef HAVE_LONG_DOUBLE
2667/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2668 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2669 frexp, but operates on the long double data type. */
2670
2671static long double ldfrexp PARAMS ((long double value, int *eptr));
2672
2673static long double
2674ldfrexp (value, eptr)
2675 long double value;
2676 int *eptr;
2677{
2678 long double tmp;
2679 int exp;
2680
2681 /* Unfortunately, there are no portable functions for extracting the exponent
2682 of a long double, so we have to do it iteratively by multiplying or dividing
2683 by two until the fraction is between 0.5 and 1.0. */
2684
2685 if (value < 0.0l)
2686 value = -value;
2687
2688 tmp = 1.0l;
2689 exp = 0;
2690
2691 if (value >= tmp) /* Value >= 1.0 */
2692 while (value >= tmp)
2693 {
2694 tmp *= 2.0l;
2695 exp++;
2696 }
2697 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2698 {
2699 while (value < tmp)
2700 {
2701 tmp /= 2.0l;
2702 exp--;
2703 }
2704 tmp *= 2.0l;
2705 exp++;
2706 }
2707
2708 *eptr = exp;
c5aa993b 2709 return value / tmp;
c906108c
SS
2710}
2711#endif /* HAVE_LONG_DOUBLE */
2712
2713
2714/* The converse: convert the DOUBLEST *FROM to an extended float
2715 and store where TO points. Neither FROM nor TO have any alignment
2716 restrictions. */
2717
2718void
2719floatformat_from_doublest (fmt, from, to)
2720 CONST struct floatformat *fmt;
2721 DOUBLEST *from;
2722 char *to;
2723{
2724 DOUBLEST dfrom;
2725 int exponent;
2726 DOUBLEST mant;
2727 unsigned int mant_bits, mant_off;
2728 int mant_bits_left;
c5aa993b 2729 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2730
2731 memcpy (&dfrom, from, sizeof (dfrom));
2732 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2733 if (dfrom == 0)
2734 return; /* Result is zero */
2735 if (dfrom != dfrom) /* Result is NaN */
2736 {
2737 /* From is NaN */
2738 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2739 fmt->exp_len, fmt->exp_nan);
2740 /* Be sure it's not infinity, but NaN value is irrel */
2741 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2742 32, 1);
2743 return;
2744 }
2745
2746 /* If negative, set the sign bit. */
2747 if (dfrom < 0)
2748 {
2749 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2750 dfrom = -dfrom;
2751 }
2752
2753 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2754 {
2755 /* Infinity exponent is same as NaN's. */
2756 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2757 fmt->exp_len, fmt->exp_nan);
2758 /* Infinity mantissa is all zeroes. */
2759 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2760 fmt->man_len, 0);
2761 return;
2762 }
2763
2764#ifdef HAVE_LONG_DOUBLE
2765 mant = ldfrexp (dfrom, &exponent);
2766#else
2767 mant = frexp (dfrom, &exponent);
2768#endif
2769
2770 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2771 exponent + fmt->exp_bias - 1);
2772
2773 mant_bits_left = fmt->man_len;
2774 mant_off = fmt->man_start;
2775 while (mant_bits_left > 0)
2776 {
2777 unsigned long mant_long;
2778 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2779
2780 mant *= 4294967296.0;
c5aa993b 2781 mant_long = (unsigned long) mant;
c906108c
SS
2782 mant -= mant_long;
2783
2784 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2785 If we are discarding a zero, we should be (but are not) creating
2786 a denormalized number which means adjusting the exponent
2787 (I think). */
c906108c
SS
2788 if (mant_bits_left == fmt->man_len
2789 && fmt->intbit == floatformat_intbit_no)
2790 {
2791 mant_long <<= 1;
2792 mant_bits -= 1;
2793 }
2794
2795 if (mant_bits < 32)
2796 {
2797 /* The bits we want are in the most significant MANT_BITS bits of
2798 mant_long. Move them to the least significant. */
2799 mant_long >>= 32 - mant_bits;
2800 }
2801
2802 put_field (uto, fmt->byteorder, fmt->totalsize,
2803 mant_off, mant_bits, mant_long);
2804 mant_off += mant_bits;
2805 mant_bits_left -= mant_bits;
2806 }
c5aa993b 2807 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2808 {
2809 int count;
2810 unsigned char *swaplow = uto;
2811 unsigned char *swaphigh = uto + 4;
2812 unsigned char tmp;
2813
2814 for (count = 0; count < 4; count++)
2815 {
2816 tmp = *swaplow;
2817 *swaplow++ = *swaphigh;
2818 *swaphigh++ = tmp;
2819 }
2820 }
2821}
2822
2823/* temporary storage using circular buffer */
2824#define NUMCELLS 16
2825#define CELLSIZE 32
c5aa993b
JM
2826static char *
2827get_cell ()
c906108c
SS
2828{
2829 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2830 static int cell = 0;
2831 if (++cell >= NUMCELLS)
2832 cell = 0;
c906108c
SS
2833 return buf[cell];
2834}
2835
2836/* print routines to handle variable size regs, etc.
2837
2838 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2839 unsigned long or unsigned long long, determined at configure time.
2840 If t_addr is an unsigned long long and sizeof (unsigned long long)
2841 is greater than sizeof (unsigned long), then I believe this code will
2842 probably lose, at least for little endian machines. I believe that
2843 it would also be better to eliminate the switch on the absolute size
2844 of t_addr and replace it with a sequence of if statements that compare
2845 sizeof t_addr with sizeof the various types and do the right thing,
2846 which includes knowing whether or not the host supports long long.
2847 -fnf
2848
2849 */
2850
d4f3574e
SS
2851int
2852strlen_paddr (void)
2853{
2854 return (TARGET_PTR_BIT / 8 * 2);
2855}
2856
2857
104c1213
JM
2858/* eliminate warning from compiler on 32-bit systems */
2859static int thirty_two = 32;
c906108c 2860
c5aa993b 2861char *
104c1213 2862paddr (CORE_ADDR addr)
c906108c 2863{
c5aa993b 2864 char *paddr_str = get_cell ();
104c1213 2865 switch (TARGET_PTR_BIT / 8)
c906108c 2866 {
c5aa993b
JM
2867 case 8:
2868 sprintf (paddr_str, "%08lx%08lx",
2869 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2870 break;
2871 case 4:
2872 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2873 break;
2874 case 2:
2875 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2876 break;
2877 default:
2878 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2879 }
2880 return paddr_str;
2881}
2882
c5aa993b 2883char *
104c1213 2884paddr_nz (CORE_ADDR addr)
c906108c 2885{
c5aa993b 2886 char *paddr_str = get_cell ();
104c1213 2887 switch (TARGET_PTR_BIT / 8)
c906108c 2888 {
c5aa993b
JM
2889 case 8:
2890 {
2891 unsigned long high = (unsigned long) (addr >> thirty_two);
2892 if (high == 0)
2893 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2894 else
2895 sprintf (paddr_str, "%lx%08lx",
2896 high, (unsigned long) (addr & 0xffffffff));
c906108c 2897 break;
c5aa993b
JM
2898 }
2899 case 4:
2900 sprintf (paddr_str, "%lx", (unsigned long) addr);
2901 break;
2902 case 2:
2903 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2904 break;
2905 default:
2906 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2907 }
2908 return paddr_str;
2909}
2910
104c1213
JM
2911static void
2912decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2913{
2914 /* steal code from valprint.c:print_decimal(). Should this worry
2915 about the real size of addr as the above does? */
2916 unsigned long temp[3];
2917 int i = 0;
2918 do
2919 {
2920 temp[i] = addr % (1000 * 1000 * 1000);
2921 addr /= (1000 * 1000 * 1000);
2922 i++;
2923 }
2924 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2925 switch (i)
2926 {
2927 case 1:
2928 sprintf (paddr_str, "%s%lu",
2929 sign, temp[0]);
2930 break;
2931 case 2:
2932 sprintf (paddr_str, "%s%lu%09lu",
2933 sign, temp[1], temp[0]);
2934 break;
2935 case 3:
2936 sprintf (paddr_str, "%s%lu%09lu%09lu",
2937 sign, temp[2], temp[1], temp[0]);
2938 break;
2939 default:
2940 abort ();
2941 }
2942}
2943
2944char *
2945paddr_u (CORE_ADDR addr)
2946{
2947 char *paddr_str = get_cell ();
2948 decimal2str (paddr_str, "", addr);
2949 return paddr_str;
2950}
2951
2952char *
2953paddr_d (LONGEST addr)
2954{
2955 char *paddr_str = get_cell ();
2956 if (addr < 0)
2957 decimal2str (paddr_str, "-", -addr);
2958 else
2959 decimal2str (paddr_str, "", addr);
2960 return paddr_str;
2961}
2962
2963char *
2964preg (reg)
2965 t_reg reg;
2966{
2967 char *preg_str = get_cell ();
2968 switch (sizeof (t_reg))
2969 {
2970 case 8:
2971 sprintf (preg_str, "%08lx%08lx",
2972 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2973 break;
2974 case 4:
2975 sprintf (preg_str, "%08lx", (unsigned long) reg);
2976 break;
2977 case 2:
2978 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2979 break;
2980 default:
2981 sprintf (preg_str, "%lx", (unsigned long) reg);
2982 }
2983 return preg_str;
2984}
2985
c5aa993b
JM
2986char *
2987preg_nz (reg)
2988 t_reg reg;
c906108c 2989{
c5aa993b
JM
2990 char *preg_str = get_cell ();
2991 switch (sizeof (t_reg))
c906108c 2992 {
c5aa993b
JM
2993 case 8:
2994 {
2995 unsigned long high = (unsigned long) (reg >> thirty_two);
2996 if (high == 0)
2997 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2998 else
2999 sprintf (preg_str, "%lx%08lx",
3000 high, (unsigned long) (reg & 0xffffffff));
c906108c 3001 break;
c5aa993b
JM
3002 }
3003 case 4:
3004 sprintf (preg_str, "%lx", (unsigned long) reg);
3005 break;
3006 case 2:
3007 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3008 break;
3009 default:
3010 sprintf (preg_str, "%lx", (unsigned long) reg);
c906108c
SS
3011 }
3012 return preg_str;
3013}
392a587b
JM
3014
3015/* Helper functions for INNER_THAN */
3016int
3017core_addr_lessthan (lhs, rhs)
3018 CORE_ADDR lhs;
3019 CORE_ADDR rhs;
3020{
3021 return (lhs < rhs);
3022}
3023
3024int
3025core_addr_greaterthan (lhs, rhs)
3026 CORE_ADDR lhs;
3027 CORE_ADDR rhs;
3028{
3029 return (lhs > rhs);
3030}
This page took 0.173877 seconds and 4 git commands to generate.