*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / v850-tdep.c
CommitLineData
181124bc
CV
1/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
9b254dd1 3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
4c38e0a4 4 2008, 2009, 2010 Free Software Foundation, Inc.
181124bc
CV
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
181124bc
CV
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
181124bc
CV
20
21#include "defs.h"
22#include "frame.h"
23#include "frame-base.h"
24#include "trad-frame.h"
25#include "frame-unwind.h"
26#include "dwarf2-frame.h"
27#include "gdbtypes.h"
28#include "inferior.h"
29#include "gdb_string.h"
30#include "gdb_assert.h"
31#include "gdbcore.h"
32#include "arch-utils.h"
33#include "regcache.h"
34#include "dis-asm.h"
35#include "osabi.h"
36
37enum
38 {
39 E_R0_REGNUM,
40 E_R1_REGNUM,
41 E_R2_REGNUM,
42 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM,
44 E_R5_REGNUM,
45 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
46 E_R7_REGNUM,
47 E_R8_REGNUM,
48 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
49 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
50 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
51 E_R12_REGNUM,
52 E_R13_REGNUM,
53 E_R14_REGNUM,
54 E_R15_REGNUM,
55 E_R16_REGNUM,
56 E_R17_REGNUM,
57 E_R18_REGNUM,
58 E_R19_REGNUM,
59 E_R20_REGNUM,
60 E_R21_REGNUM,
61 E_R22_REGNUM,
62 E_R23_REGNUM,
63 E_R24_REGNUM,
64 E_R25_REGNUM,
65 E_R26_REGNUM,
66 E_R27_REGNUM,
67 E_R28_REGNUM,
68 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
69 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
70 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
71 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
72 E_R33_REGNUM,
73 E_R34_REGNUM,
74 E_R35_REGNUM,
75 E_R36_REGNUM,
76 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
77 E_R38_REGNUM,
78 E_R39_REGNUM,
79 E_R40_REGNUM,
80 E_R41_REGNUM,
81 E_R42_REGNUM,
82 E_R43_REGNUM,
83 E_R44_REGNUM,
84 E_R45_REGNUM,
85 E_R46_REGNUM,
86 E_R47_REGNUM,
87 E_R48_REGNUM,
88 E_R49_REGNUM,
89 E_R50_REGNUM,
90 E_R51_REGNUM,
91 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
92 E_R53_REGNUM,
93 E_R54_REGNUM,
94 E_R55_REGNUM,
95 E_R56_REGNUM,
96 E_R57_REGNUM,
97 E_R58_REGNUM,
98 E_R59_REGNUM,
99 E_R60_REGNUM,
100 E_R61_REGNUM,
101 E_R62_REGNUM,
102 E_R63_REGNUM,
103 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
104 E_R65_REGNUM,
105 E_NUM_REGS
106 };
107
108enum
109{
110 v850_reg_size = 4
111};
112
113/* Size of return datatype which fits into all return registers. */
114enum
115{
116 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
117};
118
119struct v850_frame_cache
120{
121 /* Base address. */
122 CORE_ADDR base;
123 LONGEST sp_offset;
124 CORE_ADDR pc;
125
126 /* Flag showing that a frame has been created in the prologue code. */
127 int uses_fp;
128
129 /* Saved registers. */
130 struct trad_frame_saved_reg *saved_regs;
131};
132
133/* Info gleaned from scanning a function's prologue. */
134struct pifsr /* Info about one saved register. */
135{
136 int offset; /* Offset from sp or fp. */
137 int cur_frameoffset; /* Current frameoffset. */
138 int reg; /* Saved register number. */
139};
140
141static const char *
d93859e2 142v850_register_name (struct gdbarch *gdbarch, int regnum)
181124bc
CV
143{
144 static const char *v850_reg_names[] =
145 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
146 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
147 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
148 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
149 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
150 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
151 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
152 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
153 "pc", "fp"
154 };
155 if (regnum < 0 || regnum >= E_NUM_REGS)
156 return NULL;
157 return v850_reg_names[regnum];
158}
159
160static const char *
d93859e2 161v850e_register_name (struct gdbarch *gdbarch, int regnum)
181124bc
CV
162{
163 static const char *v850e_reg_names[] =
164 {
165 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
166 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
167 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
168 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
169 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
170 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
171 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
172 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
173 "pc", "fp"
174 };
175 if (regnum < 0 || regnum >= E_NUM_REGS)
176 return NULL;
177 return v850e_reg_names[regnum];
178}
179
180/* Returns the default type for register N. */
181
182static struct type *
183v850_register_type (struct gdbarch *gdbarch, int regnum)
184{
185 if (regnum == E_PC_REGNUM)
0dfff4cb 186 return builtin_type (gdbarch)->builtin_func_ptr;
df4df182 187 return builtin_type (gdbarch)->builtin_int32;
181124bc
CV
188}
189
190static int
191v850_type_is_scalar (struct type *t)
192{
193 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
194 && TYPE_CODE (t) != TYPE_CODE_UNION
195 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
196}
197
198/* Should call_function allocate stack space for a struct return? */
199static int
200v850_use_struct_convention (struct type *type)
201{
202 int i;
203 struct type *fld_type, *tgt_type;
204
205 /* 1. The value is greater than 8 bytes -> returned by copying. */
206 if (TYPE_LENGTH (type) > 8)
207 return 1;
208
209 /* 2. The value is a single basic type -> returned in register. */
210 if (v850_type_is_scalar (type))
211 return 0;
212
213 /* The value is a structure or union with a single element and that
214 element is either a single basic type or an array of a single basic
215 type whose size is greater than or equal to 4 -> returned in register. */
216 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
217 || TYPE_CODE (type) == TYPE_CODE_UNION)
218 && TYPE_NFIELDS (type) == 1)
219 {
220 fld_type = TYPE_FIELD_TYPE (type, 0);
221 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
222 return 0;
223
224 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
225 {
226 tgt_type = TYPE_TARGET_TYPE (fld_type);
227 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
228 return 0;
229 }
230 }
231
232 /* The value is a structure whose first element is an integer or a float,
233 and which contains no arrays of more than two elements -> returned in
234 register. */
235 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
236 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
237 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
238 {
239 for (i = 1; i < TYPE_NFIELDS (type); ++i)
240 {
241 fld_type = TYPE_FIELD_TYPE (type, 0);
242 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
243 {
244 tgt_type = TYPE_TARGET_TYPE (fld_type);
245 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
246 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
247 return 1;
248 }
249 }
250 return 0;
251 }
252
253 /* The value is a union which contains at least one field which would be
254 returned in registers according to these rules -> returned in register. */
255 if (TYPE_CODE (type) == TYPE_CODE_UNION)
256 {
257 for (i = 0; i < TYPE_NFIELDS (type); ++i)
258 {
259 fld_type = TYPE_FIELD_TYPE (type, 0);
260 if (!v850_use_struct_convention (fld_type))
261 return 0;
262 }
263 }
264
265 return 1;
266}
267
268/* Structure for mapping bits in register lists to register numbers. */
269struct reg_list
270{
271 long mask;
272 int regno;
273};
274
275/* Helper function for v850_scan_prologue to handle prepare instruction. */
276
277static void
278v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
279 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
280{
281 CORE_ADDR current_pc = *current_pc_ptr;
282 struct pifsr *pifsr = *pifsr_ptr;
283 long next = insn2 & 0xffff;
284 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
285 long offset = (insn & 0x3e) << 1;
286 static struct reg_list reg_table[] =
287 {
288 {0x00800, 20}, /* r20 */
289 {0x00400, 21}, /* r21 */
290 {0x00200, 22}, /* r22 */
291 {0x00100, 23}, /* r23 */
292 {0x08000, 24}, /* r24 */
293 {0x04000, 25}, /* r25 */
294 {0x02000, 26}, /* r26 */
295 {0x01000, 27}, /* r27 */
296 {0x00080, 28}, /* r28 */
297 {0x00040, 29}, /* r29 */
298 {0x10000, 30}, /* ep */
299 {0x00020, 31}, /* lp */
300 {0, 0} /* end of table */
301 };
302 int i;
303
304 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
305 current_pc += 2;
306 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
307 current_pc += 2;
308 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
309 current_pc += 4;
310
311 /* Calculate the total size of the saved registers, and add it to the
312 immediate value used to adjust SP. */
313 for (i = 0; reg_table[i].mask != 0; i++)
314 if (list12 & reg_table[i].mask)
315 offset += v850_reg_size;
316 pi->sp_offset -= offset;
317
318 /* Calculate the offsets of the registers relative to the value the SP
319 will have after the registers have been pushed and the imm5 value has
320 been subtracted from it. */
321 if (pifsr)
322 {
323 for (i = 0; reg_table[i].mask != 0; i++)
324 {
325 if (list12 & reg_table[i].mask)
326 {
327 int reg = reg_table[i].regno;
328 offset -= v850_reg_size;
329 pifsr->reg = reg;
330 pifsr->offset = offset;
331 pifsr->cur_frameoffset = pi->sp_offset;
332 pifsr++;
333 }
334 }
335 }
336
337 /* Set result parameters. */
338 *current_pc_ptr = current_pc;
339 *pifsr_ptr = pifsr;
340}
341
342
343/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
344 The SR bit of the register list is not supported. gcc does not generate
345 this bit. */
346
347static void
348v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
349 struct pifsr **pifsr_ptr)
350{
351 struct pifsr *pifsr = *pifsr_ptr;
352 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
353 long offset = 0;
354 static struct reg_list pushml_reg_table[] =
355 {
356 {0x80000, E_PS_REGNUM}, /* PSW */
357 {0x40000, 1}, /* r1 */
358 {0x20000, 2}, /* r2 */
359 {0x10000, 3}, /* r3 */
360 {0x00800, 4}, /* r4 */
361 {0x00400, 5}, /* r5 */
362 {0x00200, 6}, /* r6 */
363 {0x00100, 7}, /* r7 */
364 {0x08000, 8}, /* r8 */
365 {0x04000, 9}, /* r9 */
366 {0x02000, 10}, /* r10 */
367 {0x01000, 11}, /* r11 */
368 {0x00080, 12}, /* r12 */
369 {0x00040, 13}, /* r13 */
370 {0x00020, 14}, /* r14 */
371 {0x00010, 15}, /* r15 */
372 {0, 0} /* end of table */
373 };
374 static struct reg_list pushmh_reg_table[] =
375 {
376 {0x80000, 16}, /* r16 */
377 {0x40000, 17}, /* r17 */
378 {0x20000, 18}, /* r18 */
379 {0x10000, 19}, /* r19 */
380 {0x00800, 20}, /* r20 */
381 {0x00400, 21}, /* r21 */
382 {0x00200, 22}, /* r22 */
383 {0x00100, 23}, /* r23 */
384 {0x08000, 24}, /* r24 */
385 {0x04000, 25}, /* r25 */
386 {0x02000, 26}, /* r26 */
387 {0x01000, 27}, /* r27 */
388 {0x00080, 28}, /* r28 */
389 {0x00040, 29}, /* r29 */
390 {0x00010, 30}, /* r30 */
391 {0x00020, 31}, /* r31 */
392 {0, 0} /* end of table */
393 };
394 struct reg_list *reg_table;
395 int i;
396
397 /* Is this a pushml or a pushmh? */
398 if ((insn2 & 7) == 1)
399 reg_table = pushml_reg_table;
400 else
401 reg_table = pushmh_reg_table;
402
403 /* Calculate the total size of the saved registers, and add it it to the
404 immediate value used to adjust SP. */
405 for (i = 0; reg_table[i].mask != 0; i++)
406 if (list12 & reg_table[i].mask)
407 offset += v850_reg_size;
408 pi->sp_offset -= offset;
409
410 /* Calculate the offsets of the registers relative to the value the SP
411 will have after the registers have been pushed and the imm5 value is
412 subtracted from it. */
413 if (pifsr)
414 {
415 for (i = 0; reg_table[i].mask != 0; i++)
416 {
417 if (list12 & reg_table[i].mask)
418 {
419 int reg = reg_table[i].regno;
420 offset -= v850_reg_size;
421 pifsr->reg = reg;
422 pifsr->offset = offset;
423 pifsr->cur_frameoffset = pi->sp_offset;
424 pifsr++;
425 }
426 }
427 }
428
429 /* Set result parameters. */
430 *pifsr_ptr = pifsr;
431}
432
433/* Helper function to evaluate if register is one of the "save" registers.
434 This allows to simplify conditionals in v850_analyze_prologue a lot. */
435
436static int
437v850_is_save_register (int reg)
438{
439 /* The caller-save registers are R2, R20 - R29 and R31. All other
440 registers are either special purpose (PC, SP), argument registers,
441 or just considered free for use in the caller. */
442 return reg == E_R2_REGNUM
443 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
444 || reg == E_R31_REGNUM;
445}
446
447/* Scan the prologue of the function that contains PC, and record what
448 we find in PI. Returns the pc after the prologue. Note that the
449 addresses saved in frame->saved_regs are just frame relative (negative
450 offsets from the frame pointer). This is because we don't know the
451 actual value of the frame pointer yet. In some circumstances, the
452 frame pointer can't be determined till after we have scanned the
453 prologue. */
454
455static CORE_ADDR
e17a4113
UW
456v850_analyze_prologue (struct gdbarch *gdbarch,
457 CORE_ADDR func_addr, CORE_ADDR pc,
d2ca4222 458 struct v850_frame_cache *pi, ULONGEST ctbp)
181124bc 459{
e17a4113 460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
461 CORE_ADDR prologue_end, current_pc;
462 struct pifsr pifsrs[E_NUM_REGS + 1];
463 struct pifsr *pifsr, *pifsr_tmp;
464 int fp_used;
465 int ep_used;
466 int reg;
467 CORE_ADDR save_pc, save_end;
468 int regsave_func_p;
469 int r12_tmp;
470
471 memset (&pifsrs, 0, sizeof pifsrs);
472 pifsr = &pifsrs[0];
473
474 prologue_end = pc;
475
476 /* Now, search the prologue looking for instructions that setup fp, save
477 rp, adjust sp and such. We also record the frame offset of any saved
478 registers. */
479
480 pi->sp_offset = 0;
481 pi->uses_fp = 0;
482 ep_used = 0;
483 regsave_func_p = 0;
484 save_pc = 0;
485 save_end = 0;
486 r12_tmp = 0;
487
488 for (current_pc = func_addr; current_pc < prologue_end;)
489 {
490 int insn;
491 int insn2 = -1; /* dummy value */
492
e17a4113 493 insn = read_memory_integer (current_pc, 2, byte_order);
181124bc
CV
494 current_pc += 2;
495 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
496 {
e17a4113 497 insn2 = read_memory_integer (current_pc, 2, byte_order);
181124bc
CV
498 current_pc += 2;
499 }
500
501 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
502 { /* jarl <func>,10 */
503 long low_disp = insn2 & ~(long) 1;
504 long disp = (((((insn & 0x3f) << 16) + low_disp)
505 & ~(long) 1) ^ 0x00200000) - 0x00200000;
506
507 save_pc = current_pc;
508 save_end = prologue_end;
509 regsave_func_p = 1;
510 current_pc += disp - 4;
511 prologue_end = (current_pc
512 + (2 * 3) /* moves to/from ep */
513 + 4 /* addi <const>,sp,sp */
514 + 2 /* jmp [r10] */
515 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
516 + 20); /* slop area */
517 }
518 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
519 { /* callt <imm6> */
181124bc
CV
520 long adr = ctbp + ((insn & 0x3f) << 1);
521
522 save_pc = current_pc;
523 save_end = prologue_end;
524 regsave_func_p = 1;
e17a4113
UW
525 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
526 & 0xffff);
181124bc
CV
527 prologue_end = (current_pc
528 + (2 * 3) /* prepare list2,imm5,sp/imm */
529 + 4 /* ctret */
530 + 20); /* slop area */
531 continue;
532 }
533 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
534 {
535 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
536 continue;
537 }
538 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
539 { /* ctret after processing register save. */
540 current_pc = save_pc;
541 prologue_end = save_end;
542 regsave_func_p = 0;
543 continue;
544 }
545 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
546 { /* pushml, pushmh */
547 v850_handle_pushm (insn, insn2, pi, &pifsr);
548 continue;
549 }
550 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
551 { /* jmp after processing register save. */
552 current_pc = save_pc;
553 prologue_end = save_end;
554 regsave_func_p = 0;
555 continue;
556 }
557 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
558 || (insn & 0xffe0) == 0x0060 /* jmp */
559 || (insn & 0x0780) == 0x0580) /* branch */
560 {
561 break; /* Ran into end of prologue */
562 }
563
564 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
565 /* add <imm>,sp */
566 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
567 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
568 /* addi <imm>,sp,sp */
569 pi->sp_offset += insn2;
570 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
571 /* mov sp,fp */
572 pi->uses_fp = 1;
573 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
574 /* movhi hi(const),r0,r12 */
575 r12_tmp = insn2 << 16;
576 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
577 /* movea lo(const),r12,r12 */
578 r12_tmp += insn2;
579 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
580 /* add r12,sp */
581 pi->sp_offset += r12_tmp;
582 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
583 /* mov sp,ep */
584 ep_used = 1;
585 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
586 /* mov r1,ep */
587 ep_used = 0;
588 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
589 || (pi->uses_fp
590 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
591 && pifsr
592 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
593 {
594 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
595 pifsr->reg = reg;
596 pifsr->offset = insn2 & ~1;
597 pifsr->cur_frameoffset = pi->sp_offset;
598 pifsr++;
599 }
600 else if (ep_used
601 && ((insn & 0x0781) == 0x0501)
602 && pifsr
603 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
604 {
605 /* sst.w <reg>,<offset>[ep] */
606 pifsr->reg = reg;
607 pifsr->offset = (insn & 0x007e) << 1;
608 pifsr->cur_frameoffset = pi->sp_offset;
609 pifsr++;
610 }
611 }
612
613 /* Fix up any offsets to the final offset. If a frame pointer was created,
614 use it instead of the stack pointer. */
615 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
616 {
617 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
618 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
619 }
620
621 return current_pc;
622}
623
624/* Return the address of the first code past the prologue of the function. */
625
626static CORE_ADDR
6093d2eb 627v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
181124bc
CV
628{
629 CORE_ADDR func_addr, func_end;
630
631 /* See what the symbol table says */
632
633 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
634 {
635 struct symtab_and_line sal;
636
637 sal = find_pc_line (func_addr, 0);
638 if (sal.line != 0 && sal.end < func_end)
639 return sal.end;
640
641 /* Either there's no line info, or the line after the prologue is after
642 the end of the function. In this case, there probably isn't a
643 prologue. */
644 return pc;
645 }
646
647 /* We can't find the start of this function, so there's nothing we can do. */
648 return pc;
649}
650
651static CORE_ADDR
652v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
653{
654 return sp & ~3;
655}
656
657/* Setup arguments and LP for a call to the target. First four args
658 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
659 are passed by reference. 64 bit quantities (doubles and long longs)
660 may be split between the regs and the stack. When calling a function
661 that returns a struct, a pointer to the struct is passed in as a secret
662 first argument (always in R6).
663
664 Stack space for the args has NOT been allocated: that job is up to us. */
665
666static CORE_ADDR
667v850_push_dummy_call (struct gdbarch *gdbarch,
668 struct value *function,
669 struct regcache *regcache,
670 CORE_ADDR bp_addr,
671 int nargs,
672 struct value **args,
673 CORE_ADDR sp,
674 int struct_return,
675 CORE_ADDR struct_addr)
676{
e17a4113 677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
678 int argreg;
679 int argnum;
680 int len = 0;
681 int stack_offset;
682
683 /* The offset onto the stack at which we will start copying parameters
684 (after the registers are used up) begins at 16 rather than at zero.
685 That's how the ABI is defined, though there's no indication that these
686 16 bytes are used for anything, not even for saving incoming
687 argument registers. */
688 stack_offset = 16;
689
690 /* Now make space on the stack for the args. */
691 for (argnum = 0; argnum < nargs; argnum++)
692 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
693 sp -= len + stack_offset;
694
695 argreg = E_ARG0_REGNUM;
696 /* The struct_return pointer occupies the first parameter register. */
697 if (struct_return)
698 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
699
700 /* Now load as many as possible of the first arguments into
701 registers, and push the rest onto the stack. There are 16 bytes
702 in four registers available. Loop thru args from first to last. */
703 for (argnum = 0; argnum < nargs; argnum++)
704 {
705 int len;
706 gdb_byte *val;
707 gdb_byte valbuf[v850_reg_size];
708
709 if (!v850_type_is_scalar (value_type (*args))
710 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
711 {
e17a4113
UW
712 store_unsigned_integer (valbuf, 4, byte_order,
713 value_address (*args));
181124bc
CV
714 len = 4;
715 val = valbuf;
716 }
717 else
718 {
719 len = TYPE_LENGTH (value_type (*args));
720 val = (gdb_byte *) value_contents (*args);
721 }
722
723 while (len > 0)
724 if (argreg <= E_ARGLAST_REGNUM)
725 {
726 CORE_ADDR regval;
727
e17a4113 728 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
181124bc
CV
729 regcache_cooked_write_unsigned (regcache, argreg, regval);
730
731 len -= v850_reg_size;
732 val += v850_reg_size;
733 argreg++;
734 }
735 else
736 {
737 write_memory (sp + stack_offset, val, 4);
738
739 len -= 4;
740 val += 4;
741 stack_offset += 4;
742 }
743 args++;
744 }
745
746 /* Store return address. */
747 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
748
749 /* Update stack pointer. */
750 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
751
752 return sp;
753}
754
755static void
756v850_extract_return_value (struct type *type, struct regcache *regcache,
757 gdb_byte *valbuf)
758{
e17a4113
UW
759 struct gdbarch *gdbarch = get_regcache_arch (regcache);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
761 int len = TYPE_LENGTH (type);
762
763 if (len <= v850_reg_size)
764 {
765 ULONGEST val;
766
767 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
e17a4113 768 store_unsigned_integer (valbuf, len, byte_order, val);
181124bc
CV
769 }
770 else if (len <= 2 * v850_reg_size)
771 {
772 int i, regnum = E_V0_REGNUM;
773 gdb_byte buf[v850_reg_size];
774 for (i = 0; len > 0; i += 4, len -= 4)
775 {
776 regcache_raw_read (regcache, regnum++, buf);
777 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
778 }
779 }
780}
781
782static void
783v850_store_return_value (struct type *type, struct regcache *regcache,
784 const gdb_byte *valbuf)
785{
e17a4113
UW
786 struct gdbarch *gdbarch = get_regcache_arch (regcache);
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
788 int len = TYPE_LENGTH (type);
789
790 if (len <= v850_reg_size)
e17a4113
UW
791 regcache_cooked_write_unsigned
792 (regcache, E_V0_REGNUM,
793 extract_unsigned_integer (valbuf, len, byte_order));
181124bc
CV
794 else if (len <= 2 * v850_reg_size)
795 {
796 int i, regnum = E_V0_REGNUM;
797 for (i = 0; i < len; i += 4)
798 regcache_raw_write (regcache, regnum++, valbuf + i);
799 }
800}
801
802static enum return_value_convention
c055b101
CV
803v850_return_value (struct gdbarch *gdbarch, struct type *func_type,
804 struct type *type, struct regcache *regcache,
181124bc
CV
805 gdb_byte *readbuf, const gdb_byte *writebuf)
806{
807 if (v850_use_struct_convention (type))
808 return RETURN_VALUE_STRUCT_CONVENTION;
809 if (writebuf)
810 v850_store_return_value (type, regcache, writebuf);
811 else if (readbuf)
812 v850_extract_return_value (type, regcache, readbuf);
813 return RETURN_VALUE_REGISTER_CONVENTION;
814}
815
816const static unsigned char *
67d57894 817v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
181124bc
CV
818{
819 static unsigned char breakpoint[] = { 0x85, 0x05 };
820 *lenptr = sizeof (breakpoint);
821 return breakpoint;
822}
823
824static struct v850_frame_cache *
94afd7a6 825v850_alloc_frame_cache (struct frame_info *this_frame)
181124bc
CV
826{
827 struct v850_frame_cache *cache;
828 int i;
829
830 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
94afd7a6 831 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
181124bc
CV
832
833 /* Base address. */
834 cache->base = 0;
835 cache->sp_offset = 0;
836 cache->pc = 0;
837
838 /* Frameless until proven otherwise. */
839 cache->uses_fp = 0;
840
841 return cache;
842}
843
844static struct v850_frame_cache *
94afd7a6 845v850_frame_cache (struct frame_info *this_frame, void **this_cache)
181124bc 846{
e17a4113 847 struct gdbarch *gdbarch = get_frame_arch (this_frame);
181124bc
CV
848 struct v850_frame_cache *cache;
849 CORE_ADDR current_pc;
850 int i;
851
852 if (*this_cache)
853 return *this_cache;
854
94afd7a6 855 cache = v850_alloc_frame_cache (this_frame);
181124bc
CV
856 *this_cache = cache;
857
858 /* In principle, for normal frames, fp holds the frame pointer,
859 which holds the base address for the current stack frame.
860 However, for functions that don't need it, the frame pointer is
861 optional. For these "frameless" functions the frame pointer is
862 actually the frame pointer of the calling frame. */
94afd7a6 863 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
181124bc
CV
864 if (cache->base == 0)
865 return cache;
866
94afd7a6
UW
867 cache->pc = get_frame_func (this_frame);
868 current_pc = get_frame_pc (this_frame);
181124bc 869 if (cache->pc != 0)
d2ca4222
UW
870 {
871 ULONGEST ctbp;
94afd7a6 872 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
e17a4113 873 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
d2ca4222 874 }
181124bc
CV
875
876 if (!cache->uses_fp)
877 {
878 /* We didn't find a valid frame, which means that CACHE->base
879 currently holds the frame pointer for our calling frame. If
880 we're at the start of a function, or somewhere half-way its
881 prologue, the function's frame probably hasn't been fully
882 setup yet. Try to reconstruct the base address for the stack
883 frame by looking at the stack pointer. For truly "frameless"
884 functions this might work too. */
94afd7a6 885 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
181124bc
CV
886 }
887
888 /* Now that we have the base address for the stack frame we can
889 calculate the value of sp in the calling frame. */
890 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
891 cache->base - cache->sp_offset);
892
893 /* Adjust all the saved registers such that they contain addresses
894 instead of offsets. */
895 for (i = 0; i < E_NUM_REGS; i++)
896 if (trad_frame_addr_p (cache->saved_regs, i))
897 cache->saved_regs[i].addr += cache->base;
898
899 /* The call instruction moves the caller's PC in the callee's LP.
900 Since this is an unwind, do the reverse. Copy the location of LP
901 into PC (the address / regnum) so that a request for PC will be
902 converted into a request for the LP. */
903
904 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
905
906 return cache;
907}
908
909
94afd7a6
UW
910static struct value *
911v850_frame_prev_register (struct frame_info *this_frame,
912 void **this_cache, int regnum)
181124bc 913{
94afd7a6 914 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
181124bc
CV
915
916 gdb_assert (regnum >= 0);
917
94afd7a6 918 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
181124bc
CV
919}
920
921static void
94afd7a6 922v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
181124bc
CV
923 struct frame_id *this_id)
924{
94afd7a6 925 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
181124bc
CV
926
927 /* This marks the outermost frame. */
928 if (cache->base == 0)
929 return;
930
931 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
932}
933
934static const struct frame_unwind v850_frame_unwind = {
935 NORMAL_FRAME,
936 v850_frame_this_id,
94afd7a6
UW
937 v850_frame_prev_register,
938 NULL,
939 default_frame_sniffer
181124bc 940};
181124bc
CV
941
942static CORE_ADDR
943v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
944{
3e8c568d 945 return frame_unwind_register_unsigned (next_frame,
d93859e2 946 gdbarch_sp_regnum (gdbarch));
181124bc
CV
947}
948
949static CORE_ADDR
950v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
951{
3e8c568d 952 return frame_unwind_register_unsigned (next_frame,
d93859e2 953 gdbarch_pc_regnum (gdbarch));
181124bc
CV
954}
955
956static struct frame_id
94afd7a6 957v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
181124bc 958{
94afd7a6
UW
959 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
960 gdbarch_sp_regnum (gdbarch));
961 return frame_id_build (sp, get_frame_pc (this_frame));
181124bc
CV
962}
963
964static CORE_ADDR
94afd7a6 965v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
181124bc 966{
94afd7a6 967 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
181124bc
CV
968
969 return cache->base;
970}
971
972static const struct frame_base v850_frame_base = {
973 &v850_frame_unwind,
974 v850_frame_base_address,
975 v850_frame_base_address,
976 v850_frame_base_address
977};
978
979static struct gdbarch *
980v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
981{
982 struct gdbarch *gdbarch;
983
984 /* Change the register names based on the current machine type. */
985 if (info.bfd_arch_info->arch != bfd_arch_v850)
986 return NULL;
987
988 gdbarch = gdbarch_alloc (&info, NULL);
989
990 switch (info.bfd_arch_info->mach)
991 {
992 case bfd_mach_v850:
993 set_gdbarch_register_name (gdbarch, v850_register_name);
994 break;
995 case bfd_mach_v850e:
996 case bfd_mach_v850e1:
997 set_gdbarch_register_name (gdbarch, v850e_register_name);
998 break;
999 }
1000
1001 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1002 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1003 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1004 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1005 set_gdbarch_fp0_regnum (gdbarch, -1);
1006
1007 set_gdbarch_register_type (gdbarch, v850_register_type);
1008
1009 set_gdbarch_char_signed (gdbarch, 0);
1010 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1011 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1012 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1013 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1014
1015 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1016 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1017 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1018
1019 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1020 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1021
1022 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1023 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1024
1025 set_gdbarch_return_value (gdbarch, v850_return_value);
1026 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1027 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1028
1029 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1030
1031 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1032 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1033 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
94afd7a6 1034 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
181124bc
CV
1035 frame_base_set_default (gdbarch, &v850_frame_base);
1036
1037 /* Hook in ABI-specific overrides, if they have been registered. */
1038 gdbarch_init_osabi (info, gdbarch);
1039
94afd7a6
UW
1040 dwarf2_append_unwinders (gdbarch);
1041 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
181124bc
CV
1042
1043 return gdbarch;
1044}
1045
1046extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1047
1048void
1049_initialize_v850_tdep (void)
1050{
1051 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1052}
This page took 0.556311 seconds and 4 git commands to generate.