Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform arithmetic and other operations on values, for GDB. |
1bac305b | 2 | |
f23631e4 | 3 | Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
1bac305b AC |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software |
5 | Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "value.h" | |
26 | #include "symtab.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "expression.h" | |
29 | #include "target.h" | |
30 | #include "language.h" | |
c906108c | 31 | #include "gdb_string.h" |
d16aafd8 | 32 | #include "doublest.h" |
c4093a6a | 33 | #include <math.h> |
04714b91 | 34 | #include "infcall.h" |
c906108c SS |
35 | |
36 | /* Define whether or not the C operator '/' truncates towards zero for | |
37 | differently signed operands (truncation direction is undefined in C). */ | |
38 | ||
39 | #ifndef TRUNCATION_TOWARDS_ZERO | |
40 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
41 | #endif | |
42 | ||
f23631e4 | 43 | static struct value *value_subscripted_rvalue (struct value *, struct value *, int); |
c906108c | 44 | |
a14ed312 | 45 | void _initialize_valarith (void); |
c906108c | 46 | \f |
c5aa993b | 47 | |
ca439ad2 JI |
48 | /* Given a pointer, return the size of its target. |
49 | If the pointer type is void *, then return 1. | |
50 | If the target type is incomplete, then error out. | |
51 | This isn't a general purpose function, but just a | |
52 | helper for value_sub & value_add. | |
53 | */ | |
54 | ||
55 | static LONGEST | |
56 | find_size_for_pointer_math (struct type *ptr_type) | |
57 | { | |
58 | LONGEST sz = -1; | |
59 | struct type *ptr_target; | |
60 | ||
61 | ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); | |
62 | ||
63 | sz = TYPE_LENGTH (ptr_target); | |
64 | if (sz == 0) | |
65 | { | |
66 | if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) | |
67 | sz = 1; | |
68 | else | |
69 | { | |
70 | char *name; | |
71 | ||
72 | name = TYPE_NAME (ptr_target); | |
73 | if (name == NULL) | |
74 | name = TYPE_TAG_NAME (ptr_target); | |
75 | if (name == NULL) | |
76 | error ("Cannot perform pointer math on incomplete types, " | |
77 | "try casting to a known type, or void *."); | |
78 | else | |
79 | error ("Cannot perform pointer math on incomplete type \"%s\", " | |
80 | "try casting to a known type, or void *.", name); | |
81 | } | |
82 | } | |
83 | return sz; | |
84 | } | |
85 | ||
f23631e4 AC |
86 | struct value * |
87 | value_add (struct value *arg1, struct value *arg2) | |
c906108c | 88 | { |
f23631e4 AC |
89 | struct value *valint; |
90 | struct value *valptr; | |
ca439ad2 | 91 | LONGEST sz; |
c906108c SS |
92 | struct type *type1, *type2, *valptrtype; |
93 | ||
94 | COERCE_NUMBER (arg1); | |
95 | COERCE_NUMBER (arg2); | |
96 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
97 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
98 | ||
99 | if ((TYPE_CODE (type1) == TYPE_CODE_PTR | |
100 | || TYPE_CODE (type2) == TYPE_CODE_PTR) | |
101 | && | |
102 | (TYPE_CODE (type1) == TYPE_CODE_INT | |
103 | || TYPE_CODE (type2) == TYPE_CODE_INT)) | |
104 | /* Exactly one argument is a pointer, and one is an integer. */ | |
105 | { | |
f23631e4 | 106 | struct value *retval; |
c906108c SS |
107 | |
108 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
109 | { | |
110 | valptr = arg1; | |
111 | valint = arg2; | |
112 | valptrtype = type1; | |
113 | } | |
114 | else | |
115 | { | |
116 | valptr = arg2; | |
117 | valint = arg1; | |
118 | valptrtype = type2; | |
119 | } | |
ca439ad2 JI |
120 | |
121 | sz = find_size_for_pointer_math (valptrtype); | |
122 | ||
4478b372 | 123 | retval = value_from_pointer (valptrtype, |
1aa20aa8 | 124 | value_as_address (valptr) |
ca439ad2 | 125 | + (sz * value_as_long (valint))); |
c906108c SS |
126 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr); |
127 | return retval; | |
128 | } | |
129 | ||
130 | return value_binop (arg1, arg2, BINOP_ADD); | |
131 | } | |
132 | ||
f23631e4 AC |
133 | struct value * |
134 | value_sub (struct value *arg1, struct value *arg2) | |
c906108c SS |
135 | { |
136 | struct type *type1, *type2; | |
137 | COERCE_NUMBER (arg1); | |
138 | COERCE_NUMBER (arg2); | |
139 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
140 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
141 | ||
142 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
143 | { | |
144 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
145 | { | |
146 | /* pointer - integer. */ | |
ca439ad2 JI |
147 | LONGEST sz = find_size_for_pointer_math (type1); |
148 | ||
dbbd9c57 | 149 | return value_from_pointer (type1, |
1aa20aa8 | 150 | (value_as_address (arg1) |
4478b372 | 151 | - (sz * value_as_long (arg2)))); |
c906108c SS |
152 | } |
153 | else if (TYPE_CODE (type2) == TYPE_CODE_PTR | |
3dd3139b MS |
154 | && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) |
155 | == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) | |
c906108c SS |
156 | { |
157 | /* pointer to <type x> - pointer to <type x>. */ | |
158 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
159 | return value_from_longest | |
c5aa993b | 160 | (builtin_type_long, /* FIXME -- should be ptrdiff_t */ |
c906108c SS |
161 | (value_as_long (arg1) - value_as_long (arg2)) / sz); |
162 | } | |
163 | else | |
164 | { | |
165 | error ("\ | |
166 | First argument of `-' is a pointer and second argument is neither\n\ | |
167 | an integer nor a pointer of the same type."); | |
168 | } | |
169 | } | |
170 | ||
171 | return value_binop (arg1, arg2, BINOP_SUB); | |
172 | } | |
173 | ||
174 | /* Return the value of ARRAY[IDX]. | |
175 | See comments in value_coerce_array() for rationale for reason for | |
176 | doing lower bounds adjustment here rather than there. | |
177 | FIXME: Perhaps we should validate that the index is valid and if | |
178 | verbosity is set, warn about invalid indices (but still use them). */ | |
179 | ||
f23631e4 AC |
180 | struct value * |
181 | value_subscript (struct value *array, struct value *idx) | |
c906108c | 182 | { |
f23631e4 | 183 | struct value *bound; |
c906108c SS |
184 | int c_style = current_language->c_style_arrays; |
185 | struct type *tarray; | |
186 | ||
187 | COERCE_REF (array); | |
188 | tarray = check_typedef (VALUE_TYPE (array)); | |
189 | COERCE_VARYING_ARRAY (array, tarray); | |
190 | ||
191 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
192 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
193 | { | |
194 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
195 | LONGEST lowerbound, upperbound; | |
196 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
197 | ||
198 | if (VALUE_LVAL (array) != lval_memory) | |
199 | return value_subscripted_rvalue (array, idx, lowerbound); | |
200 | ||
201 | if (c_style == 0) | |
202 | { | |
203 | LONGEST index = value_as_long (idx); | |
204 | if (index >= lowerbound && index <= upperbound) | |
205 | return value_subscripted_rvalue (array, idx, lowerbound); | |
206 | warning ("array or string index out of range"); | |
207 | /* fall doing C stuff */ | |
208 | c_style = 1; | |
209 | } | |
210 | ||
211 | if (lowerbound != 0) | |
212 | { | |
213 | bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); | |
214 | idx = value_sub (idx, bound); | |
215 | } | |
216 | ||
217 | array = value_coerce_array (array); | |
218 | } | |
219 | ||
220 | if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING) | |
221 | { | |
222 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
223 | LONGEST index = value_as_long (idx); | |
f23631e4 | 224 | struct value *v; |
c906108c SS |
225 | int offset, byte, bit_index; |
226 | LONGEST lowerbound, upperbound; | |
227 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
228 | if (index < lowerbound || index > upperbound) | |
229 | error ("bitstring index out of range"); | |
230 | index -= lowerbound; | |
231 | offset = index / TARGET_CHAR_BIT; | |
c5aa993b | 232 | byte = *((char *) VALUE_CONTENTS (array) + offset); |
c906108c SS |
233 | bit_index = index % TARGET_CHAR_BIT; |
234 | byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index); | |
235 | v = value_from_longest (LA_BOOL_TYPE, byte & 1); | |
236 | VALUE_BITPOS (v) = bit_index; | |
237 | VALUE_BITSIZE (v) = 1; | |
238 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
239 | if (VALUE_LVAL (array) == lval_internalvar) | |
240 | VALUE_LVAL (v) = lval_internalvar_component; | |
241 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
242 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (array); | |
243 | return v; | |
244 | } | |
245 | ||
246 | if (c_style) | |
247 | return value_ind (value_add (array, idx)); | |
248 | else | |
249 | error ("not an array or string"); | |
250 | } | |
251 | ||
252 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
253 | (eg, a vector register). This routine used to promote floats | |
254 | to doubles, but no longer does. */ | |
255 | ||
f23631e4 AC |
256 | static struct value * |
257 | value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound) | |
c906108c SS |
258 | { |
259 | struct type *array_type = check_typedef (VALUE_TYPE (array)); | |
260 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); | |
261 | unsigned int elt_size = TYPE_LENGTH (elt_type); | |
262 | LONGEST index = value_as_long (idx); | |
263 | unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound); | |
f23631e4 | 264 | struct value *v; |
c906108c SS |
265 | |
266 | if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type)) | |
267 | error ("no such vector element"); | |
268 | ||
269 | v = allocate_value (elt_type); | |
270 | if (VALUE_LAZY (array)) | |
271 | VALUE_LAZY (v) = 1; | |
272 | else | |
273 | memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size); | |
274 | ||
275 | if (VALUE_LVAL (array) == lval_internalvar) | |
276 | VALUE_LVAL (v) = lval_internalvar_component; | |
277 | else | |
278 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
279 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
f49bacc8 | 280 | VALUE_REGNO (v) = VALUE_REGNO (array); |
c906108c SS |
281 | VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs; |
282 | return v; | |
283 | } | |
284 | \f | |
285 | /* Check to see if either argument is a structure. This is called so | |
286 | we know whether to go ahead with the normal binop or look for a | |
287 | user defined function instead. | |
288 | ||
289 | For now, we do not overload the `=' operator. */ | |
290 | ||
291 | int | |
f23631e4 | 292 | binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2) |
c906108c SS |
293 | { |
294 | struct type *type1, *type2; | |
295 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) | |
296 | return 0; | |
297 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
298 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
299 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT | |
300 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT | |
301 | || (TYPE_CODE (type1) == TYPE_CODE_REF | |
302 | && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT) | |
303 | || (TYPE_CODE (type2) == TYPE_CODE_REF | |
304 | && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT)); | |
305 | } | |
306 | ||
307 | /* Check to see if argument is a structure. This is called so | |
308 | we know whether to go ahead with the normal unop or look for a | |
309 | user defined function instead. | |
310 | ||
311 | For now, we do not overload the `&' operator. */ | |
312 | ||
c5aa993b | 313 | int |
f23631e4 | 314 | unop_user_defined_p (enum exp_opcode op, struct value *arg1) |
c906108c SS |
315 | { |
316 | struct type *type1; | |
317 | if (op == UNOP_ADDR) | |
318 | return 0; | |
319 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
320 | for (;;) | |
321 | { | |
322 | if (TYPE_CODE (type1) == TYPE_CODE_STRUCT) | |
323 | return 1; | |
324 | else if (TYPE_CODE (type1) == TYPE_CODE_REF) | |
325 | type1 = TYPE_TARGET_TYPE (type1); | |
326 | else | |
327 | return 0; | |
328 | } | |
329 | } | |
330 | ||
331 | /* We know either arg1 or arg2 is a structure, so try to find the right | |
332 | user defined function. Create an argument vector that calls | |
333 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
334 | binary operator which is legal for GNU C++). | |
335 | ||
336 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
337 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
338 | unused. */ | |
339 | ||
f23631e4 AC |
340 | struct value * |
341 | value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, | |
fba45db2 | 342 | enum exp_opcode otherop, enum noside noside) |
c906108c | 343 | { |
f23631e4 | 344 | struct value **argvec; |
c906108c SS |
345 | char *ptr; |
346 | char tstr[13]; | |
347 | int static_memfuncp; | |
348 | ||
349 | COERCE_REF (arg1); | |
350 | COERCE_REF (arg2); | |
351 | COERCE_ENUM (arg1); | |
352 | COERCE_ENUM (arg2); | |
353 | ||
354 | /* now we know that what we have to do is construct our | |
355 | arg vector and find the right function to call it with. */ | |
356 | ||
357 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
c5aa993b | 358 | error ("Can't do that binary op on that type"); /* FIXME be explicit */ |
c906108c | 359 | |
f23631e4 | 360 | argvec = (struct value **) alloca (sizeof (struct value *) * 4); |
c906108c SS |
361 | argvec[1] = value_addr (arg1); |
362 | argvec[2] = arg2; | |
363 | argvec[3] = 0; | |
364 | ||
c5aa993b JM |
365 | /* make the right function name up */ |
366 | strcpy (tstr, "operator__"); | |
367 | ptr = tstr + 8; | |
c906108c SS |
368 | switch (op) |
369 | { | |
c5aa993b JM |
370 | case BINOP_ADD: |
371 | strcpy (ptr, "+"); | |
372 | break; | |
373 | case BINOP_SUB: | |
374 | strcpy (ptr, "-"); | |
375 | break; | |
376 | case BINOP_MUL: | |
377 | strcpy (ptr, "*"); | |
378 | break; | |
379 | case BINOP_DIV: | |
380 | strcpy (ptr, "/"); | |
381 | break; | |
382 | case BINOP_REM: | |
383 | strcpy (ptr, "%"); | |
384 | break; | |
385 | case BINOP_LSH: | |
386 | strcpy (ptr, "<<"); | |
387 | break; | |
388 | case BINOP_RSH: | |
389 | strcpy (ptr, ">>"); | |
390 | break; | |
391 | case BINOP_BITWISE_AND: | |
392 | strcpy (ptr, "&"); | |
393 | break; | |
394 | case BINOP_BITWISE_IOR: | |
395 | strcpy (ptr, "|"); | |
396 | break; | |
397 | case BINOP_BITWISE_XOR: | |
398 | strcpy (ptr, "^"); | |
399 | break; | |
400 | case BINOP_LOGICAL_AND: | |
401 | strcpy (ptr, "&&"); | |
402 | break; | |
403 | case BINOP_LOGICAL_OR: | |
404 | strcpy (ptr, "||"); | |
405 | break; | |
406 | case BINOP_MIN: | |
407 | strcpy (ptr, "<?"); | |
408 | break; | |
409 | case BINOP_MAX: | |
410 | strcpy (ptr, ">?"); | |
411 | break; | |
412 | case BINOP_ASSIGN: | |
413 | strcpy (ptr, "="); | |
414 | break; | |
415 | case BINOP_ASSIGN_MODIFY: | |
c906108c SS |
416 | switch (otherop) |
417 | { | |
c5aa993b JM |
418 | case BINOP_ADD: |
419 | strcpy (ptr, "+="); | |
420 | break; | |
421 | case BINOP_SUB: | |
422 | strcpy (ptr, "-="); | |
423 | break; | |
424 | case BINOP_MUL: | |
425 | strcpy (ptr, "*="); | |
426 | break; | |
427 | case BINOP_DIV: | |
428 | strcpy (ptr, "/="); | |
429 | break; | |
430 | case BINOP_REM: | |
431 | strcpy (ptr, "%="); | |
432 | break; | |
433 | case BINOP_BITWISE_AND: | |
434 | strcpy (ptr, "&="); | |
435 | break; | |
436 | case BINOP_BITWISE_IOR: | |
437 | strcpy (ptr, "|="); | |
438 | break; | |
439 | case BINOP_BITWISE_XOR: | |
440 | strcpy (ptr, "^="); | |
441 | break; | |
442 | case BINOP_MOD: /* invalid */ | |
c906108c SS |
443 | default: |
444 | error ("Invalid binary operation specified."); | |
445 | } | |
446 | break; | |
c5aa993b JM |
447 | case BINOP_SUBSCRIPT: |
448 | strcpy (ptr, "[]"); | |
449 | break; | |
450 | case BINOP_EQUAL: | |
451 | strcpy (ptr, "=="); | |
452 | break; | |
453 | case BINOP_NOTEQUAL: | |
454 | strcpy (ptr, "!="); | |
455 | break; | |
456 | case BINOP_LESS: | |
457 | strcpy (ptr, "<"); | |
458 | break; | |
459 | case BINOP_GTR: | |
460 | strcpy (ptr, ">"); | |
461 | break; | |
462 | case BINOP_GEQ: | |
463 | strcpy (ptr, ">="); | |
464 | break; | |
465 | case BINOP_LEQ: | |
466 | strcpy (ptr, "<="); | |
467 | break; | |
468 | case BINOP_MOD: /* invalid */ | |
c906108c SS |
469 | default: |
470 | error ("Invalid binary operation specified."); | |
471 | } | |
472 | ||
c5aa993b JM |
473 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
474 | ||
c906108c SS |
475 | if (argvec[0]) |
476 | { | |
477 | if (static_memfuncp) | |
478 | { | |
479 | argvec[1] = argvec[0]; | |
480 | argvec++; | |
481 | } | |
482 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
483 | { | |
484 | struct type *return_type; | |
485 | return_type | |
486 | = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0]))); | |
487 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
488 | } | |
489 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
490 | } | |
491 | error ("member function %s not found", tstr); | |
492 | #ifdef lint | |
493 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
494 | #endif | |
495 | } | |
496 | ||
497 | /* We know that arg1 is a structure, so try to find a unary user | |
498 | defined operator that matches the operator in question. | |
499 | Create an argument vector that calls arg1.operator @ (arg1) | |
500 | and return that value (where '@' is (almost) any unary operator which | |
501 | is legal for GNU C++). */ | |
502 | ||
f23631e4 AC |
503 | struct value * |
504 | value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) | |
c906108c | 505 | { |
f23631e4 | 506 | struct value **argvec; |
c906108c SS |
507 | char *ptr, *mangle_ptr; |
508 | char tstr[13], mangle_tstr[13]; | |
491b8946 | 509 | int static_memfuncp, nargs; |
c906108c SS |
510 | |
511 | COERCE_REF (arg1); | |
512 | COERCE_ENUM (arg1); | |
513 | ||
514 | /* now we know that what we have to do is construct our | |
515 | arg vector and find the right function to call it with. */ | |
516 | ||
517 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
c5aa993b | 518 | error ("Can't do that unary op on that type"); /* FIXME be explicit */ |
c906108c | 519 | |
491b8946 | 520 | argvec = (struct value **) alloca (sizeof (struct value *) * 4); |
c906108c SS |
521 | argvec[1] = value_addr (arg1); |
522 | argvec[2] = 0; | |
523 | ||
491b8946 DJ |
524 | nargs = 1; |
525 | ||
c5aa993b JM |
526 | /* make the right function name up */ |
527 | strcpy (tstr, "operator__"); | |
528 | ptr = tstr + 8; | |
529 | strcpy (mangle_tstr, "__"); | |
530 | mangle_ptr = mangle_tstr + 2; | |
c906108c SS |
531 | switch (op) |
532 | { | |
c5aa993b JM |
533 | case UNOP_PREINCREMENT: |
534 | strcpy (ptr, "++"); | |
535 | break; | |
536 | case UNOP_PREDECREMENT: | |
491b8946 | 537 | strcpy (ptr, "--"); |
c5aa993b JM |
538 | break; |
539 | case UNOP_POSTINCREMENT: | |
540 | strcpy (ptr, "++"); | |
491b8946 DJ |
541 | argvec[2] = value_from_longest (builtin_type_int, 0); |
542 | argvec[3] = 0; | |
543 | nargs ++; | |
c5aa993b JM |
544 | break; |
545 | case UNOP_POSTDECREMENT: | |
491b8946 DJ |
546 | strcpy (ptr, "--"); |
547 | argvec[2] = value_from_longest (builtin_type_int, 0); | |
548 | argvec[3] = 0; | |
549 | nargs ++; | |
c5aa993b JM |
550 | break; |
551 | case UNOP_LOGICAL_NOT: | |
552 | strcpy (ptr, "!"); | |
553 | break; | |
554 | case UNOP_COMPLEMENT: | |
555 | strcpy (ptr, "~"); | |
556 | break; | |
557 | case UNOP_NEG: | |
558 | strcpy (ptr, "-"); | |
559 | break; | |
560 | case UNOP_IND: | |
561 | strcpy (ptr, "*"); | |
562 | break; | |
c906108c SS |
563 | default: |
564 | error ("Invalid unary operation specified."); | |
565 | } | |
566 | ||
c5aa993b | 567 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
c906108c SS |
568 | |
569 | if (argvec[0]) | |
570 | { | |
571 | if (static_memfuncp) | |
572 | { | |
573 | argvec[1] = argvec[0]; | |
491b8946 | 574 | nargs --; |
c906108c SS |
575 | argvec++; |
576 | } | |
577 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
578 | { | |
579 | struct type *return_type; | |
580 | return_type | |
581 | = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0]))); | |
582 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
583 | } | |
491b8946 | 584 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c906108c SS |
585 | } |
586 | error ("member function %s not found", tstr); | |
c5aa993b | 587 | return 0; /* For lint -- never reached */ |
c906108c | 588 | } |
c906108c | 589 | \f |
c5aa993b | 590 | |
c906108c SS |
591 | /* Concatenate two values with the following conditions: |
592 | ||
c5aa993b JM |
593 | (1) Both values must be either bitstring values or character string |
594 | values and the resulting value consists of the concatenation of | |
595 | ARG1 followed by ARG2. | |
c906108c | 596 | |
c5aa993b | 597 | or |
c906108c | 598 | |
c5aa993b JM |
599 | One value must be an integer value and the other value must be |
600 | either a bitstring value or character string value, which is | |
601 | to be repeated by the number of times specified by the integer | |
602 | value. | |
c906108c SS |
603 | |
604 | ||
c5aa993b JM |
605 | (2) Boolean values are also allowed and are treated as bit string |
606 | values of length 1. | |
c906108c | 607 | |
c5aa993b JM |
608 | (3) Character values are also allowed and are treated as character |
609 | string values of length 1. | |
610 | */ | |
c906108c | 611 | |
f23631e4 AC |
612 | struct value * |
613 | value_concat (struct value *arg1, struct value *arg2) | |
c906108c | 614 | { |
f23631e4 AC |
615 | struct value *inval1; |
616 | struct value *inval2; | |
617 | struct value *outval = NULL; | |
c906108c SS |
618 | int inval1len, inval2len; |
619 | int count, idx; | |
620 | char *ptr; | |
621 | char inchar; | |
622 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); | |
623 | struct type *type2 = check_typedef (VALUE_TYPE (arg2)); | |
624 | ||
625 | COERCE_VARYING_ARRAY (arg1, type1); | |
626 | COERCE_VARYING_ARRAY (arg2, type2); | |
627 | ||
628 | /* First figure out if we are dealing with two values to be concatenated | |
629 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
630 | first of two concatenated values, or the repeat count. INVAL2 is set | |
631 | to the second of the two concatenated values or the value to be | |
632 | repeated. */ | |
633 | ||
634 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
635 | { | |
636 | struct type *tmp = type1; | |
637 | type1 = tmp; | |
638 | tmp = type2; | |
639 | inval1 = arg2; | |
640 | inval2 = arg1; | |
641 | } | |
642 | else | |
643 | { | |
644 | inval1 = arg1; | |
645 | inval2 = arg2; | |
646 | } | |
647 | ||
648 | /* Now process the input values. */ | |
649 | ||
650 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
651 | { | |
652 | /* We have a repeat count. Validate the second value and then | |
c5aa993b | 653 | construct a value repeated that many times. */ |
c906108c SS |
654 | if (TYPE_CODE (type2) == TYPE_CODE_STRING |
655 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
656 | { | |
657 | count = longest_to_int (value_as_long (inval1)); | |
658 | inval2len = TYPE_LENGTH (type2); | |
659 | ptr = (char *) alloca (count * inval2len); | |
660 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
661 | { | |
662 | inchar = (char) unpack_long (type2, | |
663 | VALUE_CONTENTS (inval2)); | |
664 | for (idx = 0; idx < count; idx++) | |
665 | { | |
666 | *(ptr + idx) = inchar; | |
667 | } | |
668 | } | |
669 | else | |
670 | { | |
671 | for (idx = 0; idx < count; idx++) | |
672 | { | |
673 | memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2), | |
674 | inval2len); | |
675 | } | |
676 | } | |
677 | outval = value_string (ptr, count * inval2len); | |
678 | } | |
679 | else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING | |
680 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
681 | { | |
682 | error ("unimplemented support for bitstring/boolean repeats"); | |
683 | } | |
684 | else | |
685 | { | |
686 | error ("can't repeat values of that type"); | |
687 | } | |
688 | } | |
689 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
c5aa993b | 690 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) |
c906108c SS |
691 | { |
692 | /* We have two character strings to concatenate. */ | |
693 | if (TYPE_CODE (type2) != TYPE_CODE_STRING | |
694 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
695 | { | |
696 | error ("Strings can only be concatenated with other strings."); | |
697 | } | |
698 | inval1len = TYPE_LENGTH (type1); | |
699 | inval2len = TYPE_LENGTH (type2); | |
700 | ptr = (char *) alloca (inval1len + inval2len); | |
701 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
702 | { | |
703 | *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1)); | |
704 | } | |
705 | else | |
706 | { | |
707 | memcpy (ptr, VALUE_CONTENTS (inval1), inval1len); | |
708 | } | |
709 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
710 | { | |
c5aa993b | 711 | *(ptr + inval1len) = |
c906108c SS |
712 | (char) unpack_long (type2, VALUE_CONTENTS (inval2)); |
713 | } | |
714 | else | |
715 | { | |
716 | memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len); | |
717 | } | |
718 | outval = value_string (ptr, inval1len + inval2len); | |
719 | } | |
720 | else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING | |
721 | || TYPE_CODE (type1) == TYPE_CODE_BOOL) | |
722 | { | |
723 | /* We have two bitstrings to concatenate. */ | |
724 | if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING | |
725 | && TYPE_CODE (type2) != TYPE_CODE_BOOL) | |
726 | { | |
727 | error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."); | |
728 | } | |
729 | error ("unimplemented support for bitstring/boolean concatenation."); | |
c5aa993b | 730 | } |
c906108c SS |
731 | else |
732 | { | |
733 | /* We don't know how to concatenate these operands. */ | |
734 | error ("illegal operands for concatenation."); | |
735 | } | |
736 | return (outval); | |
737 | } | |
c906108c SS |
738 | \f |
739 | ||
c5aa993b | 740 | |
c906108c SS |
741 | /* Perform a binary operation on two operands which have reasonable |
742 | representations as integers or floats. This includes booleans, | |
743 | characters, integers, or floats. | |
744 | Does not support addition and subtraction on pointers; | |
745 | use value_add or value_sub if you want to handle those possibilities. */ | |
746 | ||
f23631e4 AC |
747 | struct value * |
748 | value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
c906108c | 749 | { |
f23631e4 | 750 | struct value *val; |
c906108c SS |
751 | struct type *type1, *type2; |
752 | ||
753 | COERCE_REF (arg1); | |
754 | COERCE_REF (arg2); | |
755 | COERCE_ENUM (arg1); | |
756 | COERCE_ENUM (arg2); | |
757 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
758 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
759 | ||
760 | if ((TYPE_CODE (type1) != TYPE_CODE_FLT | |
761 | && TYPE_CODE (type1) != TYPE_CODE_CHAR | |
762 | && TYPE_CODE (type1) != TYPE_CODE_INT | |
763 | && TYPE_CODE (type1) != TYPE_CODE_BOOL | |
764 | && TYPE_CODE (type1) != TYPE_CODE_RANGE) | |
765 | || | |
766 | (TYPE_CODE (type2) != TYPE_CODE_FLT | |
767 | && TYPE_CODE (type2) != TYPE_CODE_CHAR | |
768 | && TYPE_CODE (type2) != TYPE_CODE_INT | |
769 | && TYPE_CODE (type2) != TYPE_CODE_BOOL | |
770 | && TYPE_CODE (type2) != TYPE_CODE_RANGE)) | |
771 | error ("Argument to arithmetic operation not a number or boolean."); | |
772 | ||
773 | if (TYPE_CODE (type1) == TYPE_CODE_FLT | |
774 | || | |
775 | TYPE_CODE (type2) == TYPE_CODE_FLT) | |
776 | { | |
777 | /* FIXME-if-picky-about-floating-accuracy: Should be doing this | |
c5aa993b JM |
778 | in target format. real.c in GCC probably has the necessary |
779 | code. */ | |
c4093a6a | 780 | DOUBLEST v1, v2, v = 0; |
c906108c SS |
781 | v1 = value_as_double (arg1); |
782 | v2 = value_as_double (arg2); | |
783 | switch (op) | |
784 | { | |
785 | case BINOP_ADD: | |
786 | v = v1 + v2; | |
787 | break; | |
788 | ||
789 | case BINOP_SUB: | |
790 | v = v1 - v2; | |
791 | break; | |
792 | ||
793 | case BINOP_MUL: | |
794 | v = v1 * v2; | |
795 | break; | |
796 | ||
797 | case BINOP_DIV: | |
798 | v = v1 / v2; | |
799 | break; | |
800 | ||
c4093a6a JM |
801 | case BINOP_EXP: |
802 | v = pow (v1, v2); | |
803 | if (errno) | |
dc672865 | 804 | error ("Cannot perform exponentiation: %s", safe_strerror (errno)); |
c4093a6a JM |
805 | break; |
806 | ||
c906108c SS |
807 | default: |
808 | error ("Integer-only operation on floating point number."); | |
809 | } | |
810 | ||
811 | /* If either arg was long double, make sure that value is also long | |
c5aa993b | 812 | double. */ |
c906108c | 813 | |
c5aa993b JM |
814 | if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT |
815 | || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT) | |
c906108c SS |
816 | val = allocate_value (builtin_type_long_double); |
817 | else | |
818 | val = allocate_value (builtin_type_double); | |
819 | ||
96d2f608 | 820 | store_typed_floating (VALUE_CONTENTS_RAW (val), VALUE_TYPE (val), v); |
c906108c SS |
821 | } |
822 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL | |
823 | && | |
824 | TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
c5aa993b | 825 | { |
c4093a6a | 826 | LONGEST v1, v2, v = 0; |
c5aa993b JM |
827 | v1 = value_as_long (arg1); |
828 | v2 = value_as_long (arg2); | |
829 | ||
830 | switch (op) | |
831 | { | |
832 | case BINOP_BITWISE_AND: | |
833 | v = v1 & v2; | |
834 | break; | |
835 | ||
836 | case BINOP_BITWISE_IOR: | |
837 | v = v1 | v2; | |
838 | break; | |
839 | ||
840 | case BINOP_BITWISE_XOR: | |
841 | v = v1 ^ v2; | |
c4093a6a JM |
842 | break; |
843 | ||
844 | case BINOP_EQUAL: | |
845 | v = v1 == v2; | |
846 | break; | |
847 | ||
848 | case BINOP_NOTEQUAL: | |
849 | v = v1 != v2; | |
c5aa993b JM |
850 | break; |
851 | ||
852 | default: | |
853 | error ("Invalid operation on booleans."); | |
854 | } | |
855 | ||
856 | val = allocate_value (type1); | |
857 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
858 | TYPE_LENGTH (type1), | |
859 | v); | |
860 | } | |
c906108c SS |
861 | else |
862 | /* Integral operations here. */ | |
863 | /* FIXME: Also mixed integral/booleans, with result an integer. */ | |
864 | /* FIXME: This implements ANSI C rules (also correct for C++). | |
1b831c93 | 865 | What about FORTRAN and (the deleted) chill ? */ |
c906108c SS |
866 | { |
867 | unsigned int promoted_len1 = TYPE_LENGTH (type1); | |
868 | unsigned int promoted_len2 = TYPE_LENGTH (type2); | |
869 | int is_unsigned1 = TYPE_UNSIGNED (type1); | |
870 | int is_unsigned2 = TYPE_UNSIGNED (type2); | |
871 | unsigned int result_len; | |
872 | int unsigned_operation; | |
873 | ||
874 | /* Determine type length and signedness after promotion for | |
c5aa993b | 875 | both operands. */ |
c906108c SS |
876 | if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) |
877 | { | |
878 | is_unsigned1 = 0; | |
879 | promoted_len1 = TYPE_LENGTH (builtin_type_int); | |
880 | } | |
881 | if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) | |
882 | { | |
883 | is_unsigned2 = 0; | |
884 | promoted_len2 = TYPE_LENGTH (builtin_type_int); | |
885 | } | |
886 | ||
887 | /* Determine type length of the result, and if the operation should | |
c5aa993b JM |
888 | be done unsigned. |
889 | Use the signedness of the operand with the greater length. | |
890 | If both operands are of equal length, use unsigned operation | |
891 | if one of the operands is unsigned. */ | |
c906108c SS |
892 | if (promoted_len1 > promoted_len2) |
893 | { | |
894 | unsigned_operation = is_unsigned1; | |
895 | result_len = promoted_len1; | |
896 | } | |
897 | else if (promoted_len2 > promoted_len1) | |
898 | { | |
899 | unsigned_operation = is_unsigned2; | |
900 | result_len = promoted_len2; | |
901 | } | |
902 | else | |
903 | { | |
904 | unsigned_operation = is_unsigned1 || is_unsigned2; | |
905 | result_len = promoted_len1; | |
906 | } | |
907 | ||
908 | if (unsigned_operation) | |
909 | { | |
c4093a6a | 910 | ULONGEST v1, v2, v = 0; |
c906108c SS |
911 | v1 = (ULONGEST) value_as_long (arg1); |
912 | v2 = (ULONGEST) value_as_long (arg2); | |
913 | ||
914 | /* Truncate values to the type length of the result. */ | |
915 | if (result_len < sizeof (ULONGEST)) | |
916 | { | |
917 | v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
918 | v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
919 | } | |
c5aa993b | 920 | |
c906108c SS |
921 | switch (op) |
922 | { | |
923 | case BINOP_ADD: | |
924 | v = v1 + v2; | |
925 | break; | |
c5aa993b | 926 | |
c906108c SS |
927 | case BINOP_SUB: |
928 | v = v1 - v2; | |
929 | break; | |
c5aa993b | 930 | |
c906108c SS |
931 | case BINOP_MUL: |
932 | v = v1 * v2; | |
933 | break; | |
c5aa993b | 934 | |
c906108c SS |
935 | case BINOP_DIV: |
936 | v = v1 / v2; | |
937 | break; | |
c5aa993b | 938 | |
c4093a6a JM |
939 | case BINOP_EXP: |
940 | v = pow (v1, v2); | |
941 | if (errno) | |
dc672865 | 942 | error ("Cannot perform exponentiation: %s", safe_strerror (errno)); |
c4093a6a JM |
943 | break; |
944 | ||
c906108c SS |
945 | case BINOP_REM: |
946 | v = v1 % v2; | |
947 | break; | |
c5aa993b | 948 | |
c906108c SS |
949 | case BINOP_MOD: |
950 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
951 | v1 mod 0 has a defined value, v1. */ | |
c906108c SS |
952 | if (v2 == 0) |
953 | { | |
954 | v = v1; | |
955 | } | |
956 | else | |
957 | { | |
c5aa993b | 958 | v = v1 / v2; |
c906108c SS |
959 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ |
960 | v = v1 - (v2 * v); | |
961 | } | |
962 | break; | |
c5aa993b | 963 | |
c906108c SS |
964 | case BINOP_LSH: |
965 | v = v1 << v2; | |
966 | break; | |
c5aa993b | 967 | |
c906108c SS |
968 | case BINOP_RSH: |
969 | v = v1 >> v2; | |
970 | break; | |
c5aa993b | 971 | |
c906108c SS |
972 | case BINOP_BITWISE_AND: |
973 | v = v1 & v2; | |
974 | break; | |
c5aa993b | 975 | |
c906108c SS |
976 | case BINOP_BITWISE_IOR: |
977 | v = v1 | v2; | |
978 | break; | |
c5aa993b | 979 | |
c906108c SS |
980 | case BINOP_BITWISE_XOR: |
981 | v = v1 ^ v2; | |
982 | break; | |
c5aa993b | 983 | |
c906108c SS |
984 | case BINOP_LOGICAL_AND: |
985 | v = v1 && v2; | |
986 | break; | |
c5aa993b | 987 | |
c906108c SS |
988 | case BINOP_LOGICAL_OR: |
989 | v = v1 || v2; | |
990 | break; | |
c5aa993b | 991 | |
c906108c SS |
992 | case BINOP_MIN: |
993 | v = v1 < v2 ? v1 : v2; | |
994 | break; | |
c5aa993b | 995 | |
c906108c SS |
996 | case BINOP_MAX: |
997 | v = v1 > v2 ? v1 : v2; | |
998 | break; | |
999 | ||
1000 | case BINOP_EQUAL: | |
1001 | v = v1 == v2; | |
1002 | break; | |
1003 | ||
c4093a6a JM |
1004 | case BINOP_NOTEQUAL: |
1005 | v = v1 != v2; | |
1006 | break; | |
1007 | ||
c906108c SS |
1008 | case BINOP_LESS: |
1009 | v = v1 < v2; | |
1010 | break; | |
c5aa993b | 1011 | |
c906108c SS |
1012 | default: |
1013 | error ("Invalid binary operation on numbers."); | |
1014 | } | |
1015 | ||
1016 | /* This is a kludge to get around the fact that we don't | |
1017 | know how to determine the result type from the types of | |
1018 | the operands. (I'm not really sure how much we feel the | |
1019 | need to duplicate the exact rules of the current | |
1020 | language. They can get really hairy. But not to do so | |
1021 | makes it hard to document just what we *do* do). */ | |
1022 | ||
1023 | /* Can't just call init_type because we wouldn't know what | |
1024 | name to give the type. */ | |
1025 | val = allocate_value | |
1026 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
1027 | ? builtin_type_unsigned_long_long | |
1028 | : builtin_type_unsigned_long); | |
1029 | store_unsigned_integer (VALUE_CONTENTS_RAW (val), | |
1030 | TYPE_LENGTH (VALUE_TYPE (val)), | |
1031 | v); | |
1032 | } | |
1033 | else | |
1034 | { | |
c4093a6a | 1035 | LONGEST v1, v2, v = 0; |
c906108c SS |
1036 | v1 = value_as_long (arg1); |
1037 | v2 = value_as_long (arg2); | |
c5aa993b | 1038 | |
c906108c SS |
1039 | switch (op) |
1040 | { | |
1041 | case BINOP_ADD: | |
1042 | v = v1 + v2; | |
1043 | break; | |
c5aa993b | 1044 | |
c906108c SS |
1045 | case BINOP_SUB: |
1046 | v = v1 - v2; | |
1047 | break; | |
c5aa993b | 1048 | |
c906108c SS |
1049 | case BINOP_MUL: |
1050 | v = v1 * v2; | |
1051 | break; | |
c5aa993b | 1052 | |
c906108c SS |
1053 | case BINOP_DIV: |
1054 | v = v1 / v2; | |
c4093a6a JM |
1055 | break; |
1056 | ||
1057 | case BINOP_EXP: | |
1058 | v = pow (v1, v2); | |
1059 | if (errno) | |
dc672865 | 1060 | error ("Cannot perform exponentiation: %s", safe_strerror (errno)); |
c906108c | 1061 | break; |
c5aa993b | 1062 | |
c906108c SS |
1063 | case BINOP_REM: |
1064 | v = v1 % v2; | |
1065 | break; | |
c5aa993b | 1066 | |
c906108c SS |
1067 | case BINOP_MOD: |
1068 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1069 | X mod 0 has a defined value, X. */ | |
c906108c SS |
1070 | if (v2 == 0) |
1071 | { | |
1072 | v = v1; | |
1073 | } | |
1074 | else | |
1075 | { | |
c5aa993b | 1076 | v = v1 / v2; |
c906108c SS |
1077 | /* Compute floor. */ |
1078 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) | |
1079 | { | |
1080 | v--; | |
1081 | } | |
1082 | v = v1 - (v2 * v); | |
1083 | } | |
1084 | break; | |
c5aa993b | 1085 | |
c906108c SS |
1086 | case BINOP_LSH: |
1087 | v = v1 << v2; | |
1088 | break; | |
c5aa993b | 1089 | |
c906108c SS |
1090 | case BINOP_RSH: |
1091 | v = v1 >> v2; | |
1092 | break; | |
c5aa993b | 1093 | |
c906108c SS |
1094 | case BINOP_BITWISE_AND: |
1095 | v = v1 & v2; | |
1096 | break; | |
c5aa993b | 1097 | |
c906108c SS |
1098 | case BINOP_BITWISE_IOR: |
1099 | v = v1 | v2; | |
1100 | break; | |
c5aa993b | 1101 | |
c906108c SS |
1102 | case BINOP_BITWISE_XOR: |
1103 | v = v1 ^ v2; | |
1104 | break; | |
c5aa993b | 1105 | |
c906108c SS |
1106 | case BINOP_LOGICAL_AND: |
1107 | v = v1 && v2; | |
1108 | break; | |
c5aa993b | 1109 | |
c906108c SS |
1110 | case BINOP_LOGICAL_OR: |
1111 | v = v1 || v2; | |
1112 | break; | |
c5aa993b | 1113 | |
c906108c SS |
1114 | case BINOP_MIN: |
1115 | v = v1 < v2 ? v1 : v2; | |
1116 | break; | |
c5aa993b | 1117 | |
c906108c SS |
1118 | case BINOP_MAX: |
1119 | v = v1 > v2 ? v1 : v2; | |
1120 | break; | |
1121 | ||
1122 | case BINOP_EQUAL: | |
1123 | v = v1 == v2; | |
1124 | break; | |
1125 | ||
1126 | case BINOP_LESS: | |
1127 | v = v1 < v2; | |
1128 | break; | |
c5aa993b | 1129 | |
c906108c SS |
1130 | default: |
1131 | error ("Invalid binary operation on numbers."); | |
1132 | } | |
1133 | ||
1134 | /* This is a kludge to get around the fact that we don't | |
1135 | know how to determine the result type from the types of | |
1136 | the operands. (I'm not really sure how much we feel the | |
1137 | need to duplicate the exact rules of the current | |
1138 | language. They can get really hairy. But not to do so | |
1139 | makes it hard to document just what we *do* do). */ | |
1140 | ||
1141 | /* Can't just call init_type because we wouldn't know what | |
1142 | name to give the type. */ | |
1143 | val = allocate_value | |
1144 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
1145 | ? builtin_type_long_long | |
1146 | : builtin_type_long); | |
1147 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
1148 | TYPE_LENGTH (VALUE_TYPE (val)), | |
1149 | v); | |
1150 | } | |
1151 | } | |
1152 | ||
1153 | return val; | |
1154 | } | |
1155 | \f | |
1156 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1157 | ||
1158 | int | |
f23631e4 | 1159 | value_logical_not (struct value *arg1) |
c906108c | 1160 | { |
52f0bd74 AC |
1161 | int len; |
1162 | char *p; | |
c906108c SS |
1163 | struct type *type1; |
1164 | ||
1165 | COERCE_NUMBER (arg1); | |
1166 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1167 | ||
1168 | if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
1169 | return 0 == value_as_double (arg1); | |
1170 | ||
1171 | len = TYPE_LENGTH (type1); | |
1172 | p = VALUE_CONTENTS (arg1); | |
1173 | ||
1174 | while (--len >= 0) | |
1175 | { | |
1176 | if (*p++) | |
1177 | break; | |
1178 | } | |
1179 | ||
1180 | return len < 0; | |
1181 | } | |
1182 | ||
c4093a6a JM |
1183 | /* Perform a comparison on two string values (whose content are not |
1184 | necessarily null terminated) based on their length */ | |
1185 | ||
1186 | static int | |
f23631e4 | 1187 | value_strcmp (struct value *arg1, struct value *arg2) |
c4093a6a JM |
1188 | { |
1189 | int len1 = TYPE_LENGTH (VALUE_TYPE (arg1)); | |
1190 | int len2 = TYPE_LENGTH (VALUE_TYPE (arg2)); | |
1191 | char *s1 = VALUE_CONTENTS (arg1); | |
1192 | char *s2 = VALUE_CONTENTS (arg2); | |
1193 | int i, len = len1 < len2 ? len1 : len2; | |
1194 | ||
1195 | for (i = 0; i < len; i++) | |
1196 | { | |
1197 | if (s1[i] < s2[i]) | |
1198 | return -1; | |
1199 | else if (s1[i] > s2[i]) | |
1200 | return 1; | |
1201 | else | |
1202 | continue; | |
1203 | } | |
1204 | ||
1205 | if (len1 < len2) | |
1206 | return -1; | |
1207 | else if (len1 > len2) | |
1208 | return 1; | |
1209 | else | |
1210 | return 0; | |
1211 | } | |
1212 | ||
c906108c SS |
1213 | /* Simulate the C operator == by returning a 1 |
1214 | iff ARG1 and ARG2 have equal contents. */ | |
1215 | ||
1216 | int | |
f23631e4 | 1217 | value_equal (struct value *arg1, struct value *arg2) |
c906108c | 1218 | { |
52f0bd74 AC |
1219 | int len; |
1220 | char *p1, *p2; | |
c906108c SS |
1221 | struct type *type1, *type2; |
1222 | enum type_code code1; | |
1223 | enum type_code code2; | |
1224 | ||
1225 | COERCE_NUMBER (arg1); | |
1226 | COERCE_NUMBER (arg2); | |
1227 | ||
1228 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1229 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1230 | code1 = TYPE_CODE (type1); | |
1231 | code2 = TYPE_CODE (type2); | |
1232 | ||
1233 | if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) && | |
1234 | (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1235 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1236 | BINOP_EQUAL))); | |
1237 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) | |
1238 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1239 | return value_as_double (arg1) == value_as_double (arg2); | |
1240 | ||
1241 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1242 | is bigger. */ | |
1243 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1aa20aa8 | 1244 | return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); |
c906108c | 1245 | else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)) |
1aa20aa8 | 1246 | return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); |
c906108c SS |
1247 | |
1248 | else if (code1 == code2 | |
1249 | && ((len = (int) TYPE_LENGTH (type1)) | |
1250 | == (int) TYPE_LENGTH (type2))) | |
1251 | { | |
1252 | p1 = VALUE_CONTENTS (arg1); | |
1253 | p2 = VALUE_CONTENTS (arg2); | |
1254 | while (--len >= 0) | |
1255 | { | |
1256 | if (*p1++ != *p2++) | |
1257 | break; | |
1258 | } | |
1259 | return len < 0; | |
1260 | } | |
c4093a6a JM |
1261 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1262 | { | |
1263 | return value_strcmp (arg1, arg2) == 0; | |
1264 | } | |
c906108c SS |
1265 | else |
1266 | { | |
1267 | error ("Invalid type combination in equality test."); | |
c5aa993b | 1268 | return 0; /* For lint -- never reached */ |
c906108c SS |
1269 | } |
1270 | } | |
1271 | ||
1272 | /* Simulate the C operator < by returning 1 | |
1273 | iff ARG1's contents are less than ARG2's. */ | |
1274 | ||
1275 | int | |
f23631e4 | 1276 | value_less (struct value *arg1, struct value *arg2) |
c906108c | 1277 | { |
52f0bd74 AC |
1278 | enum type_code code1; |
1279 | enum type_code code2; | |
c906108c SS |
1280 | struct type *type1, *type2; |
1281 | ||
1282 | COERCE_NUMBER (arg1); | |
1283 | COERCE_NUMBER (arg2); | |
1284 | ||
1285 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1286 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1287 | code1 = TYPE_CODE (type1); | |
1288 | code2 = TYPE_CODE (type2); | |
1289 | ||
1290 | if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) && | |
1291 | (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1292 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1293 | BINOP_LESS))); | |
1294 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) | |
1295 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1296 | return value_as_double (arg1) < value_as_double (arg2); | |
1297 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
1aa20aa8 | 1298 | return value_as_address (arg1) < value_as_address (arg2); |
c906108c SS |
1299 | |
1300 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1301 | is bigger. */ | |
1302 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1aa20aa8 | 1303 | return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); |
c906108c | 1304 | else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)) |
1aa20aa8 | 1305 | return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); |
c4093a6a JM |
1306 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1307 | return value_strcmp (arg1, arg2) < 0; | |
c906108c SS |
1308 | else |
1309 | { | |
1310 | error ("Invalid type combination in ordering comparison."); | |
1311 | return 0; | |
1312 | } | |
1313 | } | |
1314 | \f | |
1315 | /* The unary operators - and ~. Both free the argument ARG1. */ | |
1316 | ||
f23631e4 AC |
1317 | struct value * |
1318 | value_neg (struct value *arg1) | |
c906108c | 1319 | { |
52f0bd74 AC |
1320 | struct type *type; |
1321 | struct type *result_type = VALUE_TYPE (arg1); | |
c906108c SS |
1322 | |
1323 | COERCE_REF (arg1); | |
1324 | COERCE_ENUM (arg1); | |
1325 | ||
1326 | type = check_typedef (VALUE_TYPE (arg1)); | |
1327 | ||
1328 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
c5aa993b | 1329 | return value_from_double (result_type, -value_as_double (arg1)); |
c906108c SS |
1330 | else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL) |
1331 | { | |
db034ac5 | 1332 | /* Perform integral promotion for ANSI C/C++. FIXME: What about |
1b831c93 | 1333 | FORTRAN and (the deleted) chill ? */ |
c906108c SS |
1334 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1335 | result_type = builtin_type_int; | |
1336 | ||
c5aa993b JM |
1337 | return value_from_longest (result_type, -value_as_long (arg1)); |
1338 | } | |
1339 | else | |
1340 | { | |
1341 | error ("Argument to negate operation not a number."); | |
1342 | return 0; /* For lint -- never reached */ | |
c906108c | 1343 | } |
c906108c SS |
1344 | } |
1345 | ||
f23631e4 AC |
1346 | struct value * |
1347 | value_complement (struct value *arg1) | |
c906108c | 1348 | { |
52f0bd74 AC |
1349 | struct type *type; |
1350 | struct type *result_type = VALUE_TYPE (arg1); | |
c5aa993b | 1351 | int typecode; |
c906108c SS |
1352 | |
1353 | COERCE_REF (arg1); | |
1354 | COERCE_ENUM (arg1); | |
1355 | ||
1356 | type = check_typedef (VALUE_TYPE (arg1)); | |
1357 | ||
1358 | typecode = TYPE_CODE (type); | |
1359 | if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL)) | |
1360 | error ("Argument to complement operation not an integer or boolean."); | |
1361 | ||
1362 | /* Perform integral promotion for ANSI C/C++. | |
1363 | FIXME: What about FORTRAN ? */ | |
1364 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1365 | result_type = builtin_type_int; | |
1366 | ||
c5aa993b | 1367 | return value_from_longest (result_type, ~value_as_long (arg1)); |
c906108c SS |
1368 | } |
1369 | \f | |
1370 | /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE, | |
1371 | and whose VALUE_CONTENTS is valaddr. | |
1372 | Return -1 if out of range, -2 other error. */ | |
1373 | ||
1374 | int | |
fba45db2 | 1375 | value_bit_index (struct type *type, char *valaddr, int index) |
c906108c SS |
1376 | { |
1377 | LONGEST low_bound, high_bound; | |
1378 | LONGEST word; | |
1379 | unsigned rel_index; | |
1380 | struct type *range = TYPE_FIELD_TYPE (type, 0); | |
1381 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) | |
1382 | return -2; | |
1383 | if (index < low_bound || index > high_bound) | |
1384 | return -1; | |
1385 | rel_index = index - low_bound; | |
1386 | word = unpack_long (builtin_type_unsigned_char, | |
1387 | valaddr + (rel_index / TARGET_CHAR_BIT)); | |
1388 | rel_index %= TARGET_CHAR_BIT; | |
1389 | if (BITS_BIG_ENDIAN) | |
1390 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; | |
1391 | return (word >> rel_index) & 1; | |
1392 | } | |
1393 | ||
f23631e4 AC |
1394 | struct value * |
1395 | value_in (struct value *element, struct value *set) | |
c906108c SS |
1396 | { |
1397 | int member; | |
1398 | struct type *settype = check_typedef (VALUE_TYPE (set)); | |
1399 | struct type *eltype = check_typedef (VALUE_TYPE (element)); | |
1400 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) | |
1401 | eltype = TYPE_TARGET_TYPE (eltype); | |
1402 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
1403 | error ("Second argument of 'IN' has wrong type"); | |
1404 | if (TYPE_CODE (eltype) != TYPE_CODE_INT | |
1405 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1406 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1407 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
1408 | error ("First argument of 'IN' has wrong type"); | |
1409 | member = value_bit_index (settype, VALUE_CONTENTS (set), | |
1410 | value_as_long (element)); | |
1411 | if (member < 0) | |
1412 | error ("First argument of 'IN' not in range"); | |
1413 | return value_from_longest (LA_BOOL_TYPE, member); | |
1414 | } | |
1415 | ||
1416 | void | |
fba45db2 | 1417 | _initialize_valarith (void) |
c906108c SS |
1418 | { |
1419 | } |