Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform arithmetic and other operations on values, for GDB. |
b6ba6518 KB |
2 | Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
3 | 1997, 1998, 1999, 2000 | |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "value.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "expression.h" | |
28 | #include "target.h" | |
29 | #include "language.h" | |
c906108c | 30 | #include "gdb_string.h" |
d16aafd8 | 31 | #include "doublest.h" |
c4093a6a | 32 | #include <math.h> |
c906108c SS |
33 | |
34 | /* Define whether or not the C operator '/' truncates towards zero for | |
35 | differently signed operands (truncation direction is undefined in C). */ | |
36 | ||
37 | #ifndef TRUNCATION_TOWARDS_ZERO | |
38 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
39 | #endif | |
40 | ||
a14ed312 | 41 | static value_ptr value_subscripted_rvalue (value_ptr, value_ptr, int); |
c906108c | 42 | |
a14ed312 | 43 | void _initialize_valarith (void); |
c906108c | 44 | \f |
c5aa993b | 45 | |
c906108c | 46 | value_ptr |
fba45db2 | 47 | value_add (value_ptr arg1, value_ptr arg2) |
c906108c SS |
48 | { |
49 | register value_ptr valint, valptr; | |
50 | register int len; | |
51 | struct type *type1, *type2, *valptrtype; | |
52 | ||
53 | COERCE_NUMBER (arg1); | |
54 | COERCE_NUMBER (arg2); | |
55 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
56 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
57 | ||
58 | if ((TYPE_CODE (type1) == TYPE_CODE_PTR | |
59 | || TYPE_CODE (type2) == TYPE_CODE_PTR) | |
60 | && | |
61 | (TYPE_CODE (type1) == TYPE_CODE_INT | |
62 | || TYPE_CODE (type2) == TYPE_CODE_INT)) | |
63 | /* Exactly one argument is a pointer, and one is an integer. */ | |
64 | { | |
65 | value_ptr retval; | |
66 | ||
67 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
68 | { | |
69 | valptr = arg1; | |
70 | valint = arg2; | |
71 | valptrtype = type1; | |
72 | } | |
73 | else | |
74 | { | |
75 | valptr = arg2; | |
76 | valint = arg1; | |
77 | valptrtype = type2; | |
78 | } | |
79 | len = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (valptrtype))); | |
80 | if (len == 0) | |
81 | len = 1; /* For (void *) */ | |
4478b372 JB |
82 | retval = value_from_pointer (valptrtype, |
83 | value_as_pointer (valptr) | |
c906108c SS |
84 | + (len * value_as_long (valint))); |
85 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr); | |
86 | return retval; | |
87 | } | |
88 | ||
89 | return value_binop (arg1, arg2, BINOP_ADD); | |
90 | } | |
91 | ||
92 | value_ptr | |
fba45db2 | 93 | value_sub (value_ptr arg1, value_ptr arg2) |
c906108c SS |
94 | { |
95 | struct type *type1, *type2; | |
96 | COERCE_NUMBER (arg1); | |
97 | COERCE_NUMBER (arg2); | |
98 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
99 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
100 | ||
101 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
102 | { | |
103 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
104 | { | |
105 | /* pointer - integer. */ | |
106 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
4478b372 JB |
107 | return value_from_pointer (VALUE_TYPE (arg1), |
108 | (value_as_pointer (arg1) | |
109 | - (sz * value_as_long (arg2)))); | |
c906108c SS |
110 | } |
111 | else if (TYPE_CODE (type2) == TYPE_CODE_PTR | |
3dd3139b MS |
112 | && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) |
113 | == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) | |
c906108c SS |
114 | { |
115 | /* pointer to <type x> - pointer to <type x>. */ | |
116 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
117 | return value_from_longest | |
c5aa993b | 118 | (builtin_type_long, /* FIXME -- should be ptrdiff_t */ |
c906108c SS |
119 | (value_as_long (arg1) - value_as_long (arg2)) / sz); |
120 | } | |
121 | else | |
122 | { | |
123 | error ("\ | |
124 | First argument of `-' is a pointer and second argument is neither\n\ | |
125 | an integer nor a pointer of the same type."); | |
126 | } | |
127 | } | |
128 | ||
129 | return value_binop (arg1, arg2, BINOP_SUB); | |
130 | } | |
131 | ||
132 | /* Return the value of ARRAY[IDX]. | |
133 | See comments in value_coerce_array() for rationale for reason for | |
134 | doing lower bounds adjustment here rather than there. | |
135 | FIXME: Perhaps we should validate that the index is valid and if | |
136 | verbosity is set, warn about invalid indices (but still use them). */ | |
137 | ||
138 | value_ptr | |
fba45db2 | 139 | value_subscript (value_ptr array, value_ptr idx) |
c906108c SS |
140 | { |
141 | value_ptr bound; | |
142 | int c_style = current_language->c_style_arrays; | |
143 | struct type *tarray; | |
144 | ||
145 | COERCE_REF (array); | |
146 | tarray = check_typedef (VALUE_TYPE (array)); | |
147 | COERCE_VARYING_ARRAY (array, tarray); | |
148 | ||
149 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
150 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
151 | { | |
152 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
153 | LONGEST lowerbound, upperbound; | |
154 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
155 | ||
156 | if (VALUE_LVAL (array) != lval_memory) | |
157 | return value_subscripted_rvalue (array, idx, lowerbound); | |
158 | ||
159 | if (c_style == 0) | |
160 | { | |
161 | LONGEST index = value_as_long (idx); | |
162 | if (index >= lowerbound && index <= upperbound) | |
163 | return value_subscripted_rvalue (array, idx, lowerbound); | |
164 | warning ("array or string index out of range"); | |
165 | /* fall doing C stuff */ | |
166 | c_style = 1; | |
167 | } | |
168 | ||
169 | if (lowerbound != 0) | |
170 | { | |
171 | bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); | |
172 | idx = value_sub (idx, bound); | |
173 | } | |
174 | ||
175 | array = value_coerce_array (array); | |
176 | } | |
177 | ||
178 | if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING) | |
179 | { | |
180 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
181 | LONGEST index = value_as_long (idx); | |
182 | value_ptr v; | |
183 | int offset, byte, bit_index; | |
184 | LONGEST lowerbound, upperbound; | |
185 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
186 | if (index < lowerbound || index > upperbound) | |
187 | error ("bitstring index out of range"); | |
188 | index -= lowerbound; | |
189 | offset = index / TARGET_CHAR_BIT; | |
c5aa993b | 190 | byte = *((char *) VALUE_CONTENTS (array) + offset); |
c906108c SS |
191 | bit_index = index % TARGET_CHAR_BIT; |
192 | byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index); | |
193 | v = value_from_longest (LA_BOOL_TYPE, byte & 1); | |
194 | VALUE_BITPOS (v) = bit_index; | |
195 | VALUE_BITSIZE (v) = 1; | |
196 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
197 | if (VALUE_LVAL (array) == lval_internalvar) | |
198 | VALUE_LVAL (v) = lval_internalvar_component; | |
199 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
200 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (array); | |
201 | return v; | |
202 | } | |
203 | ||
204 | if (c_style) | |
205 | return value_ind (value_add (array, idx)); | |
206 | else | |
207 | error ("not an array or string"); | |
208 | } | |
209 | ||
210 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
211 | (eg, a vector register). This routine used to promote floats | |
212 | to doubles, but no longer does. */ | |
213 | ||
214 | static value_ptr | |
fba45db2 | 215 | value_subscripted_rvalue (value_ptr array, value_ptr idx, int lowerbound) |
c906108c SS |
216 | { |
217 | struct type *array_type = check_typedef (VALUE_TYPE (array)); | |
218 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); | |
219 | unsigned int elt_size = TYPE_LENGTH (elt_type); | |
220 | LONGEST index = value_as_long (idx); | |
221 | unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound); | |
222 | value_ptr v; | |
223 | ||
224 | if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type)) | |
225 | error ("no such vector element"); | |
226 | ||
227 | v = allocate_value (elt_type); | |
228 | if (VALUE_LAZY (array)) | |
229 | VALUE_LAZY (v) = 1; | |
230 | else | |
231 | memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size); | |
232 | ||
233 | if (VALUE_LVAL (array) == lval_internalvar) | |
234 | VALUE_LVAL (v) = lval_internalvar_component; | |
235 | else | |
236 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
237 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
238 | VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs; | |
239 | return v; | |
240 | } | |
241 | \f | |
242 | /* Check to see if either argument is a structure. This is called so | |
243 | we know whether to go ahead with the normal binop or look for a | |
244 | user defined function instead. | |
245 | ||
246 | For now, we do not overload the `=' operator. */ | |
247 | ||
248 | int | |
fba45db2 | 249 | binop_user_defined_p (enum exp_opcode op, value_ptr arg1, value_ptr arg2) |
c906108c SS |
250 | { |
251 | struct type *type1, *type2; | |
252 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) | |
253 | return 0; | |
254 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
255 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
256 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT | |
257 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT | |
258 | || (TYPE_CODE (type1) == TYPE_CODE_REF | |
259 | && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT) | |
260 | || (TYPE_CODE (type2) == TYPE_CODE_REF | |
261 | && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT)); | |
262 | } | |
263 | ||
264 | /* Check to see if argument is a structure. This is called so | |
265 | we know whether to go ahead with the normal unop or look for a | |
266 | user defined function instead. | |
267 | ||
268 | For now, we do not overload the `&' operator. */ | |
269 | ||
c5aa993b | 270 | int |
fba45db2 | 271 | unop_user_defined_p (enum exp_opcode op, value_ptr arg1) |
c906108c SS |
272 | { |
273 | struct type *type1; | |
274 | if (op == UNOP_ADDR) | |
275 | return 0; | |
276 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
277 | for (;;) | |
278 | { | |
279 | if (TYPE_CODE (type1) == TYPE_CODE_STRUCT) | |
280 | return 1; | |
281 | else if (TYPE_CODE (type1) == TYPE_CODE_REF) | |
282 | type1 = TYPE_TARGET_TYPE (type1); | |
283 | else | |
284 | return 0; | |
285 | } | |
286 | } | |
287 | ||
288 | /* We know either arg1 or arg2 is a structure, so try to find the right | |
289 | user defined function. Create an argument vector that calls | |
290 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
291 | binary operator which is legal for GNU C++). | |
292 | ||
293 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
294 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
295 | unused. */ | |
296 | ||
297 | value_ptr | |
fba45db2 KB |
298 | value_x_binop (value_ptr arg1, value_ptr arg2, enum exp_opcode op, |
299 | enum exp_opcode otherop, enum noside noside) | |
c906108c | 300 | { |
c5aa993b | 301 | value_ptr *argvec; |
c906108c SS |
302 | char *ptr; |
303 | char tstr[13]; | |
304 | int static_memfuncp; | |
305 | ||
306 | COERCE_REF (arg1); | |
307 | COERCE_REF (arg2); | |
308 | COERCE_ENUM (arg1); | |
309 | COERCE_ENUM (arg2); | |
310 | ||
311 | /* now we know that what we have to do is construct our | |
312 | arg vector and find the right function to call it with. */ | |
313 | ||
314 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
c5aa993b | 315 | error ("Can't do that binary op on that type"); /* FIXME be explicit */ |
c906108c SS |
316 | |
317 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4); | |
318 | argvec[1] = value_addr (arg1); | |
319 | argvec[2] = arg2; | |
320 | argvec[3] = 0; | |
321 | ||
c5aa993b JM |
322 | /* make the right function name up */ |
323 | strcpy (tstr, "operator__"); | |
324 | ptr = tstr + 8; | |
c906108c SS |
325 | switch (op) |
326 | { | |
c5aa993b JM |
327 | case BINOP_ADD: |
328 | strcpy (ptr, "+"); | |
329 | break; | |
330 | case BINOP_SUB: | |
331 | strcpy (ptr, "-"); | |
332 | break; | |
333 | case BINOP_MUL: | |
334 | strcpy (ptr, "*"); | |
335 | break; | |
336 | case BINOP_DIV: | |
337 | strcpy (ptr, "/"); | |
338 | break; | |
339 | case BINOP_REM: | |
340 | strcpy (ptr, "%"); | |
341 | break; | |
342 | case BINOP_LSH: | |
343 | strcpy (ptr, "<<"); | |
344 | break; | |
345 | case BINOP_RSH: | |
346 | strcpy (ptr, ">>"); | |
347 | break; | |
348 | case BINOP_BITWISE_AND: | |
349 | strcpy (ptr, "&"); | |
350 | break; | |
351 | case BINOP_BITWISE_IOR: | |
352 | strcpy (ptr, "|"); | |
353 | break; | |
354 | case BINOP_BITWISE_XOR: | |
355 | strcpy (ptr, "^"); | |
356 | break; | |
357 | case BINOP_LOGICAL_AND: | |
358 | strcpy (ptr, "&&"); | |
359 | break; | |
360 | case BINOP_LOGICAL_OR: | |
361 | strcpy (ptr, "||"); | |
362 | break; | |
363 | case BINOP_MIN: | |
364 | strcpy (ptr, "<?"); | |
365 | break; | |
366 | case BINOP_MAX: | |
367 | strcpy (ptr, ">?"); | |
368 | break; | |
369 | case BINOP_ASSIGN: | |
370 | strcpy (ptr, "="); | |
371 | break; | |
372 | case BINOP_ASSIGN_MODIFY: | |
c906108c SS |
373 | switch (otherop) |
374 | { | |
c5aa993b JM |
375 | case BINOP_ADD: |
376 | strcpy (ptr, "+="); | |
377 | break; | |
378 | case BINOP_SUB: | |
379 | strcpy (ptr, "-="); | |
380 | break; | |
381 | case BINOP_MUL: | |
382 | strcpy (ptr, "*="); | |
383 | break; | |
384 | case BINOP_DIV: | |
385 | strcpy (ptr, "/="); | |
386 | break; | |
387 | case BINOP_REM: | |
388 | strcpy (ptr, "%="); | |
389 | break; | |
390 | case BINOP_BITWISE_AND: | |
391 | strcpy (ptr, "&="); | |
392 | break; | |
393 | case BINOP_BITWISE_IOR: | |
394 | strcpy (ptr, "|="); | |
395 | break; | |
396 | case BINOP_BITWISE_XOR: | |
397 | strcpy (ptr, "^="); | |
398 | break; | |
399 | case BINOP_MOD: /* invalid */ | |
c906108c SS |
400 | default: |
401 | error ("Invalid binary operation specified."); | |
402 | } | |
403 | break; | |
c5aa993b JM |
404 | case BINOP_SUBSCRIPT: |
405 | strcpy (ptr, "[]"); | |
406 | break; | |
407 | case BINOP_EQUAL: | |
408 | strcpy (ptr, "=="); | |
409 | break; | |
410 | case BINOP_NOTEQUAL: | |
411 | strcpy (ptr, "!="); | |
412 | break; | |
413 | case BINOP_LESS: | |
414 | strcpy (ptr, "<"); | |
415 | break; | |
416 | case BINOP_GTR: | |
417 | strcpy (ptr, ">"); | |
418 | break; | |
419 | case BINOP_GEQ: | |
420 | strcpy (ptr, ">="); | |
421 | break; | |
422 | case BINOP_LEQ: | |
423 | strcpy (ptr, "<="); | |
424 | break; | |
425 | case BINOP_MOD: /* invalid */ | |
c906108c SS |
426 | default: |
427 | error ("Invalid binary operation specified."); | |
428 | } | |
429 | ||
c5aa993b JM |
430 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
431 | ||
c906108c SS |
432 | if (argvec[0]) |
433 | { | |
434 | if (static_memfuncp) | |
435 | { | |
436 | argvec[1] = argvec[0]; | |
437 | argvec++; | |
438 | } | |
439 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
440 | { | |
441 | struct type *return_type; | |
442 | return_type | |
443 | = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0]))); | |
444 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
445 | } | |
446 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
447 | } | |
448 | error ("member function %s not found", tstr); | |
449 | #ifdef lint | |
450 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
451 | #endif | |
452 | } | |
453 | ||
454 | /* We know that arg1 is a structure, so try to find a unary user | |
455 | defined operator that matches the operator in question. | |
456 | Create an argument vector that calls arg1.operator @ (arg1) | |
457 | and return that value (where '@' is (almost) any unary operator which | |
458 | is legal for GNU C++). */ | |
459 | ||
460 | value_ptr | |
fba45db2 | 461 | value_x_unop (value_ptr arg1, enum exp_opcode op, enum noside noside) |
c906108c | 462 | { |
c5aa993b | 463 | value_ptr *argvec; |
c906108c SS |
464 | char *ptr, *mangle_ptr; |
465 | char tstr[13], mangle_tstr[13]; | |
466 | int static_memfuncp; | |
467 | ||
468 | COERCE_REF (arg1); | |
469 | COERCE_ENUM (arg1); | |
470 | ||
471 | /* now we know that what we have to do is construct our | |
472 | arg vector and find the right function to call it with. */ | |
473 | ||
474 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
c5aa993b | 475 | error ("Can't do that unary op on that type"); /* FIXME be explicit */ |
c906108c SS |
476 | |
477 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3); | |
478 | argvec[1] = value_addr (arg1); | |
479 | argvec[2] = 0; | |
480 | ||
c5aa993b JM |
481 | /* make the right function name up */ |
482 | strcpy (tstr, "operator__"); | |
483 | ptr = tstr + 8; | |
484 | strcpy (mangle_tstr, "__"); | |
485 | mangle_ptr = mangle_tstr + 2; | |
c906108c SS |
486 | switch (op) |
487 | { | |
c5aa993b JM |
488 | case UNOP_PREINCREMENT: |
489 | strcpy (ptr, "++"); | |
490 | break; | |
491 | case UNOP_PREDECREMENT: | |
492 | strcpy (ptr, "++"); | |
493 | break; | |
494 | case UNOP_POSTINCREMENT: | |
495 | strcpy (ptr, "++"); | |
496 | break; | |
497 | case UNOP_POSTDECREMENT: | |
498 | strcpy (ptr, "++"); | |
499 | break; | |
500 | case UNOP_LOGICAL_NOT: | |
501 | strcpy (ptr, "!"); | |
502 | break; | |
503 | case UNOP_COMPLEMENT: | |
504 | strcpy (ptr, "~"); | |
505 | break; | |
506 | case UNOP_NEG: | |
507 | strcpy (ptr, "-"); | |
508 | break; | |
509 | case UNOP_IND: | |
510 | strcpy (ptr, "*"); | |
511 | break; | |
c906108c SS |
512 | default: |
513 | error ("Invalid unary operation specified."); | |
514 | } | |
515 | ||
c5aa993b | 516 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
c906108c SS |
517 | |
518 | if (argvec[0]) | |
519 | { | |
520 | if (static_memfuncp) | |
521 | { | |
522 | argvec[1] = argvec[0]; | |
523 | argvec++; | |
524 | } | |
525 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
526 | { | |
527 | struct type *return_type; | |
528 | return_type | |
529 | = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0]))); | |
530 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
531 | } | |
532 | return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1); | |
533 | } | |
534 | error ("member function %s not found", tstr); | |
c5aa993b | 535 | return 0; /* For lint -- never reached */ |
c906108c | 536 | } |
c906108c | 537 | \f |
c5aa993b | 538 | |
c906108c SS |
539 | /* Concatenate two values with the following conditions: |
540 | ||
c5aa993b JM |
541 | (1) Both values must be either bitstring values or character string |
542 | values and the resulting value consists of the concatenation of | |
543 | ARG1 followed by ARG2. | |
c906108c | 544 | |
c5aa993b | 545 | or |
c906108c | 546 | |
c5aa993b JM |
547 | One value must be an integer value and the other value must be |
548 | either a bitstring value or character string value, which is | |
549 | to be repeated by the number of times specified by the integer | |
550 | value. | |
c906108c SS |
551 | |
552 | ||
c5aa993b JM |
553 | (2) Boolean values are also allowed and are treated as bit string |
554 | values of length 1. | |
c906108c | 555 | |
c5aa993b JM |
556 | (3) Character values are also allowed and are treated as character |
557 | string values of length 1. | |
558 | */ | |
c906108c SS |
559 | |
560 | value_ptr | |
fba45db2 | 561 | value_concat (value_ptr arg1, value_ptr arg2) |
c906108c | 562 | { |
c4093a6a | 563 | register value_ptr inval1, inval2, outval = NULL; |
c906108c SS |
564 | int inval1len, inval2len; |
565 | int count, idx; | |
566 | char *ptr; | |
567 | char inchar; | |
568 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); | |
569 | struct type *type2 = check_typedef (VALUE_TYPE (arg2)); | |
570 | ||
571 | COERCE_VARYING_ARRAY (arg1, type1); | |
572 | COERCE_VARYING_ARRAY (arg2, type2); | |
573 | ||
574 | /* First figure out if we are dealing with two values to be concatenated | |
575 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
576 | first of two concatenated values, or the repeat count. INVAL2 is set | |
577 | to the second of the two concatenated values or the value to be | |
578 | repeated. */ | |
579 | ||
580 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
581 | { | |
582 | struct type *tmp = type1; | |
583 | type1 = tmp; | |
584 | tmp = type2; | |
585 | inval1 = arg2; | |
586 | inval2 = arg1; | |
587 | } | |
588 | else | |
589 | { | |
590 | inval1 = arg1; | |
591 | inval2 = arg2; | |
592 | } | |
593 | ||
594 | /* Now process the input values. */ | |
595 | ||
596 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
597 | { | |
598 | /* We have a repeat count. Validate the second value and then | |
c5aa993b | 599 | construct a value repeated that many times. */ |
c906108c SS |
600 | if (TYPE_CODE (type2) == TYPE_CODE_STRING |
601 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
602 | { | |
603 | count = longest_to_int (value_as_long (inval1)); | |
604 | inval2len = TYPE_LENGTH (type2); | |
605 | ptr = (char *) alloca (count * inval2len); | |
606 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
607 | { | |
608 | inchar = (char) unpack_long (type2, | |
609 | VALUE_CONTENTS (inval2)); | |
610 | for (idx = 0; idx < count; idx++) | |
611 | { | |
612 | *(ptr + idx) = inchar; | |
613 | } | |
614 | } | |
615 | else | |
616 | { | |
617 | for (idx = 0; idx < count; idx++) | |
618 | { | |
619 | memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2), | |
620 | inval2len); | |
621 | } | |
622 | } | |
623 | outval = value_string (ptr, count * inval2len); | |
624 | } | |
625 | else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING | |
626 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
627 | { | |
628 | error ("unimplemented support for bitstring/boolean repeats"); | |
629 | } | |
630 | else | |
631 | { | |
632 | error ("can't repeat values of that type"); | |
633 | } | |
634 | } | |
635 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
c5aa993b | 636 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) |
c906108c SS |
637 | { |
638 | /* We have two character strings to concatenate. */ | |
639 | if (TYPE_CODE (type2) != TYPE_CODE_STRING | |
640 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
641 | { | |
642 | error ("Strings can only be concatenated with other strings."); | |
643 | } | |
644 | inval1len = TYPE_LENGTH (type1); | |
645 | inval2len = TYPE_LENGTH (type2); | |
646 | ptr = (char *) alloca (inval1len + inval2len); | |
647 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
648 | { | |
649 | *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1)); | |
650 | } | |
651 | else | |
652 | { | |
653 | memcpy (ptr, VALUE_CONTENTS (inval1), inval1len); | |
654 | } | |
655 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
656 | { | |
c5aa993b | 657 | *(ptr + inval1len) = |
c906108c SS |
658 | (char) unpack_long (type2, VALUE_CONTENTS (inval2)); |
659 | } | |
660 | else | |
661 | { | |
662 | memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len); | |
663 | } | |
664 | outval = value_string (ptr, inval1len + inval2len); | |
665 | } | |
666 | else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING | |
667 | || TYPE_CODE (type1) == TYPE_CODE_BOOL) | |
668 | { | |
669 | /* We have two bitstrings to concatenate. */ | |
670 | if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING | |
671 | && TYPE_CODE (type2) != TYPE_CODE_BOOL) | |
672 | { | |
673 | error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."); | |
674 | } | |
675 | error ("unimplemented support for bitstring/boolean concatenation."); | |
c5aa993b | 676 | } |
c906108c SS |
677 | else |
678 | { | |
679 | /* We don't know how to concatenate these operands. */ | |
680 | error ("illegal operands for concatenation."); | |
681 | } | |
682 | return (outval); | |
683 | } | |
c906108c SS |
684 | \f |
685 | ||
c5aa993b | 686 | |
c906108c SS |
687 | /* Perform a binary operation on two operands which have reasonable |
688 | representations as integers or floats. This includes booleans, | |
689 | characters, integers, or floats. | |
690 | Does not support addition and subtraction on pointers; | |
691 | use value_add or value_sub if you want to handle those possibilities. */ | |
692 | ||
693 | value_ptr | |
fba45db2 | 694 | value_binop (value_ptr arg1, value_ptr arg2, enum exp_opcode op) |
c906108c SS |
695 | { |
696 | register value_ptr val; | |
697 | struct type *type1, *type2; | |
698 | ||
699 | COERCE_REF (arg1); | |
700 | COERCE_REF (arg2); | |
701 | COERCE_ENUM (arg1); | |
702 | COERCE_ENUM (arg2); | |
703 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
704 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
705 | ||
706 | if ((TYPE_CODE (type1) != TYPE_CODE_FLT | |
707 | && TYPE_CODE (type1) != TYPE_CODE_CHAR | |
708 | && TYPE_CODE (type1) != TYPE_CODE_INT | |
709 | && TYPE_CODE (type1) != TYPE_CODE_BOOL | |
710 | && TYPE_CODE (type1) != TYPE_CODE_RANGE) | |
711 | || | |
712 | (TYPE_CODE (type2) != TYPE_CODE_FLT | |
713 | && TYPE_CODE (type2) != TYPE_CODE_CHAR | |
714 | && TYPE_CODE (type2) != TYPE_CODE_INT | |
715 | && TYPE_CODE (type2) != TYPE_CODE_BOOL | |
716 | && TYPE_CODE (type2) != TYPE_CODE_RANGE)) | |
717 | error ("Argument to arithmetic operation not a number or boolean."); | |
718 | ||
719 | if (TYPE_CODE (type1) == TYPE_CODE_FLT | |
720 | || | |
721 | TYPE_CODE (type2) == TYPE_CODE_FLT) | |
722 | { | |
723 | /* FIXME-if-picky-about-floating-accuracy: Should be doing this | |
c5aa993b JM |
724 | in target format. real.c in GCC probably has the necessary |
725 | code. */ | |
c4093a6a | 726 | DOUBLEST v1, v2, v = 0; |
c906108c SS |
727 | v1 = value_as_double (arg1); |
728 | v2 = value_as_double (arg2); | |
729 | switch (op) | |
730 | { | |
731 | case BINOP_ADD: | |
732 | v = v1 + v2; | |
733 | break; | |
734 | ||
735 | case BINOP_SUB: | |
736 | v = v1 - v2; | |
737 | break; | |
738 | ||
739 | case BINOP_MUL: | |
740 | v = v1 * v2; | |
741 | break; | |
742 | ||
743 | case BINOP_DIV: | |
744 | v = v1 / v2; | |
745 | break; | |
746 | ||
c4093a6a JM |
747 | case BINOP_EXP: |
748 | v = pow (v1, v2); | |
749 | if (errno) | |
750 | error ("Cannot perform exponentiation: %s", strerror (errno)); | |
751 | break; | |
752 | ||
c906108c SS |
753 | default: |
754 | error ("Integer-only operation on floating point number."); | |
755 | } | |
756 | ||
757 | /* If either arg was long double, make sure that value is also long | |
c5aa993b | 758 | double. */ |
c906108c | 759 | |
c5aa993b JM |
760 | if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT |
761 | || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT) | |
c906108c SS |
762 | val = allocate_value (builtin_type_long_double); |
763 | else | |
764 | val = allocate_value (builtin_type_double); | |
765 | ||
96d2f608 | 766 | store_typed_floating (VALUE_CONTENTS_RAW (val), VALUE_TYPE (val), v); |
c906108c SS |
767 | } |
768 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL | |
769 | && | |
770 | TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
c5aa993b | 771 | { |
c4093a6a | 772 | LONGEST v1, v2, v = 0; |
c5aa993b JM |
773 | v1 = value_as_long (arg1); |
774 | v2 = value_as_long (arg2); | |
775 | ||
776 | switch (op) | |
777 | { | |
778 | case BINOP_BITWISE_AND: | |
779 | v = v1 & v2; | |
780 | break; | |
781 | ||
782 | case BINOP_BITWISE_IOR: | |
783 | v = v1 | v2; | |
784 | break; | |
785 | ||
786 | case BINOP_BITWISE_XOR: | |
787 | v = v1 ^ v2; | |
c4093a6a JM |
788 | break; |
789 | ||
790 | case BINOP_EQUAL: | |
791 | v = v1 == v2; | |
792 | break; | |
793 | ||
794 | case BINOP_NOTEQUAL: | |
795 | v = v1 != v2; | |
c5aa993b JM |
796 | break; |
797 | ||
798 | default: | |
799 | error ("Invalid operation on booleans."); | |
800 | } | |
801 | ||
802 | val = allocate_value (type1); | |
803 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
804 | TYPE_LENGTH (type1), | |
805 | v); | |
806 | } | |
c906108c SS |
807 | else |
808 | /* Integral operations here. */ | |
809 | /* FIXME: Also mixed integral/booleans, with result an integer. */ | |
810 | /* FIXME: This implements ANSI C rules (also correct for C++). | |
811 | What about FORTRAN and chill? */ | |
812 | { | |
813 | unsigned int promoted_len1 = TYPE_LENGTH (type1); | |
814 | unsigned int promoted_len2 = TYPE_LENGTH (type2); | |
815 | int is_unsigned1 = TYPE_UNSIGNED (type1); | |
816 | int is_unsigned2 = TYPE_UNSIGNED (type2); | |
817 | unsigned int result_len; | |
818 | int unsigned_operation; | |
819 | ||
820 | /* Determine type length and signedness after promotion for | |
c5aa993b | 821 | both operands. */ |
c906108c SS |
822 | if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) |
823 | { | |
824 | is_unsigned1 = 0; | |
825 | promoted_len1 = TYPE_LENGTH (builtin_type_int); | |
826 | } | |
827 | if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) | |
828 | { | |
829 | is_unsigned2 = 0; | |
830 | promoted_len2 = TYPE_LENGTH (builtin_type_int); | |
831 | } | |
832 | ||
833 | /* Determine type length of the result, and if the operation should | |
c5aa993b JM |
834 | be done unsigned. |
835 | Use the signedness of the operand with the greater length. | |
836 | If both operands are of equal length, use unsigned operation | |
837 | if one of the operands is unsigned. */ | |
c906108c SS |
838 | if (promoted_len1 > promoted_len2) |
839 | { | |
840 | unsigned_operation = is_unsigned1; | |
841 | result_len = promoted_len1; | |
842 | } | |
843 | else if (promoted_len2 > promoted_len1) | |
844 | { | |
845 | unsigned_operation = is_unsigned2; | |
846 | result_len = promoted_len2; | |
847 | } | |
848 | else | |
849 | { | |
850 | unsigned_operation = is_unsigned1 || is_unsigned2; | |
851 | result_len = promoted_len1; | |
852 | } | |
853 | ||
854 | if (unsigned_operation) | |
855 | { | |
c4093a6a | 856 | ULONGEST v1, v2, v = 0; |
c906108c SS |
857 | v1 = (ULONGEST) value_as_long (arg1); |
858 | v2 = (ULONGEST) value_as_long (arg2); | |
859 | ||
860 | /* Truncate values to the type length of the result. */ | |
861 | if (result_len < sizeof (ULONGEST)) | |
862 | { | |
863 | v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
864 | v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
865 | } | |
c5aa993b | 866 | |
c906108c SS |
867 | switch (op) |
868 | { | |
869 | case BINOP_ADD: | |
870 | v = v1 + v2; | |
871 | break; | |
c5aa993b | 872 | |
c906108c SS |
873 | case BINOP_SUB: |
874 | v = v1 - v2; | |
875 | break; | |
c5aa993b | 876 | |
c906108c SS |
877 | case BINOP_MUL: |
878 | v = v1 * v2; | |
879 | break; | |
c5aa993b | 880 | |
c906108c SS |
881 | case BINOP_DIV: |
882 | v = v1 / v2; | |
883 | break; | |
c5aa993b | 884 | |
c4093a6a JM |
885 | case BINOP_EXP: |
886 | v = pow (v1, v2); | |
887 | if (errno) | |
888 | error ("Cannot perform exponentiation: %s", strerror (errno)); | |
889 | break; | |
890 | ||
c906108c SS |
891 | case BINOP_REM: |
892 | v = v1 % v2; | |
893 | break; | |
c5aa993b | 894 | |
c906108c SS |
895 | case BINOP_MOD: |
896 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
897 | v1 mod 0 has a defined value, v1. */ | |
898 | /* Chill specifies that v2 must be > 0, so check for that. */ | |
c5aa993b | 899 | if (current_language->la_language == language_chill |
c906108c SS |
900 | && value_as_long (arg2) <= 0) |
901 | { | |
902 | error ("Second operand of MOD must be greater than zero."); | |
903 | } | |
904 | if (v2 == 0) | |
905 | { | |
906 | v = v1; | |
907 | } | |
908 | else | |
909 | { | |
c5aa993b | 910 | v = v1 / v2; |
c906108c SS |
911 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ |
912 | v = v1 - (v2 * v); | |
913 | } | |
914 | break; | |
c5aa993b | 915 | |
c906108c SS |
916 | case BINOP_LSH: |
917 | v = v1 << v2; | |
918 | break; | |
c5aa993b | 919 | |
c906108c SS |
920 | case BINOP_RSH: |
921 | v = v1 >> v2; | |
922 | break; | |
c5aa993b | 923 | |
c906108c SS |
924 | case BINOP_BITWISE_AND: |
925 | v = v1 & v2; | |
926 | break; | |
c5aa993b | 927 | |
c906108c SS |
928 | case BINOP_BITWISE_IOR: |
929 | v = v1 | v2; | |
930 | break; | |
c5aa993b | 931 | |
c906108c SS |
932 | case BINOP_BITWISE_XOR: |
933 | v = v1 ^ v2; | |
934 | break; | |
c5aa993b | 935 | |
c906108c SS |
936 | case BINOP_LOGICAL_AND: |
937 | v = v1 && v2; | |
938 | break; | |
c5aa993b | 939 | |
c906108c SS |
940 | case BINOP_LOGICAL_OR: |
941 | v = v1 || v2; | |
942 | break; | |
c5aa993b | 943 | |
c906108c SS |
944 | case BINOP_MIN: |
945 | v = v1 < v2 ? v1 : v2; | |
946 | break; | |
c5aa993b | 947 | |
c906108c SS |
948 | case BINOP_MAX: |
949 | v = v1 > v2 ? v1 : v2; | |
950 | break; | |
951 | ||
952 | case BINOP_EQUAL: | |
953 | v = v1 == v2; | |
954 | break; | |
955 | ||
c4093a6a JM |
956 | case BINOP_NOTEQUAL: |
957 | v = v1 != v2; | |
958 | break; | |
959 | ||
c906108c SS |
960 | case BINOP_LESS: |
961 | v = v1 < v2; | |
962 | break; | |
c5aa993b | 963 | |
c906108c SS |
964 | default: |
965 | error ("Invalid binary operation on numbers."); | |
966 | } | |
967 | ||
968 | /* This is a kludge to get around the fact that we don't | |
969 | know how to determine the result type from the types of | |
970 | the operands. (I'm not really sure how much we feel the | |
971 | need to duplicate the exact rules of the current | |
972 | language. They can get really hairy. But not to do so | |
973 | makes it hard to document just what we *do* do). */ | |
974 | ||
975 | /* Can't just call init_type because we wouldn't know what | |
976 | name to give the type. */ | |
977 | val = allocate_value | |
978 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
979 | ? builtin_type_unsigned_long_long | |
980 | : builtin_type_unsigned_long); | |
981 | store_unsigned_integer (VALUE_CONTENTS_RAW (val), | |
982 | TYPE_LENGTH (VALUE_TYPE (val)), | |
983 | v); | |
984 | } | |
985 | else | |
986 | { | |
c4093a6a | 987 | LONGEST v1, v2, v = 0; |
c906108c SS |
988 | v1 = value_as_long (arg1); |
989 | v2 = value_as_long (arg2); | |
c5aa993b | 990 | |
c906108c SS |
991 | switch (op) |
992 | { | |
993 | case BINOP_ADD: | |
994 | v = v1 + v2; | |
995 | break; | |
c5aa993b | 996 | |
c906108c SS |
997 | case BINOP_SUB: |
998 | v = v1 - v2; | |
999 | break; | |
c5aa993b | 1000 | |
c906108c SS |
1001 | case BINOP_MUL: |
1002 | v = v1 * v2; | |
1003 | break; | |
c5aa993b | 1004 | |
c906108c SS |
1005 | case BINOP_DIV: |
1006 | v = v1 / v2; | |
c4093a6a JM |
1007 | break; |
1008 | ||
1009 | case BINOP_EXP: | |
1010 | v = pow (v1, v2); | |
1011 | if (errno) | |
1012 | error ("Cannot perform exponentiation: %s", strerror (errno)); | |
c906108c | 1013 | break; |
c5aa993b | 1014 | |
c906108c SS |
1015 | case BINOP_REM: |
1016 | v = v1 % v2; | |
1017 | break; | |
c5aa993b | 1018 | |
c906108c SS |
1019 | case BINOP_MOD: |
1020 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1021 | X mod 0 has a defined value, X. */ | |
1022 | /* Chill specifies that v2 must be > 0, so check for that. */ | |
c5aa993b | 1023 | if (current_language->la_language == language_chill |
c906108c SS |
1024 | && v2 <= 0) |
1025 | { | |
1026 | error ("Second operand of MOD must be greater than zero."); | |
1027 | } | |
1028 | if (v2 == 0) | |
1029 | { | |
1030 | v = v1; | |
1031 | } | |
1032 | else | |
1033 | { | |
c5aa993b | 1034 | v = v1 / v2; |
c906108c SS |
1035 | /* Compute floor. */ |
1036 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) | |
1037 | { | |
1038 | v--; | |
1039 | } | |
1040 | v = v1 - (v2 * v); | |
1041 | } | |
1042 | break; | |
c5aa993b | 1043 | |
c906108c SS |
1044 | case BINOP_LSH: |
1045 | v = v1 << v2; | |
1046 | break; | |
c5aa993b | 1047 | |
c906108c SS |
1048 | case BINOP_RSH: |
1049 | v = v1 >> v2; | |
1050 | break; | |
c5aa993b | 1051 | |
c906108c SS |
1052 | case BINOP_BITWISE_AND: |
1053 | v = v1 & v2; | |
1054 | break; | |
c5aa993b | 1055 | |
c906108c SS |
1056 | case BINOP_BITWISE_IOR: |
1057 | v = v1 | v2; | |
1058 | break; | |
c5aa993b | 1059 | |
c906108c SS |
1060 | case BINOP_BITWISE_XOR: |
1061 | v = v1 ^ v2; | |
1062 | break; | |
c5aa993b | 1063 | |
c906108c SS |
1064 | case BINOP_LOGICAL_AND: |
1065 | v = v1 && v2; | |
1066 | break; | |
c5aa993b | 1067 | |
c906108c SS |
1068 | case BINOP_LOGICAL_OR: |
1069 | v = v1 || v2; | |
1070 | break; | |
c5aa993b | 1071 | |
c906108c SS |
1072 | case BINOP_MIN: |
1073 | v = v1 < v2 ? v1 : v2; | |
1074 | break; | |
c5aa993b | 1075 | |
c906108c SS |
1076 | case BINOP_MAX: |
1077 | v = v1 > v2 ? v1 : v2; | |
1078 | break; | |
1079 | ||
1080 | case BINOP_EQUAL: | |
1081 | v = v1 == v2; | |
1082 | break; | |
1083 | ||
1084 | case BINOP_LESS: | |
1085 | v = v1 < v2; | |
1086 | break; | |
c5aa993b | 1087 | |
c906108c SS |
1088 | default: |
1089 | error ("Invalid binary operation on numbers."); | |
1090 | } | |
1091 | ||
1092 | /* This is a kludge to get around the fact that we don't | |
1093 | know how to determine the result type from the types of | |
1094 | the operands. (I'm not really sure how much we feel the | |
1095 | need to duplicate the exact rules of the current | |
1096 | language. They can get really hairy. But not to do so | |
1097 | makes it hard to document just what we *do* do). */ | |
1098 | ||
1099 | /* Can't just call init_type because we wouldn't know what | |
1100 | name to give the type. */ | |
1101 | val = allocate_value | |
1102 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
1103 | ? builtin_type_long_long | |
1104 | : builtin_type_long); | |
1105 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
1106 | TYPE_LENGTH (VALUE_TYPE (val)), | |
1107 | v); | |
1108 | } | |
1109 | } | |
1110 | ||
1111 | return val; | |
1112 | } | |
1113 | \f | |
1114 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1115 | ||
1116 | int | |
fba45db2 | 1117 | value_logical_not (value_ptr arg1) |
c906108c SS |
1118 | { |
1119 | register int len; | |
1120 | register char *p; | |
1121 | struct type *type1; | |
1122 | ||
1123 | COERCE_NUMBER (arg1); | |
1124 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1125 | ||
1126 | if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
1127 | return 0 == value_as_double (arg1); | |
1128 | ||
1129 | len = TYPE_LENGTH (type1); | |
1130 | p = VALUE_CONTENTS (arg1); | |
1131 | ||
1132 | while (--len >= 0) | |
1133 | { | |
1134 | if (*p++) | |
1135 | break; | |
1136 | } | |
1137 | ||
1138 | return len < 0; | |
1139 | } | |
1140 | ||
c4093a6a JM |
1141 | /* Perform a comparison on two string values (whose content are not |
1142 | necessarily null terminated) based on their length */ | |
1143 | ||
1144 | static int | |
fba45db2 | 1145 | value_strcmp (register value_ptr arg1, register value_ptr arg2) |
c4093a6a JM |
1146 | { |
1147 | int len1 = TYPE_LENGTH (VALUE_TYPE (arg1)); | |
1148 | int len2 = TYPE_LENGTH (VALUE_TYPE (arg2)); | |
1149 | char *s1 = VALUE_CONTENTS (arg1); | |
1150 | char *s2 = VALUE_CONTENTS (arg2); | |
1151 | int i, len = len1 < len2 ? len1 : len2; | |
1152 | ||
1153 | for (i = 0; i < len; i++) | |
1154 | { | |
1155 | if (s1[i] < s2[i]) | |
1156 | return -1; | |
1157 | else if (s1[i] > s2[i]) | |
1158 | return 1; | |
1159 | else | |
1160 | continue; | |
1161 | } | |
1162 | ||
1163 | if (len1 < len2) | |
1164 | return -1; | |
1165 | else if (len1 > len2) | |
1166 | return 1; | |
1167 | else | |
1168 | return 0; | |
1169 | } | |
1170 | ||
c906108c SS |
1171 | /* Simulate the C operator == by returning a 1 |
1172 | iff ARG1 and ARG2 have equal contents. */ | |
1173 | ||
1174 | int | |
fba45db2 | 1175 | value_equal (register value_ptr arg1, register value_ptr arg2) |
c906108c SS |
1176 | { |
1177 | register int len; | |
1178 | register char *p1, *p2; | |
1179 | struct type *type1, *type2; | |
1180 | enum type_code code1; | |
1181 | enum type_code code2; | |
1182 | ||
1183 | COERCE_NUMBER (arg1); | |
1184 | COERCE_NUMBER (arg2); | |
1185 | ||
1186 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1187 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1188 | code1 = TYPE_CODE (type1); | |
1189 | code2 = TYPE_CODE (type2); | |
1190 | ||
1191 | if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) && | |
1192 | (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1193 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1194 | BINOP_EQUAL))); | |
1195 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) | |
1196 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1197 | return value_as_double (arg1) == value_as_double (arg2); | |
1198 | ||
1199 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1200 | is bigger. */ | |
1201 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1202 | return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2); | |
1203 | else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)) | |
1204 | return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2); | |
1205 | ||
1206 | else if (code1 == code2 | |
1207 | && ((len = (int) TYPE_LENGTH (type1)) | |
1208 | == (int) TYPE_LENGTH (type2))) | |
1209 | { | |
1210 | p1 = VALUE_CONTENTS (arg1); | |
1211 | p2 = VALUE_CONTENTS (arg2); | |
1212 | while (--len >= 0) | |
1213 | { | |
1214 | if (*p1++ != *p2++) | |
1215 | break; | |
1216 | } | |
1217 | return len < 0; | |
1218 | } | |
c4093a6a JM |
1219 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1220 | { | |
1221 | return value_strcmp (arg1, arg2) == 0; | |
1222 | } | |
c906108c SS |
1223 | else |
1224 | { | |
1225 | error ("Invalid type combination in equality test."); | |
c5aa993b | 1226 | return 0; /* For lint -- never reached */ |
c906108c SS |
1227 | } |
1228 | } | |
1229 | ||
1230 | /* Simulate the C operator < by returning 1 | |
1231 | iff ARG1's contents are less than ARG2's. */ | |
1232 | ||
1233 | int | |
fba45db2 | 1234 | value_less (register value_ptr arg1, register value_ptr arg2) |
c906108c SS |
1235 | { |
1236 | register enum type_code code1; | |
1237 | register enum type_code code2; | |
1238 | struct type *type1, *type2; | |
1239 | ||
1240 | COERCE_NUMBER (arg1); | |
1241 | COERCE_NUMBER (arg2); | |
1242 | ||
1243 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1244 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1245 | code1 = TYPE_CODE (type1); | |
1246 | code2 = TYPE_CODE (type2); | |
1247 | ||
1248 | if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) && | |
1249 | (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1250 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1251 | BINOP_LESS))); | |
1252 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) | |
1253 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1254 | return value_as_double (arg1) < value_as_double (arg2); | |
1255 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
1256 | return value_as_pointer (arg1) < value_as_pointer (arg2); | |
1257 | ||
1258 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1259 | is bigger. */ | |
1260 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1261 | return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2); | |
1262 | else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)) | |
1263 | return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2); | |
c4093a6a JM |
1264 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1265 | return value_strcmp (arg1, arg2) < 0; | |
c906108c SS |
1266 | else |
1267 | { | |
1268 | error ("Invalid type combination in ordering comparison."); | |
1269 | return 0; | |
1270 | } | |
1271 | } | |
1272 | \f | |
1273 | /* The unary operators - and ~. Both free the argument ARG1. */ | |
1274 | ||
1275 | value_ptr | |
fba45db2 | 1276 | value_neg (register value_ptr arg1) |
c906108c SS |
1277 | { |
1278 | register struct type *type; | |
1279 | register struct type *result_type = VALUE_TYPE (arg1); | |
1280 | ||
1281 | COERCE_REF (arg1); | |
1282 | COERCE_ENUM (arg1); | |
1283 | ||
1284 | type = check_typedef (VALUE_TYPE (arg1)); | |
1285 | ||
1286 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
c5aa993b | 1287 | return value_from_double (result_type, -value_as_double (arg1)); |
c906108c SS |
1288 | else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL) |
1289 | { | |
1290 | /* Perform integral promotion for ANSI C/C++. | |
c5aa993b | 1291 | FIXME: What about FORTRAN and chill ? */ |
c906108c SS |
1292 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1293 | result_type = builtin_type_int; | |
1294 | ||
c5aa993b JM |
1295 | return value_from_longest (result_type, -value_as_long (arg1)); |
1296 | } | |
1297 | else | |
1298 | { | |
1299 | error ("Argument to negate operation not a number."); | |
1300 | return 0; /* For lint -- never reached */ | |
c906108c | 1301 | } |
c906108c SS |
1302 | } |
1303 | ||
1304 | value_ptr | |
fba45db2 | 1305 | value_complement (register value_ptr arg1) |
c906108c SS |
1306 | { |
1307 | register struct type *type; | |
1308 | register struct type *result_type = VALUE_TYPE (arg1); | |
c5aa993b | 1309 | int typecode; |
c906108c SS |
1310 | |
1311 | COERCE_REF (arg1); | |
1312 | COERCE_ENUM (arg1); | |
1313 | ||
1314 | type = check_typedef (VALUE_TYPE (arg1)); | |
1315 | ||
1316 | typecode = TYPE_CODE (type); | |
1317 | if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL)) | |
1318 | error ("Argument to complement operation not an integer or boolean."); | |
1319 | ||
1320 | /* Perform integral promotion for ANSI C/C++. | |
1321 | FIXME: What about FORTRAN ? */ | |
1322 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1323 | result_type = builtin_type_int; | |
1324 | ||
c5aa993b | 1325 | return value_from_longest (result_type, ~value_as_long (arg1)); |
c906108c SS |
1326 | } |
1327 | \f | |
1328 | /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE, | |
1329 | and whose VALUE_CONTENTS is valaddr. | |
1330 | Return -1 if out of range, -2 other error. */ | |
1331 | ||
1332 | int | |
fba45db2 | 1333 | value_bit_index (struct type *type, char *valaddr, int index) |
c906108c SS |
1334 | { |
1335 | LONGEST low_bound, high_bound; | |
1336 | LONGEST word; | |
1337 | unsigned rel_index; | |
1338 | struct type *range = TYPE_FIELD_TYPE (type, 0); | |
1339 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) | |
1340 | return -2; | |
1341 | if (index < low_bound || index > high_bound) | |
1342 | return -1; | |
1343 | rel_index = index - low_bound; | |
1344 | word = unpack_long (builtin_type_unsigned_char, | |
1345 | valaddr + (rel_index / TARGET_CHAR_BIT)); | |
1346 | rel_index %= TARGET_CHAR_BIT; | |
1347 | if (BITS_BIG_ENDIAN) | |
1348 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; | |
1349 | return (word >> rel_index) & 1; | |
1350 | } | |
1351 | ||
1352 | value_ptr | |
fba45db2 | 1353 | value_in (value_ptr element, value_ptr set) |
c906108c SS |
1354 | { |
1355 | int member; | |
1356 | struct type *settype = check_typedef (VALUE_TYPE (set)); | |
1357 | struct type *eltype = check_typedef (VALUE_TYPE (element)); | |
1358 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) | |
1359 | eltype = TYPE_TARGET_TYPE (eltype); | |
1360 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
1361 | error ("Second argument of 'IN' has wrong type"); | |
1362 | if (TYPE_CODE (eltype) != TYPE_CODE_INT | |
1363 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1364 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1365 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
1366 | error ("First argument of 'IN' has wrong type"); | |
1367 | member = value_bit_index (settype, VALUE_CONTENTS (set), | |
1368 | value_as_long (element)); | |
1369 | if (member < 0) | |
1370 | error ("First argument of 'IN' not in range"); | |
1371 | return value_from_longest (LA_BOOL_TYPE, member); | |
1372 | } | |
1373 | ||
1374 | void | |
fba45db2 | 1375 | _initialize_valarith (void) |
c906108c SS |
1376 | { |
1377 | } |