Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
6aba47ca DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 | |
f23631e4 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
22 | Boston, MA 02110-1301, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "value.h" | |
28 | #include "frame.h" | |
29 | #include "inferior.h" | |
30 | #include "gdbcore.h" | |
31 | #include "target.h" | |
32 | #include "demangle.h" | |
33 | #include "language.h" | |
34 | #include "gdbcmd.h" | |
4e052eda | 35 | #include "regcache.h" |
015a42b4 | 36 | #include "cp-abi.h" |
fe898f56 | 37 | #include "block.h" |
04714b91 | 38 | #include "infcall.h" |
de4f826b | 39 | #include "dictionary.h" |
b6429628 | 40 | #include "cp-support.h" |
c906108c SS |
41 | |
42 | #include <errno.h> | |
43 | #include "gdb_string.h" | |
4a1970e4 | 44 | #include "gdb_assert.h" |
79c2c32d | 45 | #include "cp-support.h" |
f4c5303c | 46 | #include "observer.h" |
c906108c | 47 | |
070ad9f0 | 48 | extern int overload_debug; |
c906108c SS |
49 | /* Local functions. */ |
50 | ||
ad2f7632 DJ |
51 | static int typecmp (int staticp, int varargs, int nargs, |
52 | struct field t1[], struct value *t2[]); | |
c906108c | 53 | |
f23631e4 | 54 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 55 | struct type *, int); |
c906108c | 56 | |
f23631e4 AC |
57 | static struct value *search_struct_method (char *, struct value **, |
58 | struct value **, | |
a14ed312 | 59 | int, int *, struct type *); |
c906108c | 60 | |
8d577d32 DC |
61 | static int find_oload_champ_namespace (struct type **arg_types, int nargs, |
62 | const char *func_name, | |
63 | const char *qualified_name, | |
64 | struct symbol ***oload_syms, | |
65 | struct badness_vector **oload_champ_bv); | |
66 | ||
67 | static | |
68 | int find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
69 | const char *func_name, | |
70 | const char *qualified_name, | |
71 | int namespace_len, | |
72 | struct symbol ***oload_syms, | |
73 | struct badness_vector **oload_champ_bv, | |
74 | int *oload_champ); | |
75 | ||
76 | static int find_oload_champ (struct type **arg_types, int nargs, int method, | |
77 | int num_fns, | |
78 | struct fn_field *fns_ptr, | |
79 | struct symbol **oload_syms, | |
80 | struct badness_vector **oload_champ_bv); | |
81 | ||
82 | static int oload_method_static (int method, struct fn_field *fns_ptr, | |
83 | int index); | |
84 | ||
85 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
86 | ||
87 | static enum | |
88 | oload_classification classify_oload_match (struct badness_vector | |
89 | * oload_champ_bv, | |
90 | int nargs, | |
91 | int static_offset); | |
92 | ||
a14ed312 | 93 | static int check_field_in (struct type *, const char *); |
c906108c | 94 | |
79c2c32d DC |
95 | static struct value *value_struct_elt_for_reference (struct type *domain, |
96 | int offset, | |
97 | struct type *curtype, | |
98 | char *name, | |
63d06c5c | 99 | struct type *intype, |
0d5de010 | 100 | int want_address, |
63d06c5c | 101 | enum noside noside); |
79c2c32d DC |
102 | |
103 | static struct value *value_namespace_elt (const struct type *curtype, | |
0d5de010 | 104 | char *name, int want_address, |
79c2c32d DC |
105 | enum noside noside); |
106 | ||
63d06c5c | 107 | static struct value *value_maybe_namespace_elt (const struct type *curtype, |
0d5de010 | 108 | char *name, int want_address, |
63d06c5c DC |
109 | enum noside noside); |
110 | ||
a14ed312 | 111 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 112 | |
f23631e4 | 113 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 114 | |
f23631e4 | 115 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
4a1970e4 | 116 | int offset, |
a14ed312 KB |
117 | struct type *type, int *num_fns, |
118 | struct type **basetype, | |
119 | int *boffset); | |
7a292a7a | 120 | |
a14ed312 | 121 | void _initialize_valops (void); |
c906108c | 122 | |
c906108c SS |
123 | /* Flag for whether we want to abandon failed expression evals by default. */ |
124 | ||
125 | #if 0 | |
126 | static int auto_abandon = 0; | |
127 | #endif | |
128 | ||
129 | int overload_resolution = 0; | |
920d2a44 AC |
130 | static void |
131 | show_overload_resolution (struct ui_file *file, int from_tty, | |
132 | struct cmd_list_element *c, const char *value) | |
133 | { | |
134 | fprintf_filtered (file, _("\ | |
135 | Overload resolution in evaluating C++ functions is %s.\n"), | |
136 | value); | |
137 | } | |
242bfc55 | 138 | |
c906108c SS |
139 | /* Find the address of function name NAME in the inferior. */ |
140 | ||
f23631e4 | 141 | struct value * |
3bada2a2 | 142 | find_function_in_inferior (const char *name) |
c906108c | 143 | { |
52f0bd74 | 144 | struct symbol *sym; |
176620f1 | 145 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
146 | if (sym != NULL) |
147 | { | |
148 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
149 | { | |
8a3fe4f8 | 150 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
151 | name); |
152 | } | |
153 | return value_of_variable (sym, NULL); | |
154 | } | |
155 | else | |
156 | { | |
c5aa993b | 157 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
158 | if (msymbol != NULL) |
159 | { | |
160 | struct type *type; | |
4478b372 | 161 | CORE_ADDR maddr; |
c906108c SS |
162 | type = lookup_pointer_type (builtin_type_char); |
163 | type = lookup_function_type (type); | |
164 | type = lookup_pointer_type (type); | |
4478b372 JB |
165 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
166 | return value_from_pointer (type, maddr); | |
c906108c SS |
167 | } |
168 | else | |
169 | { | |
c5aa993b | 170 | if (!target_has_execution) |
8a3fe4f8 | 171 | error (_("evaluation of this expression requires the target program to be active")); |
c5aa993b | 172 | else |
8a3fe4f8 | 173 | error (_("evaluation of this expression requires the program to have a function \"%s\"."), name); |
c906108c SS |
174 | } |
175 | } | |
176 | } | |
177 | ||
178 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
179 | and return a value that is a pointer to the allocated space. */ | |
180 | ||
f23631e4 | 181 | struct value * |
fba45db2 | 182 | value_allocate_space_in_inferior (int len) |
c906108c | 183 | { |
f23631e4 | 184 | struct value *blocklen; |
aea8766f UW |
185 | struct value *val = find_function_in_inferior |
186 | (gdbarch_name_of_malloc (current_gdbarch)); | |
c906108c SS |
187 | |
188 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
189 | val = call_function_by_hand (val, 1, &blocklen); | |
190 | if (value_logical_not (val)) | |
191 | { | |
192 | if (!target_has_execution) | |
8a3fe4f8 | 193 | error (_("No memory available to program now: you need to start the target first")); |
c5aa993b | 194 | else |
8a3fe4f8 | 195 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
196 | } |
197 | return val; | |
198 | } | |
199 | ||
200 | static CORE_ADDR | |
fba45db2 | 201 | allocate_space_in_inferior (int len) |
c906108c SS |
202 | { |
203 | return value_as_long (value_allocate_space_in_inferior (len)); | |
204 | } | |
205 | ||
fb933624 DJ |
206 | /* Cast one pointer or reference type to another. Both TYPE and |
207 | the type of ARG2 should be pointer types, or else both should be | |
208 | reference types. Returns the new pointer or reference. */ | |
209 | ||
210 | struct value * | |
211 | value_cast_pointers (struct type *type, struct value *arg2) | |
212 | { | |
213 | struct type *type2 = check_typedef (value_type (arg2)); | |
214 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
215 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
216 | ||
217 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
218 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
219 | && !value_logical_not (arg2)) | |
220 | { | |
221 | struct value *v; | |
222 | ||
223 | /* Look in the type of the source to see if it contains the | |
224 | type of the target as a superclass. If so, we'll need to | |
225 | offset the pointer rather than just change its type. */ | |
226 | if (TYPE_NAME (t1) != NULL) | |
227 | { | |
228 | struct value *v2; | |
229 | ||
230 | if (TYPE_CODE (type2) == TYPE_CODE_REF) | |
231 | v2 = coerce_ref (arg2); | |
232 | else | |
233 | v2 = value_ind (arg2); | |
234 | v = search_struct_field (type_name_no_tag (t1), | |
235 | v2, 0, t2, 1); | |
236 | if (v) | |
237 | { | |
238 | v = value_addr (v); | |
239 | deprecated_set_value_type (v, type); | |
240 | return v; | |
241 | } | |
242 | } | |
243 | ||
244 | /* Look in the type of the target to see if it contains the | |
245 | type of the source as a superclass. If so, we'll need to | |
246 | offset the pointer rather than just change its type. | |
247 | FIXME: This fails silently with virtual inheritance. */ | |
248 | if (TYPE_NAME (t2) != NULL) | |
249 | { | |
250 | v = search_struct_field (type_name_no_tag (t2), | |
251 | value_zero (t1, not_lval), 0, t1, 1); | |
252 | if (v) | |
253 | { | |
254 | CORE_ADDR addr2 = value_as_address (arg2); | |
255 | addr2 -= (VALUE_ADDRESS (v) | |
256 | + value_offset (v) | |
257 | + value_embedded_offset (v)); | |
258 | return value_from_pointer (type, addr2); | |
259 | } | |
260 | } | |
261 | } | |
262 | ||
263 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 264 | arg2 = value_copy (arg2); |
fb933624 DJ |
265 | deprecated_set_value_type (arg2, type); |
266 | arg2 = value_change_enclosing_type (arg2, type); | |
267 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ | |
268 | return arg2; | |
269 | } | |
270 | ||
c906108c SS |
271 | /* Cast value ARG2 to type TYPE and return as a value. |
272 | More general than a C cast: accepts any two types of the same length, | |
273 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
274 | /* In C++, casts may change pointer or object representations. */ | |
275 | ||
f23631e4 AC |
276 | struct value * |
277 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 278 | { |
52f0bd74 AC |
279 | enum type_code code1; |
280 | enum type_code code2; | |
281 | int scalar; | |
c906108c SS |
282 | struct type *type2; |
283 | ||
284 | int convert_to_boolean = 0; | |
c5aa993b | 285 | |
df407dfe | 286 | if (value_type (arg2) == type) |
c906108c SS |
287 | return arg2; |
288 | ||
289 | CHECK_TYPEDEF (type); | |
290 | code1 = TYPE_CODE (type); | |
994b9211 | 291 | arg2 = coerce_ref (arg2); |
df407dfe | 292 | type2 = check_typedef (value_type (arg2)); |
c906108c | 293 | |
fb933624 DJ |
294 | /* You can't cast to a reference type. See value_cast_pointers |
295 | instead. */ | |
296 | gdb_assert (code1 != TYPE_CODE_REF); | |
297 | ||
c906108c SS |
298 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, |
299 | is treated like a cast to (TYPE [N])OBJECT, | |
300 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
301 | if (code1 == TYPE_CODE_ARRAY) | |
302 | { | |
303 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
304 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
305 | if (element_length > 0 | |
c5aa993b | 306 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
307 | { |
308 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
309 | int val_length = TYPE_LENGTH (type2); | |
310 | LONGEST low_bound, high_bound, new_length; | |
311 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
312 | low_bound = 0, high_bound = 0; | |
313 | new_length = val_length / element_length; | |
314 | if (val_length % element_length != 0) | |
8a3fe4f8 | 315 | warning (_("array element type size does not divide object size in cast")); |
c906108c SS |
316 | /* FIXME-type-allocation: need a way to free this type when we are |
317 | done with it. */ | |
318 | range_type = create_range_type ((struct type *) NULL, | |
319 | TYPE_TARGET_TYPE (range_type), | |
320 | low_bound, | |
321 | new_length + low_bound - 1); | |
04624583 AC |
322 | deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL, |
323 | element_type, range_type)); | |
c906108c SS |
324 | return arg2; |
325 | } | |
326 | } | |
327 | ||
328 | if (current_language->c_style_arrays | |
329 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
330 | arg2 = value_coerce_array (arg2); | |
331 | ||
332 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
333 | arg2 = value_coerce_function (arg2); | |
334 | ||
df407dfe | 335 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
336 | code2 = TYPE_CODE (type2); |
337 | ||
338 | if (code1 == TYPE_CODE_COMPLEX) | |
339 | return cast_into_complex (type, arg2); | |
340 | if (code1 == TYPE_CODE_BOOL) | |
341 | { | |
342 | code1 = TYPE_CODE_INT; | |
343 | convert_to_boolean = 1; | |
344 | } | |
345 | if (code1 == TYPE_CODE_CHAR) | |
346 | code1 = TYPE_CODE_INT; | |
347 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
348 | code2 = TYPE_CODE_INT; | |
349 | ||
350 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
351 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
352 | ||
c5aa993b | 353 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
354 | && code2 == TYPE_CODE_STRUCT |
355 | && TYPE_NAME (type) != 0) | |
356 | { | |
357 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
358 | type of the target as a superclass. If so, we'll need to |
359 | offset the object in addition to changing its type. */ | |
f23631e4 | 360 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
361 | arg2, 0, type2, 1); |
362 | if (v) | |
363 | { | |
04624583 | 364 | deprecated_set_value_type (v, type); |
c906108c SS |
365 | return v; |
366 | } | |
367 | } | |
368 | if (code1 == TYPE_CODE_FLT && scalar) | |
369 | return value_from_double (type, value_as_double (arg2)); | |
370 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
371 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
372 | && (scalar || code2 == TYPE_CODE_PTR |
373 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
374 | { |
375 | LONGEST longest; | |
c5aa993b | 376 | |
2bf1f4a1 | 377 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 378 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
379 | represents, as value_as_long would. GDB should evaluate |
380 | expressions just as the compiler would --- and the compiler | |
381 | sees a cast as a simple reinterpretation of the pointer's | |
382 | bits. */ | |
383 | if (code2 == TYPE_CODE_PTR) | |
0fd88904 | 384 | longest = extract_unsigned_integer (value_contents (arg2), |
2bf1f4a1 JB |
385 | TYPE_LENGTH (type2)); |
386 | else | |
387 | longest = value_as_long (arg2); | |
802db21b | 388 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 389 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 390 | } |
802db21b | 391 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
392 | code2 == TYPE_CODE_ENUM || |
393 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 394 | { |
4603e466 DT |
395 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
396 | want the length of an address! -- we are really dealing with | |
397 | addresses (i.e., gdb representations) not pointers (i.e., | |
398 | target representations) here. | |
399 | ||
400 | This allows things like "print *(int *)0x01000234" to work | |
401 | without printing a misleading message -- which would | |
402 | otherwise occur when dealing with a target having two byte | |
403 | pointers and four byte addresses. */ | |
404 | ||
17a912b6 | 405 | int addr_bit = gdbarch_addr_bit (current_gdbarch); |
4603e466 | 406 | |
634acd5f | 407 | LONGEST longest = value_as_long (arg2); |
4603e466 | 408 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 409 | { |
4603e466 DT |
410 | if (longest >= ((LONGEST) 1 << addr_bit) |
411 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 412 | warning (_("value truncated")); |
634acd5f AC |
413 | } |
414 | return value_from_longest (type, longest); | |
415 | } | |
0d5de010 DJ |
416 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
417 | && value_as_long (arg2) == 0) | |
418 | { | |
419 | struct value *result = allocate_value (type); | |
420 | cplus_make_method_ptr (value_contents_writeable (result), 0, 0); | |
421 | return result; | |
422 | } | |
423 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
424 | && value_as_long (arg2) == 0) | |
425 | { | |
426 | /* The Itanium C++ ABI represents NULL pointers to members as | |
427 | minus one, instead of biasing the normal case. */ | |
428 | return value_from_longest (type, -1); | |
429 | } | |
c906108c SS |
430 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
431 | { | |
432 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
fb933624 DJ |
433 | return value_cast_pointers (type, arg2); |
434 | ||
0d5de010 | 435 | arg2 = value_copy (arg2); |
04624583 | 436 | deprecated_set_value_type (arg2, type); |
2b127877 | 437 | arg2 = value_change_enclosing_type (arg2, type); |
b44d461b | 438 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
439 | return arg2; |
440 | } | |
c906108c | 441 | else if (VALUE_LVAL (arg2) == lval_memory) |
df407dfe | 442 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2)); |
c906108c SS |
443 | else if (code1 == TYPE_CODE_VOID) |
444 | { | |
445 | return value_zero (builtin_type_void, not_lval); | |
446 | } | |
447 | else | |
448 | { | |
8a3fe4f8 | 449 | error (_("Invalid cast.")); |
c906108c SS |
450 | return 0; |
451 | } | |
452 | } | |
453 | ||
454 | /* Create a value of type TYPE that is zero, and return it. */ | |
455 | ||
f23631e4 | 456 | struct value * |
fba45db2 | 457 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 458 | { |
f23631e4 | 459 | struct value *val = allocate_value (type); |
c906108c SS |
460 | VALUE_LVAL (val) = lv; |
461 | ||
462 | return val; | |
463 | } | |
464 | ||
070ad9f0 | 465 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
466 | |
467 | Call value_at only if the data needs to be fetched immediately; | |
468 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
469 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 470 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 471 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 472 | the contents are actually required. |
c906108c SS |
473 | |
474 | Note: value_at does *NOT* handle embedded offsets; perform such | |
475 | adjustments before or after calling it. */ | |
476 | ||
f23631e4 | 477 | struct value * |
00a4c844 | 478 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 479 | { |
f23631e4 | 480 | struct value *val; |
c906108c SS |
481 | |
482 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 483 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
484 | |
485 | val = allocate_value (type); | |
486 | ||
990a07ab | 487 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); |
c906108c SS |
488 | |
489 | VALUE_LVAL (val) = lval_memory; | |
490 | VALUE_ADDRESS (val) = addr; | |
c906108c SS |
491 | |
492 | return val; | |
493 | } | |
494 | ||
495 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
496 | ||
f23631e4 | 497 | struct value * |
00a4c844 | 498 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 499 | { |
f23631e4 | 500 | struct value *val; |
c906108c SS |
501 | |
502 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 503 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
504 | |
505 | val = allocate_value (type); | |
506 | ||
507 | VALUE_LVAL (val) = lval_memory; | |
508 | VALUE_ADDRESS (val) = addr; | |
dfa52d88 | 509 | set_value_lazy (val, 1); |
c906108c SS |
510 | |
511 | return val; | |
512 | } | |
513 | ||
0fd88904 | 514 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 515 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 516 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
517 | clears the lazy flag to indicate that the data in the buffer is |
518 | valid. | |
c906108c SS |
519 | |
520 | If the value is zero-length, we avoid calling read_memory, which would | |
521 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
522 | ||
0fd88904 | 523 | This function returns a value because it is used in the value_contents |
c906108c SS |
524 | macro as part of an expression, where a void would not work. The |
525 | value is ignored. */ | |
526 | ||
527 | int | |
f23631e4 | 528 | value_fetch_lazy (struct value *val) |
c906108c | 529 | { |
df407dfe | 530 | CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val); |
4754a64e | 531 | int length = TYPE_LENGTH (value_enclosing_type (val)); |
c906108c | 532 | |
df407dfe | 533 | struct type *type = value_type (val); |
75af7f68 | 534 | if (length) |
990a07ab | 535 | read_memory (addr, value_contents_all_raw (val), length); |
802db21b | 536 | |
dfa52d88 | 537 | set_value_lazy (val, 0); |
c906108c SS |
538 | return 0; |
539 | } | |
540 | ||
541 | ||
542 | /* Store the contents of FROMVAL into the location of TOVAL. | |
543 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
544 | ||
f23631e4 AC |
545 | struct value * |
546 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 547 | { |
52f0bd74 | 548 | struct type *type; |
f23631e4 | 549 | struct value *val; |
cb741690 | 550 | struct frame_id old_frame; |
c906108c | 551 | |
88e3b34b | 552 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 553 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 554 | |
994b9211 | 555 | toval = coerce_ref (toval); |
c906108c | 556 | |
df407dfe | 557 | type = value_type (toval); |
c906108c SS |
558 | if (VALUE_LVAL (toval) != lval_internalvar) |
559 | fromval = value_cast (type, fromval); | |
560 | else | |
994b9211 | 561 | fromval = coerce_array (fromval); |
c906108c SS |
562 | CHECK_TYPEDEF (type); |
563 | ||
cb741690 DJ |
564 | /* Since modifying a register can trash the frame chain, and modifying memory |
565 | can trash the frame cache, we save the old frame and then restore the new | |
566 | frame afterwards. */ | |
206415a3 | 567 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 568 | |
c906108c SS |
569 | switch (VALUE_LVAL (toval)) |
570 | { | |
571 | case lval_internalvar: | |
572 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
573 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
4754a64e | 574 | val = value_change_enclosing_type (val, value_enclosing_type (fromval)); |
13c3b5f5 | 575 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 576 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c906108c SS |
577 | return val; |
578 | ||
579 | case lval_internalvar_component: | |
580 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
581 | value_offset (toval), |
582 | value_bitpos (toval), | |
583 | value_bitsize (toval), | |
c906108c SS |
584 | fromval); |
585 | break; | |
586 | ||
587 | case lval_memory: | |
588 | { | |
fc1a4b47 | 589 | const gdb_byte *dest_buffer; |
c5aa993b JM |
590 | CORE_ADDR changed_addr; |
591 | int changed_len; | |
10c42a71 | 592 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 593 | |
df407dfe | 594 | if (value_bitsize (toval)) |
c5aa993b | 595 | { |
c906108c SS |
596 | /* We assume that the argument to read_memory is in units of |
597 | host chars. FIXME: Is that correct? */ | |
df407dfe AC |
598 | changed_len = (value_bitpos (toval) |
599 | + value_bitsize (toval) | |
c5aa993b JM |
600 | + HOST_CHAR_BIT - 1) |
601 | / HOST_CHAR_BIT; | |
c906108c SS |
602 | |
603 | if (changed_len > (int) sizeof (LONGEST)) | |
8a3fe4f8 | 604 | error (_("Can't handle bitfields which don't fit in a %d bit word."), |
baa6f10b | 605 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 606 | |
df407dfe | 607 | read_memory (VALUE_ADDRESS (toval) + value_offset (toval), |
c906108c SS |
608 | buffer, changed_len); |
609 | modify_field (buffer, value_as_long (fromval), | |
df407dfe AC |
610 | value_bitpos (toval), value_bitsize (toval)); |
611 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); | |
c906108c SS |
612 | dest_buffer = buffer; |
613 | } | |
c906108c SS |
614 | else |
615 | { | |
df407dfe | 616 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); |
c906108c | 617 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 618 | dest_buffer = value_contents (fromval); |
c906108c SS |
619 | } |
620 | ||
621 | write_memory (changed_addr, dest_buffer, changed_len); | |
9a4105ab AC |
622 | if (deprecated_memory_changed_hook) |
623 | deprecated_memory_changed_hook (changed_addr, changed_len); | |
c906108c SS |
624 | } |
625 | break; | |
626 | ||
492254e9 | 627 | case lval_register: |
c906108c | 628 | { |
c906108c | 629 | struct frame_info *frame; |
ff2e87ac | 630 | int value_reg; |
c906108c SS |
631 | |
632 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
633 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
634 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
635 | |
636 | if (!frame) | |
8a3fe4f8 | 637 | error (_("Value being assigned to is no longer active.")); |
492254e9 | 638 | |
c1afe53d UW |
639 | if (gdbarch_convert_register_p |
640 | (current_gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 641 | { |
ff2e87ac AC |
642 | /* If TOVAL is a special machine register requiring |
643 | conversion of program values to a special raw format. */ | |
c1afe53d UW |
644 | gdbarch_value_to_register (current_gdbarch, |
645 | frame, VALUE_REGNUM (toval), | |
646 | type, value_contents (fromval)); | |
492254e9 | 647 | } |
c906108c | 648 | else |
492254e9 | 649 | { |
df407dfe | 650 | if (value_bitsize (toval)) |
00fa51f6 UW |
651 | { |
652 | int changed_len; | |
653 | gdb_byte buffer[sizeof (LONGEST)]; | |
654 | ||
655 | changed_len = (value_bitpos (toval) | |
656 | + value_bitsize (toval) | |
657 | + HOST_CHAR_BIT - 1) | |
658 | / HOST_CHAR_BIT; | |
659 | ||
660 | if (changed_len > (int) sizeof (LONGEST)) | |
661 | error (_("Can't handle bitfields which don't fit in a %d bit word."), | |
662 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
663 | ||
664 | get_frame_register_bytes (frame, value_reg, | |
665 | value_offset (toval), | |
666 | changed_len, buffer); | |
667 | ||
668 | modify_field (buffer, value_as_long (fromval), | |
669 | value_bitpos (toval), value_bitsize (toval)); | |
670 | ||
671 | put_frame_register_bytes (frame, value_reg, | |
672 | value_offset (toval), | |
673 | changed_len, buffer); | |
674 | } | |
c906108c | 675 | else |
00fa51f6 UW |
676 | { |
677 | put_frame_register_bytes (frame, value_reg, | |
678 | value_offset (toval), | |
679 | TYPE_LENGTH (type), | |
680 | value_contents (fromval)); | |
681 | } | |
ff2e87ac | 682 | } |
00fa51f6 | 683 | |
9a4105ab AC |
684 | if (deprecated_register_changed_hook) |
685 | deprecated_register_changed_hook (-1); | |
f4c5303c | 686 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 687 | break; |
c906108c | 688 | } |
492254e9 | 689 | |
c906108c | 690 | default: |
8a3fe4f8 | 691 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
692 | } |
693 | ||
cb741690 DJ |
694 | /* Assigning to the stack pointer, frame pointer, and other |
695 | (architecture and calling convention specific) registers may | |
696 | cause the frame cache to be out of date. Assigning to memory | |
697 | also can. We just do this on all assignments to registers or | |
698 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
699 | switch (VALUE_LVAL (toval)) | |
700 | { | |
701 | case lval_memory: | |
702 | case lval_register: | |
cb741690 DJ |
703 | |
704 | reinit_frame_cache (); | |
705 | ||
706 | /* Having destoroyed the frame cache, restore the selected frame. */ | |
707 | ||
708 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
709 | doing this. Instead of constantly saving/restoring the | |
710 | frame. Why not create a get_selected_frame() function that, | |
711 | having saved the selected frame's ID can automatically | |
712 | re-find the previously selected frame automatically. */ | |
713 | ||
714 | { | |
715 | struct frame_info *fi = frame_find_by_id (old_frame); | |
716 | if (fi != NULL) | |
717 | select_frame (fi); | |
718 | } | |
719 | ||
720 | break; | |
721 | default: | |
722 | break; | |
723 | } | |
724 | ||
c906108c SS |
725 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
726 | If the field is signed, and is negative, then sign extend. */ | |
df407dfe AC |
727 | if ((value_bitsize (toval) > 0) |
728 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
729 | { |
730 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 731 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
732 | |
733 | fieldval &= valmask; | |
734 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
735 | fieldval |= ~valmask; | |
736 | ||
737 | fromval = value_from_longest (type, fieldval); | |
738 | } | |
739 | ||
740 | val = value_copy (toval); | |
0fd88904 | 741 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 742 | TYPE_LENGTH (type)); |
04624583 | 743 | deprecated_set_value_type (val, type); |
4754a64e | 744 | val = value_change_enclosing_type (val, value_enclosing_type (fromval)); |
13c3b5f5 | 745 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 746 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c5aa993b | 747 | |
c906108c SS |
748 | return val; |
749 | } | |
750 | ||
751 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
752 | ||
f23631e4 AC |
753 | struct value * |
754 | value_repeat (struct value *arg1, int count) | |
c906108c | 755 | { |
f23631e4 | 756 | struct value *val; |
c906108c SS |
757 | |
758 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 759 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 760 | if (count < 1) |
8a3fe4f8 | 761 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 762 | |
4754a64e | 763 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 764 | |
df407dfe | 765 | read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1), |
990a07ab | 766 | value_contents_all_raw (val), |
4754a64e | 767 | TYPE_LENGTH (value_enclosing_type (val))); |
c906108c | 768 | VALUE_LVAL (val) = lval_memory; |
df407dfe | 769 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1); |
c906108c SS |
770 | |
771 | return val; | |
772 | } | |
773 | ||
f23631e4 | 774 | struct value * |
fba45db2 | 775 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 776 | { |
f23631e4 | 777 | struct value *val; |
c906108c SS |
778 | struct frame_info *frame = NULL; |
779 | ||
780 | if (!b) | |
781 | frame = NULL; /* Use selected frame. */ | |
782 | else if (symbol_read_needs_frame (var)) | |
783 | { | |
784 | frame = block_innermost_frame (b); | |
785 | if (!frame) | |
c5aa993b | 786 | { |
c906108c | 787 | if (BLOCK_FUNCTION (b) |
de5ad195 | 788 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 789 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 790 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 791 | else |
8a3fe4f8 | 792 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 793 | } |
c906108c SS |
794 | } |
795 | ||
796 | val = read_var_value (var, frame); | |
797 | if (!val) | |
8a3fe4f8 | 798 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
799 | |
800 | return val; | |
801 | } | |
802 | ||
803 | /* Given a value which is an array, return a value which is a pointer to its | |
804 | first element, regardless of whether or not the array has a nonzero lower | |
805 | bound. | |
806 | ||
807 | FIXME: A previous comment here indicated that this routine should be | |
808 | substracting the array's lower bound. It's not clear to me that this | |
809 | is correct. Given an array subscripting operation, it would certainly | |
810 | work to do the adjustment here, essentially computing: | |
811 | ||
812 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
813 | ||
814 | However I believe a more appropriate and logical place to account for | |
815 | the lower bound is to do so in value_subscript, essentially computing: | |
816 | ||
817 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
818 | ||
819 | As further evidence consider what would happen with operations other | |
820 | than array subscripting, where the caller would get back a value that | |
821 | had an address somewhere before the actual first element of the array, | |
822 | and the information about the lower bound would be lost because of | |
823 | the coercion to pointer type. | |
c5aa993b | 824 | */ |
c906108c | 825 | |
f23631e4 AC |
826 | struct value * |
827 | value_coerce_array (struct value *arg1) | |
c906108c | 828 | { |
df407dfe | 829 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
830 | |
831 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 832 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 833 | |
4478b372 | 834 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
df407dfe | 835 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); |
c906108c SS |
836 | } |
837 | ||
838 | /* Given a value which is a function, return a value which is a pointer | |
839 | to it. */ | |
840 | ||
f23631e4 AC |
841 | struct value * |
842 | value_coerce_function (struct value *arg1) | |
c906108c | 843 | { |
f23631e4 | 844 | struct value *retval; |
c906108c SS |
845 | |
846 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 847 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 848 | |
df407dfe AC |
849 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
850 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); | |
c906108c | 851 | return retval; |
c5aa993b | 852 | } |
c906108c SS |
853 | |
854 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
855 | ||
f23631e4 AC |
856 | struct value * |
857 | value_addr (struct value *arg1) | |
c906108c | 858 | { |
f23631e4 | 859 | struct value *arg2; |
c906108c | 860 | |
df407dfe | 861 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
862 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
863 | { | |
864 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
865 | We keep the same location information, which is efficient, |
866 | and allows &(&X) to get the location containing the reference. */ | |
c906108c | 867 | arg2 = value_copy (arg1); |
04624583 | 868 | deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type))); |
c906108c SS |
869 | return arg2; |
870 | } | |
871 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
872 | return value_coerce_function (arg1); | |
873 | ||
874 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 875 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 876 | |
c5aa993b | 877 | /* Get target memory address */ |
df407dfe | 878 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
4478b372 | 879 | (VALUE_ADDRESS (arg1) |
df407dfe | 880 | + value_offset (arg1) |
13c3b5f5 | 881 | + value_embedded_offset (arg1))); |
c906108c SS |
882 | |
883 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 884 | full derived object's type ... */ |
4754a64e | 885 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1))); |
c5aa993b | 886 | /* ... and also the relative position of the subobject in the full object */ |
b44d461b | 887 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
888 | return arg2; |
889 | } | |
890 | ||
fb933624 DJ |
891 | /* Return a reference value for the object for which ARG1 is the contents. */ |
892 | ||
893 | struct value * | |
894 | value_ref (struct value *arg1) | |
895 | { | |
896 | struct value *arg2; | |
897 | ||
898 | struct type *type = check_typedef (value_type (arg1)); | |
899 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
900 | return arg1; | |
901 | ||
902 | arg2 = value_addr (arg1); | |
903 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
904 | return arg2; | |
905 | } | |
906 | ||
c906108c SS |
907 | /* Given a value of a pointer type, apply the C unary * operator to it. */ |
908 | ||
f23631e4 AC |
909 | struct value * |
910 | value_ind (struct value *arg1) | |
c906108c SS |
911 | { |
912 | struct type *base_type; | |
f23631e4 | 913 | struct value *arg2; |
c906108c | 914 | |
994b9211 | 915 | arg1 = coerce_array (arg1); |
c906108c | 916 | |
df407dfe | 917 | base_type = check_typedef (value_type (arg1)); |
c906108c | 918 | |
c906108c SS |
919 | /* Allow * on an integer so we can cast it to whatever we want. |
920 | This returns an int, which seems like the most C-like thing | |
921 | to do. "long long" variables are rare enough that | |
922 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
923 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 | 924 | return value_at_lazy (builtin_type_int, |
fef862e5 | 925 | (CORE_ADDR) value_as_address (arg1)); |
c906108c SS |
926 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
927 | { | |
928 | struct type *enc_type; | |
929 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 930 | /* Get the real type of the enclosing object */ |
4754a64e | 931 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 932 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
933 | |
934 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
935 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
936 | /* For functions, go through find_function_addr, which knows | |
937 | how to handle function descriptors. */ | |
938 | arg2 = value_at_lazy (enc_type, find_function_addr (arg1, NULL)); | |
939 | else | |
940 | /* Retrieve the enclosing object pointed to */ | |
941 | arg2 = value_at_lazy (enc_type, (value_as_address (arg1) | |
942 | - value_pointed_to_offset (arg1))); | |
943 | ||
c5aa993b | 944 | /* Re-adjust type */ |
04624583 | 945 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
c906108c | 946 | /* Add embedding info */ |
2b127877 | 947 | arg2 = value_change_enclosing_type (arg2, enc_type); |
b44d461b | 948 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c SS |
949 | |
950 | /* We may be pointing to an object of some derived type */ | |
951 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
952 | return arg2; | |
953 | } | |
954 | ||
8a3fe4f8 | 955 | error (_("Attempt to take contents of a non-pointer value.")); |
c5aa993b | 956 | return 0; /* For lint -- never reached */ |
c906108c SS |
957 | } |
958 | \f | |
c906108c SS |
959 | /* Create a value for an array by allocating space in the inferior, copying |
960 | the data into that space, and then setting up an array value. | |
961 | ||
962 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
963 | populated from the values passed in ELEMVEC. | |
964 | ||
965 | The element type of the array is inherited from the type of the | |
966 | first element, and all elements must have the same size (though we | |
967 | don't currently enforce any restriction on their types). */ | |
968 | ||
f23631e4 AC |
969 | struct value * |
970 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
971 | { |
972 | int nelem; | |
973 | int idx; | |
974 | unsigned int typelength; | |
f23631e4 | 975 | struct value *val; |
c906108c SS |
976 | struct type *rangetype; |
977 | struct type *arraytype; | |
978 | CORE_ADDR addr; | |
979 | ||
980 | /* Validate that the bounds are reasonable and that each of the elements | |
981 | have the same size. */ | |
982 | ||
983 | nelem = highbound - lowbound + 1; | |
984 | if (nelem <= 0) | |
985 | { | |
8a3fe4f8 | 986 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 987 | } |
4754a64e | 988 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
989 | for (idx = 1; idx < nelem; idx++) |
990 | { | |
4754a64e | 991 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 992 | { |
8a3fe4f8 | 993 | error (_("array elements must all be the same size")); |
c906108c SS |
994 | } |
995 | } | |
996 | ||
997 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
998 | lowbound, highbound); | |
c5aa993b | 999 | arraytype = create_array_type ((struct type *) NULL, |
4754a64e | 1000 | value_enclosing_type (elemvec[0]), rangetype); |
c906108c SS |
1001 | |
1002 | if (!current_language->c_style_arrays) | |
1003 | { | |
1004 | val = allocate_value (arraytype); | |
1005 | for (idx = 0; idx < nelem; idx++) | |
1006 | { | |
990a07ab | 1007 | memcpy (value_contents_all_raw (val) + (idx * typelength), |
46615f07 | 1008 | value_contents_all (elemvec[idx]), |
c906108c SS |
1009 | typelength); |
1010 | } | |
c906108c SS |
1011 | return val; |
1012 | } | |
1013 | ||
1014 | /* Allocate space to store the array in the inferior, and then initialize | |
1015 | it by copying in each element. FIXME: Is it worth it to create a | |
1016 | local buffer in which to collect each value and then write all the | |
1017 | bytes in one operation? */ | |
1018 | ||
1019 | addr = allocate_space_in_inferior (nelem * typelength); | |
1020 | for (idx = 0; idx < nelem; idx++) | |
1021 | { | |
46615f07 AC |
1022 | write_memory (addr + (idx * typelength), |
1023 | value_contents_all (elemvec[idx]), | |
c906108c SS |
1024 | typelength); |
1025 | } | |
1026 | ||
1027 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1028 | ||
00a4c844 | 1029 | val = value_at_lazy (arraytype, addr); |
c906108c SS |
1030 | return (val); |
1031 | } | |
1032 | ||
1033 | /* Create a value for a string constant by allocating space in the inferior, | |
1034 | copying the data into that space, and returning the address with type | |
1035 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1036 | of characters. | |
1037 | Note that string types are like array of char types with a lower bound of | |
1038 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1039 | embedded null bytes. */ | |
1040 | ||
f23631e4 | 1041 | struct value * |
fba45db2 | 1042 | value_string (char *ptr, int len) |
c906108c | 1043 | { |
f23631e4 | 1044 | struct value *val; |
c906108c SS |
1045 | int lowbound = current_language->string_lower_bound; |
1046 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1047 | builtin_type_int, | |
1048 | lowbound, len + lowbound - 1); | |
1049 | struct type *stringtype | |
c5aa993b | 1050 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1051 | CORE_ADDR addr; |
1052 | ||
1053 | if (current_language->c_style_arrays == 0) | |
1054 | { | |
1055 | val = allocate_value (stringtype); | |
990a07ab | 1056 | memcpy (value_contents_raw (val), ptr, len); |
c906108c SS |
1057 | return val; |
1058 | } | |
1059 | ||
1060 | ||
1061 | /* Allocate space to store the string in the inferior, and then | |
1062 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1063 | ||
1064 | addr = allocate_space_in_inferior (len); | |
47b667de | 1065 | write_memory (addr, (gdb_byte *) ptr, len); |
c906108c | 1066 | |
00a4c844 | 1067 | val = value_at_lazy (stringtype, addr); |
c906108c SS |
1068 | return (val); |
1069 | } | |
1070 | ||
f23631e4 | 1071 | struct value * |
fba45db2 | 1072 | value_bitstring (char *ptr, int len) |
c906108c | 1073 | { |
f23631e4 | 1074 | struct value *val; |
c906108c SS |
1075 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1076 | 0, len - 1); | |
c5aa993b | 1077 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1078 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1079 | val = allocate_value (type); | |
990a07ab | 1080 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1081 | return val; |
1082 | } | |
1083 | \f | |
1084 | /* See if we can pass arguments in T2 to a function which takes arguments | |
ad2f7632 DJ |
1085 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated |
1086 | vector. If some arguments need coercion of some sort, then the coerced | |
1087 | values are written into T2. Return value is 0 if the arguments could be | |
1088 | matched, or the position at which they differ if not. | |
c906108c SS |
1089 | |
1090 | STATICP is nonzero if the T1 argument list came from a | |
ad2f7632 DJ |
1091 | static member function. T2 will still include the ``this'' pointer, |
1092 | but it will be skipped. | |
c906108c SS |
1093 | |
1094 | For non-static member functions, we ignore the first argument, | |
1095 | which is the type of the instance variable. This is because we want | |
1096 | to handle calls with objects from derived classes. This is not | |
1097 | entirely correct: we should actually check to make sure that a | |
1098 | requested operation is type secure, shouldn't we? FIXME. */ | |
1099 | ||
1100 | static int | |
ad2f7632 DJ |
1101 | typecmp (int staticp, int varargs, int nargs, |
1102 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1103 | { |
1104 | int i; | |
1105 | ||
1106 | if (t2 == 0) | |
e2e0b3e5 | 1107 | internal_error (__FILE__, __LINE__, _("typecmp: no argument list")); |
ad2f7632 | 1108 | |
4a1970e4 DJ |
1109 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ |
1110 | if (staticp) | |
ad2f7632 DJ |
1111 | t2 ++; |
1112 | ||
1113 | for (i = 0; | |
1114 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1115 | i++) | |
c906108c | 1116 | { |
c5aa993b | 1117 | struct type *tt1, *tt2; |
ad2f7632 | 1118 | |
c5aa993b JM |
1119 | if (!t2[i]) |
1120 | return i + 1; | |
ad2f7632 DJ |
1121 | |
1122 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1123 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1124 | |
c906108c | 1125 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1126 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1127 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1128 | { | |
1129 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1130 | t2[i] = value_coerce_array (t2[i]); | |
1131 | else | |
fb933624 | 1132 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1133 | continue; |
1134 | } | |
1135 | ||
802db21b DB |
1136 | /* djb - 20000715 - Until the new type structure is in the |
1137 | place, and we can attempt things like implicit conversions, | |
1138 | we need to do this so you can take something like a map<const | |
1139 | char *>, and properly access map["hello"], because the | |
1140 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1141 | and the argument will be a pointer to a char. */ |
802db21b DB |
1142 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1143 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1144 | { | |
1145 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1146 | } | |
1147 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1148 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1149 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1150 | { |
802db21b | 1151 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1152 | } |
c5aa993b JM |
1153 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1154 | continue; | |
c906108c SS |
1155 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1156 | ||
1157 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
1158 | of the ARM), but as a quick kludge, just check for the same type |
1159 | code. */ | |
df407dfe | 1160 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1161 | return i + 1; |
c906108c | 1162 | } |
ad2f7632 | 1163 | if (varargs || t2[i] == NULL) |
c5aa993b | 1164 | return 0; |
ad2f7632 | 1165 | return i + 1; |
c906108c SS |
1166 | } |
1167 | ||
1168 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1169 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1170 | and search in it assuming it has (class) type TYPE. | |
1171 | If found, return value, else return NULL. | |
1172 | ||
1173 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1174 | look for a baseclass named NAME. */ | |
1175 | ||
f23631e4 AC |
1176 | static struct value * |
1177 | search_struct_field (char *name, struct value *arg1, int offset, | |
aa1ee363 | 1178 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1179 | { |
1180 | int i; | |
1181 | int nbases = TYPE_N_BASECLASSES (type); | |
1182 | ||
1183 | CHECK_TYPEDEF (type); | |
1184 | ||
c5aa993b | 1185 | if (!looking_for_baseclass) |
c906108c SS |
1186 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1187 | { | |
1188 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1189 | ||
db577aea | 1190 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1191 | { |
f23631e4 | 1192 | struct value *v; |
c906108c | 1193 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
1194 | { |
1195 | v = value_static_field (type, i); | |
1196 | if (v == 0) | |
8a3fe4f8 | 1197 | error (_("field %s is nonexistent or has been optimised out"), |
2c2738a0 DC |
1198 | name); |
1199 | } | |
c906108c | 1200 | else |
2c2738a0 DC |
1201 | { |
1202 | v = value_primitive_field (arg1, offset, i, type); | |
1203 | if (v == 0) | |
8a3fe4f8 | 1204 | error (_("there is no field named %s"), name); |
2c2738a0 | 1205 | } |
c906108c SS |
1206 | return v; |
1207 | } | |
1208 | ||
1209 | if (t_field_name | |
1210 | && (t_field_name[0] == '\0' | |
1211 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1212 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1213 | { |
1214 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1215 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1216 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1217 | { | |
1218 | /* Look for a match through the fields of an anonymous union, | |
1219 | or anonymous struct. C++ provides anonymous unions. | |
1220 | ||
1b831c93 AC |
1221 | In the GNU Chill (now deleted from GDB) |
1222 | implementation of variant record types, each | |
1223 | <alternative field> has an (anonymous) union type, | |
1224 | each member of the union represents a <variant | |
1225 | alternative>. Each <variant alternative> is | |
1226 | represented as a struct, with a member for each | |
1227 | <variant field>. */ | |
c5aa993b | 1228 | |
f23631e4 | 1229 | struct value *v; |
c906108c SS |
1230 | int new_offset = offset; |
1231 | ||
db034ac5 AC |
1232 | /* This is pretty gross. In G++, the offset in an |
1233 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1234 | enclosing struct. In the GNU Chill (now deleted |
1235 | from GDB) implementation of variant records, the | |
1236 | bitpos is zero in an anonymous union field, so we | |
1237 | have to add the offset of the union here. */ | |
c906108c SS |
1238 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1239 | || (TYPE_NFIELDS (field_type) > 0 | |
1240 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1241 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1242 | ||
1243 | v = search_struct_field (name, arg1, new_offset, field_type, | |
1244 | looking_for_baseclass); | |
1245 | if (v) | |
1246 | return v; | |
1247 | } | |
1248 | } | |
1249 | } | |
1250 | ||
c5aa993b | 1251 | for (i = 0; i < nbases; i++) |
c906108c | 1252 | { |
f23631e4 | 1253 | struct value *v; |
c906108c SS |
1254 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
1255 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
1256 | hit them. But it could happen that the base part's member name |
1257 | is not yet filled in. */ | |
c906108c SS |
1258 | int found_baseclass = (looking_for_baseclass |
1259 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 1260 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
1261 | |
1262 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1263 | { | |
1264 | int boffset; | |
f23631e4 | 1265 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
1266 | |
1267 | boffset = baseclass_offset (type, i, | |
0fd88904 | 1268 | value_contents (arg1) + offset, |
c906108c | 1269 | VALUE_ADDRESS (arg1) |
df407dfe | 1270 | + value_offset (arg1) + offset); |
c906108c | 1271 | if (boffset == -1) |
8a3fe4f8 | 1272 | error (_("virtual baseclass botch")); |
c906108c SS |
1273 | |
1274 | /* The virtual base class pointer might have been clobbered by the | |
1275 | user program. Make sure that it still points to a valid memory | |
1276 | location. */ | |
1277 | ||
1278 | boffset += offset; | |
1279 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1280 | { | |
1281 | CORE_ADDR base_addr; | |
c5aa993b | 1282 | |
df407dfe | 1283 | base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset; |
990a07ab | 1284 | if (target_read_memory (base_addr, value_contents_raw (v2), |
c906108c | 1285 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 1286 | error (_("virtual baseclass botch")); |
c906108c SS |
1287 | VALUE_LVAL (v2) = lval_memory; |
1288 | VALUE_ADDRESS (v2) = base_addr; | |
1289 | } | |
1290 | else | |
1291 | { | |
1292 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1293 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
65d3800a | 1294 | VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1); |
f5cf64a7 | 1295 | set_value_offset (v2, value_offset (arg1) + boffset); |
d69fe07e | 1296 | if (value_lazy (arg1)) |
dfa52d88 | 1297 | set_value_lazy (v2, 1); |
c906108c | 1298 | else |
990a07ab AC |
1299 | memcpy (value_contents_raw (v2), |
1300 | value_contents_raw (arg1) + boffset, | |
c906108c SS |
1301 | TYPE_LENGTH (basetype)); |
1302 | } | |
1303 | ||
1304 | if (found_baseclass) | |
1305 | return v2; | |
1306 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
1307 | looking_for_baseclass); | |
1308 | } | |
1309 | else if (found_baseclass) | |
1310 | v = value_primitive_field (arg1, offset, i, type); | |
1311 | else | |
1312 | v = search_struct_field (name, arg1, | |
c5aa993b | 1313 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 1314 | basetype, looking_for_baseclass); |
c5aa993b JM |
1315 | if (v) |
1316 | return v; | |
c906108c SS |
1317 | } |
1318 | return NULL; | |
1319 | } | |
1320 | ||
1321 | ||
1322 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
1323 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
1324 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
1325 | * looking (in case VALADDR is the contents of an enclosing object). | |
1326 | * | |
1327 | * This routine recurses on the primary base of the derived class because | |
1328 | * the virtual base entries of the primary base appear before the other | |
1329 | * virtual base entries. | |
1330 | * | |
1331 | * If the virtual base is not found, a negative integer is returned. | |
1332 | * The magnitude of the negative integer is the number of entries in | |
1333 | * the virtual table to skip over (entries corresponding to various | |
1334 | * ancestral classes in the chain of primary bases). | |
1335 | * | |
1336 | * Important: This assumes the HP / Taligent C++ runtime | |
1337 | * conventions. Use baseclass_offset() instead to deal with g++ | |
1338 | * conventions. */ | |
1339 | ||
1340 | void | |
c84141d6 | 1341 | find_rt_vbase_offset (struct type *type, struct type *basetype, |
fc1a4b47 | 1342 | const gdb_byte *valaddr, int offset, int *boffset_p, |
c84141d6 | 1343 | int *skip_p) |
c906108c | 1344 | { |
c5aa993b JM |
1345 | int boffset; /* offset of virtual base */ |
1346 | int index; /* displacement to use in virtual table */ | |
c906108c | 1347 | int skip; |
c5aa993b | 1348 | |
f23631e4 | 1349 | struct value *vp; |
c5aa993b JM |
1350 | CORE_ADDR vtbl; /* the virtual table pointer */ |
1351 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
1352 | |
1353 | /* Look for the virtual base recursively in the primary base, first. | |
1354 | * This is because the derived class object and its primary base | |
1355 | * subobject share the primary virtual table. */ | |
c5aa993b | 1356 | |
c906108c | 1357 | boffset = 0; |
c5aa993b | 1358 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
1359 | if (pbc) |
1360 | { | |
1361 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
1362 | if (skip < 0) | |
c5aa993b JM |
1363 | { |
1364 | *boffset_p = boffset; | |
1365 | *skip_p = -1; | |
1366 | return; | |
1367 | } | |
c906108c SS |
1368 | } |
1369 | else | |
1370 | skip = 0; | |
1371 | ||
1372 | ||
1373 | /* Find the index of the virtual base according to HP/Taligent | |
1374 | runtime spec. (Depth-first, left-to-right.) */ | |
1375 | index = virtual_base_index_skip_primaries (basetype, type); | |
1376 | ||
c5aa993b JM |
1377 | if (index < 0) |
1378 | { | |
1379 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
1380 | *boffset_p = 0; | |
1381 | return; | |
1382 | } | |
c906108c | 1383 | |
c5aa993b | 1384 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 1385 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 1386 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 1387 | |
c5aa993b | 1388 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c | 1389 | if (vtbl == 0) |
8a3fe4f8 | 1390 | error (_("Couldn't find virtual table -- object may not be constructed yet.")); |
c906108c SS |
1391 | |
1392 | ||
1393 | /* Find virtual base's offset -- jump over entries for primary base | |
1394 | * ancestors, then use the index computed above. But also adjust by | |
1395 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
1396 | * virtual base entries. Offset is negative -- virtual base entries | |
1397 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 1398 | |
070ad9f0 | 1399 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 1400 | & use long type */ |
c906108c SS |
1401 | |
1402 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
00a4c844 | 1403 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START)); |
c906108c SS |
1404 | boffset = value_as_long (vp); |
1405 | *skip_p = -1; | |
1406 | *boffset_p = boffset; | |
1407 | return; | |
1408 | } | |
1409 | ||
1410 | ||
1411 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1412 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1413 | and search in it assuming it has (class) type TYPE. | |
1414 | If found, return value, else if name matched and args not return (value)-1, | |
1415 | else return NULL. */ | |
1416 | ||
f23631e4 AC |
1417 | static struct value * |
1418 | search_struct_method (char *name, struct value **arg1p, | |
1419 | struct value **args, int offset, | |
aa1ee363 | 1420 | int *static_memfuncp, struct type *type) |
c906108c SS |
1421 | { |
1422 | int i; | |
f23631e4 | 1423 | struct value *v; |
c906108c SS |
1424 | int name_matched = 0; |
1425 | char dem_opname[64]; | |
1426 | ||
1427 | CHECK_TYPEDEF (type); | |
1428 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1429 | { | |
1430 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1431 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1432 | if (strncmp (t_field_name, "__", 2) == 0 || |
1433 | strncmp (t_field_name, "op", 2) == 0 || | |
1434 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1435 | { |
c5aa993b JM |
1436 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1437 | t_field_name = dem_opname; | |
1438 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1439 | t_field_name = dem_opname; |
c906108c | 1440 | } |
db577aea | 1441 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1442 | { |
1443 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1444 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1445 | name_matched = 1; |
c906108c | 1446 | |
de17c821 | 1447 | check_stub_method_group (type, i); |
c906108c | 1448 | if (j > 0 && args == 0) |
8a3fe4f8 | 1449 | error (_("cannot resolve overloaded method `%s': no arguments supplied"), name); |
acf5ed49 | 1450 | else if (j == 0 && args == 0) |
c906108c | 1451 | { |
acf5ed49 DJ |
1452 | v = value_fn_field (arg1p, f, j, type, offset); |
1453 | if (v != NULL) | |
1454 | return v; | |
c906108c | 1455 | } |
acf5ed49 DJ |
1456 | else |
1457 | while (j >= 0) | |
1458 | { | |
acf5ed49 | 1459 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1460 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1461 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1462 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1463 | { | |
1464 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1465 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
1466 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
1467 | *static_memfuncp = 1; | |
1468 | v = value_fn_field (arg1p, f, j, type, offset); | |
1469 | if (v != NULL) | |
1470 | return v; | |
1471 | } | |
1472 | j--; | |
1473 | } | |
c906108c SS |
1474 | } |
1475 | } | |
1476 | ||
1477 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1478 | { | |
1479 | int base_offset; | |
1480 | ||
1481 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1482 | { | |
c5aa993b JM |
1483 | if (TYPE_HAS_VTABLE (type)) |
1484 | { | |
1485 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 1486 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
1487 | int skip; |
1488 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
46615f07 | 1489 | value_contents_all (*arg1p), |
13c3b5f5 | 1490 | offset + value_embedded_offset (*arg1p), |
c5aa993b JM |
1491 | &base_offset, &skip); |
1492 | if (skip >= 0) | |
8a3fe4f8 | 1493 | error (_("Virtual base class offset not found in vtable")); |
c5aa993b JM |
1494 | } |
1495 | else | |
1496 | { | |
1497 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
fc1a4b47 | 1498 | const gdb_byte *base_valaddr; |
c5aa993b JM |
1499 | |
1500 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
1501 | user program. Make sure that it still points to a valid memory |
1502 | location. */ | |
c5aa993b JM |
1503 | |
1504 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
1505 | { | |
fc1a4b47 | 1506 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
c5aa993b | 1507 | if (target_read_memory (VALUE_ADDRESS (*arg1p) |
df407dfe | 1508 | + value_offset (*arg1p) + offset, |
0fd88904 | 1509 | tmp, TYPE_LENGTH (baseclass)) != 0) |
8a3fe4f8 | 1510 | error (_("virtual baseclass botch")); |
0fd88904 | 1511 | base_valaddr = tmp; |
c5aa993b JM |
1512 | } |
1513 | else | |
0fd88904 | 1514 | base_valaddr = value_contents (*arg1p) + offset; |
c5aa993b JM |
1515 | |
1516 | base_offset = | |
1517 | baseclass_offset (type, i, base_valaddr, | |
1518 | VALUE_ADDRESS (*arg1p) | |
df407dfe | 1519 | + value_offset (*arg1p) + offset); |
c5aa993b | 1520 | if (base_offset == -1) |
8a3fe4f8 | 1521 | error (_("virtual baseclass botch")); |
c5aa993b JM |
1522 | } |
1523 | } | |
c906108c SS |
1524 | else |
1525 | { | |
1526 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1527 | } |
c906108c SS |
1528 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
1529 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 1530 | if (v == (struct value *) - 1) |
c906108c SS |
1531 | { |
1532 | name_matched = 1; | |
1533 | } | |
1534 | else if (v) | |
1535 | { | |
1536 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 1537 | /* *arg1p = arg1_tmp; */ |
c906108c | 1538 | return v; |
c5aa993b | 1539 | } |
c906108c | 1540 | } |
c5aa993b | 1541 | if (name_matched) |
f23631e4 | 1542 | return (struct value *) - 1; |
c5aa993b JM |
1543 | else |
1544 | return NULL; | |
c906108c SS |
1545 | } |
1546 | ||
1547 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1548 | extract the component named NAME from the ultimate target structure/union | |
1549 | and return it as a value with its appropriate type. | |
1550 | ERR is used in the error message if *ARGP's type is wrong. | |
1551 | ||
1552 | C++: ARGS is a list of argument types to aid in the selection of | |
1553 | an appropriate method. Also, handle derived types. | |
1554 | ||
1555 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1556 | where the truthvalue of whether the function that was resolved was | |
1557 | a static member function or not is stored. | |
1558 | ||
1559 | ERR is an error message to be printed in case the field is not found. */ | |
1560 | ||
f23631e4 AC |
1561 | struct value * |
1562 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 1563 | char *name, int *static_memfuncp, char *err) |
c906108c | 1564 | { |
52f0bd74 | 1565 | struct type *t; |
f23631e4 | 1566 | struct value *v; |
c906108c | 1567 | |
994b9211 | 1568 | *argp = coerce_array (*argp); |
c906108c | 1569 | |
df407dfe | 1570 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1571 | |
1572 | /* Follow pointers until we get to a non-pointer. */ | |
1573 | ||
1574 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1575 | { | |
1576 | *argp = value_ind (*argp); | |
1577 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1578 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1579 | *argp = coerce_array (*argp); |
df407dfe | 1580 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1581 | } |
1582 | ||
c5aa993b | 1583 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 1584 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 1585 | error (_("Attempt to extract a component of a value that is not a %s."), err); |
c906108c SS |
1586 | |
1587 | /* Assume it's not, unless we see that it is. */ | |
1588 | if (static_memfuncp) | |
c5aa993b | 1589 | *static_memfuncp = 0; |
c906108c SS |
1590 | |
1591 | if (!args) | |
1592 | { | |
1593 | /* if there are no arguments ...do this... */ | |
1594 | ||
1595 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 1596 | is less work to be done. */ |
c906108c SS |
1597 | v = search_struct_field (name, *argp, 0, t, 0); |
1598 | if (v) | |
1599 | return v; | |
1600 | ||
1601 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 1602 | return it as a pointer to a method. */ |
c906108c SS |
1603 | |
1604 | if (destructor_name_p (name, t)) | |
8a3fe4f8 | 1605 | error (_("Cannot get value of destructor")); |
c906108c SS |
1606 | |
1607 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
1608 | ||
f23631e4 | 1609 | if (v == (struct value *) - 1) |
55b39184 | 1610 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
1611 | else if (v == 0) |
1612 | { | |
1613 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 1614 | error (_("There is no member or method named %s."), name); |
c906108c | 1615 | else |
8a3fe4f8 | 1616 | error (_("There is no member named %s."), name); |
c906108c SS |
1617 | } |
1618 | return v; | |
1619 | } | |
1620 | ||
1621 | if (destructor_name_p (name, t)) | |
1622 | { | |
1623 | if (!args[1]) | |
1624 | { | |
1625 | /* Destructors are a special case. */ | |
1626 | int m_index, f_index; | |
1627 | ||
1628 | v = NULL; | |
1629 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1630 | { | |
1631 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
1632 | f_index, NULL, 0); | |
1633 | } | |
1634 | if (v == NULL) | |
8a3fe4f8 | 1635 | error (_("could not find destructor function named %s."), name); |
c906108c SS |
1636 | else |
1637 | return v; | |
1638 | } | |
1639 | else | |
1640 | { | |
8a3fe4f8 | 1641 | error (_("destructor should not have any argument")); |
c906108c SS |
1642 | } |
1643 | } | |
1644 | else | |
1645 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 1646 | |
f23631e4 | 1647 | if (v == (struct value *) - 1) |
c906108c | 1648 | { |
8a3fe4f8 | 1649 | error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name); |
c906108c SS |
1650 | } |
1651 | else if (v == 0) | |
1652 | { | |
1653 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
1654 | hand it back. If it's not callable (i.e., a pointer to function), |
1655 | gdb should give an error. */ | |
c906108c SS |
1656 | v = search_struct_field (name, *argp, 0, t, 0); |
1657 | } | |
1658 | ||
1659 | if (!v) | |
8a3fe4f8 | 1660 | error (_("Structure has no component named %s."), name); |
c906108c SS |
1661 | return v; |
1662 | } | |
1663 | ||
1664 | /* Search through the methods of an object (and its bases) | |
1665 | * to find a specified method. Return the pointer to the | |
1666 | * fn_field list of overloaded instances. | |
1667 | * Helper function for value_find_oload_list. | |
1668 | * ARGP is a pointer to a pointer to a value (the object) | |
1669 | * METHOD is a string containing the method name | |
1670 | * OFFSET is the offset within the value | |
c906108c SS |
1671 | * TYPE is the assumed type of the object |
1672 | * NUM_FNS is the number of overloaded instances | |
1673 | * BASETYPE is set to the actual type of the subobject where the method is found | |
1674 | * BOFFSET is the offset of the base subobject where the method is found */ | |
1675 | ||
7a292a7a | 1676 | static struct fn_field * |
f23631e4 | 1677 | find_method_list (struct value **argp, char *method, int offset, |
4a1970e4 | 1678 | struct type *type, int *num_fns, |
fba45db2 | 1679 | struct type **basetype, int *boffset) |
c906108c SS |
1680 | { |
1681 | int i; | |
c5aa993b | 1682 | struct fn_field *f; |
c906108c SS |
1683 | CHECK_TYPEDEF (type); |
1684 | ||
1685 | *num_fns = 0; | |
1686 | ||
c5aa993b JM |
1687 | /* First check in object itself */ |
1688 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
1689 | { |
1690 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 1691 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 1692 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 1693 | { |
4a1970e4 DJ |
1694 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
1695 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
1696 | |
1697 | *num_fns = len; | |
c5aa993b JM |
1698 | *basetype = type; |
1699 | *boffset = offset; | |
4a1970e4 | 1700 | |
de17c821 DJ |
1701 | /* Resolve any stub methods. */ |
1702 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
1703 | |
1704 | return f; | |
c5aa993b JM |
1705 | } |
1706 | } | |
1707 | ||
c906108c SS |
1708 | /* Not found in object, check in base subobjects */ |
1709 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1710 | { | |
1711 | int base_offset; | |
1712 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1713 | { | |
c5aa993b JM |
1714 | if (TYPE_HAS_VTABLE (type)) |
1715 | { | |
1716 | /* HP aCC compiled type, search for virtual base offset | |
1717 | * according to HP/Taligent runtime spec. */ | |
1718 | int skip; | |
1719 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
46615f07 | 1720 | value_contents_all (*argp), |
13c3b5f5 | 1721 | offset + value_embedded_offset (*argp), |
c5aa993b JM |
1722 | &base_offset, &skip); |
1723 | if (skip >= 0) | |
8a3fe4f8 | 1724 | error (_("Virtual base class offset not found in vtable")); |
c5aa993b JM |
1725 | } |
1726 | else | |
1727 | { | |
1728 | /* probably g++ runtime model */ | |
df407dfe | 1729 | base_offset = value_offset (*argp) + offset; |
c5aa993b JM |
1730 | base_offset = |
1731 | baseclass_offset (type, i, | |
0fd88904 | 1732 | value_contents (*argp) + base_offset, |
c5aa993b JM |
1733 | VALUE_ADDRESS (*argp) + base_offset); |
1734 | if (base_offset == -1) | |
8a3fe4f8 | 1735 | error (_("virtual baseclass botch")); |
c5aa993b JM |
1736 | } |
1737 | } | |
1738 | else | |
1739 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
1740 | { |
1741 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1742 | } |
c906108c | 1743 | f = find_method_list (argp, method, base_offset + offset, |
4a1970e4 DJ |
1744 | TYPE_BASECLASS (type, i), num_fns, basetype, |
1745 | boffset); | |
c906108c | 1746 | if (f) |
c5aa993b | 1747 | return f; |
c906108c | 1748 | } |
c5aa993b | 1749 | return NULL; |
c906108c SS |
1750 | } |
1751 | ||
1752 | /* Return the list of overloaded methods of a specified name. | |
1753 | * ARGP is a pointer to a pointer to a value (the object) | |
1754 | * METHOD is the method name | |
1755 | * OFFSET is the offset within the value contents | |
c906108c SS |
1756 | * NUM_FNS is the number of overloaded instances |
1757 | * BASETYPE is set to the type of the base subobject that defines the method | |
1758 | * BOFFSET is the offset of the base subobject which defines the method */ | |
1759 | ||
1760 | struct fn_field * | |
f23631e4 | 1761 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
4a1970e4 DJ |
1762 | int *num_fns, struct type **basetype, |
1763 | int *boffset) | |
c906108c | 1764 | { |
c5aa993b | 1765 | struct type *t; |
c906108c | 1766 | |
df407dfe | 1767 | t = check_typedef (value_type (*argp)); |
c906108c | 1768 | |
c5aa993b | 1769 | /* code snarfed from value_struct_elt */ |
c906108c SS |
1770 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
1771 | { | |
1772 | *argp = value_ind (*argp); | |
1773 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1774 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1775 | *argp = coerce_array (*argp); |
df407dfe | 1776 | t = check_typedef (value_type (*argp)); |
c906108c | 1777 | } |
c5aa993b | 1778 | |
c5aa993b JM |
1779 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1780 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
8a3fe4f8 | 1781 | error (_("Attempt to extract a component of a value that is not a struct or union")); |
c5aa993b | 1782 | |
4a1970e4 | 1783 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); |
c906108c SS |
1784 | } |
1785 | ||
1786 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1787 | entry for "this" in the case of C++ methods), the number of | |
1788 | arguments NARGS, the NAME of a function whether it's a method or | |
1789 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1790 | overload resolution rules in ANSI C++, find the best function that | |
1791 | matches on the argument types according to the overload resolution | |
1792 | rules. | |
1793 | ||
1794 | In the case of class methods, the parameter OBJ is an object value | |
1795 | in which to search for overloaded methods. | |
1796 | ||
1797 | In the case of non-method functions, the parameter FSYM is a symbol | |
1798 | corresponding to one of the overloaded functions. | |
1799 | ||
1800 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1801 | non-standard coercions, 100 -> incompatible. | |
1802 | ||
1803 | If a method is being searched for, VALP will hold the value. | |
1804 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
1805 | ||
1806 | If a method is being searched for, and it is a static method, | |
1807 | then STATICP will point to a non-zero value. | |
1808 | ||
1809 | Note: This function does *not* check the value of | |
1810 | overload_resolution. Caller must check it to see whether overload | |
1811 | resolution is permitted. | |
c5aa993b | 1812 | */ |
c906108c SS |
1813 | |
1814 | int | |
fba45db2 | 1815 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 1816 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 1817 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c | 1818 | { |
7f8c9282 | 1819 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b | 1820 | |
8d577d32 | 1821 | int oload_champ; /* Index of best overloaded function */ |
c5aa993b | 1822 | |
c5aa993b JM |
1823 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ |
1824 | ||
f23631e4 | 1825 | struct value *temp = obj; |
c5aa993b JM |
1826 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
1827 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
1828 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
1829 | struct type *basetype = NULL; | |
c906108c | 1830 | int boffset; |
52f0bd74 | 1831 | int ix; |
4a1970e4 | 1832 | int static_offset; |
8d577d32 | 1833 | struct cleanup *old_cleanups = NULL; |
c906108c | 1834 | |
8d577d32 | 1835 | const char *obj_type_name = NULL; |
c5aa993b | 1836 | char *func_name = NULL; |
8d577d32 | 1837 | enum oload_classification match_quality; |
c906108c SS |
1838 | |
1839 | /* Get the list of overloaded methods or functions */ | |
1840 | if (method) | |
1841 | { | |
df407dfe | 1842 | obj_type_name = TYPE_NAME (value_type (obj)); |
c906108c | 1843 | /* Hack: evaluate_subexp_standard often passes in a pointer |
7b83ea04 | 1844 | value rather than the object itself, so try again */ |
c906108c | 1845 | if ((!obj_type_name || !*obj_type_name) && |
df407dfe AC |
1846 | (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR)) |
1847 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj))); | |
c906108c SS |
1848 | |
1849 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
1850 | &num_fns, |
1851 | &basetype, &boffset); | |
c906108c | 1852 | if (!fns_ptr || !num_fns) |
8a3fe4f8 | 1853 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
1854 | obj_type_name, |
1855 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1856 | name); | |
4a1970e4 DJ |
1857 | /* If we are dealing with stub method types, they should have |
1858 | been resolved by find_method_list via value_find_oload_method_list | |
1859 | above. */ | |
1860 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
8d577d32 DC |
1861 | oload_champ = find_oload_champ (arg_types, nargs, method, num_fns, |
1862 | fns_ptr, oload_syms, &oload_champ_bv); | |
c906108c SS |
1863 | } |
1864 | else | |
1865 | { | |
8d577d32 | 1866 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); |
c906108c | 1867 | |
d9639e13 DJ |
1868 | /* If we have a C++ name, try to extract just the function |
1869 | part. */ | |
1870 | if (qualified_name) | |
1871 | func_name = cp_func_name (qualified_name); | |
1872 | ||
1873 | /* If there was no C++ name, this must be a C-style function. | |
1874 | Just return the same symbol. Do the same if cp_func_name | |
1875 | fails for some reason. */ | |
8d577d32 | 1876 | if (func_name == NULL) |
7b83ea04 | 1877 | { |
917317f4 | 1878 | *symp = fsym; |
7b83ea04 AC |
1879 | return 0; |
1880 | } | |
917317f4 | 1881 | |
8d577d32 DC |
1882 | old_cleanups = make_cleanup (xfree, func_name); |
1883 | make_cleanup (xfree, oload_syms); | |
1884 | make_cleanup (xfree, oload_champ_bv); | |
1885 | ||
1886 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
1887 | func_name, | |
1888 | qualified_name, | |
1889 | &oload_syms, | |
1890 | &oload_champ_bv); | |
1891 | } | |
1892 | ||
1893 | /* Check how bad the best match is. */ | |
1894 | ||
1895 | match_quality | |
1896 | = classify_oload_match (oload_champ_bv, nargs, | |
1897 | oload_method_static (method, fns_ptr, | |
1898 | oload_champ)); | |
1899 | ||
1900 | if (match_quality == INCOMPATIBLE) | |
1901 | { | |
1902 | if (method) | |
8a3fe4f8 | 1903 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
1904 | obj_type_name, |
1905 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1906 | name); | |
1907 | else | |
8a3fe4f8 | 1908 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
1909 | func_name); |
1910 | } | |
1911 | else if (match_quality == NON_STANDARD) | |
1912 | { | |
1913 | if (method) | |
8a3fe4f8 | 1914 | warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"), |
8d577d32 DC |
1915 | obj_type_name, |
1916 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1917 | name); | |
1918 | else | |
8a3fe4f8 | 1919 | warning (_("Using non-standard conversion to match function %s to supplied arguments"), |
8d577d32 DC |
1920 | func_name); |
1921 | } | |
1922 | ||
1923 | if (method) | |
1924 | { | |
1925 | if (staticp != NULL) | |
1926 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
1927 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
1928 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
1929 | else | |
1930 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
1931 | } | |
1932 | else | |
1933 | { | |
1934 | *symp = oload_syms[oload_champ]; | |
1935 | } | |
1936 | ||
1937 | if (objp) | |
1938 | { | |
df407dfe AC |
1939 | if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR |
1940 | && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR) | |
8d577d32 DC |
1941 | { |
1942 | temp = value_addr (temp); | |
1943 | } | |
1944 | *objp = temp; | |
1945 | } | |
1946 | if (old_cleanups != NULL) | |
1947 | do_cleanups (old_cleanups); | |
1948 | ||
1949 | switch (match_quality) | |
1950 | { | |
1951 | case INCOMPATIBLE: | |
1952 | return 100; | |
1953 | case NON_STANDARD: | |
1954 | return 10; | |
1955 | default: /* STANDARD */ | |
1956 | return 0; | |
1957 | } | |
1958 | } | |
1959 | ||
1960 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
1961 | contained in QUALIFIED_NAME until it either finds a good match or | |
1962 | runs out of namespaces. It stores the overloaded functions in | |
1963 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
1964 | calling function is responsible for freeing *OLOAD_SYMS and | |
1965 | *OLOAD_CHAMP_BV. */ | |
1966 | ||
1967 | static int | |
1968 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
1969 | const char *func_name, | |
1970 | const char *qualified_name, | |
1971 | struct symbol ***oload_syms, | |
1972 | struct badness_vector **oload_champ_bv) | |
1973 | { | |
1974 | int oload_champ; | |
1975 | ||
1976 | find_oload_champ_namespace_loop (arg_types, nargs, | |
1977 | func_name, | |
1978 | qualified_name, 0, | |
1979 | oload_syms, oload_champ_bv, | |
1980 | &oload_champ); | |
1981 | ||
1982 | return oload_champ; | |
1983 | } | |
1984 | ||
1985 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
1986 | how deep we've looked for namespaces, and the champ is stored in | |
1987 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
1988 | if it isn't. | |
1989 | ||
1990 | It is the caller's responsibility to free *OLOAD_SYMS and | |
1991 | *OLOAD_CHAMP_BV. */ | |
1992 | ||
1993 | static int | |
1994 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
1995 | const char *func_name, | |
1996 | const char *qualified_name, | |
1997 | int namespace_len, | |
1998 | struct symbol ***oload_syms, | |
1999 | struct badness_vector **oload_champ_bv, | |
2000 | int *oload_champ) | |
2001 | { | |
2002 | int next_namespace_len = namespace_len; | |
2003 | int searched_deeper = 0; | |
2004 | int num_fns = 0; | |
2005 | struct cleanup *old_cleanups; | |
2006 | int new_oload_champ; | |
2007 | struct symbol **new_oload_syms; | |
2008 | struct badness_vector *new_oload_champ_bv; | |
2009 | char *new_namespace; | |
2010 | ||
2011 | if (next_namespace_len != 0) | |
2012 | { | |
2013 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2014 | next_namespace_len += 2; | |
c906108c | 2015 | } |
8d577d32 DC |
2016 | next_namespace_len |
2017 | += cp_find_first_component (qualified_name + next_namespace_len); | |
2018 | ||
2019 | /* Initialize these to values that can safely be xfree'd. */ | |
2020 | *oload_syms = NULL; | |
2021 | *oload_champ_bv = NULL; | |
c5aa993b | 2022 | |
8d577d32 DC |
2023 | /* First, see if we have a deeper namespace we can search in. If we |
2024 | get a good match there, use it. */ | |
2025 | ||
2026 | if (qualified_name[next_namespace_len] == ':') | |
2027 | { | |
2028 | searched_deeper = 1; | |
2029 | ||
2030 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2031 | func_name, qualified_name, | |
2032 | next_namespace_len, | |
2033 | oload_syms, oload_champ_bv, | |
2034 | oload_champ)) | |
2035 | { | |
2036 | return 1; | |
2037 | } | |
2038 | }; | |
2039 | ||
2040 | /* If we reach here, either we're in the deepest namespace or we | |
2041 | didn't find a good match in a deeper namespace. But, in the | |
2042 | latter case, we still have a bad match in a deeper namespace; | |
2043 | note that we might not find any match at all in the current | |
2044 | namespace. (There's always a match in the deepest namespace, | |
2045 | because this overload mechanism only gets called if there's a | |
2046 | function symbol to start off with.) */ | |
2047 | ||
2048 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
2049 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
2050 | new_namespace = alloca (namespace_len + 1); | |
2051 | strncpy (new_namespace, qualified_name, namespace_len); | |
2052 | new_namespace[namespace_len] = '\0'; | |
2053 | new_oload_syms = make_symbol_overload_list (func_name, | |
2054 | new_namespace); | |
2055 | while (new_oload_syms[num_fns]) | |
2056 | ++num_fns; | |
2057 | ||
2058 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2059 | NULL, new_oload_syms, | |
2060 | &new_oload_champ_bv); | |
2061 | ||
2062 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2063 | and return it. Case 2: We didn't find a good match, but we're | |
2064 | not the deepest function. Then go with the bad match that the | |
2065 | deeper function found. Case 3: We found a bad match, and we're | |
2066 | the deepest function. Then return what we found, even though | |
2067 | it's a bad match. */ | |
2068 | ||
2069 | if (new_oload_champ != -1 | |
2070 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2071 | { | |
2072 | *oload_syms = new_oload_syms; | |
2073 | *oload_champ = new_oload_champ; | |
2074 | *oload_champ_bv = new_oload_champ_bv; | |
2075 | do_cleanups (old_cleanups); | |
2076 | return 1; | |
2077 | } | |
2078 | else if (searched_deeper) | |
2079 | { | |
2080 | xfree (new_oload_syms); | |
2081 | xfree (new_oload_champ_bv); | |
2082 | discard_cleanups (old_cleanups); | |
2083 | return 0; | |
2084 | } | |
2085 | else | |
2086 | { | |
2087 | gdb_assert (new_oload_champ != -1); | |
2088 | *oload_syms = new_oload_syms; | |
2089 | *oload_champ = new_oload_champ; | |
2090 | *oload_champ_bv = new_oload_champ_bv; | |
2091 | discard_cleanups (old_cleanups); | |
2092 | return 0; | |
2093 | } | |
2094 | } | |
2095 | ||
2096 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2097 | the best match from among the overloaded methods or functions | |
2098 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2099 | The number of methods/functions in the list is given by NUM_FNS. | |
2100 | Return the index of the best match; store an indication of the | |
2101 | quality of the match in OLOAD_CHAMP_BV. | |
2102 | ||
2103 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2104 | ||
2105 | static int | |
2106 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2107 | int num_fns, struct fn_field *fns_ptr, | |
2108 | struct symbol **oload_syms, | |
2109 | struct badness_vector **oload_champ_bv) | |
2110 | { | |
2111 | int ix; | |
2112 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2113 | int oload_champ = -1; /* Index of best overloaded function */ | |
2114 | int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2115 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2116 | ||
2117 | *oload_champ_bv = NULL; | |
c906108c | 2118 | |
c5aa993b | 2119 | /* Consider each candidate in turn */ |
c906108c SS |
2120 | for (ix = 0; ix < num_fns; ix++) |
2121 | { | |
8d577d32 DC |
2122 | int jj; |
2123 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2124 | int nparms; | |
2125 | struct type **parm_types; | |
2126 | ||
db577aea AC |
2127 | if (method) |
2128 | { | |
ad2f7632 | 2129 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2130 | } |
2131 | else | |
2132 | { | |
2133 | /* If it's not a method, this is the proper place */ | |
2134 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2135 | } | |
c906108c | 2136 | |
c5aa993b | 2137 | /* Prepare array of parameter types */ |
c906108c SS |
2138 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2139 | for (jj = 0; jj < nparms; jj++) | |
db577aea | 2140 | parm_types[jj] = (method |
ad2f7632 | 2141 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
db577aea | 2142 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); |
c906108c | 2143 | |
4a1970e4 DJ |
2144 | /* Compare parameter types to supplied argument types. Skip THIS for |
2145 | static methods. */ | |
2146 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2147 | nargs - static_offset); | |
c5aa993b | 2148 | |
8d577d32 | 2149 | if (!*oload_champ_bv) |
c5aa993b | 2150 | { |
8d577d32 | 2151 | *oload_champ_bv = bv; |
c5aa993b | 2152 | oload_champ = 0; |
c5aa993b | 2153 | } |
c906108c | 2154 | else |
c5aa993b | 2155 | /* See whether current candidate is better or worse than previous best */ |
8d577d32 | 2156 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b JM |
2157 | { |
2158 | case 0: | |
2159 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
c5aa993b JM |
2160 | break; |
2161 | case 1: | |
2162 | oload_ambiguous = 2; /* incomparable top contenders */ | |
c5aa993b JM |
2163 | break; |
2164 | case 2: | |
8d577d32 | 2165 | *oload_champ_bv = bv; /* new champion, record details */ |
c5aa993b JM |
2166 | oload_ambiguous = 0; |
2167 | oload_champ = ix; | |
c5aa993b JM |
2168 | break; |
2169 | case 3: | |
2170 | default: | |
2171 | break; | |
2172 | } | |
b8c9b27d | 2173 | xfree (parm_types); |
6b1ba9a0 ND |
2174 | if (overload_debug) |
2175 | { | |
2176 | if (method) | |
2177 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2178 | else | |
2179 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
4a1970e4 | 2180 | for (jj = 0; jj < nargs - static_offset; jj++) |
6b1ba9a0 ND |
2181 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2182 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2183 | } | |
c906108c SS |
2184 | } |
2185 | ||
8d577d32 DC |
2186 | return oload_champ; |
2187 | } | |
6b1ba9a0 | 2188 | |
8d577d32 DC |
2189 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2190 | a non-static method or a function that isn't a method. */ | |
c906108c | 2191 | |
8d577d32 DC |
2192 | static int |
2193 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2194 | { | |
2195 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2196 | return 1; | |
c906108c | 2197 | else |
8d577d32 DC |
2198 | return 0; |
2199 | } | |
c906108c | 2200 | |
8d577d32 DC |
2201 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2202 | ||
2203 | static enum oload_classification | |
2204 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2205 | int nargs, | |
2206 | int static_offset) | |
2207 | { | |
2208 | int ix; | |
2209 | ||
2210 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2211 | { |
8d577d32 DC |
2212 | if (oload_champ_bv->rank[ix] >= 100) |
2213 | return INCOMPATIBLE; /* truly mismatched types */ | |
2214 | else if (oload_champ_bv->rank[ix] >= 10) | |
2215 | return NON_STANDARD; /* non-standard type conversions needed */ | |
7f8c9282 | 2216 | } |
02f0d45d | 2217 | |
8d577d32 | 2218 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2219 | } |
2220 | ||
2221 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2222 | of type TYPE. If TYPE does not have a destructor, or | |
2223 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2224 | int | |
fba45db2 | 2225 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2226 | { |
2227 | /* destructors are a special case. */ | |
2228 | ||
2229 | if (name[0] == '~') | |
2230 | { | |
2231 | char *dname = type_name_no_tag (type); | |
2232 | char *cp = strchr (dname, '<'); | |
2233 | unsigned int len; | |
2234 | ||
2235 | /* Do not compare the template part for template classes. */ | |
2236 | if (cp == NULL) | |
2237 | len = strlen (dname); | |
2238 | else | |
2239 | len = cp - dname; | |
bf896cb0 | 2240 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 2241 | error (_("name of destructor must equal name of class")); |
c906108c SS |
2242 | else |
2243 | return 1; | |
2244 | } | |
2245 | return 0; | |
2246 | } | |
2247 | ||
2248 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2249 | return 1 if the component named NAME from the ultimate | |
2250 | target structure/union is defined, otherwise, return 0. */ | |
2251 | ||
2252 | static int | |
aa1ee363 | 2253 | check_field_in (struct type *type, const char *name) |
c906108c | 2254 | { |
52f0bd74 | 2255 | int i; |
c906108c SS |
2256 | |
2257 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2258 | { | |
2259 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2260 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2261 | return 1; |
2262 | } | |
2263 | ||
2264 | /* C++: If it was not found as a data field, then try to | |
2265 | return it as a pointer to a method. */ | |
2266 | ||
2267 | /* Destructors are a special case. */ | |
2268 | if (destructor_name_p (name, type)) | |
2269 | { | |
2270 | int m_index, f_index; | |
2271 | ||
2272 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2273 | } | |
2274 | ||
2275 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2276 | { | |
db577aea | 2277 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2278 | return 1; |
2279 | } | |
2280 | ||
2281 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2282 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2283 | return 1; | |
c5aa993b | 2284 | |
c906108c SS |
2285 | return 0; |
2286 | } | |
2287 | ||
2288 | ||
2289 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2290 | return 1 if the component named NAME from the ultimate | |
2291 | target structure/union is defined, otherwise, return 0. */ | |
2292 | ||
2293 | int | |
c68a6671 | 2294 | check_field (struct value *arg1, const char *name) |
c906108c | 2295 | { |
52f0bd74 | 2296 | struct type *t; |
c906108c | 2297 | |
994b9211 | 2298 | arg1 = coerce_array (arg1); |
c906108c | 2299 | |
df407dfe | 2300 | t = value_type (arg1); |
c906108c SS |
2301 | |
2302 | /* Follow pointers until we get to a non-pointer. */ | |
2303 | ||
2304 | for (;;) | |
2305 | { | |
2306 | CHECK_TYPEDEF (t); | |
2307 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2308 | break; | |
2309 | t = TYPE_TARGET_TYPE (t); | |
2310 | } | |
2311 | ||
c5aa993b | 2312 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2313 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2314 | error (_("Internal error: `this' is not an aggregate")); |
c906108c SS |
2315 | |
2316 | return check_field_in (t, name); | |
2317 | } | |
2318 | ||
79c2c32d | 2319 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
2320 | return the appropriate member (or the address of the member, if |
2321 | WANT_ADDRESS). This function is used to resolve user expressions | |
2322 | of the form "DOMAIN::NAME". For more details on what happens, see | |
2323 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
2324 | |
2325 | struct value * | |
2326 | value_aggregate_elt (struct type *curtype, | |
0d5de010 | 2327 | char *name, int want_address, |
79c2c32d DC |
2328 | enum noside noside) |
2329 | { | |
2330 | switch (TYPE_CODE (curtype)) | |
2331 | { | |
2332 | case TYPE_CODE_STRUCT: | |
2333 | case TYPE_CODE_UNION: | |
63d06c5c | 2334 | return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL, |
0d5de010 | 2335 | want_address, noside); |
79c2c32d | 2336 | case TYPE_CODE_NAMESPACE: |
0d5de010 | 2337 | return value_namespace_elt (curtype, name, want_address, noside); |
79c2c32d DC |
2338 | default: |
2339 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 2340 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
2341 | } |
2342 | } | |
2343 | ||
c906108c SS |
2344 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2345 | return the address of this member as a "pointer to member" | |
2346 | type. If INTYPE is non-null, then it will be the type | |
2347 | of the member we are looking for. This will help us resolve | |
2348 | "pointers to member functions". This function is used | |
2349 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2350 | ||
63d06c5c | 2351 | static struct value * |
fba45db2 KB |
2352 | value_struct_elt_for_reference (struct type *domain, int offset, |
2353 | struct type *curtype, char *name, | |
0d5de010 | 2354 | struct type *intype, int want_address, |
63d06c5c | 2355 | enum noside noside) |
c906108c | 2356 | { |
52f0bd74 AC |
2357 | struct type *t = curtype; |
2358 | int i; | |
0d5de010 | 2359 | struct value *v, *result; |
c906108c | 2360 | |
c5aa993b | 2361 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2362 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2363 | error (_("Internal error: non-aggregate type to value_struct_elt_for_reference")); |
c906108c SS |
2364 | |
2365 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2366 | { | |
2367 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2368 | |
6314a349 | 2369 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2370 | { |
2371 | if (TYPE_FIELD_STATIC (t, i)) | |
2372 | { | |
2373 | v = value_static_field (t, i); | |
2374 | if (v == NULL) | |
8a3fe4f8 | 2375 | error (_("static field %s has been optimized out"), |
c906108c | 2376 | name); |
0d5de010 DJ |
2377 | if (want_address) |
2378 | v = value_addr (v); | |
c906108c SS |
2379 | return v; |
2380 | } | |
2381 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 2382 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 2383 | |
0d5de010 DJ |
2384 | if (want_address) |
2385 | return value_from_longest | |
2386 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
2387 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2388 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2389 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
2390 | else | |
2391 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
2392 | } |
2393 | } | |
2394 | ||
2395 | /* C++: If it was not found as a data field, then try to | |
2396 | return it as a pointer to a method. */ | |
2397 | ||
2398 | /* Destructors are a special case. */ | |
2399 | if (destructor_name_p (name, t)) | |
2400 | { | |
8a3fe4f8 | 2401 | error (_("member pointers to destructors not implemented yet")); |
c906108c SS |
2402 | } |
2403 | ||
2404 | /* Perform all necessary dereferencing. */ | |
2405 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2406 | intype = TYPE_TARGET_TYPE (intype); | |
2407 | ||
2408 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2409 | { | |
2410 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2411 | char dem_opname[64]; | |
2412 | ||
c5aa993b JM |
2413 | if (strncmp (t_field_name, "__", 2) == 0 || |
2414 | strncmp (t_field_name, "op", 2) == 0 || | |
2415 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2416 | { |
c5aa993b JM |
2417 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2418 | t_field_name = dem_opname; | |
2419 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2420 | t_field_name = dem_opname; |
c906108c | 2421 | } |
6314a349 | 2422 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2423 | { |
2424 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2425 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 2426 | |
de17c821 DJ |
2427 | check_stub_method_group (t, i); |
2428 | ||
c906108c | 2429 | if (intype == 0 && j > 1) |
8a3fe4f8 | 2430 | error (_("non-unique member `%s' requires type instantiation"), name); |
c906108c SS |
2431 | if (intype) |
2432 | { | |
2433 | while (j--) | |
2434 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2435 | break; | |
2436 | if (j < 0) | |
8a3fe4f8 | 2437 | error (_("no member function matches that type instantiation")); |
c906108c SS |
2438 | } |
2439 | else | |
2440 | j = 0; | |
c5aa993b | 2441 | |
0d5de010 DJ |
2442 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
2443 | { | |
2444 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2445 | 0, VAR_DOMAIN, 0, NULL); | |
2446 | if (s == NULL) | |
2447 | return NULL; | |
2448 | ||
2449 | if (want_address) | |
2450 | return value_addr (read_var_value (s, 0)); | |
2451 | else | |
2452 | return read_var_value (s, 0); | |
2453 | } | |
2454 | ||
c906108c SS |
2455 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
2456 | { | |
0d5de010 DJ |
2457 | if (want_address) |
2458 | { | |
2459 | result = allocate_value | |
2460 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
2461 | cplus_make_method_ptr (value_contents_writeable (result), | |
2462 | TYPE_FN_FIELD_VOFFSET (f, j), 1); | |
2463 | } | |
2464 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2465 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
2466 | else | |
2467 | error (_("Cannot reference virtual member function \"%s\""), | |
2468 | name); | |
c906108c SS |
2469 | } |
2470 | else | |
2471 | { | |
2472 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
176620f1 | 2473 | 0, VAR_DOMAIN, 0, NULL); |
c906108c | 2474 | if (s == NULL) |
0d5de010 DJ |
2475 | return NULL; |
2476 | ||
2477 | v = read_var_value (s, 0); | |
2478 | if (!want_address) | |
2479 | result = v; | |
c906108c SS |
2480 | else |
2481 | { | |
0d5de010 DJ |
2482 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
2483 | cplus_make_method_ptr (value_contents_writeable (result), | |
2484 | VALUE_ADDRESS (v), 0); | |
c906108c | 2485 | } |
c906108c | 2486 | } |
0d5de010 | 2487 | return result; |
c906108c SS |
2488 | } |
2489 | } | |
2490 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2491 | { | |
f23631e4 | 2492 | struct value *v; |
c906108c SS |
2493 | int base_offset; |
2494 | ||
2495 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2496 | base_offset = 0; | |
2497 | else | |
2498 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2499 | v = value_struct_elt_for_reference (domain, | |
2500 | offset + base_offset, | |
2501 | TYPE_BASECLASS (t, i), | |
2502 | name, | |
0d5de010 | 2503 | intype, want_address, |
63d06c5c | 2504 | noside); |
c906108c SS |
2505 | if (v) |
2506 | return v; | |
2507 | } | |
63d06c5c DC |
2508 | |
2509 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
2510 | it up that way; this (frequently) works for types nested inside | |
2511 | classes. */ | |
2512 | ||
0d5de010 | 2513 | return value_maybe_namespace_elt (curtype, name, want_address, noside); |
c906108c SS |
2514 | } |
2515 | ||
79c2c32d DC |
2516 | /* C++: Return the member NAME of the namespace given by the type |
2517 | CURTYPE. */ | |
2518 | ||
2519 | static struct value * | |
2520 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 2521 | char *name, int want_address, |
79c2c32d | 2522 | enum noside noside) |
63d06c5c DC |
2523 | { |
2524 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
0d5de010 | 2525 | want_address, noside); |
63d06c5c DC |
2526 | |
2527 | if (retval == NULL) | |
8a3fe4f8 | 2528 | error (_("No symbol \"%s\" in namespace \"%s\"."), name, |
63d06c5c DC |
2529 | TYPE_TAG_NAME (curtype)); |
2530 | ||
2531 | return retval; | |
2532 | } | |
2533 | ||
2534 | /* A helper function used by value_namespace_elt and | |
2535 | value_struct_elt_for_reference. It looks up NAME inside the | |
2536 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
2537 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
2538 | to, say, some base class of CURTYPE). */ | |
2539 | ||
2540 | static struct value * | |
2541 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 2542 | char *name, int want_address, |
63d06c5c | 2543 | enum noside noside) |
79c2c32d DC |
2544 | { |
2545 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
2546 | struct symbol *sym; | |
0d5de010 | 2547 | struct value *result; |
79c2c32d DC |
2548 | |
2549 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
2550 | get_selected_block (0), VAR_DOMAIN, | |
2551 | NULL); | |
2552 | ||
2553 | if (sym == NULL) | |
63d06c5c | 2554 | return NULL; |
79c2c32d DC |
2555 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
2556 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 2557 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 2558 | else |
0d5de010 DJ |
2559 | result = value_of_variable (sym, get_selected_block (0)); |
2560 | ||
2561 | if (result && want_address) | |
2562 | result = value_addr (result); | |
2563 | ||
2564 | return result; | |
79c2c32d DC |
2565 | } |
2566 | ||
c906108c SS |
2567 | /* Given a pointer value V, find the real (RTTI) type |
2568 | of the object it points to. | |
2569 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
2570 | and refer to the values computed for the object pointed to. */ | |
2571 | ||
2572 | struct type * | |
f23631e4 | 2573 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 2574 | { |
f23631e4 | 2575 | struct value *target; |
c906108c SS |
2576 | |
2577 | target = value_ind (v); | |
2578 | ||
2579 | return value_rtti_type (target, full, top, using_enc); | |
2580 | } | |
2581 | ||
2582 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2583 | if that is different from the enclosing type, create a new value | |
2584 | using the real run-time type as the enclosing type (and of the same | |
2585 | type as ARGP) and return it, with the embedded offset adjusted to | |
2586 | be the correct offset to the enclosed object | |
2587 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
2588 | parameters, computed by value_rtti_type(). If these are available, | |
2589 | they can be supplied and a second call to value_rtti_type() is avoided. | |
2590 | (Pass RTYPE == NULL if they're not available */ | |
2591 | ||
f23631e4 AC |
2592 | struct value * |
2593 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 2594 | int xusing_enc) |
c906108c | 2595 | { |
c5aa993b | 2596 | struct type *real_type; |
c906108c SS |
2597 | int full = 0; |
2598 | int top = -1; | |
2599 | int using_enc = 0; | |
f23631e4 | 2600 | struct value *new_val; |
c906108c SS |
2601 | |
2602 | if (rtype) | |
2603 | { | |
2604 | real_type = rtype; | |
2605 | full = xfull; | |
2606 | top = xtop; | |
2607 | using_enc = xusing_enc; | |
2608 | } | |
2609 | else | |
2610 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2611 | ||
2612 | /* If no RTTI data, or if object is already complete, do nothing */ | |
4754a64e | 2613 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
2614 | return argp; |
2615 | ||
2616 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 2617 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
2618 | if (full) |
2619 | { | |
2b127877 | 2620 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
2621 | return argp; |
2622 | } | |
2623 | ||
2624 | /* Check if object is in memory */ | |
2625 | if (VALUE_LVAL (argp) != lval_memory) | |
2626 | { | |
8a3fe4f8 | 2627 | warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type)); |
c5aa993b | 2628 | |
c906108c SS |
2629 | return argp; |
2630 | } | |
c5aa993b | 2631 | |
c906108c SS |
2632 | /* All other cases -- retrieve the complete object */ |
2633 | /* Go back by the computed top_offset from the beginning of the object, | |
2634 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
2635 | used for its computation. */ | |
2636 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
13c3b5f5 | 2637 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 2638 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
2639 | set_value_embedded_offset (new_val, (using_enc |
2640 | ? top + value_embedded_offset (argp) | |
2641 | : top)); | |
c906108c SS |
2642 | return new_val; |
2643 | } | |
2644 | ||
389e51db AC |
2645 | |
2646 | ||
2647 | ||
d069f99d | 2648 | /* Return the value of the local variable, if one exists. |
c906108c SS |
2649 | Flag COMPLAIN signals an error if the request is made in an |
2650 | inappropriate context. */ | |
2651 | ||
f23631e4 | 2652 | struct value * |
d069f99d | 2653 | value_of_local (const char *name, int complain) |
c906108c SS |
2654 | { |
2655 | struct symbol *func, *sym; | |
2656 | struct block *b; | |
d069f99d | 2657 | struct value * ret; |
206415a3 | 2658 | struct frame_info *frame; |
c906108c | 2659 | |
206415a3 DJ |
2660 | if (complain) |
2661 | frame = get_selected_frame (_("no frame selected")); | |
2662 | else | |
c906108c | 2663 | { |
206415a3 DJ |
2664 | frame = deprecated_safe_get_selected_frame (); |
2665 | if (frame == 0) | |
c5aa993b | 2666 | return 0; |
c906108c SS |
2667 | } |
2668 | ||
206415a3 | 2669 | func = get_frame_function (frame); |
c906108c SS |
2670 | if (!func) |
2671 | { | |
2672 | if (complain) | |
8a3fe4f8 | 2673 | error (_("no `%s' in nameless context"), name); |
c5aa993b JM |
2674 | else |
2675 | return 0; | |
c906108c SS |
2676 | } |
2677 | ||
2678 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 2679 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
2680 | { |
2681 | if (complain) | |
8a3fe4f8 | 2682 | error (_("no args, no `%s'"), name); |
c5aa993b JM |
2683 | else |
2684 | return 0; | |
c906108c SS |
2685 | } |
2686 | ||
2687 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2688 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 2689 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
2690 | if (sym == NULL) |
2691 | { | |
2692 | if (complain) | |
8a3fe4f8 | 2693 | error (_("current stack frame does not contain a variable named `%s'"), name); |
c906108c SS |
2694 | else |
2695 | return NULL; | |
2696 | } | |
2697 | ||
206415a3 | 2698 | ret = read_var_value (sym, frame); |
d069f99d | 2699 | if (ret == 0 && complain) |
8a3fe4f8 | 2700 | error (_("`%s' argument unreadable"), name); |
d069f99d AF |
2701 | return ret; |
2702 | } | |
2703 | ||
2704 | /* C++/Objective-C: return the value of the class instance variable, | |
2705 | if one exists. Flag COMPLAIN signals an error if the request is | |
2706 | made in an inappropriate context. */ | |
2707 | ||
2708 | struct value * | |
2709 | value_of_this (int complain) | |
2710 | { | |
2711 | if (current_language->la_language == language_objc) | |
2712 | return value_of_local ("self", complain); | |
2713 | else | |
2714 | return value_of_local ("this", complain); | |
c906108c SS |
2715 | } |
2716 | ||
2717 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
2718 | long, starting at LOWBOUND. The result has the same lower bound as | |
2719 | the original ARRAY. */ | |
2720 | ||
f23631e4 AC |
2721 | struct value * |
2722 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
2723 | { |
2724 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 2725 | LONGEST lowerbound, upperbound; |
f23631e4 | 2726 | struct value *slice; |
c906108c | 2727 | struct type *array_type; |
df407dfe | 2728 | array_type = check_typedef (value_type (array)); |
c906108c SS |
2729 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
2730 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2731 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 2732 | error (_("cannot take slice of non-array")); |
c906108c SS |
2733 | range_type = TYPE_INDEX_TYPE (array_type); |
2734 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 2735 | error (_("slice from bad array or bitstring")); |
c906108c | 2736 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 2737 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 2738 | error (_("slice out of range")); |
c906108c SS |
2739 | /* FIXME-type-allocation: need a way to free this type when we are |
2740 | done with it. */ | |
c5aa993b | 2741 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
2742 | TYPE_TARGET_TYPE (range_type), |
2743 | lowbound, lowbound + length - 1); | |
2744 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
2745 | { | |
2746 | int i; | |
c5aa993b | 2747 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
2748 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
2749 | slice = value_zero (slice_type, not_lval); | |
2750 | for (i = 0; i < length; i++) | |
2751 | { | |
2752 | int element = value_bit_index (array_type, | |
0fd88904 | 2753 | value_contents (array), |
c906108c SS |
2754 | lowbound + i); |
2755 | if (element < 0) | |
8a3fe4f8 | 2756 | error (_("internal error accessing bitstring")); |
c906108c SS |
2757 | else if (element > 0) |
2758 | { | |
2759 | int j = i % TARGET_CHAR_BIT; | |
2760 | if (BITS_BIG_ENDIAN) | |
2761 | j = TARGET_CHAR_BIT - 1 - j; | |
990a07ab | 2762 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
2763 | } |
2764 | } | |
2765 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
2766 | can be used on the LHS, but that may require extensions to |
2767 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
2768 | } |
2769 | else | |
2770 | { | |
2771 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
7a67d0fe | 2772 | LONGEST offset |
c906108c | 2773 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); |
c5aa993b | 2774 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
2775 | slice_range_type); |
2776 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
2777 | slice = allocate_value (slice_type); | |
d69fe07e | 2778 | if (value_lazy (array)) |
dfa52d88 | 2779 | set_value_lazy (slice, 1); |
c906108c | 2780 | else |
0fd88904 AC |
2781 | memcpy (value_contents_writeable (slice), |
2782 | value_contents (array) + offset, | |
c906108c SS |
2783 | TYPE_LENGTH (slice_type)); |
2784 | if (VALUE_LVAL (array) == lval_internalvar) | |
2785 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2786 | else | |
2787 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
2788 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
65d3800a | 2789 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 2790 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
2791 | } |
2792 | return slice; | |
2793 | } | |
2794 | ||
070ad9f0 DB |
2795 | /* Create a value for a FORTRAN complex number. Currently most of |
2796 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2797 | composed of 2 doubles. This really should be a smarter routine | |
2798 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 2799 | doubles. FIXME: fmb */ |
c906108c | 2800 | |
f23631e4 AC |
2801 | struct value * |
2802 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 2803 | { |
f23631e4 | 2804 | struct value *val; |
c906108c SS |
2805 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2806 | ||
2807 | val = allocate_value (type); | |
2808 | arg1 = value_cast (real_type, arg1); | |
2809 | arg2 = value_cast (real_type, arg2); | |
2810 | ||
990a07ab | 2811 | memcpy (value_contents_raw (val), |
0fd88904 | 2812 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 2813 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 2814 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
2815 | return val; |
2816 | } | |
2817 | ||
2818 | /* Cast a value into the appropriate complex data type. */ | |
2819 | ||
f23631e4 AC |
2820 | static struct value * |
2821 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
2822 | { |
2823 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
df407dfe | 2824 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 2825 | { |
df407dfe | 2826 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
2827 | struct value *re_val = allocate_value (val_real_type); |
2828 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 2829 | |
990a07ab | 2830 | memcpy (value_contents_raw (re_val), |
0fd88904 | 2831 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 2832 | memcpy (value_contents_raw (im_val), |
0fd88904 | 2833 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 2834 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
2835 | |
2836 | return value_literal_complex (re_val, im_val, type); | |
2837 | } | |
df407dfe AC |
2838 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
2839 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
c906108c SS |
2840 | return value_literal_complex (val, value_zero (real_type, not_lval), type); |
2841 | else | |
8a3fe4f8 | 2842 | error (_("cannot cast non-number to complex")); |
c906108c SS |
2843 | } |
2844 | ||
2845 | void | |
fba45db2 | 2846 | _initialize_valops (void) |
c906108c | 2847 | { |
5bf193a2 AC |
2848 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
2849 | &overload_resolution, _("\ | |
2850 | Set overload resolution in evaluating C++ functions."), _("\ | |
2851 | Show overload resolution in evaluating C++ functions."), NULL, | |
2852 | NULL, | |
920d2a44 | 2853 | show_overload_resolution, |
5bf193a2 | 2854 | &setlist, &showlist); |
c906108c | 2855 | overload_resolution = 1; |
c906108c | 2856 | } |