Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
b811d2c2 | 3 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "symtab.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "value.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbcore.h" | |
27 | #include "target.h" | |
28 | #include "demangle.h" | |
29 | #include "language.h" | |
30 | #include "gdbcmd.h" | |
4e052eda | 31 | #include "regcache.h" |
015a42b4 | 32 | #include "cp-abi.h" |
fe898f56 | 33 | #include "block.h" |
04714b91 | 34 | #include "infcall.h" |
de4f826b | 35 | #include "dictionary.h" |
b6429628 | 36 | #include "cp-support.h" |
50637b26 | 37 | #include "target-float.h" |
e6ca34fc | 38 | #include "tracepoint.h" |
76727919 | 39 | #include "observable.h" |
3e3b026f | 40 | #include "objfiles.h" |
233e8b28 | 41 | #include "extension.h" |
79bb1944 | 42 | #include "gdbtypes.h" |
268a13a5 | 43 | #include "gdbsupport/byte-vector.h" |
c906108c | 44 | |
c906108c SS |
45 | /* Local functions. */ |
46 | ||
ad2f7632 DJ |
47 | static int typecmp (int staticp, int varargs, int nargs, |
48 | struct field t1[], struct value *t2[]); | |
c906108c | 49 | |
714f19d5 | 50 | static struct value *search_struct_field (const char *, struct value *, |
8a13d42d | 51 | struct type *, int); |
c906108c | 52 | |
714f19d5 TT |
53 | static struct value *search_struct_method (const char *, struct value **, |
54 | struct value **, | |
6b850546 | 55 | LONGEST, int *, struct type *); |
c906108c | 56 | |
6b1747cd | 57 | static int find_oload_champ_namespace (gdb::array_view<value *> args, |
ac3eeb49 | 58 | const char *, const char *, |
0891c3cc | 59 | std::vector<symbol *> *oload_syms, |
82ceee50 | 60 | badness_vector *, |
7322dca9 | 61 | const int no_adl); |
8d577d32 | 62 | |
6b1747cd PA |
63 | static int find_oload_champ_namespace_loop (gdb::array_view<value *> args, |
64 | const char *, const char *, | |
0891c3cc | 65 | int, std::vector<symbol *> *oload_syms, |
82ceee50 | 66 | badness_vector *, int *, |
6b1747cd | 67 | const int no_adl); |
ac3eeb49 | 68 | |
85cca2bc PA |
69 | static int find_oload_champ (gdb::array_view<value *> args, |
70 | size_t num_fns, | |
38139a96 PA |
71 | fn_field *methods, |
72 | xmethod_worker_up *xmethods, | |
73 | symbol **functions, | |
85cca2bc | 74 | badness_vector *oload_champ_bv); |
ac3eeb49 | 75 | |
2bca57ba | 76 | static int oload_method_static_p (struct fn_field *, int); |
8d577d32 DC |
77 | |
78 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
79 | ||
82ceee50 PA |
80 | static enum oload_classification classify_oload_match |
81 | (const badness_vector &, int, int); | |
8d577d32 | 82 | |
ac3eeb49 MS |
83 | static struct value *value_struct_elt_for_reference (struct type *, |
84 | int, struct type *, | |
c848d642 | 85 | const char *, |
ac3eeb49 MS |
86 | struct type *, |
87 | int, enum noside); | |
79c2c32d | 88 | |
ac3eeb49 | 89 | static struct value *value_namespace_elt (const struct type *, |
c848d642 | 90 | const char *, int , enum noside); |
79c2c32d | 91 | |
ac3eeb49 | 92 | static struct value *value_maybe_namespace_elt (const struct type *, |
c848d642 | 93 | const char *, int, |
ac3eeb49 | 94 | enum noside); |
63d06c5c | 95 | |
a14ed312 | 96 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 97 | |
f23631e4 | 98 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 99 | |
491144b5 | 100 | bool overload_resolution = false; |
920d2a44 AC |
101 | static void |
102 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
103 | struct cmd_list_element *c, |
104 | const char *value) | |
920d2a44 | 105 | { |
3e43a32a MS |
106 | fprintf_filtered (file, _("Overload resolution in evaluating " |
107 | "C++ functions is %s.\n"), | |
920d2a44 AC |
108 | value); |
109 | } | |
242bfc55 | 110 | |
3e3b026f UW |
111 | /* Find the address of function name NAME in the inferior. If OBJF_P |
112 | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | |
113 | is defined. */ | |
c906108c | 114 | |
f23631e4 | 115 | struct value * |
3e3b026f | 116 | find_function_in_inferior (const char *name, struct objfile **objf_p) |
c906108c | 117 | { |
d12307c1 | 118 | struct block_symbol sym; |
a109c7c1 | 119 | |
2570f2b7 | 120 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
d12307c1 | 121 | if (sym.symbol != NULL) |
c906108c | 122 | { |
d12307c1 | 123 | if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK) |
c906108c | 124 | { |
8a3fe4f8 | 125 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
126 | name); |
127 | } | |
3e3b026f UW |
128 | |
129 | if (objf_p) | |
d12307c1 | 130 | *objf_p = symbol_objfile (sym.symbol); |
3e3b026f | 131 | |
d12307c1 | 132 | return value_of_variable (sym.symbol, sym.block); |
c906108c SS |
133 | } |
134 | else | |
135 | { | |
7c7b6655 TT |
136 | struct bound_minimal_symbol msymbol = |
137 | lookup_bound_minimal_symbol (name); | |
a109c7c1 | 138 | |
7c7b6655 | 139 | if (msymbol.minsym != NULL) |
c906108c | 140 | { |
7c7b6655 | 141 | struct objfile *objfile = msymbol.objfile; |
3e3b026f UW |
142 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
143 | ||
c906108c | 144 | struct type *type; |
4478b372 | 145 | CORE_ADDR maddr; |
3e3b026f | 146 | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
c906108c SS |
147 | type = lookup_function_type (type); |
148 | type = lookup_pointer_type (type); | |
77e371c0 | 149 | maddr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
3e3b026f UW |
150 | |
151 | if (objf_p) | |
152 | *objf_p = objfile; | |
153 | ||
4478b372 | 154 | return value_from_pointer (type, maddr); |
c906108c SS |
155 | } |
156 | else | |
157 | { | |
c5aa993b | 158 | if (!target_has_execution) |
3e43a32a MS |
159 | error (_("evaluation of this expression " |
160 | "requires the target program to be active")); | |
c5aa993b | 161 | else |
3e43a32a MS |
162 | error (_("evaluation of this expression requires the " |
163 | "program to have a function \"%s\"."), | |
164 | name); | |
c906108c SS |
165 | } |
166 | } | |
167 | } | |
168 | ||
ac3eeb49 MS |
169 | /* Allocate NBYTES of space in the inferior using the inferior's |
170 | malloc and return a value that is a pointer to the allocated | |
171 | space. */ | |
c906108c | 172 | |
f23631e4 | 173 | struct value * |
fba45db2 | 174 | value_allocate_space_in_inferior (int len) |
c906108c | 175 | { |
3e3b026f UW |
176 | struct objfile *objf; |
177 | struct value *val = find_function_in_inferior ("malloc", &objf); | |
178 | struct gdbarch *gdbarch = get_objfile_arch (objf); | |
f23631e4 | 179 | struct value *blocklen; |
c906108c | 180 | |
3e3b026f | 181 | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
e71585ff | 182 | val = call_function_by_hand (val, NULL, blocklen); |
c906108c SS |
183 | if (value_logical_not (val)) |
184 | { | |
185 | if (!target_has_execution) | |
3e43a32a MS |
186 | error (_("No memory available to program now: " |
187 | "you need to start the target first")); | |
c5aa993b | 188 | else |
8a3fe4f8 | 189 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
190 | } |
191 | return val; | |
192 | } | |
193 | ||
194 | static CORE_ADDR | |
fba45db2 | 195 | allocate_space_in_inferior (int len) |
c906108c SS |
196 | { |
197 | return value_as_long (value_allocate_space_in_inferior (len)); | |
198 | } | |
199 | ||
6af87b03 AR |
200 | /* Cast struct value VAL to type TYPE and return as a value. |
201 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
694182d2 DJ |
202 | for this to work. Typedef to one of the codes is permitted. |
203 | Returns NULL if the cast is neither an upcast nor a downcast. */ | |
6af87b03 AR |
204 | |
205 | static struct value * | |
206 | value_cast_structs (struct type *type, struct value *v2) | |
207 | { | |
208 | struct type *t1; | |
209 | struct type *t2; | |
210 | struct value *v; | |
211 | ||
212 | gdb_assert (type != NULL && v2 != NULL); | |
213 | ||
214 | t1 = check_typedef (type); | |
215 | t2 = check_typedef (value_type (v2)); | |
216 | ||
217 | /* Check preconditions. */ | |
218 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
219 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
220 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
221 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
222 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
223 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
224 | ||
191ca0a1 CM |
225 | if (TYPE_NAME (t1) != NULL |
226 | && TYPE_NAME (t2) != NULL | |
227 | && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) | |
228 | return NULL; | |
229 | ||
6af87b03 AR |
230 | /* Upcasting: look in the type of the source to see if it contains the |
231 | type of the target as a superclass. If so, we'll need to | |
232 | offset the pointer rather than just change its type. */ | |
233 | if (TYPE_NAME (t1) != NULL) | |
234 | { | |
a737d952 | 235 | v = search_struct_field (TYPE_NAME (t1), |
8a13d42d | 236 | v2, t2, 1); |
6af87b03 AR |
237 | if (v) |
238 | return v; | |
239 | } | |
240 | ||
241 | /* Downcasting: look in the type of the target to see if it contains the | |
242 | type of the source as a superclass. If so, we'll need to | |
9c3c02fd | 243 | offset the pointer rather than just change its type. */ |
6af87b03 AR |
244 | if (TYPE_NAME (t2) != NULL) |
245 | { | |
9c3c02fd | 246 | /* Try downcasting using the run-time type of the value. */ |
6b850546 DT |
247 | int full, using_enc; |
248 | LONGEST top; | |
9c3c02fd TT |
249 | struct type *real_type; |
250 | ||
251 | real_type = value_rtti_type (v2, &full, &top, &using_enc); | |
252 | if (real_type) | |
253 | { | |
254 | v = value_full_object (v2, real_type, full, top, using_enc); | |
255 | v = value_at_lazy (real_type, value_address (v)); | |
9f1f738a | 256 | real_type = value_type (v); |
9c3c02fd TT |
257 | |
258 | /* We might be trying to cast to the outermost enclosing | |
259 | type, in which case search_struct_field won't work. */ | |
260 | if (TYPE_NAME (real_type) != NULL | |
261 | && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) | |
262 | return v; | |
263 | ||
a737d952 | 264 | v = search_struct_field (TYPE_NAME (t2), v, real_type, 1); |
9c3c02fd TT |
265 | if (v) |
266 | return v; | |
267 | } | |
268 | ||
269 | /* Try downcasting using information from the destination type | |
270 | T2. This wouldn't work properly for classes with virtual | |
271 | bases, but those were handled above. */ | |
a737d952 | 272 | v = search_struct_field (TYPE_NAME (t2), |
8a13d42d | 273 | value_zero (t1, not_lval), t1, 1); |
6af87b03 AR |
274 | if (v) |
275 | { | |
276 | /* Downcasting is possible (t1 is superclass of v2). */ | |
42ae5230 | 277 | CORE_ADDR addr2 = value_address (v2); |
a109c7c1 | 278 | |
42ae5230 | 279 | addr2 -= value_address (v) + value_embedded_offset (v); |
6af87b03 AR |
280 | return value_at (type, addr2); |
281 | } | |
282 | } | |
694182d2 DJ |
283 | |
284 | return NULL; | |
6af87b03 AR |
285 | } |
286 | ||
fb933624 DJ |
287 | /* Cast one pointer or reference type to another. Both TYPE and |
288 | the type of ARG2 should be pointer types, or else both should be | |
b1af9e97 TT |
289 | reference types. If SUBCLASS_CHECK is non-zero, this will force a |
290 | check to see whether TYPE is a superclass of ARG2's type. If | |
291 | SUBCLASS_CHECK is zero, then the subclass check is done only when | |
292 | ARG2 is itself non-zero. Returns the new pointer or reference. */ | |
fb933624 DJ |
293 | |
294 | struct value * | |
b1af9e97 TT |
295 | value_cast_pointers (struct type *type, struct value *arg2, |
296 | int subclass_check) | |
fb933624 | 297 | { |
d160942f | 298 | struct type *type1 = check_typedef (type); |
fb933624 | 299 | struct type *type2 = check_typedef (value_type (arg2)); |
d160942f | 300 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
fb933624 DJ |
301 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
302 | ||
303 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
304 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
b1af9e97 | 305 | && (subclass_check || !value_logical_not (arg2))) |
fb933624 | 306 | { |
6af87b03 | 307 | struct value *v2; |
fb933624 | 308 | |
aa006118 | 309 | if (TYPE_IS_REFERENCE (type2)) |
6af87b03 AR |
310 | v2 = coerce_ref (arg2); |
311 | else | |
312 | v2 = value_ind (arg2); | |
3e43a32a MS |
313 | gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) |
314 | == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); | |
6af87b03 AR |
315 | v2 = value_cast_structs (t1, v2); |
316 | /* At this point we have what we can have, un-dereference if needed. */ | |
317 | if (v2) | |
fb933624 | 318 | { |
6af87b03 | 319 | struct value *v = value_addr (v2); |
a109c7c1 | 320 | |
6af87b03 AR |
321 | deprecated_set_value_type (v, type); |
322 | return v; | |
fb933624 | 323 | } |
8301c89e | 324 | } |
fb933624 DJ |
325 | |
326 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 327 | arg2 = value_copy (arg2); |
fb933624 | 328 | deprecated_set_value_type (arg2, type); |
4dfea560 | 329 | set_value_enclosing_type (arg2, type); |
fb933624 DJ |
330 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
331 | return arg2; | |
332 | } | |
333 | ||
c906108c SS |
334 | /* Cast value ARG2 to type TYPE and return as a value. |
335 | More general than a C cast: accepts any two types of the same length, | |
336 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
337 | /* In C++, casts may change pointer or object representations. */ | |
338 | ||
f23631e4 AC |
339 | struct value * |
340 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 341 | { |
52f0bd74 AC |
342 | enum type_code code1; |
343 | enum type_code code2; | |
344 | int scalar; | |
c906108c SS |
345 | struct type *type2; |
346 | ||
347 | int convert_to_boolean = 0; | |
c5aa993b | 348 | |
df407dfe | 349 | if (value_type (arg2) == type) |
c906108c SS |
350 | return arg2; |
351 | ||
6af87b03 | 352 | /* Check if we are casting struct reference to struct reference. */ |
aa006118 | 353 | if (TYPE_IS_REFERENCE (check_typedef (type))) |
6af87b03 AR |
354 | { |
355 | /* We dereference type; then we recurse and finally | |
581e13c1 | 356 | we generate value of the given reference. Nothing wrong with |
6af87b03 AR |
357 | that. */ |
358 | struct type *t1 = check_typedef (type); | |
359 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
aa006118 | 360 | struct value *val = value_cast (dereftype, arg2); |
a109c7c1 | 361 | |
a65cfae5 | 362 | return value_ref (val, TYPE_CODE (t1)); |
6af87b03 AR |
363 | } |
364 | ||
aa006118 | 365 | if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2)))) |
6af87b03 AR |
366 | /* We deref the value and then do the cast. */ |
367 | return value_cast (type, coerce_ref (arg2)); | |
368 | ||
c973d0aa PA |
369 | /* Strip typedefs / resolve stubs in order to get at the type's |
370 | code/length, but remember the original type, to use as the | |
371 | resulting type of the cast, in case it was a typedef. */ | |
372 | struct type *to_type = type; | |
373 | ||
f168693b | 374 | type = check_typedef (type); |
c906108c | 375 | code1 = TYPE_CODE (type); |
994b9211 | 376 | arg2 = coerce_ref (arg2); |
df407dfe | 377 | type2 = check_typedef (value_type (arg2)); |
c906108c | 378 | |
fb933624 DJ |
379 | /* You can't cast to a reference type. See value_cast_pointers |
380 | instead. */ | |
aa006118 | 381 | gdb_assert (!TYPE_IS_REFERENCE (type)); |
fb933624 | 382 | |
ac3eeb49 MS |
383 | /* A cast to an undetermined-length array_type, such as |
384 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
385 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
386 | if (code1 == TYPE_CODE_ARRAY) |
387 | { | |
388 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
389 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
a109c7c1 | 390 | |
d78df370 | 391 | if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
c906108c SS |
392 | { |
393 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
394 | int val_length = TYPE_LENGTH (type2); | |
395 | LONGEST low_bound, high_bound, new_length; | |
a109c7c1 | 396 | |
c906108c SS |
397 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
398 | low_bound = 0, high_bound = 0; | |
399 | new_length = val_length / element_length; | |
400 | if (val_length % element_length != 0) | |
3e43a32a MS |
401 | warning (_("array element type size does not " |
402 | "divide object size in cast")); | |
ac3eeb49 MS |
403 | /* FIXME-type-allocation: need a way to free this type when |
404 | we are done with it. */ | |
cafb3438 | 405 | range_type = create_static_range_type (NULL, |
0c9c3474 SA |
406 | TYPE_TARGET_TYPE (range_type), |
407 | low_bound, | |
408 | new_length + low_bound - 1); | |
ac3eeb49 | 409 | deprecated_set_value_type (arg2, |
cafb3438 | 410 | create_array_type (NULL, |
ac3eeb49 MS |
411 | element_type, |
412 | range_type)); | |
c906108c SS |
413 | return arg2; |
414 | } | |
415 | } | |
416 | ||
417 | if (current_language->c_style_arrays | |
3bdf2bbd KW |
418 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY |
419 | && !TYPE_VECTOR (type2)) | |
c906108c SS |
420 | arg2 = value_coerce_array (arg2); |
421 | ||
422 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
423 | arg2 = value_coerce_function (arg2); | |
424 | ||
df407dfe | 425 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
426 | code2 = TYPE_CODE (type2); |
427 | ||
428 | if (code1 == TYPE_CODE_COMPLEX) | |
c973d0aa | 429 | return cast_into_complex (to_type, arg2); |
c906108c SS |
430 | if (code1 == TYPE_CODE_BOOL) |
431 | { | |
432 | code1 = TYPE_CODE_INT; | |
433 | convert_to_boolean = 1; | |
434 | } | |
435 | if (code1 == TYPE_CODE_CHAR) | |
436 | code1 = TYPE_CODE_INT; | |
437 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
438 | code2 = TYPE_CODE_INT; | |
439 | ||
440 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
441 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
442 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 443 | |
6af87b03 AR |
444 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
445 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 446 | && TYPE_NAME (type) != 0) |
694182d2 | 447 | { |
c973d0aa | 448 | struct value *v = value_cast_structs (to_type, arg2); |
a109c7c1 | 449 | |
694182d2 DJ |
450 | if (v) |
451 | return v; | |
452 | } | |
453 | ||
50637b26 | 454 | if (is_floating_type (type) && scalar) |
4ef30785 | 455 | { |
50637b26 UW |
456 | if (is_floating_value (arg2)) |
457 | { | |
458 | struct value *v = allocate_value (to_type); | |
459 | target_float_convert (value_contents (arg2), type2, | |
460 | value_contents_raw (v), type); | |
461 | return v; | |
462 | } | |
463 | ||
3b4b2f16 | 464 | /* The only option left is an integral type. */ |
50637b26 UW |
465 | if (TYPE_UNSIGNED (type2)) |
466 | return value_from_ulongest (to_type, value_as_long (arg2)); | |
4ef30785 | 467 | else |
50637b26 | 468 | return value_from_longest (to_type, value_as_long (arg2)); |
4ef30785 | 469 | } |
c906108c SS |
470 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
471 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
472 | && (scalar || code2 == TYPE_CODE_PTR |
473 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
474 | { |
475 | LONGEST longest; | |
c5aa993b | 476 | |
2bf1f4a1 | 477 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 478 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
479 | represents, as value_as_long would. GDB should evaluate |
480 | expressions just as the compiler would --- and the compiler | |
481 | sees a cast as a simple reinterpretation of the pointer's | |
482 | bits. */ | |
483 | if (code2 == TYPE_CODE_PTR) | |
e17a4113 UW |
484 | longest = extract_unsigned_integer |
485 | (value_contents (arg2), TYPE_LENGTH (type2), | |
34877895 | 486 | type_byte_order (type2)); |
2bf1f4a1 JB |
487 | else |
488 | longest = value_as_long (arg2); | |
c973d0aa | 489 | return value_from_longest (to_type, convert_to_boolean ? |
716c501e | 490 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 491 | } |
ac3eeb49 MS |
492 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
493 | || code2 == TYPE_CODE_ENUM | |
494 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 495 | { |
4603e466 DT |
496 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
497 | want the length of an address! -- we are really dealing with | |
498 | addresses (i.e., gdb representations) not pointers (i.e., | |
499 | target representations) here. | |
500 | ||
501 | This allows things like "print *(int *)0x01000234" to work | |
502 | without printing a misleading message -- which would | |
503 | otherwise occur when dealing with a target having two byte | |
504 | pointers and four byte addresses. */ | |
505 | ||
50810684 | 506 | int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
634acd5f | 507 | LONGEST longest = value_as_long (arg2); |
a109c7c1 | 508 | |
4603e466 | 509 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 510 | { |
4603e466 DT |
511 | if (longest >= ((LONGEST) 1 << addr_bit) |
512 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 513 | warning (_("value truncated")); |
634acd5f | 514 | } |
c973d0aa | 515 | return value_from_longest (to_type, longest); |
634acd5f | 516 | } |
0d5de010 DJ |
517 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
518 | && value_as_long (arg2) == 0) | |
519 | { | |
c973d0aa | 520 | struct value *result = allocate_value (to_type); |
a109c7c1 | 521 | |
c973d0aa | 522 | cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0); |
0d5de010 DJ |
523 | return result; |
524 | } | |
525 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
526 | && value_as_long (arg2) == 0) | |
527 | { | |
528 | /* The Itanium C++ ABI represents NULL pointers to members as | |
529 | minus one, instead of biasing the normal case. */ | |
c973d0aa | 530 | return value_from_longest (to_type, -1); |
0d5de010 | 531 | } |
8954db33 AB |
532 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) |
533 | && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2) | |
534 | && TYPE_LENGTH (type) != TYPE_LENGTH (type2)) | |
535 | error (_("Cannot convert between vector values of different sizes")); | |
536 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar | |
537 | && TYPE_LENGTH (type) != TYPE_LENGTH (type2)) | |
538 | error (_("can only cast scalar to vector of same size")); | |
0ba2eb0f TT |
539 | else if (code1 == TYPE_CODE_VOID) |
540 | { | |
c973d0aa | 541 | return value_zero (to_type, not_lval); |
0ba2eb0f | 542 | } |
c906108c SS |
543 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
544 | { | |
545 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
c973d0aa | 546 | return value_cast_pointers (to_type, arg2, 0); |
fb933624 | 547 | |
0d5de010 | 548 | arg2 = value_copy (arg2); |
c973d0aa PA |
549 | deprecated_set_value_type (arg2, to_type); |
550 | set_value_enclosing_type (arg2, to_type); | |
b44d461b | 551 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
552 | return arg2; |
553 | } | |
c906108c | 554 | else if (VALUE_LVAL (arg2) == lval_memory) |
c973d0aa | 555 | return value_at_lazy (to_type, value_address (arg2)); |
c906108c SS |
556 | else |
557 | { | |
32372d80 TT |
558 | if (current_language->la_language == language_ada) |
559 | error (_("Invalid type conversion.")); | |
8a3fe4f8 | 560 | error (_("Invalid cast.")); |
c906108c SS |
561 | } |
562 | } | |
563 | ||
4e8f195d TT |
564 | /* The C++ reinterpret_cast operator. */ |
565 | ||
566 | struct value * | |
567 | value_reinterpret_cast (struct type *type, struct value *arg) | |
568 | { | |
569 | struct value *result; | |
570 | struct type *real_type = check_typedef (type); | |
571 | struct type *arg_type, *dest_type; | |
572 | int is_ref = 0; | |
573 | enum type_code dest_code, arg_code; | |
574 | ||
575 | /* Do reference, function, and array conversion. */ | |
576 | arg = coerce_array (arg); | |
577 | ||
578 | /* Attempt to preserve the type the user asked for. */ | |
579 | dest_type = type; | |
580 | ||
581 | /* If we are casting to a reference type, transform | |
aa006118 AV |
582 | reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */ |
583 | if (TYPE_IS_REFERENCE (real_type)) | |
4e8f195d TT |
584 | { |
585 | is_ref = 1; | |
586 | arg = value_addr (arg); | |
587 | dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); | |
588 | real_type = lookup_pointer_type (real_type); | |
589 | } | |
590 | ||
591 | arg_type = value_type (arg); | |
592 | ||
593 | dest_code = TYPE_CODE (real_type); | |
594 | arg_code = TYPE_CODE (arg_type); | |
595 | ||
596 | /* We can convert pointer types, or any pointer type to int, or int | |
597 | type to pointer. */ | |
598 | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | |
599 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | |
600 | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | |
601 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | |
602 | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | |
603 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | |
604 | || (dest_code == arg_code | |
605 | && (dest_code == TYPE_CODE_PTR | |
606 | || dest_code == TYPE_CODE_METHODPTR | |
607 | || dest_code == TYPE_CODE_MEMBERPTR))) | |
608 | result = value_cast (dest_type, arg); | |
609 | else | |
610 | error (_("Invalid reinterpret_cast")); | |
611 | ||
612 | if (is_ref) | |
a65cfae5 AV |
613 | result = value_cast (type, value_ref (value_ind (result), |
614 | TYPE_CODE (type))); | |
4e8f195d TT |
615 | |
616 | return result; | |
617 | } | |
618 | ||
619 | /* A helper for value_dynamic_cast. This implements the first of two | |
620 | runtime checks: we iterate over all the base classes of the value's | |
621 | class which are equal to the desired class; if only one of these | |
622 | holds the value, then it is the answer. */ | |
623 | ||
624 | static int | |
625 | dynamic_cast_check_1 (struct type *desired_type, | |
8af8e3bc | 626 | const gdb_byte *valaddr, |
6b850546 | 627 | LONGEST embedded_offset, |
4e8f195d | 628 | CORE_ADDR address, |
8af8e3bc | 629 | struct value *val, |
4e8f195d TT |
630 | struct type *search_type, |
631 | CORE_ADDR arg_addr, | |
632 | struct type *arg_type, | |
633 | struct value **result) | |
634 | { | |
635 | int i, result_count = 0; | |
636 | ||
637 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
638 | { | |
6b850546 DT |
639 | LONGEST offset = baseclass_offset (search_type, i, valaddr, |
640 | embedded_offset, | |
641 | address, val); | |
a109c7c1 | 642 | |
4e8f195d TT |
643 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
644 | { | |
8af8e3bc PA |
645 | if (address + embedded_offset + offset >= arg_addr |
646 | && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type)) | |
4e8f195d TT |
647 | { |
648 | ++result_count; | |
649 | if (!*result) | |
650 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 651 | address + embedded_offset + offset); |
4e8f195d TT |
652 | } |
653 | } | |
654 | else | |
655 | result_count += dynamic_cast_check_1 (desired_type, | |
8af8e3bc PA |
656 | valaddr, |
657 | embedded_offset + offset, | |
658 | address, val, | |
4e8f195d TT |
659 | TYPE_BASECLASS (search_type, i), |
660 | arg_addr, | |
661 | arg_type, | |
662 | result); | |
663 | } | |
664 | ||
665 | return result_count; | |
666 | } | |
667 | ||
668 | /* A helper for value_dynamic_cast. This implements the second of two | |
669 | runtime checks: we look for a unique public sibling class of the | |
670 | argument's declared class. */ | |
671 | ||
672 | static int | |
673 | dynamic_cast_check_2 (struct type *desired_type, | |
8af8e3bc | 674 | const gdb_byte *valaddr, |
6b850546 | 675 | LONGEST embedded_offset, |
4e8f195d | 676 | CORE_ADDR address, |
8af8e3bc | 677 | struct value *val, |
4e8f195d TT |
678 | struct type *search_type, |
679 | struct value **result) | |
680 | { | |
681 | int i, result_count = 0; | |
682 | ||
683 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
684 | { | |
6b850546 | 685 | LONGEST offset; |
4e8f195d TT |
686 | |
687 | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | |
688 | continue; | |
689 | ||
8af8e3bc PA |
690 | offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
691 | address, val); | |
4e8f195d TT |
692 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
693 | { | |
694 | ++result_count; | |
695 | if (*result == NULL) | |
696 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 697 | address + embedded_offset + offset); |
4e8f195d TT |
698 | } |
699 | else | |
700 | result_count += dynamic_cast_check_2 (desired_type, | |
8af8e3bc PA |
701 | valaddr, |
702 | embedded_offset + offset, | |
703 | address, val, | |
4e8f195d TT |
704 | TYPE_BASECLASS (search_type, i), |
705 | result); | |
706 | } | |
707 | ||
708 | return result_count; | |
709 | } | |
710 | ||
711 | /* The C++ dynamic_cast operator. */ | |
712 | ||
713 | struct value * | |
714 | value_dynamic_cast (struct type *type, struct value *arg) | |
715 | { | |
6b850546 DT |
716 | int full, using_enc; |
717 | LONGEST top; | |
4e8f195d TT |
718 | struct type *resolved_type = check_typedef (type); |
719 | struct type *arg_type = check_typedef (value_type (arg)); | |
720 | struct type *class_type, *rtti_type; | |
721 | struct value *result, *tem, *original_arg = arg; | |
722 | CORE_ADDR addr; | |
aa006118 | 723 | int is_ref = TYPE_IS_REFERENCE (resolved_type); |
4e8f195d TT |
724 | |
725 | if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR | |
aa006118 | 726 | && !TYPE_IS_REFERENCE (resolved_type)) |
4e8f195d TT |
727 | error (_("Argument to dynamic_cast must be a pointer or reference type")); |
728 | if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID | |
4753d33b | 729 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT) |
4e8f195d TT |
730 | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); |
731 | ||
732 | class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); | |
733 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
734 | { | |
735 | if (TYPE_CODE (arg_type) != TYPE_CODE_PTR | |
736 | && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT | |
737 | && value_as_long (arg) == 0)) | |
738 | error (_("Argument to dynamic_cast does not have pointer type")); | |
739 | if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) | |
740 | { | |
741 | arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
4753d33b | 742 | if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT) |
3e43a32a MS |
743 | error (_("Argument to dynamic_cast does " |
744 | "not have pointer to class type")); | |
4e8f195d TT |
745 | } |
746 | ||
747 | /* Handle NULL pointers. */ | |
748 | if (value_as_long (arg) == 0) | |
749 | return value_zero (type, not_lval); | |
750 | ||
751 | arg = value_ind (arg); | |
752 | } | |
753 | else | |
754 | { | |
4753d33b | 755 | if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT) |
4e8f195d TT |
756 | error (_("Argument to dynamic_cast does not have class type")); |
757 | } | |
758 | ||
759 | /* If the classes are the same, just return the argument. */ | |
760 | if (class_types_same_p (class_type, arg_type)) | |
761 | return value_cast (type, arg); | |
762 | ||
763 | /* If the target type is a unique base class of the argument's | |
764 | declared type, just cast it. */ | |
765 | if (is_ancestor (class_type, arg_type)) | |
766 | { | |
767 | if (is_unique_ancestor (class_type, arg)) | |
768 | return value_cast (type, original_arg); | |
769 | error (_("Ambiguous dynamic_cast")); | |
770 | } | |
771 | ||
772 | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | |
773 | if (! rtti_type) | |
774 | error (_("Couldn't determine value's most derived type for dynamic_cast")); | |
775 | ||
776 | /* Compute the most derived object's address. */ | |
777 | addr = value_address (arg); | |
778 | if (full) | |
779 | { | |
780 | /* Done. */ | |
781 | } | |
782 | else if (using_enc) | |
783 | addr += top; | |
784 | else | |
785 | addr += top + value_embedded_offset (arg); | |
786 | ||
787 | /* dynamic_cast<void *> means to return a pointer to the | |
788 | most-derived object. */ | |
789 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR | |
790 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) | |
791 | return value_at_lazy (type, addr); | |
792 | ||
793 | tem = value_at (type, addr); | |
9f1f738a | 794 | type = value_type (tem); |
4e8f195d TT |
795 | |
796 | /* The first dynamic check specified in 5.2.7. */ | |
797 | if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) | |
798 | { | |
799 | if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) | |
800 | return tem; | |
801 | result = NULL; | |
802 | if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
803 | value_contents_for_printing (tem), |
804 | value_embedded_offset (tem), | |
805 | value_address (tem), tem, | |
4e8f195d TT |
806 | rtti_type, addr, |
807 | arg_type, | |
808 | &result) == 1) | |
809 | return value_cast (type, | |
a65cfae5 AV |
810 | is_ref |
811 | ? value_ref (result, TYPE_CODE (resolved_type)) | |
812 | : value_addr (result)); | |
4e8f195d TT |
813 | } |
814 | ||
815 | /* The second dynamic check specified in 5.2.7. */ | |
816 | result = NULL; | |
817 | if (is_public_ancestor (arg_type, rtti_type) | |
818 | && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
819 | value_contents_for_printing (tem), |
820 | value_embedded_offset (tem), | |
821 | value_address (tem), tem, | |
4e8f195d TT |
822 | rtti_type, &result) == 1) |
823 | return value_cast (type, | |
a65cfae5 AV |
824 | is_ref |
825 | ? value_ref (result, TYPE_CODE (resolved_type)) | |
826 | : value_addr (result)); | |
4e8f195d TT |
827 | |
828 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
829 | return value_zero (type, not_lval); | |
830 | ||
831 | error (_("dynamic_cast failed")); | |
832 | } | |
833 | ||
c906108c SS |
834 | /* Create a value of type TYPE that is zero, and return it. */ |
835 | ||
f23631e4 | 836 | struct value * |
fba45db2 | 837 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 838 | { |
f23631e4 | 839 | struct value *val = allocate_value (type); |
c906108c | 840 | |
bb7da2bf | 841 | VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv); |
c906108c SS |
842 | return val; |
843 | } | |
844 | ||
18a46dbe | 845 | /* Create a not_lval value of numeric type TYPE that is one, and return it. */ |
301f0ecf DE |
846 | |
847 | struct value * | |
18a46dbe | 848 | value_one (struct type *type) |
301f0ecf DE |
849 | { |
850 | struct type *type1 = check_typedef (type); | |
4e608b4f | 851 | struct value *val; |
301f0ecf | 852 | |
50637b26 | 853 | if (is_integral_type (type1) || is_floating_type (type1)) |
301f0ecf DE |
854 | { |
855 | val = value_from_longest (type, (LONGEST) 1); | |
856 | } | |
120bd360 KW |
857 | else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) |
858 | { | |
859 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); | |
cfa6f054 KW |
860 | int i; |
861 | LONGEST low_bound, high_bound; | |
120bd360 KW |
862 | struct value *tmp; |
863 | ||
cfa6f054 KW |
864 | if (!get_array_bounds (type1, &low_bound, &high_bound)) |
865 | error (_("Could not determine the vector bounds")); | |
866 | ||
120bd360 | 867 | val = allocate_value (type); |
cfa6f054 | 868 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 | 869 | { |
18a46dbe | 870 | tmp = value_one (eltype); |
120bd360 KW |
871 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), |
872 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
873 | } | |
874 | } | |
301f0ecf DE |
875 | else |
876 | { | |
877 | error (_("Not a numeric type.")); | |
878 | } | |
879 | ||
18a46dbe JK |
880 | /* value_one result is never used for assignments to. */ |
881 | gdb_assert (VALUE_LVAL (val) == not_lval); | |
882 | ||
301f0ecf DE |
883 | return val; |
884 | } | |
885 | ||
80180f79 SA |
886 | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. |
887 | The type of the created value may differ from the passed type TYPE. | |
888 | Make sure to retrieve the returned values's new type after this call | |
889 | e.g. in case the type is a variable length array. */ | |
4e5d721f DE |
890 | |
891 | static struct value * | |
892 | get_value_at (struct type *type, CORE_ADDR addr, int lazy) | |
893 | { | |
894 | struct value *val; | |
895 | ||
896 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
897 | error (_("Attempt to dereference a generic pointer.")); | |
898 | ||
a3d34bf4 | 899 | val = value_from_contents_and_address (type, NULL, addr); |
4e5d721f | 900 | |
a3d34bf4 PA |
901 | if (!lazy) |
902 | value_fetch_lazy (val); | |
4e5d721f DE |
903 | |
904 | return val; | |
905 | } | |
906 | ||
070ad9f0 | 907 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
908 | |
909 | Call value_at only if the data needs to be fetched immediately; | |
85102364 | 910 | if we can be 'lazy' and defer the fetch, perhaps indefinitely, call |
c906108c | 911 | value_at_lazy instead. value_at_lazy simply records the address of |
070ad9f0 | 912 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 913 | is tested in the value_contents macro, which is used if and when |
80180f79 SA |
914 | the contents are actually required. The type of the created value |
915 | may differ from the passed type TYPE. Make sure to retrieve the | |
916 | returned values's new type after this call e.g. in case the type | |
917 | is a variable length array. | |
c906108c SS |
918 | |
919 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 920 | adjustments before or after calling it. */ |
c906108c | 921 | |
f23631e4 | 922 | struct value * |
00a4c844 | 923 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 924 | { |
4e5d721f | 925 | return get_value_at (type, addr, 0); |
c906108c SS |
926 | } |
927 | ||
80180f79 SA |
928 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). |
929 | The type of the created value may differ from the passed type TYPE. | |
930 | Make sure to retrieve the returned values's new type after this call | |
931 | e.g. in case the type is a variable length array. */ | |
c906108c | 932 | |
f23631e4 | 933 | struct value * |
00a4c844 | 934 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 935 | { |
4e5d721f | 936 | return get_value_at (type, addr, 1); |
c906108c SS |
937 | } |
938 | ||
e6ca34fc | 939 | void |
23f945bf | 940 | read_value_memory (struct value *val, LONGEST bit_offset, |
e6ca34fc PA |
941 | int stack, CORE_ADDR memaddr, |
942 | gdb_byte *buffer, size_t length) | |
943 | { | |
3ae385af SM |
944 | ULONGEST xfered_total = 0; |
945 | struct gdbarch *arch = get_value_arch (val); | |
946 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
6d7e9d3b YQ |
947 | enum target_object object; |
948 | ||
949 | object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY; | |
5a2eb0ef | 950 | |
3ae385af | 951 | while (xfered_total < length) |
5a2eb0ef YQ |
952 | { |
953 | enum target_xfer_status status; | |
3ae385af | 954 | ULONGEST xfered_partial; |
5a2eb0ef | 955 | |
8b88a78e | 956 | status = target_xfer_partial (current_top_target (), |
6d7e9d3b | 957 | object, NULL, |
3ae385af SM |
958 | buffer + xfered_total * unit_size, NULL, |
959 | memaddr + xfered_total, | |
960 | length - xfered_total, | |
961 | &xfered_partial); | |
5a2eb0ef YQ |
962 | |
963 | if (status == TARGET_XFER_OK) | |
964 | /* nothing */; | |
bc113b4e | 965 | else if (status == TARGET_XFER_UNAVAILABLE) |
23f945bf AA |
966 | mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT |
967 | + bit_offset), | |
968 | xfered_partial * HOST_CHAR_BIT); | |
5a2eb0ef | 969 | else if (status == TARGET_XFER_EOF) |
3ae385af | 970 | memory_error (TARGET_XFER_E_IO, memaddr + xfered_total); |
e6ca34fc | 971 | else |
3ae385af | 972 | memory_error (status, memaddr + xfered_total); |
e6ca34fc | 973 | |
3ae385af | 974 | xfered_total += xfered_partial; |
5a2eb0ef | 975 | QUIT; |
e6ca34fc PA |
976 | } |
977 | } | |
c906108c SS |
978 | |
979 | /* Store the contents of FROMVAL into the location of TOVAL. | |
980 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
981 | ||
f23631e4 AC |
982 | struct value * |
983 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 984 | { |
52f0bd74 | 985 | struct type *type; |
f23631e4 | 986 | struct value *val; |
cb741690 | 987 | struct frame_id old_frame; |
c906108c | 988 | |
88e3b34b | 989 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 990 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 991 | |
994b9211 | 992 | toval = coerce_ref (toval); |
c906108c | 993 | |
df407dfe | 994 | type = value_type (toval); |
c906108c | 995 | if (VALUE_LVAL (toval) != lval_internalvar) |
3cbaedff | 996 | fromval = value_cast (type, fromval); |
c906108c | 997 | else |
63092375 DJ |
998 | { |
999 | /* Coerce arrays and functions to pointers, except for arrays | |
1000 | which only live in GDB's storage. */ | |
1001 | if (!value_must_coerce_to_target (fromval)) | |
1002 | fromval = coerce_array (fromval); | |
1003 | } | |
1004 | ||
f168693b | 1005 | type = check_typedef (type); |
c906108c | 1006 | |
ac3eeb49 MS |
1007 | /* Since modifying a register can trash the frame chain, and |
1008 | modifying memory can trash the frame cache, we save the old frame | |
1009 | and then restore the new frame afterwards. */ | |
206415a3 | 1010 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 1011 | |
c906108c SS |
1012 | switch (VALUE_LVAL (toval)) |
1013 | { | |
1014 | case lval_internalvar: | |
1015 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
4aac0db7 UW |
1016 | return value_of_internalvar (get_type_arch (type), |
1017 | VALUE_INTERNALVAR (toval)); | |
c906108c SS |
1018 | |
1019 | case lval_internalvar_component: | |
d9e98382 | 1020 | { |
6b850546 | 1021 | LONGEST offset = value_offset (toval); |
d9e98382 SDJ |
1022 | |
1023 | /* Are we dealing with a bitfield? | |
1024 | ||
1025 | It is important to mention that `value_parent (toval)' is | |
1026 | non-NULL iff `value_bitsize (toval)' is non-zero. */ | |
1027 | if (value_bitsize (toval)) | |
1028 | { | |
1029 | /* VALUE_INTERNALVAR below refers to the parent value, while | |
1030 | the offset is relative to this parent value. */ | |
1031 | gdb_assert (value_parent (value_parent (toval)) == NULL); | |
1032 | offset += value_offset (value_parent (toval)); | |
1033 | } | |
1034 | ||
1035 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
1036 | offset, | |
1037 | value_bitpos (toval), | |
1038 | value_bitsize (toval), | |
1039 | fromval); | |
1040 | } | |
c906108c SS |
1041 | break; |
1042 | ||
1043 | case lval_memory: | |
1044 | { | |
fc1a4b47 | 1045 | const gdb_byte *dest_buffer; |
c5aa993b JM |
1046 | CORE_ADDR changed_addr; |
1047 | int changed_len; | |
10c42a71 | 1048 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 1049 | |
df407dfe | 1050 | if (value_bitsize (toval)) |
c5aa993b | 1051 | { |
2d88202a | 1052 | struct value *parent = value_parent (toval); |
2d88202a | 1053 | |
a109c7c1 | 1054 | changed_addr = value_address (parent) + value_offset (toval); |
df407dfe AC |
1055 | changed_len = (value_bitpos (toval) |
1056 | + value_bitsize (toval) | |
c5aa993b JM |
1057 | + HOST_CHAR_BIT - 1) |
1058 | / HOST_CHAR_BIT; | |
c906108c | 1059 | |
4ea48cc1 DJ |
1060 | /* If we can read-modify-write exactly the size of the |
1061 | containing type (e.g. short or int) then do so. This | |
1062 | is safer for volatile bitfields mapped to hardware | |
1063 | registers. */ | |
1064 | if (changed_len < TYPE_LENGTH (type) | |
1065 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) | |
2d88202a | 1066 | && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
4ea48cc1 DJ |
1067 | changed_len = TYPE_LENGTH (type); |
1068 | ||
c906108c | 1069 | if (changed_len > (int) sizeof (LONGEST)) |
3e43a32a MS |
1070 | error (_("Can't handle bitfields which " |
1071 | "don't fit in a %d bit word."), | |
baa6f10b | 1072 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 1073 | |
2d88202a | 1074 | read_memory (changed_addr, buffer, changed_len); |
50810684 | 1075 | modify_field (type, buffer, value_as_long (fromval), |
df407dfe | 1076 | value_bitpos (toval), value_bitsize (toval)); |
c906108c SS |
1077 | dest_buffer = buffer; |
1078 | } | |
c906108c SS |
1079 | else |
1080 | { | |
42ae5230 | 1081 | changed_addr = value_address (toval); |
3ae385af | 1082 | changed_len = type_length_units (type); |
0fd88904 | 1083 | dest_buffer = value_contents (fromval); |
c906108c SS |
1084 | } |
1085 | ||
972daa01 | 1086 | write_memory_with_notification (changed_addr, dest_buffer, changed_len); |
c906108c SS |
1087 | } |
1088 | break; | |
1089 | ||
492254e9 | 1090 | case lval_register: |
c906108c | 1091 | { |
c906108c | 1092 | struct frame_info *frame; |
d80b854b | 1093 | struct gdbarch *gdbarch; |
ff2e87ac | 1094 | int value_reg; |
c906108c | 1095 | |
41b56feb KB |
1096 | /* Figure out which frame this is in currently. |
1097 | ||
1098 | We use VALUE_FRAME_ID for obtaining the value's frame id instead of | |
1099 | VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to | |
1100 | put_frame_register_bytes() below. That function will (eventually) | |
1101 | perform the necessary unwind operation by first obtaining the next | |
1102 | frame. */ | |
0c16dd26 | 1103 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
41b56feb | 1104 | |
0c16dd26 | 1105 | value_reg = VALUE_REGNUM (toval); |
c906108c SS |
1106 | |
1107 | if (!frame) | |
8a3fe4f8 | 1108 | error (_("Value being assigned to is no longer active.")); |
d80b854b UW |
1109 | |
1110 | gdbarch = get_frame_arch (frame); | |
3e871532 LM |
1111 | |
1112 | if (value_bitsize (toval)) | |
492254e9 | 1113 | { |
3e871532 | 1114 | struct value *parent = value_parent (toval); |
6b850546 | 1115 | LONGEST offset = value_offset (parent) + value_offset (toval); |
3e871532 LM |
1116 | int changed_len; |
1117 | gdb_byte buffer[sizeof (LONGEST)]; | |
1118 | int optim, unavail; | |
1119 | ||
1120 | changed_len = (value_bitpos (toval) | |
1121 | + value_bitsize (toval) | |
1122 | + HOST_CHAR_BIT - 1) | |
1123 | / HOST_CHAR_BIT; | |
1124 | ||
1125 | if (changed_len > (int) sizeof (LONGEST)) | |
1126 | error (_("Can't handle bitfields which " | |
1127 | "don't fit in a %d bit word."), | |
1128 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
1129 | ||
1130 | if (!get_frame_register_bytes (frame, value_reg, offset, | |
1131 | changed_len, buffer, | |
1132 | &optim, &unavail)) | |
1133 | { | |
1134 | if (optim) | |
1135 | throw_error (OPTIMIZED_OUT_ERROR, | |
1136 | _("value has been optimized out")); | |
1137 | if (unavail) | |
1138 | throw_error (NOT_AVAILABLE_ERROR, | |
1139 | _("value is not available")); | |
1140 | } | |
1141 | ||
1142 | modify_field (type, buffer, value_as_long (fromval), | |
1143 | value_bitpos (toval), value_bitsize (toval)); | |
1144 | ||
1145 | put_frame_register_bytes (frame, value_reg, offset, | |
1146 | changed_len, buffer); | |
492254e9 | 1147 | } |
c906108c | 1148 | else |
492254e9 | 1149 | { |
3e871532 LM |
1150 | if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), |
1151 | type)) | |
00fa51f6 | 1152 | { |
3e871532 LM |
1153 | /* If TOVAL is a special machine register requiring |
1154 | conversion of program values to a special raw | |
1155 | format. */ | |
1156 | gdbarch_value_to_register (gdbarch, frame, | |
1157 | VALUE_REGNUM (toval), type, | |
1158 | value_contents (fromval)); | |
00fa51f6 | 1159 | } |
c906108c | 1160 | else |
00fa51f6 UW |
1161 | { |
1162 | put_frame_register_bytes (frame, value_reg, | |
1163 | value_offset (toval), | |
1164 | TYPE_LENGTH (type), | |
1165 | value_contents (fromval)); | |
1166 | } | |
ff2e87ac | 1167 | } |
00fa51f6 | 1168 | |
76727919 | 1169 | gdb::observers::register_changed.notify (frame, value_reg); |
ff2e87ac | 1170 | break; |
c906108c | 1171 | } |
5f5233d4 PA |
1172 | |
1173 | case lval_computed: | |
1174 | { | |
c8f2448a | 1175 | const struct lval_funcs *funcs = value_computed_funcs (toval); |
5f5233d4 | 1176 | |
ac71a68c JK |
1177 | if (funcs->write != NULL) |
1178 | { | |
1179 | funcs->write (toval, fromval); | |
1180 | break; | |
1181 | } | |
5f5233d4 | 1182 | } |
ac71a68c | 1183 | /* Fall through. */ |
5f5233d4 | 1184 | |
c906108c | 1185 | default: |
8a3fe4f8 | 1186 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
1187 | } |
1188 | ||
cb741690 DJ |
1189 | /* Assigning to the stack pointer, frame pointer, and other |
1190 | (architecture and calling convention specific) registers may | |
d649a38e | 1191 | cause the frame cache and regcache to be out of date. Assigning to memory |
cb741690 DJ |
1192 | also can. We just do this on all assignments to registers or |
1193 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
1194 | switch (VALUE_LVAL (toval)) | |
1195 | { | |
1196 | case lval_memory: | |
1197 | case lval_register: | |
0e03807e | 1198 | case lval_computed: |
cb741690 | 1199 | |
8b88a78e | 1200 | gdb::observers::target_changed.notify (current_top_target ()); |
cb741690 | 1201 | |
ac3eeb49 MS |
1202 | /* Having destroyed the frame cache, restore the selected |
1203 | frame. */ | |
cb741690 DJ |
1204 | |
1205 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
1206 | doing this. Instead of constantly saving/restoring the | |
1207 | frame. Why not create a get_selected_frame() function that, | |
1208 | having saved the selected frame's ID can automatically | |
1209 | re-find the previously selected frame automatically. */ | |
1210 | ||
1211 | { | |
1212 | struct frame_info *fi = frame_find_by_id (old_frame); | |
a109c7c1 | 1213 | |
cb741690 DJ |
1214 | if (fi != NULL) |
1215 | select_frame (fi); | |
1216 | } | |
1217 | ||
1218 | break; | |
1219 | default: | |
1220 | break; | |
1221 | } | |
1222 | ||
ac3eeb49 MS |
1223 | /* If the field does not entirely fill a LONGEST, then zero the sign |
1224 | bits. If the field is signed, and is negative, then sign | |
1225 | extend. */ | |
df407dfe AC |
1226 | if ((value_bitsize (toval) > 0) |
1227 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
1228 | { |
1229 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 1230 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
1231 | |
1232 | fieldval &= valmask; | |
ac3eeb49 MS |
1233 | if (!TYPE_UNSIGNED (type) |
1234 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
1235 | fieldval |= ~valmask; |
1236 | ||
1237 | fromval = value_from_longest (type, fieldval); | |
1238 | } | |
1239 | ||
4aac0db7 UW |
1240 | /* The return value is a copy of TOVAL so it shares its location |
1241 | information, but its contents are updated from FROMVAL. This | |
1242 | implies the returned value is not lazy, even if TOVAL was. */ | |
c906108c | 1243 | val = value_copy (toval); |
4aac0db7 | 1244 | set_value_lazy (val, 0); |
0fd88904 | 1245 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 1246 | TYPE_LENGTH (type)); |
4aac0db7 UW |
1247 | |
1248 | /* We copy over the enclosing type and pointed-to offset from FROMVAL | |
1249 | in the case of pointer types. For object types, the enclosing type | |
1250 | and embedded offset must *not* be copied: the target object refered | |
1251 | to by TOVAL retains its original dynamic type after assignment. */ | |
1252 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
1253 | { | |
1254 | set_value_enclosing_type (val, value_enclosing_type (fromval)); | |
1255 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
1256 | } | |
c5aa993b | 1257 | |
c906108c SS |
1258 | return val; |
1259 | } | |
1260 | ||
1261 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
1262 | ||
f23631e4 AC |
1263 | struct value * |
1264 | value_repeat (struct value *arg1, int count) | |
c906108c | 1265 | { |
f23631e4 | 1266 | struct value *val; |
c906108c SS |
1267 | |
1268 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1269 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 1270 | if (count < 1) |
8a3fe4f8 | 1271 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 1272 | |
4754a64e | 1273 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 1274 | |
c906108c | 1275 | VALUE_LVAL (val) = lval_memory; |
42ae5230 | 1276 | set_value_address (val, value_address (arg1)); |
c906108c | 1277 | |
24e6bcee PA |
1278 | read_value_memory (val, 0, value_stack (val), value_address (val), |
1279 | value_contents_all_raw (val), | |
3ae385af | 1280 | type_length_units (value_enclosing_type (val))); |
24e6bcee | 1281 | |
c906108c SS |
1282 | return val; |
1283 | } | |
1284 | ||
f23631e4 | 1285 | struct value * |
9df2fbc4 | 1286 | value_of_variable (struct symbol *var, const struct block *b) |
c906108c | 1287 | { |
63e43d3a | 1288 | struct frame_info *frame = NULL; |
c906108c | 1289 | |
63e43d3a | 1290 | if (symbol_read_needs_frame (var)) |
61212c0f | 1291 | frame = get_selected_frame (_("No frame selected.")); |
c906108c | 1292 | |
63e43d3a | 1293 | return read_var_value (var, b, frame); |
c906108c SS |
1294 | } |
1295 | ||
61212c0f | 1296 | struct value * |
270140bd | 1297 | address_of_variable (struct symbol *var, const struct block *b) |
61212c0f UW |
1298 | { |
1299 | struct type *type = SYMBOL_TYPE (var); | |
1300 | struct value *val; | |
1301 | ||
1302 | /* Evaluate it first; if the result is a memory address, we're fine. | |
581e13c1 | 1303 | Lazy evaluation pays off here. */ |
61212c0f UW |
1304 | |
1305 | val = value_of_variable (var, b); | |
9f1f738a | 1306 | type = value_type (val); |
61212c0f UW |
1307 | |
1308 | if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) | |
1309 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1310 | { | |
42ae5230 | 1311 | CORE_ADDR addr = value_address (val); |
a109c7c1 | 1312 | |
61212c0f UW |
1313 | return value_from_pointer (lookup_pointer_type (type), addr); |
1314 | } | |
1315 | ||
1316 | /* Not a memory address; check what the problem was. */ | |
1317 | switch (VALUE_LVAL (val)) | |
1318 | { | |
1319 | case lval_register: | |
1320 | { | |
1321 | struct frame_info *frame; | |
1322 | const char *regname; | |
1323 | ||
41b56feb | 1324 | frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val)); |
61212c0f UW |
1325 | gdb_assert (frame); |
1326 | ||
1327 | regname = gdbarch_register_name (get_frame_arch (frame), | |
1328 | VALUE_REGNUM (val)); | |
1329 | gdb_assert (regname && *regname); | |
1330 | ||
1331 | error (_("Address requested for identifier " | |
1332 | "\"%s\" which is in register $%s"), | |
987012b8 | 1333 | var->print_name (), regname); |
61212c0f UW |
1334 | break; |
1335 | } | |
1336 | ||
1337 | default: | |
1338 | error (_("Can't take address of \"%s\" which isn't an lvalue."), | |
987012b8 | 1339 | var->print_name ()); |
61212c0f UW |
1340 | break; |
1341 | } | |
1342 | ||
1343 | return val; | |
1344 | } | |
1345 | ||
00db9531 | 1346 | /* See value.h. */ |
63092375 | 1347 | |
00db9531 | 1348 | bool |
63092375 DJ |
1349 | value_must_coerce_to_target (struct value *val) |
1350 | { | |
1351 | struct type *valtype; | |
1352 | ||
1353 | /* The only lval kinds which do not live in target memory. */ | |
1354 | if (VALUE_LVAL (val) != not_lval | |
e81e7f5e SC |
1355 | && VALUE_LVAL (val) != lval_internalvar |
1356 | && VALUE_LVAL (val) != lval_xcallable) | |
00db9531 | 1357 | return false; |
63092375 DJ |
1358 | |
1359 | valtype = check_typedef (value_type (val)); | |
1360 | ||
1361 | switch (TYPE_CODE (valtype)) | |
1362 | { | |
1363 | case TYPE_CODE_ARRAY: | |
3cbaedff | 1364 | return TYPE_VECTOR (valtype) ? 0 : 1; |
63092375 | 1365 | case TYPE_CODE_STRING: |
00db9531 | 1366 | return true; |
63092375 | 1367 | default: |
00db9531 | 1368 | return false; |
63092375 DJ |
1369 | } |
1370 | } | |
1371 | ||
3e43a32a MS |
1372 | /* Make sure that VAL lives in target memory if it's supposed to. For |
1373 | instance, strings are constructed as character arrays in GDB's | |
1374 | storage, and this function copies them to the target. */ | |
63092375 DJ |
1375 | |
1376 | struct value * | |
1377 | value_coerce_to_target (struct value *val) | |
1378 | { | |
1379 | LONGEST length; | |
1380 | CORE_ADDR addr; | |
1381 | ||
1382 | if (!value_must_coerce_to_target (val)) | |
1383 | return val; | |
1384 | ||
1385 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1386 | addr = allocate_space_in_inferior (length); | |
1387 | write_memory (addr, value_contents (val), length); | |
1388 | return value_at_lazy (value_type (val), addr); | |
1389 | } | |
1390 | ||
ac3eeb49 MS |
1391 | /* Given a value which is an array, return a value which is a pointer |
1392 | to its first element, regardless of whether or not the array has a | |
1393 | nonzero lower bound. | |
c906108c | 1394 | |
ac3eeb49 MS |
1395 | FIXME: A previous comment here indicated that this routine should |
1396 | be substracting the array's lower bound. It's not clear to me that | |
1397 | this is correct. Given an array subscripting operation, it would | |
1398 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1399 | |
1400 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1401 | ||
ac3eeb49 MS |
1402 | However I believe a more appropriate and logical place to account |
1403 | for the lower bound is to do so in value_subscript, essentially | |
1404 | computing: | |
c906108c SS |
1405 | |
1406 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1407 | ||
ac3eeb49 MS |
1408 | As further evidence consider what would happen with operations |
1409 | other than array subscripting, where the caller would get back a | |
1410 | value that had an address somewhere before the actual first element | |
1411 | of the array, and the information about the lower bound would be | |
581e13c1 | 1412 | lost because of the coercion to pointer type. */ |
c906108c | 1413 | |
f23631e4 AC |
1414 | struct value * |
1415 | value_coerce_array (struct value *arg1) | |
c906108c | 1416 | { |
df407dfe | 1417 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1418 | |
63092375 DJ |
1419 | /* If the user tries to do something requiring a pointer with an |
1420 | array that has not yet been pushed to the target, then this would | |
1421 | be a good time to do so. */ | |
1422 | arg1 = value_coerce_to_target (arg1); | |
1423 | ||
c906108c | 1424 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1425 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1426 | |
4478b372 | 1427 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
42ae5230 | 1428 | value_address (arg1)); |
c906108c SS |
1429 | } |
1430 | ||
1431 | /* Given a value which is a function, return a value which is a pointer | |
1432 | to it. */ | |
1433 | ||
f23631e4 AC |
1434 | struct value * |
1435 | value_coerce_function (struct value *arg1) | |
c906108c | 1436 | { |
f23631e4 | 1437 | struct value *retval; |
c906108c SS |
1438 | |
1439 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1440 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1441 | |
df407dfe | 1442 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1443 | value_address (arg1)); |
c906108c | 1444 | return retval; |
c5aa993b | 1445 | } |
c906108c | 1446 | |
ac3eeb49 MS |
1447 | /* Return a pointer value for the object for which ARG1 is the |
1448 | contents. */ | |
c906108c | 1449 | |
f23631e4 AC |
1450 | struct value * |
1451 | value_addr (struct value *arg1) | |
c906108c | 1452 | { |
f23631e4 | 1453 | struct value *arg2; |
df407dfe | 1454 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1455 | |
aa006118 | 1456 | if (TYPE_IS_REFERENCE (type)) |
c906108c | 1457 | { |
3326303b MG |
1458 | if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1), |
1459 | TARGET_CHAR_BIT * TYPE_LENGTH (type))) | |
1460 | arg1 = coerce_ref (arg1); | |
1461 | else | |
1462 | { | |
1463 | /* Copy the value, but change the type from (T&) to (T*). We | |
1464 | keep the same location information, which is efficient, and | |
1465 | allows &(&X) to get the location containing the reference. | |
1466 | Do the same to its enclosing type for consistency. */ | |
1467 | struct type *type_ptr | |
1468 | = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
1469 | struct type *enclosing_type | |
1470 | = check_typedef (value_enclosing_type (arg1)); | |
1471 | struct type *enclosing_type_ptr | |
1472 | = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type)); | |
1473 | ||
1474 | arg2 = value_copy (arg1); | |
1475 | deprecated_set_value_type (arg2, type_ptr); | |
1476 | set_value_enclosing_type (arg2, enclosing_type_ptr); | |
a22df60a | 1477 | |
3326303b MG |
1478 | return arg2; |
1479 | } | |
c906108c SS |
1480 | } |
1481 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1482 | return value_coerce_function (arg1); | |
1483 | ||
63092375 DJ |
1484 | /* If this is an array that has not yet been pushed to the target, |
1485 | then this would be a good time to force it to memory. */ | |
1486 | arg1 = value_coerce_to_target (arg1); | |
1487 | ||
c906108c | 1488 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1489 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1490 | |
581e13c1 | 1491 | /* Get target memory address. */ |
df407dfe | 1492 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1493 | (value_address (arg1) |
13c3b5f5 | 1494 | + value_embedded_offset (arg1))); |
c906108c SS |
1495 | |
1496 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1497 | full derived object's type ... */ |
4dfea560 DE |
1498 | set_value_enclosing_type (arg2, |
1499 | lookup_pointer_type (value_enclosing_type (arg1))); | |
ac3eeb49 MS |
1500 | /* ... and also the relative position of the subobject in the full |
1501 | object. */ | |
b44d461b | 1502 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1503 | return arg2; |
1504 | } | |
1505 | ||
ac3eeb49 MS |
1506 | /* Return a reference value for the object for which ARG1 is the |
1507 | contents. */ | |
fb933624 DJ |
1508 | |
1509 | struct value * | |
a65cfae5 | 1510 | value_ref (struct value *arg1, enum type_code refcode) |
fb933624 DJ |
1511 | { |
1512 | struct value *arg2; | |
fb933624 | 1513 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1514 | |
a65cfae5 AV |
1515 | gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
1516 | ||
1517 | if ((TYPE_CODE (type) == TYPE_CODE_REF | |
1518 | || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF) | |
1519 | && TYPE_CODE (type) == refcode) | |
fb933624 DJ |
1520 | return arg1; |
1521 | ||
1522 | arg2 = value_addr (arg1); | |
a65cfae5 | 1523 | deprecated_set_value_type (arg2, lookup_reference_type (type, refcode)); |
fb933624 DJ |
1524 | return arg2; |
1525 | } | |
1526 | ||
ac3eeb49 MS |
1527 | /* Given a value of a pointer type, apply the C unary * operator to |
1528 | it. */ | |
c906108c | 1529 | |
f23631e4 AC |
1530 | struct value * |
1531 | value_ind (struct value *arg1) | |
c906108c SS |
1532 | { |
1533 | struct type *base_type; | |
f23631e4 | 1534 | struct value *arg2; |
c906108c | 1535 | |
994b9211 | 1536 | arg1 = coerce_array (arg1); |
c906108c | 1537 | |
df407dfe | 1538 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1539 | |
8cf6f0b1 TT |
1540 | if (VALUE_LVAL (arg1) == lval_computed) |
1541 | { | |
c8f2448a | 1542 | const struct lval_funcs *funcs = value_computed_funcs (arg1); |
8cf6f0b1 TT |
1543 | |
1544 | if (funcs->indirect) | |
1545 | { | |
1546 | struct value *result = funcs->indirect (arg1); | |
1547 | ||
1548 | if (result) | |
1549 | return result; | |
1550 | } | |
1551 | } | |
1552 | ||
22fe0fbb | 1553 | if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
c906108c SS |
1554 | { |
1555 | struct type *enc_type; | |
a109c7c1 | 1556 | |
ac3eeb49 MS |
1557 | /* We may be pointing to something embedded in a larger object. |
1558 | Get the real type of the enclosing object. */ | |
4754a64e | 1559 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1560 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1561 | |
1562 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1563 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1564 | /* For functions, go through find_function_addr, which knows | |
1565 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1566 | arg2 = value_at_lazy (enc_type, |
1567 | find_function_addr (arg1, NULL)); | |
0d5de010 | 1568 | else |
581e13c1 | 1569 | /* Retrieve the enclosing object pointed to. */ |
ac3eeb49 MS |
1570 | arg2 = value_at_lazy (enc_type, |
1571 | (value_as_address (arg1) | |
1572 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1573 | |
9f1f738a | 1574 | enc_type = value_type (arg2); |
dfcee124 | 1575 | return readjust_indirect_value_type (arg2, enc_type, base_type, arg1); |
c906108c SS |
1576 | } |
1577 | ||
8a3fe4f8 | 1578 | error (_("Attempt to take contents of a non-pointer value.")); |
c906108c SS |
1579 | } |
1580 | \f | |
39d37385 PA |
1581 | /* Create a value for an array by allocating space in GDB, copying the |
1582 | data into that space, and then setting up an array value. | |
c906108c | 1583 | |
ac3eeb49 MS |
1584 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1585 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1586 | |
1587 | The element type of the array is inherited from the type of the | |
1588 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1589 | don't currently enforce any restriction on their types). */ |
c906108c | 1590 | |
f23631e4 AC |
1591 | struct value * |
1592 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1593 | { |
1594 | int nelem; | |
1595 | int idx; | |
6b850546 | 1596 | ULONGEST typelength; |
f23631e4 | 1597 | struct value *val; |
c906108c | 1598 | struct type *arraytype; |
c906108c | 1599 | |
ac3eeb49 MS |
1600 | /* Validate that the bounds are reasonable and that each of the |
1601 | elements have the same size. */ | |
c906108c SS |
1602 | |
1603 | nelem = highbound - lowbound + 1; | |
1604 | if (nelem <= 0) | |
1605 | { | |
8a3fe4f8 | 1606 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1607 | } |
3ae385af | 1608 | typelength = type_length_units (value_enclosing_type (elemvec[0])); |
c906108c SS |
1609 | for (idx = 1; idx < nelem; idx++) |
1610 | { | |
3ae385af SM |
1611 | if (type_length_units (value_enclosing_type (elemvec[idx])) |
1612 | != typelength) | |
c906108c | 1613 | { |
8a3fe4f8 | 1614 | error (_("array elements must all be the same size")); |
c906108c SS |
1615 | } |
1616 | } | |
1617 | ||
e3506a9f UW |
1618 | arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
1619 | lowbound, highbound); | |
c906108c SS |
1620 | |
1621 | if (!current_language->c_style_arrays) | |
1622 | { | |
1623 | val = allocate_value (arraytype); | |
1624 | for (idx = 0; idx < nelem; idx++) | |
39d37385 PA |
1625 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, |
1626 | typelength); | |
c906108c SS |
1627 | return val; |
1628 | } | |
1629 | ||
63092375 DJ |
1630 | /* Allocate space to store the array, and then initialize it by |
1631 | copying in each element. */ | |
c906108c | 1632 | |
63092375 | 1633 | val = allocate_value (arraytype); |
c906108c | 1634 | for (idx = 0; idx < nelem; idx++) |
39d37385 | 1635 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength); |
63092375 | 1636 | return val; |
c906108c SS |
1637 | } |
1638 | ||
6c7a06a3 | 1639 | struct value * |
e3a3797e | 1640 | value_cstring (const char *ptr, ssize_t len, struct type *char_type) |
6c7a06a3 TT |
1641 | { |
1642 | struct value *val; | |
1643 | int lowbound = current_language->string_lower_bound; | |
63375b74 | 1644 | ssize_t highbound = len / TYPE_LENGTH (char_type); |
6c7a06a3 | 1645 | struct type *stringtype |
e3506a9f | 1646 | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
6c7a06a3 TT |
1647 | |
1648 | val = allocate_value (stringtype); | |
1649 | memcpy (value_contents_raw (val), ptr, len); | |
1650 | return val; | |
1651 | } | |
1652 | ||
ac3eeb49 MS |
1653 | /* Create a value for a string constant by allocating space in the |
1654 | inferior, copying the data into that space, and returning the | |
1655 | address with type TYPE_CODE_STRING. PTR points to the string | |
1656 | constant data; LEN is number of characters. | |
1657 | ||
1658 | Note that string types are like array of char types with a lower | |
1659 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1660 | string may contain embedded null bytes. */ | |
c906108c | 1661 | |
f23631e4 | 1662 | struct value * |
7cc3f8e2 | 1663 | value_string (const char *ptr, ssize_t len, struct type *char_type) |
c906108c | 1664 | { |
f23631e4 | 1665 | struct value *val; |
c906108c | 1666 | int lowbound = current_language->string_lower_bound; |
63375b74 | 1667 | ssize_t highbound = len / TYPE_LENGTH (char_type); |
c906108c | 1668 | struct type *stringtype |
e3506a9f | 1669 | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
c906108c | 1670 | |
3b7538c0 UW |
1671 | val = allocate_value (stringtype); |
1672 | memcpy (value_contents_raw (val), ptr, len); | |
1673 | return val; | |
c906108c SS |
1674 | } |
1675 | ||
c906108c | 1676 | \f |
ac3eeb49 MS |
1677 | /* See if we can pass arguments in T2 to a function which takes |
1678 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1679 | a NULL-terminated vector. If some arguments need coercion of some | |
1680 | sort, then the coerced values are written into T2. Return value is | |
1681 | 0 if the arguments could be matched, or the position at which they | |
1682 | differ if not. | |
c906108c | 1683 | |
ac3eeb49 MS |
1684 | STATICP is nonzero if the T1 argument list came from a static |
1685 | member function. T2 will still include the ``this'' pointer, but | |
1686 | it will be skipped. | |
c906108c SS |
1687 | |
1688 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1689 | which is the type of the instance variable. This is because we |
1690 | want to handle calls with objects from derived classes. This is | |
1691 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1692 | requested operation is type secure, shouldn't we? FIXME. */ |
1693 | ||
1694 | static int | |
ad2f7632 DJ |
1695 | typecmp (int staticp, int varargs, int nargs, |
1696 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1697 | { |
1698 | int i; | |
1699 | ||
1700 | if (t2 == 0) | |
ac3eeb49 MS |
1701 | internal_error (__FILE__, __LINE__, |
1702 | _("typecmp: no argument list")); | |
ad2f7632 | 1703 | |
ac3eeb49 MS |
1704 | /* Skip ``this'' argument if applicable. T2 will always include |
1705 | THIS. */ | |
4a1970e4 | 1706 | if (staticp) |
ad2f7632 DJ |
1707 | t2 ++; |
1708 | ||
1709 | for (i = 0; | |
1710 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1711 | i++) | |
c906108c | 1712 | { |
c5aa993b | 1713 | struct type *tt1, *tt2; |
ad2f7632 | 1714 | |
c5aa993b JM |
1715 | if (!t2[i]) |
1716 | return i + 1; | |
ad2f7632 DJ |
1717 | |
1718 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1719 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1720 | |
aa006118 | 1721 | if (TYPE_IS_REFERENCE (tt1) |
8301c89e | 1722 | /* We should be doing hairy argument matching, as below. */ |
3e43a32a MS |
1723 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) |
1724 | == TYPE_CODE (tt2))) | |
c906108c SS |
1725 | { |
1726 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1727 | t2[i] = value_coerce_array (t2[i]); | |
1728 | else | |
a65cfae5 | 1729 | t2[i] = value_ref (t2[i], TYPE_CODE (tt1)); |
c906108c SS |
1730 | continue; |
1731 | } | |
1732 | ||
802db21b DB |
1733 | /* djb - 20000715 - Until the new type structure is in the |
1734 | place, and we can attempt things like implicit conversions, | |
1735 | we need to do this so you can take something like a map<const | |
1736 | char *>, and properly access map["hello"], because the | |
1737 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 | 1738 | and the argument will be a pointer to a char. */ |
aa006118 | 1739 | while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR) |
802db21b DB |
1740 | { |
1741 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1742 | } | |
ac3eeb49 MS |
1743 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1744 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
aa006118 | 1745 | || TYPE_IS_REFERENCE (tt2)) |
c906108c | 1746 | { |
ac3eeb49 | 1747 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1748 | } |
c5aa993b JM |
1749 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1750 | continue; | |
ac3eeb49 MS |
1751 | /* Array to pointer is a `trivial conversion' according to the |
1752 | ARM. */ | |
c906108c | 1753 | |
ac3eeb49 MS |
1754 | /* We should be doing much hairier argument matching (see |
1755 | section 13.2 of the ARM), but as a quick kludge, just check | |
1756 | for the same type code. */ | |
df407dfe | 1757 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1758 | return i + 1; |
c906108c | 1759 | } |
ad2f7632 | 1760 | if (varargs || t2[i] == NULL) |
c5aa993b | 1761 | return 0; |
ad2f7632 | 1762 | return i + 1; |
c906108c SS |
1763 | } |
1764 | ||
b1af9e97 TT |
1765 | /* Helper class for do_search_struct_field that updates *RESULT_PTR |
1766 | and *LAST_BOFFSET, and possibly throws an exception if the field | |
1767 | search has yielded ambiguous results. */ | |
c906108c | 1768 | |
b1af9e97 TT |
1769 | static void |
1770 | update_search_result (struct value **result_ptr, struct value *v, | |
6b850546 | 1771 | LONGEST *last_boffset, LONGEST boffset, |
b1af9e97 TT |
1772 | const char *name, struct type *type) |
1773 | { | |
1774 | if (v != NULL) | |
1775 | { | |
1776 | if (*result_ptr != NULL | |
1777 | /* The result is not ambiguous if all the classes that are | |
1778 | found occupy the same space. */ | |
1779 | && *last_boffset != boffset) | |
1780 | error (_("base class '%s' is ambiguous in type '%s'"), | |
1781 | name, TYPE_SAFE_NAME (type)); | |
1782 | *result_ptr = v; | |
1783 | *last_boffset = boffset; | |
1784 | } | |
1785 | } | |
c906108c | 1786 | |
b1af9e97 TT |
1787 | /* A helper for search_struct_field. This does all the work; most |
1788 | arguments are as passed to search_struct_field. The result is | |
1789 | stored in *RESULT_PTR, which must be initialized to NULL. | |
1790 | OUTERMOST_TYPE is the type of the initial type passed to | |
1791 | search_struct_field; this is used for error reporting when the | |
1792 | lookup is ambiguous. */ | |
1793 | ||
1794 | static void | |
6b850546 | 1795 | do_search_struct_field (const char *name, struct value *arg1, LONGEST offset, |
b1af9e97 TT |
1796 | struct type *type, int looking_for_baseclass, |
1797 | struct value **result_ptr, | |
6b850546 | 1798 | LONGEST *last_boffset, |
b1af9e97 | 1799 | struct type *outermost_type) |
c906108c SS |
1800 | { |
1801 | int i; | |
edf3d5f3 | 1802 | int nbases; |
c906108c | 1803 | |
f168693b | 1804 | type = check_typedef (type); |
edf3d5f3 | 1805 | nbases = TYPE_N_BASECLASSES (type); |
c906108c | 1806 | |
c5aa993b | 1807 | if (!looking_for_baseclass) |
c906108c SS |
1808 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1809 | { | |
0d5cff50 | 1810 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
c906108c | 1811 | |
db577aea | 1812 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1813 | { |
f23631e4 | 1814 | struct value *v; |
a109c7c1 | 1815 | |
d6a843b5 | 1816 | if (field_is_static (&TYPE_FIELD (type, i))) |
686d4def | 1817 | v = value_static_field (type, i); |
c906108c | 1818 | else |
b1af9e97 TT |
1819 | v = value_primitive_field (arg1, offset, i, type); |
1820 | *result_ptr = v; | |
1821 | return; | |
c906108c SS |
1822 | } |
1823 | ||
1824 | if (t_field_name | |
47c6ee49 | 1825 | && t_field_name[0] == '\0') |
c906108c SS |
1826 | { |
1827 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
a109c7c1 | 1828 | |
c906108c SS |
1829 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
1830 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1831 | { | |
ac3eeb49 MS |
1832 | /* Look for a match through the fields of an anonymous |
1833 | union, or anonymous struct. C++ provides anonymous | |
1834 | unions. | |
c906108c | 1835 | |
1b831c93 AC |
1836 | In the GNU Chill (now deleted from GDB) |
1837 | implementation of variant record types, each | |
1838 | <alternative field> has an (anonymous) union type, | |
1839 | each member of the union represents a <variant | |
1840 | alternative>. Each <variant alternative> is | |
1841 | represented as a struct, with a member for each | |
1842 | <variant field>. */ | |
c5aa993b | 1843 | |
b1af9e97 | 1844 | struct value *v = NULL; |
6b850546 | 1845 | LONGEST new_offset = offset; |
c906108c | 1846 | |
db034ac5 AC |
1847 | /* This is pretty gross. In G++, the offset in an |
1848 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1849 | enclosing struct. In the GNU Chill (now deleted |
1850 | from GDB) implementation of variant records, the | |
1851 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 1852 | have to add the offset of the union here. */ |
c906108c SS |
1853 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1854 | || (TYPE_NFIELDS (field_type) > 0 | |
1855 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1856 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1857 | ||
b1af9e97 TT |
1858 | do_search_struct_field (name, arg1, new_offset, |
1859 | field_type, | |
1860 | looking_for_baseclass, &v, | |
1861 | last_boffset, | |
1862 | outermost_type); | |
c906108c | 1863 | if (v) |
b1af9e97 TT |
1864 | { |
1865 | *result_ptr = v; | |
1866 | return; | |
1867 | } | |
c906108c SS |
1868 | } |
1869 | } | |
1870 | } | |
1871 | ||
c5aa993b | 1872 | for (i = 0; i < nbases; i++) |
c906108c | 1873 | { |
b1af9e97 | 1874 | struct value *v = NULL; |
c906108c | 1875 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
1876 | /* If we are looking for baseclasses, this is what we get when |
1877 | we hit them. But it could happen that the base part's member | |
1878 | name is not yet filled in. */ | |
c906108c SS |
1879 | int found_baseclass = (looking_for_baseclass |
1880 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
1881 | && (strcmp_iw (name, |
1882 | TYPE_BASECLASS_NAME (type, | |
1883 | i)) == 0)); | |
6b850546 | 1884 | LONGEST boffset = value_embedded_offset (arg1) + offset; |
c906108c SS |
1885 | |
1886 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1887 | { | |
3e3d7139 | 1888 | struct value *v2; |
c906108c SS |
1889 | |
1890 | boffset = baseclass_offset (type, i, | |
8af8e3bc PA |
1891 | value_contents_for_printing (arg1), |
1892 | value_embedded_offset (arg1) + offset, | |
1893 | value_address (arg1), | |
1894 | arg1); | |
c906108c | 1895 | |
ac3eeb49 | 1896 | /* The virtual base class pointer might have been clobbered |
581e13c1 | 1897 | by the user program. Make sure that it still points to a |
ac3eeb49 | 1898 | valid memory location. */ |
c906108c | 1899 | |
1a334831 TT |
1900 | boffset += value_embedded_offset (arg1) + offset; |
1901 | if (boffset < 0 | |
1902 | || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) | |
c906108c SS |
1903 | { |
1904 | CORE_ADDR base_addr; | |
c5aa993b | 1905 | |
42ae5230 | 1906 | base_addr = value_address (arg1) + boffset; |
08039c9e | 1907 | v2 = value_at_lazy (basetype, base_addr); |
ac3eeb49 MS |
1908 | if (target_read_memory (base_addr, |
1909 | value_contents_raw (v2), | |
acc900c2 | 1910 | TYPE_LENGTH (value_type (v2))) != 0) |
8a3fe4f8 | 1911 | error (_("virtual baseclass botch")); |
c906108c SS |
1912 | } |
1913 | else | |
1914 | { | |
1a334831 TT |
1915 | v2 = value_copy (arg1); |
1916 | deprecated_set_value_type (v2, basetype); | |
1917 | set_value_embedded_offset (v2, boffset); | |
c906108c SS |
1918 | } |
1919 | ||
1920 | if (found_baseclass) | |
b1af9e97 TT |
1921 | v = v2; |
1922 | else | |
1923 | { | |
1924 | do_search_struct_field (name, v2, 0, | |
1925 | TYPE_BASECLASS (type, i), | |
1926 | looking_for_baseclass, | |
1927 | result_ptr, last_boffset, | |
1928 | outermost_type); | |
1929 | } | |
c906108c SS |
1930 | } |
1931 | else if (found_baseclass) | |
1932 | v = value_primitive_field (arg1, offset, i, type); | |
1933 | else | |
b1af9e97 TT |
1934 | { |
1935 | do_search_struct_field (name, arg1, | |
1936 | offset + TYPE_BASECLASS_BITPOS (type, | |
1937 | i) / 8, | |
1938 | basetype, looking_for_baseclass, | |
1939 | result_ptr, last_boffset, | |
1940 | outermost_type); | |
1941 | } | |
1942 | ||
1943 | update_search_result (result_ptr, v, last_boffset, | |
1944 | boffset, name, outermost_type); | |
c906108c | 1945 | } |
b1af9e97 TT |
1946 | } |
1947 | ||
1948 | /* Helper function used by value_struct_elt to recurse through | |
8a13d42d SM |
1949 | baseclasses. Look for a field NAME in ARG1. Search in it assuming |
1950 | it has (class) type TYPE. If found, return value, else return NULL. | |
b1af9e97 TT |
1951 | |
1952 | If LOOKING_FOR_BASECLASS, then instead of looking for struct | |
1953 | fields, look for a baseclass named NAME. */ | |
1954 | ||
1955 | static struct value * | |
8a13d42d | 1956 | search_struct_field (const char *name, struct value *arg1, |
b1af9e97 TT |
1957 | struct type *type, int looking_for_baseclass) |
1958 | { | |
1959 | struct value *result = NULL; | |
6b850546 | 1960 | LONGEST boffset = 0; |
b1af9e97 | 1961 | |
8a13d42d | 1962 | do_search_struct_field (name, arg1, 0, type, looking_for_baseclass, |
b1af9e97 TT |
1963 | &result, &boffset, type); |
1964 | return result; | |
c906108c SS |
1965 | } |
1966 | ||
ac3eeb49 | 1967 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 1968 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
1969 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
1970 | TYPE. | |
1971 | ||
1972 | If found, return value, else if name matched and args not return | |
1973 | (value) -1, else return NULL. */ | |
c906108c | 1974 | |
f23631e4 | 1975 | static struct value * |
714f19d5 | 1976 | search_struct_method (const char *name, struct value **arg1p, |
6b850546 | 1977 | struct value **args, LONGEST offset, |
aa1ee363 | 1978 | int *static_memfuncp, struct type *type) |
c906108c SS |
1979 | { |
1980 | int i; | |
f23631e4 | 1981 | struct value *v; |
c906108c | 1982 | int name_matched = 0; |
c906108c | 1983 | |
f168693b | 1984 | type = check_typedef (type); |
c906108c SS |
1985 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
1986 | { | |
0d5cff50 | 1987 | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
a109c7c1 | 1988 | |
db577aea | 1989 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1990 | { |
1991 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1992 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c906108c | 1993 | |
a109c7c1 | 1994 | name_matched = 1; |
de17c821 | 1995 | check_stub_method_group (type, i); |
c906108c | 1996 | if (j > 0 && args == 0) |
3e43a32a MS |
1997 | error (_("cannot resolve overloaded method " |
1998 | "`%s': no arguments supplied"), name); | |
acf5ed49 | 1999 | else if (j == 0 && args == 0) |
c906108c | 2000 | { |
acf5ed49 DJ |
2001 | v = value_fn_field (arg1p, f, j, type, offset); |
2002 | if (v != NULL) | |
2003 | return v; | |
c906108c | 2004 | } |
acf5ed49 DJ |
2005 | else |
2006 | while (j >= 0) | |
2007 | { | |
acf5ed49 | 2008 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
2009 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2010 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2011 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2012 | { | |
2013 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
2014 | return value_virtual_fn_field (arg1p, f, j, |
2015 | type, offset); | |
2016 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
2017 | && static_memfuncp) | |
acf5ed49 DJ |
2018 | *static_memfuncp = 1; |
2019 | v = value_fn_field (arg1p, f, j, type, offset); | |
2020 | if (v != NULL) | |
2021 | return v; | |
2022 | } | |
2023 | j--; | |
2024 | } | |
c906108c SS |
2025 | } |
2026 | } | |
2027 | ||
2028 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2029 | { | |
6b850546 DT |
2030 | LONGEST base_offset; |
2031 | LONGEST this_offset; | |
c906108c SS |
2032 | |
2033 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2034 | { | |
086280be | 2035 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
8af8e3bc | 2036 | struct value *base_val; |
086280be UW |
2037 | const gdb_byte *base_valaddr; |
2038 | ||
2039 | /* The virtual base class pointer might have been | |
581e13c1 | 2040 | clobbered by the user program. Make sure that it |
8301c89e | 2041 | still points to a valid memory location. */ |
086280be UW |
2042 | |
2043 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 2044 | { |
6c18f3e0 SP |
2045 | CORE_ADDR address; |
2046 | ||
26fcd5d7 | 2047 | gdb::byte_vector tmp (TYPE_LENGTH (baseclass)); |
6c18f3e0 | 2048 | address = value_address (*arg1p); |
a109c7c1 | 2049 | |
8af8e3bc | 2050 | if (target_read_memory (address + offset, |
26fcd5d7 | 2051 | tmp.data (), TYPE_LENGTH (baseclass)) != 0) |
086280be | 2052 | error (_("virtual baseclass botch")); |
8af8e3bc PA |
2053 | |
2054 | base_val = value_from_contents_and_address (baseclass, | |
26fcd5d7 | 2055 | tmp.data (), |
8af8e3bc PA |
2056 | address + offset); |
2057 | base_valaddr = value_contents_for_printing (base_val); | |
2058 | this_offset = 0; | |
c5aa993b JM |
2059 | } |
2060 | else | |
8af8e3bc PA |
2061 | { |
2062 | base_val = *arg1p; | |
2063 | base_valaddr = value_contents_for_printing (*arg1p); | |
2064 | this_offset = offset; | |
2065 | } | |
c5aa993b | 2066 | |
086280be | 2067 | base_offset = baseclass_offset (type, i, base_valaddr, |
8af8e3bc PA |
2068 | this_offset, value_address (base_val), |
2069 | base_val); | |
c5aa993b | 2070 | } |
c906108c SS |
2071 | else |
2072 | { | |
2073 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2074 | } |
c906108c SS |
2075 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2076 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2077 | if (v == (struct value *) - 1) |
c906108c SS |
2078 | { |
2079 | name_matched = 1; | |
2080 | } | |
2081 | else if (v) | |
2082 | { | |
ac3eeb49 MS |
2083 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
2084 | /* *arg1p = arg1_tmp; */ | |
c906108c | 2085 | return v; |
c5aa993b | 2086 | } |
c906108c | 2087 | } |
c5aa993b | 2088 | if (name_matched) |
f23631e4 | 2089 | return (struct value *) - 1; |
c5aa993b JM |
2090 | else |
2091 | return NULL; | |
c906108c SS |
2092 | } |
2093 | ||
2094 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2095 | extract the component named NAME from the ultimate target |
2096 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
2097 | ERR is used in the error message if *ARGP's type is wrong. |
2098 | ||
2099 | C++: ARGS is a list of argument types to aid in the selection of | |
581e13c1 | 2100 | an appropriate method. Also, handle derived types. |
c906108c SS |
2101 | |
2102 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2103 | where the truthvalue of whether the function that was resolved was | |
2104 | a static member function or not is stored. | |
2105 | ||
ac3eeb49 MS |
2106 | ERR is an error message to be printed in case the field is not |
2107 | found. */ | |
c906108c | 2108 | |
f23631e4 AC |
2109 | struct value * |
2110 | value_struct_elt (struct value **argp, struct value **args, | |
714f19d5 | 2111 | const char *name, int *static_memfuncp, const char *err) |
c906108c | 2112 | { |
52f0bd74 | 2113 | struct type *t; |
f23631e4 | 2114 | struct value *v; |
c906108c | 2115 | |
994b9211 | 2116 | *argp = coerce_array (*argp); |
c906108c | 2117 | |
df407dfe | 2118 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2119 | |
2120 | /* Follow pointers until we get to a non-pointer. */ | |
2121 | ||
aa006118 | 2122 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) |
c906108c SS |
2123 | { |
2124 | *argp = value_ind (*argp); | |
2125 | /* Don't coerce fn pointer to fn and then back again! */ | |
b846d303 | 2126 | if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) |
994b9211 | 2127 | *argp = coerce_array (*argp); |
df407dfe | 2128 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2129 | } |
2130 | ||
c5aa993b | 2131 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2132 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
2133 | error (_("Attempt to extract a component of a value that is not a %s."), |
2134 | err); | |
c906108c SS |
2135 | |
2136 | /* Assume it's not, unless we see that it is. */ | |
2137 | if (static_memfuncp) | |
c5aa993b | 2138 | *static_memfuncp = 0; |
c906108c SS |
2139 | |
2140 | if (!args) | |
2141 | { | |
2142 | /* if there are no arguments ...do this... */ | |
2143 | ||
ac3eeb49 MS |
2144 | /* Try as a field first, because if we succeed, there is less |
2145 | work to be done. */ | |
8a13d42d | 2146 | v = search_struct_field (name, *argp, t, 0); |
c906108c SS |
2147 | if (v) |
2148 | return v; | |
2149 | ||
2150 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2151 | return it as a pointer to a method. */ |
ac3eeb49 MS |
2152 | v = search_struct_method (name, argp, args, 0, |
2153 | static_memfuncp, t); | |
c906108c | 2154 | |
f23631e4 | 2155 | if (v == (struct value *) - 1) |
55b39184 | 2156 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
2157 | else if (v == 0) |
2158 | { | |
2159 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 2160 | error (_("There is no member or method named %s."), name); |
c906108c | 2161 | else |
8a3fe4f8 | 2162 | error (_("There is no member named %s."), name); |
c906108c SS |
2163 | } |
2164 | return v; | |
2165 | } | |
2166 | ||
8301c89e DE |
2167 | v = search_struct_method (name, argp, args, 0, |
2168 | static_memfuncp, t); | |
7168a814 | 2169 | |
f23631e4 | 2170 | if (v == (struct value *) - 1) |
c906108c | 2171 | { |
3e43a32a MS |
2172 | error (_("One of the arguments you tried to pass to %s could not " |
2173 | "be converted to what the function wants."), name); | |
c906108c SS |
2174 | } |
2175 | else if (v == 0) | |
2176 | { | |
ac3eeb49 MS |
2177 | /* See if user tried to invoke data as function. If so, hand it |
2178 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 2179 | gdb should give an error. */ |
8a13d42d | 2180 | v = search_struct_field (name, *argp, t, 0); |
fa8de41e TT |
2181 | /* If we found an ordinary field, then it is not a method call. |
2182 | So, treat it as if it were a static member function. */ | |
2183 | if (v && static_memfuncp) | |
2184 | *static_memfuncp = 1; | |
c906108c SS |
2185 | } |
2186 | ||
2187 | if (!v) | |
79afc5ef SW |
2188 | throw_error (NOT_FOUND_ERROR, |
2189 | _("Structure has no component named %s."), name); | |
c906108c SS |
2190 | return v; |
2191 | } | |
2192 | ||
b5b08fb4 SC |
2193 | /* Given *ARGP, a value of type structure or union, or a pointer/reference |
2194 | to a structure or union, extract and return its component (field) of | |
2195 | type FTYPE at the specified BITPOS. | |
2196 | Throw an exception on error. */ | |
2197 | ||
2198 | struct value * | |
2199 | value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype, | |
2200 | const char *err) | |
2201 | { | |
2202 | struct type *t; | |
b5b08fb4 | 2203 | int i; |
b5b08fb4 SC |
2204 | |
2205 | *argp = coerce_array (*argp); | |
2206 | ||
2207 | t = check_typedef (value_type (*argp)); | |
2208 | ||
aa006118 | 2209 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) |
b5b08fb4 SC |
2210 | { |
2211 | *argp = value_ind (*argp); | |
2212 | if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) | |
2213 | *argp = coerce_array (*argp); | |
2214 | t = check_typedef (value_type (*argp)); | |
2215 | } | |
2216 | ||
2217 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2218 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
2219 | error (_("Attempt to extract a component of a value that is not a %s."), | |
2220 | err); | |
2221 | ||
2222 | for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++) | |
2223 | { | |
2224 | if (!field_is_static (&TYPE_FIELD (t, i)) | |
2225 | && bitpos == TYPE_FIELD_BITPOS (t, i) | |
2226 | && types_equal (ftype, TYPE_FIELD_TYPE (t, i))) | |
2227 | return value_primitive_field (*argp, 0, i, t); | |
2228 | } | |
2229 | ||
2230 | error (_("No field with matching bitpos and type.")); | |
2231 | ||
2232 | /* Never hit. */ | |
2233 | return NULL; | |
2234 | } | |
2235 | ||
7c22600a TT |
2236 | /* See value.h. */ |
2237 | ||
2238 | int | |
2239 | value_union_variant (struct type *union_type, const gdb_byte *contents) | |
2240 | { | |
2241 | gdb_assert (TYPE_CODE (union_type) == TYPE_CODE_UNION | |
2242 | && TYPE_FLAG_DISCRIMINATED_UNION (union_type)); | |
2243 | ||
2244 | struct dynamic_prop *discriminant_prop | |
2245 | = get_dyn_prop (DYN_PROP_DISCRIMINATED, union_type); | |
2246 | gdb_assert (discriminant_prop != nullptr); | |
2247 | ||
2248 | struct discriminant_info *info | |
2249 | = (struct discriminant_info *) discriminant_prop->data.baton; | |
2250 | gdb_assert (info != nullptr); | |
2251 | ||
2252 | /* If this is a univariant union, just return the sole field. */ | |
2253 | if (TYPE_NFIELDS (union_type) == 1) | |
2254 | return 0; | |
2255 | /* This should only happen for univariants, which we already dealt | |
2256 | with. */ | |
2257 | gdb_assert (info->discriminant_index != -1); | |
2258 | ||
2259 | /* Compute the discriminant. Note that unpack_field_as_long handles | |
2260 | sign extension when necessary, as does the DWARF reader -- so | |
2261 | signed discriminants will be handled correctly despite the use of | |
2262 | an unsigned type here. */ | |
2263 | ULONGEST discriminant = unpack_field_as_long (union_type, contents, | |
2264 | info->discriminant_index); | |
2265 | ||
2266 | for (int i = 0; i < TYPE_NFIELDS (union_type); ++i) | |
2267 | { | |
2268 | if (i != info->default_index | |
2269 | && i != info->discriminant_index | |
2270 | && discriminant == info->discriminants[i]) | |
2271 | return i; | |
2272 | } | |
2273 | ||
2274 | if (info->default_index == -1) | |
2275 | error (_("Could not find variant corresponding to discriminant %s"), | |
2276 | pulongest (discriminant)); | |
2277 | return info->default_index; | |
2278 | } | |
2279 | ||
ac3eeb49 | 2280 | /* Search through the methods of an object (and its bases) to find a |
38139a96 | 2281 | specified method. Return a reference to the fn_field list METHODS of |
233e8b28 SC |
2282 | overloaded instances defined in the source language. If available |
2283 | and matching, a vector of matching xmethods defined in extension | |
38139a96 | 2284 | languages are also returned in XMETHODS. |
ac3eeb49 MS |
2285 | |
2286 | Helper function for value_find_oload_list. | |
2287 | ARGP is a pointer to a pointer to a value (the object). | |
2288 | METHOD is a string containing the method name. | |
2289 | OFFSET is the offset within the value. | |
2290 | TYPE is the assumed type of the object. | |
38139a96 PA |
2291 | METHODS is a pointer to the matching overloaded instances defined |
2292 | in the source language. Since this is a recursive function, | |
2293 | *METHODS should be set to NULL when calling this function. | |
233e8b28 SC |
2294 | NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to |
2295 | 0 when calling this function. | |
38139a96 | 2296 | XMETHODS is the vector of matching xmethod workers. *XMETHODS |
233e8b28 | 2297 | should also be set to NULL when calling this function. |
ac3eeb49 MS |
2298 | BASETYPE is set to the actual type of the subobject where the |
2299 | method is found. | |
581e13c1 | 2300 | BOFFSET is the offset of the base subobject where the method is found. */ |
c906108c | 2301 | |
233e8b28 | 2302 | static void |
714f19d5 | 2303 | find_method_list (struct value **argp, const char *method, |
6b850546 | 2304 | LONGEST offset, struct type *type, |
38139a96 PA |
2305 | gdb::array_view<fn_field> *methods, |
2306 | std::vector<xmethod_worker_up> *xmethods, | |
6b850546 | 2307 | struct type **basetype, LONGEST *boffset) |
c906108c SS |
2308 | { |
2309 | int i; | |
233e8b28 | 2310 | struct fn_field *f = NULL; |
c906108c | 2311 | |
38139a96 | 2312 | gdb_assert (methods != NULL && xmethods != NULL); |
f168693b | 2313 | type = check_typedef (type); |
c906108c | 2314 | |
233e8b28 SC |
2315 | /* First check in object itself. |
2316 | This function is called recursively to search through base classes. | |
2317 | If there is a source method match found at some stage, then we need not | |
2318 | look for source methods in consequent recursive calls. */ | |
38139a96 | 2319 | if (methods->empty ()) |
c906108c | 2320 | { |
233e8b28 | 2321 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c5aa993b | 2322 | { |
233e8b28 SC |
2323 | /* pai: FIXME What about operators and type conversions? */ |
2324 | const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2325 | ||
2326 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) | |
2327 | { | |
2328 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2329 | f = TYPE_FN_FIELDLIST1 (type, i); | |
38139a96 | 2330 | *methods = gdb::make_array_view (f, len); |
4a1970e4 | 2331 | |
233e8b28 SC |
2332 | *basetype = type; |
2333 | *boffset = offset; | |
4a1970e4 | 2334 | |
233e8b28 SC |
2335 | /* Resolve any stub methods. */ |
2336 | check_stub_method_group (type, i); | |
4a1970e4 | 2337 | |
233e8b28 SC |
2338 | break; |
2339 | } | |
c5aa993b JM |
2340 | } |
2341 | } | |
2342 | ||
233e8b28 SC |
2343 | /* Unlike source methods, xmethods can be accumulated over successive |
2344 | recursive calls. In other words, an xmethod named 'm' in a class | |
2345 | will not hide an xmethod named 'm' in its base class(es). We want | |
2346 | it to be this way because xmethods are after all convenience functions | |
2347 | and hence there is no point restricting them with something like method | |
2348 | hiding. Moreover, if hiding is done for xmethods as well, then we will | |
2349 | have to provide a mechanism to un-hide (like the 'using' construct). */ | |
38139a96 | 2350 | get_matching_xmethod_workers (type, method, xmethods); |
233e8b28 SC |
2351 | |
2352 | /* If source methods are not found in current class, look for them in the | |
2353 | base classes. We also have to go through the base classes to gather | |
2354 | extension methods. */ | |
c906108c SS |
2355 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
2356 | { | |
6b850546 | 2357 | LONGEST base_offset; |
a109c7c1 | 2358 | |
c906108c SS |
2359 | if (BASETYPE_VIA_VIRTUAL (type, i)) |
2360 | { | |
086280be | 2361 | base_offset = baseclass_offset (type, i, |
8af8e3bc PA |
2362 | value_contents_for_printing (*argp), |
2363 | value_offset (*argp) + offset, | |
2364 | value_address (*argp), *argp); | |
c5aa993b | 2365 | } |
ac3eeb49 MS |
2366 | else /* Non-virtual base, simply use bit position from debug |
2367 | info. */ | |
c906108c SS |
2368 | { |
2369 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2370 | } |
233e8b28 SC |
2371 | |
2372 | find_method_list (argp, method, base_offset + offset, | |
38139a96 PA |
2373 | TYPE_BASECLASS (type, i), methods, |
2374 | xmethods, basetype, boffset); | |
c906108c | 2375 | } |
c906108c SS |
2376 | } |
2377 | ||
233e8b28 SC |
2378 | /* Return the list of overloaded methods of a specified name. The methods |
2379 | could be those GDB finds in the binary, or xmethod. Methods found in | |
38139a96 PA |
2380 | the binary are returned in METHODS, and xmethods are returned in |
2381 | XMETHODS. | |
ac3eeb49 MS |
2382 | |
2383 | ARGP is a pointer to a pointer to a value (the object). | |
2384 | METHOD is the method name. | |
2385 | OFFSET is the offset within the value contents. | |
38139a96 PA |
2386 | METHODS is the list of matching overloaded instances defined in |
2387 | the source language. | |
2388 | XMETHODS is the vector of matching xmethod workers defined in | |
233e8b28 | 2389 | extension languages. |
ac3eeb49 MS |
2390 | BASETYPE is set to the type of the base subobject that defines the |
2391 | method. | |
581e13c1 | 2392 | BOFFSET is the offset of the base subobject which defines the method. */ |
c906108c | 2393 | |
233e8b28 | 2394 | static void |
714f19d5 | 2395 | value_find_oload_method_list (struct value **argp, const char *method, |
85cca2bc | 2396 | LONGEST offset, |
38139a96 PA |
2397 | gdb::array_view<fn_field> *methods, |
2398 | std::vector<xmethod_worker_up> *xmethods, | |
6b850546 | 2399 | struct type **basetype, LONGEST *boffset) |
c906108c | 2400 | { |
c5aa993b | 2401 | struct type *t; |
c906108c | 2402 | |
df407dfe | 2403 | t = check_typedef (value_type (*argp)); |
c906108c | 2404 | |
ac3eeb49 | 2405 | /* Code snarfed from value_struct_elt. */ |
aa006118 | 2406 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) |
c906108c SS |
2407 | { |
2408 | *argp = value_ind (*argp); | |
2409 | /* Don't coerce fn pointer to fn and then back again! */ | |
b846d303 | 2410 | if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) |
994b9211 | 2411 | *argp = coerce_array (*argp); |
df407dfe | 2412 | t = check_typedef (value_type (*argp)); |
c906108c | 2413 | } |
c5aa993b | 2414 | |
c5aa993b JM |
2415 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
2416 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
3e43a32a MS |
2417 | error (_("Attempt to extract a component of a " |
2418 | "value that is not a struct or union")); | |
c5aa993b | 2419 | |
38139a96 | 2420 | gdb_assert (methods != NULL && xmethods != NULL); |
233e8b28 SC |
2421 | |
2422 | /* Clear the lists. */ | |
38139a96 PA |
2423 | *methods = {}; |
2424 | xmethods->clear (); | |
233e8b28 | 2425 | |
38139a96 | 2426 | find_method_list (argp, method, 0, t, methods, xmethods, |
233e8b28 | 2427 | basetype, boffset); |
c906108c SS |
2428 | } |
2429 | ||
6b1747cd PA |
2430 | /* Given an array of arguments (ARGS) (which includes an entry for |
2431 | "this" in the case of C++ methods), the NAME of a function, and | |
2432 | whether it's a method or not (METHOD), find the best function that | |
2433 | matches on the argument types according to the overload resolution | |
2434 | rules. | |
c906108c | 2435 | |
4c3376c8 SW |
2436 | METHOD can be one of three values: |
2437 | NON_METHOD for non-member functions. | |
2438 | METHOD: for member functions. | |
2439 | BOTH: used for overload resolution of operators where the | |
2440 | candidates are expected to be either member or non member | |
581e13c1 | 2441 | functions. In this case the first argument ARGTYPES |
4c3376c8 SW |
2442 | (representing 'this') is expected to be a reference to the |
2443 | target object, and will be dereferenced when attempting the | |
2444 | non-member search. | |
2445 | ||
c906108c SS |
2446 | In the case of class methods, the parameter OBJ is an object value |
2447 | in which to search for overloaded methods. | |
2448 | ||
2449 | In the case of non-method functions, the parameter FSYM is a symbol | |
2450 | corresponding to one of the overloaded functions. | |
2451 | ||
2452 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2453 | non-standard coercions, 100 -> incompatible. | |
2454 | ||
2455 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
2456 | If a non-method is being searched for, SYMP will hold the symbol |
2457 | for it. | |
c906108c SS |
2458 | |
2459 | If a method is being searched for, and it is a static method, | |
2460 | then STATICP will point to a non-zero value. | |
2461 | ||
7322dca9 SW |
2462 | If NO_ADL argument dependent lookup is disabled. This is used to prevent |
2463 | ADL overload candidates when performing overload resolution for a fully | |
2464 | qualified name. | |
2465 | ||
e66d4446 SC |
2466 | If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be |
2467 | read while picking the best overload match (it may be all zeroes and thus | |
2468 | not have a vtable pointer), in which case skip virtual function lookup. | |
2469 | This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine | |
2470 | the result type. | |
2471 | ||
c906108c SS |
2472 | Note: This function does *not* check the value of |
2473 | overload_resolution. Caller must check it to see whether overload | |
581e13c1 | 2474 | resolution is permitted. */ |
c906108c SS |
2475 | |
2476 | int | |
6b1747cd | 2477 | find_overload_match (gdb::array_view<value *> args, |
4c3376c8 | 2478 | const char *name, enum oload_search_type method, |
28c64fc2 | 2479 | struct value **objp, struct symbol *fsym, |
ac3eeb49 | 2480 | struct value **valp, struct symbol **symp, |
e66d4446 SC |
2481 | int *staticp, const int no_adl, |
2482 | const enum noside noside) | |
c906108c | 2483 | { |
7f8c9282 | 2484 | struct value *obj = (objp ? *objp : NULL); |
da096638 | 2485 | struct type *obj_type = obj ? value_type (obj) : NULL; |
ac3eeb49 | 2486 | /* Index of best overloaded function. */ |
4c3376c8 SW |
2487 | int func_oload_champ = -1; |
2488 | int method_oload_champ = -1; | |
233e8b28 SC |
2489 | int src_method_oload_champ = -1; |
2490 | int ext_method_oload_champ = -1; | |
4c3376c8 | 2491 | |
ac3eeb49 | 2492 | /* The measure for the current best match. */ |
82ceee50 PA |
2493 | badness_vector method_badness; |
2494 | badness_vector func_badness; | |
2495 | badness_vector ext_method_badness; | |
2496 | badness_vector src_method_badness; | |
4c3376c8 | 2497 | |
f23631e4 | 2498 | struct value *temp = obj; |
ac3eeb49 | 2499 | /* For methods, the list of overloaded methods. */ |
38139a96 | 2500 | gdb::array_view<fn_field> methods; |
ac3eeb49 | 2501 | /* For non-methods, the list of overloaded function symbols. */ |
38139a96 | 2502 | std::vector<symbol *> functions; |
ba18742c | 2503 | /* For xmethods, the vector of xmethod workers. */ |
38139a96 | 2504 | std::vector<xmethod_worker_up> xmethods; |
c5aa993b | 2505 | struct type *basetype = NULL; |
6b850546 | 2506 | LONGEST boffset; |
7322dca9 | 2507 | |
8d577d32 | 2508 | const char *obj_type_name = NULL; |
7322dca9 | 2509 | const char *func_name = NULL; |
06d3e5b0 | 2510 | gdb::unique_xmalloc_ptr<char> temp_func; |
8d577d32 | 2511 | enum oload_classification match_quality; |
4c3376c8 | 2512 | enum oload_classification method_match_quality = INCOMPATIBLE; |
233e8b28 SC |
2513 | enum oload_classification src_method_match_quality = INCOMPATIBLE; |
2514 | enum oload_classification ext_method_match_quality = INCOMPATIBLE; | |
4c3376c8 | 2515 | enum oload_classification func_match_quality = INCOMPATIBLE; |
c906108c | 2516 | |
ac3eeb49 | 2517 | /* Get the list of overloaded methods or functions. */ |
4c3376c8 | 2518 | if (method == METHOD || method == BOTH) |
c906108c | 2519 | { |
a2ca50ae | 2520 | gdb_assert (obj); |
94af9270 KS |
2521 | |
2522 | /* OBJ may be a pointer value rather than the object itself. */ | |
2523 | obj = coerce_ref (obj); | |
2524 | while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) | |
2525 | obj = coerce_ref (value_ind (obj)); | |
df407dfe | 2526 | obj_type_name = TYPE_NAME (value_type (obj)); |
94af9270 KS |
2527 | |
2528 | /* First check whether this is a data member, e.g. a pointer to | |
2529 | a function. */ | |
2530 | if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) | |
2531 | { | |
8a13d42d | 2532 | *valp = search_struct_field (name, obj, |
94af9270 KS |
2533 | check_typedef (value_type (obj)), 0); |
2534 | if (*valp) | |
2535 | { | |
2536 | *staticp = 1; | |
2537 | return 0; | |
2538 | } | |
2539 | } | |
c906108c | 2540 | |
4c3376c8 | 2541 | /* Retrieve the list of methods with the name NAME. */ |
38139a96 PA |
2542 | value_find_oload_method_list (&temp, name, 0, &methods, |
2543 | &xmethods, &basetype, &boffset); | |
4c3376c8 | 2544 | /* If this is a method only search, and no methods were found |
ba18742c | 2545 | the search has failed. */ |
38139a96 | 2546 | if (method == METHOD && methods.empty () && xmethods.empty ()) |
8a3fe4f8 | 2547 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2548 | obj_type_name, |
2549 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2550 | name); | |
4a1970e4 | 2551 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2552 | been resolved by find_method_list via |
2553 | value_find_oload_method_list above. */ | |
38139a96 | 2554 | if (!methods.empty ()) |
4c3376c8 | 2555 | { |
38139a96 | 2556 | gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL); |
4c3376c8 | 2557 | |
85cca2bc PA |
2558 | src_method_oload_champ |
2559 | = find_oload_champ (args, | |
38139a96 PA |
2560 | methods.size (), |
2561 | methods.data (), NULL, NULL, | |
85cca2bc | 2562 | &src_method_badness); |
233e8b28 SC |
2563 | |
2564 | src_method_match_quality = classify_oload_match | |
6b1747cd | 2565 | (src_method_badness, args.size (), |
38139a96 | 2566 | oload_method_static_p (methods.data (), src_method_oload_champ)); |
233e8b28 | 2567 | } |
4c3376c8 | 2568 | |
38139a96 | 2569 | if (!xmethods.empty ()) |
233e8b28 | 2570 | { |
85cca2bc PA |
2571 | ext_method_oload_champ |
2572 | = find_oload_champ (args, | |
38139a96 PA |
2573 | xmethods.size (), |
2574 | NULL, xmethods.data (), NULL, | |
85cca2bc | 2575 | &ext_method_badness); |
233e8b28 | 2576 | ext_method_match_quality = classify_oload_match (ext_method_badness, |
6b1747cd | 2577 | args.size (), 0); |
4c3376c8 SW |
2578 | } |
2579 | ||
233e8b28 SC |
2580 | if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0) |
2581 | { | |
2582 | switch (compare_badness (ext_method_badness, src_method_badness)) | |
2583 | { | |
2584 | case 0: /* Src method and xmethod are equally good. */ | |
233e8b28 SC |
2585 | /* If src method and xmethod are equally good, then |
2586 | xmethod should be the winner. Hence, fall through to the | |
2587 | case where a xmethod is better than the source | |
2588 | method, except when the xmethod match quality is | |
2589 | non-standard. */ | |
2590 | /* FALLTHROUGH */ | |
2591 | case 1: /* Src method and ext method are incompatible. */ | |
2592 | /* If ext method match is not standard, then let source method | |
2593 | win. Otherwise, fallthrough to let xmethod win. */ | |
2594 | if (ext_method_match_quality != STANDARD) | |
2595 | { | |
2596 | method_oload_champ = src_method_oload_champ; | |
2597 | method_badness = src_method_badness; | |
2598 | ext_method_oload_champ = -1; | |
2599 | method_match_quality = src_method_match_quality; | |
2600 | break; | |
2601 | } | |
2602 | /* FALLTHROUGH */ | |
2603 | case 2: /* Ext method is champion. */ | |
2604 | method_oload_champ = ext_method_oload_champ; | |
2605 | method_badness = ext_method_badness; | |
2606 | src_method_oload_champ = -1; | |
2607 | method_match_quality = ext_method_match_quality; | |
2608 | break; | |
2609 | case 3: /* Src method is champion. */ | |
2610 | method_oload_champ = src_method_oload_champ; | |
2611 | method_badness = src_method_badness; | |
2612 | ext_method_oload_champ = -1; | |
2613 | method_match_quality = src_method_match_quality; | |
2614 | break; | |
2615 | default: | |
2616 | gdb_assert_not_reached ("Unexpected overload comparison " | |
2617 | "result"); | |
2618 | break; | |
2619 | } | |
2620 | } | |
2621 | else if (src_method_oload_champ >= 0) | |
2622 | { | |
2623 | method_oload_champ = src_method_oload_champ; | |
2624 | method_badness = src_method_badness; | |
2625 | method_match_quality = src_method_match_quality; | |
2626 | } | |
2627 | else if (ext_method_oload_champ >= 0) | |
2628 | { | |
2629 | method_oload_champ = ext_method_oload_champ; | |
2630 | method_badness = ext_method_badness; | |
2631 | method_match_quality = ext_method_match_quality; | |
2632 | } | |
c906108c | 2633 | } |
4c3376c8 SW |
2634 | |
2635 | if (method == NON_METHOD || method == BOTH) | |
c906108c | 2636 | { |
7322dca9 | 2637 | const char *qualified_name = NULL; |
c906108c | 2638 | |
b021a221 MS |
2639 | /* If the overload match is being search for both as a method |
2640 | and non member function, the first argument must now be | |
2641 | dereferenced. */ | |
4c3376c8 | 2642 | if (method == BOTH) |
2b214ea6 | 2643 | args[0] = value_ind (args[0]); |
4c3376c8 | 2644 | |
7322dca9 SW |
2645 | if (fsym) |
2646 | { | |
987012b8 | 2647 | qualified_name = fsym->natural_name (); |
7322dca9 SW |
2648 | |
2649 | /* If we have a function with a C++ name, try to extract just | |
2650 | the function part. Do not try this for non-functions (e.g. | |
2651 | function pointers). */ | |
2652 | if (qualified_name | |
3e43a32a MS |
2653 | && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) |
2654 | == TYPE_CODE_FUNC) | |
7322dca9 | 2655 | { |
b926417a | 2656 | temp_func = cp_func_name (qualified_name); |
7322dca9 SW |
2657 | |
2658 | /* If cp_func_name did not remove anything, the name of the | |
2659 | symbol did not include scope or argument types - it was | |
2660 | probably a C-style function. */ | |
06d3e5b0 | 2661 | if (temp_func != nullptr) |
7322dca9 | 2662 | { |
06d3e5b0 | 2663 | if (strcmp (temp_func.get (), qualified_name) == 0) |
7322dca9 SW |
2664 | func_name = NULL; |
2665 | else | |
06d3e5b0 | 2666 | func_name = temp_func.get (); |
7322dca9 SW |
2667 | } |
2668 | } | |
2669 | } | |
2670 | else | |
94af9270 | 2671 | { |
7322dca9 SW |
2672 | func_name = name; |
2673 | qualified_name = name; | |
94af9270 | 2674 | } |
d9639e13 | 2675 | |
94af9270 KS |
2676 | /* If there was no C++ name, this must be a C-style function or |
2677 | not a function at all. Just return the same symbol. Do the | |
2678 | same if cp_func_name fails for some reason. */ | |
8d577d32 | 2679 | if (func_name == NULL) |
7b83ea04 | 2680 | { |
917317f4 | 2681 | *symp = fsym; |
7b83ea04 AC |
2682 | return 0; |
2683 | } | |
917317f4 | 2684 | |
6b1747cd | 2685 | func_oload_champ = find_oload_champ_namespace (args, |
4c3376c8 SW |
2686 | func_name, |
2687 | qualified_name, | |
38139a96 | 2688 | &functions, |
4c3376c8 SW |
2689 | &func_badness, |
2690 | no_adl); | |
8d577d32 | 2691 | |
4c3376c8 | 2692 | if (func_oload_champ >= 0) |
6b1747cd PA |
2693 | func_match_quality = classify_oload_match (func_badness, |
2694 | args.size (), 0); | |
8d577d32 DC |
2695 | } |
2696 | ||
7322dca9 | 2697 | /* Did we find a match ? */ |
4c3376c8 | 2698 | if (method_oload_champ == -1 && func_oload_champ == -1) |
79afc5ef SW |
2699 | throw_error (NOT_FOUND_ERROR, |
2700 | _("No symbol \"%s\" in current context."), | |
2701 | name); | |
8d577d32 | 2702 | |
4c3376c8 SW |
2703 | /* If we have found both a method match and a function |
2704 | match, find out which one is better, and calculate match | |
2705 | quality. */ | |
2706 | if (method_oload_champ >= 0 && func_oload_champ >= 0) | |
2707 | { | |
2708 | switch (compare_badness (func_badness, method_badness)) | |
2709 | { | |
2710 | case 0: /* Top two contenders are equally good. */ | |
b021a221 MS |
2711 | /* FIXME: GDB does not support the general ambiguous case. |
2712 | All candidates should be collected and presented the | |
2713 | user. */ | |
4c3376c8 SW |
2714 | error (_("Ambiguous overload resolution")); |
2715 | break; | |
2716 | case 1: /* Incomparable top contenders. */ | |
2717 | /* This is an error incompatible candidates | |
2718 | should not have been proposed. */ | |
3e43a32a MS |
2719 | error (_("Internal error: incompatible " |
2720 | "overload candidates proposed")); | |
4c3376c8 SW |
2721 | break; |
2722 | case 2: /* Function champion. */ | |
2723 | method_oload_champ = -1; | |
2724 | match_quality = func_match_quality; | |
2725 | break; | |
2726 | case 3: /* Method champion. */ | |
2727 | func_oload_champ = -1; | |
2728 | match_quality = method_match_quality; | |
2729 | break; | |
2730 | default: | |
2731 | error (_("Internal error: unexpected overload comparison result")); | |
2732 | break; | |
2733 | } | |
2734 | } | |
2735 | else | |
2736 | { | |
2737 | /* We have either a method match or a function match. */ | |
2738 | if (method_oload_champ >= 0) | |
2739 | match_quality = method_match_quality; | |
2740 | else | |
2741 | match_quality = func_match_quality; | |
2742 | } | |
8d577d32 DC |
2743 | |
2744 | if (match_quality == INCOMPATIBLE) | |
2745 | { | |
4c3376c8 | 2746 | if (method == METHOD) |
8a3fe4f8 | 2747 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2748 | obj_type_name, |
2749 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2750 | name); | |
2751 | else | |
8a3fe4f8 | 2752 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2753 | func_name); |
2754 | } | |
2755 | else if (match_quality == NON_STANDARD) | |
2756 | { | |
4c3376c8 | 2757 | if (method == METHOD) |
3e43a32a MS |
2758 | warning (_("Using non-standard conversion to match " |
2759 | "method %s%s%s to supplied arguments"), | |
8d577d32 DC |
2760 | obj_type_name, |
2761 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2762 | name); | |
2763 | else | |
3e43a32a MS |
2764 | warning (_("Using non-standard conversion to match " |
2765 | "function %s to supplied arguments"), | |
8d577d32 DC |
2766 | func_name); |
2767 | } | |
2768 | ||
4c3376c8 | 2769 | if (staticp != NULL) |
38139a96 | 2770 | *staticp = oload_method_static_p (methods.data (), method_oload_champ); |
4c3376c8 SW |
2771 | |
2772 | if (method_oload_champ >= 0) | |
8d577d32 | 2773 | { |
233e8b28 SC |
2774 | if (src_method_oload_champ >= 0) |
2775 | { | |
38139a96 | 2776 | if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ) |
e66d4446 SC |
2777 | && noside != EVAL_AVOID_SIDE_EFFECTS) |
2778 | { | |
38139a96 | 2779 | *valp = value_virtual_fn_field (&temp, methods.data (), |
e66d4446 SC |
2780 | method_oload_champ, basetype, |
2781 | boffset); | |
2782 | } | |
233e8b28 | 2783 | else |
38139a96 | 2784 | *valp = value_fn_field (&temp, methods.data (), |
85cca2bc | 2785 | method_oload_champ, basetype, boffset); |
233e8b28 | 2786 | } |
8d577d32 | 2787 | else |
ba18742c | 2788 | *valp = value_from_xmethod |
38139a96 | 2789 | (std::move (xmethods[ext_method_oload_champ])); |
8d577d32 DC |
2790 | } |
2791 | else | |
38139a96 | 2792 | *symp = functions[func_oload_champ]; |
8d577d32 DC |
2793 | |
2794 | if (objp) | |
2795 | { | |
a4295225 | 2796 | struct type *temp_type = check_typedef (value_type (temp)); |
da096638 | 2797 | struct type *objtype = check_typedef (obj_type); |
a109c7c1 | 2798 | |
a4295225 | 2799 | if (TYPE_CODE (temp_type) != TYPE_CODE_PTR |
da096638 | 2800 | && (TYPE_CODE (objtype) == TYPE_CODE_PTR |
aa006118 | 2801 | || TYPE_IS_REFERENCE (objtype))) |
8d577d32 DC |
2802 | { |
2803 | temp = value_addr (temp); | |
2804 | } | |
2805 | *objp = temp; | |
2806 | } | |
7322dca9 | 2807 | |
8d577d32 DC |
2808 | switch (match_quality) |
2809 | { | |
2810 | case INCOMPATIBLE: | |
2811 | return 100; | |
2812 | case NON_STANDARD: | |
2813 | return 10; | |
2814 | default: /* STANDARD */ | |
2815 | return 0; | |
2816 | } | |
2817 | } | |
2818 | ||
2819 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2820 | contained in QUALIFIED_NAME until it either finds a good match or | |
2821 | runs out of namespaces. It stores the overloaded functions in | |
82ceee50 | 2822 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL, |
30baf67b | 2823 | argument dependent lookup is not performed. */ |
8d577d32 DC |
2824 | |
2825 | static int | |
6b1747cd | 2826 | find_oload_champ_namespace (gdb::array_view<value *> args, |
8d577d32 DC |
2827 | const char *func_name, |
2828 | const char *qualified_name, | |
0891c3cc | 2829 | std::vector<symbol *> *oload_syms, |
82ceee50 | 2830 | badness_vector *oload_champ_bv, |
7322dca9 | 2831 | const int no_adl) |
8d577d32 DC |
2832 | { |
2833 | int oload_champ; | |
2834 | ||
6b1747cd | 2835 | find_oload_champ_namespace_loop (args, |
8d577d32 DC |
2836 | func_name, |
2837 | qualified_name, 0, | |
2838 | oload_syms, oload_champ_bv, | |
7322dca9 SW |
2839 | &oload_champ, |
2840 | no_adl); | |
8d577d32 DC |
2841 | |
2842 | return oload_champ; | |
2843 | } | |
2844 | ||
2845 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2846 | how deep we've looked for namespaces, and the champ is stored in | |
2847 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
7322dca9 | 2848 | if it isn't. Other arguments are the same as in |
82ceee50 | 2849 | find_oload_champ_namespace. */ |
8d577d32 DC |
2850 | |
2851 | static int | |
6b1747cd | 2852 | find_oload_champ_namespace_loop (gdb::array_view<value *> args, |
8d577d32 DC |
2853 | const char *func_name, |
2854 | const char *qualified_name, | |
2855 | int namespace_len, | |
0891c3cc | 2856 | std::vector<symbol *> *oload_syms, |
82ceee50 | 2857 | badness_vector *oload_champ_bv, |
7322dca9 SW |
2858 | int *oload_champ, |
2859 | const int no_adl) | |
8d577d32 DC |
2860 | { |
2861 | int next_namespace_len = namespace_len; | |
2862 | int searched_deeper = 0; | |
8d577d32 | 2863 | int new_oload_champ; |
8d577d32 DC |
2864 | char *new_namespace; |
2865 | ||
2866 | if (next_namespace_len != 0) | |
2867 | { | |
2868 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2869 | next_namespace_len += 2; | |
c906108c | 2870 | } |
ac3eeb49 MS |
2871 | next_namespace_len += |
2872 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 | 2873 | |
581e13c1 | 2874 | /* First, see if we have a deeper namespace we can search in. |
ac3eeb49 | 2875 | If we get a good match there, use it. */ |
8d577d32 DC |
2876 | |
2877 | if (qualified_name[next_namespace_len] == ':') | |
2878 | { | |
2879 | searched_deeper = 1; | |
2880 | ||
6b1747cd | 2881 | if (find_oload_champ_namespace_loop (args, |
8d577d32 DC |
2882 | func_name, qualified_name, |
2883 | next_namespace_len, | |
2884 | oload_syms, oload_champ_bv, | |
7322dca9 | 2885 | oload_champ, no_adl)) |
8d577d32 DC |
2886 | { |
2887 | return 1; | |
2888 | } | |
2889 | }; | |
2890 | ||
2891 | /* If we reach here, either we're in the deepest namespace or we | |
2892 | didn't find a good match in a deeper namespace. But, in the | |
2893 | latter case, we still have a bad match in a deeper namespace; | |
2894 | note that we might not find any match at all in the current | |
2895 | namespace. (There's always a match in the deepest namespace, | |
2896 | because this overload mechanism only gets called if there's a | |
2897 | function symbol to start off with.) */ | |
2898 | ||
224c3ddb | 2899 | new_namespace = (char *) alloca (namespace_len + 1); |
8d577d32 DC |
2900 | strncpy (new_namespace, qualified_name, namespace_len); |
2901 | new_namespace[namespace_len] = '\0'; | |
0891c3cc PA |
2902 | |
2903 | std::vector<symbol *> new_oload_syms | |
2904 | = make_symbol_overload_list (func_name, new_namespace); | |
7322dca9 SW |
2905 | |
2906 | /* If we have reached the deepest level perform argument | |
2907 | determined lookup. */ | |
2908 | if (!searched_deeper && !no_adl) | |
da096638 KS |
2909 | { |
2910 | int ix; | |
2911 | struct type **arg_types; | |
2912 | ||
2913 | /* Prepare list of argument types for overload resolution. */ | |
2914 | arg_types = (struct type **) | |
6b1747cd PA |
2915 | alloca (args.size () * (sizeof (struct type *))); |
2916 | for (ix = 0; ix < args.size (); ix++) | |
da096638 | 2917 | arg_types[ix] = value_type (args[ix]); |
0891c3cc PA |
2918 | add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name, |
2919 | &new_oload_syms); | |
da096638 | 2920 | } |
7322dca9 | 2921 | |
82ceee50 | 2922 | badness_vector new_oload_champ_bv; |
85cca2bc PA |
2923 | new_oload_champ = find_oload_champ (args, |
2924 | new_oload_syms.size (), | |
0891c3cc | 2925 | NULL, NULL, new_oload_syms.data (), |
8d577d32 DC |
2926 | &new_oload_champ_bv); |
2927 | ||
2928 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2929 | and return it. Case 2: We didn't find a good match, but we're | |
2930 | not the deepest function. Then go with the bad match that the | |
2931 | deeper function found. Case 3: We found a bad match, and we're | |
2932 | the deepest function. Then return what we found, even though | |
2933 | it's a bad match. */ | |
2934 | ||
2935 | if (new_oload_champ != -1 | |
6b1747cd | 2936 | && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD) |
8d577d32 | 2937 | { |
0891c3cc | 2938 | *oload_syms = std::move (new_oload_syms); |
8d577d32 | 2939 | *oload_champ = new_oload_champ; |
82ceee50 | 2940 | *oload_champ_bv = std::move (new_oload_champ_bv); |
8d577d32 DC |
2941 | return 1; |
2942 | } | |
2943 | else if (searched_deeper) | |
2944 | { | |
8d577d32 DC |
2945 | return 0; |
2946 | } | |
2947 | else | |
2948 | { | |
0891c3cc | 2949 | *oload_syms = std::move (new_oload_syms); |
8d577d32 | 2950 | *oload_champ = new_oload_champ; |
82ceee50 | 2951 | *oload_champ_bv = std::move (new_oload_champ_bv); |
8d577d32 DC |
2952 | return 0; |
2953 | } | |
2954 | } | |
2955 | ||
6b1747cd | 2956 | /* Look for a function to take ARGS. Find the best match from among |
38139a96 PA |
2957 | the overloaded methods or functions given by METHODS or FUNCTIONS |
2958 | or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS | |
2959 | and XMETHODS can be non-NULL. | |
233e8b28 | 2960 | |
38139a96 PA |
2961 | NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS |
2962 | or XMETHODS, whichever is non-NULL. | |
233e8b28 | 2963 | |
8d577d32 | 2964 | Return the index of the best match; store an indication of the |
82ceee50 | 2965 | quality of the match in OLOAD_CHAMP_BV. */ |
8d577d32 DC |
2966 | |
2967 | static int | |
6b1747cd | 2968 | find_oload_champ (gdb::array_view<value *> args, |
85cca2bc | 2969 | size_t num_fns, |
38139a96 PA |
2970 | fn_field *methods, |
2971 | xmethod_worker_up *xmethods, | |
2972 | symbol **functions, | |
82ceee50 | 2973 | badness_vector *oload_champ_bv) |
8d577d32 | 2974 | { |
ac3eeb49 | 2975 | /* A measure of how good an overloaded instance is. */ |
82ceee50 | 2976 | badness_vector bv; |
ac3eeb49 MS |
2977 | /* Index of best overloaded function. */ |
2978 | int oload_champ = -1; | |
2979 | /* Current ambiguity state for overload resolution. */ | |
2980 | int oload_ambiguous = 0; | |
2981 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 | 2982 | |
9cf95373 | 2983 | /* A champion can be found among methods alone, or among functions |
233e8b28 SC |
2984 | alone, or in xmethods alone, but not in more than one of these |
2985 | groups. */ | |
38139a96 | 2986 | gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL) |
233e8b28 | 2987 | == 1); |
9cf95373 | 2988 | |
ac3eeb49 | 2989 | /* Consider each candidate in turn. */ |
85cca2bc | 2990 | for (size_t ix = 0; ix < num_fns; ix++) |
c906108c | 2991 | { |
8d577d32 | 2992 | int jj; |
233e8b28 | 2993 | int static_offset = 0; |
6b1747cd | 2994 | std::vector<type *> parm_types; |
8d577d32 | 2995 | |
38139a96 PA |
2996 | if (xmethods != NULL) |
2997 | parm_types = xmethods[ix]->get_arg_types (); | |
db577aea AC |
2998 | else |
2999 | { | |
6b1747cd PA |
3000 | size_t nparms; |
3001 | ||
38139a96 | 3002 | if (methods != NULL) |
233e8b28 | 3003 | { |
38139a96 PA |
3004 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (methods, ix)); |
3005 | static_offset = oload_method_static_p (methods, ix); | |
233e8b28 SC |
3006 | } |
3007 | else | |
38139a96 | 3008 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (functions[ix])); |
233e8b28 | 3009 | |
6b1747cd | 3010 | parm_types.reserve (nparms); |
233e8b28 | 3011 | for (jj = 0; jj < nparms; jj++) |
6b1747cd | 3012 | { |
38139a96 PA |
3013 | type *t = (methods != NULL |
3014 | ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type) | |
3015 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (functions[ix]), | |
6b1747cd PA |
3016 | jj)); |
3017 | parm_types.push_back (t); | |
3018 | } | |
db577aea | 3019 | } |
c906108c | 3020 | |
ac3eeb49 MS |
3021 | /* Compare parameter types to supplied argument types. Skip |
3022 | THIS for static methods. */ | |
6b1747cd PA |
3023 | bv = rank_function (parm_types, |
3024 | args.slice (static_offset)); | |
c5aa993b | 3025 | |
e9194a1a TBA |
3026 | if (overload_debug) |
3027 | { | |
3028 | if (methods != NULL) | |
3029 | fprintf_filtered (gdb_stderr, | |
3030 | "Overloaded method instance %s, # of parms %d\n", | |
3031 | methods[ix].physname, (int) parm_types.size ()); | |
3032 | else if (xmethods != NULL) | |
3033 | fprintf_filtered (gdb_stderr, | |
3034 | "Xmethod worker, # of parms %d\n", | |
3035 | (int) parm_types.size ()); | |
3036 | else | |
3037 | fprintf_filtered (gdb_stderr, | |
3038 | "Overloaded function instance " | |
3039 | "%s # of parms %d\n", | |
3040 | functions[ix]->demangled_name (), | |
3041 | (int) parm_types.size ()); | |
a992a3b0 TBA |
3042 | |
3043 | fprintf_filtered (gdb_stderr, | |
3044 | "...Badness of length : {%d, %d}\n", | |
3045 | bv[0].rank, bv[0].subrank); | |
3046 | ||
3047 | for (jj = 1; jj < bv.size (); jj++) | |
e9194a1a | 3048 | fprintf_filtered (gdb_stderr, |
a992a3b0 TBA |
3049 | "...Badness of arg %d : {%d, %d}\n", |
3050 | jj, bv[jj].rank, bv[jj].subrank); | |
e9194a1a TBA |
3051 | } |
3052 | ||
82ceee50 | 3053 | if (oload_champ_bv->empty ()) |
c5aa993b | 3054 | { |
82ceee50 | 3055 | *oload_champ_bv = std::move (bv); |
c5aa993b | 3056 | oload_champ = 0; |
c5aa993b | 3057 | } |
ac3eeb49 MS |
3058 | else /* See whether current candidate is better or worse than |
3059 | previous best. */ | |
8d577d32 | 3060 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 3061 | { |
ac3eeb49 MS |
3062 | case 0: /* Top two contenders are equally good. */ |
3063 | oload_ambiguous = 1; | |
c5aa993b | 3064 | break; |
ac3eeb49 MS |
3065 | case 1: /* Incomparable top contenders. */ |
3066 | oload_ambiguous = 2; | |
c5aa993b | 3067 | break; |
ac3eeb49 | 3068 | case 2: /* New champion, record details. */ |
82ceee50 | 3069 | *oload_champ_bv = std::move (bv); |
c5aa993b JM |
3070 | oload_ambiguous = 0; |
3071 | oload_champ = ix; | |
c5aa993b JM |
3072 | break; |
3073 | case 3: | |
3074 | default: | |
3075 | break; | |
3076 | } | |
6b1ba9a0 | 3077 | if (overload_debug) |
e9194a1a TBA |
3078 | fprintf_filtered (gdb_stderr, "Overload resolution " |
3079 | "champion is %d, ambiguous? %d\n", | |
3080 | oload_champ, oload_ambiguous); | |
c906108c SS |
3081 | } |
3082 | ||
8d577d32 DC |
3083 | return oload_champ; |
3084 | } | |
6b1ba9a0 | 3085 | |
8d577d32 DC |
3086 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
3087 | a non-static method or a function that isn't a method. */ | |
c906108c | 3088 | |
8d577d32 | 3089 | static int |
2bca57ba | 3090 | oload_method_static_p (struct fn_field *fns_ptr, int index) |
8d577d32 | 3091 | { |
2bca57ba | 3092 | if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) |
8d577d32 | 3093 | return 1; |
c906108c | 3094 | else |
8d577d32 DC |
3095 | return 0; |
3096 | } | |
c906108c | 3097 | |
8d577d32 DC |
3098 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
3099 | ||
3100 | static enum oload_classification | |
82ceee50 | 3101 | classify_oload_match (const badness_vector &oload_champ_bv, |
8d577d32 DC |
3102 | int nargs, |
3103 | int static_offset) | |
3104 | { | |
3105 | int ix; | |
da096638 | 3106 | enum oload_classification worst = STANDARD; |
8d577d32 DC |
3107 | |
3108 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 3109 | { |
6403aeea SW |
3110 | /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS |
3111 | or worse return INCOMPATIBLE. */ | |
82ceee50 | 3112 | if (compare_ranks (oload_champ_bv[ix], |
6403aeea | 3113 | INCOMPATIBLE_TYPE_BADNESS) <= 0) |
ac3eeb49 | 3114 | return INCOMPATIBLE; /* Truly mismatched types. */ |
6403aeea SW |
3115 | /* Otherwise If this conversion is as bad as |
3116 | NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */ | |
82ceee50 | 3117 | else if (compare_ranks (oload_champ_bv[ix], |
6403aeea | 3118 | NS_POINTER_CONVERSION_BADNESS) <= 0) |
da096638 | 3119 | worst = NON_STANDARD; /* Non-standard type conversions |
ac3eeb49 | 3120 | needed. */ |
7f8c9282 | 3121 | } |
02f0d45d | 3122 | |
da096638 KS |
3123 | /* If no INCOMPATIBLE classification was found, return the worst one |
3124 | that was found (if any). */ | |
3125 | return worst; | |
c906108c SS |
3126 | } |
3127 | ||
ac3eeb49 MS |
3128 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
3129 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
d8228535 JK |
3130 | inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet |
3131 | have CHECK_TYPEDEF applied, this function will apply it itself. */ | |
3132 | ||
c906108c | 3133 | int |
d8228535 | 3134 | destructor_name_p (const char *name, struct type *type) |
c906108c | 3135 | { |
c906108c SS |
3136 | if (name[0] == '~') |
3137 | { | |
a737d952 | 3138 | const char *dname = type_name_or_error (type); |
d8228535 | 3139 | const char *cp = strchr (dname, '<'); |
c906108c SS |
3140 | unsigned int len; |
3141 | ||
3142 | /* Do not compare the template part for template classes. */ | |
3143 | if (cp == NULL) | |
3144 | len = strlen (dname); | |
3145 | else | |
3146 | len = cp - dname; | |
bf896cb0 | 3147 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 3148 | error (_("name of destructor must equal name of class")); |
c906108c SS |
3149 | else |
3150 | return 1; | |
3151 | } | |
3152 | return 0; | |
3153 | } | |
3154 | ||
3d567982 TT |
3155 | /* Find an enum constant named NAME in TYPE. TYPE must be an "enum |
3156 | class". If the name is found, return a value representing it; | |
3157 | otherwise throw an exception. */ | |
3158 | ||
3159 | static struct value * | |
3160 | enum_constant_from_type (struct type *type, const char *name) | |
3161 | { | |
3162 | int i; | |
3163 | int name_len = strlen (name); | |
3164 | ||
3165 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM | |
3166 | && TYPE_DECLARED_CLASS (type)); | |
3167 | ||
3168 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i) | |
3169 | { | |
3170 | const char *fname = TYPE_FIELD_NAME (type, i); | |
3171 | int len; | |
3172 | ||
3173 | if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL | |
3174 | || fname == NULL) | |
3175 | continue; | |
3176 | ||
3177 | /* Look for the trailing "::NAME", since enum class constant | |
3178 | names are qualified here. */ | |
3179 | len = strlen (fname); | |
3180 | if (len + 2 >= name_len | |
3181 | && fname[len - name_len - 2] == ':' | |
3182 | && fname[len - name_len - 1] == ':' | |
3183 | && strcmp (&fname[len - name_len], name) == 0) | |
3184 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i)); | |
3185 | } | |
3186 | ||
3187 | error (_("no constant named \"%s\" in enum \"%s\""), | |
e86ca25f | 3188 | name, TYPE_NAME (type)); |
3d567982 TT |
3189 | } |
3190 | ||
79c2c32d | 3191 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
3192 | return the appropriate member (or the address of the member, if |
3193 | WANT_ADDRESS). This function is used to resolve user expressions | |
3194 | of the form "DOMAIN::NAME". For more details on what happens, see | |
3195 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
3196 | |
3197 | struct value * | |
c848d642 | 3198 | value_aggregate_elt (struct type *curtype, const char *name, |
072bba3b | 3199 | struct type *expect_type, int want_address, |
79c2c32d DC |
3200 | enum noside noside) |
3201 | { | |
3202 | switch (TYPE_CODE (curtype)) | |
3203 | { | |
3204 | case TYPE_CODE_STRUCT: | |
3205 | case TYPE_CODE_UNION: | |
ac3eeb49 | 3206 | return value_struct_elt_for_reference (curtype, 0, curtype, |
072bba3b | 3207 | name, expect_type, |
0d5de010 | 3208 | want_address, noside); |
79c2c32d | 3209 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
3210 | return value_namespace_elt (curtype, name, |
3211 | want_address, noside); | |
3d567982 TT |
3212 | |
3213 | case TYPE_CODE_ENUM: | |
3214 | return enum_constant_from_type (curtype, name); | |
3215 | ||
79c2c32d DC |
3216 | default: |
3217 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 3218 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
3219 | } |
3220 | } | |
3221 | ||
072bba3b | 3222 | /* Compares the two method/function types T1 and T2 for "equality" |
b021a221 | 3223 | with respect to the methods' parameters. If the types of the |
072bba3b KS |
3224 | two parameter lists are the same, returns 1; 0 otherwise. This |
3225 | comparison may ignore any artificial parameters in T1 if | |
3226 | SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip | |
3227 | the first artificial parameter in T1, assumed to be a 'this' pointer. | |
3228 | ||
3229 | The type T2 is expected to have come from make_params (in eval.c). */ | |
3230 | ||
3231 | static int | |
3232 | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | |
3233 | { | |
3234 | int start = 0; | |
3235 | ||
80b23b6a | 3236 | if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0)) |
072bba3b KS |
3237 | ++start; |
3238 | ||
3239 | /* If skipping artificial fields, find the first real field | |
581e13c1 | 3240 | in T1. */ |
072bba3b KS |
3241 | if (skip_artificial) |
3242 | { | |
3243 | while (start < TYPE_NFIELDS (t1) | |
3244 | && TYPE_FIELD_ARTIFICIAL (t1, start)) | |
3245 | ++start; | |
3246 | } | |
3247 | ||
581e13c1 | 3248 | /* Now compare parameters. */ |
072bba3b KS |
3249 | |
3250 | /* Special case: a method taking void. T1 will contain no | |
3251 | non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ | |
3252 | if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 | |
3253 | && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) | |
3254 | return 1; | |
3255 | ||
3256 | if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) | |
3257 | { | |
3258 | int i; | |
a109c7c1 | 3259 | |
072bba3b KS |
3260 | for (i = 0; i < TYPE_NFIELDS (t2); ++i) |
3261 | { | |
6403aeea | 3262 | if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), |
da096638 | 3263 | TYPE_FIELD_TYPE (t2, i), NULL), |
6403aeea | 3264 | EXACT_MATCH_BADNESS) != 0) |
072bba3b KS |
3265 | return 0; |
3266 | } | |
3267 | ||
3268 | return 1; | |
3269 | } | |
3270 | ||
3271 | return 0; | |
3272 | } | |
3273 | ||
9f6b697b WP |
3274 | /* C++: Given an aggregate type VT, and a class type CLS, search |
3275 | recursively for CLS using value V; If found, store the offset | |
3276 | which is either fetched from the virtual base pointer if CLS | |
3277 | is virtual or accumulated offset of its parent classes if | |
3278 | CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS | |
3279 | is virtual, and return true. If not found, return false. */ | |
3280 | ||
3281 | static bool | |
3282 | get_baseclass_offset (struct type *vt, struct type *cls, | |
3283 | struct value *v, int *boffs, bool *isvirt) | |
3284 | { | |
3285 | for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++) | |
3286 | { | |
3287 | struct type *t = TYPE_FIELD_TYPE (vt, i); | |
3288 | if (types_equal (t, cls)) | |
3289 | { | |
3290 | if (BASETYPE_VIA_VIRTUAL (vt, i)) | |
3291 | { | |
3292 | const gdb_byte *adr = value_contents_for_printing (v); | |
3293 | *boffs = baseclass_offset (vt, i, adr, value_offset (v), | |
3294 | value_as_long (v), v); | |
3295 | *isvirt = true; | |
3296 | } | |
3297 | else | |
3298 | *isvirt = false; | |
3299 | return true; | |
3300 | } | |
3301 | ||
3302 | if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt)) | |
3303 | { | |
3304 | if (*isvirt == false) /* Add non-virtual base offset. */ | |
3305 | { | |
3306 | const gdb_byte *adr = value_contents_for_printing (v); | |
3307 | *boffs += baseclass_offset (vt, i, adr, value_offset (v), | |
3308 | value_as_long (v), v); | |
3309 | } | |
3310 | return true; | |
3311 | } | |
3312 | } | |
3313 | ||
3314 | return false; | |
3315 | } | |
3316 | ||
c906108c | 3317 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
3318 | return the address of this member as a "pointer to member" type. |
3319 | If INTYPE is non-null, then it will be the type of the member we | |
3320 | are looking for. This will help us resolve "pointers to member | |
3321 | functions". This function is used to resolve user expressions of | |
3322 | the form "DOMAIN::NAME". */ | |
c906108c | 3323 | |
63d06c5c | 3324 | static struct value * |
fba45db2 | 3325 | value_struct_elt_for_reference (struct type *domain, int offset, |
c848d642 | 3326 | struct type *curtype, const char *name, |
ac3eeb49 MS |
3327 | struct type *intype, |
3328 | int want_address, | |
63d06c5c | 3329 | enum noside noside) |
c906108c | 3330 | { |
bf2977b5 | 3331 | struct type *t = check_typedef (curtype); |
52f0bd74 | 3332 | int i; |
b926417a | 3333 | struct value *result; |
c906108c | 3334 | |
c5aa993b | 3335 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 3336 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
3337 | error (_("Internal error: non-aggregate type " |
3338 | "to value_struct_elt_for_reference")); | |
c906108c SS |
3339 | |
3340 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3341 | { | |
0d5cff50 | 3342 | const char *t_field_name = TYPE_FIELD_NAME (t, i); |
c5aa993b | 3343 | |
6314a349 | 3344 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3345 | { |
d6a843b5 | 3346 | if (field_is_static (&TYPE_FIELD (t, i))) |
c906108c | 3347 | { |
b926417a | 3348 | struct value *v = value_static_field (t, i); |
0d5de010 DJ |
3349 | if (want_address) |
3350 | v = value_addr (v); | |
c906108c SS |
3351 | return v; |
3352 | } | |
3353 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 3354 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 3355 | |
0d5de010 DJ |
3356 | if (want_address) |
3357 | return value_from_longest | |
3358 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
3359 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
f7e3ecae | 3360 | else if (noside != EVAL_NORMAL) |
0d5de010 DJ |
3361 | return allocate_value (TYPE_FIELD_TYPE (t, i)); |
3362 | else | |
f7e3ecae KS |
3363 | { |
3364 | /* Try to evaluate NAME as a qualified name with implicit | |
3365 | this pointer. In this case, attempt to return the | |
3366 | equivalent to `this->*(&TYPE::NAME)'. */ | |
b926417a | 3367 | struct value *v = value_of_this_silent (current_language); |
f7e3ecae KS |
3368 | if (v != NULL) |
3369 | { | |
9f6b697b | 3370 | struct value *ptr, *this_v = v; |
f7e3ecae KS |
3371 | long mem_offset; |
3372 | struct type *type, *tmp; | |
3373 | ||
3374 | ptr = value_aggregate_elt (domain, name, NULL, 1, noside); | |
3375 | type = check_typedef (value_type (ptr)); | |
3376 | gdb_assert (type != NULL | |
3377 | && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR); | |
4bfb94b8 | 3378 | tmp = lookup_pointer_type (TYPE_SELF_TYPE (type)); |
f7e3ecae KS |
3379 | v = value_cast_pointers (tmp, v, 1); |
3380 | mem_offset = value_as_long (ptr); | |
9f6b697b WP |
3381 | if (domain != curtype) |
3382 | { | |
3383 | /* Find class offset of type CURTYPE from either its | |
3384 | parent type DOMAIN or the type of implied this. */ | |
3385 | int boff = 0; | |
3386 | bool isvirt = false; | |
3387 | if (get_baseclass_offset (domain, curtype, v, &boff, | |
3388 | &isvirt)) | |
3389 | mem_offset += boff; | |
3390 | else | |
3391 | { | |
a51bb70c WP |
3392 | struct type *p = check_typedef (value_type (this_v)); |
3393 | p = check_typedef (TYPE_TARGET_TYPE (p)); | |
3394 | if (get_baseclass_offset (p, curtype, this_v, | |
9f6b697b WP |
3395 | &boff, &isvirt)) |
3396 | mem_offset += boff; | |
3397 | } | |
3398 | } | |
f7e3ecae KS |
3399 | tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type)); |
3400 | result = value_from_pointer (tmp, | |
3401 | value_as_long (v) + mem_offset); | |
3402 | return value_ind (result); | |
3403 | } | |
3404 | ||
3405 | error (_("Cannot reference non-static field \"%s\""), name); | |
3406 | } | |
c906108c SS |
3407 | } |
3408 | } | |
3409 | ||
ac3eeb49 MS |
3410 | /* C++: If it was not found as a data field, then try to return it |
3411 | as a pointer to a method. */ | |
c906108c | 3412 | |
c906108c SS |
3413 | /* Perform all necessary dereferencing. */ |
3414 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3415 | intype = TYPE_TARGET_TYPE (intype); | |
3416 | ||
3417 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3418 | { | |
0d5cff50 | 3419 | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); |
c906108c | 3420 | |
6314a349 | 3421 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3422 | { |
072bba3b KS |
3423 | int j; |
3424 | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
c906108c | 3425 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); |
c5aa993b | 3426 | |
de17c821 DJ |
3427 | check_stub_method_group (t, i); |
3428 | ||
c906108c SS |
3429 | if (intype) |
3430 | { | |
072bba3b KS |
3431 | for (j = 0; j < len; ++j) |
3432 | { | |
3693fdb3 PA |
3433 | if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j)) |
3434 | continue; | |
3435 | if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j)) | |
3436 | continue; | |
3437 | ||
072bba3b | 3438 | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) |
3e43a32a MS |
3439 | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), |
3440 | intype, 1)) | |
072bba3b KS |
3441 | break; |
3442 | } | |
3443 | ||
3444 | if (j == len) | |
3e43a32a MS |
3445 | error (_("no member function matches " |
3446 | "that type instantiation")); | |
7f79b1c5 | 3447 | } |
c906108c | 3448 | else |
072bba3b KS |
3449 | { |
3450 | int ii; | |
7f79b1c5 DJ |
3451 | |
3452 | j = -1; | |
53832f31 | 3453 | for (ii = 0; ii < len; ++ii) |
072bba3b | 3454 | { |
7f79b1c5 DJ |
3455 | /* Skip artificial methods. This is necessary if, |
3456 | for example, the user wants to "print | |
3457 | subclass::subclass" with only one user-defined | |
53832f31 TT |
3458 | constructor. There is no ambiguity in this case. |
3459 | We are careful here to allow artificial methods | |
3460 | if they are the unique result. */ | |
072bba3b | 3461 | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) |
53832f31 TT |
3462 | { |
3463 | if (j == -1) | |
3464 | j = ii; | |
3465 | continue; | |
3466 | } | |
072bba3b | 3467 | |
7f79b1c5 DJ |
3468 | /* Desired method is ambiguous if more than one |
3469 | method is defined. */ | |
53832f31 | 3470 | if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j)) |
3e43a32a MS |
3471 | error (_("non-unique member `%s' requires " |
3472 | "type instantiation"), name); | |
072bba3b | 3473 | |
7f79b1c5 DJ |
3474 | j = ii; |
3475 | } | |
53832f31 TT |
3476 | |
3477 | if (j == -1) | |
3478 | error (_("no matching member function")); | |
072bba3b | 3479 | } |
c5aa993b | 3480 | |
0d5de010 DJ |
3481 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
3482 | { | |
ac3eeb49 MS |
3483 | struct symbol *s = |
3484 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
d12307c1 | 3485 | 0, VAR_DOMAIN, 0).symbol; |
a109c7c1 | 3486 | |
0d5de010 DJ |
3487 | if (s == NULL) |
3488 | return NULL; | |
3489 | ||
3490 | if (want_address) | |
63e43d3a | 3491 | return value_addr (read_var_value (s, 0, 0)); |
0d5de010 | 3492 | else |
63e43d3a | 3493 | return read_var_value (s, 0, 0); |
0d5de010 DJ |
3494 | } |
3495 | ||
c906108c SS |
3496 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3497 | { | |
0d5de010 DJ |
3498 | if (want_address) |
3499 | { | |
3500 | result = allocate_value | |
3501 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
ad4820ab UW |
3502 | cplus_make_method_ptr (value_type (result), |
3503 | value_contents_writeable (result), | |
0d5de010 DJ |
3504 | TYPE_FN_FIELD_VOFFSET (f, j), 1); |
3505 | } | |
3506 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3507 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
3508 | else | |
3509 | error (_("Cannot reference virtual member function \"%s\""), | |
3510 | name); | |
c906108c SS |
3511 | } |
3512 | else | |
3513 | { | |
ac3eeb49 MS |
3514 | struct symbol *s = |
3515 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
d12307c1 | 3516 | 0, VAR_DOMAIN, 0).symbol; |
a109c7c1 | 3517 | |
c906108c | 3518 | if (s == NULL) |
0d5de010 DJ |
3519 | return NULL; |
3520 | ||
b926417a | 3521 | struct value *v = read_var_value (s, 0, 0); |
0d5de010 DJ |
3522 | if (!want_address) |
3523 | result = v; | |
c906108c SS |
3524 | else |
3525 | { | |
0d5de010 | 3526 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
ad4820ab UW |
3527 | cplus_make_method_ptr (value_type (result), |
3528 | value_contents_writeable (result), | |
42ae5230 | 3529 | value_address (v), 0); |
c906108c | 3530 | } |
c906108c | 3531 | } |
0d5de010 | 3532 | return result; |
c906108c SS |
3533 | } |
3534 | } | |
3535 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3536 | { | |
f23631e4 | 3537 | struct value *v; |
c906108c SS |
3538 | int base_offset; |
3539 | ||
3540 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3541 | base_offset = 0; | |
3542 | else | |
3543 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3544 | v = value_struct_elt_for_reference (domain, | |
3545 | offset + base_offset, | |
3546 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
3547 | name, intype, |
3548 | want_address, noside); | |
c906108c SS |
3549 | if (v) |
3550 | return v; | |
3551 | } | |
63d06c5c DC |
3552 | |
3553 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
3554 | it up that way; this (frequently) works for types nested inside | |
3555 | classes. */ | |
3556 | ||
ac3eeb49 MS |
3557 | return value_maybe_namespace_elt (curtype, name, |
3558 | want_address, noside); | |
c906108c SS |
3559 | } |
3560 | ||
79c2c32d DC |
3561 | /* C++: Return the member NAME of the namespace given by the type |
3562 | CURTYPE. */ | |
3563 | ||
3564 | static struct value * | |
3565 | value_namespace_elt (const struct type *curtype, | |
c848d642 | 3566 | const char *name, int want_address, |
79c2c32d | 3567 | enum noside noside) |
63d06c5c DC |
3568 | { |
3569 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
3570 | want_address, |
3571 | noside); | |
63d06c5c DC |
3572 | |
3573 | if (retval == NULL) | |
ac3eeb49 | 3574 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
e86ca25f | 3575 | name, TYPE_NAME (curtype)); |
63d06c5c DC |
3576 | |
3577 | return retval; | |
3578 | } | |
3579 | ||
3580 | /* A helper function used by value_namespace_elt and | |
3581 | value_struct_elt_for_reference. It looks up NAME inside the | |
3582 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
3583 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
3584 | to, say, some base class of CURTYPE). */ | |
3585 | ||
3586 | static struct value * | |
3587 | value_maybe_namespace_elt (const struct type *curtype, | |
c848d642 | 3588 | const char *name, int want_address, |
63d06c5c | 3589 | enum noside noside) |
79c2c32d | 3590 | { |
e86ca25f | 3591 | const char *namespace_name = TYPE_NAME (curtype); |
d12307c1 | 3592 | struct block_symbol sym; |
0d5de010 | 3593 | struct value *result; |
79c2c32d | 3594 | |
13387711 | 3595 | sym = cp_lookup_symbol_namespace (namespace_name, name, |
41f62f39 JK |
3596 | get_selected_block (0), VAR_DOMAIN); |
3597 | ||
d12307c1 | 3598 | if (sym.symbol == NULL) |
63d06c5c | 3599 | return NULL; |
79c2c32d | 3600 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
d12307c1 PMR |
3601 | && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)) |
3602 | result = allocate_value (SYMBOL_TYPE (sym.symbol)); | |
79c2c32d | 3603 | else |
d12307c1 | 3604 | result = value_of_variable (sym.symbol, sym.block); |
0d5de010 | 3605 | |
ae6a105d | 3606 | if (want_address) |
0d5de010 DJ |
3607 | result = value_addr (result); |
3608 | ||
3609 | return result; | |
79c2c32d DC |
3610 | } |
3611 | ||
dfcee124 | 3612 | /* Given a pointer or a reference value V, find its real (RTTI) type. |
ac3eeb49 | 3613 | |
c906108c | 3614 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 3615 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
3616 | |
3617 | struct type * | |
dfcee124 | 3618 | value_rtti_indirect_type (struct value *v, int *full, |
6b850546 | 3619 | LONGEST *top, int *using_enc) |
c906108c | 3620 | { |
f7e5394d | 3621 | struct value *target = NULL; |
dfcee124 AG |
3622 | struct type *type, *real_type, *target_type; |
3623 | ||
3624 | type = value_type (v); | |
3625 | type = check_typedef (type); | |
aa006118 | 3626 | if (TYPE_IS_REFERENCE (type)) |
dfcee124 AG |
3627 | target = coerce_ref (v); |
3628 | else if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
f7e5394d | 3629 | { |
f7e5394d | 3630 | |
a70b8144 | 3631 | try |
f7e5394d SM |
3632 | { |
3633 | target = value_ind (v); | |
3634 | } | |
230d2906 | 3635 | catch (const gdb_exception_error &except) |
f7e5394d SM |
3636 | { |
3637 | if (except.error == MEMORY_ERROR) | |
3638 | { | |
3639 | /* value_ind threw a memory error. The pointer is NULL or | |
3640 | contains an uninitialized value: we can't determine any | |
3641 | type. */ | |
3642 | return NULL; | |
3643 | } | |
eedc3f4f | 3644 | throw; |
f7e5394d SM |
3645 | } |
3646 | } | |
dfcee124 AG |
3647 | else |
3648 | return NULL; | |
c906108c | 3649 | |
dfcee124 AG |
3650 | real_type = value_rtti_type (target, full, top, using_enc); |
3651 | ||
3652 | if (real_type) | |
3653 | { | |
3654 | /* Copy qualifiers to the referenced object. */ | |
3655 | target_type = value_type (target); | |
3656 | real_type = make_cv_type (TYPE_CONST (target_type), | |
3657 | TYPE_VOLATILE (target_type), real_type, NULL); | |
aa006118 AV |
3658 | if (TYPE_IS_REFERENCE (type)) |
3659 | real_type = lookup_reference_type (real_type, TYPE_CODE (type)); | |
dfcee124 AG |
3660 | else if (TYPE_CODE (type) == TYPE_CODE_PTR) |
3661 | real_type = lookup_pointer_type (real_type); | |
3662 | else | |
3663 | internal_error (__FILE__, __LINE__, _("Unexpected value type.")); | |
3664 | ||
3665 | /* Copy qualifiers to the pointer/reference. */ | |
3666 | real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), | |
3667 | real_type, NULL); | |
3668 | } | |
c906108c | 3669 | |
dfcee124 | 3670 | return real_type; |
c906108c SS |
3671 | } |
3672 | ||
3673 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3674 | if that is different from the enclosing type, create a new value | |
3675 | using the real run-time type as the enclosing type (and of the same | |
3676 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
3677 | be the correct offset to the enclosed object. RTYPE is the type, |
3678 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
3679 | by value_rtti_type(). If these are available, they can be supplied | |
3680 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
3681 | NULL if they're not available. */ | |
c906108c | 3682 | |
f23631e4 | 3683 | struct value * |
ac3eeb49 MS |
3684 | value_full_object (struct value *argp, |
3685 | struct type *rtype, | |
3686 | int xfull, int xtop, | |
fba45db2 | 3687 | int xusing_enc) |
c906108c | 3688 | { |
c5aa993b | 3689 | struct type *real_type; |
c906108c | 3690 | int full = 0; |
6b850546 | 3691 | LONGEST top = -1; |
c906108c | 3692 | int using_enc = 0; |
f23631e4 | 3693 | struct value *new_val; |
c906108c SS |
3694 | |
3695 | if (rtype) | |
3696 | { | |
3697 | real_type = rtype; | |
3698 | full = xfull; | |
3699 | top = xtop; | |
3700 | using_enc = xusing_enc; | |
3701 | } | |
3702 | else | |
3703 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3704 | ||
ac3eeb49 | 3705 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 3706 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
3707 | return argp; |
3708 | ||
a7860e76 TT |
3709 | /* In a destructor we might see a real type that is a superclass of |
3710 | the object's type. In this case it is better to leave the object | |
3711 | as-is. */ | |
3712 | if (full | |
3713 | && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp))) | |
3714 | return argp; | |
3715 | ||
c906108c | 3716 | /* If we have the full object, but for some reason the enclosing |
ac3eeb49 MS |
3717 | type is wrong, set it. */ |
3718 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
3719 | if (full) |
3720 | { | |
4dfea560 DE |
3721 | argp = value_copy (argp); |
3722 | set_value_enclosing_type (argp, real_type); | |
c906108c SS |
3723 | return argp; |
3724 | } | |
3725 | ||
581e13c1 | 3726 | /* Check if object is in memory. */ |
c906108c SS |
3727 | if (VALUE_LVAL (argp) != lval_memory) |
3728 | { | |
3e43a32a MS |
3729 | warning (_("Couldn't retrieve complete object of RTTI " |
3730 | "type %s; object may be in register(s)."), | |
ac3eeb49 | 3731 | TYPE_NAME (real_type)); |
c5aa993b | 3732 | |
c906108c SS |
3733 | return argp; |
3734 | } | |
c5aa993b | 3735 | |
ac3eeb49 MS |
3736 | /* All other cases -- retrieve the complete object. */ |
3737 | /* Go back by the computed top_offset from the beginning of the | |
3738 | object, adjusting for the embedded offset of argp if that's what | |
3739 | value_rtti_type used for its computation. */ | |
42ae5230 | 3740 | new_val = value_at_lazy (real_type, value_address (argp) - top + |
13c3b5f5 | 3741 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 3742 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
3743 | set_value_embedded_offset (new_val, (using_enc |
3744 | ? top + value_embedded_offset (argp) | |
3745 | : top)); | |
c906108c SS |
3746 | return new_val; |
3747 | } | |
3748 | ||
389e51db | 3749 | |
85bc8cb7 JK |
3750 | /* Return the value of the local variable, if one exists. Throw error |
3751 | otherwise, such as if the request is made in an inappropriate context. */ | |
c906108c | 3752 | |
f23631e4 | 3753 | struct value * |
85bc8cb7 | 3754 | value_of_this (const struct language_defn *lang) |
c906108c | 3755 | { |
63e43d3a | 3756 | struct block_symbol sym; |
3977b71f | 3757 | const struct block *b; |
206415a3 | 3758 | struct frame_info *frame; |
c906108c | 3759 | |
66a17cb6 | 3760 | if (!lang->la_name_of_this) |
85bc8cb7 | 3761 | error (_("no `this' in current language")); |
aee28ec6 | 3762 | |
85bc8cb7 | 3763 | frame = get_selected_frame (_("no frame selected")); |
c906108c | 3764 | |
66a17cb6 | 3765 | b = get_frame_block (frame, NULL); |
c906108c | 3766 | |
63e43d3a PMR |
3767 | sym = lookup_language_this (lang, b); |
3768 | if (sym.symbol == NULL) | |
85bc8cb7 JK |
3769 | error (_("current stack frame does not contain a variable named `%s'"), |
3770 | lang->la_name_of_this); | |
3771 | ||
63e43d3a | 3772 | return read_var_value (sym.symbol, sym.block, frame); |
85bc8cb7 JK |
3773 | } |
3774 | ||
3775 | /* Return the value of the local variable, if one exists. Return NULL | |
3776 | otherwise. Never throw error. */ | |
3777 | ||
3778 | struct value * | |
3779 | value_of_this_silent (const struct language_defn *lang) | |
3780 | { | |
3781 | struct value *ret = NULL; | |
85bc8cb7 | 3782 | |
a70b8144 | 3783 | try |
c906108c | 3784 | { |
85bc8cb7 | 3785 | ret = value_of_this (lang); |
c906108c | 3786 | } |
230d2906 | 3787 | catch (const gdb_exception_error &except) |
492d29ea PA |
3788 | { |
3789 | } | |
c906108c | 3790 | |
d069f99d AF |
3791 | return ret; |
3792 | } | |
3793 | ||
ac3eeb49 MS |
3794 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
3795 | elements long, starting at LOWBOUND. The result has the same lower | |
3796 | bound as the original ARRAY. */ | |
c906108c | 3797 | |
f23631e4 AC |
3798 | struct value * |
3799 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3800 | { |
3801 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3802 | LONGEST lowerbound, upperbound; |
f23631e4 | 3803 | struct value *slice; |
c906108c | 3804 | struct type *array_type; |
ac3eeb49 | 3805 | |
df407dfe | 3806 | array_type = check_typedef (value_type (array)); |
c906108c | 3807 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
6b1755ce | 3808 | && TYPE_CODE (array_type) != TYPE_CODE_STRING) |
8a3fe4f8 | 3809 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 3810 | |
a7067863 AB |
3811 | if (type_not_allocated (array_type)) |
3812 | error (_("array not allocated")); | |
3813 | if (type_not_associated (array_type)) | |
3814 | error (_("array not associated")); | |
3815 | ||
c906108c SS |
3816 | range_type = TYPE_INDEX_TYPE (array_type); |
3817 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 3818 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 3819 | |
c906108c | 3820 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 3821 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 3822 | error (_("slice out of range")); |
ac3eeb49 | 3823 | |
c906108c SS |
3824 | /* FIXME-type-allocation: need a way to free this type when we are |
3825 | done with it. */ | |
cafb3438 | 3826 | slice_range_type = create_static_range_type (NULL, |
0c9c3474 SA |
3827 | TYPE_TARGET_TYPE (range_type), |
3828 | lowbound, | |
3829 | lowbound + length - 1); | |
ac3eeb49 | 3830 | |
a7c88acd JB |
3831 | { |
3832 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3833 | LONGEST offset | |
3834 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
ac3eeb49 | 3835 | |
cafb3438 | 3836 | slice_type = create_array_type (NULL, |
a7c88acd JB |
3837 | element_type, |
3838 | slice_range_type); | |
3839 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 3840 | |
a7c88acd JB |
3841 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
3842 | slice = allocate_value_lazy (slice_type); | |
3843 | else | |
3844 | { | |
3845 | slice = allocate_value (slice_type); | |
3846 | value_contents_copy (slice, 0, array, offset, | |
3ae385af | 3847 | type_length_units (slice_type)); |
a7c88acd JB |
3848 | } |
3849 | ||
3850 | set_value_component_location (slice, array); | |
a7c88acd JB |
3851 | set_value_offset (slice, value_offset (array) + offset); |
3852 | } | |
ac3eeb49 | 3853 | |
c906108c SS |
3854 | return slice; |
3855 | } | |
3856 | ||
ac3eeb49 MS |
3857 | /* Create a value for a FORTRAN complex number. Currently most of the |
3858 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 | 3859 | composed of 2 doubles. This really should be a smarter routine |
85102364 | 3860 | that figures out precision intelligently as opposed to assuming |
ac3eeb49 | 3861 | doubles. FIXME: fmb */ |
c906108c | 3862 | |
f23631e4 | 3863 | struct value * |
ac3eeb49 MS |
3864 | value_literal_complex (struct value *arg1, |
3865 | struct value *arg2, | |
3866 | struct type *type) | |
c906108c | 3867 | { |
f23631e4 | 3868 | struct value *val; |
c906108c SS |
3869 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3870 | ||
3871 | val = allocate_value (type); | |
3872 | arg1 = value_cast (real_type, arg1); | |
3873 | arg2 = value_cast (real_type, arg2); | |
3874 | ||
990a07ab | 3875 | memcpy (value_contents_raw (val), |
0fd88904 | 3876 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 3877 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 3878 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
3879 | return val; |
3880 | } | |
3881 | ||
ac3eeb49 | 3882 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 3883 | |
f23631e4 AC |
3884 | static struct value * |
3885 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3886 | { |
3887 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3888 | |
df407dfe | 3889 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3890 | { |
df407dfe | 3891 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3892 | struct value *re_val = allocate_value (val_real_type); |
3893 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3894 | |
990a07ab | 3895 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3896 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3897 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3898 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3899 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3900 | |
3901 | return value_literal_complex (re_val, im_val, type); | |
3902 | } | |
df407dfe AC |
3903 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3904 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3905 | return value_literal_complex (val, |
3906 | value_zero (real_type, not_lval), | |
3907 | type); | |
c906108c | 3908 | else |
8a3fe4f8 | 3909 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3910 | } |
3911 | ||
6c265988 | 3912 | void _initialize_valops (); |
c906108c | 3913 | void |
6c265988 | 3914 | _initialize_valops () |
c906108c | 3915 | { |
5bf193a2 AC |
3916 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3917 | &overload_resolution, _("\ | |
3918 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3919 | Show overload resolution in evaluating C++ functions."), |
3920 | NULL, NULL, | |
920d2a44 | 3921 | show_overload_resolution, |
5bf193a2 | 3922 | &setlist, &showlist); |
c906108c | 3923 | overload_resolution = 1; |
c906108c | 3924 | } |