Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
9b254dd1 DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, | |
5 | 2008 Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
4e052eda | 33 | #include "regcache.h" |
015a42b4 | 34 | #include "cp-abi.h" |
fe898f56 | 35 | #include "block.h" |
04714b91 | 36 | #include "infcall.h" |
de4f826b | 37 | #include "dictionary.h" |
b6429628 | 38 | #include "cp-support.h" |
4ef30785 | 39 | #include "dfp.h" |
c906108c SS |
40 | |
41 | #include <errno.h> | |
42 | #include "gdb_string.h" | |
4a1970e4 | 43 | #include "gdb_assert.h" |
79c2c32d | 44 | #include "cp-support.h" |
f4c5303c | 45 | #include "observer.h" |
c906108c | 46 | |
070ad9f0 | 47 | extern int overload_debug; |
c906108c SS |
48 | /* Local functions. */ |
49 | ||
ad2f7632 DJ |
50 | static int typecmp (int staticp, int varargs, int nargs, |
51 | struct field t1[], struct value *t2[]); | |
c906108c | 52 | |
ac3eeb49 MS |
53 | static struct value *search_struct_field (char *, struct value *, |
54 | int, struct type *, int); | |
c906108c | 55 | |
f23631e4 AC |
56 | static struct value *search_struct_method (char *, struct value **, |
57 | struct value **, | |
a14ed312 | 58 | int, int *, struct type *); |
c906108c | 59 | |
ac3eeb49 MS |
60 | static int find_oload_champ_namespace (struct type **, int, |
61 | const char *, const char *, | |
62 | struct symbol ***, | |
63 | struct badness_vector **); | |
8d577d32 DC |
64 | |
65 | static | |
ac3eeb49 MS |
66 | int find_oload_champ_namespace_loop (struct type **, int, |
67 | const char *, const char *, | |
68 | int, struct symbol ***, | |
69 | struct badness_vector **, int *); | |
70 | ||
71 | static int find_oload_champ (struct type **, int, int, int, | |
72 | struct fn_field *, struct symbol **, | |
73 | struct badness_vector **); | |
74 | ||
75 | static int oload_method_static (int, struct fn_field *, int); | |
8d577d32 DC |
76 | |
77 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
78 | ||
79 | static enum | |
ac3eeb49 MS |
80 | oload_classification classify_oload_match (struct badness_vector *, |
81 | int, int); | |
8d577d32 | 82 | |
a14ed312 | 83 | static int check_field_in (struct type *, const char *); |
c906108c | 84 | |
ac3eeb49 MS |
85 | static struct value *value_struct_elt_for_reference (struct type *, |
86 | int, struct type *, | |
87 | char *, | |
88 | struct type *, | |
89 | int, enum noside); | |
79c2c32d | 90 | |
ac3eeb49 MS |
91 | static struct value *value_namespace_elt (const struct type *, |
92 | char *, int , enum noside); | |
79c2c32d | 93 | |
ac3eeb49 MS |
94 | static struct value *value_maybe_namespace_elt (const struct type *, |
95 | char *, int, | |
96 | enum noside); | |
63d06c5c | 97 | |
a14ed312 | 98 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 99 | |
f23631e4 | 100 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 101 | |
ac3eeb49 MS |
102 | static struct fn_field *find_method_list (struct value **, char *, |
103 | int, struct type *, int *, | |
104 | struct type **, int *); | |
7a292a7a | 105 | |
a14ed312 | 106 | void _initialize_valops (void); |
c906108c | 107 | |
c906108c | 108 | #if 0 |
ac3eeb49 MS |
109 | /* Flag for whether we want to abandon failed expression evals by |
110 | default. */ | |
111 | ||
c906108c SS |
112 | static int auto_abandon = 0; |
113 | #endif | |
114 | ||
115 | int overload_resolution = 0; | |
920d2a44 AC |
116 | static void |
117 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
118 | struct cmd_list_element *c, |
119 | const char *value) | |
920d2a44 AC |
120 | { |
121 | fprintf_filtered (file, _("\ | |
122 | Overload resolution in evaluating C++ functions is %s.\n"), | |
123 | value); | |
124 | } | |
242bfc55 | 125 | |
c906108c SS |
126 | /* Find the address of function name NAME in the inferior. */ |
127 | ||
f23631e4 | 128 | struct value * |
3bada2a2 | 129 | find_function_in_inferior (const char *name) |
c906108c | 130 | { |
52f0bd74 | 131 | struct symbol *sym; |
176620f1 | 132 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
133 | if (sym != NULL) |
134 | { | |
135 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
136 | { | |
8a3fe4f8 | 137 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
138 | name); |
139 | } | |
140 | return value_of_variable (sym, NULL); | |
141 | } | |
142 | else | |
143 | { | |
ac3eeb49 MS |
144 | struct minimal_symbol *msymbol = |
145 | lookup_minimal_symbol (name, NULL, NULL); | |
c906108c SS |
146 | if (msymbol != NULL) |
147 | { | |
148 | struct type *type; | |
4478b372 | 149 | CORE_ADDR maddr; |
c906108c SS |
150 | type = lookup_pointer_type (builtin_type_char); |
151 | type = lookup_function_type (type); | |
152 | type = lookup_pointer_type (type); | |
4478b372 JB |
153 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
154 | return value_from_pointer (type, maddr); | |
c906108c SS |
155 | } |
156 | else | |
157 | { | |
c5aa993b | 158 | if (!target_has_execution) |
8a3fe4f8 | 159 | error (_("evaluation of this expression requires the target program to be active")); |
c5aa993b | 160 | else |
8a3fe4f8 | 161 | error (_("evaluation of this expression requires the program to have a function \"%s\"."), name); |
c906108c SS |
162 | } |
163 | } | |
164 | } | |
165 | ||
ac3eeb49 MS |
166 | /* Allocate NBYTES of space in the inferior using the inferior's |
167 | malloc and return a value that is a pointer to the allocated | |
168 | space. */ | |
c906108c | 169 | |
f23631e4 | 170 | struct value * |
fba45db2 | 171 | value_allocate_space_in_inferior (int len) |
c906108c | 172 | { |
f23631e4 | 173 | struct value *blocklen; |
ac3eeb49 MS |
174 | struct value *val = |
175 | find_function_in_inferior (gdbarch_name_of_malloc (current_gdbarch)); | |
c906108c SS |
176 | |
177 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
178 | val = call_function_by_hand (val, 1, &blocklen); | |
179 | if (value_logical_not (val)) | |
180 | { | |
181 | if (!target_has_execution) | |
8a3fe4f8 | 182 | error (_("No memory available to program now: you need to start the target first")); |
c5aa993b | 183 | else |
8a3fe4f8 | 184 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
185 | } |
186 | return val; | |
187 | } | |
188 | ||
189 | static CORE_ADDR | |
fba45db2 | 190 | allocate_space_in_inferior (int len) |
c906108c SS |
191 | { |
192 | return value_as_long (value_allocate_space_in_inferior (len)); | |
193 | } | |
194 | ||
fb933624 DJ |
195 | /* Cast one pointer or reference type to another. Both TYPE and |
196 | the type of ARG2 should be pointer types, or else both should be | |
197 | reference types. Returns the new pointer or reference. */ | |
198 | ||
199 | struct value * | |
200 | value_cast_pointers (struct type *type, struct value *arg2) | |
201 | { | |
202 | struct type *type2 = check_typedef (value_type (arg2)); | |
203 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
204 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
205 | ||
206 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
207 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
208 | && !value_logical_not (arg2)) | |
209 | { | |
210 | struct value *v; | |
211 | ||
212 | /* Look in the type of the source to see if it contains the | |
213 | type of the target as a superclass. If so, we'll need to | |
214 | offset the pointer rather than just change its type. */ | |
215 | if (TYPE_NAME (t1) != NULL) | |
216 | { | |
217 | struct value *v2; | |
218 | ||
219 | if (TYPE_CODE (type2) == TYPE_CODE_REF) | |
220 | v2 = coerce_ref (arg2); | |
221 | else | |
222 | v2 = value_ind (arg2); | |
223 | v = search_struct_field (type_name_no_tag (t1), | |
224 | v2, 0, t2, 1); | |
225 | if (v) | |
226 | { | |
227 | v = value_addr (v); | |
228 | deprecated_set_value_type (v, type); | |
229 | return v; | |
230 | } | |
231 | } | |
232 | ||
233 | /* Look in the type of the target to see if it contains the | |
234 | type of the source as a superclass. If so, we'll need to | |
235 | offset the pointer rather than just change its type. | |
236 | FIXME: This fails silently with virtual inheritance. */ | |
237 | if (TYPE_NAME (t2) != NULL) | |
238 | { | |
239 | v = search_struct_field (type_name_no_tag (t2), | |
240 | value_zero (t1, not_lval), 0, t1, 1); | |
241 | if (v) | |
242 | { | |
243 | CORE_ADDR addr2 = value_as_address (arg2); | |
244 | addr2 -= (VALUE_ADDRESS (v) | |
245 | + value_offset (v) | |
246 | + value_embedded_offset (v)); | |
247 | return value_from_pointer (type, addr2); | |
248 | } | |
249 | } | |
250 | } | |
251 | ||
252 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 253 | arg2 = value_copy (arg2); |
fb933624 DJ |
254 | deprecated_set_value_type (arg2, type); |
255 | arg2 = value_change_enclosing_type (arg2, type); | |
256 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ | |
257 | return arg2; | |
258 | } | |
259 | ||
c906108c SS |
260 | /* Cast value ARG2 to type TYPE and return as a value. |
261 | More general than a C cast: accepts any two types of the same length, | |
262 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
263 | /* In C++, casts may change pointer or object representations. */ | |
264 | ||
f23631e4 AC |
265 | struct value * |
266 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 267 | { |
52f0bd74 AC |
268 | enum type_code code1; |
269 | enum type_code code2; | |
270 | int scalar; | |
c906108c SS |
271 | struct type *type2; |
272 | ||
273 | int convert_to_boolean = 0; | |
c5aa993b | 274 | |
df407dfe | 275 | if (value_type (arg2) == type) |
c906108c SS |
276 | return arg2; |
277 | ||
278 | CHECK_TYPEDEF (type); | |
279 | code1 = TYPE_CODE (type); | |
994b9211 | 280 | arg2 = coerce_ref (arg2); |
df407dfe | 281 | type2 = check_typedef (value_type (arg2)); |
c906108c | 282 | |
fb933624 DJ |
283 | /* You can't cast to a reference type. See value_cast_pointers |
284 | instead. */ | |
285 | gdb_assert (code1 != TYPE_CODE_REF); | |
286 | ||
ac3eeb49 MS |
287 | /* A cast to an undetermined-length array_type, such as |
288 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
289 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
290 | if (code1 == TYPE_CODE_ARRAY) |
291 | { | |
292 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
293 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
294 | if (element_length > 0 | |
c5aa993b | 295 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
296 | { |
297 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
298 | int val_length = TYPE_LENGTH (type2); | |
299 | LONGEST low_bound, high_bound, new_length; | |
300 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
301 | low_bound = 0, high_bound = 0; | |
302 | new_length = val_length / element_length; | |
303 | if (val_length % element_length != 0) | |
8a3fe4f8 | 304 | warning (_("array element type size does not divide object size in cast")); |
ac3eeb49 MS |
305 | /* FIXME-type-allocation: need a way to free this type when |
306 | we are done with it. */ | |
c906108c SS |
307 | range_type = create_range_type ((struct type *) NULL, |
308 | TYPE_TARGET_TYPE (range_type), | |
309 | low_bound, | |
310 | new_length + low_bound - 1); | |
ac3eeb49 MS |
311 | deprecated_set_value_type (arg2, |
312 | create_array_type ((struct type *) NULL, | |
313 | element_type, | |
314 | range_type)); | |
c906108c SS |
315 | return arg2; |
316 | } | |
317 | } | |
318 | ||
319 | if (current_language->c_style_arrays | |
320 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
321 | arg2 = value_coerce_array (arg2); | |
322 | ||
323 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
324 | arg2 = value_coerce_function (arg2); | |
325 | ||
df407dfe | 326 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
327 | code2 = TYPE_CODE (type2); |
328 | ||
329 | if (code1 == TYPE_CODE_COMPLEX) | |
330 | return cast_into_complex (type, arg2); | |
331 | if (code1 == TYPE_CODE_BOOL) | |
332 | { | |
333 | code1 = TYPE_CODE_INT; | |
334 | convert_to_boolean = 1; | |
335 | } | |
336 | if (code1 == TYPE_CODE_CHAR) | |
337 | code1 = TYPE_CODE_INT; | |
338 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
339 | code2 = TYPE_CODE_INT; | |
340 | ||
341 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
342 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
343 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 344 | |
c5aa993b | 345 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
346 | && code2 == TYPE_CODE_STRUCT |
347 | && TYPE_NAME (type) != 0) | |
348 | { | |
349 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
350 | type of the target as a superclass. If so, we'll need to |
351 | offset the object in addition to changing its type. */ | |
f23631e4 | 352 | struct value *v = search_struct_field (type_name_no_tag (type), |
ac3eeb49 | 353 | arg2, 0, type2, 1); |
c906108c SS |
354 | if (v) |
355 | { | |
04624583 | 356 | deprecated_set_value_type (v, type); |
c906108c SS |
357 | return v; |
358 | } | |
359 | } | |
360 | if (code1 == TYPE_CODE_FLT && scalar) | |
361 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
362 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
363 | { | |
364 | int dec_len = TYPE_LENGTH (type); | |
365 | gdb_byte dec[16]; | |
366 | ||
367 | if (code2 == TYPE_CODE_FLT) | |
368 | decimal_from_floating (arg2, dec, dec_len); | |
369 | else if (code2 == TYPE_CODE_DECFLOAT) | |
370 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
371 | dec, dec_len); | |
372 | else | |
373 | /* The only option left is an integral type. */ | |
374 | decimal_from_integral (arg2, dec, dec_len); | |
375 | ||
376 | return value_from_decfloat (type, dec); | |
377 | } | |
c906108c SS |
378 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
379 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
380 | && (scalar || code2 == TYPE_CODE_PTR |
381 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
382 | { |
383 | LONGEST longest; | |
c5aa993b | 384 | |
2bf1f4a1 | 385 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 386 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
387 | represents, as value_as_long would. GDB should evaluate |
388 | expressions just as the compiler would --- and the compiler | |
389 | sees a cast as a simple reinterpretation of the pointer's | |
390 | bits. */ | |
391 | if (code2 == TYPE_CODE_PTR) | |
0fd88904 | 392 | longest = extract_unsigned_integer (value_contents (arg2), |
2bf1f4a1 JB |
393 | TYPE_LENGTH (type2)); |
394 | else | |
395 | longest = value_as_long (arg2); | |
802db21b | 396 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 397 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 398 | } |
ac3eeb49 MS |
399 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
400 | || code2 == TYPE_CODE_ENUM | |
401 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 402 | { |
4603e466 DT |
403 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
404 | want the length of an address! -- we are really dealing with | |
405 | addresses (i.e., gdb representations) not pointers (i.e., | |
406 | target representations) here. | |
407 | ||
408 | This allows things like "print *(int *)0x01000234" to work | |
409 | without printing a misleading message -- which would | |
410 | otherwise occur when dealing with a target having two byte | |
411 | pointers and four byte addresses. */ | |
412 | ||
17a912b6 | 413 | int addr_bit = gdbarch_addr_bit (current_gdbarch); |
4603e466 | 414 | |
634acd5f | 415 | LONGEST longest = value_as_long (arg2); |
4603e466 | 416 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 417 | { |
4603e466 DT |
418 | if (longest >= ((LONGEST) 1 << addr_bit) |
419 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 420 | warning (_("value truncated")); |
634acd5f AC |
421 | } |
422 | return value_from_longest (type, longest); | |
423 | } | |
0d5de010 DJ |
424 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
425 | && value_as_long (arg2) == 0) | |
426 | { | |
427 | struct value *result = allocate_value (type); | |
428 | cplus_make_method_ptr (value_contents_writeable (result), 0, 0); | |
429 | return result; | |
430 | } | |
431 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
432 | && value_as_long (arg2) == 0) | |
433 | { | |
434 | /* The Itanium C++ ABI represents NULL pointers to members as | |
435 | minus one, instead of biasing the normal case. */ | |
436 | return value_from_longest (type, -1); | |
437 | } | |
c906108c SS |
438 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
439 | { | |
440 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
fb933624 DJ |
441 | return value_cast_pointers (type, arg2); |
442 | ||
0d5de010 | 443 | arg2 = value_copy (arg2); |
04624583 | 444 | deprecated_set_value_type (arg2, type); |
2b127877 | 445 | arg2 = value_change_enclosing_type (arg2, type); |
b44d461b | 446 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
447 | return arg2; |
448 | } | |
c906108c | 449 | else if (VALUE_LVAL (arg2) == lval_memory) |
ac3eeb49 MS |
450 | return value_at_lazy (type, |
451 | VALUE_ADDRESS (arg2) + value_offset (arg2)); | |
c906108c SS |
452 | else if (code1 == TYPE_CODE_VOID) |
453 | { | |
454 | return value_zero (builtin_type_void, not_lval); | |
455 | } | |
456 | else | |
457 | { | |
8a3fe4f8 | 458 | error (_("Invalid cast.")); |
c906108c SS |
459 | return 0; |
460 | } | |
461 | } | |
462 | ||
463 | /* Create a value of type TYPE that is zero, and return it. */ | |
464 | ||
f23631e4 | 465 | struct value * |
fba45db2 | 466 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 467 | { |
f23631e4 | 468 | struct value *val = allocate_value (type); |
c906108c SS |
469 | VALUE_LVAL (val) = lv; |
470 | ||
471 | return val; | |
472 | } | |
473 | ||
070ad9f0 | 474 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
475 | |
476 | Call value_at only if the data needs to be fetched immediately; | |
477 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
478 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 479 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 480 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 481 | the contents are actually required. |
c906108c SS |
482 | |
483 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 484 | adjustments before or after calling it. */ |
c906108c | 485 | |
f23631e4 | 486 | struct value * |
00a4c844 | 487 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 488 | { |
f23631e4 | 489 | struct value *val; |
c906108c SS |
490 | |
491 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 492 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
493 | |
494 | val = allocate_value (type); | |
495 | ||
990a07ab | 496 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); |
c906108c SS |
497 | |
498 | VALUE_LVAL (val) = lval_memory; | |
499 | VALUE_ADDRESS (val) = addr; | |
c906108c SS |
500 | |
501 | return val; | |
502 | } | |
503 | ||
504 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
505 | ||
f23631e4 | 506 | struct value * |
00a4c844 | 507 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 508 | { |
f23631e4 | 509 | struct value *val; |
c906108c SS |
510 | |
511 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 512 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
513 | |
514 | val = allocate_value (type); | |
515 | ||
516 | VALUE_LVAL (val) = lval_memory; | |
517 | VALUE_ADDRESS (val) = addr; | |
dfa52d88 | 518 | set_value_lazy (val, 1); |
c906108c SS |
519 | |
520 | return val; | |
521 | } | |
522 | ||
0fd88904 | 523 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 524 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 525 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
526 | clears the lazy flag to indicate that the data in the buffer is |
527 | valid. | |
c906108c | 528 | |
ac3eeb49 MS |
529 | If the value is zero-length, we avoid calling read_memory, which |
530 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
531 | it. | |
c906108c | 532 | |
ac3eeb49 MS |
533 | This function returns a value because it is used in the |
534 | value_contents macro as part of an expression, where a void would | |
535 | not work. The value is ignored. */ | |
c906108c SS |
536 | |
537 | int | |
f23631e4 | 538 | value_fetch_lazy (struct value *val) |
c906108c | 539 | { |
df407dfe | 540 | CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val); |
4754a64e | 541 | int length = TYPE_LENGTH (value_enclosing_type (val)); |
c906108c | 542 | |
df407dfe | 543 | struct type *type = value_type (val); |
75af7f68 | 544 | if (length) |
990a07ab | 545 | read_memory (addr, value_contents_all_raw (val), length); |
802db21b | 546 | |
dfa52d88 | 547 | set_value_lazy (val, 0); |
c906108c SS |
548 | return 0; |
549 | } | |
550 | ||
551 | ||
552 | /* Store the contents of FROMVAL into the location of TOVAL. | |
553 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
554 | ||
f23631e4 AC |
555 | struct value * |
556 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 557 | { |
52f0bd74 | 558 | struct type *type; |
f23631e4 | 559 | struct value *val; |
cb741690 | 560 | struct frame_id old_frame; |
c906108c | 561 | |
88e3b34b | 562 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 563 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 564 | |
994b9211 | 565 | toval = coerce_ref (toval); |
c906108c | 566 | |
df407dfe | 567 | type = value_type (toval); |
c906108c SS |
568 | if (VALUE_LVAL (toval) != lval_internalvar) |
569 | fromval = value_cast (type, fromval); | |
570 | else | |
994b9211 | 571 | fromval = coerce_array (fromval); |
c906108c SS |
572 | CHECK_TYPEDEF (type); |
573 | ||
ac3eeb49 MS |
574 | /* Since modifying a register can trash the frame chain, and |
575 | modifying memory can trash the frame cache, we save the old frame | |
576 | and then restore the new frame afterwards. */ | |
206415a3 | 577 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 578 | |
c906108c SS |
579 | switch (VALUE_LVAL (toval)) |
580 | { | |
581 | case lval_internalvar: | |
582 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
583 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
ac3eeb49 MS |
584 | val = value_change_enclosing_type (val, |
585 | value_enclosing_type (fromval)); | |
13c3b5f5 | 586 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
ac3eeb49 MS |
587 | set_value_pointed_to_offset (val, |
588 | value_pointed_to_offset (fromval)); | |
c906108c SS |
589 | return val; |
590 | ||
591 | case lval_internalvar_component: | |
592 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
593 | value_offset (toval), |
594 | value_bitpos (toval), | |
595 | value_bitsize (toval), | |
c906108c SS |
596 | fromval); |
597 | break; | |
598 | ||
599 | case lval_memory: | |
600 | { | |
fc1a4b47 | 601 | const gdb_byte *dest_buffer; |
c5aa993b JM |
602 | CORE_ADDR changed_addr; |
603 | int changed_len; | |
10c42a71 | 604 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 605 | |
df407dfe | 606 | if (value_bitsize (toval)) |
c5aa993b | 607 | { |
ac3eeb49 MS |
608 | /* We assume that the argument to read_memory is in units |
609 | of host chars. FIXME: Is that correct? */ | |
df407dfe AC |
610 | changed_len = (value_bitpos (toval) |
611 | + value_bitsize (toval) | |
c5aa993b JM |
612 | + HOST_CHAR_BIT - 1) |
613 | / HOST_CHAR_BIT; | |
c906108c SS |
614 | |
615 | if (changed_len > (int) sizeof (LONGEST)) | |
8a3fe4f8 | 616 | error (_("Can't handle bitfields which don't fit in a %d bit word."), |
baa6f10b | 617 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 618 | |
df407dfe | 619 | read_memory (VALUE_ADDRESS (toval) + value_offset (toval), |
c906108c SS |
620 | buffer, changed_len); |
621 | modify_field (buffer, value_as_long (fromval), | |
df407dfe AC |
622 | value_bitpos (toval), value_bitsize (toval)); |
623 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); | |
c906108c SS |
624 | dest_buffer = buffer; |
625 | } | |
c906108c SS |
626 | else |
627 | { | |
df407dfe | 628 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); |
c906108c | 629 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 630 | dest_buffer = value_contents (fromval); |
c906108c SS |
631 | } |
632 | ||
633 | write_memory (changed_addr, dest_buffer, changed_len); | |
9a4105ab AC |
634 | if (deprecated_memory_changed_hook) |
635 | deprecated_memory_changed_hook (changed_addr, changed_len); | |
c906108c SS |
636 | } |
637 | break; | |
638 | ||
492254e9 | 639 | case lval_register: |
c906108c | 640 | { |
c906108c | 641 | struct frame_info *frame; |
ff2e87ac | 642 | int value_reg; |
c906108c SS |
643 | |
644 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
645 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
646 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
647 | |
648 | if (!frame) | |
8a3fe4f8 | 649 | error (_("Value being assigned to is no longer active.")); |
492254e9 | 650 | |
c1afe53d UW |
651 | if (gdbarch_convert_register_p |
652 | (current_gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 653 | { |
ff2e87ac | 654 | /* If TOVAL is a special machine register requiring |
ac3eeb49 MS |
655 | conversion of program values to a special raw |
656 | format. */ | |
657 | gdbarch_value_to_register (current_gdbarch, frame, | |
658 | VALUE_REGNUM (toval), type, | |
659 | value_contents (fromval)); | |
492254e9 | 660 | } |
c906108c | 661 | else |
492254e9 | 662 | { |
df407dfe | 663 | if (value_bitsize (toval)) |
00fa51f6 UW |
664 | { |
665 | int changed_len; | |
666 | gdb_byte buffer[sizeof (LONGEST)]; | |
667 | ||
668 | changed_len = (value_bitpos (toval) | |
669 | + value_bitsize (toval) | |
670 | + HOST_CHAR_BIT - 1) | |
671 | / HOST_CHAR_BIT; | |
672 | ||
673 | if (changed_len > (int) sizeof (LONGEST)) | |
674 | error (_("Can't handle bitfields which don't fit in a %d bit word."), | |
675 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
676 | ||
677 | get_frame_register_bytes (frame, value_reg, | |
678 | value_offset (toval), | |
679 | changed_len, buffer); | |
680 | ||
681 | modify_field (buffer, value_as_long (fromval), | |
ac3eeb49 MS |
682 | value_bitpos (toval), |
683 | value_bitsize (toval)); | |
00fa51f6 UW |
684 | |
685 | put_frame_register_bytes (frame, value_reg, | |
686 | value_offset (toval), | |
687 | changed_len, buffer); | |
688 | } | |
c906108c | 689 | else |
00fa51f6 UW |
690 | { |
691 | put_frame_register_bytes (frame, value_reg, | |
692 | value_offset (toval), | |
693 | TYPE_LENGTH (type), | |
694 | value_contents (fromval)); | |
695 | } | |
ff2e87ac | 696 | } |
00fa51f6 | 697 | |
9a4105ab AC |
698 | if (deprecated_register_changed_hook) |
699 | deprecated_register_changed_hook (-1); | |
f4c5303c | 700 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 701 | break; |
c906108c | 702 | } |
492254e9 | 703 | |
c906108c | 704 | default: |
8a3fe4f8 | 705 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
706 | } |
707 | ||
cb741690 DJ |
708 | /* Assigning to the stack pointer, frame pointer, and other |
709 | (architecture and calling convention specific) registers may | |
710 | cause the frame cache to be out of date. Assigning to memory | |
711 | also can. We just do this on all assignments to registers or | |
712 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
713 | switch (VALUE_LVAL (toval)) | |
714 | { | |
715 | case lval_memory: | |
716 | case lval_register: | |
cb741690 DJ |
717 | |
718 | reinit_frame_cache (); | |
719 | ||
ac3eeb49 MS |
720 | /* Having destroyed the frame cache, restore the selected |
721 | frame. */ | |
cb741690 DJ |
722 | |
723 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
724 | doing this. Instead of constantly saving/restoring the | |
725 | frame. Why not create a get_selected_frame() function that, | |
726 | having saved the selected frame's ID can automatically | |
727 | re-find the previously selected frame automatically. */ | |
728 | ||
729 | { | |
730 | struct frame_info *fi = frame_find_by_id (old_frame); | |
731 | if (fi != NULL) | |
732 | select_frame (fi); | |
733 | } | |
734 | ||
735 | break; | |
736 | default: | |
737 | break; | |
738 | } | |
739 | ||
ac3eeb49 MS |
740 | /* If the field does not entirely fill a LONGEST, then zero the sign |
741 | bits. If the field is signed, and is negative, then sign | |
742 | extend. */ | |
df407dfe AC |
743 | if ((value_bitsize (toval) > 0) |
744 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
745 | { |
746 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 747 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
748 | |
749 | fieldval &= valmask; | |
ac3eeb49 MS |
750 | if (!TYPE_UNSIGNED (type) |
751 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
752 | fieldval |= ~valmask; |
753 | ||
754 | fromval = value_from_longest (type, fieldval); | |
755 | } | |
756 | ||
757 | val = value_copy (toval); | |
0fd88904 | 758 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 759 | TYPE_LENGTH (type)); |
04624583 | 760 | deprecated_set_value_type (val, type); |
ac3eeb49 MS |
761 | val = value_change_enclosing_type (val, |
762 | value_enclosing_type (fromval)); | |
13c3b5f5 | 763 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 764 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c5aa993b | 765 | |
c906108c SS |
766 | return val; |
767 | } | |
768 | ||
769 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
770 | ||
f23631e4 AC |
771 | struct value * |
772 | value_repeat (struct value *arg1, int count) | |
c906108c | 773 | { |
f23631e4 | 774 | struct value *val; |
c906108c SS |
775 | |
776 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 777 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 778 | if (count < 1) |
8a3fe4f8 | 779 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 780 | |
4754a64e | 781 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 782 | |
df407dfe | 783 | read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1), |
990a07ab | 784 | value_contents_all_raw (val), |
4754a64e | 785 | TYPE_LENGTH (value_enclosing_type (val))); |
c906108c | 786 | VALUE_LVAL (val) = lval_memory; |
df407dfe | 787 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1); |
c906108c SS |
788 | |
789 | return val; | |
790 | } | |
791 | ||
f23631e4 | 792 | struct value * |
fba45db2 | 793 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 794 | { |
f23631e4 | 795 | struct value *val; |
c906108c SS |
796 | struct frame_info *frame = NULL; |
797 | ||
798 | if (!b) | |
799 | frame = NULL; /* Use selected frame. */ | |
800 | else if (symbol_read_needs_frame (var)) | |
801 | { | |
802 | frame = block_innermost_frame (b); | |
803 | if (!frame) | |
c5aa993b | 804 | { |
c906108c | 805 | if (BLOCK_FUNCTION (b) |
de5ad195 | 806 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 807 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 808 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 809 | else |
8a3fe4f8 | 810 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 811 | } |
c906108c SS |
812 | } |
813 | ||
814 | val = read_var_value (var, frame); | |
815 | if (!val) | |
8a3fe4f8 | 816 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
817 | |
818 | return val; | |
819 | } | |
820 | ||
ac3eeb49 MS |
821 | /* Given a value which is an array, return a value which is a pointer |
822 | to its first element, regardless of whether or not the array has a | |
823 | nonzero lower bound. | |
c906108c | 824 | |
ac3eeb49 MS |
825 | FIXME: A previous comment here indicated that this routine should |
826 | be substracting the array's lower bound. It's not clear to me that | |
827 | this is correct. Given an array subscripting operation, it would | |
828 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
829 | |
830 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
831 | ||
ac3eeb49 MS |
832 | However I believe a more appropriate and logical place to account |
833 | for the lower bound is to do so in value_subscript, essentially | |
834 | computing: | |
c906108c SS |
835 | |
836 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
837 | ||
ac3eeb49 MS |
838 | As further evidence consider what would happen with operations |
839 | other than array subscripting, where the caller would get back a | |
840 | value that had an address somewhere before the actual first element | |
841 | of the array, and the information about the lower bound would be | |
842 | lost because of the coercion to pointer type. | |
c5aa993b | 843 | */ |
c906108c | 844 | |
f23631e4 AC |
845 | struct value * |
846 | value_coerce_array (struct value *arg1) | |
c906108c | 847 | { |
df407dfe | 848 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
849 | |
850 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 851 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 852 | |
4478b372 | 853 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
df407dfe | 854 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); |
c906108c SS |
855 | } |
856 | ||
857 | /* Given a value which is a function, return a value which is a pointer | |
858 | to it. */ | |
859 | ||
f23631e4 AC |
860 | struct value * |
861 | value_coerce_function (struct value *arg1) | |
c906108c | 862 | { |
f23631e4 | 863 | struct value *retval; |
c906108c SS |
864 | |
865 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 866 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 867 | |
df407dfe AC |
868 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
869 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); | |
c906108c | 870 | return retval; |
c5aa993b | 871 | } |
c906108c | 872 | |
ac3eeb49 MS |
873 | /* Return a pointer value for the object for which ARG1 is the |
874 | contents. */ | |
c906108c | 875 | |
f23631e4 AC |
876 | struct value * |
877 | value_addr (struct value *arg1) | |
c906108c | 878 | { |
f23631e4 | 879 | struct value *arg2; |
c906108c | 880 | |
df407dfe | 881 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
882 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
883 | { | |
ac3eeb49 MS |
884 | /* Copy the value, but change the type from (T&) to (T*). We |
885 | keep the same location information, which is efficient, and | |
886 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 887 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
888 | deprecated_set_value_type (arg2, |
889 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
890 | return arg2; |
891 | } | |
892 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
893 | return value_coerce_function (arg1); | |
894 | ||
895 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 896 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 897 | |
c5aa993b | 898 | /* Get target memory address */ |
df407dfe | 899 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
4478b372 | 900 | (VALUE_ADDRESS (arg1) |
df407dfe | 901 | + value_offset (arg1) |
13c3b5f5 | 902 | + value_embedded_offset (arg1))); |
c906108c SS |
903 | |
904 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 905 | full derived object's type ... */ |
4754a64e | 906 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1))); |
ac3eeb49 MS |
907 | /* ... and also the relative position of the subobject in the full |
908 | object. */ | |
b44d461b | 909 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
910 | return arg2; |
911 | } | |
912 | ||
ac3eeb49 MS |
913 | /* Return a reference value for the object for which ARG1 is the |
914 | contents. */ | |
fb933624 DJ |
915 | |
916 | struct value * | |
917 | value_ref (struct value *arg1) | |
918 | { | |
919 | struct value *arg2; | |
920 | ||
921 | struct type *type = check_typedef (value_type (arg1)); | |
922 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
923 | return arg1; | |
924 | ||
925 | arg2 = value_addr (arg1); | |
926 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
927 | return arg2; | |
928 | } | |
929 | ||
ac3eeb49 MS |
930 | /* Given a value of a pointer type, apply the C unary * operator to |
931 | it. */ | |
c906108c | 932 | |
f23631e4 AC |
933 | struct value * |
934 | value_ind (struct value *arg1) | |
c906108c SS |
935 | { |
936 | struct type *base_type; | |
f23631e4 | 937 | struct value *arg2; |
c906108c | 938 | |
994b9211 | 939 | arg1 = coerce_array (arg1); |
c906108c | 940 | |
df407dfe | 941 | base_type = check_typedef (value_type (arg1)); |
c906108c | 942 | |
c906108c | 943 | /* Allow * on an integer so we can cast it to whatever we want. |
ac3eeb49 MS |
944 | This returns an int, which seems like the most C-like thing to |
945 | do. "long long" variables are rare enough that | |
c906108c SS |
946 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ |
947 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 | 948 | return value_at_lazy (builtin_type_int, |
fef862e5 | 949 | (CORE_ADDR) value_as_address (arg1)); |
c906108c SS |
950 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
951 | { | |
952 | struct type *enc_type; | |
ac3eeb49 MS |
953 | /* We may be pointing to something embedded in a larger object. |
954 | Get the real type of the enclosing object. */ | |
4754a64e | 955 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 956 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
957 | |
958 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
959 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
960 | /* For functions, go through find_function_addr, which knows | |
961 | how to handle function descriptors. */ | |
ac3eeb49 MS |
962 | arg2 = value_at_lazy (enc_type, |
963 | find_function_addr (arg1, NULL)); | |
0d5de010 DJ |
964 | else |
965 | /* Retrieve the enclosing object pointed to */ | |
ac3eeb49 MS |
966 | arg2 = value_at_lazy (enc_type, |
967 | (value_as_address (arg1) | |
968 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 969 | |
ac3eeb49 | 970 | /* Re-adjust type. */ |
04624583 | 971 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
ac3eeb49 | 972 | /* Add embedding info. */ |
2b127877 | 973 | arg2 = value_change_enclosing_type (arg2, enc_type); |
b44d461b | 974 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c | 975 | |
ac3eeb49 | 976 | /* We may be pointing to an object of some derived type. */ |
c906108c SS |
977 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); |
978 | return arg2; | |
979 | } | |
980 | ||
8a3fe4f8 | 981 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 982 | return 0; /* For lint -- never reached. */ |
c906108c SS |
983 | } |
984 | \f | |
ac3eeb49 MS |
985 | /* Create a value for an array by allocating space in the inferior, |
986 | copying the data into that space, and then setting up an array | |
987 | value. | |
c906108c | 988 | |
ac3eeb49 MS |
989 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
990 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
991 | |
992 | The element type of the array is inherited from the type of the | |
993 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 994 | don't currently enforce any restriction on their types). */ |
c906108c | 995 | |
f23631e4 AC |
996 | struct value * |
997 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
998 | { |
999 | int nelem; | |
1000 | int idx; | |
1001 | unsigned int typelength; | |
f23631e4 | 1002 | struct value *val; |
c906108c SS |
1003 | struct type *rangetype; |
1004 | struct type *arraytype; | |
1005 | CORE_ADDR addr; | |
1006 | ||
ac3eeb49 MS |
1007 | /* Validate that the bounds are reasonable and that each of the |
1008 | elements have the same size. */ | |
c906108c SS |
1009 | |
1010 | nelem = highbound - lowbound + 1; | |
1011 | if (nelem <= 0) | |
1012 | { | |
8a3fe4f8 | 1013 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1014 | } |
4754a64e | 1015 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
1016 | for (idx = 1; idx < nelem; idx++) |
1017 | { | |
4754a64e | 1018 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 1019 | { |
8a3fe4f8 | 1020 | error (_("array elements must all be the same size")); |
c906108c SS |
1021 | } |
1022 | } | |
1023 | ||
ac3eeb49 MS |
1024 | rangetype = create_range_type ((struct type *) NULL, |
1025 | builtin_type_int, | |
c906108c | 1026 | lowbound, highbound); |
c5aa993b | 1027 | arraytype = create_array_type ((struct type *) NULL, |
ac3eeb49 MS |
1028 | value_enclosing_type (elemvec[0]), |
1029 | rangetype); | |
c906108c SS |
1030 | |
1031 | if (!current_language->c_style_arrays) | |
1032 | { | |
1033 | val = allocate_value (arraytype); | |
1034 | for (idx = 0; idx < nelem; idx++) | |
1035 | { | |
990a07ab | 1036 | memcpy (value_contents_all_raw (val) + (idx * typelength), |
46615f07 | 1037 | value_contents_all (elemvec[idx]), |
c906108c SS |
1038 | typelength); |
1039 | } | |
c906108c SS |
1040 | return val; |
1041 | } | |
1042 | ||
ac3eeb49 MS |
1043 | /* Allocate space to store the array in the inferior, and then |
1044 | initialize it by copying in each element. FIXME: Is it worth it | |
1045 | to create a local buffer in which to collect each value and then | |
1046 | write all the bytes in one operation? */ | |
c906108c SS |
1047 | |
1048 | addr = allocate_space_in_inferior (nelem * typelength); | |
1049 | for (idx = 0; idx < nelem; idx++) | |
1050 | { | |
46615f07 AC |
1051 | write_memory (addr + (idx * typelength), |
1052 | value_contents_all (elemvec[idx]), | |
c906108c SS |
1053 | typelength); |
1054 | } | |
1055 | ||
ac3eeb49 MS |
1056 | /* Create the array type and set up an array value to be evaluated |
1057 | lazily. */ | |
c906108c | 1058 | |
00a4c844 | 1059 | val = value_at_lazy (arraytype, addr); |
c906108c SS |
1060 | return (val); |
1061 | } | |
1062 | ||
ac3eeb49 MS |
1063 | /* Create a value for a string constant by allocating space in the |
1064 | inferior, copying the data into that space, and returning the | |
1065 | address with type TYPE_CODE_STRING. PTR points to the string | |
1066 | constant data; LEN is number of characters. | |
1067 | ||
1068 | Note that string types are like array of char types with a lower | |
1069 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1070 | string may contain embedded null bytes. */ | |
c906108c | 1071 | |
f23631e4 | 1072 | struct value * |
fba45db2 | 1073 | value_string (char *ptr, int len) |
c906108c | 1074 | { |
f23631e4 | 1075 | struct value *val; |
c906108c SS |
1076 | int lowbound = current_language->string_lower_bound; |
1077 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1078 | builtin_type_int, | |
ac3eeb49 MS |
1079 | lowbound, |
1080 | len + lowbound - 1); | |
c906108c | 1081 | struct type *stringtype |
ac3eeb49 | 1082 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1083 | CORE_ADDR addr; |
1084 | ||
1085 | if (current_language->c_style_arrays == 0) | |
1086 | { | |
1087 | val = allocate_value (stringtype); | |
990a07ab | 1088 | memcpy (value_contents_raw (val), ptr, len); |
c906108c SS |
1089 | return val; |
1090 | } | |
1091 | ||
1092 | ||
ac3eeb49 MS |
1093 | /* Allocate space to store the string in the inferior, and then copy |
1094 | LEN bytes from PTR in gdb to that address in the inferior. */ | |
c906108c SS |
1095 | |
1096 | addr = allocate_space_in_inferior (len); | |
47b667de | 1097 | write_memory (addr, (gdb_byte *) ptr, len); |
c906108c | 1098 | |
00a4c844 | 1099 | val = value_at_lazy (stringtype, addr); |
c906108c SS |
1100 | return (val); |
1101 | } | |
1102 | ||
f23631e4 | 1103 | struct value * |
fba45db2 | 1104 | value_bitstring (char *ptr, int len) |
c906108c | 1105 | { |
f23631e4 | 1106 | struct value *val; |
ac3eeb49 MS |
1107 | struct type *domain_type = create_range_type (NULL, |
1108 | builtin_type_int, | |
c906108c | 1109 | 0, len - 1); |
ac3eeb49 MS |
1110 | struct type *type = create_set_type ((struct type *) NULL, |
1111 | domain_type); | |
c906108c SS |
1112 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1113 | val = allocate_value (type); | |
990a07ab | 1114 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1115 | return val; |
1116 | } | |
1117 | \f | |
ac3eeb49 MS |
1118 | /* See if we can pass arguments in T2 to a function which takes |
1119 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1120 | a NULL-terminated vector. If some arguments need coercion of some | |
1121 | sort, then the coerced values are written into T2. Return value is | |
1122 | 0 if the arguments could be matched, or the position at which they | |
1123 | differ if not. | |
c906108c | 1124 | |
ac3eeb49 MS |
1125 | STATICP is nonzero if the T1 argument list came from a static |
1126 | member function. T2 will still include the ``this'' pointer, but | |
1127 | it will be skipped. | |
c906108c SS |
1128 | |
1129 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1130 | which is the type of the instance variable. This is because we |
1131 | want to handle calls with objects from derived classes. This is | |
1132 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1133 | requested operation is type secure, shouldn't we? FIXME. */ |
1134 | ||
1135 | static int | |
ad2f7632 DJ |
1136 | typecmp (int staticp, int varargs, int nargs, |
1137 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1138 | { |
1139 | int i; | |
1140 | ||
1141 | if (t2 == 0) | |
ac3eeb49 MS |
1142 | internal_error (__FILE__, __LINE__, |
1143 | _("typecmp: no argument list")); | |
ad2f7632 | 1144 | |
ac3eeb49 MS |
1145 | /* Skip ``this'' argument if applicable. T2 will always include |
1146 | THIS. */ | |
4a1970e4 | 1147 | if (staticp) |
ad2f7632 DJ |
1148 | t2 ++; |
1149 | ||
1150 | for (i = 0; | |
1151 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1152 | i++) | |
c906108c | 1153 | { |
c5aa993b | 1154 | struct type *tt1, *tt2; |
ad2f7632 | 1155 | |
c5aa993b JM |
1156 | if (!t2[i]) |
1157 | return i + 1; | |
ad2f7632 DJ |
1158 | |
1159 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1160 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1161 | |
c906108c | 1162 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1163 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1164 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1165 | { | |
1166 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1167 | t2[i] = value_coerce_array (t2[i]); | |
1168 | else | |
fb933624 | 1169 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1170 | continue; |
1171 | } | |
1172 | ||
802db21b DB |
1173 | /* djb - 20000715 - Until the new type structure is in the |
1174 | place, and we can attempt things like implicit conversions, | |
1175 | we need to do this so you can take something like a map<const | |
1176 | char *>, and properly access map["hello"], because the | |
1177 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1178 | and the argument will be a pointer to a char. */ |
1179 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1180 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1181 | { |
1182 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1183 | } | |
ac3eeb49 MS |
1184 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1185 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1186 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1187 | { |
ac3eeb49 | 1188 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1189 | } |
c5aa993b JM |
1190 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1191 | continue; | |
ac3eeb49 MS |
1192 | /* Array to pointer is a `trivial conversion' according to the |
1193 | ARM. */ | |
c906108c | 1194 | |
ac3eeb49 MS |
1195 | /* We should be doing much hairier argument matching (see |
1196 | section 13.2 of the ARM), but as a quick kludge, just check | |
1197 | for the same type code. */ | |
df407dfe | 1198 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1199 | return i + 1; |
c906108c | 1200 | } |
ad2f7632 | 1201 | if (varargs || t2[i] == NULL) |
c5aa993b | 1202 | return 0; |
ad2f7632 | 1203 | return i + 1; |
c906108c SS |
1204 | } |
1205 | ||
ac3eeb49 MS |
1206 | /* Helper function used by value_struct_elt to recurse through |
1207 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
1208 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
1209 | TYPE. If found, return value, else return NULL. | |
c906108c | 1210 | |
ac3eeb49 MS |
1211 | If LOOKING_FOR_BASECLASS, then instead of looking for struct |
1212 | fields, look for a baseclass named NAME. */ | |
c906108c | 1213 | |
f23631e4 AC |
1214 | static struct value * |
1215 | search_struct_field (char *name, struct value *arg1, int offset, | |
aa1ee363 | 1216 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1217 | { |
1218 | int i; | |
1219 | int nbases = TYPE_N_BASECLASSES (type); | |
1220 | ||
1221 | CHECK_TYPEDEF (type); | |
1222 | ||
c5aa993b | 1223 | if (!looking_for_baseclass) |
c906108c SS |
1224 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1225 | { | |
1226 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1227 | ||
db577aea | 1228 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1229 | { |
f23631e4 | 1230 | struct value *v; |
c906108c | 1231 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
1232 | { |
1233 | v = value_static_field (type, i); | |
1234 | if (v == 0) | |
8a3fe4f8 | 1235 | error (_("field %s is nonexistent or has been optimised out"), |
2c2738a0 DC |
1236 | name); |
1237 | } | |
c906108c | 1238 | else |
2c2738a0 DC |
1239 | { |
1240 | v = value_primitive_field (arg1, offset, i, type); | |
1241 | if (v == 0) | |
8a3fe4f8 | 1242 | error (_("there is no field named %s"), name); |
2c2738a0 | 1243 | } |
c906108c SS |
1244 | return v; |
1245 | } | |
1246 | ||
1247 | if (t_field_name | |
1248 | && (t_field_name[0] == '\0' | |
1249 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1250 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1251 | { |
1252 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1253 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1254 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1255 | { | |
ac3eeb49 MS |
1256 | /* Look for a match through the fields of an anonymous |
1257 | union, or anonymous struct. C++ provides anonymous | |
1258 | unions. | |
c906108c | 1259 | |
1b831c93 AC |
1260 | In the GNU Chill (now deleted from GDB) |
1261 | implementation of variant record types, each | |
1262 | <alternative field> has an (anonymous) union type, | |
1263 | each member of the union represents a <variant | |
1264 | alternative>. Each <variant alternative> is | |
1265 | represented as a struct, with a member for each | |
1266 | <variant field>. */ | |
c5aa993b | 1267 | |
f23631e4 | 1268 | struct value *v; |
c906108c SS |
1269 | int new_offset = offset; |
1270 | ||
db034ac5 AC |
1271 | /* This is pretty gross. In G++, the offset in an |
1272 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1273 | enclosing struct. In the GNU Chill (now deleted |
1274 | from GDB) implementation of variant records, the | |
1275 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 1276 | have to add the offset of the union here. */ |
c906108c SS |
1277 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1278 | || (TYPE_NFIELDS (field_type) > 0 | |
1279 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1280 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1281 | ||
ac3eeb49 MS |
1282 | v = search_struct_field (name, arg1, new_offset, |
1283 | field_type, | |
c906108c SS |
1284 | looking_for_baseclass); |
1285 | if (v) | |
1286 | return v; | |
1287 | } | |
1288 | } | |
1289 | } | |
1290 | ||
c5aa993b | 1291 | for (i = 0; i < nbases; i++) |
c906108c | 1292 | { |
f23631e4 | 1293 | struct value *v; |
c906108c | 1294 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
1295 | /* If we are looking for baseclasses, this is what we get when |
1296 | we hit them. But it could happen that the base part's member | |
1297 | name is not yet filled in. */ | |
c906108c SS |
1298 | int found_baseclass = (looking_for_baseclass |
1299 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
1300 | && (strcmp_iw (name, |
1301 | TYPE_BASECLASS_NAME (type, | |
1302 | i)) == 0)); | |
c906108c SS |
1303 | |
1304 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1305 | { | |
1306 | int boffset; | |
f23631e4 | 1307 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
1308 | |
1309 | boffset = baseclass_offset (type, i, | |
0fd88904 | 1310 | value_contents (arg1) + offset, |
c906108c | 1311 | VALUE_ADDRESS (arg1) |
df407dfe | 1312 | + value_offset (arg1) + offset); |
c906108c | 1313 | if (boffset == -1) |
8a3fe4f8 | 1314 | error (_("virtual baseclass botch")); |
c906108c | 1315 | |
ac3eeb49 MS |
1316 | /* The virtual base class pointer might have been clobbered |
1317 | by the user program. Make sure that it still points to a | |
1318 | valid memory location. */ | |
c906108c SS |
1319 | |
1320 | boffset += offset; | |
1321 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1322 | { | |
1323 | CORE_ADDR base_addr; | |
c5aa993b | 1324 | |
ac3eeb49 MS |
1325 | base_addr = |
1326 | VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset; | |
1327 | if (target_read_memory (base_addr, | |
1328 | value_contents_raw (v2), | |
c906108c | 1329 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 1330 | error (_("virtual baseclass botch")); |
c906108c SS |
1331 | VALUE_LVAL (v2) = lval_memory; |
1332 | VALUE_ADDRESS (v2) = base_addr; | |
1333 | } | |
1334 | else | |
1335 | { | |
1336 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1337 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
65d3800a | 1338 | VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1); |
f5cf64a7 | 1339 | set_value_offset (v2, value_offset (arg1) + boffset); |
d69fe07e | 1340 | if (value_lazy (arg1)) |
dfa52d88 | 1341 | set_value_lazy (v2, 1); |
c906108c | 1342 | else |
990a07ab AC |
1343 | memcpy (value_contents_raw (v2), |
1344 | value_contents_raw (arg1) + boffset, | |
c906108c SS |
1345 | TYPE_LENGTH (basetype)); |
1346 | } | |
1347 | ||
1348 | if (found_baseclass) | |
1349 | return v2; | |
ac3eeb49 MS |
1350 | v = search_struct_field (name, v2, 0, |
1351 | TYPE_BASECLASS (type, i), | |
c906108c SS |
1352 | looking_for_baseclass); |
1353 | } | |
1354 | else if (found_baseclass) | |
1355 | v = value_primitive_field (arg1, offset, i, type); | |
1356 | else | |
1357 | v = search_struct_field (name, arg1, | |
ac3eeb49 MS |
1358 | offset + TYPE_BASECLASS_BITPOS (type, |
1359 | i) / 8, | |
c906108c | 1360 | basetype, looking_for_baseclass); |
c5aa993b JM |
1361 | if (v) |
1362 | return v; | |
c906108c SS |
1363 | } |
1364 | return NULL; | |
1365 | } | |
1366 | ||
ac3eeb49 MS |
1367 | /* Helper function used by value_struct_elt to recurse through |
1368 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
1369 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
1370 | TYPE. | |
1371 | ||
1372 | If found, return value, else if name matched and args not return | |
1373 | (value) -1, else return NULL. */ | |
c906108c | 1374 | |
f23631e4 AC |
1375 | static struct value * |
1376 | search_struct_method (char *name, struct value **arg1p, | |
1377 | struct value **args, int offset, | |
aa1ee363 | 1378 | int *static_memfuncp, struct type *type) |
c906108c SS |
1379 | { |
1380 | int i; | |
f23631e4 | 1381 | struct value *v; |
c906108c SS |
1382 | int name_matched = 0; |
1383 | char dem_opname[64]; | |
1384 | ||
1385 | CHECK_TYPEDEF (type); | |
1386 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1387 | { | |
1388 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1389 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1390 | if (strncmp (t_field_name, "__", 2) == 0 || |
1391 | strncmp (t_field_name, "op", 2) == 0 || | |
1392 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1393 | { |
c5aa993b JM |
1394 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1395 | t_field_name = dem_opname; | |
1396 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1397 | t_field_name = dem_opname; |
c906108c | 1398 | } |
db577aea | 1399 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1400 | { |
1401 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1402 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1403 | name_matched = 1; |
c906108c | 1404 | |
de17c821 | 1405 | check_stub_method_group (type, i); |
c906108c | 1406 | if (j > 0 && args == 0) |
8a3fe4f8 | 1407 | error (_("cannot resolve overloaded method `%s': no arguments supplied"), name); |
acf5ed49 | 1408 | else if (j == 0 && args == 0) |
c906108c | 1409 | { |
acf5ed49 DJ |
1410 | v = value_fn_field (arg1p, f, j, type, offset); |
1411 | if (v != NULL) | |
1412 | return v; | |
c906108c | 1413 | } |
acf5ed49 DJ |
1414 | else |
1415 | while (j >= 0) | |
1416 | { | |
acf5ed49 | 1417 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1418 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1419 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1420 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1421 | { | |
1422 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
1423 | return value_virtual_fn_field (arg1p, f, j, |
1424 | type, offset); | |
1425 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
1426 | && static_memfuncp) | |
acf5ed49 DJ |
1427 | *static_memfuncp = 1; |
1428 | v = value_fn_field (arg1p, f, j, type, offset); | |
1429 | if (v != NULL) | |
1430 | return v; | |
1431 | } | |
1432 | j--; | |
1433 | } | |
c906108c SS |
1434 | } |
1435 | } | |
1436 | ||
1437 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1438 | { | |
1439 | int base_offset; | |
1440 | ||
1441 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1442 | { | |
086280be UW |
1443 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
1444 | const gdb_byte *base_valaddr; | |
1445 | ||
1446 | /* The virtual base class pointer might have been | |
1447 | clobbered by the user program. Make sure that it | |
1448 | still points to a valid memory location. */ | |
1449 | ||
1450 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 1451 | { |
086280be UW |
1452 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
1453 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
1454 | + value_offset (*arg1p) + offset, | |
1455 | tmp, TYPE_LENGTH (baseclass)) != 0) | |
1456 | error (_("virtual baseclass botch")); | |
1457 | base_valaddr = tmp; | |
c5aa993b JM |
1458 | } |
1459 | else | |
086280be | 1460 | base_valaddr = value_contents (*arg1p) + offset; |
c5aa993b | 1461 | |
086280be UW |
1462 | base_offset = baseclass_offset (type, i, base_valaddr, |
1463 | VALUE_ADDRESS (*arg1p) | |
1464 | + value_offset (*arg1p) + offset); | |
1465 | if (base_offset == -1) | |
1466 | error (_("virtual baseclass botch")); | |
c5aa993b | 1467 | } |
c906108c SS |
1468 | else |
1469 | { | |
1470 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1471 | } |
c906108c SS |
1472 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
1473 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 1474 | if (v == (struct value *) - 1) |
c906108c SS |
1475 | { |
1476 | name_matched = 1; | |
1477 | } | |
1478 | else if (v) | |
1479 | { | |
ac3eeb49 MS |
1480 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
1481 | /* *arg1p = arg1_tmp; */ | |
c906108c | 1482 | return v; |
c5aa993b | 1483 | } |
c906108c | 1484 | } |
c5aa993b | 1485 | if (name_matched) |
f23631e4 | 1486 | return (struct value *) - 1; |
c5aa993b JM |
1487 | else |
1488 | return NULL; | |
c906108c SS |
1489 | } |
1490 | ||
1491 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
1492 | extract the component named NAME from the ultimate target |
1493 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
1494 | ERR is used in the error message if *ARGP's type is wrong. |
1495 | ||
1496 | C++: ARGS is a list of argument types to aid in the selection of | |
1497 | an appropriate method. Also, handle derived types. | |
1498 | ||
1499 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1500 | where the truthvalue of whether the function that was resolved was | |
1501 | a static member function or not is stored. | |
1502 | ||
ac3eeb49 MS |
1503 | ERR is an error message to be printed in case the field is not |
1504 | found. */ | |
c906108c | 1505 | |
f23631e4 AC |
1506 | struct value * |
1507 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 1508 | char *name, int *static_memfuncp, char *err) |
c906108c | 1509 | { |
52f0bd74 | 1510 | struct type *t; |
f23631e4 | 1511 | struct value *v; |
c906108c | 1512 | |
994b9211 | 1513 | *argp = coerce_array (*argp); |
c906108c | 1514 | |
df407dfe | 1515 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1516 | |
1517 | /* Follow pointers until we get to a non-pointer. */ | |
1518 | ||
1519 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1520 | { | |
1521 | *argp = value_ind (*argp); | |
1522 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1523 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1524 | *argp = coerce_array (*argp); |
df407dfe | 1525 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1526 | } |
1527 | ||
c5aa993b | 1528 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 1529 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 1530 | error (_("Attempt to extract a component of a value that is not a %s."), err); |
c906108c SS |
1531 | |
1532 | /* Assume it's not, unless we see that it is. */ | |
1533 | if (static_memfuncp) | |
c5aa993b | 1534 | *static_memfuncp = 0; |
c906108c SS |
1535 | |
1536 | if (!args) | |
1537 | { | |
1538 | /* if there are no arguments ...do this... */ | |
1539 | ||
ac3eeb49 MS |
1540 | /* Try as a field first, because if we succeed, there is less |
1541 | work to be done. */ | |
c906108c SS |
1542 | v = search_struct_field (name, *argp, 0, t, 0); |
1543 | if (v) | |
1544 | return v; | |
1545 | ||
1546 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 1547 | return it as a pointer to a method. */ |
c906108c SS |
1548 | |
1549 | if (destructor_name_p (name, t)) | |
8a3fe4f8 | 1550 | error (_("Cannot get value of destructor")); |
c906108c | 1551 | |
ac3eeb49 MS |
1552 | v = search_struct_method (name, argp, args, 0, |
1553 | static_memfuncp, t); | |
c906108c | 1554 | |
f23631e4 | 1555 | if (v == (struct value *) - 1) |
55b39184 | 1556 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
1557 | else if (v == 0) |
1558 | { | |
1559 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 1560 | error (_("There is no member or method named %s."), name); |
c906108c | 1561 | else |
8a3fe4f8 | 1562 | error (_("There is no member named %s."), name); |
c906108c SS |
1563 | } |
1564 | return v; | |
1565 | } | |
1566 | ||
1567 | if (destructor_name_p (name, t)) | |
1568 | { | |
1569 | if (!args[1]) | |
1570 | { | |
1571 | /* Destructors are a special case. */ | |
1572 | int m_index, f_index; | |
1573 | ||
1574 | v = NULL; | |
1575 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1576 | { | |
ac3eeb49 MS |
1577 | v = value_fn_field (NULL, |
1578 | TYPE_FN_FIELDLIST1 (t, m_index), | |
c906108c SS |
1579 | f_index, NULL, 0); |
1580 | } | |
1581 | if (v == NULL) | |
ac3eeb49 MS |
1582 | error (_("could not find destructor function named %s."), |
1583 | name); | |
c906108c SS |
1584 | else |
1585 | return v; | |
1586 | } | |
1587 | else | |
1588 | { | |
8a3fe4f8 | 1589 | error (_("destructor should not have any argument")); |
c906108c SS |
1590 | } |
1591 | } | |
1592 | else | |
ac3eeb49 MS |
1593 | v = search_struct_method (name, argp, args, 0, |
1594 | static_memfuncp, t); | |
7168a814 | 1595 | |
f23631e4 | 1596 | if (v == (struct value *) - 1) |
c906108c | 1597 | { |
8a3fe4f8 | 1598 | error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name); |
c906108c SS |
1599 | } |
1600 | else if (v == 0) | |
1601 | { | |
ac3eeb49 MS |
1602 | /* See if user tried to invoke data as function. If so, hand it |
1603 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 1604 | gdb should give an error. */ |
c906108c SS |
1605 | v = search_struct_field (name, *argp, 0, t, 0); |
1606 | } | |
1607 | ||
1608 | if (!v) | |
8a3fe4f8 | 1609 | error (_("Structure has no component named %s."), name); |
c906108c SS |
1610 | return v; |
1611 | } | |
1612 | ||
ac3eeb49 MS |
1613 | /* Search through the methods of an object (and its bases) to find a |
1614 | specified method. Return the pointer to the fn_field list of | |
1615 | overloaded instances. | |
1616 | ||
1617 | Helper function for value_find_oload_list. | |
1618 | ARGP is a pointer to a pointer to a value (the object). | |
1619 | METHOD is a string containing the method name. | |
1620 | OFFSET is the offset within the value. | |
1621 | TYPE is the assumed type of the object. | |
1622 | NUM_FNS is the number of overloaded instances. | |
1623 | BASETYPE is set to the actual type of the subobject where the | |
1624 | method is found. | |
1625 | BOFFSET is the offset of the base subobject where the method is found. | |
1626 | */ | |
c906108c | 1627 | |
7a292a7a | 1628 | static struct fn_field * |
ac3eeb49 MS |
1629 | find_method_list (struct value **argp, char *method, |
1630 | int offset, struct type *type, int *num_fns, | |
fba45db2 | 1631 | struct type **basetype, int *boffset) |
c906108c SS |
1632 | { |
1633 | int i; | |
c5aa993b | 1634 | struct fn_field *f; |
c906108c SS |
1635 | CHECK_TYPEDEF (type); |
1636 | ||
1637 | *num_fns = 0; | |
1638 | ||
ac3eeb49 | 1639 | /* First check in object itself. */ |
c5aa993b | 1640 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c906108c | 1641 | { |
ac3eeb49 | 1642 | /* pai: FIXME What about operators and type conversions? */ |
c5aa993b | 1643 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 1644 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 1645 | { |
4a1970e4 DJ |
1646 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
1647 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
1648 | |
1649 | *num_fns = len; | |
c5aa993b JM |
1650 | *basetype = type; |
1651 | *boffset = offset; | |
4a1970e4 | 1652 | |
de17c821 DJ |
1653 | /* Resolve any stub methods. */ |
1654 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
1655 | |
1656 | return f; | |
c5aa993b JM |
1657 | } |
1658 | } | |
1659 | ||
ac3eeb49 | 1660 | /* Not found in object, check in base subobjects. */ |
c906108c SS |
1661 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
1662 | { | |
1663 | int base_offset; | |
1664 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1665 | { | |
086280be UW |
1666 | base_offset = value_offset (*argp) + offset; |
1667 | base_offset = baseclass_offset (type, i, | |
1668 | value_contents (*argp) + base_offset, | |
1669 | VALUE_ADDRESS (*argp) + base_offset); | |
1670 | if (base_offset == -1) | |
1671 | error (_("virtual baseclass botch")); | |
c5aa993b | 1672 | } |
ac3eeb49 MS |
1673 | else /* Non-virtual base, simply use bit position from debug |
1674 | info. */ | |
c906108c SS |
1675 | { |
1676 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1677 | } |
c906108c | 1678 | f = find_method_list (argp, method, base_offset + offset, |
ac3eeb49 MS |
1679 | TYPE_BASECLASS (type, i), num_fns, |
1680 | basetype, boffset); | |
c906108c | 1681 | if (f) |
c5aa993b | 1682 | return f; |
c906108c | 1683 | } |
c5aa993b | 1684 | return NULL; |
c906108c SS |
1685 | } |
1686 | ||
1687 | /* Return the list of overloaded methods of a specified name. | |
ac3eeb49 MS |
1688 | |
1689 | ARGP is a pointer to a pointer to a value (the object). | |
1690 | METHOD is the method name. | |
1691 | OFFSET is the offset within the value contents. | |
1692 | NUM_FNS is the number of overloaded instances. | |
1693 | BASETYPE is set to the type of the base subobject that defines the | |
1694 | method. | |
1695 | BOFFSET is the offset of the base subobject which defines the method. | |
1696 | */ | |
c906108c SS |
1697 | |
1698 | struct fn_field * | |
ac3eeb49 MS |
1699 | value_find_oload_method_list (struct value **argp, char *method, |
1700 | int offset, int *num_fns, | |
1701 | struct type **basetype, int *boffset) | |
c906108c | 1702 | { |
c5aa993b | 1703 | struct type *t; |
c906108c | 1704 | |
df407dfe | 1705 | t = check_typedef (value_type (*argp)); |
c906108c | 1706 | |
ac3eeb49 | 1707 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
1708 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
1709 | { | |
1710 | *argp = value_ind (*argp); | |
1711 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1712 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1713 | *argp = coerce_array (*argp); |
df407dfe | 1714 | t = check_typedef (value_type (*argp)); |
c906108c | 1715 | } |
c5aa993b | 1716 | |
c5aa993b JM |
1717 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1718 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
8a3fe4f8 | 1719 | error (_("Attempt to extract a component of a value that is not a struct or union")); |
c5aa993b | 1720 | |
ac3eeb49 MS |
1721 | return find_method_list (argp, method, 0, t, num_fns, |
1722 | basetype, boffset); | |
c906108c SS |
1723 | } |
1724 | ||
1725 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1726 | entry for "this" in the case of C++ methods), the number of | |
1727 | arguments NARGS, the NAME of a function whether it's a method or | |
1728 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1729 | overload resolution rules in ANSI C++, find the best function that | |
1730 | matches on the argument types according to the overload resolution | |
1731 | rules. | |
1732 | ||
1733 | In the case of class methods, the parameter OBJ is an object value | |
1734 | in which to search for overloaded methods. | |
1735 | ||
1736 | In the case of non-method functions, the parameter FSYM is a symbol | |
1737 | corresponding to one of the overloaded functions. | |
1738 | ||
1739 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1740 | non-standard coercions, 100 -> incompatible. | |
1741 | ||
1742 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
1743 | If a non-method is being searched for, SYMP will hold the symbol |
1744 | for it. | |
c906108c SS |
1745 | |
1746 | If a method is being searched for, and it is a static method, | |
1747 | then STATICP will point to a non-zero value. | |
1748 | ||
1749 | Note: This function does *not* check the value of | |
1750 | overload_resolution. Caller must check it to see whether overload | |
1751 | resolution is permitted. | |
ac3eeb49 | 1752 | */ |
c906108c SS |
1753 | |
1754 | int | |
ac3eeb49 MS |
1755 | find_overload_match (struct type **arg_types, int nargs, |
1756 | char *name, int method, int lax, | |
1757 | struct value **objp, struct symbol *fsym, | |
1758 | struct value **valp, struct symbol **symp, | |
1759 | int *staticp) | |
c906108c | 1760 | { |
7f8c9282 | 1761 | struct value *obj = (objp ? *objp : NULL); |
ac3eeb49 MS |
1762 | /* Index of best overloaded function. */ |
1763 | int oload_champ; | |
1764 | /* The measure for the current best match. */ | |
1765 | struct badness_vector *oload_champ_bv = NULL; | |
f23631e4 | 1766 | struct value *temp = obj; |
ac3eeb49 MS |
1767 | /* For methods, the list of overloaded methods. */ |
1768 | struct fn_field *fns_ptr = NULL; | |
1769 | /* For non-methods, the list of overloaded function symbols. */ | |
1770 | struct symbol **oload_syms = NULL; | |
1771 | /* Number of overloaded instances being considered. */ | |
1772 | int num_fns = 0; | |
c5aa993b | 1773 | struct type *basetype = NULL; |
c906108c | 1774 | int boffset; |
52f0bd74 | 1775 | int ix; |
4a1970e4 | 1776 | int static_offset; |
8d577d32 | 1777 | struct cleanup *old_cleanups = NULL; |
c906108c | 1778 | |
8d577d32 | 1779 | const char *obj_type_name = NULL; |
c5aa993b | 1780 | char *func_name = NULL; |
8d577d32 | 1781 | enum oload_classification match_quality; |
c906108c | 1782 | |
ac3eeb49 | 1783 | /* Get the list of overloaded methods or functions. */ |
c906108c SS |
1784 | if (method) |
1785 | { | |
a2ca50ae | 1786 | gdb_assert (obj); |
df407dfe | 1787 | obj_type_name = TYPE_NAME (value_type (obj)); |
c906108c | 1788 | /* Hack: evaluate_subexp_standard often passes in a pointer |
ac3eeb49 MS |
1789 | value rather than the object itself, so try again. */ |
1790 | if ((!obj_type_name || !*obj_type_name) | |
1791 | && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR)) | |
df407dfe | 1792 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj))); |
c906108c | 1793 | |
ac3eeb49 MS |
1794 | fns_ptr = value_find_oload_method_list (&temp, name, |
1795 | 0, &num_fns, | |
c5aa993b | 1796 | &basetype, &boffset); |
c906108c | 1797 | if (!fns_ptr || !num_fns) |
8a3fe4f8 | 1798 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
1799 | obj_type_name, |
1800 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1801 | name); | |
4a1970e4 | 1802 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
1803 | been resolved by find_method_list via |
1804 | value_find_oload_method_list above. */ | |
4a1970e4 | 1805 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); |
ac3eeb49 MS |
1806 | oload_champ = find_oload_champ (arg_types, nargs, method, |
1807 | num_fns, fns_ptr, | |
1808 | oload_syms, &oload_champ_bv); | |
c906108c SS |
1809 | } |
1810 | else | |
1811 | { | |
8d577d32 | 1812 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); |
c906108c | 1813 | |
d9639e13 DJ |
1814 | /* If we have a C++ name, try to extract just the function |
1815 | part. */ | |
1816 | if (qualified_name) | |
1817 | func_name = cp_func_name (qualified_name); | |
1818 | ||
1819 | /* If there was no C++ name, this must be a C-style function. | |
1820 | Just return the same symbol. Do the same if cp_func_name | |
1821 | fails for some reason. */ | |
8d577d32 | 1822 | if (func_name == NULL) |
7b83ea04 | 1823 | { |
917317f4 | 1824 | *symp = fsym; |
7b83ea04 AC |
1825 | return 0; |
1826 | } | |
917317f4 | 1827 | |
8d577d32 DC |
1828 | old_cleanups = make_cleanup (xfree, func_name); |
1829 | make_cleanup (xfree, oload_syms); | |
1830 | make_cleanup (xfree, oload_champ_bv); | |
1831 | ||
1832 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
1833 | func_name, | |
1834 | qualified_name, | |
1835 | &oload_syms, | |
1836 | &oload_champ_bv); | |
1837 | } | |
1838 | ||
1839 | /* Check how bad the best match is. */ | |
1840 | ||
ac3eeb49 MS |
1841 | match_quality = |
1842 | classify_oload_match (oload_champ_bv, nargs, | |
1843 | oload_method_static (method, fns_ptr, | |
1844 | oload_champ)); | |
8d577d32 DC |
1845 | |
1846 | if (match_quality == INCOMPATIBLE) | |
1847 | { | |
1848 | if (method) | |
8a3fe4f8 | 1849 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
1850 | obj_type_name, |
1851 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1852 | name); | |
1853 | else | |
8a3fe4f8 | 1854 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
1855 | func_name); |
1856 | } | |
1857 | else if (match_quality == NON_STANDARD) | |
1858 | { | |
1859 | if (method) | |
8a3fe4f8 | 1860 | warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"), |
8d577d32 DC |
1861 | obj_type_name, |
1862 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1863 | name); | |
1864 | else | |
8a3fe4f8 | 1865 | warning (_("Using non-standard conversion to match function %s to supplied arguments"), |
8d577d32 DC |
1866 | func_name); |
1867 | } | |
1868 | ||
1869 | if (method) | |
1870 | { | |
1871 | if (staticp != NULL) | |
1872 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
1873 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
ac3eeb49 MS |
1874 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, |
1875 | basetype, boffset); | |
8d577d32 | 1876 | else |
ac3eeb49 MS |
1877 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, |
1878 | basetype, boffset); | |
8d577d32 DC |
1879 | } |
1880 | else | |
1881 | { | |
1882 | *symp = oload_syms[oload_champ]; | |
1883 | } | |
1884 | ||
1885 | if (objp) | |
1886 | { | |
df407dfe AC |
1887 | if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR |
1888 | && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR) | |
8d577d32 DC |
1889 | { |
1890 | temp = value_addr (temp); | |
1891 | } | |
1892 | *objp = temp; | |
1893 | } | |
1894 | if (old_cleanups != NULL) | |
1895 | do_cleanups (old_cleanups); | |
1896 | ||
1897 | switch (match_quality) | |
1898 | { | |
1899 | case INCOMPATIBLE: | |
1900 | return 100; | |
1901 | case NON_STANDARD: | |
1902 | return 10; | |
1903 | default: /* STANDARD */ | |
1904 | return 0; | |
1905 | } | |
1906 | } | |
1907 | ||
1908 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
1909 | contained in QUALIFIED_NAME until it either finds a good match or | |
1910 | runs out of namespaces. It stores the overloaded functions in | |
1911 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
1912 | calling function is responsible for freeing *OLOAD_SYMS and | |
1913 | *OLOAD_CHAMP_BV. */ | |
1914 | ||
1915 | static int | |
1916 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
1917 | const char *func_name, | |
1918 | const char *qualified_name, | |
1919 | struct symbol ***oload_syms, | |
1920 | struct badness_vector **oload_champ_bv) | |
1921 | { | |
1922 | int oload_champ; | |
1923 | ||
1924 | find_oload_champ_namespace_loop (arg_types, nargs, | |
1925 | func_name, | |
1926 | qualified_name, 0, | |
1927 | oload_syms, oload_champ_bv, | |
1928 | &oload_champ); | |
1929 | ||
1930 | return oload_champ; | |
1931 | } | |
1932 | ||
1933 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
1934 | how deep we've looked for namespaces, and the champ is stored in | |
1935 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
1936 | if it isn't. | |
1937 | ||
1938 | It is the caller's responsibility to free *OLOAD_SYMS and | |
1939 | *OLOAD_CHAMP_BV. */ | |
1940 | ||
1941 | static int | |
1942 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
1943 | const char *func_name, | |
1944 | const char *qualified_name, | |
1945 | int namespace_len, | |
1946 | struct symbol ***oload_syms, | |
1947 | struct badness_vector **oload_champ_bv, | |
1948 | int *oload_champ) | |
1949 | { | |
1950 | int next_namespace_len = namespace_len; | |
1951 | int searched_deeper = 0; | |
1952 | int num_fns = 0; | |
1953 | struct cleanup *old_cleanups; | |
1954 | int new_oload_champ; | |
1955 | struct symbol **new_oload_syms; | |
1956 | struct badness_vector *new_oload_champ_bv; | |
1957 | char *new_namespace; | |
1958 | ||
1959 | if (next_namespace_len != 0) | |
1960 | { | |
1961 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
1962 | next_namespace_len += 2; | |
c906108c | 1963 | } |
ac3eeb49 MS |
1964 | next_namespace_len += |
1965 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
1966 | |
1967 | /* Initialize these to values that can safely be xfree'd. */ | |
1968 | *oload_syms = NULL; | |
1969 | *oload_champ_bv = NULL; | |
c5aa993b | 1970 | |
ac3eeb49 MS |
1971 | /* First, see if we have a deeper namespace we can search in. |
1972 | If we get a good match there, use it. */ | |
8d577d32 DC |
1973 | |
1974 | if (qualified_name[next_namespace_len] == ':') | |
1975 | { | |
1976 | searched_deeper = 1; | |
1977 | ||
1978 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
1979 | func_name, qualified_name, | |
1980 | next_namespace_len, | |
1981 | oload_syms, oload_champ_bv, | |
1982 | oload_champ)) | |
1983 | { | |
1984 | return 1; | |
1985 | } | |
1986 | }; | |
1987 | ||
1988 | /* If we reach here, either we're in the deepest namespace or we | |
1989 | didn't find a good match in a deeper namespace. But, in the | |
1990 | latter case, we still have a bad match in a deeper namespace; | |
1991 | note that we might not find any match at all in the current | |
1992 | namespace. (There's always a match in the deepest namespace, | |
1993 | because this overload mechanism only gets called if there's a | |
1994 | function symbol to start off with.) */ | |
1995 | ||
1996 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
1997 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
1998 | new_namespace = alloca (namespace_len + 1); | |
1999 | strncpy (new_namespace, qualified_name, namespace_len); | |
2000 | new_namespace[namespace_len] = '\0'; | |
2001 | new_oload_syms = make_symbol_overload_list (func_name, | |
2002 | new_namespace); | |
2003 | while (new_oload_syms[num_fns]) | |
2004 | ++num_fns; | |
2005 | ||
2006 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2007 | NULL, new_oload_syms, | |
2008 | &new_oload_champ_bv); | |
2009 | ||
2010 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2011 | and return it. Case 2: We didn't find a good match, but we're | |
2012 | not the deepest function. Then go with the bad match that the | |
2013 | deeper function found. Case 3: We found a bad match, and we're | |
2014 | the deepest function. Then return what we found, even though | |
2015 | it's a bad match. */ | |
2016 | ||
2017 | if (new_oload_champ != -1 | |
2018 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2019 | { | |
2020 | *oload_syms = new_oload_syms; | |
2021 | *oload_champ = new_oload_champ; | |
2022 | *oload_champ_bv = new_oload_champ_bv; | |
2023 | do_cleanups (old_cleanups); | |
2024 | return 1; | |
2025 | } | |
2026 | else if (searched_deeper) | |
2027 | { | |
2028 | xfree (new_oload_syms); | |
2029 | xfree (new_oload_champ_bv); | |
2030 | discard_cleanups (old_cleanups); | |
2031 | return 0; | |
2032 | } | |
2033 | else | |
2034 | { | |
2035 | gdb_assert (new_oload_champ != -1); | |
2036 | *oload_syms = new_oload_syms; | |
2037 | *oload_champ = new_oload_champ; | |
2038 | *oload_champ_bv = new_oload_champ_bv; | |
2039 | discard_cleanups (old_cleanups); | |
2040 | return 0; | |
2041 | } | |
2042 | } | |
2043 | ||
2044 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2045 | the best match from among the overloaded methods or functions | |
2046 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2047 | The number of methods/functions in the list is given by NUM_FNS. | |
2048 | Return the index of the best match; store an indication of the | |
2049 | quality of the match in OLOAD_CHAMP_BV. | |
2050 | ||
2051 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2052 | ||
2053 | static int | |
2054 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2055 | int num_fns, struct fn_field *fns_ptr, | |
2056 | struct symbol **oload_syms, | |
2057 | struct badness_vector **oload_champ_bv) | |
2058 | { | |
2059 | int ix; | |
ac3eeb49 MS |
2060 | /* A measure of how good an overloaded instance is. */ |
2061 | struct badness_vector *bv; | |
2062 | /* Index of best overloaded function. */ | |
2063 | int oload_champ = -1; | |
2064 | /* Current ambiguity state for overload resolution. */ | |
2065 | int oload_ambiguous = 0; | |
2066 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 DC |
2067 | |
2068 | *oload_champ_bv = NULL; | |
c906108c | 2069 | |
ac3eeb49 | 2070 | /* Consider each candidate in turn. */ |
c906108c SS |
2071 | for (ix = 0; ix < num_fns; ix++) |
2072 | { | |
8d577d32 DC |
2073 | int jj; |
2074 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2075 | int nparms; | |
2076 | struct type **parm_types; | |
2077 | ||
db577aea AC |
2078 | if (method) |
2079 | { | |
ad2f7632 | 2080 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2081 | } |
2082 | else | |
2083 | { | |
ac3eeb49 MS |
2084 | /* If it's not a method, this is the proper place. */ |
2085 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
db577aea | 2086 | } |
c906108c | 2087 | |
ac3eeb49 MS |
2088 | /* Prepare array of parameter types. */ |
2089 | parm_types = (struct type **) | |
2090 | xmalloc (nparms * (sizeof (struct type *))); | |
c906108c | 2091 | for (jj = 0; jj < nparms; jj++) |
db577aea | 2092 | parm_types[jj] = (method |
ad2f7632 | 2093 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
ac3eeb49 MS |
2094 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
2095 | jj)); | |
c906108c | 2096 | |
ac3eeb49 MS |
2097 | /* Compare parameter types to supplied argument types. Skip |
2098 | THIS for static methods. */ | |
2099 | bv = rank_function (parm_types, nparms, | |
2100 | arg_types + static_offset, | |
4a1970e4 | 2101 | nargs - static_offset); |
c5aa993b | 2102 | |
8d577d32 | 2103 | if (!*oload_champ_bv) |
c5aa993b | 2104 | { |
8d577d32 | 2105 | *oload_champ_bv = bv; |
c5aa993b | 2106 | oload_champ = 0; |
c5aa993b | 2107 | } |
ac3eeb49 MS |
2108 | else /* See whether current candidate is better or worse than |
2109 | previous best. */ | |
8d577d32 | 2110 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 2111 | { |
ac3eeb49 MS |
2112 | case 0: /* Top two contenders are equally good. */ |
2113 | oload_ambiguous = 1; | |
c5aa993b | 2114 | break; |
ac3eeb49 MS |
2115 | case 1: /* Incomparable top contenders. */ |
2116 | oload_ambiguous = 2; | |
c5aa993b | 2117 | break; |
ac3eeb49 MS |
2118 | case 2: /* New champion, record details. */ |
2119 | *oload_champ_bv = bv; | |
c5aa993b JM |
2120 | oload_ambiguous = 0; |
2121 | oload_champ = ix; | |
c5aa993b JM |
2122 | break; |
2123 | case 3: | |
2124 | default: | |
2125 | break; | |
2126 | } | |
b8c9b27d | 2127 | xfree (parm_types); |
6b1ba9a0 ND |
2128 | if (overload_debug) |
2129 | { | |
2130 | if (method) | |
ac3eeb49 MS |
2131 | fprintf_filtered (gdb_stderr, |
2132 | "Overloaded method instance %s, # of parms %d\n", | |
2133 | fns_ptr[ix].physname, nparms); | |
6b1ba9a0 | 2134 | else |
ac3eeb49 MS |
2135 | fprintf_filtered (gdb_stderr, |
2136 | "Overloaded function instance %s # of parms %d\n", | |
2137 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), | |
2138 | nparms); | |
4a1970e4 | 2139 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
2140 | fprintf_filtered (gdb_stderr, |
2141 | "...Badness @ %d : %d\n", | |
2142 | jj, bv->rank[jj]); | |
2143 | fprintf_filtered (gdb_stderr, | |
2144 | "Overload resolution champion is %d, ambiguous? %d\n", | |
2145 | oload_champ, oload_ambiguous); | |
6b1ba9a0 | 2146 | } |
c906108c SS |
2147 | } |
2148 | ||
8d577d32 DC |
2149 | return oload_champ; |
2150 | } | |
6b1ba9a0 | 2151 | |
8d577d32 DC |
2152 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2153 | a non-static method or a function that isn't a method. */ | |
c906108c | 2154 | |
8d577d32 DC |
2155 | static int |
2156 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2157 | { | |
2158 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2159 | return 1; | |
c906108c | 2160 | else |
8d577d32 DC |
2161 | return 0; |
2162 | } | |
c906108c | 2163 | |
8d577d32 DC |
2164 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2165 | ||
2166 | static enum oload_classification | |
2167 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2168 | int nargs, | |
2169 | int static_offset) | |
2170 | { | |
2171 | int ix; | |
2172 | ||
2173 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2174 | { |
8d577d32 | 2175 | if (oload_champ_bv->rank[ix] >= 100) |
ac3eeb49 | 2176 | return INCOMPATIBLE; /* Truly mismatched types. */ |
8d577d32 | 2177 | else if (oload_champ_bv->rank[ix] >= 10) |
ac3eeb49 MS |
2178 | return NON_STANDARD; /* Non-standard type conversions |
2179 | needed. */ | |
7f8c9282 | 2180 | } |
02f0d45d | 2181 | |
8d577d32 | 2182 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2183 | } |
2184 | ||
ac3eeb49 MS |
2185 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
2186 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
2187 | inappropriate for TYPE, an error is signaled. */ | |
c906108c | 2188 | int |
fba45db2 | 2189 | destructor_name_p (const char *name, const struct type *type) |
c906108c | 2190 | { |
ac3eeb49 | 2191 | /* Destructors are a special case. */ |
c906108c SS |
2192 | |
2193 | if (name[0] == '~') | |
2194 | { | |
2195 | char *dname = type_name_no_tag (type); | |
2196 | char *cp = strchr (dname, '<'); | |
2197 | unsigned int len; | |
2198 | ||
2199 | /* Do not compare the template part for template classes. */ | |
2200 | if (cp == NULL) | |
2201 | len = strlen (dname); | |
2202 | else | |
2203 | len = cp - dname; | |
bf896cb0 | 2204 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 2205 | error (_("name of destructor must equal name of class")); |
c906108c SS |
2206 | else |
2207 | return 1; | |
2208 | } | |
2209 | return 0; | |
2210 | } | |
2211 | ||
2212 | /* Helper function for check_field: Given TYPE, a structure/union, | |
ac3eeb49 MS |
2213 | return 1 if the component named NAME from the ultimate target |
2214 | structure/union is defined, otherwise, return 0. */ | |
c906108c SS |
2215 | |
2216 | static int | |
aa1ee363 | 2217 | check_field_in (struct type *type, const char *name) |
c906108c | 2218 | { |
52f0bd74 | 2219 | int i; |
c906108c SS |
2220 | |
2221 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2222 | { | |
2223 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2224 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2225 | return 1; |
2226 | } | |
2227 | ||
ac3eeb49 MS |
2228 | /* C++: If it was not found as a data field, then try to return it |
2229 | as a pointer to a method. */ | |
c906108c SS |
2230 | |
2231 | /* Destructors are a special case. */ | |
2232 | if (destructor_name_p (name, type)) | |
2233 | { | |
2234 | int m_index, f_index; | |
2235 | ||
2236 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2237 | } | |
2238 | ||
2239 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2240 | { | |
db577aea | 2241 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2242 | return 1; |
2243 | } | |
2244 | ||
2245 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2246 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2247 | return 1; | |
c5aa993b | 2248 | |
c906108c SS |
2249 | return 0; |
2250 | } | |
2251 | ||
2252 | ||
2253 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2254 | return 1 if the component named NAME from the ultimate target |
2255 | structure/union is defined, otherwise, return 0. */ | |
c906108c SS |
2256 | |
2257 | int | |
c68a6671 | 2258 | check_field (struct value *arg1, const char *name) |
c906108c | 2259 | { |
52f0bd74 | 2260 | struct type *t; |
c906108c | 2261 | |
994b9211 | 2262 | arg1 = coerce_array (arg1); |
c906108c | 2263 | |
df407dfe | 2264 | t = value_type (arg1); |
c906108c SS |
2265 | |
2266 | /* Follow pointers until we get to a non-pointer. */ | |
2267 | ||
2268 | for (;;) | |
2269 | { | |
2270 | CHECK_TYPEDEF (t); | |
ac3eeb49 MS |
2271 | if (TYPE_CODE (t) != TYPE_CODE_PTR |
2272 | && TYPE_CODE (t) != TYPE_CODE_REF) | |
c906108c SS |
2273 | break; |
2274 | t = TYPE_TARGET_TYPE (t); | |
2275 | } | |
2276 | ||
c5aa993b | 2277 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2278 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2279 | error (_("Internal error: `this' is not an aggregate")); |
c906108c SS |
2280 | |
2281 | return check_field_in (t, name); | |
2282 | } | |
2283 | ||
79c2c32d | 2284 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
2285 | return the appropriate member (or the address of the member, if |
2286 | WANT_ADDRESS). This function is used to resolve user expressions | |
2287 | of the form "DOMAIN::NAME". For more details on what happens, see | |
2288 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
2289 | |
2290 | struct value * | |
2291 | value_aggregate_elt (struct type *curtype, | |
0d5de010 | 2292 | char *name, int want_address, |
79c2c32d DC |
2293 | enum noside noside) |
2294 | { | |
2295 | switch (TYPE_CODE (curtype)) | |
2296 | { | |
2297 | case TYPE_CODE_STRUCT: | |
2298 | case TYPE_CODE_UNION: | |
ac3eeb49 MS |
2299 | return value_struct_elt_for_reference (curtype, 0, curtype, |
2300 | name, NULL, | |
0d5de010 | 2301 | want_address, noside); |
79c2c32d | 2302 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
2303 | return value_namespace_elt (curtype, name, |
2304 | want_address, noside); | |
79c2c32d DC |
2305 | default: |
2306 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 2307 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
2308 | } |
2309 | } | |
2310 | ||
c906108c | 2311 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
2312 | return the address of this member as a "pointer to member" type. |
2313 | If INTYPE is non-null, then it will be the type of the member we | |
2314 | are looking for. This will help us resolve "pointers to member | |
2315 | functions". This function is used to resolve user expressions of | |
2316 | the form "DOMAIN::NAME". */ | |
c906108c | 2317 | |
63d06c5c | 2318 | static struct value * |
fba45db2 KB |
2319 | value_struct_elt_for_reference (struct type *domain, int offset, |
2320 | struct type *curtype, char *name, | |
ac3eeb49 MS |
2321 | struct type *intype, |
2322 | int want_address, | |
63d06c5c | 2323 | enum noside noside) |
c906108c | 2324 | { |
52f0bd74 AC |
2325 | struct type *t = curtype; |
2326 | int i; | |
0d5de010 | 2327 | struct value *v, *result; |
c906108c | 2328 | |
c5aa993b | 2329 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2330 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2331 | error (_("Internal error: non-aggregate type to value_struct_elt_for_reference")); |
c906108c SS |
2332 | |
2333 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2334 | { | |
2335 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2336 | |
6314a349 | 2337 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2338 | { |
2339 | if (TYPE_FIELD_STATIC (t, i)) | |
2340 | { | |
2341 | v = value_static_field (t, i); | |
2342 | if (v == NULL) | |
8a3fe4f8 | 2343 | error (_("static field %s has been optimized out"), |
c906108c | 2344 | name); |
0d5de010 DJ |
2345 | if (want_address) |
2346 | v = value_addr (v); | |
c906108c SS |
2347 | return v; |
2348 | } | |
2349 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 2350 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 2351 | |
0d5de010 DJ |
2352 | if (want_address) |
2353 | return value_from_longest | |
2354 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
2355 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2356 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2357 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
2358 | else | |
2359 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
2360 | } |
2361 | } | |
2362 | ||
ac3eeb49 MS |
2363 | /* C++: If it was not found as a data field, then try to return it |
2364 | as a pointer to a method. */ | |
c906108c SS |
2365 | |
2366 | /* Destructors are a special case. */ | |
2367 | if (destructor_name_p (name, t)) | |
2368 | { | |
8a3fe4f8 | 2369 | error (_("member pointers to destructors not implemented yet")); |
c906108c SS |
2370 | } |
2371 | ||
2372 | /* Perform all necessary dereferencing. */ | |
2373 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2374 | intype = TYPE_TARGET_TYPE (intype); | |
2375 | ||
2376 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2377 | { | |
2378 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2379 | char dem_opname[64]; | |
2380 | ||
ac3eeb49 MS |
2381 | if (strncmp (t_field_name, "__", 2) == 0 |
2382 | || strncmp (t_field_name, "op", 2) == 0 | |
2383 | || strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2384 | { |
ac3eeb49 MS |
2385 | if (cplus_demangle_opname (t_field_name, |
2386 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 2387 | t_field_name = dem_opname; |
ac3eeb49 MS |
2388 | else if (cplus_demangle_opname (t_field_name, |
2389 | dem_opname, 0)) | |
c906108c | 2390 | t_field_name = dem_opname; |
c906108c | 2391 | } |
6314a349 | 2392 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2393 | { |
2394 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2395 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 2396 | |
de17c821 DJ |
2397 | check_stub_method_group (t, i); |
2398 | ||
c906108c | 2399 | if (intype == 0 && j > 1) |
8a3fe4f8 | 2400 | error (_("non-unique member `%s' requires type instantiation"), name); |
c906108c SS |
2401 | if (intype) |
2402 | { | |
2403 | while (j--) | |
2404 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2405 | break; | |
2406 | if (j < 0) | |
8a3fe4f8 | 2407 | error (_("no member function matches that type instantiation")); |
c906108c SS |
2408 | } |
2409 | else | |
2410 | j = 0; | |
c5aa993b | 2411 | |
0d5de010 DJ |
2412 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
2413 | { | |
ac3eeb49 MS |
2414 | struct symbol *s = |
2415 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2416 | 0, VAR_DOMAIN, 0, NULL); | |
0d5de010 DJ |
2417 | if (s == NULL) |
2418 | return NULL; | |
2419 | ||
2420 | if (want_address) | |
2421 | return value_addr (read_var_value (s, 0)); | |
2422 | else | |
2423 | return read_var_value (s, 0); | |
2424 | } | |
2425 | ||
c906108c SS |
2426 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
2427 | { | |
0d5de010 DJ |
2428 | if (want_address) |
2429 | { | |
2430 | result = allocate_value | |
2431 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
2432 | cplus_make_method_ptr (value_contents_writeable (result), | |
2433 | TYPE_FN_FIELD_VOFFSET (f, j), 1); | |
2434 | } | |
2435 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2436 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
2437 | else | |
2438 | error (_("Cannot reference virtual member function \"%s\""), | |
2439 | name); | |
c906108c SS |
2440 | } |
2441 | else | |
2442 | { | |
ac3eeb49 MS |
2443 | struct symbol *s = |
2444 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2445 | 0, VAR_DOMAIN, 0, NULL); | |
c906108c | 2446 | if (s == NULL) |
0d5de010 DJ |
2447 | return NULL; |
2448 | ||
2449 | v = read_var_value (s, 0); | |
2450 | if (!want_address) | |
2451 | result = v; | |
c906108c SS |
2452 | else |
2453 | { | |
0d5de010 DJ |
2454 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
2455 | cplus_make_method_ptr (value_contents_writeable (result), | |
2456 | VALUE_ADDRESS (v), 0); | |
c906108c | 2457 | } |
c906108c | 2458 | } |
0d5de010 | 2459 | return result; |
c906108c SS |
2460 | } |
2461 | } | |
2462 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2463 | { | |
f23631e4 | 2464 | struct value *v; |
c906108c SS |
2465 | int base_offset; |
2466 | ||
2467 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2468 | base_offset = 0; | |
2469 | else | |
2470 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2471 | v = value_struct_elt_for_reference (domain, | |
2472 | offset + base_offset, | |
2473 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
2474 | name, intype, |
2475 | want_address, noside); | |
c906108c SS |
2476 | if (v) |
2477 | return v; | |
2478 | } | |
63d06c5c DC |
2479 | |
2480 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
2481 | it up that way; this (frequently) works for types nested inside | |
2482 | classes. */ | |
2483 | ||
ac3eeb49 MS |
2484 | return value_maybe_namespace_elt (curtype, name, |
2485 | want_address, noside); | |
c906108c SS |
2486 | } |
2487 | ||
79c2c32d DC |
2488 | /* C++: Return the member NAME of the namespace given by the type |
2489 | CURTYPE. */ | |
2490 | ||
2491 | static struct value * | |
2492 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 2493 | char *name, int want_address, |
79c2c32d | 2494 | enum noside noside) |
63d06c5c DC |
2495 | { |
2496 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
2497 | want_address, |
2498 | noside); | |
63d06c5c DC |
2499 | |
2500 | if (retval == NULL) | |
ac3eeb49 MS |
2501 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
2502 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
2503 | |
2504 | return retval; | |
2505 | } | |
2506 | ||
2507 | /* A helper function used by value_namespace_elt and | |
2508 | value_struct_elt_for_reference. It looks up NAME inside the | |
2509 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
2510 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
2511 | to, say, some base class of CURTYPE). */ | |
2512 | ||
2513 | static struct value * | |
2514 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 2515 | char *name, int want_address, |
63d06c5c | 2516 | enum noside noside) |
79c2c32d DC |
2517 | { |
2518 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
2519 | struct symbol *sym; | |
0d5de010 | 2520 | struct value *result; |
79c2c32d DC |
2521 | |
2522 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
ac3eeb49 MS |
2523 | get_selected_block (0), |
2524 | VAR_DOMAIN, NULL); | |
79c2c32d DC |
2525 | |
2526 | if (sym == NULL) | |
63d06c5c | 2527 | return NULL; |
79c2c32d DC |
2528 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
2529 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 2530 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 2531 | else |
0d5de010 DJ |
2532 | result = value_of_variable (sym, get_selected_block (0)); |
2533 | ||
2534 | if (result && want_address) | |
2535 | result = value_addr (result); | |
2536 | ||
2537 | return result; | |
79c2c32d DC |
2538 | } |
2539 | ||
ac3eeb49 MS |
2540 | /* Given a pointer value V, find the real (RTTI) type of the object it |
2541 | points to. | |
2542 | ||
c906108c | 2543 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 2544 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
2545 | |
2546 | struct type * | |
ac3eeb49 MS |
2547 | value_rtti_target_type (struct value *v, int *full, |
2548 | int *top, int *using_enc) | |
c906108c | 2549 | { |
f23631e4 | 2550 | struct value *target; |
c906108c SS |
2551 | |
2552 | target = value_ind (v); | |
2553 | ||
2554 | return value_rtti_type (target, full, top, using_enc); | |
2555 | } | |
2556 | ||
2557 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2558 | if that is different from the enclosing type, create a new value | |
2559 | using the real run-time type as the enclosing type (and of the same | |
2560 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
2561 | be the correct offset to the enclosed object. RTYPE is the type, |
2562 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
2563 | by value_rtti_type(). If these are available, they can be supplied | |
2564 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
2565 | NULL if they're not available. */ | |
c906108c | 2566 | |
f23631e4 | 2567 | struct value * |
ac3eeb49 MS |
2568 | value_full_object (struct value *argp, |
2569 | struct type *rtype, | |
2570 | int xfull, int xtop, | |
fba45db2 | 2571 | int xusing_enc) |
c906108c | 2572 | { |
c5aa993b | 2573 | struct type *real_type; |
c906108c SS |
2574 | int full = 0; |
2575 | int top = -1; | |
2576 | int using_enc = 0; | |
f23631e4 | 2577 | struct value *new_val; |
c906108c SS |
2578 | |
2579 | if (rtype) | |
2580 | { | |
2581 | real_type = rtype; | |
2582 | full = xfull; | |
2583 | top = xtop; | |
2584 | using_enc = xusing_enc; | |
2585 | } | |
2586 | else | |
2587 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2588 | ||
ac3eeb49 | 2589 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 2590 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
2591 | return argp; |
2592 | ||
2593 | /* If we have the full object, but for some reason the enclosing | |
ac3eeb49 MS |
2594 | type is wrong, set it. */ |
2595 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
2596 | if (full) |
2597 | { | |
2b127877 | 2598 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
2599 | return argp; |
2600 | } | |
2601 | ||
2602 | /* Check if object is in memory */ | |
2603 | if (VALUE_LVAL (argp) != lval_memory) | |
2604 | { | |
ac3eeb49 MS |
2605 | warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), |
2606 | TYPE_NAME (real_type)); | |
c5aa993b | 2607 | |
c906108c SS |
2608 | return argp; |
2609 | } | |
c5aa993b | 2610 | |
ac3eeb49 MS |
2611 | /* All other cases -- retrieve the complete object. */ |
2612 | /* Go back by the computed top_offset from the beginning of the | |
2613 | object, adjusting for the embedded offset of argp if that's what | |
2614 | value_rtti_type used for its computation. */ | |
c906108c | 2615 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + |
13c3b5f5 | 2616 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 2617 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
2618 | set_value_embedded_offset (new_val, (using_enc |
2619 | ? top + value_embedded_offset (argp) | |
2620 | : top)); | |
c906108c SS |
2621 | return new_val; |
2622 | } | |
2623 | ||
389e51db | 2624 | |
d069f99d | 2625 | /* Return the value of the local variable, if one exists. |
c906108c SS |
2626 | Flag COMPLAIN signals an error if the request is made in an |
2627 | inappropriate context. */ | |
2628 | ||
f23631e4 | 2629 | struct value * |
d069f99d | 2630 | value_of_local (const char *name, int complain) |
c906108c SS |
2631 | { |
2632 | struct symbol *func, *sym; | |
2633 | struct block *b; | |
d069f99d | 2634 | struct value * ret; |
206415a3 | 2635 | struct frame_info *frame; |
c906108c | 2636 | |
206415a3 DJ |
2637 | if (complain) |
2638 | frame = get_selected_frame (_("no frame selected")); | |
2639 | else | |
c906108c | 2640 | { |
206415a3 DJ |
2641 | frame = deprecated_safe_get_selected_frame (); |
2642 | if (frame == 0) | |
c5aa993b | 2643 | return 0; |
c906108c SS |
2644 | } |
2645 | ||
206415a3 | 2646 | func = get_frame_function (frame); |
c906108c SS |
2647 | if (!func) |
2648 | { | |
2649 | if (complain) | |
8a3fe4f8 | 2650 | error (_("no `%s' in nameless context"), name); |
c5aa993b JM |
2651 | else |
2652 | return 0; | |
c906108c SS |
2653 | } |
2654 | ||
2655 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 2656 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
2657 | { |
2658 | if (complain) | |
8a3fe4f8 | 2659 | error (_("no args, no `%s'"), name); |
c5aa993b JM |
2660 | else |
2661 | return 0; | |
c906108c SS |
2662 | } |
2663 | ||
2664 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2665 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 2666 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
2667 | if (sym == NULL) |
2668 | { | |
2669 | if (complain) | |
ac3eeb49 MS |
2670 | error (_("current stack frame does not contain a variable named `%s'"), |
2671 | name); | |
c906108c SS |
2672 | else |
2673 | return NULL; | |
2674 | } | |
2675 | ||
206415a3 | 2676 | ret = read_var_value (sym, frame); |
d069f99d | 2677 | if (ret == 0 && complain) |
8a3fe4f8 | 2678 | error (_("`%s' argument unreadable"), name); |
d069f99d AF |
2679 | return ret; |
2680 | } | |
2681 | ||
2682 | /* C++/Objective-C: return the value of the class instance variable, | |
2683 | if one exists. Flag COMPLAIN signals an error if the request is | |
2684 | made in an inappropriate context. */ | |
2685 | ||
2686 | struct value * | |
2687 | value_of_this (int complain) | |
2688 | { | |
2689 | if (current_language->la_language == language_objc) | |
2690 | return value_of_local ("self", complain); | |
2691 | else | |
2692 | return value_of_local ("this", complain); | |
c906108c SS |
2693 | } |
2694 | ||
ac3eeb49 MS |
2695 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
2696 | elements long, starting at LOWBOUND. The result has the same lower | |
2697 | bound as the original ARRAY. */ | |
c906108c | 2698 | |
f23631e4 AC |
2699 | struct value * |
2700 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
2701 | { |
2702 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 2703 | LONGEST lowerbound, upperbound; |
f23631e4 | 2704 | struct value *slice; |
c906108c | 2705 | struct type *array_type; |
ac3eeb49 | 2706 | |
df407dfe | 2707 | array_type = check_typedef (value_type (array)); |
c906108c SS |
2708 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
2709 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2710 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 2711 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 2712 | |
c906108c SS |
2713 | range_type = TYPE_INDEX_TYPE (array_type); |
2714 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 2715 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 2716 | |
c906108c | 2717 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 2718 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 2719 | error (_("slice out of range")); |
ac3eeb49 | 2720 | |
c906108c SS |
2721 | /* FIXME-type-allocation: need a way to free this type when we are |
2722 | done with it. */ | |
c5aa993b | 2723 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c | 2724 | TYPE_TARGET_TYPE (range_type), |
ac3eeb49 MS |
2725 | lowbound, |
2726 | lowbound + length - 1); | |
c906108c SS |
2727 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) |
2728 | { | |
2729 | int i; | |
ac3eeb49 MS |
2730 | |
2731 | slice_type = create_set_type ((struct type *) NULL, | |
2732 | slice_range_type); | |
c906108c SS |
2733 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
2734 | slice = value_zero (slice_type, not_lval); | |
ac3eeb49 | 2735 | |
c906108c SS |
2736 | for (i = 0; i < length; i++) |
2737 | { | |
2738 | int element = value_bit_index (array_type, | |
0fd88904 | 2739 | value_contents (array), |
c906108c SS |
2740 | lowbound + i); |
2741 | if (element < 0) | |
8a3fe4f8 | 2742 | error (_("internal error accessing bitstring")); |
c906108c SS |
2743 | else if (element > 0) |
2744 | { | |
2745 | int j = i % TARGET_CHAR_BIT; | |
2746 | if (BITS_BIG_ENDIAN) | |
2747 | j = TARGET_CHAR_BIT - 1 - j; | |
990a07ab | 2748 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
2749 | } |
2750 | } | |
ac3eeb49 MS |
2751 | /* We should set the address, bitssize, and bitspos, so the |
2752 | slice can be used on the LHS, but that may require extensions | |
2753 | to value_assign. For now, just leave as a non_lval. | |
2754 | FIXME. */ | |
c906108c SS |
2755 | } |
2756 | else | |
2757 | { | |
2758 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
ac3eeb49 MS |
2759 | LONGEST offset = |
2760 | (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
2761 | ||
2762 | slice_type = create_array_type ((struct type *) NULL, | |
2763 | element_type, | |
c906108c SS |
2764 | slice_range_type); |
2765 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 2766 | |
c906108c | 2767 | slice = allocate_value (slice_type); |
d69fe07e | 2768 | if (value_lazy (array)) |
dfa52d88 | 2769 | set_value_lazy (slice, 1); |
c906108c | 2770 | else |
0fd88904 AC |
2771 | memcpy (value_contents_writeable (slice), |
2772 | value_contents (array) + offset, | |
c906108c | 2773 | TYPE_LENGTH (slice_type)); |
ac3eeb49 | 2774 | |
c906108c SS |
2775 | if (VALUE_LVAL (array) == lval_internalvar) |
2776 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2777 | else | |
2778 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
ac3eeb49 | 2779 | |
c906108c | 2780 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); |
65d3800a | 2781 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 2782 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
2783 | } |
2784 | return slice; | |
2785 | } | |
2786 | ||
ac3eeb49 MS |
2787 | /* Create a value for a FORTRAN complex number. Currently most of the |
2788 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
2789 | composed of 2 doubles. This really should be a smarter routine |
2790 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 2791 | doubles. FIXME: fmb */ |
c906108c | 2792 | |
f23631e4 | 2793 | struct value * |
ac3eeb49 MS |
2794 | value_literal_complex (struct value *arg1, |
2795 | struct value *arg2, | |
2796 | struct type *type) | |
c906108c | 2797 | { |
f23631e4 | 2798 | struct value *val; |
c906108c SS |
2799 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2800 | ||
2801 | val = allocate_value (type); | |
2802 | arg1 = value_cast (real_type, arg1); | |
2803 | arg2 = value_cast (real_type, arg2); | |
2804 | ||
990a07ab | 2805 | memcpy (value_contents_raw (val), |
0fd88904 | 2806 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 2807 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 2808 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
2809 | return val; |
2810 | } | |
2811 | ||
ac3eeb49 | 2812 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 2813 | |
f23631e4 AC |
2814 | static struct value * |
2815 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
2816 | { |
2817 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 2818 | |
df407dfe | 2819 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 2820 | { |
df407dfe | 2821 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
2822 | struct value *re_val = allocate_value (val_real_type); |
2823 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 2824 | |
990a07ab | 2825 | memcpy (value_contents_raw (re_val), |
0fd88904 | 2826 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 2827 | memcpy (value_contents_raw (im_val), |
0fd88904 | 2828 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 2829 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
2830 | |
2831 | return value_literal_complex (re_val, im_val, type); | |
2832 | } | |
df407dfe AC |
2833 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
2834 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
2835 | return value_literal_complex (val, |
2836 | value_zero (real_type, not_lval), | |
2837 | type); | |
c906108c | 2838 | else |
8a3fe4f8 | 2839 | error (_("cannot cast non-number to complex")); |
c906108c SS |
2840 | } |
2841 | ||
2842 | void | |
fba45db2 | 2843 | _initialize_valops (void) |
c906108c | 2844 | { |
5bf193a2 AC |
2845 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
2846 | &overload_resolution, _("\ | |
2847 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
2848 | Show overload resolution in evaluating C++ functions."), |
2849 | NULL, NULL, | |
920d2a44 | 2850 | show_overload_resolution, |
5bf193a2 | 2851 | &setlist, &showlist); |
c906108c | 2852 | overload_resolution = 1; |
c906108c | 2853 | } |