Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
197e01b6 | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
990a07ab | 4 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 |
f23631e4 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
22 | Boston, MA 02110-1301, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "value.h" | |
28 | #include "frame.h" | |
29 | #include "inferior.h" | |
30 | #include "gdbcore.h" | |
31 | #include "target.h" | |
32 | #include "demangle.h" | |
33 | #include "language.h" | |
34 | #include "gdbcmd.h" | |
4e052eda | 35 | #include "regcache.h" |
015a42b4 | 36 | #include "cp-abi.h" |
fe898f56 | 37 | #include "block.h" |
04714b91 | 38 | #include "infcall.h" |
de4f826b | 39 | #include "dictionary.h" |
b6429628 | 40 | #include "cp-support.h" |
c906108c SS |
41 | |
42 | #include <errno.h> | |
43 | #include "gdb_string.h" | |
4a1970e4 | 44 | #include "gdb_assert.h" |
79c2c32d | 45 | #include "cp-support.h" |
f4c5303c | 46 | #include "observer.h" |
c906108c | 47 | |
070ad9f0 | 48 | extern int overload_debug; |
c906108c SS |
49 | /* Local functions. */ |
50 | ||
ad2f7632 DJ |
51 | static int typecmp (int staticp, int varargs, int nargs, |
52 | struct field t1[], struct value *t2[]); | |
c906108c | 53 | |
f23631e4 | 54 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 55 | struct type *, int); |
c906108c | 56 | |
f23631e4 AC |
57 | static struct value *search_struct_method (char *, struct value **, |
58 | struct value **, | |
a14ed312 | 59 | int, int *, struct type *); |
c906108c | 60 | |
8d577d32 DC |
61 | static int find_oload_champ_namespace (struct type **arg_types, int nargs, |
62 | const char *func_name, | |
63 | const char *qualified_name, | |
64 | struct symbol ***oload_syms, | |
65 | struct badness_vector **oload_champ_bv); | |
66 | ||
67 | static | |
68 | int find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
69 | const char *func_name, | |
70 | const char *qualified_name, | |
71 | int namespace_len, | |
72 | struct symbol ***oload_syms, | |
73 | struct badness_vector **oload_champ_bv, | |
74 | int *oload_champ); | |
75 | ||
76 | static int find_oload_champ (struct type **arg_types, int nargs, int method, | |
77 | int num_fns, | |
78 | struct fn_field *fns_ptr, | |
79 | struct symbol **oload_syms, | |
80 | struct badness_vector **oload_champ_bv); | |
81 | ||
82 | static int oload_method_static (int method, struct fn_field *fns_ptr, | |
83 | int index); | |
84 | ||
85 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
86 | ||
87 | static enum | |
88 | oload_classification classify_oload_match (struct badness_vector | |
89 | * oload_champ_bv, | |
90 | int nargs, | |
91 | int static_offset); | |
92 | ||
a14ed312 | 93 | static int check_field_in (struct type *, const char *); |
c906108c | 94 | |
79c2c32d DC |
95 | static struct value *value_struct_elt_for_reference (struct type *domain, |
96 | int offset, | |
97 | struct type *curtype, | |
98 | char *name, | |
63d06c5c DC |
99 | struct type *intype, |
100 | enum noside noside); | |
79c2c32d DC |
101 | |
102 | static struct value *value_namespace_elt (const struct type *curtype, | |
63d06c5c | 103 | char *name, |
79c2c32d DC |
104 | enum noside noside); |
105 | ||
63d06c5c DC |
106 | static struct value *value_maybe_namespace_elt (const struct type *curtype, |
107 | char *name, | |
108 | enum noside noside); | |
109 | ||
a14ed312 | 110 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 111 | |
f23631e4 | 112 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 113 | |
f23631e4 | 114 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
4a1970e4 | 115 | int offset, |
a14ed312 KB |
116 | struct type *type, int *num_fns, |
117 | struct type **basetype, | |
118 | int *boffset); | |
7a292a7a | 119 | |
a14ed312 | 120 | void _initialize_valops (void); |
c906108c | 121 | |
c906108c SS |
122 | /* Flag for whether we want to abandon failed expression evals by default. */ |
123 | ||
124 | #if 0 | |
125 | static int auto_abandon = 0; | |
126 | #endif | |
127 | ||
128 | int overload_resolution = 0; | |
920d2a44 AC |
129 | static void |
130 | show_overload_resolution (struct ui_file *file, int from_tty, | |
131 | struct cmd_list_element *c, const char *value) | |
132 | { | |
133 | fprintf_filtered (file, _("\ | |
134 | Overload resolution in evaluating C++ functions is %s.\n"), | |
135 | value); | |
136 | } | |
242bfc55 | 137 | |
c906108c SS |
138 | /* Find the address of function name NAME in the inferior. */ |
139 | ||
f23631e4 | 140 | struct value * |
3bada2a2 | 141 | find_function_in_inferior (const char *name) |
c906108c | 142 | { |
52f0bd74 | 143 | struct symbol *sym; |
176620f1 | 144 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
145 | if (sym != NULL) |
146 | { | |
147 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
148 | { | |
8a3fe4f8 | 149 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
150 | name); |
151 | } | |
152 | return value_of_variable (sym, NULL); | |
153 | } | |
154 | else | |
155 | { | |
c5aa993b | 156 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
157 | if (msymbol != NULL) |
158 | { | |
159 | struct type *type; | |
4478b372 | 160 | CORE_ADDR maddr; |
c906108c SS |
161 | type = lookup_pointer_type (builtin_type_char); |
162 | type = lookup_function_type (type); | |
163 | type = lookup_pointer_type (type); | |
4478b372 JB |
164 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
165 | return value_from_pointer (type, maddr); | |
c906108c SS |
166 | } |
167 | else | |
168 | { | |
c5aa993b | 169 | if (!target_has_execution) |
8a3fe4f8 | 170 | error (_("evaluation of this expression requires the target program to be active")); |
c5aa993b | 171 | else |
8a3fe4f8 | 172 | error (_("evaluation of this expression requires the program to have a function \"%s\"."), name); |
c906108c SS |
173 | } |
174 | } | |
175 | } | |
176 | ||
177 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
178 | and return a value that is a pointer to the allocated space. */ | |
179 | ||
f23631e4 | 180 | struct value * |
fba45db2 | 181 | value_allocate_space_in_inferior (int len) |
c906108c | 182 | { |
f23631e4 | 183 | struct value *blocklen; |
5720643c | 184 | struct value *val = find_function_in_inferior (NAME_OF_MALLOC); |
c906108c SS |
185 | |
186 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
187 | val = call_function_by_hand (val, 1, &blocklen); | |
188 | if (value_logical_not (val)) | |
189 | { | |
190 | if (!target_has_execution) | |
8a3fe4f8 | 191 | error (_("No memory available to program now: you need to start the target first")); |
c5aa993b | 192 | else |
8a3fe4f8 | 193 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
194 | } |
195 | return val; | |
196 | } | |
197 | ||
198 | static CORE_ADDR | |
fba45db2 | 199 | allocate_space_in_inferior (int len) |
c906108c SS |
200 | { |
201 | return value_as_long (value_allocate_space_in_inferior (len)); | |
202 | } | |
203 | ||
204 | /* Cast value ARG2 to type TYPE and return as a value. | |
205 | More general than a C cast: accepts any two types of the same length, | |
206 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
207 | /* In C++, casts may change pointer or object representations. */ | |
208 | ||
f23631e4 AC |
209 | struct value * |
210 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 211 | { |
52f0bd74 AC |
212 | enum type_code code1; |
213 | enum type_code code2; | |
214 | int scalar; | |
c906108c SS |
215 | struct type *type2; |
216 | ||
217 | int convert_to_boolean = 0; | |
c5aa993b | 218 | |
df407dfe | 219 | if (value_type (arg2) == type) |
c906108c SS |
220 | return arg2; |
221 | ||
222 | CHECK_TYPEDEF (type); | |
223 | code1 = TYPE_CODE (type); | |
994b9211 | 224 | arg2 = coerce_ref (arg2); |
df407dfe | 225 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
226 | |
227 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
228 | is treated like a cast to (TYPE [N])OBJECT, | |
229 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
230 | if (code1 == TYPE_CODE_ARRAY) | |
231 | { | |
232 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
233 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
234 | if (element_length > 0 | |
c5aa993b | 235 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
236 | { |
237 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
238 | int val_length = TYPE_LENGTH (type2); | |
239 | LONGEST low_bound, high_bound, new_length; | |
240 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
241 | low_bound = 0, high_bound = 0; | |
242 | new_length = val_length / element_length; | |
243 | if (val_length % element_length != 0) | |
8a3fe4f8 | 244 | warning (_("array element type size does not divide object size in cast")); |
c906108c SS |
245 | /* FIXME-type-allocation: need a way to free this type when we are |
246 | done with it. */ | |
247 | range_type = create_range_type ((struct type *) NULL, | |
248 | TYPE_TARGET_TYPE (range_type), | |
249 | low_bound, | |
250 | new_length + low_bound - 1); | |
04624583 AC |
251 | deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL, |
252 | element_type, range_type)); | |
c906108c SS |
253 | return arg2; |
254 | } | |
255 | } | |
256 | ||
257 | if (current_language->c_style_arrays | |
258 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
259 | arg2 = value_coerce_array (arg2); | |
260 | ||
261 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
262 | arg2 = value_coerce_function (arg2); | |
263 | ||
df407dfe | 264 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
265 | code2 = TYPE_CODE (type2); |
266 | ||
267 | if (code1 == TYPE_CODE_COMPLEX) | |
268 | return cast_into_complex (type, arg2); | |
269 | if (code1 == TYPE_CODE_BOOL) | |
270 | { | |
271 | code1 = TYPE_CODE_INT; | |
272 | convert_to_boolean = 1; | |
273 | } | |
274 | if (code1 == TYPE_CODE_CHAR) | |
275 | code1 = TYPE_CODE_INT; | |
276 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
277 | code2 = TYPE_CODE_INT; | |
278 | ||
279 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
280 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
281 | ||
c5aa993b | 282 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
283 | && code2 == TYPE_CODE_STRUCT |
284 | && TYPE_NAME (type) != 0) | |
285 | { | |
286 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
287 | type of the target as a superclass. If so, we'll need to |
288 | offset the object in addition to changing its type. */ | |
f23631e4 | 289 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
290 | arg2, 0, type2, 1); |
291 | if (v) | |
292 | { | |
04624583 | 293 | deprecated_set_value_type (v, type); |
c906108c SS |
294 | return v; |
295 | } | |
296 | } | |
297 | if (code1 == TYPE_CODE_FLT && scalar) | |
298 | return value_from_double (type, value_as_double (arg2)); | |
299 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
300 | || code1 == TYPE_CODE_RANGE) | |
301 | && (scalar || code2 == TYPE_CODE_PTR)) | |
302 | { | |
303 | LONGEST longest; | |
c5aa993b | 304 | |
f83f82bc AC |
305 | if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */ |
306 | && (code2 == TYPE_CODE_PTR)) | |
c5aa993b JM |
307 | { |
308 | unsigned int *ptr; | |
f23631e4 | 309 | struct value *retvalp; |
c5aa993b JM |
310 | |
311 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
312 | { | |
313 | /* With HP aCC, pointers to data members have a bias */ | |
314 | case TYPE_CODE_MEMBER: | |
315 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 316 | /* force evaluation */ |
0fd88904 | 317 | ptr = (unsigned int *) value_contents (retvalp); |
c5aa993b JM |
318 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
319 | return retvalp; | |
320 | ||
321 | /* While pointers to methods don't really point to a function */ | |
322 | case TYPE_CODE_METHOD: | |
8a3fe4f8 | 323 | error (_("Pointers to methods not supported with HP aCC")); |
c5aa993b JM |
324 | |
325 | default: | |
326 | break; /* fall out and go to normal handling */ | |
327 | } | |
328 | } | |
2bf1f4a1 JB |
329 | |
330 | /* When we cast pointers to integers, we mustn't use | |
331 | POINTER_TO_ADDRESS to find the address the pointer | |
332 | represents, as value_as_long would. GDB should evaluate | |
333 | expressions just as the compiler would --- and the compiler | |
334 | sees a cast as a simple reinterpretation of the pointer's | |
335 | bits. */ | |
336 | if (code2 == TYPE_CODE_PTR) | |
0fd88904 | 337 | longest = extract_unsigned_integer (value_contents (arg2), |
2bf1f4a1 JB |
338 | TYPE_LENGTH (type2)); |
339 | else | |
340 | longest = value_as_long (arg2); | |
802db21b | 341 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 342 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 343 | } |
802db21b | 344 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
345 | code2 == TYPE_CODE_ENUM || |
346 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 347 | { |
4603e466 DT |
348 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
349 | want the length of an address! -- we are really dealing with | |
350 | addresses (i.e., gdb representations) not pointers (i.e., | |
351 | target representations) here. | |
352 | ||
353 | This allows things like "print *(int *)0x01000234" to work | |
354 | without printing a misleading message -- which would | |
355 | otherwise occur when dealing with a target having two byte | |
356 | pointers and four byte addresses. */ | |
357 | ||
358 | int addr_bit = TARGET_ADDR_BIT; | |
359 | ||
634acd5f | 360 | LONGEST longest = value_as_long (arg2); |
4603e466 | 361 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 362 | { |
4603e466 DT |
363 | if (longest >= ((LONGEST) 1 << addr_bit) |
364 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 365 | warning (_("value truncated")); |
634acd5f AC |
366 | } |
367 | return value_from_longest (type, longest); | |
368 | } | |
c906108c SS |
369 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
370 | { | |
371 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
372 | { | |
373 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
374 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 375 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
376 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
377 | && !value_logical_not (arg2)) | |
378 | { | |
f23631e4 | 379 | struct value *v; |
c906108c SS |
380 | |
381 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
382 | type of the target as a superclass. If so, we'll need to |
383 | offset the pointer rather than just change its type. */ | |
c906108c SS |
384 | if (TYPE_NAME (t1) != NULL) |
385 | { | |
386 | v = search_struct_field (type_name_no_tag (t1), | |
387 | value_ind (arg2), 0, t2, 1); | |
388 | if (v) | |
389 | { | |
390 | v = value_addr (v); | |
04624583 | 391 | deprecated_set_value_type (v, type); |
c906108c SS |
392 | return v; |
393 | } | |
394 | } | |
395 | ||
396 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
397 | type of the source as a superclass. If so, we'll need to |
398 | offset the pointer rather than just change its type. | |
399 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
400 | if (TYPE_NAME (t2) != NULL) |
401 | { | |
402 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 403 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
404 | if (v) |
405 | { | |
d174216d JB |
406 | CORE_ADDR addr2 = value_as_address (arg2); |
407 | addr2 -= (VALUE_ADDRESS (v) | |
df407dfe | 408 | + value_offset (v) |
13c3b5f5 | 409 | + value_embedded_offset (v)); |
d174216d | 410 | return value_from_pointer (type, addr2); |
c906108c SS |
411 | } |
412 | } | |
413 | } | |
414 | /* No superclass found, just fall through to change ptr type. */ | |
415 | } | |
04624583 | 416 | deprecated_set_value_type (arg2, type); |
2b127877 | 417 | arg2 = value_change_enclosing_type (arg2, type); |
b44d461b | 418 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
419 | return arg2; |
420 | } | |
c906108c | 421 | else if (VALUE_LVAL (arg2) == lval_memory) |
df407dfe | 422 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2)); |
c906108c SS |
423 | else if (code1 == TYPE_CODE_VOID) |
424 | { | |
425 | return value_zero (builtin_type_void, not_lval); | |
426 | } | |
427 | else | |
428 | { | |
8a3fe4f8 | 429 | error (_("Invalid cast.")); |
c906108c SS |
430 | return 0; |
431 | } | |
432 | } | |
433 | ||
434 | /* Create a value of type TYPE that is zero, and return it. */ | |
435 | ||
f23631e4 | 436 | struct value * |
fba45db2 | 437 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 438 | { |
f23631e4 | 439 | struct value *val = allocate_value (type); |
c906108c SS |
440 | VALUE_LVAL (val) = lv; |
441 | ||
442 | return val; | |
443 | } | |
444 | ||
070ad9f0 | 445 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
446 | |
447 | Call value_at only if the data needs to be fetched immediately; | |
448 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
449 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 450 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 451 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 452 | the contents are actually required. |
c906108c SS |
453 | |
454 | Note: value_at does *NOT* handle embedded offsets; perform such | |
455 | adjustments before or after calling it. */ | |
456 | ||
f23631e4 | 457 | struct value * |
00a4c844 | 458 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 459 | { |
f23631e4 | 460 | struct value *val; |
c906108c SS |
461 | |
462 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 463 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
464 | |
465 | val = allocate_value (type); | |
466 | ||
990a07ab | 467 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); |
c906108c SS |
468 | |
469 | VALUE_LVAL (val) = lval_memory; | |
470 | VALUE_ADDRESS (val) = addr; | |
c906108c SS |
471 | |
472 | return val; | |
473 | } | |
474 | ||
475 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
476 | ||
f23631e4 | 477 | struct value * |
00a4c844 | 478 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 479 | { |
f23631e4 | 480 | struct value *val; |
c906108c SS |
481 | |
482 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 483 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
484 | |
485 | val = allocate_value (type); | |
486 | ||
487 | VALUE_LVAL (val) = lval_memory; | |
488 | VALUE_ADDRESS (val) = addr; | |
dfa52d88 | 489 | set_value_lazy (val, 1); |
c906108c SS |
490 | |
491 | return val; | |
492 | } | |
493 | ||
0fd88904 | 494 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 495 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 496 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
497 | clears the lazy flag to indicate that the data in the buffer is |
498 | valid. | |
c906108c SS |
499 | |
500 | If the value is zero-length, we avoid calling read_memory, which would | |
501 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
502 | ||
0fd88904 | 503 | This function returns a value because it is used in the value_contents |
c906108c SS |
504 | macro as part of an expression, where a void would not work. The |
505 | value is ignored. */ | |
506 | ||
507 | int | |
f23631e4 | 508 | value_fetch_lazy (struct value *val) |
c906108c | 509 | { |
df407dfe | 510 | CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val); |
4754a64e | 511 | int length = TYPE_LENGTH (value_enclosing_type (val)); |
c906108c | 512 | |
df407dfe | 513 | struct type *type = value_type (val); |
75af7f68 | 514 | if (length) |
990a07ab | 515 | read_memory (addr, value_contents_all_raw (val), length); |
802db21b | 516 | |
dfa52d88 | 517 | set_value_lazy (val, 0); |
c906108c SS |
518 | return 0; |
519 | } | |
520 | ||
521 | ||
522 | /* Store the contents of FROMVAL into the location of TOVAL. | |
523 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
524 | ||
f23631e4 AC |
525 | struct value * |
526 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 527 | { |
52f0bd74 | 528 | struct type *type; |
f23631e4 | 529 | struct value *val; |
cb741690 | 530 | struct frame_id old_frame; |
c906108c | 531 | |
88e3b34b | 532 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 533 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 534 | |
994b9211 | 535 | toval = coerce_ref (toval); |
c906108c | 536 | |
df407dfe | 537 | type = value_type (toval); |
c906108c SS |
538 | if (VALUE_LVAL (toval) != lval_internalvar) |
539 | fromval = value_cast (type, fromval); | |
540 | else | |
994b9211 | 541 | fromval = coerce_array (fromval); |
c906108c SS |
542 | CHECK_TYPEDEF (type); |
543 | ||
cb741690 DJ |
544 | /* Since modifying a register can trash the frame chain, and modifying memory |
545 | can trash the frame cache, we save the old frame and then restore the new | |
546 | frame afterwards. */ | |
547 | old_frame = get_frame_id (deprecated_selected_frame); | |
548 | ||
c906108c SS |
549 | switch (VALUE_LVAL (toval)) |
550 | { | |
551 | case lval_internalvar: | |
552 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
553 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
4754a64e | 554 | val = value_change_enclosing_type (val, value_enclosing_type (fromval)); |
13c3b5f5 | 555 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 556 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c906108c SS |
557 | return val; |
558 | ||
559 | case lval_internalvar_component: | |
560 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
561 | value_offset (toval), |
562 | value_bitpos (toval), | |
563 | value_bitsize (toval), | |
c906108c SS |
564 | fromval); |
565 | break; | |
566 | ||
567 | case lval_memory: | |
568 | { | |
fc1a4b47 | 569 | const gdb_byte *dest_buffer; |
c5aa993b JM |
570 | CORE_ADDR changed_addr; |
571 | int changed_len; | |
10c42a71 | 572 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 573 | |
df407dfe | 574 | if (value_bitsize (toval)) |
c5aa993b | 575 | { |
c906108c SS |
576 | /* We assume that the argument to read_memory is in units of |
577 | host chars. FIXME: Is that correct? */ | |
df407dfe AC |
578 | changed_len = (value_bitpos (toval) |
579 | + value_bitsize (toval) | |
c5aa993b JM |
580 | + HOST_CHAR_BIT - 1) |
581 | / HOST_CHAR_BIT; | |
c906108c SS |
582 | |
583 | if (changed_len > (int) sizeof (LONGEST)) | |
8a3fe4f8 | 584 | error (_("Can't handle bitfields which don't fit in a %d bit word."), |
baa6f10b | 585 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 586 | |
df407dfe | 587 | read_memory (VALUE_ADDRESS (toval) + value_offset (toval), |
c906108c SS |
588 | buffer, changed_len); |
589 | modify_field (buffer, value_as_long (fromval), | |
df407dfe AC |
590 | value_bitpos (toval), value_bitsize (toval)); |
591 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); | |
c906108c SS |
592 | dest_buffer = buffer; |
593 | } | |
c906108c SS |
594 | else |
595 | { | |
df407dfe | 596 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); |
c906108c | 597 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 598 | dest_buffer = value_contents (fromval); |
c906108c SS |
599 | } |
600 | ||
601 | write_memory (changed_addr, dest_buffer, changed_len); | |
9a4105ab AC |
602 | if (deprecated_memory_changed_hook) |
603 | deprecated_memory_changed_hook (changed_addr, changed_len); | |
c906108c SS |
604 | } |
605 | break; | |
606 | ||
492254e9 | 607 | case lval_register: |
c906108c | 608 | { |
c906108c | 609 | struct frame_info *frame; |
ff2e87ac | 610 | int value_reg; |
c906108c SS |
611 | |
612 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
613 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
614 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
615 | |
616 | if (!frame) | |
8a3fe4f8 | 617 | error (_("Value being assigned to is no longer active.")); |
492254e9 | 618 | |
25ae5d16 | 619 | if (VALUE_LVAL (toval) == lval_register |
9ee8fc9d | 620 | && CONVERT_REGISTER_P (VALUE_REGNUM (toval), type)) |
492254e9 | 621 | { |
ff2e87ac AC |
622 | /* If TOVAL is a special machine register requiring |
623 | conversion of program values to a special raw format. */ | |
9ee8fc9d | 624 | VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval), |
0fd88904 | 625 | type, value_contents (fromval)); |
492254e9 | 626 | } |
c906108c | 627 | else |
492254e9 | 628 | { |
ff2e87ac AC |
629 | /* TOVAL is stored in a series of registers in the frame |
630 | specified by the structure. Copy that value out, | |
631 | modify it, and copy it back in. */ | |
632 | int amount_copied; | |
633 | int amount_to_copy; | |
10c42a71 | 634 | gdb_byte *buffer; |
ff2e87ac AC |
635 | int reg_offset; |
636 | int byte_offset; | |
637 | int regno; | |
638 | ||
639 | /* Locate the first register that falls in the value that | |
640 | needs to be transfered. Compute the offset of the | |
641 | value in that register. */ | |
642 | { | |
643 | int offset; | |
644 | for (reg_offset = value_reg, offset = 0; | |
df407dfe | 645 | offset + register_size (current_gdbarch, reg_offset) <= value_offset (toval); |
ff2e87ac | 646 | reg_offset++); |
df407dfe | 647 | byte_offset = value_offset (toval) - offset; |
ff2e87ac | 648 | } |
c906108c | 649 | |
ff2e87ac AC |
650 | /* Compute the number of register aligned values that need |
651 | to be copied. */ | |
df407dfe | 652 | if (value_bitsize (toval)) |
ff2e87ac AC |
653 | amount_to_copy = byte_offset + 1; |
654 | else | |
655 | amount_to_copy = byte_offset + TYPE_LENGTH (type); | |
492254e9 | 656 | |
ff2e87ac | 657 | /* And a bounce buffer. Be slightly over generous. */ |
10c42a71 | 658 | buffer = alloca (amount_to_copy + MAX_REGISTER_SIZE); |
ff2e87ac AC |
659 | |
660 | /* Copy it in. */ | |
661 | for (regno = reg_offset, amount_copied = 0; | |
662 | amount_copied < amount_to_copy; | |
3acba339 | 663 | amount_copied += register_size (current_gdbarch, regno), regno++) |
ff2e87ac | 664 | frame_register_read (frame, regno, buffer + amount_copied); |
492254e9 | 665 | |
ff2e87ac | 666 | /* Modify what needs to be modified. */ |
df407dfe | 667 | if (value_bitsize (toval)) |
ff2e87ac AC |
668 | modify_field (buffer + byte_offset, |
669 | value_as_long (fromval), | |
df407dfe | 670 | value_bitpos (toval), value_bitsize (toval)); |
c906108c | 671 | else |
0fd88904 | 672 | memcpy (buffer + byte_offset, value_contents (fromval), |
ff2e87ac AC |
673 | TYPE_LENGTH (type)); |
674 | ||
675 | /* Copy it out. */ | |
676 | for (regno = reg_offset, amount_copied = 0; | |
677 | amount_copied < amount_to_copy; | |
3acba339 | 678 | amount_copied += register_size (current_gdbarch, regno), regno++) |
ff2e87ac | 679 | put_frame_register (frame, regno, buffer + amount_copied); |
c906108c | 680 | |
ff2e87ac | 681 | } |
9a4105ab AC |
682 | if (deprecated_register_changed_hook) |
683 | deprecated_register_changed_hook (-1); | |
f4c5303c | 684 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 685 | break; |
c906108c | 686 | } |
492254e9 | 687 | |
c906108c | 688 | default: |
8a3fe4f8 | 689 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
690 | } |
691 | ||
cb741690 DJ |
692 | /* Assigning to the stack pointer, frame pointer, and other |
693 | (architecture and calling convention specific) registers may | |
694 | cause the frame cache to be out of date. Assigning to memory | |
695 | also can. We just do this on all assignments to registers or | |
696 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
697 | switch (VALUE_LVAL (toval)) | |
698 | { | |
699 | case lval_memory: | |
700 | case lval_register: | |
cb741690 DJ |
701 | |
702 | reinit_frame_cache (); | |
703 | ||
704 | /* Having destoroyed the frame cache, restore the selected frame. */ | |
705 | ||
706 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
707 | doing this. Instead of constantly saving/restoring the | |
708 | frame. Why not create a get_selected_frame() function that, | |
709 | having saved the selected frame's ID can automatically | |
710 | re-find the previously selected frame automatically. */ | |
711 | ||
712 | { | |
713 | struct frame_info *fi = frame_find_by_id (old_frame); | |
714 | if (fi != NULL) | |
715 | select_frame (fi); | |
716 | } | |
717 | ||
718 | break; | |
719 | default: | |
720 | break; | |
721 | } | |
722 | ||
c906108c SS |
723 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
724 | If the field is signed, and is negative, then sign extend. */ | |
df407dfe AC |
725 | if ((value_bitsize (toval) > 0) |
726 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
727 | { |
728 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 729 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
730 | |
731 | fieldval &= valmask; | |
732 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
733 | fieldval |= ~valmask; | |
734 | ||
735 | fromval = value_from_longest (type, fieldval); | |
736 | } | |
737 | ||
738 | val = value_copy (toval); | |
0fd88904 | 739 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 740 | TYPE_LENGTH (type)); |
04624583 | 741 | deprecated_set_value_type (val, type); |
4754a64e | 742 | val = value_change_enclosing_type (val, value_enclosing_type (fromval)); |
13c3b5f5 | 743 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 744 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c5aa993b | 745 | |
c906108c SS |
746 | return val; |
747 | } | |
748 | ||
749 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
750 | ||
f23631e4 AC |
751 | struct value * |
752 | value_repeat (struct value *arg1, int count) | |
c906108c | 753 | { |
f23631e4 | 754 | struct value *val; |
c906108c SS |
755 | |
756 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 757 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 758 | if (count < 1) |
8a3fe4f8 | 759 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 760 | |
4754a64e | 761 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 762 | |
df407dfe | 763 | read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1), |
990a07ab | 764 | value_contents_all_raw (val), |
4754a64e | 765 | TYPE_LENGTH (value_enclosing_type (val))); |
c906108c | 766 | VALUE_LVAL (val) = lval_memory; |
df407dfe | 767 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1); |
c906108c SS |
768 | |
769 | return val; | |
770 | } | |
771 | ||
f23631e4 | 772 | struct value * |
fba45db2 | 773 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 774 | { |
f23631e4 | 775 | struct value *val; |
c906108c SS |
776 | struct frame_info *frame = NULL; |
777 | ||
778 | if (!b) | |
779 | frame = NULL; /* Use selected frame. */ | |
780 | else if (symbol_read_needs_frame (var)) | |
781 | { | |
782 | frame = block_innermost_frame (b); | |
783 | if (!frame) | |
c5aa993b | 784 | { |
c906108c | 785 | if (BLOCK_FUNCTION (b) |
de5ad195 | 786 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 787 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 788 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 789 | else |
8a3fe4f8 | 790 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 791 | } |
c906108c SS |
792 | } |
793 | ||
794 | val = read_var_value (var, frame); | |
795 | if (!val) | |
8a3fe4f8 | 796 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
797 | |
798 | return val; | |
799 | } | |
800 | ||
801 | /* Given a value which is an array, return a value which is a pointer to its | |
802 | first element, regardless of whether or not the array has a nonzero lower | |
803 | bound. | |
804 | ||
805 | FIXME: A previous comment here indicated that this routine should be | |
806 | substracting the array's lower bound. It's not clear to me that this | |
807 | is correct. Given an array subscripting operation, it would certainly | |
808 | work to do the adjustment here, essentially computing: | |
809 | ||
810 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
811 | ||
812 | However I believe a more appropriate and logical place to account for | |
813 | the lower bound is to do so in value_subscript, essentially computing: | |
814 | ||
815 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
816 | ||
817 | As further evidence consider what would happen with operations other | |
818 | than array subscripting, where the caller would get back a value that | |
819 | had an address somewhere before the actual first element of the array, | |
820 | and the information about the lower bound would be lost because of | |
821 | the coercion to pointer type. | |
c5aa993b | 822 | */ |
c906108c | 823 | |
f23631e4 AC |
824 | struct value * |
825 | value_coerce_array (struct value *arg1) | |
c906108c | 826 | { |
df407dfe | 827 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
828 | |
829 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 830 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 831 | |
4478b372 | 832 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
df407dfe | 833 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); |
c906108c SS |
834 | } |
835 | ||
836 | /* Given a value which is a function, return a value which is a pointer | |
837 | to it. */ | |
838 | ||
f23631e4 AC |
839 | struct value * |
840 | value_coerce_function (struct value *arg1) | |
c906108c | 841 | { |
f23631e4 | 842 | struct value *retval; |
c906108c SS |
843 | |
844 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 845 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 846 | |
df407dfe AC |
847 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
848 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); | |
c906108c | 849 | return retval; |
c5aa993b | 850 | } |
c906108c SS |
851 | |
852 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
853 | ||
f23631e4 AC |
854 | struct value * |
855 | value_addr (struct value *arg1) | |
c906108c | 856 | { |
f23631e4 | 857 | struct value *arg2; |
c906108c | 858 | |
df407dfe | 859 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
860 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
861 | { | |
862 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
863 | We keep the same location information, which is efficient, |
864 | and allows &(&X) to get the location containing the reference. */ | |
c906108c | 865 | arg2 = value_copy (arg1); |
04624583 | 866 | deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type))); |
c906108c SS |
867 | return arg2; |
868 | } | |
869 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
870 | return value_coerce_function (arg1); | |
871 | ||
872 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 873 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 874 | |
c5aa993b | 875 | /* Get target memory address */ |
df407dfe | 876 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
4478b372 | 877 | (VALUE_ADDRESS (arg1) |
df407dfe | 878 | + value_offset (arg1) |
13c3b5f5 | 879 | + value_embedded_offset (arg1))); |
c906108c SS |
880 | |
881 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 882 | full derived object's type ... */ |
4754a64e | 883 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1))); |
c5aa993b | 884 | /* ... and also the relative position of the subobject in the full object */ |
b44d461b | 885 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
886 | return arg2; |
887 | } | |
888 | ||
889 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
890 | ||
f23631e4 AC |
891 | struct value * |
892 | value_ind (struct value *arg1) | |
c906108c SS |
893 | { |
894 | struct type *base_type; | |
f23631e4 | 895 | struct value *arg2; |
c906108c | 896 | |
994b9211 | 897 | arg1 = coerce_array (arg1); |
c906108c | 898 | |
df407dfe | 899 | base_type = check_typedef (value_type (arg1)); |
c906108c SS |
900 | |
901 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
8a3fe4f8 | 902 | error (_("not implemented: member types in value_ind")); |
c906108c SS |
903 | |
904 | /* Allow * on an integer so we can cast it to whatever we want. | |
905 | This returns an int, which seems like the most C-like thing | |
906 | to do. "long long" variables are rare enough that | |
907 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
908 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 | 909 | return value_at_lazy (builtin_type_int, |
00a4c844 | 910 | (CORE_ADDR) value_as_long (arg1)); |
c906108c SS |
911 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
912 | { | |
913 | struct type *enc_type; | |
914 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 915 | /* Get the real type of the enclosing object */ |
4754a64e | 916 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 917 | enc_type = TYPE_TARGET_TYPE (enc_type); |
c5aa993b | 918 | /* Retrieve the enclosing object pointed to */ |
00a4c844 | 919 | arg2 = value_at_lazy (enc_type, (value_as_address (arg1) |
b44d461b | 920 | - value_pointed_to_offset (arg1))); |
c5aa993b | 921 | /* Re-adjust type */ |
04624583 | 922 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
c906108c | 923 | /* Add embedding info */ |
2b127877 | 924 | arg2 = value_change_enclosing_type (arg2, enc_type); |
b44d461b | 925 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c SS |
926 | |
927 | /* We may be pointing to an object of some derived type */ | |
928 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
929 | return arg2; | |
930 | } | |
931 | ||
8a3fe4f8 | 932 | error (_("Attempt to take contents of a non-pointer value.")); |
c5aa993b | 933 | return 0; /* For lint -- never reached */ |
c906108c SS |
934 | } |
935 | \f | |
c906108c SS |
936 | /* Create a value for an array by allocating space in the inferior, copying |
937 | the data into that space, and then setting up an array value. | |
938 | ||
939 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
940 | populated from the values passed in ELEMVEC. | |
941 | ||
942 | The element type of the array is inherited from the type of the | |
943 | first element, and all elements must have the same size (though we | |
944 | don't currently enforce any restriction on their types). */ | |
945 | ||
f23631e4 AC |
946 | struct value * |
947 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
948 | { |
949 | int nelem; | |
950 | int idx; | |
951 | unsigned int typelength; | |
f23631e4 | 952 | struct value *val; |
c906108c SS |
953 | struct type *rangetype; |
954 | struct type *arraytype; | |
955 | CORE_ADDR addr; | |
956 | ||
957 | /* Validate that the bounds are reasonable and that each of the elements | |
958 | have the same size. */ | |
959 | ||
960 | nelem = highbound - lowbound + 1; | |
961 | if (nelem <= 0) | |
962 | { | |
8a3fe4f8 | 963 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 964 | } |
4754a64e | 965 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
966 | for (idx = 1; idx < nelem; idx++) |
967 | { | |
4754a64e | 968 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 969 | { |
8a3fe4f8 | 970 | error (_("array elements must all be the same size")); |
c906108c SS |
971 | } |
972 | } | |
973 | ||
974 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
975 | lowbound, highbound); | |
c5aa993b | 976 | arraytype = create_array_type ((struct type *) NULL, |
4754a64e | 977 | value_enclosing_type (elemvec[0]), rangetype); |
c906108c SS |
978 | |
979 | if (!current_language->c_style_arrays) | |
980 | { | |
981 | val = allocate_value (arraytype); | |
982 | for (idx = 0; idx < nelem; idx++) | |
983 | { | |
990a07ab | 984 | memcpy (value_contents_all_raw (val) + (idx * typelength), |
46615f07 | 985 | value_contents_all (elemvec[idx]), |
c906108c SS |
986 | typelength); |
987 | } | |
c906108c SS |
988 | return val; |
989 | } | |
990 | ||
991 | /* Allocate space to store the array in the inferior, and then initialize | |
992 | it by copying in each element. FIXME: Is it worth it to create a | |
993 | local buffer in which to collect each value and then write all the | |
994 | bytes in one operation? */ | |
995 | ||
996 | addr = allocate_space_in_inferior (nelem * typelength); | |
997 | for (idx = 0; idx < nelem; idx++) | |
998 | { | |
46615f07 AC |
999 | write_memory (addr + (idx * typelength), |
1000 | value_contents_all (elemvec[idx]), | |
c906108c SS |
1001 | typelength); |
1002 | } | |
1003 | ||
1004 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1005 | ||
00a4c844 | 1006 | val = value_at_lazy (arraytype, addr); |
c906108c SS |
1007 | return (val); |
1008 | } | |
1009 | ||
1010 | /* Create a value for a string constant by allocating space in the inferior, | |
1011 | copying the data into that space, and returning the address with type | |
1012 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1013 | of characters. | |
1014 | Note that string types are like array of char types with a lower bound of | |
1015 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1016 | embedded null bytes. */ | |
1017 | ||
f23631e4 | 1018 | struct value * |
fba45db2 | 1019 | value_string (char *ptr, int len) |
c906108c | 1020 | { |
f23631e4 | 1021 | struct value *val; |
c906108c SS |
1022 | int lowbound = current_language->string_lower_bound; |
1023 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1024 | builtin_type_int, | |
1025 | lowbound, len + lowbound - 1); | |
1026 | struct type *stringtype | |
c5aa993b | 1027 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1028 | CORE_ADDR addr; |
1029 | ||
1030 | if (current_language->c_style_arrays == 0) | |
1031 | { | |
1032 | val = allocate_value (stringtype); | |
990a07ab | 1033 | memcpy (value_contents_raw (val), ptr, len); |
c906108c SS |
1034 | return val; |
1035 | } | |
1036 | ||
1037 | ||
1038 | /* Allocate space to store the string in the inferior, and then | |
1039 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1040 | ||
1041 | addr = allocate_space_in_inferior (len); | |
47b667de | 1042 | write_memory (addr, (gdb_byte *) ptr, len); |
c906108c | 1043 | |
00a4c844 | 1044 | val = value_at_lazy (stringtype, addr); |
c906108c SS |
1045 | return (val); |
1046 | } | |
1047 | ||
f23631e4 | 1048 | struct value * |
fba45db2 | 1049 | value_bitstring (char *ptr, int len) |
c906108c | 1050 | { |
f23631e4 | 1051 | struct value *val; |
c906108c SS |
1052 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1053 | 0, len - 1); | |
c5aa993b | 1054 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1055 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1056 | val = allocate_value (type); | |
990a07ab | 1057 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1058 | return val; |
1059 | } | |
1060 | \f | |
1061 | /* See if we can pass arguments in T2 to a function which takes arguments | |
ad2f7632 DJ |
1062 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated |
1063 | vector. If some arguments need coercion of some sort, then the coerced | |
1064 | values are written into T2. Return value is 0 if the arguments could be | |
1065 | matched, or the position at which they differ if not. | |
c906108c SS |
1066 | |
1067 | STATICP is nonzero if the T1 argument list came from a | |
ad2f7632 DJ |
1068 | static member function. T2 will still include the ``this'' pointer, |
1069 | but it will be skipped. | |
c906108c SS |
1070 | |
1071 | For non-static member functions, we ignore the first argument, | |
1072 | which is the type of the instance variable. This is because we want | |
1073 | to handle calls with objects from derived classes. This is not | |
1074 | entirely correct: we should actually check to make sure that a | |
1075 | requested operation is type secure, shouldn't we? FIXME. */ | |
1076 | ||
1077 | static int | |
ad2f7632 DJ |
1078 | typecmp (int staticp, int varargs, int nargs, |
1079 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1080 | { |
1081 | int i; | |
1082 | ||
1083 | if (t2 == 0) | |
e2e0b3e5 | 1084 | internal_error (__FILE__, __LINE__, _("typecmp: no argument list")); |
ad2f7632 | 1085 | |
4a1970e4 DJ |
1086 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ |
1087 | if (staticp) | |
ad2f7632 DJ |
1088 | t2 ++; |
1089 | ||
1090 | for (i = 0; | |
1091 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1092 | i++) | |
c906108c | 1093 | { |
c5aa993b | 1094 | struct type *tt1, *tt2; |
ad2f7632 | 1095 | |
c5aa993b JM |
1096 | if (!t2[i]) |
1097 | return i + 1; | |
ad2f7632 DJ |
1098 | |
1099 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1100 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1101 | |
c906108c | 1102 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1103 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1104 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1105 | { | |
1106 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1107 | t2[i] = value_coerce_array (t2[i]); | |
1108 | else | |
1109 | t2[i] = value_addr (t2[i]); | |
1110 | continue; | |
1111 | } | |
1112 | ||
802db21b DB |
1113 | /* djb - 20000715 - Until the new type structure is in the |
1114 | place, and we can attempt things like implicit conversions, | |
1115 | we need to do this so you can take something like a map<const | |
1116 | char *>, and properly access map["hello"], because the | |
1117 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1118 | and the argument will be a pointer to a char. */ |
802db21b DB |
1119 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1120 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1121 | { | |
1122 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1123 | } | |
1124 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1125 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1126 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1127 | { |
802db21b | 1128 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1129 | } |
c5aa993b JM |
1130 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1131 | continue; | |
c906108c SS |
1132 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1133 | ||
1134 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
1135 | of the ARM), but as a quick kludge, just check for the same type |
1136 | code. */ | |
df407dfe | 1137 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1138 | return i + 1; |
c906108c | 1139 | } |
ad2f7632 | 1140 | if (varargs || t2[i] == NULL) |
c5aa993b | 1141 | return 0; |
ad2f7632 | 1142 | return i + 1; |
c906108c SS |
1143 | } |
1144 | ||
1145 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1146 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1147 | and search in it assuming it has (class) type TYPE. | |
1148 | If found, return value, else return NULL. | |
1149 | ||
1150 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1151 | look for a baseclass named NAME. */ | |
1152 | ||
f23631e4 AC |
1153 | static struct value * |
1154 | search_struct_field (char *name, struct value *arg1, int offset, | |
aa1ee363 | 1155 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1156 | { |
1157 | int i; | |
1158 | int nbases = TYPE_N_BASECLASSES (type); | |
1159 | ||
1160 | CHECK_TYPEDEF (type); | |
1161 | ||
c5aa993b | 1162 | if (!looking_for_baseclass) |
c906108c SS |
1163 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1164 | { | |
1165 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1166 | ||
db577aea | 1167 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1168 | { |
f23631e4 | 1169 | struct value *v; |
c906108c | 1170 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
1171 | { |
1172 | v = value_static_field (type, i); | |
1173 | if (v == 0) | |
8a3fe4f8 | 1174 | error (_("field %s is nonexistent or has been optimised out"), |
2c2738a0 DC |
1175 | name); |
1176 | } | |
c906108c | 1177 | else |
2c2738a0 DC |
1178 | { |
1179 | v = value_primitive_field (arg1, offset, i, type); | |
1180 | if (v == 0) | |
8a3fe4f8 | 1181 | error (_("there is no field named %s"), name); |
2c2738a0 | 1182 | } |
c906108c SS |
1183 | return v; |
1184 | } | |
1185 | ||
1186 | if (t_field_name | |
1187 | && (t_field_name[0] == '\0' | |
1188 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1189 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1190 | { |
1191 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1192 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1193 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1194 | { | |
1195 | /* Look for a match through the fields of an anonymous union, | |
1196 | or anonymous struct. C++ provides anonymous unions. | |
1197 | ||
1b831c93 AC |
1198 | In the GNU Chill (now deleted from GDB) |
1199 | implementation of variant record types, each | |
1200 | <alternative field> has an (anonymous) union type, | |
1201 | each member of the union represents a <variant | |
1202 | alternative>. Each <variant alternative> is | |
1203 | represented as a struct, with a member for each | |
1204 | <variant field>. */ | |
c5aa993b | 1205 | |
f23631e4 | 1206 | struct value *v; |
c906108c SS |
1207 | int new_offset = offset; |
1208 | ||
db034ac5 AC |
1209 | /* This is pretty gross. In G++, the offset in an |
1210 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1211 | enclosing struct. In the GNU Chill (now deleted |
1212 | from GDB) implementation of variant records, the | |
1213 | bitpos is zero in an anonymous union field, so we | |
1214 | have to add the offset of the union here. */ | |
c906108c SS |
1215 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1216 | || (TYPE_NFIELDS (field_type) > 0 | |
1217 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1218 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1219 | ||
1220 | v = search_struct_field (name, arg1, new_offset, field_type, | |
1221 | looking_for_baseclass); | |
1222 | if (v) | |
1223 | return v; | |
1224 | } | |
1225 | } | |
1226 | } | |
1227 | ||
c5aa993b | 1228 | for (i = 0; i < nbases; i++) |
c906108c | 1229 | { |
f23631e4 | 1230 | struct value *v; |
c906108c SS |
1231 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
1232 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
1233 | hit them. But it could happen that the base part's member name |
1234 | is not yet filled in. */ | |
c906108c SS |
1235 | int found_baseclass = (looking_for_baseclass |
1236 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 1237 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
1238 | |
1239 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1240 | { | |
1241 | int boffset; | |
f23631e4 | 1242 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
1243 | |
1244 | boffset = baseclass_offset (type, i, | |
0fd88904 | 1245 | value_contents (arg1) + offset, |
c906108c | 1246 | VALUE_ADDRESS (arg1) |
df407dfe | 1247 | + value_offset (arg1) + offset); |
c906108c | 1248 | if (boffset == -1) |
8a3fe4f8 | 1249 | error (_("virtual baseclass botch")); |
c906108c SS |
1250 | |
1251 | /* The virtual base class pointer might have been clobbered by the | |
1252 | user program. Make sure that it still points to a valid memory | |
1253 | location. */ | |
1254 | ||
1255 | boffset += offset; | |
1256 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1257 | { | |
1258 | CORE_ADDR base_addr; | |
c5aa993b | 1259 | |
df407dfe | 1260 | base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset; |
990a07ab | 1261 | if (target_read_memory (base_addr, value_contents_raw (v2), |
c906108c | 1262 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 1263 | error (_("virtual baseclass botch")); |
c906108c SS |
1264 | VALUE_LVAL (v2) = lval_memory; |
1265 | VALUE_ADDRESS (v2) = base_addr; | |
1266 | } | |
1267 | else | |
1268 | { | |
1269 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1270 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
65d3800a | 1271 | VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1); |
f5cf64a7 | 1272 | set_value_offset (v2, value_offset (arg1) + boffset); |
d69fe07e | 1273 | if (value_lazy (arg1)) |
dfa52d88 | 1274 | set_value_lazy (v2, 1); |
c906108c | 1275 | else |
990a07ab AC |
1276 | memcpy (value_contents_raw (v2), |
1277 | value_contents_raw (arg1) + boffset, | |
c906108c SS |
1278 | TYPE_LENGTH (basetype)); |
1279 | } | |
1280 | ||
1281 | if (found_baseclass) | |
1282 | return v2; | |
1283 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
1284 | looking_for_baseclass); | |
1285 | } | |
1286 | else if (found_baseclass) | |
1287 | v = value_primitive_field (arg1, offset, i, type); | |
1288 | else | |
1289 | v = search_struct_field (name, arg1, | |
c5aa993b | 1290 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 1291 | basetype, looking_for_baseclass); |
c5aa993b JM |
1292 | if (v) |
1293 | return v; | |
c906108c SS |
1294 | } |
1295 | return NULL; | |
1296 | } | |
1297 | ||
1298 | ||
1299 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
1300 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
1301 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
1302 | * looking (in case VALADDR is the contents of an enclosing object). | |
1303 | * | |
1304 | * This routine recurses on the primary base of the derived class because | |
1305 | * the virtual base entries of the primary base appear before the other | |
1306 | * virtual base entries. | |
1307 | * | |
1308 | * If the virtual base is not found, a negative integer is returned. | |
1309 | * The magnitude of the negative integer is the number of entries in | |
1310 | * the virtual table to skip over (entries corresponding to various | |
1311 | * ancestral classes in the chain of primary bases). | |
1312 | * | |
1313 | * Important: This assumes the HP / Taligent C++ runtime | |
1314 | * conventions. Use baseclass_offset() instead to deal with g++ | |
1315 | * conventions. */ | |
1316 | ||
1317 | void | |
c84141d6 | 1318 | find_rt_vbase_offset (struct type *type, struct type *basetype, |
fc1a4b47 | 1319 | const gdb_byte *valaddr, int offset, int *boffset_p, |
c84141d6 | 1320 | int *skip_p) |
c906108c | 1321 | { |
c5aa993b JM |
1322 | int boffset; /* offset of virtual base */ |
1323 | int index; /* displacement to use in virtual table */ | |
c906108c | 1324 | int skip; |
c5aa993b | 1325 | |
f23631e4 | 1326 | struct value *vp; |
c5aa993b JM |
1327 | CORE_ADDR vtbl; /* the virtual table pointer */ |
1328 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
1329 | |
1330 | /* Look for the virtual base recursively in the primary base, first. | |
1331 | * This is because the derived class object and its primary base | |
1332 | * subobject share the primary virtual table. */ | |
c5aa993b | 1333 | |
c906108c | 1334 | boffset = 0; |
c5aa993b | 1335 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
1336 | if (pbc) |
1337 | { | |
1338 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
1339 | if (skip < 0) | |
c5aa993b JM |
1340 | { |
1341 | *boffset_p = boffset; | |
1342 | *skip_p = -1; | |
1343 | return; | |
1344 | } | |
c906108c SS |
1345 | } |
1346 | else | |
1347 | skip = 0; | |
1348 | ||
1349 | ||
1350 | /* Find the index of the virtual base according to HP/Taligent | |
1351 | runtime spec. (Depth-first, left-to-right.) */ | |
1352 | index = virtual_base_index_skip_primaries (basetype, type); | |
1353 | ||
c5aa993b JM |
1354 | if (index < 0) |
1355 | { | |
1356 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
1357 | *boffset_p = 0; | |
1358 | return; | |
1359 | } | |
c906108c | 1360 | |
c5aa993b | 1361 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 1362 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 1363 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 1364 | |
c5aa993b | 1365 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c | 1366 | if (vtbl == 0) |
8a3fe4f8 | 1367 | error (_("Couldn't find virtual table -- object may not be constructed yet.")); |
c906108c SS |
1368 | |
1369 | ||
1370 | /* Find virtual base's offset -- jump over entries for primary base | |
1371 | * ancestors, then use the index computed above. But also adjust by | |
1372 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
1373 | * virtual base entries. Offset is negative -- virtual base entries | |
1374 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 1375 | |
070ad9f0 | 1376 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 1377 | & use long type */ |
c906108c SS |
1378 | |
1379 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
00a4c844 | 1380 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START)); |
c906108c SS |
1381 | boffset = value_as_long (vp); |
1382 | *skip_p = -1; | |
1383 | *boffset_p = boffset; | |
1384 | return; | |
1385 | } | |
1386 | ||
1387 | ||
1388 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1389 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1390 | and search in it assuming it has (class) type TYPE. | |
1391 | If found, return value, else if name matched and args not return (value)-1, | |
1392 | else return NULL. */ | |
1393 | ||
f23631e4 AC |
1394 | static struct value * |
1395 | search_struct_method (char *name, struct value **arg1p, | |
1396 | struct value **args, int offset, | |
aa1ee363 | 1397 | int *static_memfuncp, struct type *type) |
c906108c SS |
1398 | { |
1399 | int i; | |
f23631e4 | 1400 | struct value *v; |
c906108c SS |
1401 | int name_matched = 0; |
1402 | char dem_opname[64]; | |
1403 | ||
1404 | CHECK_TYPEDEF (type); | |
1405 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1406 | { | |
1407 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1408 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1409 | if (strncmp (t_field_name, "__", 2) == 0 || |
1410 | strncmp (t_field_name, "op", 2) == 0 || | |
1411 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1412 | { |
c5aa993b JM |
1413 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1414 | t_field_name = dem_opname; | |
1415 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1416 | t_field_name = dem_opname; |
c906108c | 1417 | } |
db577aea | 1418 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1419 | { |
1420 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1421 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1422 | name_matched = 1; |
c906108c | 1423 | |
de17c821 | 1424 | check_stub_method_group (type, i); |
c906108c | 1425 | if (j > 0 && args == 0) |
8a3fe4f8 | 1426 | error (_("cannot resolve overloaded method `%s': no arguments supplied"), name); |
acf5ed49 | 1427 | else if (j == 0 && args == 0) |
c906108c | 1428 | { |
acf5ed49 DJ |
1429 | v = value_fn_field (arg1p, f, j, type, offset); |
1430 | if (v != NULL) | |
1431 | return v; | |
c906108c | 1432 | } |
acf5ed49 DJ |
1433 | else |
1434 | while (j >= 0) | |
1435 | { | |
acf5ed49 | 1436 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1437 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1438 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1439 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1440 | { | |
1441 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1442 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
1443 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
1444 | *static_memfuncp = 1; | |
1445 | v = value_fn_field (arg1p, f, j, type, offset); | |
1446 | if (v != NULL) | |
1447 | return v; | |
1448 | } | |
1449 | j--; | |
1450 | } | |
c906108c SS |
1451 | } |
1452 | } | |
1453 | ||
1454 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1455 | { | |
1456 | int base_offset; | |
1457 | ||
1458 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1459 | { | |
c5aa993b JM |
1460 | if (TYPE_HAS_VTABLE (type)) |
1461 | { | |
1462 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 1463 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
1464 | int skip; |
1465 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
46615f07 | 1466 | value_contents_all (*arg1p), |
13c3b5f5 | 1467 | offset + value_embedded_offset (*arg1p), |
c5aa993b JM |
1468 | &base_offset, &skip); |
1469 | if (skip >= 0) | |
8a3fe4f8 | 1470 | error (_("Virtual base class offset not found in vtable")); |
c5aa993b JM |
1471 | } |
1472 | else | |
1473 | { | |
1474 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
fc1a4b47 | 1475 | const gdb_byte *base_valaddr; |
c5aa993b JM |
1476 | |
1477 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
1478 | user program. Make sure that it still points to a valid memory |
1479 | location. */ | |
c5aa993b JM |
1480 | |
1481 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
1482 | { | |
fc1a4b47 | 1483 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
c5aa993b | 1484 | if (target_read_memory (VALUE_ADDRESS (*arg1p) |
df407dfe | 1485 | + value_offset (*arg1p) + offset, |
0fd88904 | 1486 | tmp, TYPE_LENGTH (baseclass)) != 0) |
8a3fe4f8 | 1487 | error (_("virtual baseclass botch")); |
0fd88904 | 1488 | base_valaddr = tmp; |
c5aa993b JM |
1489 | } |
1490 | else | |
0fd88904 | 1491 | base_valaddr = value_contents (*arg1p) + offset; |
c5aa993b JM |
1492 | |
1493 | base_offset = | |
1494 | baseclass_offset (type, i, base_valaddr, | |
1495 | VALUE_ADDRESS (*arg1p) | |
df407dfe | 1496 | + value_offset (*arg1p) + offset); |
c5aa993b | 1497 | if (base_offset == -1) |
8a3fe4f8 | 1498 | error (_("virtual baseclass botch")); |
c5aa993b JM |
1499 | } |
1500 | } | |
c906108c SS |
1501 | else |
1502 | { | |
1503 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1504 | } |
c906108c SS |
1505 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
1506 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 1507 | if (v == (struct value *) - 1) |
c906108c SS |
1508 | { |
1509 | name_matched = 1; | |
1510 | } | |
1511 | else if (v) | |
1512 | { | |
1513 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 1514 | /* *arg1p = arg1_tmp; */ |
c906108c | 1515 | return v; |
c5aa993b | 1516 | } |
c906108c | 1517 | } |
c5aa993b | 1518 | if (name_matched) |
f23631e4 | 1519 | return (struct value *) - 1; |
c5aa993b JM |
1520 | else |
1521 | return NULL; | |
c906108c SS |
1522 | } |
1523 | ||
1524 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1525 | extract the component named NAME from the ultimate target structure/union | |
1526 | and return it as a value with its appropriate type. | |
1527 | ERR is used in the error message if *ARGP's type is wrong. | |
1528 | ||
1529 | C++: ARGS is a list of argument types to aid in the selection of | |
1530 | an appropriate method. Also, handle derived types. | |
1531 | ||
1532 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1533 | where the truthvalue of whether the function that was resolved was | |
1534 | a static member function or not is stored. | |
1535 | ||
1536 | ERR is an error message to be printed in case the field is not found. */ | |
1537 | ||
f23631e4 AC |
1538 | struct value * |
1539 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 1540 | char *name, int *static_memfuncp, char *err) |
c906108c | 1541 | { |
52f0bd74 | 1542 | struct type *t; |
f23631e4 | 1543 | struct value *v; |
c906108c | 1544 | |
994b9211 | 1545 | *argp = coerce_array (*argp); |
c906108c | 1546 | |
df407dfe | 1547 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1548 | |
1549 | /* Follow pointers until we get to a non-pointer. */ | |
1550 | ||
1551 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1552 | { | |
1553 | *argp = value_ind (*argp); | |
1554 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1555 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1556 | *argp = coerce_array (*argp); |
df407dfe | 1557 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1558 | } |
1559 | ||
1560 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
8a3fe4f8 | 1561 | error (_("not implemented: member type in value_struct_elt")); |
c906108c | 1562 | |
c5aa993b | 1563 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 1564 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 1565 | error (_("Attempt to extract a component of a value that is not a %s."), err); |
c906108c SS |
1566 | |
1567 | /* Assume it's not, unless we see that it is. */ | |
1568 | if (static_memfuncp) | |
c5aa993b | 1569 | *static_memfuncp = 0; |
c906108c SS |
1570 | |
1571 | if (!args) | |
1572 | { | |
1573 | /* if there are no arguments ...do this... */ | |
1574 | ||
1575 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 1576 | is less work to be done. */ |
c906108c SS |
1577 | v = search_struct_field (name, *argp, 0, t, 0); |
1578 | if (v) | |
1579 | return v; | |
1580 | ||
1581 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 1582 | return it as a pointer to a method. */ |
c906108c SS |
1583 | |
1584 | if (destructor_name_p (name, t)) | |
8a3fe4f8 | 1585 | error (_("Cannot get value of destructor")); |
c906108c SS |
1586 | |
1587 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
1588 | ||
f23631e4 | 1589 | if (v == (struct value *) - 1) |
55b39184 | 1590 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
1591 | else if (v == 0) |
1592 | { | |
1593 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 1594 | error (_("There is no member or method named %s."), name); |
c906108c | 1595 | else |
8a3fe4f8 | 1596 | error (_("There is no member named %s."), name); |
c906108c SS |
1597 | } |
1598 | return v; | |
1599 | } | |
1600 | ||
1601 | if (destructor_name_p (name, t)) | |
1602 | { | |
1603 | if (!args[1]) | |
1604 | { | |
1605 | /* Destructors are a special case. */ | |
1606 | int m_index, f_index; | |
1607 | ||
1608 | v = NULL; | |
1609 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1610 | { | |
1611 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
1612 | f_index, NULL, 0); | |
1613 | } | |
1614 | if (v == NULL) | |
8a3fe4f8 | 1615 | error (_("could not find destructor function named %s."), name); |
c906108c SS |
1616 | else |
1617 | return v; | |
1618 | } | |
1619 | else | |
1620 | { | |
8a3fe4f8 | 1621 | error (_("destructor should not have any argument")); |
c906108c SS |
1622 | } |
1623 | } | |
1624 | else | |
1625 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 1626 | |
f23631e4 | 1627 | if (v == (struct value *) - 1) |
c906108c | 1628 | { |
8a3fe4f8 | 1629 | error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name); |
c906108c SS |
1630 | } |
1631 | else if (v == 0) | |
1632 | { | |
1633 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
1634 | hand it back. If it's not callable (i.e., a pointer to function), |
1635 | gdb should give an error. */ | |
c906108c SS |
1636 | v = search_struct_field (name, *argp, 0, t, 0); |
1637 | } | |
1638 | ||
1639 | if (!v) | |
8a3fe4f8 | 1640 | error (_("Structure has no component named %s."), name); |
c906108c SS |
1641 | return v; |
1642 | } | |
1643 | ||
1644 | /* Search through the methods of an object (and its bases) | |
1645 | * to find a specified method. Return the pointer to the | |
1646 | * fn_field list of overloaded instances. | |
1647 | * Helper function for value_find_oload_list. | |
1648 | * ARGP is a pointer to a pointer to a value (the object) | |
1649 | * METHOD is a string containing the method name | |
1650 | * OFFSET is the offset within the value | |
c906108c SS |
1651 | * TYPE is the assumed type of the object |
1652 | * NUM_FNS is the number of overloaded instances | |
1653 | * BASETYPE is set to the actual type of the subobject where the method is found | |
1654 | * BOFFSET is the offset of the base subobject where the method is found */ | |
1655 | ||
7a292a7a | 1656 | static struct fn_field * |
f23631e4 | 1657 | find_method_list (struct value **argp, char *method, int offset, |
4a1970e4 | 1658 | struct type *type, int *num_fns, |
fba45db2 | 1659 | struct type **basetype, int *boffset) |
c906108c SS |
1660 | { |
1661 | int i; | |
c5aa993b | 1662 | struct fn_field *f; |
c906108c SS |
1663 | CHECK_TYPEDEF (type); |
1664 | ||
1665 | *num_fns = 0; | |
1666 | ||
c5aa993b JM |
1667 | /* First check in object itself */ |
1668 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
1669 | { |
1670 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 1671 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 1672 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 1673 | { |
4a1970e4 DJ |
1674 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
1675 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
1676 | |
1677 | *num_fns = len; | |
c5aa993b JM |
1678 | *basetype = type; |
1679 | *boffset = offset; | |
4a1970e4 | 1680 | |
de17c821 DJ |
1681 | /* Resolve any stub methods. */ |
1682 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
1683 | |
1684 | return f; | |
c5aa993b JM |
1685 | } |
1686 | } | |
1687 | ||
c906108c SS |
1688 | /* Not found in object, check in base subobjects */ |
1689 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1690 | { | |
1691 | int base_offset; | |
1692 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1693 | { | |
c5aa993b JM |
1694 | if (TYPE_HAS_VTABLE (type)) |
1695 | { | |
1696 | /* HP aCC compiled type, search for virtual base offset | |
1697 | * according to HP/Taligent runtime spec. */ | |
1698 | int skip; | |
1699 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
46615f07 | 1700 | value_contents_all (*argp), |
13c3b5f5 | 1701 | offset + value_embedded_offset (*argp), |
c5aa993b JM |
1702 | &base_offset, &skip); |
1703 | if (skip >= 0) | |
8a3fe4f8 | 1704 | error (_("Virtual base class offset not found in vtable")); |
c5aa993b JM |
1705 | } |
1706 | else | |
1707 | { | |
1708 | /* probably g++ runtime model */ | |
df407dfe | 1709 | base_offset = value_offset (*argp) + offset; |
c5aa993b JM |
1710 | base_offset = |
1711 | baseclass_offset (type, i, | |
0fd88904 | 1712 | value_contents (*argp) + base_offset, |
c5aa993b JM |
1713 | VALUE_ADDRESS (*argp) + base_offset); |
1714 | if (base_offset == -1) | |
8a3fe4f8 | 1715 | error (_("virtual baseclass botch")); |
c5aa993b JM |
1716 | } |
1717 | } | |
1718 | else | |
1719 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
1720 | { |
1721 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1722 | } |
c906108c | 1723 | f = find_method_list (argp, method, base_offset + offset, |
4a1970e4 DJ |
1724 | TYPE_BASECLASS (type, i), num_fns, basetype, |
1725 | boffset); | |
c906108c | 1726 | if (f) |
c5aa993b | 1727 | return f; |
c906108c | 1728 | } |
c5aa993b | 1729 | return NULL; |
c906108c SS |
1730 | } |
1731 | ||
1732 | /* Return the list of overloaded methods of a specified name. | |
1733 | * ARGP is a pointer to a pointer to a value (the object) | |
1734 | * METHOD is the method name | |
1735 | * OFFSET is the offset within the value contents | |
c906108c SS |
1736 | * NUM_FNS is the number of overloaded instances |
1737 | * BASETYPE is set to the type of the base subobject that defines the method | |
1738 | * BOFFSET is the offset of the base subobject which defines the method */ | |
1739 | ||
1740 | struct fn_field * | |
f23631e4 | 1741 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
4a1970e4 DJ |
1742 | int *num_fns, struct type **basetype, |
1743 | int *boffset) | |
c906108c | 1744 | { |
c5aa993b | 1745 | struct type *t; |
c906108c | 1746 | |
df407dfe | 1747 | t = check_typedef (value_type (*argp)); |
c906108c | 1748 | |
c5aa993b | 1749 | /* code snarfed from value_struct_elt */ |
c906108c SS |
1750 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
1751 | { | |
1752 | *argp = value_ind (*argp); | |
1753 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1754 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1755 | *argp = coerce_array (*argp); |
df407dfe | 1756 | t = check_typedef (value_type (*argp)); |
c906108c | 1757 | } |
c5aa993b | 1758 | |
c906108c | 1759 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
8a3fe4f8 | 1760 | error (_("Not implemented: member type in value_find_oload_lis")); |
c5aa993b JM |
1761 | |
1762 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1763 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
8a3fe4f8 | 1764 | error (_("Attempt to extract a component of a value that is not a struct or union")); |
c5aa993b | 1765 | |
4a1970e4 | 1766 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); |
c906108c SS |
1767 | } |
1768 | ||
1769 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1770 | entry for "this" in the case of C++ methods), the number of | |
1771 | arguments NARGS, the NAME of a function whether it's a method or | |
1772 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1773 | overload resolution rules in ANSI C++, find the best function that | |
1774 | matches on the argument types according to the overload resolution | |
1775 | rules. | |
1776 | ||
1777 | In the case of class methods, the parameter OBJ is an object value | |
1778 | in which to search for overloaded methods. | |
1779 | ||
1780 | In the case of non-method functions, the parameter FSYM is a symbol | |
1781 | corresponding to one of the overloaded functions. | |
1782 | ||
1783 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1784 | non-standard coercions, 100 -> incompatible. | |
1785 | ||
1786 | If a method is being searched for, VALP will hold the value. | |
1787 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
1788 | ||
1789 | If a method is being searched for, and it is a static method, | |
1790 | then STATICP will point to a non-zero value. | |
1791 | ||
1792 | Note: This function does *not* check the value of | |
1793 | overload_resolution. Caller must check it to see whether overload | |
1794 | resolution is permitted. | |
c5aa993b | 1795 | */ |
c906108c SS |
1796 | |
1797 | int | |
fba45db2 | 1798 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 1799 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 1800 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c | 1801 | { |
7f8c9282 | 1802 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b | 1803 | |
8d577d32 | 1804 | int oload_champ; /* Index of best overloaded function */ |
c5aa993b | 1805 | |
c5aa993b JM |
1806 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ |
1807 | ||
f23631e4 | 1808 | struct value *temp = obj; |
c5aa993b JM |
1809 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
1810 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
1811 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
1812 | struct type *basetype = NULL; | |
c906108c | 1813 | int boffset; |
52f0bd74 | 1814 | int ix; |
4a1970e4 | 1815 | int static_offset; |
8d577d32 | 1816 | struct cleanup *old_cleanups = NULL; |
c906108c | 1817 | |
8d577d32 | 1818 | const char *obj_type_name = NULL; |
c5aa993b | 1819 | char *func_name = NULL; |
8d577d32 | 1820 | enum oload_classification match_quality; |
c906108c SS |
1821 | |
1822 | /* Get the list of overloaded methods or functions */ | |
1823 | if (method) | |
1824 | { | |
df407dfe | 1825 | obj_type_name = TYPE_NAME (value_type (obj)); |
c906108c | 1826 | /* Hack: evaluate_subexp_standard often passes in a pointer |
7b83ea04 | 1827 | value rather than the object itself, so try again */ |
c906108c | 1828 | if ((!obj_type_name || !*obj_type_name) && |
df407dfe AC |
1829 | (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR)) |
1830 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj))); | |
c906108c SS |
1831 | |
1832 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
1833 | &num_fns, |
1834 | &basetype, &boffset); | |
c906108c | 1835 | if (!fns_ptr || !num_fns) |
8a3fe4f8 | 1836 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
1837 | obj_type_name, |
1838 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1839 | name); | |
4a1970e4 DJ |
1840 | /* If we are dealing with stub method types, they should have |
1841 | been resolved by find_method_list via value_find_oload_method_list | |
1842 | above. */ | |
1843 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
8d577d32 DC |
1844 | oload_champ = find_oload_champ (arg_types, nargs, method, num_fns, |
1845 | fns_ptr, oload_syms, &oload_champ_bv); | |
c906108c SS |
1846 | } |
1847 | else | |
1848 | { | |
8d577d32 DC |
1849 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); |
1850 | func_name = cp_func_name (qualified_name); | |
c906108c | 1851 | |
917317f4 | 1852 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 1853 | Just return the same symbol. */ |
8d577d32 | 1854 | if (func_name == NULL) |
7b83ea04 | 1855 | { |
917317f4 | 1856 | *symp = fsym; |
7b83ea04 AC |
1857 | return 0; |
1858 | } | |
917317f4 | 1859 | |
8d577d32 DC |
1860 | old_cleanups = make_cleanup (xfree, func_name); |
1861 | make_cleanup (xfree, oload_syms); | |
1862 | make_cleanup (xfree, oload_champ_bv); | |
1863 | ||
1864 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
1865 | func_name, | |
1866 | qualified_name, | |
1867 | &oload_syms, | |
1868 | &oload_champ_bv); | |
1869 | } | |
1870 | ||
1871 | /* Check how bad the best match is. */ | |
1872 | ||
1873 | match_quality | |
1874 | = classify_oload_match (oload_champ_bv, nargs, | |
1875 | oload_method_static (method, fns_ptr, | |
1876 | oload_champ)); | |
1877 | ||
1878 | if (match_quality == INCOMPATIBLE) | |
1879 | { | |
1880 | if (method) | |
8a3fe4f8 | 1881 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
1882 | obj_type_name, |
1883 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1884 | name); | |
1885 | else | |
8a3fe4f8 | 1886 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
1887 | func_name); |
1888 | } | |
1889 | else if (match_quality == NON_STANDARD) | |
1890 | { | |
1891 | if (method) | |
8a3fe4f8 | 1892 | warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"), |
8d577d32 DC |
1893 | obj_type_name, |
1894 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1895 | name); | |
1896 | else | |
8a3fe4f8 | 1897 | warning (_("Using non-standard conversion to match function %s to supplied arguments"), |
8d577d32 DC |
1898 | func_name); |
1899 | } | |
1900 | ||
1901 | if (method) | |
1902 | { | |
1903 | if (staticp != NULL) | |
1904 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
1905 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
1906 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
1907 | else | |
1908 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
1909 | } | |
1910 | else | |
1911 | { | |
1912 | *symp = oload_syms[oload_champ]; | |
1913 | } | |
1914 | ||
1915 | if (objp) | |
1916 | { | |
df407dfe AC |
1917 | if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR |
1918 | && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR) | |
8d577d32 DC |
1919 | { |
1920 | temp = value_addr (temp); | |
1921 | } | |
1922 | *objp = temp; | |
1923 | } | |
1924 | if (old_cleanups != NULL) | |
1925 | do_cleanups (old_cleanups); | |
1926 | ||
1927 | switch (match_quality) | |
1928 | { | |
1929 | case INCOMPATIBLE: | |
1930 | return 100; | |
1931 | case NON_STANDARD: | |
1932 | return 10; | |
1933 | default: /* STANDARD */ | |
1934 | return 0; | |
1935 | } | |
1936 | } | |
1937 | ||
1938 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
1939 | contained in QUALIFIED_NAME until it either finds a good match or | |
1940 | runs out of namespaces. It stores the overloaded functions in | |
1941 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
1942 | calling function is responsible for freeing *OLOAD_SYMS and | |
1943 | *OLOAD_CHAMP_BV. */ | |
1944 | ||
1945 | static int | |
1946 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
1947 | const char *func_name, | |
1948 | const char *qualified_name, | |
1949 | struct symbol ***oload_syms, | |
1950 | struct badness_vector **oload_champ_bv) | |
1951 | { | |
1952 | int oload_champ; | |
1953 | ||
1954 | find_oload_champ_namespace_loop (arg_types, nargs, | |
1955 | func_name, | |
1956 | qualified_name, 0, | |
1957 | oload_syms, oload_champ_bv, | |
1958 | &oload_champ); | |
1959 | ||
1960 | return oload_champ; | |
1961 | } | |
1962 | ||
1963 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
1964 | how deep we've looked for namespaces, and the champ is stored in | |
1965 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
1966 | if it isn't. | |
1967 | ||
1968 | It is the caller's responsibility to free *OLOAD_SYMS and | |
1969 | *OLOAD_CHAMP_BV. */ | |
1970 | ||
1971 | static int | |
1972 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
1973 | const char *func_name, | |
1974 | const char *qualified_name, | |
1975 | int namespace_len, | |
1976 | struct symbol ***oload_syms, | |
1977 | struct badness_vector **oload_champ_bv, | |
1978 | int *oload_champ) | |
1979 | { | |
1980 | int next_namespace_len = namespace_len; | |
1981 | int searched_deeper = 0; | |
1982 | int num_fns = 0; | |
1983 | struct cleanup *old_cleanups; | |
1984 | int new_oload_champ; | |
1985 | struct symbol **new_oload_syms; | |
1986 | struct badness_vector *new_oload_champ_bv; | |
1987 | char *new_namespace; | |
1988 | ||
1989 | if (next_namespace_len != 0) | |
1990 | { | |
1991 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
1992 | next_namespace_len += 2; | |
c906108c | 1993 | } |
8d577d32 DC |
1994 | next_namespace_len |
1995 | += cp_find_first_component (qualified_name + next_namespace_len); | |
1996 | ||
1997 | /* Initialize these to values that can safely be xfree'd. */ | |
1998 | *oload_syms = NULL; | |
1999 | *oload_champ_bv = NULL; | |
c5aa993b | 2000 | |
8d577d32 DC |
2001 | /* First, see if we have a deeper namespace we can search in. If we |
2002 | get a good match there, use it. */ | |
2003 | ||
2004 | if (qualified_name[next_namespace_len] == ':') | |
2005 | { | |
2006 | searched_deeper = 1; | |
2007 | ||
2008 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2009 | func_name, qualified_name, | |
2010 | next_namespace_len, | |
2011 | oload_syms, oload_champ_bv, | |
2012 | oload_champ)) | |
2013 | { | |
2014 | return 1; | |
2015 | } | |
2016 | }; | |
2017 | ||
2018 | /* If we reach here, either we're in the deepest namespace or we | |
2019 | didn't find a good match in a deeper namespace. But, in the | |
2020 | latter case, we still have a bad match in a deeper namespace; | |
2021 | note that we might not find any match at all in the current | |
2022 | namespace. (There's always a match in the deepest namespace, | |
2023 | because this overload mechanism only gets called if there's a | |
2024 | function symbol to start off with.) */ | |
2025 | ||
2026 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
2027 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
2028 | new_namespace = alloca (namespace_len + 1); | |
2029 | strncpy (new_namespace, qualified_name, namespace_len); | |
2030 | new_namespace[namespace_len] = '\0'; | |
2031 | new_oload_syms = make_symbol_overload_list (func_name, | |
2032 | new_namespace); | |
2033 | while (new_oload_syms[num_fns]) | |
2034 | ++num_fns; | |
2035 | ||
2036 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2037 | NULL, new_oload_syms, | |
2038 | &new_oload_champ_bv); | |
2039 | ||
2040 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2041 | and return it. Case 2: We didn't find a good match, but we're | |
2042 | not the deepest function. Then go with the bad match that the | |
2043 | deeper function found. Case 3: We found a bad match, and we're | |
2044 | the deepest function. Then return what we found, even though | |
2045 | it's a bad match. */ | |
2046 | ||
2047 | if (new_oload_champ != -1 | |
2048 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2049 | { | |
2050 | *oload_syms = new_oload_syms; | |
2051 | *oload_champ = new_oload_champ; | |
2052 | *oload_champ_bv = new_oload_champ_bv; | |
2053 | do_cleanups (old_cleanups); | |
2054 | return 1; | |
2055 | } | |
2056 | else if (searched_deeper) | |
2057 | { | |
2058 | xfree (new_oload_syms); | |
2059 | xfree (new_oload_champ_bv); | |
2060 | discard_cleanups (old_cleanups); | |
2061 | return 0; | |
2062 | } | |
2063 | else | |
2064 | { | |
2065 | gdb_assert (new_oload_champ != -1); | |
2066 | *oload_syms = new_oload_syms; | |
2067 | *oload_champ = new_oload_champ; | |
2068 | *oload_champ_bv = new_oload_champ_bv; | |
2069 | discard_cleanups (old_cleanups); | |
2070 | return 0; | |
2071 | } | |
2072 | } | |
2073 | ||
2074 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2075 | the best match from among the overloaded methods or functions | |
2076 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2077 | The number of methods/functions in the list is given by NUM_FNS. | |
2078 | Return the index of the best match; store an indication of the | |
2079 | quality of the match in OLOAD_CHAMP_BV. | |
2080 | ||
2081 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2082 | ||
2083 | static int | |
2084 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2085 | int num_fns, struct fn_field *fns_ptr, | |
2086 | struct symbol **oload_syms, | |
2087 | struct badness_vector **oload_champ_bv) | |
2088 | { | |
2089 | int ix; | |
2090 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2091 | int oload_champ = -1; /* Index of best overloaded function */ | |
2092 | int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2093 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2094 | ||
2095 | *oload_champ_bv = NULL; | |
c906108c | 2096 | |
c5aa993b | 2097 | /* Consider each candidate in turn */ |
c906108c SS |
2098 | for (ix = 0; ix < num_fns; ix++) |
2099 | { | |
8d577d32 DC |
2100 | int jj; |
2101 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2102 | int nparms; | |
2103 | struct type **parm_types; | |
2104 | ||
db577aea AC |
2105 | if (method) |
2106 | { | |
ad2f7632 | 2107 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2108 | } |
2109 | else | |
2110 | { | |
2111 | /* If it's not a method, this is the proper place */ | |
2112 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2113 | } | |
c906108c | 2114 | |
c5aa993b | 2115 | /* Prepare array of parameter types */ |
c906108c SS |
2116 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2117 | for (jj = 0; jj < nparms; jj++) | |
db577aea | 2118 | parm_types[jj] = (method |
ad2f7632 | 2119 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
db577aea | 2120 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); |
c906108c | 2121 | |
4a1970e4 DJ |
2122 | /* Compare parameter types to supplied argument types. Skip THIS for |
2123 | static methods. */ | |
2124 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2125 | nargs - static_offset); | |
c5aa993b | 2126 | |
8d577d32 | 2127 | if (!*oload_champ_bv) |
c5aa993b | 2128 | { |
8d577d32 | 2129 | *oload_champ_bv = bv; |
c5aa993b | 2130 | oload_champ = 0; |
c5aa993b | 2131 | } |
c906108c | 2132 | else |
c5aa993b | 2133 | /* See whether current candidate is better or worse than previous best */ |
8d577d32 | 2134 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b JM |
2135 | { |
2136 | case 0: | |
2137 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
c5aa993b JM |
2138 | break; |
2139 | case 1: | |
2140 | oload_ambiguous = 2; /* incomparable top contenders */ | |
c5aa993b JM |
2141 | break; |
2142 | case 2: | |
8d577d32 | 2143 | *oload_champ_bv = bv; /* new champion, record details */ |
c5aa993b JM |
2144 | oload_ambiguous = 0; |
2145 | oload_champ = ix; | |
c5aa993b JM |
2146 | break; |
2147 | case 3: | |
2148 | default: | |
2149 | break; | |
2150 | } | |
b8c9b27d | 2151 | xfree (parm_types); |
6b1ba9a0 ND |
2152 | if (overload_debug) |
2153 | { | |
2154 | if (method) | |
2155 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2156 | else | |
2157 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
4a1970e4 | 2158 | for (jj = 0; jj < nargs - static_offset; jj++) |
6b1ba9a0 ND |
2159 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2160 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2161 | } | |
c906108c SS |
2162 | } |
2163 | ||
8d577d32 DC |
2164 | return oload_champ; |
2165 | } | |
6b1ba9a0 | 2166 | |
8d577d32 DC |
2167 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2168 | a non-static method or a function that isn't a method. */ | |
c906108c | 2169 | |
8d577d32 DC |
2170 | static int |
2171 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2172 | { | |
2173 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2174 | return 1; | |
c906108c | 2175 | else |
8d577d32 DC |
2176 | return 0; |
2177 | } | |
c906108c | 2178 | |
8d577d32 DC |
2179 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2180 | ||
2181 | static enum oload_classification | |
2182 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2183 | int nargs, | |
2184 | int static_offset) | |
2185 | { | |
2186 | int ix; | |
2187 | ||
2188 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2189 | { |
8d577d32 DC |
2190 | if (oload_champ_bv->rank[ix] >= 100) |
2191 | return INCOMPATIBLE; /* truly mismatched types */ | |
2192 | else if (oload_champ_bv->rank[ix] >= 10) | |
2193 | return NON_STANDARD; /* non-standard type conversions needed */ | |
7f8c9282 | 2194 | } |
02f0d45d | 2195 | |
8d577d32 | 2196 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2197 | } |
2198 | ||
2199 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2200 | of type TYPE. If TYPE does not have a destructor, or | |
2201 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2202 | int | |
fba45db2 | 2203 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2204 | { |
2205 | /* destructors are a special case. */ | |
2206 | ||
2207 | if (name[0] == '~') | |
2208 | { | |
2209 | char *dname = type_name_no_tag (type); | |
2210 | char *cp = strchr (dname, '<'); | |
2211 | unsigned int len; | |
2212 | ||
2213 | /* Do not compare the template part for template classes. */ | |
2214 | if (cp == NULL) | |
2215 | len = strlen (dname); | |
2216 | else | |
2217 | len = cp - dname; | |
bf896cb0 | 2218 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 2219 | error (_("name of destructor must equal name of class")); |
c906108c SS |
2220 | else |
2221 | return 1; | |
2222 | } | |
2223 | return 0; | |
2224 | } | |
2225 | ||
2226 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2227 | return 1 if the component named NAME from the ultimate | |
2228 | target structure/union is defined, otherwise, return 0. */ | |
2229 | ||
2230 | static int | |
aa1ee363 | 2231 | check_field_in (struct type *type, const char *name) |
c906108c | 2232 | { |
52f0bd74 | 2233 | int i; |
c906108c SS |
2234 | |
2235 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2236 | { | |
2237 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2238 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2239 | return 1; |
2240 | } | |
2241 | ||
2242 | /* C++: If it was not found as a data field, then try to | |
2243 | return it as a pointer to a method. */ | |
2244 | ||
2245 | /* Destructors are a special case. */ | |
2246 | if (destructor_name_p (name, type)) | |
2247 | { | |
2248 | int m_index, f_index; | |
2249 | ||
2250 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2251 | } | |
2252 | ||
2253 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2254 | { | |
db577aea | 2255 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2256 | return 1; |
2257 | } | |
2258 | ||
2259 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2260 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2261 | return 1; | |
c5aa993b | 2262 | |
c906108c SS |
2263 | return 0; |
2264 | } | |
2265 | ||
2266 | ||
2267 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2268 | return 1 if the component named NAME from the ultimate | |
2269 | target structure/union is defined, otherwise, return 0. */ | |
2270 | ||
2271 | int | |
c68a6671 | 2272 | check_field (struct value *arg1, const char *name) |
c906108c | 2273 | { |
52f0bd74 | 2274 | struct type *t; |
c906108c | 2275 | |
994b9211 | 2276 | arg1 = coerce_array (arg1); |
c906108c | 2277 | |
df407dfe | 2278 | t = value_type (arg1); |
c906108c SS |
2279 | |
2280 | /* Follow pointers until we get to a non-pointer. */ | |
2281 | ||
2282 | for (;;) | |
2283 | { | |
2284 | CHECK_TYPEDEF (t); | |
2285 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2286 | break; | |
2287 | t = TYPE_TARGET_TYPE (t); | |
2288 | } | |
2289 | ||
2290 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
8a3fe4f8 | 2291 | error (_("not implemented: member type in check_field")); |
c906108c | 2292 | |
c5aa993b | 2293 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2294 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2295 | error (_("Internal error: `this' is not an aggregate")); |
c906108c SS |
2296 | |
2297 | return check_field_in (t, name); | |
2298 | } | |
2299 | ||
79c2c32d DC |
2300 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2301 | return the appropriate member. This function is used to resolve | |
2302 | user expressions of the form "DOMAIN::NAME". For more details on | |
2303 | what happens, see the comment before | |
2304 | value_struct_elt_for_reference. */ | |
2305 | ||
2306 | struct value * | |
2307 | value_aggregate_elt (struct type *curtype, | |
2308 | char *name, | |
2309 | enum noside noside) | |
2310 | { | |
2311 | switch (TYPE_CODE (curtype)) | |
2312 | { | |
2313 | case TYPE_CODE_STRUCT: | |
2314 | case TYPE_CODE_UNION: | |
63d06c5c DC |
2315 | return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL, |
2316 | noside); | |
79c2c32d DC |
2317 | case TYPE_CODE_NAMESPACE: |
2318 | return value_namespace_elt (curtype, name, noside); | |
2319 | default: | |
2320 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 2321 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
2322 | } |
2323 | } | |
2324 | ||
c906108c SS |
2325 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2326 | return the address of this member as a "pointer to member" | |
2327 | type. If INTYPE is non-null, then it will be the type | |
2328 | of the member we are looking for. This will help us resolve | |
2329 | "pointers to member functions". This function is used | |
2330 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2331 | ||
63d06c5c | 2332 | static struct value * |
fba45db2 KB |
2333 | value_struct_elt_for_reference (struct type *domain, int offset, |
2334 | struct type *curtype, char *name, | |
63d06c5c DC |
2335 | struct type *intype, |
2336 | enum noside noside) | |
c906108c | 2337 | { |
52f0bd74 AC |
2338 | struct type *t = curtype; |
2339 | int i; | |
f23631e4 | 2340 | struct value *v; |
c906108c | 2341 | |
c5aa993b | 2342 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2343 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2344 | error (_("Internal error: non-aggregate type to value_struct_elt_for_reference")); |
c906108c SS |
2345 | |
2346 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2347 | { | |
2348 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2349 | |
6314a349 | 2350 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2351 | { |
2352 | if (TYPE_FIELD_STATIC (t, i)) | |
2353 | { | |
2354 | v = value_static_field (t, i); | |
2355 | if (v == NULL) | |
8a3fe4f8 | 2356 | error (_("static field %s has been optimized out"), |
c906108c SS |
2357 | name); |
2358 | return v; | |
2359 | } | |
2360 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 2361 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 2362 | |
c906108c SS |
2363 | return value_from_longest |
2364 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
2365 | domain)), | |
2366 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2367 | } | |
2368 | } | |
2369 | ||
2370 | /* C++: If it was not found as a data field, then try to | |
2371 | return it as a pointer to a method. */ | |
2372 | ||
2373 | /* Destructors are a special case. */ | |
2374 | if (destructor_name_p (name, t)) | |
2375 | { | |
8a3fe4f8 | 2376 | error (_("member pointers to destructors not implemented yet")); |
c906108c SS |
2377 | } |
2378 | ||
2379 | /* Perform all necessary dereferencing. */ | |
2380 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2381 | intype = TYPE_TARGET_TYPE (intype); | |
2382 | ||
2383 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2384 | { | |
2385 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2386 | char dem_opname[64]; | |
2387 | ||
c5aa993b JM |
2388 | if (strncmp (t_field_name, "__", 2) == 0 || |
2389 | strncmp (t_field_name, "op", 2) == 0 || | |
2390 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2391 | { |
c5aa993b JM |
2392 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2393 | t_field_name = dem_opname; | |
2394 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2395 | t_field_name = dem_opname; |
c906108c | 2396 | } |
6314a349 | 2397 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2398 | { |
2399 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2400 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 2401 | |
de17c821 DJ |
2402 | check_stub_method_group (t, i); |
2403 | ||
c906108c | 2404 | if (intype == 0 && j > 1) |
8a3fe4f8 | 2405 | error (_("non-unique member `%s' requires type instantiation"), name); |
c906108c SS |
2406 | if (intype) |
2407 | { | |
2408 | while (j--) | |
2409 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2410 | break; | |
2411 | if (j < 0) | |
8a3fe4f8 | 2412 | error (_("no member function matches that type instantiation")); |
c906108c SS |
2413 | } |
2414 | else | |
2415 | j = 0; | |
c5aa993b | 2416 | |
c906108c SS |
2417 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
2418 | { | |
2419 | return value_from_longest | |
2420 | (lookup_reference_type | |
2421 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2422 | domain)), | |
2423 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
2424 | } | |
2425 | else | |
2426 | { | |
2427 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
176620f1 | 2428 | 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
2429 | if (s == NULL) |
2430 | { | |
2431 | v = 0; | |
2432 | } | |
2433 | else | |
2434 | { | |
2435 | v = read_var_value (s, 0); | |
2436 | #if 0 | |
2437 | VALUE_TYPE (v) = lookup_reference_type | |
2438 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2439 | domain)); | |
2440 | #endif | |
2441 | } | |
2442 | return v; | |
2443 | } | |
2444 | } | |
2445 | } | |
2446 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2447 | { | |
f23631e4 | 2448 | struct value *v; |
c906108c SS |
2449 | int base_offset; |
2450 | ||
2451 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2452 | base_offset = 0; | |
2453 | else | |
2454 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2455 | v = value_struct_elt_for_reference (domain, | |
2456 | offset + base_offset, | |
2457 | TYPE_BASECLASS (t, i), | |
2458 | name, | |
63d06c5c DC |
2459 | intype, |
2460 | noside); | |
c906108c SS |
2461 | if (v) |
2462 | return v; | |
2463 | } | |
63d06c5c DC |
2464 | |
2465 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
2466 | it up that way; this (frequently) works for types nested inside | |
2467 | classes. */ | |
2468 | ||
2469 | return value_maybe_namespace_elt (curtype, name, noside); | |
c906108c SS |
2470 | } |
2471 | ||
79c2c32d DC |
2472 | /* C++: Return the member NAME of the namespace given by the type |
2473 | CURTYPE. */ | |
2474 | ||
2475 | static struct value * | |
2476 | value_namespace_elt (const struct type *curtype, | |
63d06c5c | 2477 | char *name, |
79c2c32d | 2478 | enum noside noside) |
63d06c5c DC |
2479 | { |
2480 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
2481 | noside); | |
2482 | ||
2483 | if (retval == NULL) | |
8a3fe4f8 | 2484 | error (_("No symbol \"%s\" in namespace \"%s\"."), name, |
63d06c5c DC |
2485 | TYPE_TAG_NAME (curtype)); |
2486 | ||
2487 | return retval; | |
2488 | } | |
2489 | ||
2490 | /* A helper function used by value_namespace_elt and | |
2491 | value_struct_elt_for_reference. It looks up NAME inside the | |
2492 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
2493 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
2494 | to, say, some base class of CURTYPE). */ | |
2495 | ||
2496 | static struct value * | |
2497 | value_maybe_namespace_elt (const struct type *curtype, | |
2498 | char *name, | |
2499 | enum noside noside) | |
79c2c32d DC |
2500 | { |
2501 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
2502 | struct symbol *sym; | |
79c2c32d DC |
2503 | |
2504 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
2505 | get_selected_block (0), VAR_DOMAIN, | |
2506 | NULL); | |
2507 | ||
2508 | if (sym == NULL) | |
63d06c5c | 2509 | return NULL; |
79c2c32d DC |
2510 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
2511 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
63d06c5c | 2512 | return allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 2513 | else |
63d06c5c | 2514 | return value_of_variable (sym, get_selected_block (0)); |
79c2c32d DC |
2515 | } |
2516 | ||
c906108c SS |
2517 | /* Given a pointer value V, find the real (RTTI) type |
2518 | of the object it points to. | |
2519 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
2520 | and refer to the values computed for the object pointed to. */ | |
2521 | ||
2522 | struct type * | |
f23631e4 | 2523 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 2524 | { |
f23631e4 | 2525 | struct value *target; |
c906108c SS |
2526 | |
2527 | target = value_ind (v); | |
2528 | ||
2529 | return value_rtti_type (target, full, top, using_enc); | |
2530 | } | |
2531 | ||
2532 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2533 | if that is different from the enclosing type, create a new value | |
2534 | using the real run-time type as the enclosing type (and of the same | |
2535 | type as ARGP) and return it, with the embedded offset adjusted to | |
2536 | be the correct offset to the enclosed object | |
2537 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
2538 | parameters, computed by value_rtti_type(). If these are available, | |
2539 | they can be supplied and a second call to value_rtti_type() is avoided. | |
2540 | (Pass RTYPE == NULL if they're not available */ | |
2541 | ||
f23631e4 AC |
2542 | struct value * |
2543 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 2544 | int xusing_enc) |
c906108c | 2545 | { |
c5aa993b | 2546 | struct type *real_type; |
c906108c SS |
2547 | int full = 0; |
2548 | int top = -1; | |
2549 | int using_enc = 0; | |
f23631e4 | 2550 | struct value *new_val; |
c906108c SS |
2551 | |
2552 | if (rtype) | |
2553 | { | |
2554 | real_type = rtype; | |
2555 | full = xfull; | |
2556 | top = xtop; | |
2557 | using_enc = xusing_enc; | |
2558 | } | |
2559 | else | |
2560 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2561 | ||
2562 | /* If no RTTI data, or if object is already complete, do nothing */ | |
4754a64e | 2563 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
2564 | return argp; |
2565 | ||
2566 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 2567 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
2568 | if (full) |
2569 | { | |
2b127877 | 2570 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
2571 | return argp; |
2572 | } | |
2573 | ||
2574 | /* Check if object is in memory */ | |
2575 | if (VALUE_LVAL (argp) != lval_memory) | |
2576 | { | |
8a3fe4f8 | 2577 | warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type)); |
c5aa993b | 2578 | |
c906108c SS |
2579 | return argp; |
2580 | } | |
c5aa993b | 2581 | |
c906108c SS |
2582 | /* All other cases -- retrieve the complete object */ |
2583 | /* Go back by the computed top_offset from the beginning of the object, | |
2584 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
2585 | used for its computation. */ | |
2586 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
13c3b5f5 | 2587 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 2588 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
2589 | set_value_embedded_offset (new_val, (using_enc |
2590 | ? top + value_embedded_offset (argp) | |
2591 | : top)); | |
c906108c SS |
2592 | return new_val; |
2593 | } | |
2594 | ||
389e51db AC |
2595 | |
2596 | ||
2597 | ||
d069f99d | 2598 | /* Return the value of the local variable, if one exists. |
c906108c SS |
2599 | Flag COMPLAIN signals an error if the request is made in an |
2600 | inappropriate context. */ | |
2601 | ||
f23631e4 | 2602 | struct value * |
d069f99d | 2603 | value_of_local (const char *name, int complain) |
c906108c SS |
2604 | { |
2605 | struct symbol *func, *sym; | |
2606 | struct block *b; | |
d069f99d | 2607 | struct value * ret; |
c906108c | 2608 | |
6e7f8b9c | 2609 | if (deprecated_selected_frame == 0) |
c906108c SS |
2610 | { |
2611 | if (complain) | |
8a3fe4f8 | 2612 | error (_("no frame selected")); |
c5aa993b JM |
2613 | else |
2614 | return 0; | |
c906108c SS |
2615 | } |
2616 | ||
6e7f8b9c | 2617 | func = get_frame_function (deprecated_selected_frame); |
c906108c SS |
2618 | if (!func) |
2619 | { | |
2620 | if (complain) | |
8a3fe4f8 | 2621 | error (_("no `%s' in nameless context"), name); |
c5aa993b JM |
2622 | else |
2623 | return 0; | |
c906108c SS |
2624 | } |
2625 | ||
2626 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 2627 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
2628 | { |
2629 | if (complain) | |
8a3fe4f8 | 2630 | error (_("no args, no `%s'"), name); |
c5aa993b JM |
2631 | else |
2632 | return 0; | |
c906108c SS |
2633 | } |
2634 | ||
2635 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2636 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 2637 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
2638 | if (sym == NULL) |
2639 | { | |
2640 | if (complain) | |
8a3fe4f8 | 2641 | error (_("current stack frame does not contain a variable named `%s'"), name); |
c906108c SS |
2642 | else |
2643 | return NULL; | |
2644 | } | |
2645 | ||
6e7f8b9c | 2646 | ret = read_var_value (sym, deprecated_selected_frame); |
d069f99d | 2647 | if (ret == 0 && complain) |
8a3fe4f8 | 2648 | error (_("`%s' argument unreadable"), name); |
d069f99d AF |
2649 | return ret; |
2650 | } | |
2651 | ||
2652 | /* C++/Objective-C: return the value of the class instance variable, | |
2653 | if one exists. Flag COMPLAIN signals an error if the request is | |
2654 | made in an inappropriate context. */ | |
2655 | ||
2656 | struct value * | |
2657 | value_of_this (int complain) | |
2658 | { | |
2659 | if (current_language->la_language == language_objc) | |
2660 | return value_of_local ("self", complain); | |
2661 | else | |
2662 | return value_of_local ("this", complain); | |
c906108c SS |
2663 | } |
2664 | ||
2665 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
2666 | long, starting at LOWBOUND. The result has the same lower bound as | |
2667 | the original ARRAY. */ | |
2668 | ||
f23631e4 AC |
2669 | struct value * |
2670 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
2671 | { |
2672 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 2673 | LONGEST lowerbound, upperbound; |
f23631e4 | 2674 | struct value *slice; |
c906108c | 2675 | struct type *array_type; |
df407dfe | 2676 | array_type = check_typedef (value_type (array)); |
c906108c SS |
2677 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
2678 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2679 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 2680 | error (_("cannot take slice of non-array")); |
c906108c SS |
2681 | range_type = TYPE_INDEX_TYPE (array_type); |
2682 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 2683 | error (_("slice from bad array or bitstring")); |
c906108c | 2684 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 2685 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 2686 | error (_("slice out of range")); |
c906108c SS |
2687 | /* FIXME-type-allocation: need a way to free this type when we are |
2688 | done with it. */ | |
c5aa993b | 2689 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
2690 | TYPE_TARGET_TYPE (range_type), |
2691 | lowbound, lowbound + length - 1); | |
2692 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
2693 | { | |
2694 | int i; | |
c5aa993b | 2695 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
2696 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
2697 | slice = value_zero (slice_type, not_lval); | |
2698 | for (i = 0; i < length; i++) | |
2699 | { | |
2700 | int element = value_bit_index (array_type, | |
0fd88904 | 2701 | value_contents (array), |
c906108c SS |
2702 | lowbound + i); |
2703 | if (element < 0) | |
8a3fe4f8 | 2704 | error (_("internal error accessing bitstring")); |
c906108c SS |
2705 | else if (element > 0) |
2706 | { | |
2707 | int j = i % TARGET_CHAR_BIT; | |
2708 | if (BITS_BIG_ENDIAN) | |
2709 | j = TARGET_CHAR_BIT - 1 - j; | |
990a07ab | 2710 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
2711 | } |
2712 | } | |
2713 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
2714 | can be used on the LHS, but that may require extensions to |
2715 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
2716 | } |
2717 | else | |
2718 | { | |
2719 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
7a67d0fe | 2720 | LONGEST offset |
c906108c | 2721 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); |
c5aa993b | 2722 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
2723 | slice_range_type); |
2724 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
2725 | slice = allocate_value (slice_type); | |
d69fe07e | 2726 | if (value_lazy (array)) |
dfa52d88 | 2727 | set_value_lazy (slice, 1); |
c906108c | 2728 | else |
0fd88904 AC |
2729 | memcpy (value_contents_writeable (slice), |
2730 | value_contents (array) + offset, | |
c906108c SS |
2731 | TYPE_LENGTH (slice_type)); |
2732 | if (VALUE_LVAL (array) == lval_internalvar) | |
2733 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2734 | else | |
2735 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
2736 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
65d3800a | 2737 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 2738 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
2739 | } |
2740 | return slice; | |
2741 | } | |
2742 | ||
070ad9f0 DB |
2743 | /* Create a value for a FORTRAN complex number. Currently most of |
2744 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2745 | composed of 2 doubles. This really should be a smarter routine | |
2746 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 2747 | doubles. FIXME: fmb */ |
c906108c | 2748 | |
f23631e4 AC |
2749 | struct value * |
2750 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 2751 | { |
f23631e4 | 2752 | struct value *val; |
c906108c SS |
2753 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2754 | ||
2755 | val = allocate_value (type); | |
2756 | arg1 = value_cast (real_type, arg1); | |
2757 | arg2 = value_cast (real_type, arg2); | |
2758 | ||
990a07ab | 2759 | memcpy (value_contents_raw (val), |
0fd88904 | 2760 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 2761 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 2762 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
2763 | return val; |
2764 | } | |
2765 | ||
2766 | /* Cast a value into the appropriate complex data type. */ | |
2767 | ||
f23631e4 AC |
2768 | static struct value * |
2769 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
2770 | { |
2771 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
df407dfe | 2772 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 2773 | { |
df407dfe | 2774 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
2775 | struct value *re_val = allocate_value (val_real_type); |
2776 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 2777 | |
990a07ab | 2778 | memcpy (value_contents_raw (re_val), |
0fd88904 | 2779 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 2780 | memcpy (value_contents_raw (im_val), |
0fd88904 | 2781 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 2782 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
2783 | |
2784 | return value_literal_complex (re_val, im_val, type); | |
2785 | } | |
df407dfe AC |
2786 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
2787 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
c906108c SS |
2788 | return value_literal_complex (val, value_zero (real_type, not_lval), type); |
2789 | else | |
8a3fe4f8 | 2790 | error (_("cannot cast non-number to complex")); |
c906108c SS |
2791 | } |
2792 | ||
2793 | void | |
fba45db2 | 2794 | _initialize_valops (void) |
c906108c | 2795 | { |
5bf193a2 AC |
2796 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
2797 | &overload_resolution, _("\ | |
2798 | Set overload resolution in evaluating C++ functions."), _("\ | |
2799 | Show overload resolution in evaluating C++ functions."), NULL, | |
2800 | NULL, | |
920d2a44 | 2801 | show_overload_resolution, |
5bf193a2 | 2802 | &setlist, &showlist); |
c906108c | 2803 | overload_resolution = 1; |
c906108c | 2804 | } |