* config/pa/tm-hppa64.h (FRAME_ARGS_ADDRESS): Delete macro, not useful.
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4 2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1e698235 3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
f23631e4 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
fe898f56 36#include "block.h"
c906108c
SS
37
38#include <errno.h>
39#include "gdb_string.h"
4a1970e4 40#include "gdb_assert.h"
c906108c 41
c906108c
SS
42/* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44extern int hp_som_som_object_present;
45
070ad9f0 46extern int overload_debug;
c906108c
SS
47/* Local functions. */
48
ad2f7632
DJ
49static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
c906108c 51
389e51db 52static CORE_ADDR find_function_addr (struct value *, struct type **);
f23631e4 53static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c 54
389e51db 55
f23631e4 56static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 57
f23631e4 58static struct value *search_struct_field (char *, struct value *, int,
a14ed312 59 struct type *, int);
c906108c 60
f23631e4
AC
61static struct value *search_struct_method (char *, struct value **,
62 struct value **,
a14ed312 63 int, int *, struct type *);
c906108c 64
a14ed312 65static int check_field_in (struct type *, const char *);
c906108c 66
a14ed312 67static CORE_ADDR allocate_space_in_inferior (int);
c906108c 68
f23631e4 69static struct value *cast_into_complex (struct type *, struct value *);
c906108c 70
f23631e4 71static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 72 int offset,
a14ed312
KB
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
7a292a7a 76
a14ed312 77void _initialize_valops (void);
c906108c 78
c906108c
SS
79/* Flag for whether we want to abandon failed expression evals by default. */
80
81#if 0
82static int auto_abandon = 0;
83#endif
84
85int overload_resolution = 0;
242bfc55
FN
86
87/* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92int unwind_on_signal_p = 0;
c906108c 93
1e698235
DJ
94/* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115static int coerce_float_to_double;
116\f
389e51db 117
c906108c
SS
118/* Find the address of function name NAME in the inferior. */
119
f23631e4 120struct value *
3bada2a2 121find_function_in_inferior (const char *name)
c906108c
SS
122{
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
c5aa993b 136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
137 if (msymbol != NULL)
138 {
139 struct type *type;
4478b372 140 CORE_ADDR maddr;
c906108c
SS
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
4478b372
JB
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
c906108c
SS
146 }
147 else
148 {
c5aa993b 149 if (!target_has_execution)
c906108c 150 error ("evaluation of this expression requires the target program to be active");
c5aa993b 151 else
c906108c
SS
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155}
156
157/* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
f23631e4 160struct value *
fba45db2 161value_allocate_space_in_inferior (int len)
c906108c 162{
f23631e4 163 struct value *blocklen;
5720643c 164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
c906108c
SS
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
c5aa993b
JM
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
c906108c
SS
174 }
175 return val;
176}
177
178static CORE_ADDR
fba45db2 179allocate_space_in_inferior (int len)
c906108c
SS
180{
181 return value_as_long (value_allocate_space_in_inferior (len));
182}
183
184/* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187/* In C++, casts may change pointer or object representations. */
188
f23631e4
AC
189struct value *
190value_cast (struct type *type, struct value *arg2)
c906108c
SS
191{
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
c5aa993b 198
c906108c
SS
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
c5aa993b 204 COERCE_REF (arg2);
c906108c
SS
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
c5aa993b 215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
c5aa993b 224 warning ("array element type size does not divide object size in cast");
c906108c
SS
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
c5aa993b 263 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
7b83ea04
AC
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
f23631e4 270 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
c5aa993b
JM
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
f23631e4 290 struct value *retvalp;
c5aa993b
JM
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 297 /* force evaluation */
802db21b 298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
2bf1f4a1
JB
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
802db21b 322 return value_from_longest (type, convert_to_boolean ?
716c501e 323 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 324 }
802db21b 325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
634acd5f 328 {
4603e466
DT
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
634acd5f 341 LONGEST longest = value_as_long (arg2);
4603e466 342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 343 {
4603e466
DT
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
c906108c
SS
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
f23631e4 360 struct value *v;
c906108c
SS
361
362 /* Look in the type of the source to see if it contains the
7b83ea04
AC
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
c906108c
SS
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
7b83ea04
AC
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 384 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
385 if (v)
386 {
d174216d
JB
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
c906108c
SS
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
2b127877 398 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
400 return arg2;
401 }
c906108c
SS
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416}
417
418/* Create a value of type TYPE that is zero, and return it. */
419
f23631e4 420struct value *
fba45db2 421value_zero (struct type *type, enum lval_type lv)
c906108c 422{
f23631e4 423 struct value *val = allocate_value (type);
c906108c
SS
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429}
430
070ad9f0 431/* Return a value with type TYPE located at ADDR.
c906108c
SS
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
c906108c
SS
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
f23631e4 443struct value *
fba45db2 444value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 445{
f23631e4 446 struct value *val;
c906108c
SS
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
75af7f68 453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460}
461
462/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
f23631e4 464struct value *
fba45db2 465value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 466{
f23631e4 467 struct value *val;
c906108c
SS
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480}
481
070ad9f0
DB
482/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494int
f23631e4 495value_fetch_lazy (struct value *val)
c906108c
SS
496{
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
c5aa993b 500 struct type *type = VALUE_TYPE (val);
75af7f68 501 if (length)
d4b2399a 502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 503
c906108c
SS
504 VALUE_LAZY (val) = 0;
505 return 0;
506}
507
508
509/* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
f23631e4
AC
512struct value *
513value_assign (struct value *toval, struct value *fromval)
c906108c
SS
514{
515 register struct type *type;
f23631e4 516 struct value *val;
e6cbd02a 517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c 518 int use_buffer = 0;
cb741690 519 struct frame_id old_frame;
c906108c
SS
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
ac9a91a7 538 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
539 {
540 int regno = VALUE_REGNO (toval);
13d01224 541 if (CONVERT_REGISTER_P (regno))
c906108c
SS
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
c906108c 548
cb741690
DJ
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
c906108c
SS
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
c5aa993b
JM
575 CORE_ADDR changed_addr;
576 int changed_len;
c906108c 577
c5aa993b
JM
578 if (VALUE_BITSIZE (toval))
579 {
c906108c
SS
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
c906108c
SS
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
e23792cc 615 target_changed_event ();
c906108c
SS
616 }
617 break;
618
c906108c 619 case lval_reg_frame_relative:
492254e9 620 case lval_register:
c906108c
SS
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
c906108c 625 int amount_copied;
492254e9
AC
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
c906108c
SS
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
492254e9
AC
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
c193f6ac 643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
492254e9
AC
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
c906108c
SS
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
492254e9
AC
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
c906108c 673
492254e9
AC
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
c906108c 676 amount_copied < amount_to_copy;
492254e9 677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c 678 {
492254e9 679 frame_register_read (frame, regno, buffer + amount_copied);
c906108c 680 }
492254e9 681
c906108c
SS
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
492254e9
AC
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
c906108c 689 else if (use_buffer)
492254e9
AC
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
c906108c 693 else
492254e9
AC
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699#ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702#endif
703 }
c906108c 704
492254e9
AC
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
c906108c 707 amount_copied < amount_to_copy;
492254e9 708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c
SS
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
492254e9
AC
713 int realnum;
714
c906108c 715 /* Just find out where to put it. */
492254e9
AC
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
c906108c
SS
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
492254e9
AC
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
c906108c 724 else if (lval == lval_register)
492254e9
AC
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
c906108c
SS
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
e23792cc 733 target_changed_event ();
492254e9 734
c906108c
SS
735 }
736 break;
492254e9
AC
737
738
c906108c
SS
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
cb741690
DJ
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
c906108c
SS
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
2b127877 794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 797
c906108c
SS
798 return val;
799}
800
801/* Extend a value VAL to COUNT repetitions of its type. */
802
f23631e4
AC
803struct value *
804value_repeat (struct value *arg1, int count)
c906108c 805{
f23631e4 806 struct value *val;
c906108c
SS
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822}
823
f23631e4 824struct value *
fba45db2 825value_of_variable (struct symbol *var, struct block *b)
c906108c 826{
f23631e4 827 struct value *val;
c906108c
SS
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
c5aa993b 836 {
c906108c 837 if (BLOCK_FUNCTION (b)
de5ad195 838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
c906108c 839 error ("No frame is currently executing in block %s.",
de5ad195 840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
c906108c
SS
841 else
842 error ("No frame is currently executing in specified block");
c5aa993b 843 }
c906108c
SS
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
de5ad195 848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
c906108c
SS
849
850 return val;
851}
852
853/* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
c5aa993b 874 */
c906108c 875
f23631e4
AC
876struct value *
877value_coerce_array (struct value *arg1)
c906108c
SS
878{
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
4478b372
JB
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
886}
887
888/* Given a value which is a function, return a value which is a pointer
889 to it. */
890
f23631e4
AC
891struct value *
892value_coerce_function (struct value *arg1)
c906108c 893{
f23631e4 894 struct value *retval;
c906108c
SS
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
4478b372
JB
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
c5aa993b 903}
c906108c
SS
904
905/* Return a pointer value for the object for which ARG1 is the contents. */
906
f23631e4
AC
907struct value *
908value_addr (struct value *arg1)
c906108c 909{
f23631e4 910 struct value *arg2;
c906108c
SS
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
c906108c
SS
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
c5aa993b 928 /* Get target memory address */
4478b372
JB
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
933
934 /* This may be a pointer to a base subobject; so remember the
c5aa993b 935 full derived object's type ... */
2b127877 936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941}
942
943/* Given a value of a pointer type, apply the C unary * operator to it. */
944
f23631e4
AC
945struct value *
946value_ind (struct value *arg1)
c906108c
SS
947{
948 struct type *base_type;
f23631e4 949 struct value *arg2;
c906108c
SS
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
c906108c
SS
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
c5aa993b 970 /* Get the real type of the enclosing object */
c906108c
SS
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
1aa20aa8 975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
c906108c
SS
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
2b127877 980 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 989 return 0; /* For lint -- never reached */
c906108c
SS
990}
991\f
992/* Pushing small parts of stack frames. */
993
994/* Push one word (the size of object that a register holds). */
995
996CORE_ADDR
fba45db2 997push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
998{
999 register int len = REGISTER_SIZE;
e6cbd02a 1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017}
1018
1019/* Push LEN bytes with data at BUFFER. */
1020
1021CORE_ADDR
fba45db2 1022push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1023{
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038}
1039
2df3850c
JM
1040#ifndef PARM_BOUNDARY
1041#define PARM_BOUNDARY (0)
1042#endif
1043
1044/* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
c906108c 1046
c906108c 1047static CORE_ADDR
f23631e4 1048value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1049{
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1051 register int container_len = len;
2df3850c
JM
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
d7449b42 1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1061 offset = container_len - len;
1062 else
1063 offset = 0;
c906108c
SS
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
2df3850c
JM
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1070 }
1071 else
1072 {
1073 /* stack grows upward */
2df3850c
JM
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
c906108c
SS
1076 }
1077
1078 return sp;
1079}
1080
392a587b 1081CORE_ADDR
b81774d8
AC
1082legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1084{
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090}
1091
c906108c
SS
1092/* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
f23631e4 1098static struct value *
290b2c7a
MK
1099value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
c906108c
SS
1101{
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
290b2c7a 1104 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
491b8946
DJ
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
c906108c
SS
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1e698235 1134 if (!is_prototyped && coerce_float_to_double)
c906108c
SS
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
a3162708
EZ
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
c906108c 1149 if (current_language->c_style_arrays)
a3162708
EZ
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171}
1172
070ad9f0 1173/* Determine a function's address and its return type from its value.
c906108c
SS
1174 Calls error() if the function is not valid for calling. */
1175
389e51db 1176static CORE_ADDR
f23631e4 1177find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1178{
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1aa20aa8 1195 funaddr = value_as_address (function);
c906108c
SS
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
c906108c 1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
7b83ea04 1209 Their values are characters since their addresses are char */
c906108c 1210 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1211 funaddr = value_as_address (value_addr (function));
c906108c
SS
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223}
1224
1225/* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234/* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
e8a8712a
AC
1243struct value *
1244call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c
SS
1245{
1246 register CORE_ADDR sp;
1247 register int i;
da59e081 1248 int rc;
c906108c
SS
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1253 bigger than REGISTER_SIZE.
c906108c
SS
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
7a292a7a
SS
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1262 target byte order. */
c906108c 1263
7a292a7a
SS
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
b81774d8 1267 CORE_ADDR dummy_addr;
c906108c
SS
1268 CORE_ADDR old_sp;
1269 struct type *value_type;
1270 unsigned char struct_return;
1271 CORE_ADDR struct_addr = 0;
36160dc4 1272 struct regcache *retbuf;
26e6c56a 1273 struct cleanup *retbuf_cleanup;
7a292a7a 1274 struct inferior_status *inf_status;
26e6c56a 1275 struct cleanup *inf_status_cleanup;
c906108c 1276 CORE_ADDR funaddr;
c5aa993b 1277 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1278 CORE_ADDR real_pc;
1279 struct type *param_type = NULL;
1280 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1281 int n_method_args = 0;
c906108c 1282
7a292a7a
SS
1283 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1284 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1285 dummy1 = alloca (sizeof_dummy1);
1286 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1287
c906108c 1288 if (!target_has_execution)
c5aa993b 1289 noprocess ();
c906108c 1290
26e6c56a
AC
1291 /* Create a cleanup chain that contains the retbuf (buffer
1292 containing the register values). This chain is create BEFORE the
1293 inf_status chain so that the inferior status can cleaned up
1294 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1295 retbuf = regcache_xmalloc (current_gdbarch);
1296 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1297
1298 /* A cleanup for the inferior status. Create this AFTER the retbuf
1299 so that this can be discarded or applied without interfering with
1300 the regbuf. */
7a292a7a 1301 inf_status = save_inferior_status (1);
26e6c56a 1302 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c 1303
f3824013
AC
1304 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1305 {
1306 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
749b82f6 1307 inferior registers (and frame_pop() for restoring them). (At
f3824013
AC
1308 least on most machines) they are saved on the stack in the
1309 inferior. */
1310 DEPRECATED_PUSH_DUMMY_FRAME;
1311 }
1312 else
1313 {
1314 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1315 to extract the generic dummy frame code from the architecture
1316 vector. Hence this direct call.
1317
1318 A follow-on change is to modify this interface so that it takes
1319 thread OR frame OR tpid as a parameter, and returns a dummy
1320 frame handle. The handle can then be used further down as a
1321 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1322 everything is ment to be using generic dummy frames, why not
1323 even use some of the dummy frame code to here - do a regcache
1324 dup and then pass the duped regcache, along with all the other
1325 stuff, at one single point.
1326
1327 In fact, you can even save the structure's return address in the
1328 dummy frame and fix one of those nasty lost struct return edge
1329 conditions. */
1330 generic_push_dummy_frame ();
1331 }
c906108c 1332
dc604539
AC
1333 old_sp = read_sp ();
1334
1335 /* Ensure that the initial SP is correctly aligned. */
1336 if (gdbarch_frame_align_p (current_gdbarch))
1337 {
1338 /* NOTE: cagney/2002-09-18:
1339
1340 On a RISC architecture, a void parameterless generic dummy
1341 frame (i.e., no parameters, no result) typically does not
1342 need to push anything the stack and hence can leave SP and
1343 FP. Similarly, a framelss (possibly leaf) function does not
1344 push anything on the stack and, hence, that too can leave FP
1345 and SP unchanged. As a consequence, a sequence of void
1346 parameterless generic dummy frame calls to frameless
1347 functions will create a sequence of effectively identical
1348 frames (SP, FP and TOS and PC the same). This, not
1349 suprisingly, results in what appears to be a stack in an
1350 infinite loop --- when GDB tries to find a generic dummy
1351 frame on the internal dummy frame stack, it will always find
1352 the first one.
1353
1354 To avoid this problem, the code below always grows the stack.
1355 That way, two dummy frames can never be identical. It does
1356 burn a few bytes of stack but that is a small price to pay
1357 :-). */
1358 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1359 if (sp == old_sp)
1360 {
1361 if (INNER_THAN (1, 2))
1362 /* Stack grows down. */
1363 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1364 else
1365 /* Stack grows up. */
1366 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1367 }
1368 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1369 || (INNER_THAN (2, 1) && sp >= old_sp));
1370 }
1371 else
1372 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1373 aligned the SP is! Further, per comment above, if the generic
1374 dummy frame ends up empty (because nothing is pushed) GDB won't
1375 be able to correctly perform back traces. If a target is
1376 having trouble with backtraces, first thing to do is add
1377 FRAME_ALIGN() to its architecture vector. After that, try
618ce49f
AC
1378 adding SAVE_DUMMY_FRAME_TOS() and modifying
1379 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1380 generic dummy, it returns the current frame's base. */
dc604539 1381 sp = old_sp;
c906108c
SS
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
7a292a7a 1386 sp -= sizeof_dummy1;
c906108c
SS
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
7a292a7a 1393 sp += sizeof_dummy1;
c906108c
SS
1394 }
1395
dc604539
AC
1396 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1397 after allocating space for the call dummy. A target can specify
1398 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1399 alignment requirements are met. */
1400
c906108c
SS
1401 funaddr = find_function_addr (function, &value_type);
1402 CHECK_TYPEDEF (value_type);
1403
1404 {
1405 struct block *b = block_for_pc (funaddr);
1406 /* If compiled without -g, assume GCC 2. */
1407 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1408 }
1409
1410 /* Are we returning a value using a structure return or a normal
1411 value return? */
1412
1413 struct_return = using_struct_return (function, funaddr, value_type,
1414 using_gcc);
1415
1416 /* Create a call sequence customized for this function
1417 and the number of arguments for it. */
7a292a7a 1418 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1419 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1420 REGISTER_SIZE,
c5aa993b 1421 (ULONGEST) dummy[i]);
c906108c
SS
1422
1423#ifdef GDB_TARGET_IS_HPPA
1424 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1425 value_type, using_gcc);
1426#else
1427 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1428 value_type, using_gcc);
1429 real_pc = start_sp;
1430#endif
1431
b81774d8 1432 switch (CALL_DUMMY_LOCATION)
7a292a7a 1433 {
b81774d8
AC
1434 case ON_STACK:
1435 dummy_addr = start_sp;
c5aa993b 1436 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
07555a72 1437 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a 1438 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
b81774d8
AC
1439 break;
1440 case AT_ENTRY_POINT:
7a292a7a 1441 real_pc = funaddr;
b81774d8 1442 dummy_addr = CALL_DUMMY_ADDRESS ();
07555a72 1443 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a
AC
1444 /* NOTE: cagney/2002-04-13: The entry point is going to be
1445 modified with a single breakpoint. */
1446 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1447 CALL_DUMMY_ADDRESS () + 1);
b81774d8
AC
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, "bad switch");
7a292a7a 1451 }
c906108c
SS
1452
1453#ifdef lint
c5aa993b 1454 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1455#endif
1456
ad2f7632 1457 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1458 error ("too few arguments in function call");
1459
1460 for (i = nargs - 1; i >= 0; i--)
1461 {
ad2f7632 1462 int prototyped;
76b2e19d 1463
ad2f7632
DJ
1464 /* FIXME drow/2002-05-31: Should just always mark methods as
1465 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1466 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1467 prototyped = 1;
1468 else
1469 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1470
ad2f7632
DJ
1471 if (i < TYPE_NFIELDS (ftype))
1472 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1473 prototyped);
c5aa993b 1474 else
ad2f7632 1475 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1476
070ad9f0
DB
1477 /*elz: this code is to handle the case in which the function to be called
1478 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1479 is the address of a function and not a pointer to function variable.
1480 In aCC compiled code, the calls through pointers to functions (in the body
1481 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1482 requires some registers setting, this is taken care of if we call
1483 via a function pointer variable, but not via a function address.
7b83ea04 1484 In cc this is not a problem. */
c906108c
SS
1485
1486 if (using_gcc == 0)
ad2f7632 1487 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1488 /* if this parameter is a pointer to function */
c906108c 1489 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1490 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1491 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1492 to compile the target. We want to issue the error
070ad9f0
DB
1493 message only if the compiler used was HP's aCC.
1494 If we used HP's cc, then there is no problem and no need
7b83ea04 1495 to return at this point */
c5aa993b 1496 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1497 /* go see if the actual parameter is a variable of type
c5aa993b 1498 pointer to function or just a function */
c906108c
SS
1499 if (args[i]->lval == not_lval)
1500 {
1501 char *arg_name;
c5aa993b
JM
1502 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1503 error ("\
c906108c
SS
1504You cannot use function <%s> as argument. \n\
1505You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1506 }
c906108c
SS
1507 }
1508
d03e67c9
AC
1509 if (REG_STRUCT_HAS_ADDR_P ())
1510 {
1511 /* This is a machine like the sparc, where we may need to pass a
1512 pointer to the structure, not the structure itself. */
1513 for (i = nargs - 1; i >= 0; i--)
1514 {
1515 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1516 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1517 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1518 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1519 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1520 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1521 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1522 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1523 && TYPE_LENGTH (arg_type) > 8)
1524 )
1525 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1526 {
1527 CORE_ADDR addr;
1528 int len; /* = TYPE_LENGTH (arg_type); */
1529 int aligned_len;
1530 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1531 len = TYPE_LENGTH (arg_type);
1532
1533 if (STACK_ALIGN_P ())
1534 /* MVS 11/22/96: I think at least some of this
1535 stack_align code is really broken. Better to let
1536 PUSH_ARGUMENTS adjust the stack in a target-defined
1537 manner. */
1538 aligned_len = STACK_ALIGN (len);
1539 else
1540 aligned_len = len;
1541 if (INNER_THAN (1, 2))
1542 {
1543 /* stack grows downward */
1544 sp -= aligned_len;
0b3f98d3
AC
1545 /* ... so the address of the thing we push is the
1546 stack pointer after we push it. */
1547 addr = sp;
d03e67c9
AC
1548 }
1549 else
1550 {
1551 /* The stack grows up, so the address of the thing
1552 we push is the stack pointer before we push it. */
1553 addr = sp;
d03e67c9
AC
1554 sp += aligned_len;
1555 }
0b3f98d3
AC
1556 /* Push the structure. */
1557 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1558 /* The value we're going to pass is the address of the
1559 thing we just pushed. */
1560 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1561 (LONGEST) addr); */
1562 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1563 addr);
1564 }
1565 }
1566 }
1567
c906108c
SS
1568
1569 /* Reserve space for the return structure to be written on the
dc604539
AC
1570 stack, if necessary. Make certain that the value is correctly
1571 aligned. */
c906108c
SS
1572
1573 if (struct_return)
1574 {
1575 int len = TYPE_LENGTH (value_type);
2ada493a 1576 if (STACK_ALIGN_P ())
b81774d8
AC
1577 /* NOTE: cagney/2003-03-22: Should rely on frame align, rather
1578 than stack align to force the alignment of the stack. */
2ada493a 1579 len = STACK_ALIGN (len);
c906108c
SS
1580 if (INNER_THAN (1, 2))
1581 {
dc604539
AC
1582 /* Stack grows downward. Align STRUCT_ADDR and SP after
1583 making space for the return value. */
c906108c 1584 sp -= len;
dc604539
AC
1585 if (gdbarch_frame_align_p (current_gdbarch))
1586 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1587 struct_addr = sp;
1588 }
1589 else
1590 {
dc604539
AC
1591 /* Stack grows upward. Align the frame, allocate space, and
1592 then again, re-align the frame??? */
1593 if (gdbarch_frame_align_p (current_gdbarch))
1594 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1595 struct_addr = sp;
1596 sp += len;
dc604539
AC
1597 if (gdbarch_frame_align_p (current_gdbarch))
1598 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1599 }
1600 }
1601
0a49d05e
AC
1602 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1603 on other architectures. This is because all the alignment is
1604 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1605 in hppa_push_arguments */
f933a9c5
AC
1606 /* NOTE: cagney/2003-03-24: The below code is very broken. Given an
1607 odd sized parameter the below will mis-align the stack. As was
1608 suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
1609 if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1610 {
0a49d05e 1611 /* MVS 11/22/96: I think at least some of this stack_align code
b81774d8 1612 is really broken. Better to let push_dummy_call() adjust the
0a49d05e
AC
1613 stack in a target-defined manner. */
1614 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1615 {
1616 /* If stack grows down, we must leave a hole at the top. */
1617 int len = 0;
1618
1619 for (i = nargs - 1; i >= 0; i--)
1620 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1bf6d5cc
AC
1621 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1622 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
0a49d05e
AC
1623 sp -= STACK_ALIGN (len) - len;
1624 }
c906108c 1625 }
c906108c 1626
b81774d8
AC
1627 /* Create the dummy stack frame. Pass in the call dummy address as,
1628 presumably, the ABI code knows where, in the call dummy, the
1629 return address should be pointed. */
1630 if (gdbarch_push_dummy_call_p (current_gdbarch))
1631 /* When there is no push_dummy_call method, should this code
1632 simply error out. That would the implementation of this method
1633 for all ABIs (which is probably a good thing). */
1634 sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
1635 dummy_addr, nargs, args, sp, struct_return,
1636 struct_addr);
1637 else if (DEPRECATED_PUSH_ARGUMENTS_P ())
1638 /* Keep old targets working. */
1639 sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
1640 struct_addr);
1641 else
1642 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
c906108c 1643
28f617b3 1644 if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
69a0d5f4
AC
1645 /* for targets that use no CALL_DUMMY */
1646 /* There are a number of targets now which actually don't write
1647 any CALL_DUMMY instructions into the target, but instead just
1648 save the machine state, push the arguments, and jump directly
1649 to the callee function. Since this doesn't actually involve
1650 executing a JSR/BSR instruction, the return address must be set
1651 up by hand, either by pushing onto the stack or copying into a
1652 return-address register as appropriate. Formerly this has been
1653 done in PUSH_ARGUMENTS, but that's overloading its
1654 functionality a bit, so I'm making it explicit to do it here. */
28f617b3 1655 sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1656
b81774d8
AC
1657 /* NOTE: cagney/2003-03-23: Diable this code when there is a
1658 push_dummy_call() method. Since that method will have already
1659 handled any alignment issues, the code below is entirely
1660 redundant. */
1661 if (!gdbarch_push_dummy_call_p (current_gdbarch)
1662 && STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1663 {
1664 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1665 that sp already has been advanced for the arguments! */
1bf6d5cc
AC
1666 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1667 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1668 sp = STACK_ALIGN (sp);
1669 }
c906108c
SS
1670
1671/* XXX This seems wrong. For stacks that grow down we shouldn't do
1672 anything here! */
1673 /* MVS 11/22/96: I think at least some of this stack_align code is
1674 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1675 a target-defined manner. */
1bf6d5cc 1676 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
7a292a7a
SS
1677 if (INNER_THAN (1, 2))
1678 {
1679 /* stack grows downward */
1bf6d5cc 1680 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
7a292a7a 1681 }
c906108c
SS
1682
1683 /* Store the address at which the structure is supposed to be
4183d812
AC
1684 written. */
1685 /* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
1686 store the struct return address, this call is entirely redundant. */
1687 if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
1688 DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
c906108c
SS
1689
1690 /* Write the stack pointer. This is here because the statements above
1691 might fool with it. On SPARC, this write also stores the register
1692 window into the right place in the new stack frame, which otherwise
1693 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
b81774d8
AC
1694 /* NOTE: cagney/2003-03-23: Disable this code when there is a
1695 push_dummy_call() method. Since that method will have already
1696 stored the stack pointer (as part of creating the fake call
1697 frame), and none of the code following that code adjusts the
1698 stack-pointer value, the below call is entirely redundant. */
6c0e89ed
AC
1699 if (DEPRECATED_DUMMY_WRITE_SP_P ())
1700 DEPRECATED_DUMMY_WRITE_SP (sp);
c906108c 1701
d1e3cf49
AC
1702 if (SAVE_DUMMY_FRAME_TOS_P ())
1703 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1704
c906108c 1705 {
c906108c
SS
1706 char *name;
1707 struct symbol *symbol;
1708
1709 name = NULL;
1710 symbol = find_pc_function (funaddr);
1711 if (symbol)
1712 {
de5ad195 1713 name = SYMBOL_PRINT_NAME (symbol);
c906108c
SS
1714 }
1715 else
1716 {
1717 /* Try the minimal symbols. */
1718 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1719
1720 if (msymbol)
1721 {
de5ad195 1722 name = SYMBOL_PRINT_NAME (msymbol);
c906108c
SS
1723 }
1724 }
1725 if (name == NULL)
1726 {
1727 char format[80];
1728 sprintf (format, "at %s", local_hex_format ());
1729 name = alloca (80);
1730 /* FIXME-32x64: assumes funaddr fits in a long. */
1731 sprintf (name, format, (unsigned long) funaddr);
1732 }
1733
1734 /* Execute the stack dummy routine, calling FUNCTION.
1735 When it is done, discard the empty frame
1736 after storing the contents of all regs into retbuf. */
da59e081
JM
1737 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1738
1739 if (rc == 1)
1740 {
1741 /* We stopped inside the FUNCTION because of a random signal.
1742 Further execution of the FUNCTION is not allowed. */
1743
7b83ea04 1744 if (unwind_on_signal_p)
242bfc55
FN
1745 {
1746 /* The user wants the context restored. */
da59e081 1747
dbe9fe58
AC
1748 /* We must get back to the frame we were before the dummy
1749 call. */
1750 frame_pop (get_current_frame ());
242bfc55
FN
1751
1752 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1753 a C++ name with arguments and stuff. */
1754 error ("\
1755The program being debugged was signaled while in a function called from GDB.\n\
1756GDB has restored the context to what it was before the call.\n\
1757To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1758Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1759 name);
1760 }
1761 else
1762 {
1763 /* The user wants to stay in the frame where we stopped (default).*/
1764
26e6c56a
AC
1765 /* If we restored the inferior status (via the cleanup),
1766 we would print a spurious error message (Unable to
1767 restore previously selected frame), would write the
1768 registers from the inf_status (which is wrong), and
1769 would do other wrong things. */
1770 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1771 discard_inferior_status (inf_status);
1772
1773 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1774 a C++ name with arguments and stuff. */
1775 error ("\
1776The program being debugged was signaled while in a function called from GDB.\n\
1777GDB remains in the frame where the signal was received.\n\
1778To change this behavior use \"set unwindonsignal on\"\n\
1779Evaluation of the expression containing the function (%s) will be abandoned.",
1780 name);
1781 }
da59e081
JM
1782 }
1783
1784 if (rc == 2)
c906108c 1785 {
da59e081 1786 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1787
26e6c56a
AC
1788 /* If we restored the inferior status (via the cleanup), we
1789 would print a spurious error message (Unable to restore
1790 previously selected frame), would write the registers from
1791 the inf_status (which is wrong), and would do other wrong
1792 things. */
1793 discard_cleanups (inf_status_cleanup);
7a292a7a 1794 discard_inferior_status (inf_status);
c906108c
SS
1795
1796 /* The following error message used to say "The expression
1797 which contained the function call has been discarded." It
1798 is a hard concept to explain in a few words. Ideally, GDB
1799 would be able to resume evaluation of the expression when
1800 the function finally is done executing. Perhaps someday
1801 this will be implemented (it would not be easy). */
1802
1803 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1804 a C++ name with arguments and stuff. */
1805 error ("\
1806The program being debugged stopped while in a function called from GDB.\n\
1807When the function (%s) is done executing, GDB will silently\n\
1808stop (instead of continuing to evaluate the expression containing\n\
1809the function call).", name);
1810 }
1811
da59e081 1812 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1813
1814 /* Restore the inferior status, via its cleanup. At this stage,
1815 leave the RETBUF alone. */
1816 do_cleanups (inf_status_cleanup);
c906108c
SS
1817
1818 /* Figure out the value returned by the function. */
dc604539
AC
1819 /* elz: I defined this new macro for the hppa architecture only.
1820 this gives us a way to get the value returned by the function
1821 from the stack, at the same address we told the function to put
1822 it. We cannot assume on the pa that r28 still contains the
1823 address of the returned structure. Usually this will be
1824 overwritten by the callee. I don't know about other
1825 architectures, so I defined this macro */
c906108c
SS
1826#ifdef VALUE_RETURNED_FROM_STACK
1827 if (struct_return)
26e6c56a
AC
1828 {
1829 do_cleanups (retbuf_cleanup);
1830 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1831 }
c906108c 1832#endif
dc604539
AC
1833 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1834 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1835 fetch the return value direct from the stack. This lack of
1836 trust comes about because legacy targets have a nasty habit of
1837 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1838 For such targets, just hope that value_being_returned() can
1839 find the adjusted value. */
1840 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1841 {
1842 struct value *retval = value_at (value_type, struct_addr, NULL);
1843 do_cleanups (retbuf_cleanup);
1844 return retval;
1845 }
1846 else
1847 {
1848 struct value *retval = value_being_returned (value_type, retbuf,
1849 struct_return);
1850 do_cleanups (retbuf_cleanup);
1851 return retval;
1852 }
c906108c
SS
1853 }
1854}
7a292a7a 1855
c906108c
SS
1856/* Create a value for an array by allocating space in the inferior, copying
1857 the data into that space, and then setting up an array value.
1858
1859 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1860 populated from the values passed in ELEMVEC.
1861
1862 The element type of the array is inherited from the type of the
1863 first element, and all elements must have the same size (though we
1864 don't currently enforce any restriction on their types). */
1865
f23631e4
AC
1866struct value *
1867value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1868{
1869 int nelem;
1870 int idx;
1871 unsigned int typelength;
f23631e4 1872 struct value *val;
c906108c
SS
1873 struct type *rangetype;
1874 struct type *arraytype;
1875 CORE_ADDR addr;
1876
1877 /* Validate that the bounds are reasonable and that each of the elements
1878 have the same size. */
1879
1880 nelem = highbound - lowbound + 1;
1881 if (nelem <= 0)
1882 {
1883 error ("bad array bounds (%d, %d)", lowbound, highbound);
1884 }
1885 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1886 for (idx = 1; idx < nelem; idx++)
1887 {
1888 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1889 {
1890 error ("array elements must all be the same size");
1891 }
1892 }
1893
1894 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1895 lowbound, highbound);
c5aa993b
JM
1896 arraytype = create_array_type ((struct type *) NULL,
1897 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1898
1899 if (!current_language->c_style_arrays)
1900 {
1901 val = allocate_value (arraytype);
1902 for (idx = 0; idx < nelem; idx++)
1903 {
1904 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1905 VALUE_CONTENTS_ALL (elemvec[idx]),
1906 typelength);
1907 }
1908 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1909 return val;
1910 }
1911
1912 /* Allocate space to store the array in the inferior, and then initialize
1913 it by copying in each element. FIXME: Is it worth it to create a
1914 local buffer in which to collect each value and then write all the
1915 bytes in one operation? */
1916
1917 addr = allocate_space_in_inferior (nelem * typelength);
1918 for (idx = 0; idx < nelem; idx++)
1919 {
1920 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1921 typelength);
1922 }
1923
1924 /* Create the array type and set up an array value to be evaluated lazily. */
1925
1926 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1927 return (val);
1928}
1929
1930/* Create a value for a string constant by allocating space in the inferior,
1931 copying the data into that space, and returning the address with type
1932 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1933 of characters.
1934 Note that string types are like array of char types with a lower bound of
1935 zero and an upper bound of LEN - 1. Also note that the string may contain
1936 embedded null bytes. */
1937
f23631e4 1938struct value *
fba45db2 1939value_string (char *ptr, int len)
c906108c 1940{
f23631e4 1941 struct value *val;
c906108c
SS
1942 int lowbound = current_language->string_lower_bound;
1943 struct type *rangetype = create_range_type ((struct type *) NULL,
1944 builtin_type_int,
1945 lowbound, len + lowbound - 1);
1946 struct type *stringtype
c5aa993b 1947 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1948 CORE_ADDR addr;
1949
1950 if (current_language->c_style_arrays == 0)
1951 {
1952 val = allocate_value (stringtype);
1953 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1954 return val;
1955 }
1956
1957
1958 /* Allocate space to store the string in the inferior, and then
1959 copy LEN bytes from PTR in gdb to that address in the inferior. */
1960
1961 addr = allocate_space_in_inferior (len);
1962 write_memory (addr, ptr, len);
1963
1964 val = value_at_lazy (stringtype, addr, NULL);
1965 return (val);
1966}
1967
f23631e4 1968struct value *
fba45db2 1969value_bitstring (char *ptr, int len)
c906108c 1970{
f23631e4 1971 struct value *val;
c906108c
SS
1972 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1973 0, len - 1);
c5aa993b 1974 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1975 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1976 val = allocate_value (type);
1977 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1978 return val;
1979}
1980\f
1981/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1982 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1983 vector. If some arguments need coercion of some sort, then the coerced
1984 values are written into T2. Return value is 0 if the arguments could be
1985 matched, or the position at which they differ if not.
c906108c
SS
1986
1987 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1988 static member function. T2 will still include the ``this'' pointer,
1989 but it will be skipped.
c906108c
SS
1990
1991 For non-static member functions, we ignore the first argument,
1992 which is the type of the instance variable. This is because we want
1993 to handle calls with objects from derived classes. This is not
1994 entirely correct: we should actually check to make sure that a
1995 requested operation is type secure, shouldn't we? FIXME. */
1996
1997static int
ad2f7632
DJ
1998typecmp (int staticp, int varargs, int nargs,
1999 struct field t1[], struct value *t2[])
c906108c
SS
2000{
2001 int i;
2002
2003 if (t2 == 0)
ad2f7632
DJ
2004 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2005
4a1970e4
DJ
2006 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2007 if (staticp)
ad2f7632
DJ
2008 t2 ++;
2009
2010 for (i = 0;
2011 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2012 i++)
c906108c 2013 {
c5aa993b 2014 struct type *tt1, *tt2;
ad2f7632 2015
c5aa993b
JM
2016 if (!t2[i])
2017 return i + 1;
ad2f7632
DJ
2018
2019 tt1 = check_typedef (t1[i].type);
c5aa993b 2020 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 2021
c906108c 2022 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2023 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2024 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2025 {
2026 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2027 t2[i] = value_coerce_array (t2[i]);
2028 else
2029 t2[i] = value_addr (t2[i]);
2030 continue;
2031 }
2032
802db21b
DB
2033 /* djb - 20000715 - Until the new type structure is in the
2034 place, and we can attempt things like implicit conversions,
2035 we need to do this so you can take something like a map<const
2036 char *>, and properly access map["hello"], because the
2037 argument to [] will be a reference to a pointer to a char,
7168a814 2038 and the argument will be a pointer to a char. */
802db21b
DB
2039 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2040 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2041 {
2042 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2043 }
2044 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2045 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2046 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 2047 {
802db21b 2048 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 2049 }
c5aa993b
JM
2050 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2051 continue;
c906108c
SS
2052 /* Array to pointer is a `trivial conversion' according to the ARM. */
2053
2054 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2055 of the ARM), but as a quick kludge, just check for the same type
2056 code. */
ad2f7632 2057 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2058 return i + 1;
c906108c 2059 }
ad2f7632 2060 if (varargs || t2[i] == NULL)
c5aa993b 2061 return 0;
ad2f7632 2062 return i + 1;
c906108c
SS
2063}
2064
2065/* Helper function used by value_struct_elt to recurse through baseclasses.
2066 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2067 and search in it assuming it has (class) type TYPE.
2068 If found, return value, else return NULL.
2069
2070 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2071 look for a baseclass named NAME. */
2072
f23631e4
AC
2073static struct value *
2074search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2075 register struct type *type, int looking_for_baseclass)
c906108c
SS
2076{
2077 int i;
2078 int nbases = TYPE_N_BASECLASSES (type);
2079
2080 CHECK_TYPEDEF (type);
2081
c5aa993b 2082 if (!looking_for_baseclass)
c906108c
SS
2083 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2084 {
2085 char *t_field_name = TYPE_FIELD_NAME (type, i);
2086
db577aea 2087 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2088 {
f23631e4 2089 struct value *v;
c906108c 2090 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2091 {
2092 v = value_static_field (type, i);
2093 if (v == 0)
2094 error ("field %s is nonexistent or has been optimised out",
2095 name);
2096 }
c906108c 2097 else
2c2738a0
DC
2098 {
2099 v = value_primitive_field (arg1, offset, i, type);
2100 if (v == 0)
2101 error ("there is no field named %s", name);
2102 }
c906108c
SS
2103 return v;
2104 }
2105
2106 if (t_field_name
2107 && (t_field_name[0] == '\0'
2108 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2109 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2110 {
2111 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2112 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2113 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2114 {
2115 /* Look for a match through the fields of an anonymous union,
2116 or anonymous struct. C++ provides anonymous unions.
2117
1b831c93
AC
2118 In the GNU Chill (now deleted from GDB)
2119 implementation of variant record types, each
2120 <alternative field> has an (anonymous) union type,
2121 each member of the union represents a <variant
2122 alternative>. Each <variant alternative> is
2123 represented as a struct, with a member for each
2124 <variant field>. */
c5aa993b 2125
f23631e4 2126 struct value *v;
c906108c
SS
2127 int new_offset = offset;
2128
db034ac5
AC
2129 /* This is pretty gross. In G++, the offset in an
2130 anonymous union is relative to the beginning of the
1b831c93
AC
2131 enclosing struct. In the GNU Chill (now deleted
2132 from GDB) implementation of variant records, the
2133 bitpos is zero in an anonymous union field, so we
2134 have to add the offset of the union here. */
c906108c
SS
2135 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2136 || (TYPE_NFIELDS (field_type) > 0
2137 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2138 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2139
2140 v = search_struct_field (name, arg1, new_offset, field_type,
2141 looking_for_baseclass);
2142 if (v)
2143 return v;
2144 }
2145 }
2146 }
2147
c5aa993b 2148 for (i = 0; i < nbases; i++)
c906108c 2149 {
f23631e4 2150 struct value *v;
c906108c
SS
2151 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2152 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2153 hit them. But it could happen that the base part's member name
2154 is not yet filled in. */
c906108c
SS
2155 int found_baseclass = (looking_for_baseclass
2156 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2157 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2158
2159 if (BASETYPE_VIA_VIRTUAL (type, i))
2160 {
2161 int boffset;
f23631e4 2162 struct value *v2 = allocate_value (basetype);
c906108c
SS
2163
2164 boffset = baseclass_offset (type, i,
2165 VALUE_CONTENTS (arg1) + offset,
2166 VALUE_ADDRESS (arg1)
c5aa993b 2167 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2168 if (boffset == -1)
2169 error ("virtual baseclass botch");
2170
2171 /* The virtual base class pointer might have been clobbered by the
2172 user program. Make sure that it still points to a valid memory
2173 location. */
2174
2175 boffset += offset;
2176 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2177 {
2178 CORE_ADDR base_addr;
c5aa993b 2179
c906108c
SS
2180 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2181 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2182 TYPE_LENGTH (basetype)) != 0)
2183 error ("virtual baseclass botch");
2184 VALUE_LVAL (v2) = lval_memory;
2185 VALUE_ADDRESS (v2) = base_addr;
2186 }
2187 else
2188 {
2189 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2190 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2191 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2192 if (VALUE_LAZY (arg1))
2193 VALUE_LAZY (v2) = 1;
2194 else
2195 memcpy (VALUE_CONTENTS_RAW (v2),
2196 VALUE_CONTENTS_RAW (arg1) + boffset,
2197 TYPE_LENGTH (basetype));
2198 }
2199
2200 if (found_baseclass)
2201 return v2;
2202 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2203 looking_for_baseclass);
2204 }
2205 else if (found_baseclass)
2206 v = value_primitive_field (arg1, offset, i, type);
2207 else
2208 v = search_struct_field (name, arg1,
c5aa993b 2209 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2210 basetype, looking_for_baseclass);
c5aa993b
JM
2211 if (v)
2212 return v;
c906108c
SS
2213 }
2214 return NULL;
2215}
2216
2217
2218/* Return the offset (in bytes) of the virtual base of type BASETYPE
2219 * in an object pointed to by VALADDR (on the host), assumed to be of
2220 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2221 * looking (in case VALADDR is the contents of an enclosing object).
2222 *
2223 * This routine recurses on the primary base of the derived class because
2224 * the virtual base entries of the primary base appear before the other
2225 * virtual base entries.
2226 *
2227 * If the virtual base is not found, a negative integer is returned.
2228 * The magnitude of the negative integer is the number of entries in
2229 * the virtual table to skip over (entries corresponding to various
2230 * ancestral classes in the chain of primary bases).
2231 *
2232 * Important: This assumes the HP / Taligent C++ runtime
2233 * conventions. Use baseclass_offset() instead to deal with g++
2234 * conventions. */
2235
2236void
fba45db2
KB
2237find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2238 int offset, int *boffset_p, int *skip_p)
c906108c 2239{
c5aa993b
JM
2240 int boffset; /* offset of virtual base */
2241 int index; /* displacement to use in virtual table */
c906108c 2242 int skip;
c5aa993b 2243
f23631e4 2244 struct value *vp;
c5aa993b
JM
2245 CORE_ADDR vtbl; /* the virtual table pointer */
2246 struct type *pbc; /* the primary base class */
c906108c
SS
2247
2248 /* Look for the virtual base recursively in the primary base, first.
2249 * This is because the derived class object and its primary base
2250 * subobject share the primary virtual table. */
c5aa993b 2251
c906108c 2252 boffset = 0;
c5aa993b 2253 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2254 if (pbc)
2255 {
2256 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2257 if (skip < 0)
c5aa993b
JM
2258 {
2259 *boffset_p = boffset;
2260 *skip_p = -1;
2261 return;
2262 }
c906108c
SS
2263 }
2264 else
2265 skip = 0;
2266
2267
2268 /* Find the index of the virtual base according to HP/Taligent
2269 runtime spec. (Depth-first, left-to-right.) */
2270 index = virtual_base_index_skip_primaries (basetype, type);
2271
c5aa993b
JM
2272 if (index < 0)
2273 {
2274 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2275 *boffset_p = 0;
2276 return;
2277 }
c906108c 2278
c5aa993b 2279 /* pai: FIXME -- 32x64 possible problem */
c906108c 2280 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2281 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2282
c5aa993b 2283 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2284 if (vtbl == 0)
2285 error ("Couldn't find virtual table -- object may not be constructed yet.");
2286
2287
2288 /* Find virtual base's offset -- jump over entries for primary base
2289 * ancestors, then use the index computed above. But also adjust by
2290 * HP_ACC_VBASE_START for the vtable slots before the start of the
2291 * virtual base entries. Offset is negative -- virtual base entries
2292 * appear _before_ the address point of the virtual table. */
c5aa993b 2293
070ad9f0 2294 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2295 & use long type */
c906108c
SS
2296
2297 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2298 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2299 boffset = value_as_long (vp);
2300 *skip_p = -1;
2301 *boffset_p = boffset;
2302 return;
2303}
2304
2305
2306/* Helper function used by value_struct_elt to recurse through baseclasses.
2307 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2308 and search in it assuming it has (class) type TYPE.
2309 If found, return value, else if name matched and args not return (value)-1,
2310 else return NULL. */
2311
f23631e4
AC
2312static struct value *
2313search_struct_method (char *name, struct value **arg1p,
2314 struct value **args, int offset,
fba45db2 2315 int *static_memfuncp, register struct type *type)
c906108c
SS
2316{
2317 int i;
f23631e4 2318 struct value *v;
c906108c
SS
2319 int name_matched = 0;
2320 char dem_opname[64];
2321
2322 CHECK_TYPEDEF (type);
2323 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2324 {
2325 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2326 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2327 if (strncmp (t_field_name, "__", 2) == 0 ||
2328 strncmp (t_field_name, "op", 2) == 0 ||
2329 strncmp (t_field_name, "type", 4) == 0)
c906108c 2330 {
c5aa993b
JM
2331 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2332 t_field_name = dem_opname;
2333 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2334 t_field_name = dem_opname;
c906108c 2335 }
db577aea 2336 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2337 {
2338 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2339 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2340 name_matched = 1;
c906108c 2341
de17c821 2342 check_stub_method_group (type, i);
c906108c
SS
2343 if (j > 0 && args == 0)
2344 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2345 else if (j == 0 && args == 0)
c906108c 2346 {
acf5ed49
DJ
2347 v = value_fn_field (arg1p, f, j, type, offset);
2348 if (v != NULL)
2349 return v;
c906108c 2350 }
acf5ed49
DJ
2351 else
2352 while (j >= 0)
2353 {
acf5ed49 2354 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2355 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2356 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2357 TYPE_FN_FIELD_ARGS (f, j), args))
2358 {
2359 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2360 return value_virtual_fn_field (arg1p, f, j, type, offset);
2361 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2362 *static_memfuncp = 1;
2363 v = value_fn_field (arg1p, f, j, type, offset);
2364 if (v != NULL)
2365 return v;
2366 }
2367 j--;
2368 }
c906108c
SS
2369 }
2370 }
2371
2372 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2373 {
2374 int base_offset;
2375
2376 if (BASETYPE_VIA_VIRTUAL (type, i))
2377 {
c5aa993b
JM
2378 if (TYPE_HAS_VTABLE (type))
2379 {
2380 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2381 according to HP/Taligent runtime spec. */
c5aa993b
JM
2382 int skip;
2383 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2384 VALUE_CONTENTS_ALL (*arg1p),
2385 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2386 &base_offset, &skip);
2387 if (skip >= 0)
2388 error ("Virtual base class offset not found in vtable");
2389 }
2390 else
2391 {
2392 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2393 char *base_valaddr;
2394
2395 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2396 user program. Make sure that it still points to a valid memory
2397 location. */
c5aa993b
JM
2398
2399 if (offset < 0 || offset >= TYPE_LENGTH (type))
2400 {
2401 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2402 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2403 + VALUE_OFFSET (*arg1p) + offset,
2404 base_valaddr,
2405 TYPE_LENGTH (baseclass)) != 0)
2406 error ("virtual baseclass botch");
2407 }
2408 else
2409 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2410
2411 base_offset =
2412 baseclass_offset (type, i, base_valaddr,
2413 VALUE_ADDRESS (*arg1p)
2414 + VALUE_OFFSET (*arg1p) + offset);
2415 if (base_offset == -1)
2416 error ("virtual baseclass botch");
2417 }
2418 }
c906108c
SS
2419 else
2420 {
2421 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2422 }
c906108c
SS
2423 v = search_struct_method (name, arg1p, args, base_offset + offset,
2424 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2425 if (v == (struct value *) - 1)
c906108c
SS
2426 {
2427 name_matched = 1;
2428 }
2429 else if (v)
2430 {
2431/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2432/* *arg1p = arg1_tmp; */
c906108c 2433 return v;
c5aa993b 2434 }
c906108c 2435 }
c5aa993b 2436 if (name_matched)
f23631e4 2437 return (struct value *) - 1;
c5aa993b
JM
2438 else
2439 return NULL;
c906108c
SS
2440}
2441
2442/* Given *ARGP, a value of type (pointer to a)* structure/union,
2443 extract the component named NAME from the ultimate target structure/union
2444 and return it as a value with its appropriate type.
2445 ERR is used in the error message if *ARGP's type is wrong.
2446
2447 C++: ARGS is a list of argument types to aid in the selection of
2448 an appropriate method. Also, handle derived types.
2449
2450 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2451 where the truthvalue of whether the function that was resolved was
2452 a static member function or not is stored.
2453
2454 ERR is an error message to be printed in case the field is not found. */
2455
f23631e4
AC
2456struct value *
2457value_struct_elt (struct value **argp, struct value **args,
fba45db2 2458 char *name, int *static_memfuncp, char *err)
c906108c
SS
2459{
2460 register struct type *t;
f23631e4 2461 struct value *v;
c906108c
SS
2462
2463 COERCE_ARRAY (*argp);
2464
2465 t = check_typedef (VALUE_TYPE (*argp));
2466
2467 /* Follow pointers until we get to a non-pointer. */
2468
2469 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2470 {
2471 *argp = value_ind (*argp);
2472 /* Don't coerce fn pointer to fn and then back again! */
2473 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2474 COERCE_ARRAY (*argp);
2475 t = check_typedef (VALUE_TYPE (*argp));
2476 }
2477
2478 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2479 error ("not implemented: member type in value_struct_elt");
2480
c5aa993b 2481 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2482 && TYPE_CODE (t) != TYPE_CODE_UNION)
2483 error ("Attempt to extract a component of a value that is not a %s.", err);
2484
2485 /* Assume it's not, unless we see that it is. */
2486 if (static_memfuncp)
c5aa993b 2487 *static_memfuncp = 0;
c906108c
SS
2488
2489 if (!args)
2490 {
2491 /* if there are no arguments ...do this... */
2492
2493 /* Try as a field first, because if we succeed, there
7b83ea04 2494 is less work to be done. */
c906108c
SS
2495 v = search_struct_field (name, *argp, 0, t, 0);
2496 if (v)
2497 return v;
2498
2499 /* C++: If it was not found as a data field, then try to
7b83ea04 2500 return it as a pointer to a method. */
c906108c
SS
2501
2502 if (destructor_name_p (name, t))
2503 error ("Cannot get value of destructor");
2504
2505 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2506
f23631e4 2507 if (v == (struct value *) - 1)
c906108c
SS
2508 error ("Cannot take address of a method");
2509 else if (v == 0)
2510 {
2511 if (TYPE_NFN_FIELDS (t))
2512 error ("There is no member or method named %s.", name);
2513 else
2514 error ("There is no member named %s.", name);
2515 }
2516 return v;
2517 }
2518
2519 if (destructor_name_p (name, t))
2520 {
2521 if (!args[1])
2522 {
2523 /* Destructors are a special case. */
2524 int m_index, f_index;
2525
2526 v = NULL;
2527 if (get_destructor_fn_field (t, &m_index, &f_index))
2528 {
2529 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2530 f_index, NULL, 0);
2531 }
2532 if (v == NULL)
2533 error ("could not find destructor function named %s.", name);
2534 else
2535 return v;
2536 }
2537 else
2538 {
2539 error ("destructor should not have any argument");
2540 }
2541 }
2542 else
2543 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2544
f23631e4 2545 if (v == (struct value *) - 1)
c906108c 2546 {
7168a814 2547 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2548 }
2549 else if (v == 0)
2550 {
2551 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2552 hand it back. If it's not callable (i.e., a pointer to function),
2553 gdb should give an error. */
c906108c
SS
2554 v = search_struct_field (name, *argp, 0, t, 0);
2555 }
2556
2557 if (!v)
2558 error ("Structure has no component named %s.", name);
2559 return v;
2560}
2561
2562/* Search through the methods of an object (and its bases)
2563 * to find a specified method. Return the pointer to the
2564 * fn_field list of overloaded instances.
2565 * Helper function for value_find_oload_list.
2566 * ARGP is a pointer to a pointer to a value (the object)
2567 * METHOD is a string containing the method name
2568 * OFFSET is the offset within the value
c906108c
SS
2569 * TYPE is the assumed type of the object
2570 * NUM_FNS is the number of overloaded instances
2571 * BASETYPE is set to the actual type of the subobject where the method is found
2572 * BOFFSET is the offset of the base subobject where the method is found */
2573
7a292a7a 2574static struct fn_field *
f23631e4 2575find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2576 struct type *type, int *num_fns,
fba45db2 2577 struct type **basetype, int *boffset)
c906108c
SS
2578{
2579 int i;
c5aa993b 2580 struct fn_field *f;
c906108c
SS
2581 CHECK_TYPEDEF (type);
2582
2583 *num_fns = 0;
2584
c5aa993b
JM
2585 /* First check in object itself */
2586 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2587 {
2588 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2589 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2590 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2591 {
4a1970e4
DJ
2592 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2593 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4a1970e4
DJ
2594
2595 *num_fns = len;
c5aa993b
JM
2596 *basetype = type;
2597 *boffset = offset;
4a1970e4 2598
de17c821
DJ
2599 /* Resolve any stub methods. */
2600 check_stub_method_group (type, i);
4a1970e4
DJ
2601
2602 return f;
c5aa993b
JM
2603 }
2604 }
2605
c906108c
SS
2606 /* Not found in object, check in base subobjects */
2607 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2608 {
2609 int base_offset;
2610 if (BASETYPE_VIA_VIRTUAL (type, i))
2611 {
c5aa993b
JM
2612 if (TYPE_HAS_VTABLE (type))
2613 {
2614 /* HP aCC compiled type, search for virtual base offset
2615 * according to HP/Taligent runtime spec. */
2616 int skip;
2617 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2618 VALUE_CONTENTS_ALL (*argp),
2619 offset + VALUE_EMBEDDED_OFFSET (*argp),
2620 &base_offset, &skip);
2621 if (skip >= 0)
2622 error ("Virtual base class offset not found in vtable");
2623 }
2624 else
2625 {
2626 /* probably g++ runtime model */
2627 base_offset = VALUE_OFFSET (*argp) + offset;
2628 base_offset =
2629 baseclass_offset (type, i,
2630 VALUE_CONTENTS (*argp) + base_offset,
2631 VALUE_ADDRESS (*argp) + base_offset);
2632 if (base_offset == -1)
2633 error ("virtual baseclass botch");
2634 }
2635 }
2636 else
2637 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2638 {
2639 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2640 }
c906108c 2641 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2642 TYPE_BASECLASS (type, i), num_fns, basetype,
2643 boffset);
c906108c 2644 if (f)
c5aa993b 2645 return f;
c906108c 2646 }
c5aa993b 2647 return NULL;
c906108c
SS
2648}
2649
2650/* Return the list of overloaded methods of a specified name.
2651 * ARGP is a pointer to a pointer to a value (the object)
2652 * METHOD is the method name
2653 * OFFSET is the offset within the value contents
c906108c
SS
2654 * NUM_FNS is the number of overloaded instances
2655 * BASETYPE is set to the type of the base subobject that defines the method
2656 * BOFFSET is the offset of the base subobject which defines the method */
2657
2658struct fn_field *
f23631e4 2659value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2660 int *num_fns, struct type **basetype,
2661 int *boffset)
c906108c 2662{
c5aa993b 2663 struct type *t;
c906108c
SS
2664
2665 t = check_typedef (VALUE_TYPE (*argp));
2666
c5aa993b 2667 /* code snarfed from value_struct_elt */
c906108c
SS
2668 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2669 {
2670 *argp = value_ind (*argp);
2671 /* Don't coerce fn pointer to fn and then back again! */
2672 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2673 COERCE_ARRAY (*argp);
2674 t = check_typedef (VALUE_TYPE (*argp));
2675 }
c5aa993b 2676
c906108c
SS
2677 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2678 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2679
2680 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2681 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2682 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2683
4a1970e4 2684 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2685}
2686
2687/* Given an array of argument types (ARGTYPES) (which includes an
2688 entry for "this" in the case of C++ methods), the number of
2689 arguments NARGS, the NAME of a function whether it's a method or
2690 not (METHOD), and the degree of laxness (LAX) in conforming to
2691 overload resolution rules in ANSI C++, find the best function that
2692 matches on the argument types according to the overload resolution
2693 rules.
2694
2695 In the case of class methods, the parameter OBJ is an object value
2696 in which to search for overloaded methods.
2697
2698 In the case of non-method functions, the parameter FSYM is a symbol
2699 corresponding to one of the overloaded functions.
2700
2701 Return value is an integer: 0 -> good match, 10 -> debugger applied
2702 non-standard coercions, 100 -> incompatible.
2703
2704 If a method is being searched for, VALP will hold the value.
2705 If a non-method is being searched for, SYMP will hold the symbol for it.
2706
2707 If a method is being searched for, and it is a static method,
2708 then STATICP will point to a non-zero value.
2709
2710 Note: This function does *not* check the value of
2711 overload_resolution. Caller must check it to see whether overload
2712 resolution is permitted.
c5aa993b 2713 */
c906108c
SS
2714
2715int
fba45db2 2716find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2717 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2718 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2719{
2720 int nparms;
c5aa993b 2721 struct type **parm_types;
c906108c 2722 int champ_nparms = 0;
7f8c9282 2723 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2724
2725 short oload_champ = -1; /* Index of best overloaded function */
2726 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2727 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2728 short oload_ambig_champ = -1; /* 2nd contender for best match */
2729 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2730 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2731
2732 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2733 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2734
f23631e4 2735 struct value *temp = obj;
c5aa993b
JM
2736 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2737 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2738 int num_fns = 0; /* Number of overloaded instances being considered */
2739 struct type *basetype = NULL;
c906108c
SS
2740 int boffset;
2741 register int jj;
2742 register int ix;
4a1970e4 2743 int static_offset;
02f0d45d 2744 struct cleanup *cleanups = NULL;
c906108c 2745
c5aa993b
JM
2746 char *obj_type_name = NULL;
2747 char *func_name = NULL;
c906108c
SS
2748
2749 /* Get the list of overloaded methods or functions */
2750 if (method)
2751 {
2752 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2753 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2754 value rather than the object itself, so try again */
c906108c 2755 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2756 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2757 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2758
2759 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2760 &num_fns,
2761 &basetype, &boffset);
c906108c 2762 if (!fns_ptr || !num_fns)
c5aa993b
JM
2763 error ("Couldn't find method %s%s%s",
2764 obj_type_name,
2765 (obj_type_name && *obj_type_name) ? "::" : "",
2766 name);
4a1970e4
DJ
2767 /* If we are dealing with stub method types, they should have
2768 been resolved by find_method_list via value_find_oload_method_list
2769 above. */
2770 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2771 }
2772 else
2773 {
2774 int i = -1;
22abf04a 2775 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
c906108c 2776
917317f4 2777 /* If the name is NULL this must be a C-style function.
7b83ea04 2778 Just return the same symbol. */
917317f4 2779 if (!func_name)
7b83ea04 2780 {
917317f4 2781 *symp = fsym;
7b83ea04
AC
2782 return 0;
2783 }
917317f4 2784
c906108c 2785 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2786 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2787 while (oload_syms[++i])
c5aa993b 2788 num_fns++;
c906108c 2789 if (!num_fns)
c5aa993b 2790 error ("Couldn't find function %s", func_name);
c906108c 2791 }
c5aa993b 2792
c906108c
SS
2793 oload_champ_bv = NULL;
2794
c5aa993b 2795 /* Consider each candidate in turn */
c906108c
SS
2796 for (ix = 0; ix < num_fns; ix++)
2797 {
4a1970e4 2798 static_offset = 0;
db577aea
AC
2799 if (method)
2800 {
4a1970e4
DJ
2801 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2802 static_offset = 1;
ad2f7632 2803 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2804 }
2805 else
2806 {
2807 /* If it's not a method, this is the proper place */
2808 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2809 }
c906108c 2810
c5aa993b 2811 /* Prepare array of parameter types */
c906108c
SS
2812 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2813 for (jj = 0; jj < nparms; jj++)
db577aea 2814 parm_types[jj] = (method
ad2f7632 2815 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2816 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2817
4a1970e4
DJ
2818 /* Compare parameter types to supplied argument types. Skip THIS for
2819 static methods. */
2820 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2821 nargs - static_offset);
c5aa993b 2822
c906108c 2823 if (!oload_champ_bv)
c5aa993b
JM
2824 {
2825 oload_champ_bv = bv;
2826 oload_champ = 0;
2827 champ_nparms = nparms;
2828 }
c906108c 2829 else
c5aa993b
JM
2830 /* See whether current candidate is better or worse than previous best */
2831 switch (compare_badness (bv, oload_champ_bv))
2832 {
2833 case 0:
2834 oload_ambiguous = 1; /* top two contenders are equally good */
2835 oload_ambig_champ = ix;
2836 break;
2837 case 1:
2838 oload_ambiguous = 2; /* incomparable top contenders */
2839 oload_ambig_champ = ix;
2840 break;
2841 case 2:
2842 oload_champ_bv = bv; /* new champion, record details */
2843 oload_ambiguous = 0;
2844 oload_champ = ix;
2845 oload_ambig_champ = -1;
2846 champ_nparms = nparms;
2847 break;
2848 case 3:
2849 default:
2850 break;
2851 }
b8c9b27d 2852 xfree (parm_types);
6b1ba9a0
ND
2853 if (overload_debug)
2854 {
2855 if (method)
2856 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2857 else
2858 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2859 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2860 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2861 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2862 }
c5aa993b 2863 } /* end loop over all candidates */
db577aea
AC
2864 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2865 if they have the exact same goodness. This is because there is no
2866 way to differentiate based on return type, which we need to in
2867 cases like overloads of .begin() <It's both const and non-const> */
2868#if 0
c906108c
SS
2869 if (oload_ambiguous)
2870 {
2871 if (method)
c5aa993b
JM
2872 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2873 obj_type_name,
2874 (obj_type_name && *obj_type_name) ? "::" : "",
2875 name);
c906108c 2876 else
c5aa993b
JM
2877 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2878 func_name);
c906108c 2879 }
db577aea 2880#endif
c906108c 2881
4a1970e4
DJ
2882 /* Check how bad the best match is. */
2883 static_offset = 0;
2884 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2885 static_offset = 1;
2886 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2887 {
6b1ba9a0
ND
2888 if (oload_champ_bv->rank[ix] >= 100)
2889 oload_incompatible = 1; /* truly mismatched types */
2890
2891 else if (oload_champ_bv->rank[ix] >= 10)
2892 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2893 }
2894 if (oload_incompatible)
2895 {
2896 if (method)
c5aa993b
JM
2897 error ("Cannot resolve method %s%s%s to any overloaded instance",
2898 obj_type_name,
2899 (obj_type_name && *obj_type_name) ? "::" : "",
2900 name);
c906108c 2901 else
c5aa993b
JM
2902 error ("Cannot resolve function %s to any overloaded instance",
2903 func_name);
c906108c
SS
2904 }
2905 else if (oload_non_standard)
2906 {
2907 if (method)
c5aa993b
JM
2908 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2909 obj_type_name,
2910 (obj_type_name && *obj_type_name) ? "::" : "",
2911 name);
c906108c 2912 else
c5aa993b
JM
2913 warning ("Using non-standard conversion to match function %s to supplied arguments",
2914 func_name);
c906108c
SS
2915 }
2916
2917 if (method)
2918 {
4a1970e4
DJ
2919 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2920 *staticp = 1;
2921 else if (staticp)
2922 *staticp = 0;
c906108c 2923 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2924 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2925 else
c5aa993b 2926 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2927 }
2928 else
2929 {
2930 *symp = oload_syms[oload_champ];
b8c9b27d 2931 xfree (func_name);
c906108c
SS
2932 }
2933
7f8c9282
DJ
2934 if (objp)
2935 {
2936 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2937 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2938 {
2939 temp = value_addr (temp);
2940 }
2941 *objp = temp;
2942 }
02f0d45d
DJ
2943 if (cleanups != NULL)
2944 do_cleanups (cleanups);
2945
c906108c
SS
2946 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2947}
2948
2949/* C++: return 1 is NAME is a legitimate name for the destructor
2950 of type TYPE. If TYPE does not have a destructor, or
2951 if NAME is inappropriate for TYPE, an error is signaled. */
2952int
fba45db2 2953destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2954{
2955 /* destructors are a special case. */
2956
2957 if (name[0] == '~')
2958 {
2959 char *dname = type_name_no_tag (type);
2960 char *cp = strchr (dname, '<');
2961 unsigned int len;
2962
2963 /* Do not compare the template part for template classes. */
2964 if (cp == NULL)
2965 len = strlen (dname);
2966 else
2967 len = cp - dname;
2968 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2969 error ("name of destructor must equal name of class");
2970 else
2971 return 1;
2972 }
2973 return 0;
2974}
2975
2976/* Helper function for check_field: Given TYPE, a structure/union,
2977 return 1 if the component named NAME from the ultimate
2978 target structure/union is defined, otherwise, return 0. */
2979
2980static int
fba45db2 2981check_field_in (register struct type *type, const char *name)
c906108c
SS
2982{
2983 register int i;
2984
2985 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2986 {
2987 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2988 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2989 return 1;
2990 }
2991
2992 /* C++: If it was not found as a data field, then try to
2993 return it as a pointer to a method. */
2994
2995 /* Destructors are a special case. */
2996 if (destructor_name_p (name, type))
2997 {
2998 int m_index, f_index;
2999
3000 return get_destructor_fn_field (type, &m_index, &f_index);
3001 }
3002
3003 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3004 {
db577aea 3005 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
3006 return 1;
3007 }
3008
3009 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3010 if (check_field_in (TYPE_BASECLASS (type, i), name))
3011 return 1;
c5aa993b 3012
c906108c
SS
3013 return 0;
3014}
3015
3016
3017/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3018 return 1 if the component named NAME from the ultimate
3019 target structure/union is defined, otherwise, return 0. */
3020
3021int
f23631e4 3022check_field (struct value *arg1, const char *name)
c906108c
SS
3023{
3024 register struct type *t;
3025
3026 COERCE_ARRAY (arg1);
3027
3028 t = VALUE_TYPE (arg1);
3029
3030 /* Follow pointers until we get to a non-pointer. */
3031
3032 for (;;)
3033 {
3034 CHECK_TYPEDEF (t);
3035 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3036 break;
3037 t = TYPE_TARGET_TYPE (t);
3038 }
3039
3040 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3041 error ("not implemented: member type in check_field");
3042
c5aa993b 3043 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3044 && TYPE_CODE (t) != TYPE_CODE_UNION)
3045 error ("Internal error: `this' is not an aggregate");
3046
3047 return check_field_in (t, name);
3048}
3049
3050/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3051 return the address of this member as a "pointer to member"
3052 type. If INTYPE is non-null, then it will be the type
3053 of the member we are looking for. This will help us resolve
3054 "pointers to member functions". This function is used
3055 to resolve user expressions of the form "DOMAIN::NAME". */
3056
f23631e4 3057struct value *
fba45db2
KB
3058value_struct_elt_for_reference (struct type *domain, int offset,
3059 struct type *curtype, char *name,
3060 struct type *intype)
c906108c
SS
3061{
3062 register struct type *t = curtype;
3063 register int i;
f23631e4 3064 struct value *v;
c906108c 3065
c5aa993b 3066 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3067 && TYPE_CODE (t) != TYPE_CODE_UNION)
3068 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3069
3070 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3071 {
3072 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3073
c906108c
SS
3074 if (t_field_name && STREQ (t_field_name, name))
3075 {
3076 if (TYPE_FIELD_STATIC (t, i))
3077 {
3078 v = value_static_field (t, i);
3079 if (v == NULL)
2c2738a0 3080 error ("static field %s has been optimized out",
c906108c
SS
3081 name);
3082 return v;
3083 }
3084 if (TYPE_FIELD_PACKED (t, i))
3085 error ("pointers to bitfield members not allowed");
c5aa993b 3086
c906108c
SS
3087 return value_from_longest
3088 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3089 domain)),
3090 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3091 }
3092 }
3093
3094 /* C++: If it was not found as a data field, then try to
3095 return it as a pointer to a method. */
3096
3097 /* Destructors are a special case. */
3098 if (destructor_name_p (name, t))
3099 {
3100 error ("member pointers to destructors not implemented yet");
3101 }
3102
3103 /* Perform all necessary dereferencing. */
3104 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3105 intype = TYPE_TARGET_TYPE (intype);
3106
3107 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3108 {
3109 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3110 char dem_opname[64];
3111
c5aa993b
JM
3112 if (strncmp (t_field_name, "__", 2) == 0 ||
3113 strncmp (t_field_name, "op", 2) == 0 ||
3114 strncmp (t_field_name, "type", 4) == 0)
c906108c 3115 {
c5aa993b
JM
3116 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3117 t_field_name = dem_opname;
3118 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3119 t_field_name = dem_opname;
c906108c
SS
3120 }
3121 if (t_field_name && STREQ (t_field_name, name))
3122 {
3123 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3124 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3125
de17c821
DJ
3126 check_stub_method_group (t, i);
3127
c906108c
SS
3128 if (intype == 0 && j > 1)
3129 error ("non-unique member `%s' requires type instantiation", name);
3130 if (intype)
3131 {
3132 while (j--)
3133 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3134 break;
3135 if (j < 0)
3136 error ("no member function matches that type instantiation");
3137 }
3138 else
3139 j = 0;
c5aa993b 3140
c906108c
SS
3141 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3142 {
3143 return value_from_longest
3144 (lookup_reference_type
3145 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3146 domain)),
3147 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3148 }
3149 else
3150 {
3151 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3152 0, VAR_NAMESPACE, 0, NULL);
3153 if (s == NULL)
3154 {
3155 v = 0;
3156 }
3157 else
3158 {
3159 v = read_var_value (s, 0);
3160#if 0
3161 VALUE_TYPE (v) = lookup_reference_type
3162 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3163 domain));
3164#endif
3165 }
3166 return v;
3167 }
3168 }
3169 }
3170 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3171 {
f23631e4 3172 struct value *v;
c906108c
SS
3173 int base_offset;
3174
3175 if (BASETYPE_VIA_VIRTUAL (t, i))
3176 base_offset = 0;
3177 else
3178 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3179 v = value_struct_elt_for_reference (domain,
3180 offset + base_offset,
3181 TYPE_BASECLASS (t, i),
3182 name,
3183 intype);
3184 if (v)
3185 return v;
3186 }
3187 return 0;
3188}
3189
3190
c906108c
SS
3191/* Given a pointer value V, find the real (RTTI) type
3192 of the object it points to.
3193 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3194 and refer to the values computed for the object pointed to. */
3195
3196struct type *
f23631e4 3197value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3198{
f23631e4 3199 struct value *target;
c906108c
SS
3200
3201 target = value_ind (v);
3202
3203 return value_rtti_type (target, full, top, using_enc);
3204}
3205
3206/* Given a value pointed to by ARGP, check its real run-time type, and
3207 if that is different from the enclosing type, create a new value
3208 using the real run-time type as the enclosing type (and of the same
3209 type as ARGP) and return it, with the embedded offset adjusted to
3210 be the correct offset to the enclosed object
3211 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3212 parameters, computed by value_rtti_type(). If these are available,
3213 they can be supplied and a second call to value_rtti_type() is avoided.
3214 (Pass RTYPE == NULL if they're not available */
3215
f23631e4
AC
3216struct value *
3217value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3218 int xusing_enc)
c906108c 3219{
c5aa993b 3220 struct type *real_type;
c906108c
SS
3221 int full = 0;
3222 int top = -1;
3223 int using_enc = 0;
f23631e4 3224 struct value *new_val;
c906108c
SS
3225
3226 if (rtype)
3227 {
3228 real_type = rtype;
3229 full = xfull;
3230 top = xtop;
3231 using_enc = xusing_enc;
3232 }
3233 else
3234 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3235
3236 /* If no RTTI data, or if object is already complete, do nothing */
3237 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3238 return argp;
3239
3240 /* If we have the full object, but for some reason the enclosing
c5aa993b 3241 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3242 if (full)
3243 {
2b127877 3244 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3245 return argp;
3246 }
3247
3248 /* Check if object is in memory */
3249 if (VALUE_LVAL (argp) != lval_memory)
3250 {
3251 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3252
c906108c
SS
3253 return argp;
3254 }
c5aa993b 3255
c906108c
SS
3256 /* All other cases -- retrieve the complete object */
3257 /* Go back by the computed top_offset from the beginning of the object,
3258 adjusting for the embedded offset of argp if that's what value_rtti_type
3259 used for its computation. */
3260 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3261 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3262 VALUE_BFD_SECTION (argp));
c906108c
SS
3263 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3264 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3265 return new_val;
3266}
3267
389e51db
AC
3268
3269
3270
d069f99d 3271/* Return the value of the local variable, if one exists.
c906108c
SS
3272 Flag COMPLAIN signals an error if the request is made in an
3273 inappropriate context. */
3274
f23631e4 3275struct value *
d069f99d 3276value_of_local (const char *name, int complain)
c906108c
SS
3277{
3278 struct symbol *func, *sym;
3279 struct block *b;
3280 int i;
d069f99d 3281 struct value * ret;
c906108c 3282
6e7f8b9c 3283 if (deprecated_selected_frame == 0)
c906108c
SS
3284 {
3285 if (complain)
c5aa993b
JM
3286 error ("no frame selected");
3287 else
3288 return 0;
c906108c
SS
3289 }
3290
6e7f8b9c 3291 func = get_frame_function (deprecated_selected_frame);
c906108c
SS
3292 if (!func)
3293 {
3294 if (complain)
2625d86c 3295 error ("no `%s' in nameless context", name);
c5aa993b
JM
3296 else
3297 return 0;
c906108c
SS
3298 }
3299
3300 b = SYMBOL_BLOCK_VALUE (func);
3301 i = BLOCK_NSYMS (b);
3302 if (i <= 0)
3303 {
3304 if (complain)
2625d86c 3305 error ("no args, no `%s'", name);
c5aa993b
JM
3306 else
3307 return 0;
c906108c
SS
3308 }
3309
3310 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3311 symbol instead of the LOC_ARG one (if both exist). */
d069f99d 3312 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
c906108c
SS
3313 if (sym == NULL)
3314 {
3315 if (complain)
2625d86c 3316 error ("current stack frame does not contain a variable named `%s'", name);
c906108c
SS
3317 else
3318 return NULL;
3319 }
3320
6e7f8b9c 3321 ret = read_var_value (sym, deprecated_selected_frame);
d069f99d 3322 if (ret == 0 && complain)
2625d86c 3323 error ("`%s' argument unreadable", name);
d069f99d
AF
3324 return ret;
3325}
3326
3327/* C++/Objective-C: return the value of the class instance variable,
3328 if one exists. Flag COMPLAIN signals an error if the request is
3329 made in an inappropriate context. */
3330
3331struct value *
3332value_of_this (int complain)
3333{
3334 if (current_language->la_language == language_objc)
3335 return value_of_local ("self", complain);
3336 else
3337 return value_of_local ("this", complain);
c906108c
SS
3338}
3339
3340/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3341 long, starting at LOWBOUND. The result has the same lower bound as
3342 the original ARRAY. */
3343
f23631e4
AC
3344struct value *
3345value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3346{
3347 struct type *slice_range_type, *slice_type, *range_type;
7a67d0fe 3348 LONGEST lowerbound, upperbound;
f23631e4 3349 struct value *slice;
c906108c
SS
3350 struct type *array_type;
3351 array_type = check_typedef (VALUE_TYPE (array));
3352 COERCE_VARYING_ARRAY (array, array_type);
3353 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3354 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3355 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3356 error ("cannot take slice of non-array");
3357 range_type = TYPE_INDEX_TYPE (array_type);
3358 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3359 error ("slice from bad array or bitstring");
3360 if (lowbound < lowerbound || length < 0
db034ac5 3361 || lowbound + length - 1 > upperbound)
c906108c
SS
3362 error ("slice out of range");
3363 /* FIXME-type-allocation: need a way to free this type when we are
3364 done with it. */
c5aa993b 3365 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3366 TYPE_TARGET_TYPE (range_type),
3367 lowbound, lowbound + length - 1);
3368 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3369 {
3370 int i;
c5aa993b 3371 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3372 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3373 slice = value_zero (slice_type, not_lval);
3374 for (i = 0; i < length; i++)
3375 {
3376 int element = value_bit_index (array_type,
3377 VALUE_CONTENTS (array),
3378 lowbound + i);
3379 if (element < 0)
3380 error ("internal error accessing bitstring");
3381 else if (element > 0)
3382 {
3383 int j = i % TARGET_CHAR_BIT;
3384 if (BITS_BIG_ENDIAN)
3385 j = TARGET_CHAR_BIT - 1 - j;
3386 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3387 }
3388 }
3389 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3390 can be used on the LHS, but that may require extensions to
3391 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3392 }
3393 else
3394 {
3395 struct type *element_type = TYPE_TARGET_TYPE (array_type);
7a67d0fe 3396 LONGEST offset
c906108c 3397 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3398 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3399 slice_range_type);
3400 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3401 slice = allocate_value (slice_type);
3402 if (VALUE_LAZY (array))
3403 VALUE_LAZY (slice) = 1;
3404 else
3405 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3406 TYPE_LENGTH (slice_type));
3407 if (VALUE_LVAL (array) == lval_internalvar)
3408 VALUE_LVAL (slice) = lval_internalvar_component;
3409 else
3410 VALUE_LVAL (slice) = VALUE_LVAL (array);
3411 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3412 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3413 }
3414 return slice;
3415}
3416
070ad9f0
DB
3417/* Create a value for a FORTRAN complex number. Currently most of
3418 the time values are coerced to COMPLEX*16 (i.e. a complex number
3419 composed of 2 doubles. This really should be a smarter routine
3420 that figures out precision inteligently as opposed to assuming
c5aa993b 3421 doubles. FIXME: fmb */
c906108c 3422
f23631e4
AC
3423struct value *
3424value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3425{
f23631e4 3426 struct value *val;
c906108c
SS
3427 struct type *real_type = TYPE_TARGET_TYPE (type);
3428
3429 val = allocate_value (type);
3430 arg1 = value_cast (real_type, arg1);
3431 arg2 = value_cast (real_type, arg2);
3432
3433 memcpy (VALUE_CONTENTS_RAW (val),
3434 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3435 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3436 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3437 return val;
3438}
3439
3440/* Cast a value into the appropriate complex data type. */
3441
f23631e4
AC
3442static struct value *
3443cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3444{
3445 struct type *real_type = TYPE_TARGET_TYPE (type);
3446 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3447 {
3448 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3449 struct value *re_val = allocate_value (val_real_type);
3450 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3451
3452 memcpy (VALUE_CONTENTS_RAW (re_val),
3453 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3454 memcpy (VALUE_CONTENTS_RAW (im_val),
3455 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3456 TYPE_LENGTH (val_real_type));
c906108c
SS
3457
3458 return value_literal_complex (re_val, im_val, type);
3459 }
3460 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3461 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3462 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3463 else
3464 error ("cannot cast non-number to complex");
3465}
3466
3467void
fba45db2 3468_initialize_valops (void)
c906108c
SS
3469{
3470#if 0
3471 add_show_from_set
c5aa993b 3472 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3473 "Set automatic abandonment of expressions upon failure.",
3474 &setlist),
3475 &showlist);
3476#endif
3477
3478 add_show_from_set
c5aa993b 3479 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3480 "Set overload resolution in evaluating C++ functions.",
3481 &setlist),
3482 &showlist);
3483 overload_resolution = 1;
3484
242bfc55
FN
3485 add_show_from_set (
3486 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3487 (char *) &unwind_on_signal_p,
3488"Set unwinding of stack if a signal is received while in a call dummy.\n\
3489The unwindonsignal lets the user determine what gdb should do if a signal\n\
3490is received while in a function called from gdb (call dummy). If set, gdb\n\
3491unwinds the stack and restore the context to what as it was before the call.\n\
3492The default is to stop in the frame where the signal was received.", &setlist),
3493 &showlist);
1e698235
DJ
3494
3495 add_show_from_set
3496 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3497 (char *) &coerce_float_to_double,
3498 "Set coercion of floats to doubles when calling functions\n"
3499 "Variables of type float should generally be converted to doubles before\n"
3500 "calling an unprototyped function, and left alone when calling a prototyped\n"
3501 "function. However, some older debug info formats do not provide enough\n"
3502 "information to determine that a function is prototyped. If this flag is\n"
3503 "set, GDB will perform the conversion for a function it considers\n"
3504 "unprototyped.\n"
3505 "The default is to perform the conversion.\n",
3506 &setlist),
3507 &showlist);
3508 coerce_float_to_double = 1;
c906108c 3509}
This page took 0.498678 seconds and 4 git commands to generate.