2002-08-21 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4
AC
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
c906108c
SS
36
37#include <errno.h>
38#include "gdb_string.h"
4a1970e4 39#include "gdb_assert.h"
c906108c 40
c906108c
SS
41/* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43extern int hp_som_som_object_present;
44
070ad9f0 45extern int overload_debug;
c906108c
SS
46/* Local functions. */
47
ad2f7632
DJ
48static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
c906108c 50
f23631e4
AC
51static CORE_ADDR find_function_addr (struct value *, struct type **);
52static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c
SS
53
54
f23631e4 55static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 56
f23631e4 57static struct value *search_struct_field (char *, struct value *, int,
a14ed312 58 struct type *, int);
c906108c 59
f23631e4
AC
60static struct value *search_struct_method (char *, struct value **,
61 struct value **,
a14ed312 62 int, int *, struct type *);
c906108c 63
a14ed312 64static int check_field_in (struct type *, const char *);
c906108c 65
a14ed312 66static CORE_ADDR allocate_space_in_inferior (int);
c906108c 67
f23631e4 68static struct value *cast_into_complex (struct type *, struct value *);
c906108c 69
f23631e4 70static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 71 int offset,
a14ed312
KB
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
7a292a7a 75
a14ed312 76void _initialize_valops (void);
c906108c 77
c906108c
SS
78/* Flag for whether we want to abandon failed expression evals by default. */
79
80#if 0
81static int auto_abandon = 0;
82#endif
83
84int overload_resolution = 0;
242bfc55
FN
85
86/* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91int unwind_on_signal_p = 0;
c5aa993b 92\f
c906108c
SS
93
94
c906108c
SS
95/* Find the address of function name NAME in the inferior. */
96
f23631e4 97struct value *
fba45db2 98find_function_in_inferior (char *name)
c906108c
SS
99{
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
c5aa993b 113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
114 if (msymbol != NULL)
115 {
116 struct type *type;
4478b372 117 CORE_ADDR maddr;
c906108c
SS
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
4478b372
JB
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
c906108c
SS
123 }
124 else
125 {
c5aa993b 126 if (!target_has_execution)
c906108c 127 error ("evaluation of this expression requires the target program to be active");
c5aa993b 128 else
c906108c
SS
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132}
133
134/* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
f23631e4 137struct value *
fba45db2 138value_allocate_space_in_inferior (int len)
c906108c 139{
f23631e4
AC
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
c906108c
SS
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
c5aa993b
JM
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
c906108c
SS
151 }
152 return val;
153}
154
155static CORE_ADDR
fba45db2 156allocate_space_in_inferior (int len)
c906108c
SS
157{
158 return value_as_long (value_allocate_space_in_inferior (len));
159}
160
161/* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164/* In C++, casts may change pointer or object representations. */
165
f23631e4
AC
166struct value *
167value_cast (struct type *type, struct value *arg2)
c906108c
SS
168{
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
c5aa993b 175
c906108c
SS
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
c5aa993b 181 COERCE_REF (arg2);
c906108c
SS
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
c5aa993b 192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
c5aa993b 201 warning ("array element type size does not divide object size in cast");
c906108c
SS
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
c5aa993b 240 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
7b83ea04
AC
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
f23631e4 247 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
c5aa993b
JM
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
f23631e4 267 struct value *retvalp;
c5aa993b
JM
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 274 /* force evaluation */
802db21b 275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
2bf1f4a1
JB
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
802db21b 299 return value_from_longest (type, convert_to_boolean ?
716c501e 300 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 301 }
802db21b 302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
634acd5f 305 {
4603e466
DT
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
634acd5f 318 LONGEST longest = value_as_long (arg2);
4603e466 319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 320 {
4603e466
DT
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
c906108c
SS
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
f23631e4 337 struct value *v;
c906108c
SS
338
339 /* Look in the type of the source to see if it contains the
7b83ea04
AC
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
c906108c
SS
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
7b83ea04
AC
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 361 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
362 if (v)
363 {
f23631e4 364 struct value *v2 = value_ind (arg2);
c906108c 365 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
c5aa993b 366 + VALUE_OFFSET (v);
070ad9f0
DB
367
368 /* JYG: adjust the new pointer value and
369 embedded offset. */
370 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
371 VALUE_EMBEDDED_OFFSET (v2) = 0;
372
c906108c
SS
373 v2 = value_addr (v2);
374 VALUE_TYPE (v2) = type;
375 return v2;
376 }
377 }
378 }
379 /* No superclass found, just fall through to change ptr type. */
380 }
381 VALUE_TYPE (arg2) = type;
2b127877 382 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 383 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
384 return arg2;
385 }
db034ac5
AC
386 /* OBSOLETE else if (chill_varying_type (type)) */
387 /* OBSOLETE { */
388 /* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
389 /* OBSOLETE struct value *val; */
390 /* OBSOLETE int count1, count2; */
391 /* OBSOLETE LONGEST low_bound, high_bound; */
392 /* OBSOLETE char *valaddr, *valaddr_data; */
393 /* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
394 /* OBSOLETE eltype2 = NULL; */
395 /* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
396 /* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
397 /* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
398 /* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
399 /* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
400 /* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
401 /* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
402 /* OBSOLETE error ("Invalid conversion to varying type"); */
403 /* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
404 /* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
405 /* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
406 /* OBSOLETE count1 = -1; */
407 /* OBSOLETE else */
408 /* OBSOLETE count1 = high_bound - low_bound + 1; */
409 /* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
410 /* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
411 /* OBSOLETE else */
412 /* OBSOLETE count2 = high_bound - low_bound + 1; */
413 /* OBSOLETE if (count2 > count1) */
414 /* OBSOLETE error ("target varying type is too small"); */
415 /* OBSOLETE val = allocate_value (type); */
416 /* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
417 /* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
418 /* OBSOLETE *//* Set val's __var_length field to count2. */
419 /* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
420 /* OBSOLETE count2); */
421 /* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
422 /* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
423 /* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
424 /* OBSOLETE *//* Zero the rest of the __var_data field of val. */
425 /* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
426 /* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
427 /* OBSOLETE return val; */
428 /* OBSOLETE } */
c906108c
SS
429 else if (VALUE_LVAL (arg2) == lval_memory)
430 {
431 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
432 VALUE_BFD_SECTION (arg2));
433 }
434 else if (code1 == TYPE_CODE_VOID)
435 {
436 return value_zero (builtin_type_void, not_lval);
437 }
438 else
439 {
440 error ("Invalid cast.");
441 return 0;
442 }
443}
444
445/* Create a value of type TYPE that is zero, and return it. */
446
f23631e4 447struct value *
fba45db2 448value_zero (struct type *type, enum lval_type lv)
c906108c 449{
f23631e4 450 struct value *val = allocate_value (type);
c906108c
SS
451
452 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
453 VALUE_LVAL (val) = lv;
454
455 return val;
456}
457
070ad9f0 458/* Return a value with type TYPE located at ADDR.
c906108c
SS
459
460 Call value_at only if the data needs to be fetched immediately;
461 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
462 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
463 the data and sets the lazy-evaluation-required flag. The lazy flag
464 is tested in the VALUE_CONTENTS macro, which is used if and when
465 the contents are actually required.
c906108c
SS
466
467 Note: value_at does *NOT* handle embedded offsets; perform such
468 adjustments before or after calling it. */
469
f23631e4 470struct value *
fba45db2 471value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 472{
f23631e4 473 struct value *val;
c906108c
SS
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
75af7f68 480 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
481
482 VALUE_LVAL (val) = lval_memory;
483 VALUE_ADDRESS (val) = addr;
484 VALUE_BFD_SECTION (val) = sect;
485
486 return val;
487}
488
489/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490
f23631e4 491struct value *
fba45db2 492value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 493{
f23631e4 494 struct value *val;
c906108c
SS
495
496 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
497 error ("Attempt to dereference a generic pointer.");
498
499 val = allocate_value (type);
500
501 VALUE_LVAL (val) = lval_memory;
502 VALUE_ADDRESS (val) = addr;
503 VALUE_LAZY (val) = 1;
504 VALUE_BFD_SECTION (val) = sect;
505
506 return val;
507}
508
070ad9f0
DB
509/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
510 if the current data for a variable needs to be loaded into
511 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
512 clears the lazy flag to indicate that the data in the buffer is valid.
513
514 If the value is zero-length, we avoid calling read_memory, which would
515 abort. We mark the value as fetched anyway -- all 0 bytes of it.
516
517 This function returns a value because it is used in the VALUE_CONTENTS
518 macro as part of an expression, where a void would not work. The
519 value is ignored. */
520
521int
f23631e4 522value_fetch_lazy (struct value *val)
c906108c
SS
523{
524 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
525 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
526
c5aa993b 527 struct type *type = VALUE_TYPE (val);
75af7f68 528 if (length)
d4b2399a 529 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 530
c906108c
SS
531 VALUE_LAZY (val) = 0;
532 return 0;
533}
534
535
536/* Store the contents of FROMVAL into the location of TOVAL.
537 Return a new value with the location of TOVAL and contents of FROMVAL. */
538
f23631e4
AC
539struct value *
540value_assign (struct value *toval, struct value *fromval)
c906108c
SS
541{
542 register struct type *type;
f23631e4 543 struct value *val;
e6cbd02a 544 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
545 int use_buffer = 0;
546
547 if (!toval->modifiable)
548 error ("Left operand of assignment is not a modifiable lvalue.");
549
550 COERCE_REF (toval);
551
552 type = VALUE_TYPE (toval);
553 if (VALUE_LVAL (toval) != lval_internalvar)
554 fromval = value_cast (type, fromval);
555 else
556 COERCE_ARRAY (fromval);
557 CHECK_TYPEDEF (type);
558
559 /* If TOVAL is a special machine register requiring conversion
560 of program values to a special raw format,
561 convert FROMVAL's contents now, with result in `raw_buffer',
562 and set USE_BUFFER to the number of bytes to write. */
563
ac9a91a7 564 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
565 {
566 int regno = VALUE_REGNO (toval);
13d01224 567 if (CONVERT_REGISTER_P (regno))
c906108c
SS
568 {
569 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 570 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
571 use_buffer = REGISTER_RAW_SIZE (regno);
572 }
573 }
c906108c
SS
574
575 switch (VALUE_LVAL (toval))
576 {
577 case lval_internalvar:
578 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
579 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 580 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
581 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
582 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
583 return val;
584
585 case lval_internalvar_component:
586 set_internalvar_component (VALUE_INTERNALVAR (toval),
587 VALUE_OFFSET (toval),
588 VALUE_BITPOS (toval),
589 VALUE_BITSIZE (toval),
590 fromval);
591 break;
592
593 case lval_memory:
594 {
595 char *dest_buffer;
c5aa993b
JM
596 CORE_ADDR changed_addr;
597 int changed_len;
c906108c 598
c5aa993b
JM
599 if (VALUE_BITSIZE (toval))
600 {
c906108c
SS
601 char buffer[sizeof (LONGEST)];
602 /* We assume that the argument to read_memory is in units of
603 host chars. FIXME: Is that correct? */
604 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
605 + VALUE_BITSIZE (toval)
606 + HOST_CHAR_BIT - 1)
607 / HOST_CHAR_BIT;
c906108c
SS
608
609 if (changed_len > (int) sizeof (LONGEST))
610 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 611 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
612
613 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
614 buffer, changed_len);
615 modify_field (buffer, value_as_long (fromval),
616 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
617 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
618 dest_buffer = buffer;
619 }
620 else if (use_buffer)
621 {
622 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
623 changed_len = use_buffer;
624 dest_buffer = raw_buffer;
625 }
626 else
627 {
628 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
629 changed_len = TYPE_LENGTH (type);
630 dest_buffer = VALUE_CONTENTS (fromval);
631 }
632
633 write_memory (changed_addr, dest_buffer, changed_len);
634 if (memory_changed_hook)
635 memory_changed_hook (changed_addr, changed_len);
e23792cc 636 target_changed_event ();
c906108c
SS
637 }
638 break;
639
640 case lval_register:
641 if (VALUE_BITSIZE (toval))
642 {
643 char buffer[sizeof (LONGEST)];
802db21b 644 int len =
8903de4f 645 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
c906108c
SS
646
647 if (len > (int) sizeof (LONGEST))
648 error ("Can't handle bitfields in registers larger than %d bits.",
baa6f10b 649 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
650
651 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
652 > len * HOST_CHAR_BIT)
653 /* Getting this right would involve being very careful about
654 byte order. */
c2d11a7d
JM
655 error ("Can't assign to bitfields that cross register "
656 "boundaries.");
c906108c 657
c5aa993b
JM
658 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
659 buffer, len);
660 modify_field (buffer, value_as_long (fromval),
661 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
662 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
663 buffer, len);
c906108c
SS
664 }
665 else if (use_buffer)
666 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
667 raw_buffer, use_buffer);
668 else
c5aa993b 669 {
c906108c
SS
670 /* Do any conversion necessary when storing this type to more
671 than one register. */
672#ifdef REGISTER_CONVERT_FROM_TYPE
673 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c5aa993b 674 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
c906108c
SS
675 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
676 raw_buffer, TYPE_LENGTH (type));
677#else
678 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
c5aa993b 679 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c906108c
SS
680#endif
681 }
e23792cc
KS
682
683 target_changed_event ();
684
c906108c 685 /* Assigning to the stack pointer, frame pointer, and other
7b83ea04
AC
686 (architecture and calling convention specific) registers may
687 cause the frame cache to be out of date. We just do this
688 on all assignments to registers for simplicity; I doubt the slowdown
689 matters. */
c906108c
SS
690 reinit_frame_cache ();
691 break;
692
693 case lval_reg_frame_relative:
694 {
695 /* value is stored in a series of registers in the frame
696 specified by the structure. Copy that value out, modify
697 it, and copy it back in. */
698 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
699 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
700 int byte_offset = VALUE_OFFSET (toval) % reg_size;
701 int reg_offset = VALUE_OFFSET (toval) / reg_size;
702 int amount_copied;
703
704 /* Make the buffer large enough in all cases. */
34c0bd93 705 /* FIXME (alloca): Not safe for very large data types. */
c906108c
SS
706 char *buffer = (char *) alloca (amount_to_copy
707 + sizeof (LONGEST)
708 + MAX_REGISTER_RAW_SIZE);
709
710 int regno;
711 struct frame_info *frame;
712
713 /* Figure out which frame this is in currently. */
714 for (frame = get_current_frame ();
715 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
716 frame = get_prev_frame (frame))
717 ;
718
719 if (!frame)
720 error ("Value being assigned to is no longer active.");
721
722 amount_to_copy += (reg_size - amount_to_copy % reg_size);
723
724 /* Copy it out. */
725 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
726 amount_copied = 0);
727 amount_copied < amount_to_copy;
728 amount_copied += reg_size, regno++)
729 {
730 get_saved_register (buffer + amount_copied,
c5aa993b
JM
731 (int *) NULL, (CORE_ADDR *) NULL,
732 frame, regno, (enum lval_type *) NULL);
c906108c
SS
733 }
734
735 /* Modify what needs to be modified. */
736 if (VALUE_BITSIZE (toval))
737 modify_field (buffer + byte_offset,
738 value_as_long (fromval),
739 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
740 else if (use_buffer)
741 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
742 else
743 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
744 TYPE_LENGTH (type));
745
746 /* Copy it back. */
747 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
748 amount_copied = 0);
749 amount_copied < amount_to_copy;
750 amount_copied += reg_size, regno++)
751 {
752 enum lval_type lval;
753 CORE_ADDR addr;
754 int optim;
755
756 /* Just find out where to put it. */
c5aa993b
JM
757 get_saved_register ((char *) NULL,
758 &optim, &addr, frame, regno, &lval);
759
c906108c
SS
760 if (optim)
761 error ("Attempt to assign to a value that was optimized out.");
762 if (lval == lval_memory)
763 write_memory (addr, buffer + amount_copied, reg_size);
764 else if (lval == lval_register)
765 write_register_bytes (addr, buffer + amount_copied, reg_size);
766 else
767 error ("Attempt to assign to an unmodifiable value.");
768 }
769
770 if (register_changed_hook)
771 register_changed_hook (-1);
e23792cc 772 target_changed_event ();
c906108c
SS
773 }
774 break;
c5aa993b 775
c906108c
SS
776
777 default:
778 error ("Left operand of assignment is not an lvalue.");
779 }
780
781 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
782 If the field is signed, and is negative, then sign extend. */
783 if ((VALUE_BITSIZE (toval) > 0)
784 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
785 {
786 LONGEST fieldval = value_as_long (fromval);
787 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
788
789 fieldval &= valmask;
790 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
791 fieldval |= ~valmask;
792
793 fromval = value_from_longest (type, fieldval);
794 }
795
796 val = value_copy (toval);
797 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
798 TYPE_LENGTH (type));
799 VALUE_TYPE (val) = type;
2b127877 800 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
801 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
802 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 803
c906108c
SS
804 return val;
805}
806
807/* Extend a value VAL to COUNT repetitions of its type. */
808
f23631e4
AC
809struct value *
810value_repeat (struct value *arg1, int count)
c906108c 811{
f23631e4 812 struct value *val;
c906108c
SS
813
814 if (VALUE_LVAL (arg1) != lval_memory)
815 error ("Only values in memory can be extended with '@'.");
816 if (count < 1)
817 error ("Invalid number %d of repetitions.", count);
818
819 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
820
821 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
822 VALUE_CONTENTS_ALL_RAW (val),
823 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
824 VALUE_LVAL (val) = lval_memory;
825 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
826
827 return val;
828}
829
f23631e4 830struct value *
fba45db2 831value_of_variable (struct symbol *var, struct block *b)
c906108c 832{
f23631e4 833 struct value *val;
c906108c
SS
834 struct frame_info *frame = NULL;
835
836 if (!b)
837 frame = NULL; /* Use selected frame. */
838 else if (symbol_read_needs_frame (var))
839 {
840 frame = block_innermost_frame (b);
841 if (!frame)
c5aa993b 842 {
c906108c
SS
843 if (BLOCK_FUNCTION (b)
844 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
845 error ("No frame is currently executing in block %s.",
846 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
847 else
848 error ("No frame is currently executing in specified block");
c5aa993b 849 }
c906108c
SS
850 }
851
852 val = read_var_value (var, frame);
853 if (!val)
854 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
855
856 return val;
857}
858
859/* Given a value which is an array, return a value which is a pointer to its
860 first element, regardless of whether or not the array has a nonzero lower
861 bound.
862
863 FIXME: A previous comment here indicated that this routine should be
864 substracting the array's lower bound. It's not clear to me that this
865 is correct. Given an array subscripting operation, it would certainly
866 work to do the adjustment here, essentially computing:
867
868 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
869
870 However I believe a more appropriate and logical place to account for
871 the lower bound is to do so in value_subscript, essentially computing:
872
873 (&array[0] + ((index - lowerbound) * sizeof array[0]))
874
875 As further evidence consider what would happen with operations other
876 than array subscripting, where the caller would get back a value that
877 had an address somewhere before the actual first element of the array,
878 and the information about the lower bound would be lost because of
879 the coercion to pointer type.
c5aa993b 880 */
c906108c 881
f23631e4
AC
882struct value *
883value_coerce_array (struct value *arg1)
c906108c
SS
884{
885 register struct type *type = check_typedef (VALUE_TYPE (arg1));
886
887 if (VALUE_LVAL (arg1) != lval_memory)
888 error ("Attempt to take address of value not located in memory.");
889
4478b372
JB
890 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
891 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
892}
893
894/* Given a value which is a function, return a value which is a pointer
895 to it. */
896
f23631e4
AC
897struct value *
898value_coerce_function (struct value *arg1)
c906108c 899{
f23631e4 900 struct value *retval;
c906108c
SS
901
902 if (VALUE_LVAL (arg1) != lval_memory)
903 error ("Attempt to take address of value not located in memory.");
904
4478b372
JB
905 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
906 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
907 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
908 return retval;
c5aa993b 909}
c906108c
SS
910
911/* Return a pointer value for the object for which ARG1 is the contents. */
912
f23631e4
AC
913struct value *
914value_addr (struct value *arg1)
c906108c 915{
f23631e4 916 struct value *arg2;
c906108c
SS
917
918 struct type *type = check_typedef (VALUE_TYPE (arg1));
919 if (TYPE_CODE (type) == TYPE_CODE_REF)
920 {
921 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
922 We keep the same location information, which is efficient,
923 and allows &(&X) to get the location containing the reference. */
c906108c
SS
924 arg2 = value_copy (arg1);
925 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
926 return arg2;
927 }
928 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
929 return value_coerce_function (arg1);
930
931 if (VALUE_LVAL (arg1) != lval_memory)
932 error ("Attempt to take address of value not located in memory.");
933
c5aa993b 934 /* Get target memory address */
4478b372
JB
935 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
936 (VALUE_ADDRESS (arg1)
937 + VALUE_OFFSET (arg1)
938 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
939
940 /* This may be a pointer to a base subobject; so remember the
c5aa993b 941 full derived object's type ... */
2b127877 942 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
943 /* ... and also the relative position of the subobject in the full object */
944 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
945 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
946 return arg2;
947}
948
949/* Given a value of a pointer type, apply the C unary * operator to it. */
950
f23631e4
AC
951struct value *
952value_ind (struct value *arg1)
c906108c
SS
953{
954 struct type *base_type;
f23631e4 955 struct value *arg2;
c906108c
SS
956
957 COERCE_ARRAY (arg1);
958
959 base_type = check_typedef (VALUE_TYPE (arg1));
960
961 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
962 error ("not implemented: member types in value_ind");
963
964 /* Allow * on an integer so we can cast it to whatever we want.
965 This returns an int, which seems like the most C-like thing
966 to do. "long long" variables are rare enough that
967 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
968 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
969 return value_at_lazy (builtin_type_int,
970 (CORE_ADDR) value_as_long (arg1),
971 VALUE_BFD_SECTION (arg1));
c906108c
SS
972 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
973 {
974 struct type *enc_type;
975 /* We may be pointing to something embedded in a larger object */
c5aa993b 976 /* Get the real type of the enclosing object */
c906108c
SS
977 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
978 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
979 /* Retrieve the enclosing object pointed to */
980 arg2 = value_at_lazy (enc_type,
1aa20aa8 981 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
982 VALUE_BFD_SECTION (arg1));
983 /* Re-adjust type */
c906108c
SS
984 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
985 /* Add embedding info */
2b127877 986 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
987 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
988
989 /* We may be pointing to an object of some derived type */
990 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
991 return arg2;
992 }
993
994 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 995 return 0; /* For lint -- never reached */
c906108c
SS
996}
997\f
998/* Pushing small parts of stack frames. */
999
1000/* Push one word (the size of object that a register holds). */
1001
1002CORE_ADDR
fba45db2 1003push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
1004{
1005 register int len = REGISTER_SIZE;
e6cbd02a 1006 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1007
1008 store_unsigned_integer (buffer, len, word);
1009 if (INNER_THAN (1, 2))
1010 {
1011 /* stack grows downward */
1012 sp -= len;
1013 write_memory (sp, buffer, len);
1014 }
1015 else
1016 {
1017 /* stack grows upward */
1018 write_memory (sp, buffer, len);
1019 sp += len;
1020 }
1021
1022 return sp;
1023}
1024
1025/* Push LEN bytes with data at BUFFER. */
1026
1027CORE_ADDR
fba45db2 1028push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1029{
1030 if (INNER_THAN (1, 2))
1031 {
1032 /* stack grows downward */
1033 sp -= len;
1034 write_memory (sp, buffer, len);
1035 }
1036 else
1037 {
1038 /* stack grows upward */
1039 write_memory (sp, buffer, len);
1040 sp += len;
1041 }
1042
1043 return sp;
1044}
1045
2df3850c
JM
1046#ifndef PARM_BOUNDARY
1047#define PARM_BOUNDARY (0)
1048#endif
1049
1050/* Push onto the stack the specified value VALUE. Pad it correctly for
1051 it to be an argument to a function. */
c906108c 1052
c906108c 1053static CORE_ADDR
f23631e4 1054value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1055{
1056 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1057 register int container_len = len;
2df3850c
JM
1058 register int offset;
1059
1060 /* How big is the container we're going to put this value in? */
1061 if (PARM_BOUNDARY)
1062 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1063 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1064
1065 /* Are we going to put it at the high or low end of the container? */
d7449b42 1066 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1067 offset = container_len - len;
1068 else
1069 offset = 0;
c906108c
SS
1070
1071 if (INNER_THAN (1, 2))
1072 {
1073 /* stack grows downward */
2df3850c
JM
1074 sp -= container_len;
1075 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1076 }
1077 else
1078 {
1079 /* stack grows upward */
2df3850c
JM
1080 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1081 sp += container_len;
c906108c
SS
1082 }
1083
1084 return sp;
1085}
1086
392a587b 1087CORE_ADDR
f23631e4 1088default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1089 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1090{
1091 /* ASSERT ( !struct_return); */
1092 int i;
1093 for (i = nargs - 1; i >= 0; i--)
1094 sp = value_push (sp, args[i]);
1095 return sp;
1096}
1097
c906108c 1098
641225a4
JB
1099/* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1100
1101 How you should pass arguments to a function depends on whether it
1102 was defined in K&R style or prototype style. If you define a
1103 function using the K&R syntax that takes a `float' argument, then
1104 callers must pass that argument as a `double'. If you define the
1105 function using the prototype syntax, then you must pass the
1106 argument as a `float', with no promotion.
1107
1108 Unfortunately, on certain older platforms, the debug info doesn't
1109 indicate reliably how each function was defined. A function type's
1110 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1111 defined in prototype style. When calling a function whose
1112 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1113 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1114
1115 For modern targets, it is proper to assume that, if the prototype
1116 flag is clear, that can be trusted: `float' arguments should be
1117 promoted to `double'. You should register the function
1118 `standard_coerce_float_to_double' to get this behavior.
1119
1120 For some older targets, if the prototype flag is clear, that
1121 doesn't tell us anything. So we guess that, if we don't have a
1122 type for the formal parameter (i.e., the first argument to
1123 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1124 otherwise, we should leave it alone. The function
1125 `default_coerce_float_to_double' provides this behavior; it is the
1126 default value, for compatibility with older configurations. */
b9a8e3bf
JB
1127int
1128default_coerce_float_to_double (struct type *formal, struct type *actual)
1129{
1130 return formal == NULL;
1131}
1132
1133
b9a8e3bf
JB
1134int
1135standard_coerce_float_to_double (struct type *formal, struct type *actual)
1136{
1137 return 1;
1138}
1139
1140
c906108c
SS
1141/* Perform the standard coercions that are specified
1142 for arguments to be passed to C functions.
1143
1144 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1145 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1146
f23631e4 1147static struct value *
290b2c7a
MK
1148value_arg_coerce (struct value *arg, struct type *param_type,
1149 int is_prototyped)
c906108c
SS
1150{
1151 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1152 register struct type *type
290b2c7a 1153 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1154
1155 switch (TYPE_CODE (type))
1156 {
1157 case TYPE_CODE_REF:
491b8946
DJ
1158 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1159 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1160 {
1161 arg = value_addr (arg);
1162 VALUE_TYPE (arg) = param_type;
1163 return arg;
1164 }
1165 break;
1166 case TYPE_CODE_INT:
1167 case TYPE_CODE_CHAR:
1168 case TYPE_CODE_BOOL:
1169 case TYPE_CODE_ENUM:
1170 /* If we don't have a prototype, coerce to integer type if necessary. */
1171 if (!is_prototyped)
1172 {
1173 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1174 type = builtin_type_int;
1175 }
1176 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1177 type for an argument. We may have to conditionalize the following
1178 type coercion for future targets. */
c906108c
SS
1179 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1180 type = builtin_type_int;
1181 break;
1182 case TYPE_CODE_FLT:
1183 /* FIXME: We should always convert floats to doubles in the
7b83ea04
AC
1184 non-prototyped case. As many debugging formats include
1185 no information about prototyping, we have to live with
1186 COERCE_FLOAT_TO_DOUBLE for now. */
b9a8e3bf 1187 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
c906108c
SS
1188 {
1189 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1190 type = builtin_type_double;
1191 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1192 type = builtin_type_long_double;
1193 }
1194 break;
1195 case TYPE_CODE_FUNC:
1196 type = lookup_pointer_type (type);
1197 break;
1198 case TYPE_CODE_ARRAY:
a3162708
EZ
1199 /* Arrays are coerced to pointers to their first element, unless
1200 they are vectors, in which case we want to leave them alone,
1201 because they are passed by value. */
c906108c 1202 if (current_language->c_style_arrays)
a3162708
EZ
1203 if (!TYPE_VECTOR (type))
1204 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1205 break;
1206 case TYPE_CODE_UNDEF:
1207 case TYPE_CODE_PTR:
1208 case TYPE_CODE_STRUCT:
1209 case TYPE_CODE_UNION:
1210 case TYPE_CODE_VOID:
1211 case TYPE_CODE_SET:
1212 case TYPE_CODE_RANGE:
1213 case TYPE_CODE_STRING:
1214 case TYPE_CODE_BITSTRING:
1215 case TYPE_CODE_ERROR:
1216 case TYPE_CODE_MEMBER:
1217 case TYPE_CODE_METHOD:
1218 case TYPE_CODE_COMPLEX:
1219 default:
1220 break;
1221 }
1222
1223 return value_cast (type, arg);
1224}
1225
070ad9f0 1226/* Determine a function's address and its return type from its value.
c906108c
SS
1227 Calls error() if the function is not valid for calling. */
1228
1229static CORE_ADDR
f23631e4 1230find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1231{
1232 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1233 register enum type_code code = TYPE_CODE (ftype);
1234 struct type *value_type;
1235 CORE_ADDR funaddr;
1236
1237 /* If it's a member function, just look at the function
1238 part of it. */
1239
1240 /* Determine address to call. */
1241 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1242 {
1243 funaddr = VALUE_ADDRESS (function);
1244 value_type = TYPE_TARGET_TYPE (ftype);
1245 }
1246 else if (code == TYPE_CODE_PTR)
1247 {
1aa20aa8 1248 funaddr = value_as_address (function);
c906108c
SS
1249 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1250 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1251 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1252 {
c906108c 1253 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1254 value_type = TYPE_TARGET_TYPE (ftype);
1255 }
1256 else
1257 value_type = builtin_type_int;
1258 }
1259 else if (code == TYPE_CODE_INT)
1260 {
1261 /* Handle the case of functions lacking debugging info.
7b83ea04 1262 Their values are characters since their addresses are char */
c906108c 1263 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1264 funaddr = value_as_address (value_addr (function));
c906108c
SS
1265 else
1266 /* Handle integer used as address of a function. */
1267 funaddr = (CORE_ADDR) value_as_long (function);
1268
1269 value_type = builtin_type_int;
1270 }
1271 else
1272 error ("Invalid data type for function to be called.");
1273
1274 *retval_type = value_type;
1275 return funaddr;
1276}
1277
1278/* All this stuff with a dummy frame may seem unnecessarily complicated
1279 (why not just save registers in GDB?). The purpose of pushing a dummy
1280 frame which looks just like a real frame is so that if you call a
1281 function and then hit a breakpoint (get a signal, etc), "backtrace"
1282 will look right. Whether the backtrace needs to actually show the
1283 stack at the time the inferior function was called is debatable, but
1284 it certainly needs to not display garbage. So if you are contemplating
1285 making dummy frames be different from normal frames, consider that. */
1286
1287/* Perform a function call in the inferior.
1288 ARGS is a vector of values of arguments (NARGS of them).
1289 FUNCTION is a value, the function to be called.
1290 Returns a value representing what the function returned.
1291 May fail to return, if a breakpoint or signal is hit
1292 during the execution of the function.
1293
1294 ARGS is modified to contain coerced values. */
1295
f23631e4
AC
1296static struct value *
1297hand_function_call (struct value *function, int nargs, struct value **args)
c906108c
SS
1298{
1299 register CORE_ADDR sp;
1300 register int i;
da59e081 1301 int rc;
c906108c
SS
1302 CORE_ADDR start_sp;
1303 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1304 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1305 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1306 bigger than REGISTER_SIZE.
c906108c
SS
1307
1308 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1309 sequence of instructions. But CISC machines will have
1310 to pack the instructions into REGISTER_SIZE units (and
1311 so will RISC machines for which INSTRUCTION_SIZE is not
1312 REGISTER_SIZE).
7a292a7a
SS
1313
1314 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1315 target byte order. */
c906108c 1316
7a292a7a
SS
1317 static ULONGEST *dummy;
1318 int sizeof_dummy1;
1319 char *dummy1;
c906108c
SS
1320 CORE_ADDR old_sp;
1321 struct type *value_type;
1322 unsigned char struct_return;
1323 CORE_ADDR struct_addr = 0;
36160dc4 1324 struct regcache *retbuf;
26e6c56a 1325 struct cleanup *retbuf_cleanup;
7a292a7a 1326 struct inferior_status *inf_status;
26e6c56a 1327 struct cleanup *inf_status_cleanup;
c906108c 1328 CORE_ADDR funaddr;
c5aa993b 1329 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1330 CORE_ADDR real_pc;
1331 struct type *param_type = NULL;
1332 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1333 int n_method_args = 0;
c906108c 1334
7a292a7a
SS
1335 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1336 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1337 dummy1 = alloca (sizeof_dummy1);
1338 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1339
c906108c 1340 if (!target_has_execution)
c5aa993b 1341 noprocess ();
c906108c 1342
26e6c56a
AC
1343 /* Create a cleanup chain that contains the retbuf (buffer
1344 containing the register values). This chain is create BEFORE the
1345 inf_status chain so that the inferior status can cleaned up
1346 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1347 retbuf = regcache_xmalloc (current_gdbarch);
1348 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1349
1350 /* A cleanup for the inferior status. Create this AFTER the retbuf
1351 so that this can be discarded or applied without interfering with
1352 the regbuf. */
7a292a7a 1353 inf_status = save_inferior_status (1);
26e6c56a 1354 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c
SS
1355
1356 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1357 (and POP_FRAME for restoring them). (At least on most machines)
1358 they are saved on the stack in the inferior. */
1359 PUSH_DUMMY_FRAME;
1360
1361 old_sp = sp = read_sp ();
1362
1363 if (INNER_THAN (1, 2))
1364 {
1365 /* Stack grows down */
7a292a7a 1366 sp -= sizeof_dummy1;
c906108c
SS
1367 start_sp = sp;
1368 }
1369 else
1370 {
1371 /* Stack grows up */
1372 start_sp = sp;
7a292a7a 1373 sp += sizeof_dummy1;
c906108c
SS
1374 }
1375
1376 funaddr = find_function_addr (function, &value_type);
1377 CHECK_TYPEDEF (value_type);
1378
1379 {
1380 struct block *b = block_for_pc (funaddr);
1381 /* If compiled without -g, assume GCC 2. */
1382 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1383 }
1384
1385 /* Are we returning a value using a structure return or a normal
1386 value return? */
1387
1388 struct_return = using_struct_return (function, funaddr, value_type,
1389 using_gcc);
1390
1391 /* Create a call sequence customized for this function
1392 and the number of arguments for it. */
7a292a7a 1393 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1394 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1395 REGISTER_SIZE,
c5aa993b 1396 (ULONGEST) dummy[i]);
c906108c
SS
1397
1398#ifdef GDB_TARGET_IS_HPPA
1399 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1400 value_type, using_gcc);
1401#else
1402 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1403 value_type, using_gcc);
1404 real_pc = start_sp;
1405#endif
1406
7a292a7a
SS
1407 if (CALL_DUMMY_LOCATION == ON_STACK)
1408 {
c5aa993b 1409 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
6096c27a
AC
1410 if (USE_GENERIC_DUMMY_FRAMES)
1411 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
7a292a7a 1412 }
c906108c 1413
7a292a7a
SS
1414 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1415 {
1416 /* Convex Unix prohibits executing in the stack segment. */
1417 /* Hope there is empty room at the top of the text segment. */
1418 extern CORE_ADDR text_end;
392a587b 1419 static int checked = 0;
7a292a7a
SS
1420 if (!checked)
1421 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1422 if (read_memory_integer (start_sp, 1) != 0)
1423 error ("text segment full -- no place to put call");
1424 checked = 1;
1425 sp = old_sp;
1426 real_pc = text_end - sizeof_dummy1;
c5aa993b 1427 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
6096c27a
AC
1428 if (USE_GENERIC_DUMMY_FRAMES)
1429 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
7a292a7a 1430 }
c5aa993b 1431
7a292a7a
SS
1432 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1433 {
1434 extern CORE_ADDR text_end;
1435 int errcode;
1436 sp = old_sp;
1437 real_pc = text_end;
c5aa993b 1438 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
7a292a7a
SS
1439 if (errcode != 0)
1440 error ("Cannot write text segment -- call_function failed");
6096c27a
AC
1441 if (USE_GENERIC_DUMMY_FRAMES)
1442 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
7a292a7a 1443 }
c906108c 1444
7a292a7a
SS
1445 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1446 {
1447 real_pc = funaddr;
6096c27a
AC
1448 if (USE_GENERIC_DUMMY_FRAMES)
1449 /* NOTE: cagney/2002-04-13: The entry point is going to be
1450 modified with a single breakpoint. */
1451 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1452 CALL_DUMMY_ADDRESS () + 1);
7a292a7a 1453 }
c906108c
SS
1454
1455#ifdef lint
c5aa993b 1456 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1457#endif
1458
ad2f7632 1459 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1460 error ("too few arguments in function call");
1461
1462 for (i = nargs - 1; i >= 0; i--)
1463 {
ad2f7632 1464 int prototyped;
76b2e19d 1465
ad2f7632
DJ
1466 /* FIXME drow/2002-05-31: Should just always mark methods as
1467 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1468 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1469 prototyped = 1;
1470 else
1471 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1472
ad2f7632
DJ
1473 if (i < TYPE_NFIELDS (ftype))
1474 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1475 prototyped);
c5aa993b 1476 else
ad2f7632 1477 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1478
070ad9f0
DB
1479 /*elz: this code is to handle the case in which the function to be called
1480 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1481 is the address of a function and not a pointer to function variable.
1482 In aCC compiled code, the calls through pointers to functions (in the body
1483 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1484 requires some registers setting, this is taken care of if we call
1485 via a function pointer variable, but not via a function address.
7b83ea04 1486 In cc this is not a problem. */
c906108c
SS
1487
1488 if (using_gcc == 0)
ad2f7632 1489 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1490 /* if this parameter is a pointer to function */
c906108c 1491 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1492 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1493 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1494 to compile the target. We want to issue the error
070ad9f0
DB
1495 message only if the compiler used was HP's aCC.
1496 If we used HP's cc, then there is no problem and no need
7b83ea04 1497 to return at this point */
c5aa993b 1498 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1499 /* go see if the actual parameter is a variable of type
c5aa993b 1500 pointer to function or just a function */
c906108c
SS
1501 if (args[i]->lval == not_lval)
1502 {
1503 char *arg_name;
c5aa993b
JM
1504 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1505 error ("\
c906108c
SS
1506You cannot use function <%s> as argument. \n\
1507You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1508 }
c906108c
SS
1509 }
1510
d03e67c9
AC
1511 if (REG_STRUCT_HAS_ADDR_P ())
1512 {
1513 /* This is a machine like the sparc, where we may need to pass a
1514 pointer to the structure, not the structure itself. */
1515 for (i = nargs - 1; i >= 0; i--)
1516 {
1517 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1518 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1519 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1520 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1521 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1522 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1523 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1524 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1525 && TYPE_LENGTH (arg_type) > 8)
1526 )
1527 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1528 {
1529 CORE_ADDR addr;
1530 int len; /* = TYPE_LENGTH (arg_type); */
1531 int aligned_len;
1532 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1533 len = TYPE_LENGTH (arg_type);
1534
1535 if (STACK_ALIGN_P ())
1536 /* MVS 11/22/96: I think at least some of this
1537 stack_align code is really broken. Better to let
1538 PUSH_ARGUMENTS adjust the stack in a target-defined
1539 manner. */
1540 aligned_len = STACK_ALIGN (len);
1541 else
1542 aligned_len = len;
1543 if (INNER_THAN (1, 2))
1544 {
1545 /* stack grows downward */
1546 sp -= aligned_len;
0b3f98d3
AC
1547 /* ... so the address of the thing we push is the
1548 stack pointer after we push it. */
1549 addr = sp;
d03e67c9
AC
1550 }
1551 else
1552 {
1553 /* The stack grows up, so the address of the thing
1554 we push is the stack pointer before we push it. */
1555 addr = sp;
d03e67c9
AC
1556 sp += aligned_len;
1557 }
0b3f98d3
AC
1558 /* Push the structure. */
1559 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1560 /* The value we're going to pass is the address of the
1561 thing we just pushed. */
1562 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1563 (LONGEST) addr); */
1564 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1565 addr);
1566 }
1567 }
1568 }
1569
c906108c
SS
1570
1571 /* Reserve space for the return structure to be written on the
1572 stack, if necessary */
1573
1574 if (struct_return)
1575 {
1576 int len = TYPE_LENGTH (value_type);
2ada493a
AC
1577 if (STACK_ALIGN_P ())
1578 /* MVS 11/22/96: I think at least some of this stack_align
1579 code is really broken. Better to let PUSH_ARGUMENTS adjust
1580 the stack in a target-defined manner. */
1581 len = STACK_ALIGN (len);
c906108c
SS
1582 if (INNER_THAN (1, 2))
1583 {
1584 /* stack grows downward */
1585 sp -= len;
1586 struct_addr = sp;
1587 }
1588 else
1589 {
1590 /* stack grows upward */
1591 struct_addr = sp;
1592 sp += len;
1593 }
1594 }
1595
0a49d05e
AC
1596 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1597 on other architectures. This is because all the alignment is
1598 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1599 in hppa_push_arguments */
1600 if (EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1601 {
0a49d05e
AC
1602 /* MVS 11/22/96: I think at least some of this stack_align code
1603 is really broken. Better to let PUSH_ARGUMENTS adjust the
1604 stack in a target-defined manner. */
1605 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1606 {
1607 /* If stack grows down, we must leave a hole at the top. */
1608 int len = 0;
1609
1610 for (i = nargs - 1; i >= 0; i--)
1611 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1612 if (CALL_DUMMY_STACK_ADJUST_P)
1613 len += CALL_DUMMY_STACK_ADJUST;
1614 sp -= STACK_ALIGN (len) - len;
1615 }
c906108c 1616 }
c906108c 1617
392a587b 1618 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c 1619
69a0d5f4
AC
1620 if (PUSH_RETURN_ADDRESS_P ())
1621 /* for targets that use no CALL_DUMMY */
1622 /* There are a number of targets now which actually don't write
1623 any CALL_DUMMY instructions into the target, but instead just
1624 save the machine state, push the arguments, and jump directly
1625 to the callee function. Since this doesn't actually involve
1626 executing a JSR/BSR instruction, the return address must be set
1627 up by hand, either by pushing onto the stack or copying into a
1628 return-address register as appropriate. Formerly this has been
1629 done in PUSH_ARGUMENTS, but that's overloading its
1630 functionality a bit, so I'm making it explicit to do it here. */
1631 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1632
2ada493a 1633 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1634 {
1635 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1636 that sp already has been advanced for the arguments! */
7a292a7a
SS
1637 if (CALL_DUMMY_STACK_ADJUST_P)
1638 sp += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1639 sp = STACK_ALIGN (sp);
1640 }
c906108c
SS
1641
1642/* XXX This seems wrong. For stacks that grow down we shouldn't do
1643 anything here! */
1644 /* MVS 11/22/96: I think at least some of this stack_align code is
1645 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1646 a target-defined manner. */
7a292a7a
SS
1647 if (CALL_DUMMY_STACK_ADJUST_P)
1648 if (INNER_THAN (1, 2))
1649 {
1650 /* stack grows downward */
1651 sp -= CALL_DUMMY_STACK_ADJUST;
1652 }
c906108c
SS
1653
1654 /* Store the address at which the structure is supposed to be
1655 written. Note that this (and the code which reserved the space
1656 above) assumes that gcc was used to compile this function. Since
1657 it doesn't cost us anything but space and if the function is pcc
1658 it will ignore this value, we will make that assumption.
1659
070ad9f0 1660 Also note that on some machines (like the sparc) pcc uses a
c906108c
SS
1661 convention like gcc's. */
1662
1663 if (struct_return)
1664 STORE_STRUCT_RETURN (struct_addr, sp);
1665
1666 /* Write the stack pointer. This is here because the statements above
1667 might fool with it. On SPARC, this write also stores the register
1668 window into the right place in the new stack frame, which otherwise
1669 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1670 write_sp (sp);
1671
d1e3cf49
AC
1672 if (SAVE_DUMMY_FRAME_TOS_P ())
1673 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1674
c906108c 1675 {
c906108c
SS
1676 char *name;
1677 struct symbol *symbol;
1678
1679 name = NULL;
1680 symbol = find_pc_function (funaddr);
1681 if (symbol)
1682 {
1683 name = SYMBOL_SOURCE_NAME (symbol);
1684 }
1685 else
1686 {
1687 /* Try the minimal symbols. */
1688 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1689
1690 if (msymbol)
1691 {
1692 name = SYMBOL_SOURCE_NAME (msymbol);
1693 }
1694 }
1695 if (name == NULL)
1696 {
1697 char format[80];
1698 sprintf (format, "at %s", local_hex_format ());
1699 name = alloca (80);
1700 /* FIXME-32x64: assumes funaddr fits in a long. */
1701 sprintf (name, format, (unsigned long) funaddr);
1702 }
1703
1704 /* Execute the stack dummy routine, calling FUNCTION.
1705 When it is done, discard the empty frame
1706 after storing the contents of all regs into retbuf. */
da59e081
JM
1707 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1708
1709 if (rc == 1)
1710 {
1711 /* We stopped inside the FUNCTION because of a random signal.
1712 Further execution of the FUNCTION is not allowed. */
1713
7b83ea04 1714 if (unwind_on_signal_p)
242bfc55
FN
1715 {
1716 /* The user wants the context restored. */
da59e081 1717
7b83ea04
AC
1718 /* We must get back to the frame we were before the dummy call. */
1719 POP_FRAME;
242bfc55
FN
1720
1721 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1722 a C++ name with arguments and stuff. */
1723 error ("\
1724The program being debugged was signaled while in a function called from GDB.\n\
1725GDB has restored the context to what it was before the call.\n\
1726To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1727Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1728 name);
1729 }
1730 else
1731 {
1732 /* The user wants to stay in the frame where we stopped (default).*/
1733
26e6c56a
AC
1734 /* If we restored the inferior status (via the cleanup),
1735 we would print a spurious error message (Unable to
1736 restore previously selected frame), would write the
1737 registers from the inf_status (which is wrong), and
1738 would do other wrong things. */
1739 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1740 discard_inferior_status (inf_status);
1741
1742 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1743 a C++ name with arguments and stuff. */
1744 error ("\
1745The program being debugged was signaled while in a function called from GDB.\n\
1746GDB remains in the frame where the signal was received.\n\
1747To change this behavior use \"set unwindonsignal on\"\n\
1748Evaluation of the expression containing the function (%s) will be abandoned.",
1749 name);
1750 }
da59e081
JM
1751 }
1752
1753 if (rc == 2)
c906108c 1754 {
da59e081 1755 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1756
26e6c56a
AC
1757 /* If we restored the inferior status (via the cleanup), we
1758 would print a spurious error message (Unable to restore
1759 previously selected frame), would write the registers from
1760 the inf_status (which is wrong), and would do other wrong
1761 things. */
1762 discard_cleanups (inf_status_cleanup);
7a292a7a 1763 discard_inferior_status (inf_status);
c906108c
SS
1764
1765 /* The following error message used to say "The expression
1766 which contained the function call has been discarded." It
1767 is a hard concept to explain in a few words. Ideally, GDB
1768 would be able to resume evaluation of the expression when
1769 the function finally is done executing. Perhaps someday
1770 this will be implemented (it would not be easy). */
1771
1772 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1773 a C++ name with arguments and stuff. */
1774 error ("\
1775The program being debugged stopped while in a function called from GDB.\n\
1776When the function (%s) is done executing, GDB will silently\n\
1777stop (instead of continuing to evaluate the expression containing\n\
1778the function call).", name);
1779 }
1780
da59e081 1781 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1782
1783 /* Restore the inferior status, via its cleanup. At this stage,
1784 leave the RETBUF alone. */
1785 do_cleanups (inf_status_cleanup);
c906108c
SS
1786
1787 /* Figure out the value returned by the function. */
1788/* elz: I defined this new macro for the hppa architecture only.
1789 this gives us a way to get the value returned by the function from the stack,
1790 at the same address we told the function to put it.
1791 We cannot assume on the pa that r28 still contains the address of the returned
1792 structure. Usually this will be overwritten by the callee.
1793 I don't know about other architectures, so I defined this macro
c5aa993b 1794 */
c906108c
SS
1795
1796#ifdef VALUE_RETURNED_FROM_STACK
1797 if (struct_return)
26e6c56a
AC
1798 {
1799 do_cleanups (retbuf_cleanup);
1800 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1801 }
c906108c
SS
1802#endif
1803
26e6c56a
AC
1804 {
1805 struct value *retval = value_being_returned (value_type, retbuf, struct_return);
1806 do_cleanups (retbuf_cleanup);
1807 return retval;
1808 }
c906108c
SS
1809 }
1810}
7a292a7a 1811
f23631e4
AC
1812struct value *
1813call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c 1814{
7a292a7a
SS
1815 if (CALL_DUMMY_P)
1816 {
1817 return hand_function_call (function, nargs, args);
1818 }
1819 else
1820 {
1821 error ("Cannot invoke functions on this machine.");
1822 }
c906108c 1823}
c5aa993b 1824\f
7a292a7a 1825
c906108c 1826
c906108c
SS
1827/* Create a value for an array by allocating space in the inferior, copying
1828 the data into that space, and then setting up an array value.
1829
1830 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1831 populated from the values passed in ELEMVEC.
1832
1833 The element type of the array is inherited from the type of the
1834 first element, and all elements must have the same size (though we
1835 don't currently enforce any restriction on their types). */
1836
f23631e4
AC
1837struct value *
1838value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1839{
1840 int nelem;
1841 int idx;
1842 unsigned int typelength;
f23631e4 1843 struct value *val;
c906108c
SS
1844 struct type *rangetype;
1845 struct type *arraytype;
1846 CORE_ADDR addr;
1847
1848 /* Validate that the bounds are reasonable and that each of the elements
1849 have the same size. */
1850
1851 nelem = highbound - lowbound + 1;
1852 if (nelem <= 0)
1853 {
1854 error ("bad array bounds (%d, %d)", lowbound, highbound);
1855 }
1856 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1857 for (idx = 1; idx < nelem; idx++)
1858 {
1859 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1860 {
1861 error ("array elements must all be the same size");
1862 }
1863 }
1864
1865 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1866 lowbound, highbound);
c5aa993b
JM
1867 arraytype = create_array_type ((struct type *) NULL,
1868 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1869
1870 if (!current_language->c_style_arrays)
1871 {
1872 val = allocate_value (arraytype);
1873 for (idx = 0; idx < nelem; idx++)
1874 {
1875 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1876 VALUE_CONTENTS_ALL (elemvec[idx]),
1877 typelength);
1878 }
1879 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1880 return val;
1881 }
1882
1883 /* Allocate space to store the array in the inferior, and then initialize
1884 it by copying in each element. FIXME: Is it worth it to create a
1885 local buffer in which to collect each value and then write all the
1886 bytes in one operation? */
1887
1888 addr = allocate_space_in_inferior (nelem * typelength);
1889 for (idx = 0; idx < nelem; idx++)
1890 {
1891 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1892 typelength);
1893 }
1894
1895 /* Create the array type and set up an array value to be evaluated lazily. */
1896
1897 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1898 return (val);
1899}
1900
1901/* Create a value for a string constant by allocating space in the inferior,
1902 copying the data into that space, and returning the address with type
1903 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1904 of characters.
1905 Note that string types are like array of char types with a lower bound of
1906 zero and an upper bound of LEN - 1. Also note that the string may contain
1907 embedded null bytes. */
1908
f23631e4 1909struct value *
fba45db2 1910value_string (char *ptr, int len)
c906108c 1911{
f23631e4 1912 struct value *val;
c906108c
SS
1913 int lowbound = current_language->string_lower_bound;
1914 struct type *rangetype = create_range_type ((struct type *) NULL,
1915 builtin_type_int,
1916 lowbound, len + lowbound - 1);
1917 struct type *stringtype
c5aa993b 1918 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1919 CORE_ADDR addr;
1920
1921 if (current_language->c_style_arrays == 0)
1922 {
1923 val = allocate_value (stringtype);
1924 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1925 return val;
1926 }
1927
1928
1929 /* Allocate space to store the string in the inferior, and then
1930 copy LEN bytes from PTR in gdb to that address in the inferior. */
1931
1932 addr = allocate_space_in_inferior (len);
1933 write_memory (addr, ptr, len);
1934
1935 val = value_at_lazy (stringtype, addr, NULL);
1936 return (val);
1937}
1938
f23631e4 1939struct value *
fba45db2 1940value_bitstring (char *ptr, int len)
c906108c 1941{
f23631e4 1942 struct value *val;
c906108c
SS
1943 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1944 0, len - 1);
c5aa993b 1945 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1946 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1947 val = allocate_value (type);
1948 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1949 return val;
1950}
1951\f
1952/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1953 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1954 vector. If some arguments need coercion of some sort, then the coerced
1955 values are written into T2. Return value is 0 if the arguments could be
1956 matched, or the position at which they differ if not.
c906108c
SS
1957
1958 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1959 static member function. T2 will still include the ``this'' pointer,
1960 but it will be skipped.
c906108c
SS
1961
1962 For non-static member functions, we ignore the first argument,
1963 which is the type of the instance variable. This is because we want
1964 to handle calls with objects from derived classes. This is not
1965 entirely correct: we should actually check to make sure that a
1966 requested operation is type secure, shouldn't we? FIXME. */
1967
1968static int
ad2f7632
DJ
1969typecmp (int staticp, int varargs, int nargs,
1970 struct field t1[], struct value *t2[])
c906108c
SS
1971{
1972 int i;
1973
1974 if (t2 == 0)
ad2f7632
DJ
1975 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1976
4a1970e4
DJ
1977 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1978 if (staticp)
ad2f7632
DJ
1979 t2 ++;
1980
1981 for (i = 0;
1982 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1983 i++)
c906108c 1984 {
c5aa993b 1985 struct type *tt1, *tt2;
ad2f7632 1986
c5aa993b
JM
1987 if (!t2[i])
1988 return i + 1;
ad2f7632
DJ
1989
1990 tt1 = check_typedef (t1[i].type);
c5aa993b 1991 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 1992
c906108c 1993 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 1994 /* We should be doing hairy argument matching, as below. */
c906108c
SS
1995 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1996 {
1997 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1998 t2[i] = value_coerce_array (t2[i]);
1999 else
2000 t2[i] = value_addr (t2[i]);
2001 continue;
2002 }
2003
802db21b
DB
2004 /* djb - 20000715 - Until the new type structure is in the
2005 place, and we can attempt things like implicit conversions,
2006 we need to do this so you can take something like a map<const
2007 char *>, and properly access map["hello"], because the
2008 argument to [] will be a reference to a pointer to a char,
7168a814 2009 and the argument will be a pointer to a char. */
802db21b
DB
2010 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2011 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2012 {
2013 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2014 }
2015 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2016 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2017 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 2018 {
802db21b 2019 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 2020 }
c5aa993b
JM
2021 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2022 continue;
c906108c
SS
2023 /* Array to pointer is a `trivial conversion' according to the ARM. */
2024
2025 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2026 of the ARM), but as a quick kludge, just check for the same type
2027 code. */
ad2f7632 2028 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2029 return i + 1;
c906108c 2030 }
ad2f7632 2031 if (varargs || t2[i] == NULL)
c5aa993b 2032 return 0;
ad2f7632 2033 return i + 1;
c906108c
SS
2034}
2035
2036/* Helper function used by value_struct_elt to recurse through baseclasses.
2037 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2038 and search in it assuming it has (class) type TYPE.
2039 If found, return value, else return NULL.
2040
2041 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2042 look for a baseclass named NAME. */
2043
f23631e4
AC
2044static struct value *
2045search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2046 register struct type *type, int looking_for_baseclass)
c906108c
SS
2047{
2048 int i;
2049 int nbases = TYPE_N_BASECLASSES (type);
2050
2051 CHECK_TYPEDEF (type);
2052
c5aa993b 2053 if (!looking_for_baseclass)
c906108c
SS
2054 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2055 {
2056 char *t_field_name = TYPE_FIELD_NAME (type, i);
2057
db577aea 2058 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2059 {
f23631e4 2060 struct value *v;
c906108c 2061 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2062 {
2063 v = value_static_field (type, i);
2064 if (v == 0)
2065 error ("field %s is nonexistent or has been optimised out",
2066 name);
2067 }
c906108c 2068 else
2c2738a0
DC
2069 {
2070 v = value_primitive_field (arg1, offset, i, type);
2071 if (v == 0)
2072 error ("there is no field named %s", name);
2073 }
c906108c
SS
2074 return v;
2075 }
2076
2077 if (t_field_name
2078 && (t_field_name[0] == '\0'
2079 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2080 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2081 {
2082 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2083 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2084 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2085 {
2086 /* Look for a match through the fields of an anonymous union,
2087 or anonymous struct. C++ provides anonymous unions.
2088
db034ac5
AC
2089 In the GNU Chill (OBSOLETE) implementation of
2090 variant record types, each <alternative field> has
2091 an (anonymous) union type, each member of the union
2092 represents a <variant alternative>. Each <variant
2093 alternative> is represented as a struct, with a
2094 member for each <variant field>. */
c5aa993b 2095
f23631e4 2096 struct value *v;
c906108c
SS
2097 int new_offset = offset;
2098
db034ac5
AC
2099 /* This is pretty gross. In G++, the offset in an
2100 anonymous union is relative to the beginning of the
2101 enclosing struct. In the GNU Chill (OBSOLETE)
2102 implementation of variant records, the bitpos is
2103 zero in an anonymous union field, so we have to add
2104 the offset of the union here. */
c906108c
SS
2105 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2106 || (TYPE_NFIELDS (field_type) > 0
2107 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2108 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2109
2110 v = search_struct_field (name, arg1, new_offset, field_type,
2111 looking_for_baseclass);
2112 if (v)
2113 return v;
2114 }
2115 }
2116 }
2117
c5aa993b 2118 for (i = 0; i < nbases; i++)
c906108c 2119 {
f23631e4 2120 struct value *v;
c906108c
SS
2121 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2122 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2123 hit them. But it could happen that the base part's member name
2124 is not yet filled in. */
c906108c
SS
2125 int found_baseclass = (looking_for_baseclass
2126 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2127 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2128
2129 if (BASETYPE_VIA_VIRTUAL (type, i))
2130 {
2131 int boffset;
f23631e4 2132 struct value *v2 = allocate_value (basetype);
c906108c
SS
2133
2134 boffset = baseclass_offset (type, i,
2135 VALUE_CONTENTS (arg1) + offset,
2136 VALUE_ADDRESS (arg1)
c5aa993b 2137 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2138 if (boffset == -1)
2139 error ("virtual baseclass botch");
2140
2141 /* The virtual base class pointer might have been clobbered by the
2142 user program. Make sure that it still points to a valid memory
2143 location. */
2144
2145 boffset += offset;
2146 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2147 {
2148 CORE_ADDR base_addr;
c5aa993b 2149
c906108c
SS
2150 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2151 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2152 TYPE_LENGTH (basetype)) != 0)
2153 error ("virtual baseclass botch");
2154 VALUE_LVAL (v2) = lval_memory;
2155 VALUE_ADDRESS (v2) = base_addr;
2156 }
2157 else
2158 {
2159 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2160 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2161 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2162 if (VALUE_LAZY (arg1))
2163 VALUE_LAZY (v2) = 1;
2164 else
2165 memcpy (VALUE_CONTENTS_RAW (v2),
2166 VALUE_CONTENTS_RAW (arg1) + boffset,
2167 TYPE_LENGTH (basetype));
2168 }
2169
2170 if (found_baseclass)
2171 return v2;
2172 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2173 looking_for_baseclass);
2174 }
2175 else if (found_baseclass)
2176 v = value_primitive_field (arg1, offset, i, type);
2177 else
2178 v = search_struct_field (name, arg1,
c5aa993b 2179 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2180 basetype, looking_for_baseclass);
c5aa993b
JM
2181 if (v)
2182 return v;
c906108c
SS
2183 }
2184 return NULL;
2185}
2186
2187
2188/* Return the offset (in bytes) of the virtual base of type BASETYPE
2189 * in an object pointed to by VALADDR (on the host), assumed to be of
2190 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2191 * looking (in case VALADDR is the contents of an enclosing object).
2192 *
2193 * This routine recurses on the primary base of the derived class because
2194 * the virtual base entries of the primary base appear before the other
2195 * virtual base entries.
2196 *
2197 * If the virtual base is not found, a negative integer is returned.
2198 * The magnitude of the negative integer is the number of entries in
2199 * the virtual table to skip over (entries corresponding to various
2200 * ancestral classes in the chain of primary bases).
2201 *
2202 * Important: This assumes the HP / Taligent C++ runtime
2203 * conventions. Use baseclass_offset() instead to deal with g++
2204 * conventions. */
2205
2206void
fba45db2
KB
2207find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2208 int offset, int *boffset_p, int *skip_p)
c906108c 2209{
c5aa993b
JM
2210 int boffset; /* offset of virtual base */
2211 int index; /* displacement to use in virtual table */
c906108c 2212 int skip;
c5aa993b 2213
f23631e4 2214 struct value *vp;
c5aa993b
JM
2215 CORE_ADDR vtbl; /* the virtual table pointer */
2216 struct type *pbc; /* the primary base class */
c906108c
SS
2217
2218 /* Look for the virtual base recursively in the primary base, first.
2219 * This is because the derived class object and its primary base
2220 * subobject share the primary virtual table. */
c5aa993b 2221
c906108c 2222 boffset = 0;
c5aa993b 2223 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2224 if (pbc)
2225 {
2226 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2227 if (skip < 0)
c5aa993b
JM
2228 {
2229 *boffset_p = boffset;
2230 *skip_p = -1;
2231 return;
2232 }
c906108c
SS
2233 }
2234 else
2235 skip = 0;
2236
2237
2238 /* Find the index of the virtual base according to HP/Taligent
2239 runtime spec. (Depth-first, left-to-right.) */
2240 index = virtual_base_index_skip_primaries (basetype, type);
2241
c5aa993b
JM
2242 if (index < 0)
2243 {
2244 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2245 *boffset_p = 0;
2246 return;
2247 }
c906108c 2248
c5aa993b 2249 /* pai: FIXME -- 32x64 possible problem */
c906108c 2250 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2251 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2252
c5aa993b 2253 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2254 if (vtbl == 0)
2255 error ("Couldn't find virtual table -- object may not be constructed yet.");
2256
2257
2258 /* Find virtual base's offset -- jump over entries for primary base
2259 * ancestors, then use the index computed above. But also adjust by
2260 * HP_ACC_VBASE_START for the vtable slots before the start of the
2261 * virtual base entries. Offset is negative -- virtual base entries
2262 * appear _before_ the address point of the virtual table. */
c5aa993b 2263
070ad9f0 2264 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2265 & use long type */
c906108c
SS
2266
2267 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2268 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2269 boffset = value_as_long (vp);
2270 *skip_p = -1;
2271 *boffset_p = boffset;
2272 return;
2273}
2274
2275
2276/* Helper function used by value_struct_elt to recurse through baseclasses.
2277 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2278 and search in it assuming it has (class) type TYPE.
2279 If found, return value, else if name matched and args not return (value)-1,
2280 else return NULL. */
2281
f23631e4
AC
2282static struct value *
2283search_struct_method (char *name, struct value **arg1p,
2284 struct value **args, int offset,
fba45db2 2285 int *static_memfuncp, register struct type *type)
c906108c
SS
2286{
2287 int i;
f23631e4 2288 struct value *v;
c906108c
SS
2289 int name_matched = 0;
2290 char dem_opname[64];
2291
2292 CHECK_TYPEDEF (type);
2293 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2294 {
2295 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2296 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2297 if (strncmp (t_field_name, "__", 2) == 0 ||
2298 strncmp (t_field_name, "op", 2) == 0 ||
2299 strncmp (t_field_name, "type", 4) == 0)
c906108c 2300 {
c5aa993b
JM
2301 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2302 t_field_name = dem_opname;
2303 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2304 t_field_name = dem_opname;
c906108c 2305 }
db577aea 2306 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2307 {
2308 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2309 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2310 name_matched = 1;
c906108c
SS
2311
2312 if (j > 0 && args == 0)
2313 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2314 else if (j == 0 && args == 0)
c906108c
SS
2315 {
2316 if (TYPE_FN_FIELD_STUB (f, j))
2317 check_stub_method (type, i, j);
acf5ed49
DJ
2318 v = value_fn_field (arg1p, f, j, type, offset);
2319 if (v != NULL)
2320 return v;
c906108c 2321 }
acf5ed49
DJ
2322 else
2323 while (j >= 0)
2324 {
2325 if (TYPE_FN_FIELD_STUB (f, j))
2326 check_stub_method (type, i, j);
2327 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2328 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2329 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2330 TYPE_FN_FIELD_ARGS (f, j), args))
2331 {
2332 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2333 return value_virtual_fn_field (arg1p, f, j, type, offset);
2334 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2335 *static_memfuncp = 1;
2336 v = value_fn_field (arg1p, f, j, type, offset);
2337 if (v != NULL)
2338 return v;
2339 }
2340 j--;
2341 }
c906108c
SS
2342 }
2343 }
2344
2345 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2346 {
2347 int base_offset;
2348
2349 if (BASETYPE_VIA_VIRTUAL (type, i))
2350 {
c5aa993b
JM
2351 if (TYPE_HAS_VTABLE (type))
2352 {
2353 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2354 according to HP/Taligent runtime spec. */
c5aa993b
JM
2355 int skip;
2356 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2357 VALUE_CONTENTS_ALL (*arg1p),
2358 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2359 &base_offset, &skip);
2360 if (skip >= 0)
2361 error ("Virtual base class offset not found in vtable");
2362 }
2363 else
2364 {
2365 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2366 char *base_valaddr;
2367
2368 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2369 user program. Make sure that it still points to a valid memory
2370 location. */
c5aa993b
JM
2371
2372 if (offset < 0 || offset >= TYPE_LENGTH (type))
2373 {
2374 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2375 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2376 + VALUE_OFFSET (*arg1p) + offset,
2377 base_valaddr,
2378 TYPE_LENGTH (baseclass)) != 0)
2379 error ("virtual baseclass botch");
2380 }
2381 else
2382 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2383
2384 base_offset =
2385 baseclass_offset (type, i, base_valaddr,
2386 VALUE_ADDRESS (*arg1p)
2387 + VALUE_OFFSET (*arg1p) + offset);
2388 if (base_offset == -1)
2389 error ("virtual baseclass botch");
2390 }
2391 }
c906108c
SS
2392 else
2393 {
2394 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2395 }
c906108c
SS
2396 v = search_struct_method (name, arg1p, args, base_offset + offset,
2397 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2398 if (v == (struct value *) - 1)
c906108c
SS
2399 {
2400 name_matched = 1;
2401 }
2402 else if (v)
2403 {
2404/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2405/* *arg1p = arg1_tmp; */
c906108c 2406 return v;
c5aa993b 2407 }
c906108c 2408 }
c5aa993b 2409 if (name_matched)
f23631e4 2410 return (struct value *) - 1;
c5aa993b
JM
2411 else
2412 return NULL;
c906108c
SS
2413}
2414
2415/* Given *ARGP, a value of type (pointer to a)* structure/union,
2416 extract the component named NAME from the ultimate target structure/union
2417 and return it as a value with its appropriate type.
2418 ERR is used in the error message if *ARGP's type is wrong.
2419
2420 C++: ARGS is a list of argument types to aid in the selection of
2421 an appropriate method. Also, handle derived types.
2422
2423 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2424 where the truthvalue of whether the function that was resolved was
2425 a static member function or not is stored.
2426
2427 ERR is an error message to be printed in case the field is not found. */
2428
f23631e4
AC
2429struct value *
2430value_struct_elt (struct value **argp, struct value **args,
fba45db2 2431 char *name, int *static_memfuncp, char *err)
c906108c
SS
2432{
2433 register struct type *t;
f23631e4 2434 struct value *v;
c906108c
SS
2435
2436 COERCE_ARRAY (*argp);
2437
2438 t = check_typedef (VALUE_TYPE (*argp));
2439
2440 /* Follow pointers until we get to a non-pointer. */
2441
2442 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2443 {
2444 *argp = value_ind (*argp);
2445 /* Don't coerce fn pointer to fn and then back again! */
2446 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2447 COERCE_ARRAY (*argp);
2448 t = check_typedef (VALUE_TYPE (*argp));
2449 }
2450
2451 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2452 error ("not implemented: member type in value_struct_elt");
2453
c5aa993b 2454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2455 && TYPE_CODE (t) != TYPE_CODE_UNION)
2456 error ("Attempt to extract a component of a value that is not a %s.", err);
2457
2458 /* Assume it's not, unless we see that it is. */
2459 if (static_memfuncp)
c5aa993b 2460 *static_memfuncp = 0;
c906108c
SS
2461
2462 if (!args)
2463 {
2464 /* if there are no arguments ...do this... */
2465
2466 /* Try as a field first, because if we succeed, there
7b83ea04 2467 is less work to be done. */
c906108c
SS
2468 v = search_struct_field (name, *argp, 0, t, 0);
2469 if (v)
2470 return v;
2471
2472 /* C++: If it was not found as a data field, then try to
7b83ea04 2473 return it as a pointer to a method. */
c906108c
SS
2474
2475 if (destructor_name_p (name, t))
2476 error ("Cannot get value of destructor");
2477
2478 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2479
f23631e4 2480 if (v == (struct value *) - 1)
c906108c
SS
2481 error ("Cannot take address of a method");
2482 else if (v == 0)
2483 {
2484 if (TYPE_NFN_FIELDS (t))
2485 error ("There is no member or method named %s.", name);
2486 else
2487 error ("There is no member named %s.", name);
2488 }
2489 return v;
2490 }
2491
2492 if (destructor_name_p (name, t))
2493 {
2494 if (!args[1])
2495 {
2496 /* Destructors are a special case. */
2497 int m_index, f_index;
2498
2499 v = NULL;
2500 if (get_destructor_fn_field (t, &m_index, &f_index))
2501 {
2502 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2503 f_index, NULL, 0);
2504 }
2505 if (v == NULL)
2506 error ("could not find destructor function named %s.", name);
2507 else
2508 return v;
2509 }
2510 else
2511 {
2512 error ("destructor should not have any argument");
2513 }
2514 }
2515 else
2516 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2517
f23631e4 2518 if (v == (struct value *) - 1)
c906108c 2519 {
7168a814 2520 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2521 }
2522 else if (v == 0)
2523 {
2524 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2525 hand it back. If it's not callable (i.e., a pointer to function),
2526 gdb should give an error. */
c906108c
SS
2527 v = search_struct_field (name, *argp, 0, t, 0);
2528 }
2529
2530 if (!v)
2531 error ("Structure has no component named %s.", name);
2532 return v;
2533}
2534
2535/* Search through the methods of an object (and its bases)
2536 * to find a specified method. Return the pointer to the
2537 * fn_field list of overloaded instances.
2538 * Helper function for value_find_oload_list.
2539 * ARGP is a pointer to a pointer to a value (the object)
2540 * METHOD is a string containing the method name
2541 * OFFSET is the offset within the value
c906108c
SS
2542 * TYPE is the assumed type of the object
2543 * NUM_FNS is the number of overloaded instances
2544 * BASETYPE is set to the actual type of the subobject where the method is found
2545 * BOFFSET is the offset of the base subobject where the method is found */
2546
7a292a7a 2547static struct fn_field *
f23631e4 2548find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2549 struct type *type, int *num_fns,
fba45db2 2550 struct type **basetype, int *boffset)
c906108c
SS
2551{
2552 int i;
c5aa993b 2553 struct fn_field *f;
c906108c
SS
2554 CHECK_TYPEDEF (type);
2555
2556 *num_fns = 0;
2557
c5aa993b
JM
2558 /* First check in object itself */
2559 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2560 {
2561 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2562 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2563 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2564 {
4a1970e4
DJ
2565 /* Resolve any stub methods. */
2566 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2567 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2568 int j;
2569
2570 *num_fns = len;
c5aa993b
JM
2571 *basetype = type;
2572 *boffset = offset;
4a1970e4
DJ
2573
2574 for (j = 0; j < len; j++)
2575 {
2576 if (TYPE_FN_FIELD_STUB (f, j))
2577 check_stub_method (type, i, j);
2578 }
2579
2580 return f;
c5aa993b
JM
2581 }
2582 }
2583
c906108c
SS
2584 /* Not found in object, check in base subobjects */
2585 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2586 {
2587 int base_offset;
2588 if (BASETYPE_VIA_VIRTUAL (type, i))
2589 {
c5aa993b
JM
2590 if (TYPE_HAS_VTABLE (type))
2591 {
2592 /* HP aCC compiled type, search for virtual base offset
2593 * according to HP/Taligent runtime spec. */
2594 int skip;
2595 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2596 VALUE_CONTENTS_ALL (*argp),
2597 offset + VALUE_EMBEDDED_OFFSET (*argp),
2598 &base_offset, &skip);
2599 if (skip >= 0)
2600 error ("Virtual base class offset not found in vtable");
2601 }
2602 else
2603 {
2604 /* probably g++ runtime model */
2605 base_offset = VALUE_OFFSET (*argp) + offset;
2606 base_offset =
2607 baseclass_offset (type, i,
2608 VALUE_CONTENTS (*argp) + base_offset,
2609 VALUE_ADDRESS (*argp) + base_offset);
2610 if (base_offset == -1)
2611 error ("virtual baseclass botch");
2612 }
2613 }
2614 else
2615 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2616 {
2617 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2618 }
c906108c 2619 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2620 TYPE_BASECLASS (type, i), num_fns, basetype,
2621 boffset);
c906108c 2622 if (f)
c5aa993b 2623 return f;
c906108c 2624 }
c5aa993b 2625 return NULL;
c906108c
SS
2626}
2627
2628/* Return the list of overloaded methods of a specified name.
2629 * ARGP is a pointer to a pointer to a value (the object)
2630 * METHOD is the method name
2631 * OFFSET is the offset within the value contents
c906108c
SS
2632 * NUM_FNS is the number of overloaded instances
2633 * BASETYPE is set to the type of the base subobject that defines the method
2634 * BOFFSET is the offset of the base subobject which defines the method */
2635
2636struct fn_field *
f23631e4 2637value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2638 int *num_fns, struct type **basetype,
2639 int *boffset)
c906108c 2640{
c5aa993b 2641 struct type *t;
c906108c
SS
2642
2643 t = check_typedef (VALUE_TYPE (*argp));
2644
c5aa993b 2645 /* code snarfed from value_struct_elt */
c906108c
SS
2646 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2647 {
2648 *argp = value_ind (*argp);
2649 /* Don't coerce fn pointer to fn and then back again! */
2650 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2651 COERCE_ARRAY (*argp);
2652 t = check_typedef (VALUE_TYPE (*argp));
2653 }
c5aa993b 2654
c906108c
SS
2655 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2656 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2657
2658 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2659 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2660 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2661
4a1970e4 2662 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2663}
2664
2665/* Given an array of argument types (ARGTYPES) (which includes an
2666 entry for "this" in the case of C++ methods), the number of
2667 arguments NARGS, the NAME of a function whether it's a method or
2668 not (METHOD), and the degree of laxness (LAX) in conforming to
2669 overload resolution rules in ANSI C++, find the best function that
2670 matches on the argument types according to the overload resolution
2671 rules.
2672
2673 In the case of class methods, the parameter OBJ is an object value
2674 in which to search for overloaded methods.
2675
2676 In the case of non-method functions, the parameter FSYM is a symbol
2677 corresponding to one of the overloaded functions.
2678
2679 Return value is an integer: 0 -> good match, 10 -> debugger applied
2680 non-standard coercions, 100 -> incompatible.
2681
2682 If a method is being searched for, VALP will hold the value.
2683 If a non-method is being searched for, SYMP will hold the symbol for it.
2684
2685 If a method is being searched for, and it is a static method,
2686 then STATICP will point to a non-zero value.
2687
2688 Note: This function does *not* check the value of
2689 overload_resolution. Caller must check it to see whether overload
2690 resolution is permitted.
c5aa993b 2691 */
c906108c
SS
2692
2693int
fba45db2 2694find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2695 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2696 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2697{
2698 int nparms;
c5aa993b 2699 struct type **parm_types;
c906108c 2700 int champ_nparms = 0;
7f8c9282 2701 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2702
2703 short oload_champ = -1; /* Index of best overloaded function */
2704 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2705 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2706 short oload_ambig_champ = -1; /* 2nd contender for best match */
2707 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2708 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2709
2710 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2711 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2712
f23631e4 2713 struct value *temp = obj;
c5aa993b
JM
2714 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2715 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2716 int num_fns = 0; /* Number of overloaded instances being considered */
2717 struct type *basetype = NULL;
c906108c
SS
2718 int boffset;
2719 register int jj;
2720 register int ix;
4a1970e4 2721 int static_offset;
02f0d45d 2722 struct cleanup *cleanups = NULL;
c906108c 2723
c5aa993b
JM
2724 char *obj_type_name = NULL;
2725 char *func_name = NULL;
c906108c
SS
2726
2727 /* Get the list of overloaded methods or functions */
2728 if (method)
2729 {
2730 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2731 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2732 value rather than the object itself, so try again */
c906108c 2733 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2734 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2735 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2736
2737 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2738 &num_fns,
2739 &basetype, &boffset);
c906108c 2740 if (!fns_ptr || !num_fns)
c5aa993b
JM
2741 error ("Couldn't find method %s%s%s",
2742 obj_type_name,
2743 (obj_type_name && *obj_type_name) ? "::" : "",
2744 name);
4a1970e4
DJ
2745 /* If we are dealing with stub method types, they should have
2746 been resolved by find_method_list via value_find_oload_method_list
2747 above. */
2748 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2749 }
2750 else
2751 {
2752 int i = -1;
2753 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2754
917317f4 2755 /* If the name is NULL this must be a C-style function.
7b83ea04 2756 Just return the same symbol. */
917317f4 2757 if (!func_name)
7b83ea04 2758 {
917317f4 2759 *symp = fsym;
7b83ea04
AC
2760 return 0;
2761 }
917317f4 2762
c906108c 2763 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2764 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2765 while (oload_syms[++i])
c5aa993b 2766 num_fns++;
c906108c 2767 if (!num_fns)
c5aa993b 2768 error ("Couldn't find function %s", func_name);
c906108c 2769 }
c5aa993b 2770
c906108c
SS
2771 oload_champ_bv = NULL;
2772
c5aa993b 2773 /* Consider each candidate in turn */
c906108c
SS
2774 for (ix = 0; ix < num_fns; ix++)
2775 {
4a1970e4 2776 static_offset = 0;
db577aea
AC
2777 if (method)
2778 {
4a1970e4
DJ
2779 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2780 static_offset = 1;
ad2f7632 2781 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2782 }
2783 else
2784 {
2785 /* If it's not a method, this is the proper place */
2786 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2787 }
c906108c 2788
c5aa993b 2789 /* Prepare array of parameter types */
c906108c
SS
2790 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2791 for (jj = 0; jj < nparms; jj++)
db577aea 2792 parm_types[jj] = (method
ad2f7632 2793 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2794 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2795
4a1970e4
DJ
2796 /* Compare parameter types to supplied argument types. Skip THIS for
2797 static methods. */
2798 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2799 nargs - static_offset);
c5aa993b 2800
c906108c 2801 if (!oload_champ_bv)
c5aa993b
JM
2802 {
2803 oload_champ_bv = bv;
2804 oload_champ = 0;
2805 champ_nparms = nparms;
2806 }
c906108c 2807 else
c5aa993b
JM
2808 /* See whether current candidate is better or worse than previous best */
2809 switch (compare_badness (bv, oload_champ_bv))
2810 {
2811 case 0:
2812 oload_ambiguous = 1; /* top two contenders are equally good */
2813 oload_ambig_champ = ix;
2814 break;
2815 case 1:
2816 oload_ambiguous = 2; /* incomparable top contenders */
2817 oload_ambig_champ = ix;
2818 break;
2819 case 2:
2820 oload_champ_bv = bv; /* new champion, record details */
2821 oload_ambiguous = 0;
2822 oload_champ = ix;
2823 oload_ambig_champ = -1;
2824 champ_nparms = nparms;
2825 break;
2826 case 3:
2827 default:
2828 break;
2829 }
b8c9b27d 2830 xfree (parm_types);
6b1ba9a0
ND
2831 if (overload_debug)
2832 {
2833 if (method)
2834 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2835 else
2836 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2837 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2838 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2839 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2840 }
c5aa993b 2841 } /* end loop over all candidates */
db577aea
AC
2842 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2843 if they have the exact same goodness. This is because there is no
2844 way to differentiate based on return type, which we need to in
2845 cases like overloads of .begin() <It's both const and non-const> */
2846#if 0
c906108c
SS
2847 if (oload_ambiguous)
2848 {
2849 if (method)
c5aa993b
JM
2850 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2851 obj_type_name,
2852 (obj_type_name && *obj_type_name) ? "::" : "",
2853 name);
c906108c 2854 else
c5aa993b
JM
2855 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2856 func_name);
c906108c 2857 }
db577aea 2858#endif
c906108c 2859
4a1970e4
DJ
2860 /* Check how bad the best match is. */
2861 static_offset = 0;
2862 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2863 static_offset = 1;
2864 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2865 {
6b1ba9a0
ND
2866 if (oload_champ_bv->rank[ix] >= 100)
2867 oload_incompatible = 1; /* truly mismatched types */
2868
2869 else if (oload_champ_bv->rank[ix] >= 10)
2870 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2871 }
2872 if (oload_incompatible)
2873 {
2874 if (method)
c5aa993b
JM
2875 error ("Cannot resolve method %s%s%s to any overloaded instance",
2876 obj_type_name,
2877 (obj_type_name && *obj_type_name) ? "::" : "",
2878 name);
c906108c 2879 else
c5aa993b
JM
2880 error ("Cannot resolve function %s to any overloaded instance",
2881 func_name);
c906108c
SS
2882 }
2883 else if (oload_non_standard)
2884 {
2885 if (method)
c5aa993b
JM
2886 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2887 obj_type_name,
2888 (obj_type_name && *obj_type_name) ? "::" : "",
2889 name);
c906108c 2890 else
c5aa993b
JM
2891 warning ("Using non-standard conversion to match function %s to supplied arguments",
2892 func_name);
c906108c
SS
2893 }
2894
2895 if (method)
2896 {
4a1970e4
DJ
2897 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2898 *staticp = 1;
2899 else if (staticp)
2900 *staticp = 0;
c906108c 2901 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2902 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2903 else
c5aa993b 2904 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2905 }
2906 else
2907 {
2908 *symp = oload_syms[oload_champ];
b8c9b27d 2909 xfree (func_name);
c906108c
SS
2910 }
2911
7f8c9282
DJ
2912 if (objp)
2913 {
2914 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2915 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2916 {
2917 temp = value_addr (temp);
2918 }
2919 *objp = temp;
2920 }
02f0d45d
DJ
2921 if (cleanups != NULL)
2922 do_cleanups (cleanups);
2923
c906108c
SS
2924 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2925}
2926
2927/* C++: return 1 is NAME is a legitimate name for the destructor
2928 of type TYPE. If TYPE does not have a destructor, or
2929 if NAME is inappropriate for TYPE, an error is signaled. */
2930int
fba45db2 2931destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2932{
2933 /* destructors are a special case. */
2934
2935 if (name[0] == '~')
2936 {
2937 char *dname = type_name_no_tag (type);
2938 char *cp = strchr (dname, '<');
2939 unsigned int len;
2940
2941 /* Do not compare the template part for template classes. */
2942 if (cp == NULL)
2943 len = strlen (dname);
2944 else
2945 len = cp - dname;
2946 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2947 error ("name of destructor must equal name of class");
2948 else
2949 return 1;
2950 }
2951 return 0;
2952}
2953
2954/* Helper function for check_field: Given TYPE, a structure/union,
2955 return 1 if the component named NAME from the ultimate
2956 target structure/union is defined, otherwise, return 0. */
2957
2958static int
fba45db2 2959check_field_in (register struct type *type, const char *name)
c906108c
SS
2960{
2961 register int i;
2962
2963 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2964 {
2965 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2966 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2967 return 1;
2968 }
2969
2970 /* C++: If it was not found as a data field, then try to
2971 return it as a pointer to a method. */
2972
2973 /* Destructors are a special case. */
2974 if (destructor_name_p (name, type))
2975 {
2976 int m_index, f_index;
2977
2978 return get_destructor_fn_field (type, &m_index, &f_index);
2979 }
2980
2981 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2982 {
db577aea 2983 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
2984 return 1;
2985 }
2986
2987 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2988 if (check_field_in (TYPE_BASECLASS (type, i), name))
2989 return 1;
c5aa993b 2990
c906108c
SS
2991 return 0;
2992}
2993
2994
2995/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2996 return 1 if the component named NAME from the ultimate
2997 target structure/union is defined, otherwise, return 0. */
2998
2999int
f23631e4 3000check_field (struct value *arg1, const char *name)
c906108c
SS
3001{
3002 register struct type *t;
3003
3004 COERCE_ARRAY (arg1);
3005
3006 t = VALUE_TYPE (arg1);
3007
3008 /* Follow pointers until we get to a non-pointer. */
3009
3010 for (;;)
3011 {
3012 CHECK_TYPEDEF (t);
3013 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3014 break;
3015 t = TYPE_TARGET_TYPE (t);
3016 }
3017
3018 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3019 error ("not implemented: member type in check_field");
3020
c5aa993b 3021 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3022 && TYPE_CODE (t) != TYPE_CODE_UNION)
3023 error ("Internal error: `this' is not an aggregate");
3024
3025 return check_field_in (t, name);
3026}
3027
3028/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3029 return the address of this member as a "pointer to member"
3030 type. If INTYPE is non-null, then it will be the type
3031 of the member we are looking for. This will help us resolve
3032 "pointers to member functions". This function is used
3033 to resolve user expressions of the form "DOMAIN::NAME". */
3034
f23631e4 3035struct value *
fba45db2
KB
3036value_struct_elt_for_reference (struct type *domain, int offset,
3037 struct type *curtype, char *name,
3038 struct type *intype)
c906108c
SS
3039{
3040 register struct type *t = curtype;
3041 register int i;
f23631e4 3042 struct value *v;
c906108c 3043
c5aa993b 3044 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3045 && TYPE_CODE (t) != TYPE_CODE_UNION)
3046 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3047
3048 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3049 {
3050 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3051
c906108c
SS
3052 if (t_field_name && STREQ (t_field_name, name))
3053 {
3054 if (TYPE_FIELD_STATIC (t, i))
3055 {
3056 v = value_static_field (t, i);
3057 if (v == NULL)
2c2738a0 3058 error ("static field %s has been optimized out",
c906108c
SS
3059 name);
3060 return v;
3061 }
3062 if (TYPE_FIELD_PACKED (t, i))
3063 error ("pointers to bitfield members not allowed");
c5aa993b 3064
c906108c
SS
3065 return value_from_longest
3066 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3067 domain)),
3068 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3069 }
3070 }
3071
3072 /* C++: If it was not found as a data field, then try to
3073 return it as a pointer to a method. */
3074
3075 /* Destructors are a special case. */
3076 if (destructor_name_p (name, t))
3077 {
3078 error ("member pointers to destructors not implemented yet");
3079 }
3080
3081 /* Perform all necessary dereferencing. */
3082 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3083 intype = TYPE_TARGET_TYPE (intype);
3084
3085 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3086 {
3087 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3088 char dem_opname[64];
3089
c5aa993b
JM
3090 if (strncmp (t_field_name, "__", 2) == 0 ||
3091 strncmp (t_field_name, "op", 2) == 0 ||
3092 strncmp (t_field_name, "type", 4) == 0)
c906108c 3093 {
c5aa993b
JM
3094 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3095 t_field_name = dem_opname;
3096 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3097 t_field_name = dem_opname;
c906108c
SS
3098 }
3099 if (t_field_name && STREQ (t_field_name, name))
3100 {
3101 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3102 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3103
c906108c
SS
3104 if (intype == 0 && j > 1)
3105 error ("non-unique member `%s' requires type instantiation", name);
3106 if (intype)
3107 {
3108 while (j--)
3109 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3110 break;
3111 if (j < 0)
3112 error ("no member function matches that type instantiation");
3113 }
3114 else
3115 j = 0;
c5aa993b 3116
c906108c
SS
3117 if (TYPE_FN_FIELD_STUB (f, j))
3118 check_stub_method (t, i, j);
3119 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3120 {
3121 return value_from_longest
3122 (lookup_reference_type
3123 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3124 domain)),
3125 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3126 }
3127 else
3128 {
3129 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3130 0, VAR_NAMESPACE, 0, NULL);
3131 if (s == NULL)
3132 {
3133 v = 0;
3134 }
3135 else
3136 {
3137 v = read_var_value (s, 0);
3138#if 0
3139 VALUE_TYPE (v) = lookup_reference_type
3140 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3141 domain));
3142#endif
3143 }
3144 return v;
3145 }
3146 }
3147 }
3148 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3149 {
f23631e4 3150 struct value *v;
c906108c
SS
3151 int base_offset;
3152
3153 if (BASETYPE_VIA_VIRTUAL (t, i))
3154 base_offset = 0;
3155 else
3156 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3157 v = value_struct_elt_for_reference (domain,
3158 offset + base_offset,
3159 TYPE_BASECLASS (t, i),
3160 name,
3161 intype);
3162 if (v)
3163 return v;
3164 }
3165 return 0;
3166}
3167
3168
c906108c
SS
3169/* Given a pointer value V, find the real (RTTI) type
3170 of the object it points to.
3171 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3172 and refer to the values computed for the object pointed to. */
3173
3174struct type *
f23631e4 3175value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3176{
f23631e4 3177 struct value *target;
c906108c
SS
3178
3179 target = value_ind (v);
3180
3181 return value_rtti_type (target, full, top, using_enc);
3182}
3183
3184/* Given a value pointed to by ARGP, check its real run-time type, and
3185 if that is different from the enclosing type, create a new value
3186 using the real run-time type as the enclosing type (and of the same
3187 type as ARGP) and return it, with the embedded offset adjusted to
3188 be the correct offset to the enclosed object
3189 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3190 parameters, computed by value_rtti_type(). If these are available,
3191 they can be supplied and a second call to value_rtti_type() is avoided.
3192 (Pass RTYPE == NULL if they're not available */
3193
f23631e4
AC
3194struct value *
3195value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3196 int xusing_enc)
c906108c 3197{
c5aa993b 3198 struct type *real_type;
c906108c
SS
3199 int full = 0;
3200 int top = -1;
3201 int using_enc = 0;
f23631e4 3202 struct value *new_val;
c906108c
SS
3203
3204 if (rtype)
3205 {
3206 real_type = rtype;
3207 full = xfull;
3208 top = xtop;
3209 using_enc = xusing_enc;
3210 }
3211 else
3212 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3213
3214 /* If no RTTI data, or if object is already complete, do nothing */
3215 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3216 return argp;
3217
3218 /* If we have the full object, but for some reason the enclosing
c5aa993b 3219 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3220 if (full)
3221 {
2b127877 3222 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3223 return argp;
3224 }
3225
3226 /* Check if object is in memory */
3227 if (VALUE_LVAL (argp) != lval_memory)
3228 {
3229 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3230
c906108c
SS
3231 return argp;
3232 }
c5aa993b 3233
c906108c
SS
3234 /* All other cases -- retrieve the complete object */
3235 /* Go back by the computed top_offset from the beginning of the object,
3236 adjusting for the embedded offset of argp if that's what value_rtti_type
3237 used for its computation. */
3238 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3239 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3240 VALUE_BFD_SECTION (argp));
c906108c
SS
3241 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3242 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3243 return new_val;
3244}
3245
3246
3247
3248
3249/* C++: return the value of the class instance variable, if one exists.
3250 Flag COMPLAIN signals an error if the request is made in an
3251 inappropriate context. */
3252
f23631e4 3253struct value *
fba45db2 3254value_of_this (int complain)
c906108c
SS
3255{
3256 struct symbol *func, *sym;
3257 struct block *b;
3258 int i;
3259 static const char funny_this[] = "this";
f23631e4 3260 struct value *this;
c906108c
SS
3261
3262 if (selected_frame == 0)
3263 {
3264 if (complain)
c5aa993b
JM
3265 error ("no frame selected");
3266 else
3267 return 0;
c906108c
SS
3268 }
3269
3270 func = get_frame_function (selected_frame);
3271 if (!func)
3272 {
3273 if (complain)
3274 error ("no `this' in nameless context");
c5aa993b
JM
3275 else
3276 return 0;
c906108c
SS
3277 }
3278
3279 b = SYMBOL_BLOCK_VALUE (func);
3280 i = BLOCK_NSYMS (b);
3281 if (i <= 0)
3282 {
3283 if (complain)
c5aa993b
JM
3284 error ("no args, no `this'");
3285 else
3286 return 0;
c906108c
SS
3287 }
3288
3289 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3290 symbol instead of the LOC_ARG one (if both exist). */
3121eff0 3291 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
c906108c
SS
3292 if (sym == NULL)
3293 {
3294 if (complain)
3295 error ("current stack frame not in method");
3296 else
3297 return NULL;
3298 }
3299
3300 this = read_var_value (sym, selected_frame);
3301 if (this == 0 && complain)
3302 error ("`this' argument at unknown address");
3303 return this;
3304}
3305
3306/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3307 long, starting at LOWBOUND. The result has the same lower bound as
3308 the original ARRAY. */
3309
f23631e4
AC
3310struct value *
3311value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3312{
3313 struct type *slice_range_type, *slice_type, *range_type;
3314 LONGEST lowerbound, upperbound, offset;
f23631e4 3315 struct value *slice;
c906108c
SS
3316 struct type *array_type;
3317 array_type = check_typedef (VALUE_TYPE (array));
3318 COERCE_VARYING_ARRAY (array, array_type);
3319 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3320 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3321 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3322 error ("cannot take slice of non-array");
3323 range_type = TYPE_INDEX_TYPE (array_type);
3324 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3325 error ("slice from bad array or bitstring");
3326 if (lowbound < lowerbound || length < 0
db034ac5
AC
3327 || lowbound + length - 1 > upperbound)
3328 /* OBSOLETE Chill allows zero-length strings but not arrays. */
3329 /* OBSOLETE || (current_language->la_language == language_chill */
3330 /* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
c906108c
SS
3331 error ("slice out of range");
3332 /* FIXME-type-allocation: need a way to free this type when we are
3333 done with it. */
c5aa993b 3334 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3335 TYPE_TARGET_TYPE (range_type),
3336 lowbound, lowbound + length - 1);
3337 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3338 {
3339 int i;
c5aa993b 3340 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3341 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3342 slice = value_zero (slice_type, not_lval);
3343 for (i = 0; i < length; i++)
3344 {
3345 int element = value_bit_index (array_type,
3346 VALUE_CONTENTS (array),
3347 lowbound + i);
3348 if (element < 0)
3349 error ("internal error accessing bitstring");
3350 else if (element > 0)
3351 {
3352 int j = i % TARGET_CHAR_BIT;
3353 if (BITS_BIG_ENDIAN)
3354 j = TARGET_CHAR_BIT - 1 - j;
3355 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3356 }
3357 }
3358 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3359 can be used on the LHS, but that may require extensions to
3360 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3361 }
3362 else
3363 {
3364 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3365 offset
3366 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3367 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3368 slice_range_type);
3369 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3370 slice = allocate_value (slice_type);
3371 if (VALUE_LAZY (array))
3372 VALUE_LAZY (slice) = 1;
3373 else
3374 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3375 TYPE_LENGTH (slice_type));
3376 if (VALUE_LVAL (array) == lval_internalvar)
3377 VALUE_LVAL (slice) = lval_internalvar_component;
3378 else
3379 VALUE_LVAL (slice) = VALUE_LVAL (array);
3380 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3381 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3382 }
3383 return slice;
3384}
3385
db034ac5
AC
3386/* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
3387 equivalent value as a fixed-length array. */
c906108c 3388
f23631e4
AC
3389struct value *
3390varying_to_slice (struct value *varray)
c906108c
SS
3391{
3392 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3393 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3394 VALUE_CONTENTS (varray)
3395 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3396 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3397}
3398
070ad9f0
DB
3399/* Create a value for a FORTRAN complex number. Currently most of
3400 the time values are coerced to COMPLEX*16 (i.e. a complex number
3401 composed of 2 doubles. This really should be a smarter routine
3402 that figures out precision inteligently as opposed to assuming
c5aa993b 3403 doubles. FIXME: fmb */
c906108c 3404
f23631e4
AC
3405struct value *
3406value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3407{
f23631e4 3408 struct value *val;
c906108c
SS
3409 struct type *real_type = TYPE_TARGET_TYPE (type);
3410
3411 val = allocate_value (type);
3412 arg1 = value_cast (real_type, arg1);
3413 arg2 = value_cast (real_type, arg2);
3414
3415 memcpy (VALUE_CONTENTS_RAW (val),
3416 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3417 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3418 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3419 return val;
3420}
3421
3422/* Cast a value into the appropriate complex data type. */
3423
f23631e4
AC
3424static struct value *
3425cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3426{
3427 struct type *real_type = TYPE_TARGET_TYPE (type);
3428 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3429 {
3430 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3431 struct value *re_val = allocate_value (val_real_type);
3432 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3433
3434 memcpy (VALUE_CONTENTS_RAW (re_val),
3435 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3436 memcpy (VALUE_CONTENTS_RAW (im_val),
3437 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3438 TYPE_LENGTH (val_real_type));
c906108c
SS
3439
3440 return value_literal_complex (re_val, im_val, type);
3441 }
3442 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3443 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3444 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3445 else
3446 error ("cannot cast non-number to complex");
3447}
3448
3449void
fba45db2 3450_initialize_valops (void)
c906108c
SS
3451{
3452#if 0
3453 add_show_from_set
c5aa993b 3454 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3455 "Set automatic abandonment of expressions upon failure.",
3456 &setlist),
3457 &showlist);
3458#endif
3459
3460 add_show_from_set
c5aa993b 3461 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3462 "Set overload resolution in evaluating C++ functions.",
3463 &setlist),
3464 &showlist);
3465 overload_resolution = 1;
3466
242bfc55
FN
3467 add_show_from_set (
3468 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3469 (char *) &unwind_on_signal_p,
3470"Set unwinding of stack if a signal is received while in a call dummy.\n\
3471The unwindonsignal lets the user determine what gdb should do if a signal\n\
3472is received while in a function called from gdb (call dummy). If set, gdb\n\
3473unwinds the stack and restore the context to what as it was before the call.\n\
3474The default is to stop in the frame where the signal was received.", &setlist),
3475 &showlist);
c906108c 3476}
This page took 0.421343 seconds and 4 git commands to generate.