* config/romp/xm-rtbsd.h: Delete file.
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4
AC
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
c906108c
SS
36
37#include <errno.h>
38#include "gdb_string.h"
4a1970e4 39#include "gdb_assert.h"
c906108c 40
c906108c
SS
41/* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43extern int hp_som_som_object_present;
44
070ad9f0 45extern int overload_debug;
c906108c
SS
46/* Local functions. */
47
ad2f7632
DJ
48static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
c906108c 50
f23631e4
AC
51static CORE_ADDR find_function_addr (struct value *, struct type **);
52static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c
SS
53
54
f23631e4 55static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 56
f23631e4 57static struct value *search_struct_field (char *, struct value *, int,
a14ed312 58 struct type *, int);
c906108c 59
f23631e4
AC
60static struct value *search_struct_method (char *, struct value **,
61 struct value **,
a14ed312 62 int, int *, struct type *);
c906108c 63
a14ed312 64static int check_field_in (struct type *, const char *);
c906108c 65
a14ed312 66static CORE_ADDR allocate_space_in_inferior (int);
c906108c 67
f23631e4 68static struct value *cast_into_complex (struct type *, struct value *);
c906108c 69
f23631e4 70static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 71 int offset,
a14ed312
KB
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
7a292a7a 75
a14ed312 76void _initialize_valops (void);
c906108c 77
c906108c
SS
78/* Flag for whether we want to abandon failed expression evals by default. */
79
80#if 0
81static int auto_abandon = 0;
82#endif
83
84int overload_resolution = 0;
242bfc55
FN
85
86/* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91int unwind_on_signal_p = 0;
c5aa993b 92\f
c906108c
SS
93
94
c906108c
SS
95/* Find the address of function name NAME in the inferior. */
96
f23631e4 97struct value *
fba45db2 98find_function_in_inferior (char *name)
c906108c
SS
99{
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
c5aa993b 113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
114 if (msymbol != NULL)
115 {
116 struct type *type;
4478b372 117 CORE_ADDR maddr;
c906108c
SS
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
4478b372
JB
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
c906108c
SS
123 }
124 else
125 {
c5aa993b 126 if (!target_has_execution)
c906108c 127 error ("evaluation of this expression requires the target program to be active");
c5aa993b 128 else
c906108c
SS
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132}
133
134/* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
f23631e4 137struct value *
fba45db2 138value_allocate_space_in_inferior (int len)
c906108c 139{
f23631e4
AC
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
c906108c
SS
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
c5aa993b
JM
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
c906108c
SS
151 }
152 return val;
153}
154
155static CORE_ADDR
fba45db2 156allocate_space_in_inferior (int len)
c906108c
SS
157{
158 return value_as_long (value_allocate_space_in_inferior (len));
159}
160
161/* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164/* In C++, casts may change pointer or object representations. */
165
f23631e4
AC
166struct value *
167value_cast (struct type *type, struct value *arg2)
c906108c
SS
168{
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
c5aa993b 175
c906108c
SS
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
c5aa993b 181 COERCE_REF (arg2);
c906108c
SS
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
c5aa993b 192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
c5aa993b 201 warning ("array element type size does not divide object size in cast");
c906108c
SS
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
c5aa993b 240 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
7b83ea04
AC
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
f23631e4 247 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
c5aa993b
JM
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
f23631e4 267 struct value *retvalp;
c5aa993b
JM
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 274 /* force evaluation */
802db21b 275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
2bf1f4a1
JB
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
802db21b 299 return value_from_longest (type, convert_to_boolean ?
716c501e 300 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 301 }
802db21b 302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
634acd5f 305 {
4603e466
DT
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
634acd5f 318 LONGEST longest = value_as_long (arg2);
4603e466 319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 320 {
4603e466
DT
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
c906108c
SS
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
f23631e4 337 struct value *v;
c906108c
SS
338
339 /* Look in the type of the source to see if it contains the
7b83ea04
AC
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
c906108c
SS
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
7b83ea04
AC
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 361 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
362 if (v)
363 {
f23631e4 364 struct value *v2 = value_ind (arg2);
c906108c 365 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
c5aa993b 366 + VALUE_OFFSET (v);
070ad9f0
DB
367
368 /* JYG: adjust the new pointer value and
369 embedded offset. */
370 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
371 VALUE_EMBEDDED_OFFSET (v2) = 0;
372
c906108c
SS
373 v2 = value_addr (v2);
374 VALUE_TYPE (v2) = type;
375 return v2;
376 }
377 }
378 }
379 /* No superclass found, just fall through to change ptr type. */
380 }
381 VALUE_TYPE (arg2) = type;
2b127877 382 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 383 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
384 return arg2;
385 }
386 else if (chill_varying_type (type))
387 {
388 struct type *range1, *range2, *eltype1, *eltype2;
f23631e4 389 struct value *val;
c906108c
SS
390 int count1, count2;
391 LONGEST low_bound, high_bound;
392 char *valaddr, *valaddr_data;
393 /* For lint warning about eltype2 possibly uninitialized: */
394 eltype2 = NULL;
395 if (code2 == TYPE_CODE_BITSTRING)
396 error ("not implemented: converting bitstring to varying type");
397 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
398 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
399 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
400 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
c5aa993b 401 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
c906108c
SS
402 error ("Invalid conversion to varying type");
403 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
404 range2 = TYPE_FIELD_TYPE (type2, 0);
405 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
406 count1 = -1;
407 else
408 count1 = high_bound - low_bound + 1;
409 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
c5aa993b 410 count1 = -1, count2 = 0; /* To force error before */
c906108c
SS
411 else
412 count2 = high_bound - low_bound + 1;
413 if (count2 > count1)
414 error ("target varying type is too small");
415 val = allocate_value (type);
416 valaddr = VALUE_CONTENTS_RAW (val);
417 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
418 /* Set val's __var_length field to count2. */
419 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
420 count2);
421 /* Set the __var_data field to count2 elements copied from arg2. */
422 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
423 count2 * TYPE_LENGTH (eltype2));
424 /* Zero the rest of the __var_data field of val. */
425 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
426 (count1 - count2) * TYPE_LENGTH (eltype2));
427 return val;
428 }
429 else if (VALUE_LVAL (arg2) == lval_memory)
430 {
431 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
432 VALUE_BFD_SECTION (arg2));
433 }
434 else if (code1 == TYPE_CODE_VOID)
435 {
436 return value_zero (builtin_type_void, not_lval);
437 }
438 else
439 {
440 error ("Invalid cast.");
441 return 0;
442 }
443}
444
445/* Create a value of type TYPE that is zero, and return it. */
446
f23631e4 447struct value *
fba45db2 448value_zero (struct type *type, enum lval_type lv)
c906108c 449{
f23631e4 450 struct value *val = allocate_value (type);
c906108c
SS
451
452 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
453 VALUE_LVAL (val) = lv;
454
455 return val;
456}
457
070ad9f0 458/* Return a value with type TYPE located at ADDR.
c906108c
SS
459
460 Call value_at only if the data needs to be fetched immediately;
461 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
462 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
463 the data and sets the lazy-evaluation-required flag. The lazy flag
464 is tested in the VALUE_CONTENTS macro, which is used if and when
465 the contents are actually required.
c906108c
SS
466
467 Note: value_at does *NOT* handle embedded offsets; perform such
468 adjustments before or after calling it. */
469
f23631e4 470struct value *
fba45db2 471value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 472{
f23631e4 473 struct value *val;
c906108c
SS
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
75af7f68 480 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
481
482 VALUE_LVAL (val) = lval_memory;
483 VALUE_ADDRESS (val) = addr;
484 VALUE_BFD_SECTION (val) = sect;
485
486 return val;
487}
488
489/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490
f23631e4 491struct value *
fba45db2 492value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 493{
f23631e4 494 struct value *val;
c906108c
SS
495
496 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
497 error ("Attempt to dereference a generic pointer.");
498
499 val = allocate_value (type);
500
501 VALUE_LVAL (val) = lval_memory;
502 VALUE_ADDRESS (val) = addr;
503 VALUE_LAZY (val) = 1;
504 VALUE_BFD_SECTION (val) = sect;
505
506 return val;
507}
508
070ad9f0
DB
509/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
510 if the current data for a variable needs to be loaded into
511 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
512 clears the lazy flag to indicate that the data in the buffer is valid.
513
514 If the value is zero-length, we avoid calling read_memory, which would
515 abort. We mark the value as fetched anyway -- all 0 bytes of it.
516
517 This function returns a value because it is used in the VALUE_CONTENTS
518 macro as part of an expression, where a void would not work. The
519 value is ignored. */
520
521int
f23631e4 522value_fetch_lazy (struct value *val)
c906108c
SS
523{
524 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
525 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
526
c5aa993b 527 struct type *type = VALUE_TYPE (val);
75af7f68 528 if (length)
d4b2399a 529 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 530
c906108c
SS
531 VALUE_LAZY (val) = 0;
532 return 0;
533}
534
535
536/* Store the contents of FROMVAL into the location of TOVAL.
537 Return a new value with the location of TOVAL and contents of FROMVAL. */
538
f23631e4
AC
539struct value *
540value_assign (struct value *toval, struct value *fromval)
c906108c
SS
541{
542 register struct type *type;
f23631e4 543 struct value *val;
e6cbd02a 544 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
545 int use_buffer = 0;
546
547 if (!toval->modifiable)
548 error ("Left operand of assignment is not a modifiable lvalue.");
549
550 COERCE_REF (toval);
551
552 type = VALUE_TYPE (toval);
553 if (VALUE_LVAL (toval) != lval_internalvar)
554 fromval = value_cast (type, fromval);
555 else
556 COERCE_ARRAY (fromval);
557 CHECK_TYPEDEF (type);
558
559 /* If TOVAL is a special machine register requiring conversion
560 of program values to a special raw format,
561 convert FROMVAL's contents now, with result in `raw_buffer',
562 and set USE_BUFFER to the number of bytes to write. */
563
ac9a91a7 564 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
565 {
566 int regno = VALUE_REGNO (toval);
13d01224 567 if (CONVERT_REGISTER_P (regno))
c906108c
SS
568 {
569 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 570 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
571 use_buffer = REGISTER_RAW_SIZE (regno);
572 }
573 }
c906108c
SS
574
575 switch (VALUE_LVAL (toval))
576 {
577 case lval_internalvar:
578 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
579 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 580 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
581 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
582 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
583 return val;
584
585 case lval_internalvar_component:
586 set_internalvar_component (VALUE_INTERNALVAR (toval),
587 VALUE_OFFSET (toval),
588 VALUE_BITPOS (toval),
589 VALUE_BITSIZE (toval),
590 fromval);
591 break;
592
593 case lval_memory:
594 {
595 char *dest_buffer;
c5aa993b
JM
596 CORE_ADDR changed_addr;
597 int changed_len;
c906108c 598
c5aa993b
JM
599 if (VALUE_BITSIZE (toval))
600 {
c906108c
SS
601 char buffer[sizeof (LONGEST)];
602 /* We assume that the argument to read_memory is in units of
603 host chars. FIXME: Is that correct? */
604 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
605 + VALUE_BITSIZE (toval)
606 + HOST_CHAR_BIT - 1)
607 / HOST_CHAR_BIT;
c906108c
SS
608
609 if (changed_len > (int) sizeof (LONGEST))
610 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 611 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
612
613 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
614 buffer, changed_len);
615 modify_field (buffer, value_as_long (fromval),
616 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
617 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
618 dest_buffer = buffer;
619 }
620 else if (use_buffer)
621 {
622 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
623 changed_len = use_buffer;
624 dest_buffer = raw_buffer;
625 }
626 else
627 {
628 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
629 changed_len = TYPE_LENGTH (type);
630 dest_buffer = VALUE_CONTENTS (fromval);
631 }
632
633 write_memory (changed_addr, dest_buffer, changed_len);
634 if (memory_changed_hook)
635 memory_changed_hook (changed_addr, changed_len);
636 }
637 break;
638
639 case lval_register:
640 if (VALUE_BITSIZE (toval))
641 {
642 char buffer[sizeof (LONGEST)];
802db21b 643 int len =
8903de4f 644 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
c906108c
SS
645
646 if (len > (int) sizeof (LONGEST))
647 error ("Can't handle bitfields in registers larger than %d bits.",
baa6f10b 648 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
649
650 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
651 > len * HOST_CHAR_BIT)
652 /* Getting this right would involve being very careful about
653 byte order. */
c2d11a7d
JM
654 error ("Can't assign to bitfields that cross register "
655 "boundaries.");
c906108c 656
c5aa993b
JM
657 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
658 buffer, len);
659 modify_field (buffer, value_as_long (fromval),
660 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
661 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
662 buffer, len);
c906108c
SS
663 }
664 else if (use_buffer)
665 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
666 raw_buffer, use_buffer);
667 else
c5aa993b 668 {
c906108c
SS
669 /* Do any conversion necessary when storing this type to more
670 than one register. */
671#ifdef REGISTER_CONVERT_FROM_TYPE
672 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c5aa993b 673 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
c906108c
SS
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, TYPE_LENGTH (type));
676#else
677 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
c5aa993b 678 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c906108c
SS
679#endif
680 }
681 /* Assigning to the stack pointer, frame pointer, and other
7b83ea04
AC
682 (architecture and calling convention specific) registers may
683 cause the frame cache to be out of date. We just do this
684 on all assignments to registers for simplicity; I doubt the slowdown
685 matters. */
c906108c
SS
686 reinit_frame_cache ();
687 break;
688
689 case lval_reg_frame_relative:
690 {
691 /* value is stored in a series of registers in the frame
692 specified by the structure. Copy that value out, modify
693 it, and copy it back in. */
694 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
695 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
696 int byte_offset = VALUE_OFFSET (toval) % reg_size;
697 int reg_offset = VALUE_OFFSET (toval) / reg_size;
698 int amount_copied;
699
700 /* Make the buffer large enough in all cases. */
34c0bd93 701 /* FIXME (alloca): Not safe for very large data types. */
c906108c
SS
702 char *buffer = (char *) alloca (amount_to_copy
703 + sizeof (LONGEST)
704 + MAX_REGISTER_RAW_SIZE);
705
706 int regno;
707 struct frame_info *frame;
708
709 /* Figure out which frame this is in currently. */
710 for (frame = get_current_frame ();
711 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
712 frame = get_prev_frame (frame))
713 ;
714
715 if (!frame)
716 error ("Value being assigned to is no longer active.");
717
718 amount_to_copy += (reg_size - amount_to_copy % reg_size);
719
720 /* Copy it out. */
721 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
722 amount_copied = 0);
723 amount_copied < amount_to_copy;
724 amount_copied += reg_size, regno++)
725 {
726 get_saved_register (buffer + amount_copied,
c5aa993b
JM
727 (int *) NULL, (CORE_ADDR *) NULL,
728 frame, regno, (enum lval_type *) NULL);
c906108c
SS
729 }
730
731 /* Modify what needs to be modified. */
732 if (VALUE_BITSIZE (toval))
733 modify_field (buffer + byte_offset,
734 value_as_long (fromval),
735 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
736 else if (use_buffer)
737 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
738 else
739 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
740 TYPE_LENGTH (type));
741
742 /* Copy it back. */
743 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
744 amount_copied = 0);
745 amount_copied < amount_to_copy;
746 amount_copied += reg_size, regno++)
747 {
748 enum lval_type lval;
749 CORE_ADDR addr;
750 int optim;
751
752 /* Just find out where to put it. */
c5aa993b
JM
753 get_saved_register ((char *) NULL,
754 &optim, &addr, frame, regno, &lval);
755
c906108c
SS
756 if (optim)
757 error ("Attempt to assign to a value that was optimized out.");
758 if (lval == lval_memory)
759 write_memory (addr, buffer + amount_copied, reg_size);
760 else if (lval == lval_register)
761 write_register_bytes (addr, buffer + amount_copied, reg_size);
762 else
763 error ("Attempt to assign to an unmodifiable value.");
764 }
765
766 if (register_changed_hook)
767 register_changed_hook (-1);
768 }
769 break;
c5aa993b 770
c906108c
SS
771
772 default:
773 error ("Left operand of assignment is not an lvalue.");
774 }
775
776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
777 If the field is signed, and is negative, then sign extend. */
778 if ((VALUE_BITSIZE (toval) > 0)
779 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
780 {
781 LONGEST fieldval = value_as_long (fromval);
782 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
783
784 fieldval &= valmask;
785 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
786 fieldval |= ~valmask;
787
788 fromval = value_from_longest (type, fieldval);
789 }
790
791 val = value_copy (toval);
792 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
793 TYPE_LENGTH (type));
794 VALUE_TYPE (val) = type;
2b127877 795 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
796 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
797 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 798
c906108c
SS
799 return val;
800}
801
802/* Extend a value VAL to COUNT repetitions of its type. */
803
f23631e4
AC
804struct value *
805value_repeat (struct value *arg1, int count)
c906108c 806{
f23631e4 807 struct value *val;
c906108c
SS
808
809 if (VALUE_LVAL (arg1) != lval_memory)
810 error ("Only values in memory can be extended with '@'.");
811 if (count < 1)
812 error ("Invalid number %d of repetitions.", count);
813
814 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
815
816 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
817 VALUE_CONTENTS_ALL_RAW (val),
818 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
819 VALUE_LVAL (val) = lval_memory;
820 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
821
822 return val;
823}
824
f23631e4 825struct value *
fba45db2 826value_of_variable (struct symbol *var, struct block *b)
c906108c 827{
f23631e4 828 struct value *val;
c906108c
SS
829 struct frame_info *frame = NULL;
830
831 if (!b)
832 frame = NULL; /* Use selected frame. */
833 else if (symbol_read_needs_frame (var))
834 {
835 frame = block_innermost_frame (b);
836 if (!frame)
c5aa993b 837 {
c906108c
SS
838 if (BLOCK_FUNCTION (b)
839 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
840 error ("No frame is currently executing in block %s.",
841 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
842 else
843 error ("No frame is currently executing in specified block");
c5aa993b 844 }
c906108c
SS
845 }
846
847 val = read_var_value (var, frame);
848 if (!val)
849 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
850
851 return val;
852}
853
854/* Given a value which is an array, return a value which is a pointer to its
855 first element, regardless of whether or not the array has a nonzero lower
856 bound.
857
858 FIXME: A previous comment here indicated that this routine should be
859 substracting the array's lower bound. It's not clear to me that this
860 is correct. Given an array subscripting operation, it would certainly
861 work to do the adjustment here, essentially computing:
862
863 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
864
865 However I believe a more appropriate and logical place to account for
866 the lower bound is to do so in value_subscript, essentially computing:
867
868 (&array[0] + ((index - lowerbound) * sizeof array[0]))
869
870 As further evidence consider what would happen with operations other
871 than array subscripting, where the caller would get back a value that
872 had an address somewhere before the actual first element of the array,
873 and the information about the lower bound would be lost because of
874 the coercion to pointer type.
c5aa993b 875 */
c906108c 876
f23631e4
AC
877struct value *
878value_coerce_array (struct value *arg1)
c906108c
SS
879{
880 register struct type *type = check_typedef (VALUE_TYPE (arg1));
881
882 if (VALUE_LVAL (arg1) != lval_memory)
883 error ("Attempt to take address of value not located in memory.");
884
4478b372
JB
885 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
886 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
887}
888
889/* Given a value which is a function, return a value which is a pointer
890 to it. */
891
f23631e4
AC
892struct value *
893value_coerce_function (struct value *arg1)
c906108c 894{
f23631e4 895 struct value *retval;
c906108c
SS
896
897 if (VALUE_LVAL (arg1) != lval_memory)
898 error ("Attempt to take address of value not located in memory.");
899
4478b372
JB
900 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
901 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
902 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
903 return retval;
c5aa993b 904}
c906108c
SS
905
906/* Return a pointer value for the object for which ARG1 is the contents. */
907
f23631e4
AC
908struct value *
909value_addr (struct value *arg1)
c906108c 910{
f23631e4 911 struct value *arg2;
c906108c
SS
912
913 struct type *type = check_typedef (VALUE_TYPE (arg1));
914 if (TYPE_CODE (type) == TYPE_CODE_REF)
915 {
916 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
917 We keep the same location information, which is efficient,
918 and allows &(&X) to get the location containing the reference. */
c906108c
SS
919 arg2 = value_copy (arg1);
920 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
921 return arg2;
922 }
923 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
924 return value_coerce_function (arg1);
925
926 if (VALUE_LVAL (arg1) != lval_memory)
927 error ("Attempt to take address of value not located in memory.");
928
c5aa993b 929 /* Get target memory address */
4478b372
JB
930 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1)
932 + VALUE_OFFSET (arg1)
933 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
934
935 /* This may be a pointer to a base subobject; so remember the
c5aa993b 936 full derived object's type ... */
2b127877 937 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
938 /* ... and also the relative position of the subobject in the full object */
939 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
940 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
941 return arg2;
942}
943
944/* Given a value of a pointer type, apply the C unary * operator to it. */
945
f23631e4
AC
946struct value *
947value_ind (struct value *arg1)
c906108c
SS
948{
949 struct type *base_type;
f23631e4 950 struct value *arg2;
c906108c
SS
951
952 COERCE_ARRAY (arg1);
953
954 base_type = check_typedef (VALUE_TYPE (arg1));
955
956 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
957 error ("not implemented: member types in value_ind");
958
959 /* Allow * on an integer so we can cast it to whatever we want.
960 This returns an int, which seems like the most C-like thing
961 to do. "long long" variables are rare enough that
962 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
963 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
964 return value_at (builtin_type_int,
965 (CORE_ADDR) value_as_long (arg1),
966 VALUE_BFD_SECTION (arg1));
967 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
968 {
969 struct type *enc_type;
970 /* We may be pointing to something embedded in a larger object */
c5aa993b 971 /* Get the real type of the enclosing object */
c906108c
SS
972 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
973 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
974 /* Retrieve the enclosing object pointed to */
975 arg2 = value_at_lazy (enc_type,
1aa20aa8 976 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
977 VALUE_BFD_SECTION (arg1));
978 /* Re-adjust type */
c906108c
SS
979 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
980 /* Add embedding info */
2b127877 981 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
982 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
983
984 /* We may be pointing to an object of some derived type */
985 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
986 return arg2;
987 }
988
989 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 990 return 0; /* For lint -- never reached */
c906108c
SS
991}
992\f
993/* Pushing small parts of stack frames. */
994
995/* Push one word (the size of object that a register holds). */
996
997CORE_ADDR
fba45db2 998push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
999{
1000 register int len = REGISTER_SIZE;
e6cbd02a 1001 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1002
1003 store_unsigned_integer (buffer, len, word);
1004 if (INNER_THAN (1, 2))
1005 {
1006 /* stack grows downward */
1007 sp -= len;
1008 write_memory (sp, buffer, len);
1009 }
1010 else
1011 {
1012 /* stack grows upward */
1013 write_memory (sp, buffer, len);
1014 sp += len;
1015 }
1016
1017 return sp;
1018}
1019
1020/* Push LEN bytes with data at BUFFER. */
1021
1022CORE_ADDR
fba45db2 1023push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1024{
1025 if (INNER_THAN (1, 2))
1026 {
1027 /* stack grows downward */
1028 sp -= len;
1029 write_memory (sp, buffer, len);
1030 }
1031 else
1032 {
1033 /* stack grows upward */
1034 write_memory (sp, buffer, len);
1035 sp += len;
1036 }
1037
1038 return sp;
1039}
1040
2df3850c
JM
1041#ifndef PARM_BOUNDARY
1042#define PARM_BOUNDARY (0)
1043#endif
1044
1045/* Push onto the stack the specified value VALUE. Pad it correctly for
1046 it to be an argument to a function. */
c906108c 1047
c906108c 1048static CORE_ADDR
f23631e4 1049value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1050{
1051 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1052 register int container_len = len;
2df3850c
JM
1053 register int offset;
1054
1055 /* How big is the container we're going to put this value in? */
1056 if (PARM_BOUNDARY)
1057 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1058 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1059
1060 /* Are we going to put it at the high or low end of the container? */
d7449b42 1061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1062 offset = container_len - len;
1063 else
1064 offset = 0;
c906108c
SS
1065
1066 if (INNER_THAN (1, 2))
1067 {
1068 /* stack grows downward */
2df3850c
JM
1069 sp -= container_len;
1070 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1071 }
1072 else
1073 {
1074 /* stack grows upward */
2df3850c
JM
1075 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1076 sp += container_len;
c906108c
SS
1077 }
1078
1079 return sp;
1080}
1081
392a587b 1082CORE_ADDR
f23631e4 1083default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1084 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1085{
1086 /* ASSERT ( !struct_return); */
1087 int i;
1088 for (i = nargs - 1; i >= 0; i--)
1089 sp = value_push (sp, args[i]);
1090 return sp;
1091}
1092
c906108c 1093
641225a4
JB
1094/* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1095
1096 How you should pass arguments to a function depends on whether it
1097 was defined in K&R style or prototype style. If you define a
1098 function using the K&R syntax that takes a `float' argument, then
1099 callers must pass that argument as a `double'. If you define the
1100 function using the prototype syntax, then you must pass the
1101 argument as a `float', with no promotion.
1102
1103 Unfortunately, on certain older platforms, the debug info doesn't
1104 indicate reliably how each function was defined. A function type's
1105 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1106 defined in prototype style. When calling a function whose
1107 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1108 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1109
1110 For modern targets, it is proper to assume that, if the prototype
1111 flag is clear, that can be trusted: `float' arguments should be
1112 promoted to `double'. You should register the function
1113 `standard_coerce_float_to_double' to get this behavior.
1114
1115 For some older targets, if the prototype flag is clear, that
1116 doesn't tell us anything. So we guess that, if we don't have a
1117 type for the formal parameter (i.e., the first argument to
1118 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1119 otherwise, we should leave it alone. The function
1120 `default_coerce_float_to_double' provides this behavior; it is the
1121 default value, for compatibility with older configurations. */
b9a8e3bf
JB
1122int
1123default_coerce_float_to_double (struct type *formal, struct type *actual)
1124{
1125 return formal == NULL;
1126}
1127
1128
b9a8e3bf
JB
1129int
1130standard_coerce_float_to_double (struct type *formal, struct type *actual)
1131{
1132 return 1;
1133}
1134
1135
c906108c
SS
1136/* Perform the standard coercions that are specified
1137 for arguments to be passed to C functions.
1138
1139 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1140 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1141
f23631e4 1142static struct value *
290b2c7a
MK
1143value_arg_coerce (struct value *arg, struct type *param_type,
1144 int is_prototyped)
c906108c
SS
1145{
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
290b2c7a 1148 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1149
1150 switch (TYPE_CODE (type))
1151 {
1152 case TYPE_CODE_REF:
491b8946
DJ
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1154 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1155 {
1156 arg = value_addr (arg);
1157 VALUE_TYPE (arg) = param_type;
1158 return arg;
1159 }
1160 break;
1161 case TYPE_CODE_INT:
1162 case TYPE_CODE_CHAR:
1163 case TYPE_CODE_BOOL:
1164 case TYPE_CODE_ENUM:
1165 /* If we don't have a prototype, coerce to integer type if necessary. */
1166 if (!is_prototyped)
1167 {
1168 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1169 type = builtin_type_int;
1170 }
1171 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1172 type for an argument. We may have to conditionalize the following
1173 type coercion for future targets. */
c906108c
SS
1174 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1175 type = builtin_type_int;
1176 break;
1177 case TYPE_CODE_FLT:
1178 /* FIXME: We should always convert floats to doubles in the
7b83ea04
AC
1179 non-prototyped case. As many debugging formats include
1180 no information about prototyping, we have to live with
1181 COERCE_FLOAT_TO_DOUBLE for now. */
b9a8e3bf 1182 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
c906108c
SS
1183 {
1184 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_double;
1186 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_long_double;
1188 }
1189 break;
1190 case TYPE_CODE_FUNC:
1191 type = lookup_pointer_type (type);
1192 break;
1193 case TYPE_CODE_ARRAY:
a3162708
EZ
1194 /* Arrays are coerced to pointers to their first element, unless
1195 they are vectors, in which case we want to leave them alone,
1196 because they are passed by value. */
c906108c 1197 if (current_language->c_style_arrays)
a3162708
EZ
1198 if (!TYPE_VECTOR (type))
1199 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1200 break;
1201 case TYPE_CODE_UNDEF:
1202 case TYPE_CODE_PTR:
1203 case TYPE_CODE_STRUCT:
1204 case TYPE_CODE_UNION:
1205 case TYPE_CODE_VOID:
1206 case TYPE_CODE_SET:
1207 case TYPE_CODE_RANGE:
1208 case TYPE_CODE_STRING:
1209 case TYPE_CODE_BITSTRING:
1210 case TYPE_CODE_ERROR:
1211 case TYPE_CODE_MEMBER:
1212 case TYPE_CODE_METHOD:
1213 case TYPE_CODE_COMPLEX:
1214 default:
1215 break;
1216 }
1217
1218 return value_cast (type, arg);
1219}
1220
070ad9f0 1221/* Determine a function's address and its return type from its value.
c906108c
SS
1222 Calls error() if the function is not valid for calling. */
1223
1224static CORE_ADDR
f23631e4 1225find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1226{
1227 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1228 register enum type_code code = TYPE_CODE (ftype);
1229 struct type *value_type;
1230 CORE_ADDR funaddr;
1231
1232 /* If it's a member function, just look at the function
1233 part of it. */
1234
1235 /* Determine address to call. */
1236 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1237 {
1238 funaddr = VALUE_ADDRESS (function);
1239 value_type = TYPE_TARGET_TYPE (ftype);
1240 }
1241 else if (code == TYPE_CODE_PTR)
1242 {
1aa20aa8 1243 funaddr = value_as_address (function);
c906108c
SS
1244 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1245 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1246 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1247 {
c906108c 1248 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1249 value_type = TYPE_TARGET_TYPE (ftype);
1250 }
1251 else
1252 value_type = builtin_type_int;
1253 }
1254 else if (code == TYPE_CODE_INT)
1255 {
1256 /* Handle the case of functions lacking debugging info.
7b83ea04 1257 Their values are characters since their addresses are char */
c906108c 1258 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1259 funaddr = value_as_address (value_addr (function));
c906108c
SS
1260 else
1261 /* Handle integer used as address of a function. */
1262 funaddr = (CORE_ADDR) value_as_long (function);
1263
1264 value_type = builtin_type_int;
1265 }
1266 else
1267 error ("Invalid data type for function to be called.");
1268
1269 *retval_type = value_type;
1270 return funaddr;
1271}
1272
1273/* All this stuff with a dummy frame may seem unnecessarily complicated
1274 (why not just save registers in GDB?). The purpose of pushing a dummy
1275 frame which looks just like a real frame is so that if you call a
1276 function and then hit a breakpoint (get a signal, etc), "backtrace"
1277 will look right. Whether the backtrace needs to actually show the
1278 stack at the time the inferior function was called is debatable, but
1279 it certainly needs to not display garbage. So if you are contemplating
1280 making dummy frames be different from normal frames, consider that. */
1281
1282/* Perform a function call in the inferior.
1283 ARGS is a vector of values of arguments (NARGS of them).
1284 FUNCTION is a value, the function to be called.
1285 Returns a value representing what the function returned.
1286 May fail to return, if a breakpoint or signal is hit
1287 during the execution of the function.
1288
1289 ARGS is modified to contain coerced values. */
1290
f23631e4
AC
1291static struct value *
1292hand_function_call (struct value *function, int nargs, struct value **args)
c906108c
SS
1293{
1294 register CORE_ADDR sp;
1295 register int i;
da59e081 1296 int rc;
c906108c
SS
1297 CORE_ADDR start_sp;
1298 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1299 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1300 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1301 bigger than REGISTER_SIZE.
c906108c
SS
1302
1303 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1304 sequence of instructions. But CISC machines will have
1305 to pack the instructions into REGISTER_SIZE units (and
1306 so will RISC machines for which INSTRUCTION_SIZE is not
1307 REGISTER_SIZE).
7a292a7a
SS
1308
1309 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1310 target byte order. */
c906108c 1311
7a292a7a
SS
1312 static ULONGEST *dummy;
1313 int sizeof_dummy1;
1314 char *dummy1;
c906108c
SS
1315 CORE_ADDR old_sp;
1316 struct type *value_type;
1317 unsigned char struct_return;
1318 CORE_ADDR struct_addr = 0;
7a292a7a 1319 struct inferior_status *inf_status;
c906108c
SS
1320 struct cleanup *old_chain;
1321 CORE_ADDR funaddr;
c5aa993b 1322 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1323 CORE_ADDR real_pc;
1324 struct type *param_type = NULL;
1325 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1326 int n_method_args = 0;
c906108c 1327
7a292a7a
SS
1328 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1329 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1330 dummy1 = alloca (sizeof_dummy1);
1331 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1332
c906108c 1333 if (!target_has_execution)
c5aa993b 1334 noprocess ();
c906108c 1335
7a292a7a 1336 inf_status = save_inferior_status (1);
74b7792f 1337 old_chain = make_cleanup_restore_inferior_status (inf_status);
c906108c
SS
1338
1339 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1340 (and POP_FRAME for restoring them). (At least on most machines)
1341 they are saved on the stack in the inferior. */
1342 PUSH_DUMMY_FRAME;
1343
1344 old_sp = sp = read_sp ();
1345
1346 if (INNER_THAN (1, 2))
1347 {
1348 /* Stack grows down */
7a292a7a 1349 sp -= sizeof_dummy1;
c906108c
SS
1350 start_sp = sp;
1351 }
1352 else
1353 {
1354 /* Stack grows up */
1355 start_sp = sp;
7a292a7a 1356 sp += sizeof_dummy1;
c906108c
SS
1357 }
1358
1359 funaddr = find_function_addr (function, &value_type);
1360 CHECK_TYPEDEF (value_type);
1361
1362 {
1363 struct block *b = block_for_pc (funaddr);
1364 /* If compiled without -g, assume GCC 2. */
1365 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1366 }
1367
1368 /* Are we returning a value using a structure return or a normal
1369 value return? */
1370
1371 struct_return = using_struct_return (function, funaddr, value_type,
1372 using_gcc);
1373
1374 /* Create a call sequence customized for this function
1375 and the number of arguments for it. */
7a292a7a 1376 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1377 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1378 REGISTER_SIZE,
c5aa993b 1379 (ULONGEST) dummy[i]);
c906108c
SS
1380
1381#ifdef GDB_TARGET_IS_HPPA
1382 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1383 value_type, using_gcc);
1384#else
1385 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1386 value_type, using_gcc);
1387 real_pc = start_sp;
1388#endif
1389
7a292a7a
SS
1390 if (CALL_DUMMY_LOCATION == ON_STACK)
1391 {
c5aa993b 1392 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
6096c27a
AC
1393 if (USE_GENERIC_DUMMY_FRAMES)
1394 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
7a292a7a 1395 }
c906108c 1396
7a292a7a
SS
1397 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1398 {
1399 /* Convex Unix prohibits executing in the stack segment. */
1400 /* Hope there is empty room at the top of the text segment. */
1401 extern CORE_ADDR text_end;
392a587b 1402 static int checked = 0;
7a292a7a
SS
1403 if (!checked)
1404 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1405 if (read_memory_integer (start_sp, 1) != 0)
1406 error ("text segment full -- no place to put call");
1407 checked = 1;
1408 sp = old_sp;
1409 real_pc = text_end - sizeof_dummy1;
c5aa993b 1410 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
6096c27a
AC
1411 if (USE_GENERIC_DUMMY_FRAMES)
1412 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
7a292a7a 1413 }
c5aa993b 1414
7a292a7a
SS
1415 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1416 {
1417 extern CORE_ADDR text_end;
1418 int errcode;
1419 sp = old_sp;
1420 real_pc = text_end;
c5aa993b 1421 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
7a292a7a
SS
1422 if (errcode != 0)
1423 error ("Cannot write text segment -- call_function failed");
6096c27a
AC
1424 if (USE_GENERIC_DUMMY_FRAMES)
1425 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
7a292a7a 1426 }
c906108c 1427
7a292a7a
SS
1428 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1429 {
1430 real_pc = funaddr;
6096c27a
AC
1431 if (USE_GENERIC_DUMMY_FRAMES)
1432 /* NOTE: cagney/2002-04-13: The entry point is going to be
1433 modified with a single breakpoint. */
1434 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1435 CALL_DUMMY_ADDRESS () + 1);
7a292a7a 1436 }
c906108c
SS
1437
1438#ifdef lint
c5aa993b 1439 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1440#endif
1441
ad2f7632 1442 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1443 error ("too few arguments in function call");
1444
1445 for (i = nargs - 1; i >= 0; i--)
1446 {
ad2f7632 1447 int prototyped;
76b2e19d 1448
ad2f7632
DJ
1449 /* FIXME drow/2002-05-31: Should just always mark methods as
1450 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1451 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1452 prototyped = 1;
1453 else
1454 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1455
ad2f7632
DJ
1456 if (i < TYPE_NFIELDS (ftype))
1457 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1458 prototyped);
c5aa993b 1459 else
ad2f7632 1460 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1461
070ad9f0
DB
1462 /*elz: this code is to handle the case in which the function to be called
1463 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1464 is the address of a function and not a pointer to function variable.
1465 In aCC compiled code, the calls through pointers to functions (in the body
1466 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1467 requires some registers setting, this is taken care of if we call
1468 via a function pointer variable, but not via a function address.
7b83ea04 1469 In cc this is not a problem. */
c906108c
SS
1470
1471 if (using_gcc == 0)
ad2f7632 1472 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1473 /* if this parameter is a pointer to function */
c906108c 1474 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1475 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1476 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1477 to compile the target. We want to issue the error
070ad9f0
DB
1478 message only if the compiler used was HP's aCC.
1479 If we used HP's cc, then there is no problem and no need
7b83ea04 1480 to return at this point */
c5aa993b 1481 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1482 /* go see if the actual parameter is a variable of type
c5aa993b 1483 pointer to function or just a function */
c906108c
SS
1484 if (args[i]->lval == not_lval)
1485 {
1486 char *arg_name;
c5aa993b
JM
1487 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1488 error ("\
c906108c
SS
1489You cannot use function <%s> as argument. \n\
1490You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1491 }
c906108c
SS
1492 }
1493
d03e67c9
AC
1494 if (REG_STRUCT_HAS_ADDR_P ())
1495 {
1496 /* This is a machine like the sparc, where we may need to pass a
1497 pointer to the structure, not the structure itself. */
1498 for (i = nargs - 1; i >= 0; i--)
1499 {
1500 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1501 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1502 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1503 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1504 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1505 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1506 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1507 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1508 && TYPE_LENGTH (arg_type) > 8)
1509 )
1510 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1511 {
1512 CORE_ADDR addr;
1513 int len; /* = TYPE_LENGTH (arg_type); */
1514 int aligned_len;
1515 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1516 len = TYPE_LENGTH (arg_type);
1517
1518 if (STACK_ALIGN_P ())
1519 /* MVS 11/22/96: I think at least some of this
1520 stack_align code is really broken. Better to let
1521 PUSH_ARGUMENTS adjust the stack in a target-defined
1522 manner. */
1523 aligned_len = STACK_ALIGN (len);
1524 else
1525 aligned_len = len;
1526 if (INNER_THAN (1, 2))
1527 {
1528 /* stack grows downward */
1529 sp -= aligned_len;
0b3f98d3
AC
1530 /* ... so the address of the thing we push is the
1531 stack pointer after we push it. */
1532 addr = sp;
d03e67c9
AC
1533 }
1534 else
1535 {
1536 /* The stack grows up, so the address of the thing
1537 we push is the stack pointer before we push it. */
1538 addr = sp;
d03e67c9
AC
1539 sp += aligned_len;
1540 }
0b3f98d3
AC
1541 /* Push the structure. */
1542 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1543 /* The value we're going to pass is the address of the
1544 thing we just pushed. */
1545 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1546 (LONGEST) addr); */
1547 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1548 addr);
1549 }
1550 }
1551 }
1552
c906108c
SS
1553
1554 /* Reserve space for the return structure to be written on the
1555 stack, if necessary */
1556
1557 if (struct_return)
1558 {
1559 int len = TYPE_LENGTH (value_type);
2ada493a
AC
1560 if (STACK_ALIGN_P ())
1561 /* MVS 11/22/96: I think at least some of this stack_align
1562 code is really broken. Better to let PUSH_ARGUMENTS adjust
1563 the stack in a target-defined manner. */
1564 len = STACK_ALIGN (len);
c906108c
SS
1565 if (INNER_THAN (1, 2))
1566 {
1567 /* stack grows downward */
1568 sp -= len;
1569 struct_addr = sp;
1570 }
1571 else
1572 {
1573 /* stack grows upward */
1574 struct_addr = sp;
1575 sp += len;
1576 }
1577 }
1578
0a49d05e
AC
1579 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1580 on other architectures. This is because all the alignment is
1581 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1582 in hppa_push_arguments */
1583 if (EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1584 {
0a49d05e
AC
1585 /* MVS 11/22/96: I think at least some of this stack_align code
1586 is really broken. Better to let PUSH_ARGUMENTS adjust the
1587 stack in a target-defined manner. */
1588 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1589 {
1590 /* If stack grows down, we must leave a hole at the top. */
1591 int len = 0;
1592
1593 for (i = nargs - 1; i >= 0; i--)
1594 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1595 if (CALL_DUMMY_STACK_ADJUST_P)
1596 len += CALL_DUMMY_STACK_ADJUST;
1597 sp -= STACK_ALIGN (len) - len;
1598 }
c906108c 1599 }
c906108c 1600
392a587b 1601 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c 1602
69a0d5f4
AC
1603 if (PUSH_RETURN_ADDRESS_P ())
1604 /* for targets that use no CALL_DUMMY */
1605 /* There are a number of targets now which actually don't write
1606 any CALL_DUMMY instructions into the target, but instead just
1607 save the machine state, push the arguments, and jump directly
1608 to the callee function. Since this doesn't actually involve
1609 executing a JSR/BSR instruction, the return address must be set
1610 up by hand, either by pushing onto the stack or copying into a
1611 return-address register as appropriate. Formerly this has been
1612 done in PUSH_ARGUMENTS, but that's overloading its
1613 functionality a bit, so I'm making it explicit to do it here. */
1614 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1615
2ada493a 1616 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1617 {
1618 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1619 that sp already has been advanced for the arguments! */
7a292a7a
SS
1620 if (CALL_DUMMY_STACK_ADJUST_P)
1621 sp += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1622 sp = STACK_ALIGN (sp);
1623 }
c906108c
SS
1624
1625/* XXX This seems wrong. For stacks that grow down we shouldn't do
1626 anything here! */
1627 /* MVS 11/22/96: I think at least some of this stack_align code is
1628 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1629 a target-defined manner. */
7a292a7a
SS
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 if (INNER_THAN (1, 2))
1632 {
1633 /* stack grows downward */
1634 sp -= CALL_DUMMY_STACK_ADJUST;
1635 }
c906108c
SS
1636
1637 /* Store the address at which the structure is supposed to be
1638 written. Note that this (and the code which reserved the space
1639 above) assumes that gcc was used to compile this function. Since
1640 it doesn't cost us anything but space and if the function is pcc
1641 it will ignore this value, we will make that assumption.
1642
070ad9f0 1643 Also note that on some machines (like the sparc) pcc uses a
c906108c
SS
1644 convention like gcc's. */
1645
1646 if (struct_return)
1647 STORE_STRUCT_RETURN (struct_addr, sp);
1648
1649 /* Write the stack pointer. This is here because the statements above
1650 might fool with it. On SPARC, this write also stores the register
1651 window into the right place in the new stack frame, which otherwise
1652 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1653 write_sp (sp);
1654
d1e3cf49
AC
1655 if (SAVE_DUMMY_FRAME_TOS_P ())
1656 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1657
c906108c 1658 {
e6cbd02a 1659 char *retbuf = (char*) alloca (REGISTER_BYTES);
c906108c
SS
1660 char *name;
1661 struct symbol *symbol;
1662
1663 name = NULL;
1664 symbol = find_pc_function (funaddr);
1665 if (symbol)
1666 {
1667 name = SYMBOL_SOURCE_NAME (symbol);
1668 }
1669 else
1670 {
1671 /* Try the minimal symbols. */
1672 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1673
1674 if (msymbol)
1675 {
1676 name = SYMBOL_SOURCE_NAME (msymbol);
1677 }
1678 }
1679 if (name == NULL)
1680 {
1681 char format[80];
1682 sprintf (format, "at %s", local_hex_format ());
1683 name = alloca (80);
1684 /* FIXME-32x64: assumes funaddr fits in a long. */
1685 sprintf (name, format, (unsigned long) funaddr);
1686 }
1687
1688 /* Execute the stack dummy routine, calling FUNCTION.
1689 When it is done, discard the empty frame
1690 after storing the contents of all regs into retbuf. */
da59e081
JM
1691 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1692
1693 if (rc == 1)
1694 {
1695 /* We stopped inside the FUNCTION because of a random signal.
1696 Further execution of the FUNCTION is not allowed. */
1697
7b83ea04 1698 if (unwind_on_signal_p)
242bfc55
FN
1699 {
1700 /* The user wants the context restored. */
da59e081 1701
7b83ea04
AC
1702 /* We must get back to the frame we were before the dummy call. */
1703 POP_FRAME;
242bfc55
FN
1704
1705 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1706 a C++ name with arguments and stuff. */
1707 error ("\
1708The program being debugged was signaled while in a function called from GDB.\n\
1709GDB has restored the context to what it was before the call.\n\
1710To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1711Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1712 name);
1713 }
1714 else
1715 {
1716 /* The user wants to stay in the frame where we stopped (default).*/
1717
1718 /* If we did the cleanups, we would print a spurious error
1719 message (Unable to restore previously selected frame),
1720 would write the registers from the inf_status (which is
1721 wrong), and would do other wrong things. */
1722 discard_cleanups (old_chain);
1723 discard_inferior_status (inf_status);
1724
1725 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1726 a C++ name with arguments and stuff. */
1727 error ("\
1728The program being debugged was signaled while in a function called from GDB.\n\
1729GDB remains in the frame where the signal was received.\n\
1730To change this behavior use \"set unwindonsignal on\"\n\
1731Evaluation of the expression containing the function (%s) will be abandoned.",
1732 name);
1733 }
da59e081
JM
1734 }
1735
1736 if (rc == 2)
c906108c 1737 {
da59e081 1738 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1739
7a292a7a
SS
1740 /* If we did the cleanups, we would print a spurious error
1741 message (Unable to restore previously selected frame),
1742 would write the registers from the inf_status (which is
1743 wrong), and would do other wrong things. */
c906108c 1744 discard_cleanups (old_chain);
7a292a7a 1745 discard_inferior_status (inf_status);
c906108c
SS
1746
1747 /* The following error message used to say "The expression
1748 which contained the function call has been discarded." It
1749 is a hard concept to explain in a few words. Ideally, GDB
1750 would be able to resume evaluation of the expression when
1751 the function finally is done executing. Perhaps someday
1752 this will be implemented (it would not be easy). */
1753
1754 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1755 a C++ name with arguments and stuff. */
1756 error ("\
1757The program being debugged stopped while in a function called from GDB.\n\
1758When the function (%s) is done executing, GDB will silently\n\
1759stop (instead of continuing to evaluate the expression containing\n\
1760the function call).", name);
1761 }
1762
da59e081 1763 /* If we get here the called FUNCTION run to completion. */
c906108c
SS
1764 do_cleanups (old_chain);
1765
1766 /* Figure out the value returned by the function. */
1767/* elz: I defined this new macro for the hppa architecture only.
1768 this gives us a way to get the value returned by the function from the stack,
1769 at the same address we told the function to put it.
1770 We cannot assume on the pa that r28 still contains the address of the returned
1771 structure. Usually this will be overwritten by the callee.
1772 I don't know about other architectures, so I defined this macro
c5aa993b 1773 */
c906108c
SS
1774
1775#ifdef VALUE_RETURNED_FROM_STACK
1776 if (struct_return)
f23631e4 1777 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
c906108c
SS
1778#endif
1779
1780 return value_being_returned (value_type, retbuf, struct_return);
1781 }
1782}
7a292a7a 1783
f23631e4
AC
1784struct value *
1785call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c 1786{
7a292a7a
SS
1787 if (CALL_DUMMY_P)
1788 {
1789 return hand_function_call (function, nargs, args);
1790 }
1791 else
1792 {
1793 error ("Cannot invoke functions on this machine.");
1794 }
c906108c 1795}
c5aa993b 1796\f
7a292a7a 1797
c906108c 1798
c906108c
SS
1799/* Create a value for an array by allocating space in the inferior, copying
1800 the data into that space, and then setting up an array value.
1801
1802 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1803 populated from the values passed in ELEMVEC.
1804
1805 The element type of the array is inherited from the type of the
1806 first element, and all elements must have the same size (though we
1807 don't currently enforce any restriction on their types). */
1808
f23631e4
AC
1809struct value *
1810value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1811{
1812 int nelem;
1813 int idx;
1814 unsigned int typelength;
f23631e4 1815 struct value *val;
c906108c
SS
1816 struct type *rangetype;
1817 struct type *arraytype;
1818 CORE_ADDR addr;
1819
1820 /* Validate that the bounds are reasonable and that each of the elements
1821 have the same size. */
1822
1823 nelem = highbound - lowbound + 1;
1824 if (nelem <= 0)
1825 {
1826 error ("bad array bounds (%d, %d)", lowbound, highbound);
1827 }
1828 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1829 for (idx = 1; idx < nelem; idx++)
1830 {
1831 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1832 {
1833 error ("array elements must all be the same size");
1834 }
1835 }
1836
1837 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1838 lowbound, highbound);
c5aa993b
JM
1839 arraytype = create_array_type ((struct type *) NULL,
1840 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1841
1842 if (!current_language->c_style_arrays)
1843 {
1844 val = allocate_value (arraytype);
1845 for (idx = 0; idx < nelem; idx++)
1846 {
1847 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1848 VALUE_CONTENTS_ALL (elemvec[idx]),
1849 typelength);
1850 }
1851 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1852 return val;
1853 }
1854
1855 /* Allocate space to store the array in the inferior, and then initialize
1856 it by copying in each element. FIXME: Is it worth it to create a
1857 local buffer in which to collect each value and then write all the
1858 bytes in one operation? */
1859
1860 addr = allocate_space_in_inferior (nelem * typelength);
1861 for (idx = 0; idx < nelem; idx++)
1862 {
1863 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1864 typelength);
1865 }
1866
1867 /* Create the array type and set up an array value to be evaluated lazily. */
1868
1869 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1870 return (val);
1871}
1872
1873/* Create a value for a string constant by allocating space in the inferior,
1874 copying the data into that space, and returning the address with type
1875 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1876 of characters.
1877 Note that string types are like array of char types with a lower bound of
1878 zero and an upper bound of LEN - 1. Also note that the string may contain
1879 embedded null bytes. */
1880
f23631e4 1881struct value *
fba45db2 1882value_string (char *ptr, int len)
c906108c 1883{
f23631e4 1884 struct value *val;
c906108c
SS
1885 int lowbound = current_language->string_lower_bound;
1886 struct type *rangetype = create_range_type ((struct type *) NULL,
1887 builtin_type_int,
1888 lowbound, len + lowbound - 1);
1889 struct type *stringtype
c5aa993b 1890 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1891 CORE_ADDR addr;
1892
1893 if (current_language->c_style_arrays == 0)
1894 {
1895 val = allocate_value (stringtype);
1896 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1897 return val;
1898 }
1899
1900
1901 /* Allocate space to store the string in the inferior, and then
1902 copy LEN bytes from PTR in gdb to that address in the inferior. */
1903
1904 addr = allocate_space_in_inferior (len);
1905 write_memory (addr, ptr, len);
1906
1907 val = value_at_lazy (stringtype, addr, NULL);
1908 return (val);
1909}
1910
f23631e4 1911struct value *
fba45db2 1912value_bitstring (char *ptr, int len)
c906108c 1913{
f23631e4 1914 struct value *val;
c906108c
SS
1915 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1916 0, len - 1);
c5aa993b 1917 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1918 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1919 val = allocate_value (type);
1920 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1921 return val;
1922}
1923\f
1924/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1925 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1926 vector. If some arguments need coercion of some sort, then the coerced
1927 values are written into T2. Return value is 0 if the arguments could be
1928 matched, or the position at which they differ if not.
c906108c
SS
1929
1930 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1931 static member function. T2 will still include the ``this'' pointer,
1932 but it will be skipped.
c906108c
SS
1933
1934 For non-static member functions, we ignore the first argument,
1935 which is the type of the instance variable. This is because we want
1936 to handle calls with objects from derived classes. This is not
1937 entirely correct: we should actually check to make sure that a
1938 requested operation is type secure, shouldn't we? FIXME. */
1939
1940static int
ad2f7632
DJ
1941typecmp (int staticp, int varargs, int nargs,
1942 struct field t1[], struct value *t2[])
c906108c
SS
1943{
1944 int i;
1945
1946 if (t2 == 0)
ad2f7632
DJ
1947 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1948
4a1970e4
DJ
1949 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1950 if (staticp)
ad2f7632
DJ
1951 t2 ++;
1952
1953 for (i = 0;
1954 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1955 i++)
c906108c 1956 {
c5aa993b 1957 struct type *tt1, *tt2;
ad2f7632 1958
c5aa993b
JM
1959 if (!t2[i])
1960 return i + 1;
ad2f7632
DJ
1961
1962 tt1 = check_typedef (t1[i].type);
c5aa993b 1963 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 1964
c906108c 1965 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 1966 /* We should be doing hairy argument matching, as below. */
c906108c
SS
1967 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1968 {
1969 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1970 t2[i] = value_coerce_array (t2[i]);
1971 else
1972 t2[i] = value_addr (t2[i]);
1973 continue;
1974 }
1975
802db21b
DB
1976 /* djb - 20000715 - Until the new type structure is in the
1977 place, and we can attempt things like implicit conversions,
1978 we need to do this so you can take something like a map<const
1979 char *>, and properly access map["hello"], because the
1980 argument to [] will be a reference to a pointer to a char,
7168a814 1981 and the argument will be a pointer to a char. */
802db21b
DB
1982 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1983 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1984 {
1985 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1986 }
1987 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1988 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1989 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 1990 {
802db21b 1991 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 1992 }
c5aa993b
JM
1993 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1994 continue;
c906108c
SS
1995 /* Array to pointer is a `trivial conversion' according to the ARM. */
1996
1997 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
1998 of the ARM), but as a quick kludge, just check for the same type
1999 code. */
ad2f7632 2000 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2001 return i + 1;
c906108c 2002 }
ad2f7632 2003 if (varargs || t2[i] == NULL)
c5aa993b 2004 return 0;
ad2f7632 2005 return i + 1;
c906108c
SS
2006}
2007
2008/* Helper function used by value_struct_elt to recurse through baseclasses.
2009 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2010 and search in it assuming it has (class) type TYPE.
2011 If found, return value, else return NULL.
2012
2013 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2014 look for a baseclass named NAME. */
2015
f23631e4
AC
2016static struct value *
2017search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2018 register struct type *type, int looking_for_baseclass)
c906108c
SS
2019{
2020 int i;
2021 int nbases = TYPE_N_BASECLASSES (type);
2022
2023 CHECK_TYPEDEF (type);
2024
c5aa993b 2025 if (!looking_for_baseclass)
c906108c
SS
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2027 {
2028 char *t_field_name = TYPE_FIELD_NAME (type, i);
2029
db577aea 2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2031 {
f23631e4 2032 struct value *v;
c906108c
SS
2033 if (TYPE_FIELD_STATIC (type, i))
2034 v = value_static_field (type, i);
2035 else
2036 v = value_primitive_field (arg1, offset, i, type);
2037 if (v == 0)
c5aa993b 2038 error ("there is no field named %s", name);
c906108c
SS
2039 return v;
2040 }
2041
2042 if (t_field_name
2043 && (t_field_name[0] == '\0'
2044 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2045 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2046 {
2047 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2048 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2049 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2050 {
2051 /* Look for a match through the fields of an anonymous union,
2052 or anonymous struct. C++ provides anonymous unions.
2053
2054 In the GNU Chill implementation of variant record types,
2055 each <alternative field> has an (anonymous) union type,
2056 each member of the union represents a <variant alternative>.
2057 Each <variant alternative> is represented as a struct,
2058 with a member for each <variant field>. */
c5aa993b 2059
f23631e4 2060 struct value *v;
c906108c
SS
2061 int new_offset = offset;
2062
2063 /* This is pretty gross. In G++, the offset in an anonymous
2064 union is relative to the beginning of the enclosing struct.
2065 In the GNU Chill implementation of variant records,
2066 the bitpos is zero in an anonymous union field, so we
2067 have to add the offset of the union here. */
2068 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2069 || (TYPE_NFIELDS (field_type) > 0
2070 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2071 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2072
2073 v = search_struct_field (name, arg1, new_offset, field_type,
2074 looking_for_baseclass);
2075 if (v)
2076 return v;
2077 }
2078 }
2079 }
2080
c5aa993b 2081 for (i = 0; i < nbases; i++)
c906108c 2082 {
f23631e4 2083 struct value *v;
c906108c
SS
2084 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2085 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2086 hit them. But it could happen that the base part's member name
2087 is not yet filled in. */
c906108c
SS
2088 int found_baseclass = (looking_for_baseclass
2089 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2090 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2091
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2093 {
2094 int boffset;
f23631e4 2095 struct value *v2 = allocate_value (basetype);
c906108c
SS
2096
2097 boffset = baseclass_offset (type, i,
2098 VALUE_CONTENTS (arg1) + offset,
2099 VALUE_ADDRESS (arg1)
c5aa993b 2100 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2101 if (boffset == -1)
2102 error ("virtual baseclass botch");
2103
2104 /* The virtual base class pointer might have been clobbered by the
2105 user program. Make sure that it still points to a valid memory
2106 location. */
2107
2108 boffset += offset;
2109 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2110 {
2111 CORE_ADDR base_addr;
c5aa993b 2112
c906108c
SS
2113 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2114 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2115 TYPE_LENGTH (basetype)) != 0)
2116 error ("virtual baseclass botch");
2117 VALUE_LVAL (v2) = lval_memory;
2118 VALUE_ADDRESS (v2) = base_addr;
2119 }
2120 else
2121 {
2122 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2123 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2124 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2125 if (VALUE_LAZY (arg1))
2126 VALUE_LAZY (v2) = 1;
2127 else
2128 memcpy (VALUE_CONTENTS_RAW (v2),
2129 VALUE_CONTENTS_RAW (arg1) + boffset,
2130 TYPE_LENGTH (basetype));
2131 }
2132
2133 if (found_baseclass)
2134 return v2;
2135 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2136 looking_for_baseclass);
2137 }
2138 else if (found_baseclass)
2139 v = value_primitive_field (arg1, offset, i, type);
2140 else
2141 v = search_struct_field (name, arg1,
c5aa993b 2142 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2143 basetype, looking_for_baseclass);
c5aa993b
JM
2144 if (v)
2145 return v;
c906108c
SS
2146 }
2147 return NULL;
2148}
2149
2150
2151/* Return the offset (in bytes) of the virtual base of type BASETYPE
2152 * in an object pointed to by VALADDR (on the host), assumed to be of
2153 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2154 * looking (in case VALADDR is the contents of an enclosing object).
2155 *
2156 * This routine recurses on the primary base of the derived class because
2157 * the virtual base entries of the primary base appear before the other
2158 * virtual base entries.
2159 *
2160 * If the virtual base is not found, a negative integer is returned.
2161 * The magnitude of the negative integer is the number of entries in
2162 * the virtual table to skip over (entries corresponding to various
2163 * ancestral classes in the chain of primary bases).
2164 *
2165 * Important: This assumes the HP / Taligent C++ runtime
2166 * conventions. Use baseclass_offset() instead to deal with g++
2167 * conventions. */
2168
2169void
fba45db2
KB
2170find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2171 int offset, int *boffset_p, int *skip_p)
c906108c 2172{
c5aa993b
JM
2173 int boffset; /* offset of virtual base */
2174 int index; /* displacement to use in virtual table */
c906108c 2175 int skip;
c5aa993b 2176
f23631e4 2177 struct value *vp;
c5aa993b
JM
2178 CORE_ADDR vtbl; /* the virtual table pointer */
2179 struct type *pbc; /* the primary base class */
c906108c
SS
2180
2181 /* Look for the virtual base recursively in the primary base, first.
2182 * This is because the derived class object and its primary base
2183 * subobject share the primary virtual table. */
c5aa993b 2184
c906108c 2185 boffset = 0;
c5aa993b 2186 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2187 if (pbc)
2188 {
2189 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2190 if (skip < 0)
c5aa993b
JM
2191 {
2192 *boffset_p = boffset;
2193 *skip_p = -1;
2194 return;
2195 }
c906108c
SS
2196 }
2197 else
2198 skip = 0;
2199
2200
2201 /* Find the index of the virtual base according to HP/Taligent
2202 runtime spec. (Depth-first, left-to-right.) */
2203 index = virtual_base_index_skip_primaries (basetype, type);
2204
c5aa993b
JM
2205 if (index < 0)
2206 {
2207 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2208 *boffset_p = 0;
2209 return;
2210 }
c906108c 2211
c5aa993b 2212 /* pai: FIXME -- 32x64 possible problem */
c906108c 2213 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2214 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2215
c5aa993b 2216 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2217 if (vtbl == 0)
2218 error ("Couldn't find virtual table -- object may not be constructed yet.");
2219
2220
2221 /* Find virtual base's offset -- jump over entries for primary base
2222 * ancestors, then use the index computed above. But also adjust by
2223 * HP_ACC_VBASE_START for the vtable slots before the start of the
2224 * virtual base entries. Offset is negative -- virtual base entries
2225 * appear _before_ the address point of the virtual table. */
c5aa993b 2226
070ad9f0 2227 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2228 & use long type */
c906108c
SS
2229
2230 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2231 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2232 boffset = value_as_long (vp);
2233 *skip_p = -1;
2234 *boffset_p = boffset;
2235 return;
2236}
2237
2238
2239/* Helper function used by value_struct_elt to recurse through baseclasses.
2240 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2241 and search in it assuming it has (class) type TYPE.
2242 If found, return value, else if name matched and args not return (value)-1,
2243 else return NULL. */
2244
f23631e4
AC
2245static struct value *
2246search_struct_method (char *name, struct value **arg1p,
2247 struct value **args, int offset,
fba45db2 2248 int *static_memfuncp, register struct type *type)
c906108c
SS
2249{
2250 int i;
f23631e4 2251 struct value *v;
c906108c
SS
2252 int name_matched = 0;
2253 char dem_opname[64];
2254
2255 CHECK_TYPEDEF (type);
2256 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2257 {
2258 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2259 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2260 if (strncmp (t_field_name, "__", 2) == 0 ||
2261 strncmp (t_field_name, "op", 2) == 0 ||
2262 strncmp (t_field_name, "type", 4) == 0)
c906108c 2263 {
c5aa993b
JM
2264 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2265 t_field_name = dem_opname;
2266 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2267 t_field_name = dem_opname;
c906108c 2268 }
db577aea 2269 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2270 {
2271 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2272 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2273 name_matched = 1;
c906108c
SS
2274
2275 if (j > 0 && args == 0)
2276 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2277 else if (j == 0 && args == 0)
c906108c
SS
2278 {
2279 if (TYPE_FN_FIELD_STUB (f, j))
2280 check_stub_method (type, i, j);
acf5ed49
DJ
2281 v = value_fn_field (arg1p, f, j, type, offset);
2282 if (v != NULL)
2283 return v;
c906108c 2284 }
acf5ed49
DJ
2285 else
2286 while (j >= 0)
2287 {
2288 if (TYPE_FN_FIELD_STUB (f, j))
2289 check_stub_method (type, i, j);
2290 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2291 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2292 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2293 TYPE_FN_FIELD_ARGS (f, j), args))
2294 {
2295 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2296 return value_virtual_fn_field (arg1p, f, j, type, offset);
2297 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2298 *static_memfuncp = 1;
2299 v = value_fn_field (arg1p, f, j, type, offset);
2300 if (v != NULL)
2301 return v;
2302 }
2303 j--;
2304 }
c906108c
SS
2305 }
2306 }
2307
2308 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2309 {
2310 int base_offset;
2311
2312 if (BASETYPE_VIA_VIRTUAL (type, i))
2313 {
c5aa993b
JM
2314 if (TYPE_HAS_VTABLE (type))
2315 {
2316 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2317 according to HP/Taligent runtime spec. */
c5aa993b
JM
2318 int skip;
2319 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2320 VALUE_CONTENTS_ALL (*arg1p),
2321 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2322 &base_offset, &skip);
2323 if (skip >= 0)
2324 error ("Virtual base class offset not found in vtable");
2325 }
2326 else
2327 {
2328 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2329 char *base_valaddr;
2330
2331 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2332 user program. Make sure that it still points to a valid memory
2333 location. */
c5aa993b
JM
2334
2335 if (offset < 0 || offset >= TYPE_LENGTH (type))
2336 {
2337 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2338 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2339 + VALUE_OFFSET (*arg1p) + offset,
2340 base_valaddr,
2341 TYPE_LENGTH (baseclass)) != 0)
2342 error ("virtual baseclass botch");
2343 }
2344 else
2345 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2346
2347 base_offset =
2348 baseclass_offset (type, i, base_valaddr,
2349 VALUE_ADDRESS (*arg1p)
2350 + VALUE_OFFSET (*arg1p) + offset);
2351 if (base_offset == -1)
2352 error ("virtual baseclass botch");
2353 }
2354 }
c906108c
SS
2355 else
2356 {
2357 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2358 }
c906108c
SS
2359 v = search_struct_method (name, arg1p, args, base_offset + offset,
2360 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2361 if (v == (struct value *) - 1)
c906108c
SS
2362 {
2363 name_matched = 1;
2364 }
2365 else if (v)
2366 {
2367/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2368/* *arg1p = arg1_tmp; */
c906108c 2369 return v;
c5aa993b 2370 }
c906108c 2371 }
c5aa993b 2372 if (name_matched)
f23631e4 2373 return (struct value *) - 1;
c5aa993b
JM
2374 else
2375 return NULL;
c906108c
SS
2376}
2377
2378/* Given *ARGP, a value of type (pointer to a)* structure/union,
2379 extract the component named NAME from the ultimate target structure/union
2380 and return it as a value with its appropriate type.
2381 ERR is used in the error message if *ARGP's type is wrong.
2382
2383 C++: ARGS is a list of argument types to aid in the selection of
2384 an appropriate method. Also, handle derived types.
2385
2386 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2387 where the truthvalue of whether the function that was resolved was
2388 a static member function or not is stored.
2389
2390 ERR is an error message to be printed in case the field is not found. */
2391
f23631e4
AC
2392struct value *
2393value_struct_elt (struct value **argp, struct value **args,
fba45db2 2394 char *name, int *static_memfuncp, char *err)
c906108c
SS
2395{
2396 register struct type *t;
f23631e4 2397 struct value *v;
c906108c
SS
2398
2399 COERCE_ARRAY (*argp);
2400
2401 t = check_typedef (VALUE_TYPE (*argp));
2402
2403 /* Follow pointers until we get to a non-pointer. */
2404
2405 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2406 {
2407 *argp = value_ind (*argp);
2408 /* Don't coerce fn pointer to fn and then back again! */
2409 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2410 COERCE_ARRAY (*argp);
2411 t = check_typedef (VALUE_TYPE (*argp));
2412 }
2413
2414 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2415 error ("not implemented: member type in value_struct_elt");
2416
c5aa993b 2417 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2418 && TYPE_CODE (t) != TYPE_CODE_UNION)
2419 error ("Attempt to extract a component of a value that is not a %s.", err);
2420
2421 /* Assume it's not, unless we see that it is. */
2422 if (static_memfuncp)
c5aa993b 2423 *static_memfuncp = 0;
c906108c
SS
2424
2425 if (!args)
2426 {
2427 /* if there are no arguments ...do this... */
2428
2429 /* Try as a field first, because if we succeed, there
7b83ea04 2430 is less work to be done. */
c906108c
SS
2431 v = search_struct_field (name, *argp, 0, t, 0);
2432 if (v)
2433 return v;
2434
2435 /* C++: If it was not found as a data field, then try to
7b83ea04 2436 return it as a pointer to a method. */
c906108c
SS
2437
2438 if (destructor_name_p (name, t))
2439 error ("Cannot get value of destructor");
2440
2441 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2442
f23631e4 2443 if (v == (struct value *) - 1)
c906108c
SS
2444 error ("Cannot take address of a method");
2445 else if (v == 0)
2446 {
2447 if (TYPE_NFN_FIELDS (t))
2448 error ("There is no member or method named %s.", name);
2449 else
2450 error ("There is no member named %s.", name);
2451 }
2452 return v;
2453 }
2454
2455 if (destructor_name_p (name, t))
2456 {
2457 if (!args[1])
2458 {
2459 /* Destructors are a special case. */
2460 int m_index, f_index;
2461
2462 v = NULL;
2463 if (get_destructor_fn_field (t, &m_index, &f_index))
2464 {
2465 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2466 f_index, NULL, 0);
2467 }
2468 if (v == NULL)
2469 error ("could not find destructor function named %s.", name);
2470 else
2471 return v;
2472 }
2473 else
2474 {
2475 error ("destructor should not have any argument");
2476 }
2477 }
2478 else
2479 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2480
f23631e4 2481 if (v == (struct value *) - 1)
c906108c 2482 {
7168a814 2483 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2484 }
2485 else if (v == 0)
2486 {
2487 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2488 hand it back. If it's not callable (i.e., a pointer to function),
2489 gdb should give an error. */
c906108c
SS
2490 v = search_struct_field (name, *argp, 0, t, 0);
2491 }
2492
2493 if (!v)
2494 error ("Structure has no component named %s.", name);
2495 return v;
2496}
2497
2498/* Search through the methods of an object (and its bases)
2499 * to find a specified method. Return the pointer to the
2500 * fn_field list of overloaded instances.
2501 * Helper function for value_find_oload_list.
2502 * ARGP is a pointer to a pointer to a value (the object)
2503 * METHOD is a string containing the method name
2504 * OFFSET is the offset within the value
2505 * STATIC_MEMFUNCP is set if the method is static
2506 * TYPE is the assumed type of the object
2507 * NUM_FNS is the number of overloaded instances
2508 * BASETYPE is set to the actual type of the subobject where the method is found
2509 * BOFFSET is the offset of the base subobject where the method is found */
2510
7a292a7a 2511static struct fn_field *
f23631e4 2512find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2513 struct type *type, int *num_fns,
fba45db2 2514 struct type **basetype, int *boffset)
c906108c
SS
2515{
2516 int i;
c5aa993b 2517 struct fn_field *f;
c906108c
SS
2518 CHECK_TYPEDEF (type);
2519
2520 *num_fns = 0;
2521
c5aa993b
JM
2522 /* First check in object itself */
2523 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2524 {
2525 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2526 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2527 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2528 {
4a1970e4
DJ
2529 /* Resolve any stub methods. */
2530 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2531 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2532 int j;
2533
2534 *num_fns = len;
c5aa993b
JM
2535 *basetype = type;
2536 *boffset = offset;
4a1970e4
DJ
2537
2538 for (j = 0; j < len; j++)
2539 {
2540 if (TYPE_FN_FIELD_STUB (f, j))
2541 check_stub_method (type, i, j);
2542 }
2543
2544 return f;
c5aa993b
JM
2545 }
2546 }
2547
c906108c
SS
2548 /* Not found in object, check in base subobjects */
2549 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2550 {
2551 int base_offset;
2552 if (BASETYPE_VIA_VIRTUAL (type, i))
2553 {
c5aa993b
JM
2554 if (TYPE_HAS_VTABLE (type))
2555 {
2556 /* HP aCC compiled type, search for virtual base offset
2557 * according to HP/Taligent runtime spec. */
2558 int skip;
2559 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2560 VALUE_CONTENTS_ALL (*argp),
2561 offset + VALUE_EMBEDDED_OFFSET (*argp),
2562 &base_offset, &skip);
2563 if (skip >= 0)
2564 error ("Virtual base class offset not found in vtable");
2565 }
2566 else
2567 {
2568 /* probably g++ runtime model */
2569 base_offset = VALUE_OFFSET (*argp) + offset;
2570 base_offset =
2571 baseclass_offset (type, i,
2572 VALUE_CONTENTS (*argp) + base_offset,
2573 VALUE_ADDRESS (*argp) + base_offset);
2574 if (base_offset == -1)
2575 error ("virtual baseclass botch");
2576 }
2577 }
2578 else
2579 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2580 {
2581 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2582 }
c906108c 2583 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2584 TYPE_BASECLASS (type, i), num_fns, basetype,
2585 boffset);
c906108c 2586 if (f)
c5aa993b 2587 return f;
c906108c 2588 }
c5aa993b 2589 return NULL;
c906108c
SS
2590}
2591
2592/* Return the list of overloaded methods of a specified name.
2593 * ARGP is a pointer to a pointer to a value (the object)
2594 * METHOD is the method name
2595 * OFFSET is the offset within the value contents
2596 * STATIC_MEMFUNCP is set if the method is static
2597 * NUM_FNS is the number of overloaded instances
2598 * BASETYPE is set to the type of the base subobject that defines the method
2599 * BOFFSET is the offset of the base subobject which defines the method */
2600
2601struct fn_field *
f23631e4 2602value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2603 int *num_fns, struct type **basetype,
2604 int *boffset)
c906108c 2605{
c5aa993b 2606 struct type *t;
c906108c
SS
2607
2608 t = check_typedef (VALUE_TYPE (*argp));
2609
c5aa993b 2610 /* code snarfed from value_struct_elt */
c906108c
SS
2611 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2612 {
2613 *argp = value_ind (*argp);
2614 /* Don't coerce fn pointer to fn and then back again! */
2615 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2616 COERCE_ARRAY (*argp);
2617 t = check_typedef (VALUE_TYPE (*argp));
2618 }
c5aa993b 2619
c906108c
SS
2620 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2621 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2622
2623 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2624 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2625 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2626
4a1970e4 2627 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2628}
2629
2630/* Given an array of argument types (ARGTYPES) (which includes an
2631 entry for "this" in the case of C++ methods), the number of
2632 arguments NARGS, the NAME of a function whether it's a method or
2633 not (METHOD), and the degree of laxness (LAX) in conforming to
2634 overload resolution rules in ANSI C++, find the best function that
2635 matches on the argument types according to the overload resolution
2636 rules.
2637
2638 In the case of class methods, the parameter OBJ is an object value
2639 in which to search for overloaded methods.
2640
2641 In the case of non-method functions, the parameter FSYM is a symbol
2642 corresponding to one of the overloaded functions.
2643
2644 Return value is an integer: 0 -> good match, 10 -> debugger applied
2645 non-standard coercions, 100 -> incompatible.
2646
2647 If a method is being searched for, VALP will hold the value.
2648 If a non-method is being searched for, SYMP will hold the symbol for it.
2649
2650 If a method is being searched for, and it is a static method,
2651 then STATICP will point to a non-zero value.
2652
2653 Note: This function does *not* check the value of
2654 overload_resolution. Caller must check it to see whether overload
2655 resolution is permitted.
c5aa993b 2656 */
c906108c
SS
2657
2658int
fba45db2 2659find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2660 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2661 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2662{
2663 int nparms;
c5aa993b 2664 struct type **parm_types;
c906108c 2665 int champ_nparms = 0;
7f8c9282 2666 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2667
2668 short oload_champ = -1; /* Index of best overloaded function */
2669 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2670 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2671 short oload_ambig_champ = -1; /* 2nd contender for best match */
2672 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2673 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2674
2675 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2676 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2677
f23631e4 2678 struct value *temp = obj;
c5aa993b
JM
2679 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2680 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2681 int num_fns = 0; /* Number of overloaded instances being considered */
2682 struct type *basetype = NULL;
c906108c
SS
2683 int boffset;
2684 register int jj;
2685 register int ix;
4a1970e4 2686 int static_offset;
c906108c 2687
c5aa993b
JM
2688 char *obj_type_name = NULL;
2689 char *func_name = NULL;
c906108c
SS
2690
2691 /* Get the list of overloaded methods or functions */
2692 if (method)
2693 {
2694 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2695 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2696 value rather than the object itself, so try again */
c906108c 2697 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2698 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2699 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2700
2701 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2702 &num_fns,
2703 &basetype, &boffset);
c906108c 2704 if (!fns_ptr || !num_fns)
c5aa993b
JM
2705 error ("Couldn't find method %s%s%s",
2706 obj_type_name,
2707 (obj_type_name && *obj_type_name) ? "::" : "",
2708 name);
4a1970e4
DJ
2709 /* If we are dealing with stub method types, they should have
2710 been resolved by find_method_list via value_find_oload_method_list
2711 above. */
2712 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2713 }
2714 else
2715 {
2716 int i = -1;
2717 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2718
917317f4 2719 /* If the name is NULL this must be a C-style function.
7b83ea04 2720 Just return the same symbol. */
917317f4 2721 if (!func_name)
7b83ea04 2722 {
917317f4 2723 *symp = fsym;
7b83ea04
AC
2724 return 0;
2725 }
917317f4 2726
c906108c
SS
2727 oload_syms = make_symbol_overload_list (fsym);
2728 while (oload_syms[++i])
c5aa993b 2729 num_fns++;
c906108c 2730 if (!num_fns)
c5aa993b 2731 error ("Couldn't find function %s", func_name);
c906108c 2732 }
c5aa993b 2733
c906108c
SS
2734 oload_champ_bv = NULL;
2735
c5aa993b 2736 /* Consider each candidate in turn */
c906108c
SS
2737 for (ix = 0; ix < num_fns; ix++)
2738 {
4a1970e4 2739 static_offset = 0;
db577aea
AC
2740 if (method)
2741 {
4a1970e4
DJ
2742 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2743 static_offset = 1;
ad2f7632 2744 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2745 }
2746 else
2747 {
2748 /* If it's not a method, this is the proper place */
2749 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2750 }
c906108c 2751
c5aa993b 2752 /* Prepare array of parameter types */
c906108c
SS
2753 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2754 for (jj = 0; jj < nparms; jj++)
db577aea 2755 parm_types[jj] = (method
ad2f7632 2756 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2757 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2758
4a1970e4
DJ
2759 /* Compare parameter types to supplied argument types. Skip THIS for
2760 static methods. */
2761 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2762 nargs - static_offset);
c5aa993b 2763
c906108c 2764 if (!oload_champ_bv)
c5aa993b
JM
2765 {
2766 oload_champ_bv = bv;
2767 oload_champ = 0;
2768 champ_nparms = nparms;
2769 }
c906108c 2770 else
c5aa993b
JM
2771 /* See whether current candidate is better or worse than previous best */
2772 switch (compare_badness (bv, oload_champ_bv))
2773 {
2774 case 0:
2775 oload_ambiguous = 1; /* top two contenders are equally good */
2776 oload_ambig_champ = ix;
2777 break;
2778 case 1:
2779 oload_ambiguous = 2; /* incomparable top contenders */
2780 oload_ambig_champ = ix;
2781 break;
2782 case 2:
2783 oload_champ_bv = bv; /* new champion, record details */
2784 oload_ambiguous = 0;
2785 oload_champ = ix;
2786 oload_ambig_champ = -1;
2787 champ_nparms = nparms;
2788 break;
2789 case 3:
2790 default:
2791 break;
2792 }
b8c9b27d 2793 xfree (parm_types);
6b1ba9a0
ND
2794 if (overload_debug)
2795 {
2796 if (method)
2797 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2798 else
2799 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2800 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2801 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2802 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2803 }
c5aa993b 2804 } /* end loop over all candidates */
db577aea
AC
2805 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2806 if they have the exact same goodness. This is because there is no
2807 way to differentiate based on return type, which we need to in
2808 cases like overloads of .begin() <It's both const and non-const> */
2809#if 0
c906108c
SS
2810 if (oload_ambiguous)
2811 {
2812 if (method)
c5aa993b
JM
2813 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2814 obj_type_name,
2815 (obj_type_name && *obj_type_name) ? "::" : "",
2816 name);
c906108c 2817 else
c5aa993b
JM
2818 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2819 func_name);
c906108c 2820 }
db577aea 2821#endif
c906108c 2822
4a1970e4
DJ
2823 /* Check how bad the best match is. */
2824 static_offset = 0;
2825 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2826 static_offset = 1;
2827 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2828 {
6b1ba9a0
ND
2829 if (oload_champ_bv->rank[ix] >= 100)
2830 oload_incompatible = 1; /* truly mismatched types */
2831
2832 else if (oload_champ_bv->rank[ix] >= 10)
2833 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2834 }
2835 if (oload_incompatible)
2836 {
2837 if (method)
c5aa993b
JM
2838 error ("Cannot resolve method %s%s%s to any overloaded instance",
2839 obj_type_name,
2840 (obj_type_name && *obj_type_name) ? "::" : "",
2841 name);
c906108c 2842 else
c5aa993b
JM
2843 error ("Cannot resolve function %s to any overloaded instance",
2844 func_name);
c906108c
SS
2845 }
2846 else if (oload_non_standard)
2847 {
2848 if (method)
c5aa993b
JM
2849 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2850 obj_type_name,
2851 (obj_type_name && *obj_type_name) ? "::" : "",
2852 name);
c906108c 2853 else
c5aa993b
JM
2854 warning ("Using non-standard conversion to match function %s to supplied arguments",
2855 func_name);
c906108c
SS
2856 }
2857
2858 if (method)
2859 {
4a1970e4
DJ
2860 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2861 *staticp = 1;
2862 else if (staticp)
2863 *staticp = 0;
c906108c 2864 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2865 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2866 else
c5aa993b 2867 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2868 }
2869 else
2870 {
2871 *symp = oload_syms[oload_champ];
b8c9b27d 2872 xfree (func_name);
c906108c
SS
2873 }
2874
7f8c9282
DJ
2875 if (objp)
2876 {
2877 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2878 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2879 {
2880 temp = value_addr (temp);
2881 }
2882 *objp = temp;
2883 }
c906108c
SS
2884 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2885}
2886
2887/* C++: return 1 is NAME is a legitimate name for the destructor
2888 of type TYPE. If TYPE does not have a destructor, or
2889 if NAME is inappropriate for TYPE, an error is signaled. */
2890int
fba45db2 2891destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2892{
2893 /* destructors are a special case. */
2894
2895 if (name[0] == '~')
2896 {
2897 char *dname = type_name_no_tag (type);
2898 char *cp = strchr (dname, '<');
2899 unsigned int len;
2900
2901 /* Do not compare the template part for template classes. */
2902 if (cp == NULL)
2903 len = strlen (dname);
2904 else
2905 len = cp - dname;
2906 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2907 error ("name of destructor must equal name of class");
2908 else
2909 return 1;
2910 }
2911 return 0;
2912}
2913
2914/* Helper function for check_field: Given TYPE, a structure/union,
2915 return 1 if the component named NAME from the ultimate
2916 target structure/union is defined, otherwise, return 0. */
2917
2918static int
fba45db2 2919check_field_in (register struct type *type, const char *name)
c906108c
SS
2920{
2921 register int i;
2922
2923 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2924 {
2925 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2926 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2927 return 1;
2928 }
2929
2930 /* C++: If it was not found as a data field, then try to
2931 return it as a pointer to a method. */
2932
2933 /* Destructors are a special case. */
2934 if (destructor_name_p (name, type))
2935 {
2936 int m_index, f_index;
2937
2938 return get_destructor_fn_field (type, &m_index, &f_index);
2939 }
2940
2941 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2942 {
db577aea 2943 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
2944 return 1;
2945 }
2946
2947 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2948 if (check_field_in (TYPE_BASECLASS (type, i), name))
2949 return 1;
c5aa993b 2950
c906108c
SS
2951 return 0;
2952}
2953
2954
2955/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2956 return 1 if the component named NAME from the ultimate
2957 target structure/union is defined, otherwise, return 0. */
2958
2959int
f23631e4 2960check_field (struct value *arg1, const char *name)
c906108c
SS
2961{
2962 register struct type *t;
2963
2964 COERCE_ARRAY (arg1);
2965
2966 t = VALUE_TYPE (arg1);
2967
2968 /* Follow pointers until we get to a non-pointer. */
2969
2970 for (;;)
2971 {
2972 CHECK_TYPEDEF (t);
2973 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2974 break;
2975 t = TYPE_TARGET_TYPE (t);
2976 }
2977
2978 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2979 error ("not implemented: member type in check_field");
2980
c5aa993b 2981 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2982 && TYPE_CODE (t) != TYPE_CODE_UNION)
2983 error ("Internal error: `this' is not an aggregate");
2984
2985 return check_field_in (t, name);
2986}
2987
2988/* C++: Given an aggregate type CURTYPE, and a member name NAME,
2989 return the address of this member as a "pointer to member"
2990 type. If INTYPE is non-null, then it will be the type
2991 of the member we are looking for. This will help us resolve
2992 "pointers to member functions". This function is used
2993 to resolve user expressions of the form "DOMAIN::NAME". */
2994
f23631e4 2995struct value *
fba45db2
KB
2996value_struct_elt_for_reference (struct type *domain, int offset,
2997 struct type *curtype, char *name,
2998 struct type *intype)
c906108c
SS
2999{
3000 register struct type *t = curtype;
3001 register int i;
f23631e4 3002 struct value *v;
c906108c 3003
c5aa993b 3004 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3005 && TYPE_CODE (t) != TYPE_CODE_UNION)
3006 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3007
3008 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3009 {
3010 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3011
c906108c
SS
3012 if (t_field_name && STREQ (t_field_name, name))
3013 {
3014 if (TYPE_FIELD_STATIC (t, i))
3015 {
3016 v = value_static_field (t, i);
3017 if (v == NULL)
3018 error ("Internal error: could not find static variable %s",
3019 name);
3020 return v;
3021 }
3022 if (TYPE_FIELD_PACKED (t, i))
3023 error ("pointers to bitfield members not allowed");
c5aa993b 3024
c906108c
SS
3025 return value_from_longest
3026 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3027 domain)),
3028 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3029 }
3030 }
3031
3032 /* C++: If it was not found as a data field, then try to
3033 return it as a pointer to a method. */
3034
3035 /* Destructors are a special case. */
3036 if (destructor_name_p (name, t))
3037 {
3038 error ("member pointers to destructors not implemented yet");
3039 }
3040
3041 /* Perform all necessary dereferencing. */
3042 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3043 intype = TYPE_TARGET_TYPE (intype);
3044
3045 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3046 {
3047 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3048 char dem_opname[64];
3049
c5aa993b
JM
3050 if (strncmp (t_field_name, "__", 2) == 0 ||
3051 strncmp (t_field_name, "op", 2) == 0 ||
3052 strncmp (t_field_name, "type", 4) == 0)
c906108c 3053 {
c5aa993b
JM
3054 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3055 t_field_name = dem_opname;
3056 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3057 t_field_name = dem_opname;
c906108c
SS
3058 }
3059 if (t_field_name && STREQ (t_field_name, name))
3060 {
3061 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3062 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3063
c906108c
SS
3064 if (intype == 0 && j > 1)
3065 error ("non-unique member `%s' requires type instantiation", name);
3066 if (intype)
3067 {
3068 while (j--)
3069 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3070 break;
3071 if (j < 0)
3072 error ("no member function matches that type instantiation");
3073 }
3074 else
3075 j = 0;
c5aa993b 3076
c906108c
SS
3077 if (TYPE_FN_FIELD_STUB (f, j))
3078 check_stub_method (t, i, j);
3079 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3080 {
3081 return value_from_longest
3082 (lookup_reference_type
3083 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3084 domain)),
3085 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3086 }
3087 else
3088 {
3089 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3090 0, VAR_NAMESPACE, 0, NULL);
3091 if (s == NULL)
3092 {
3093 v = 0;
3094 }
3095 else
3096 {
3097 v = read_var_value (s, 0);
3098#if 0
3099 VALUE_TYPE (v) = lookup_reference_type
3100 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3101 domain));
3102#endif
3103 }
3104 return v;
3105 }
3106 }
3107 }
3108 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3109 {
f23631e4 3110 struct value *v;
c906108c
SS
3111 int base_offset;
3112
3113 if (BASETYPE_VIA_VIRTUAL (t, i))
3114 base_offset = 0;
3115 else
3116 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3117 v = value_struct_elt_for_reference (domain,
3118 offset + base_offset,
3119 TYPE_BASECLASS (t, i),
3120 name,
3121 intype);
3122 if (v)
3123 return v;
3124 }
3125 return 0;
3126}
3127
3128
c906108c
SS
3129/* Given a pointer value V, find the real (RTTI) type
3130 of the object it points to.
3131 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3132 and refer to the values computed for the object pointed to. */
3133
3134struct type *
f23631e4 3135value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3136{
f23631e4 3137 struct value *target;
c906108c
SS
3138
3139 target = value_ind (v);
3140
3141 return value_rtti_type (target, full, top, using_enc);
3142}
3143
3144/* Given a value pointed to by ARGP, check its real run-time type, and
3145 if that is different from the enclosing type, create a new value
3146 using the real run-time type as the enclosing type (and of the same
3147 type as ARGP) and return it, with the embedded offset adjusted to
3148 be the correct offset to the enclosed object
3149 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3150 parameters, computed by value_rtti_type(). If these are available,
3151 they can be supplied and a second call to value_rtti_type() is avoided.
3152 (Pass RTYPE == NULL if they're not available */
3153
f23631e4
AC
3154struct value *
3155value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3156 int xusing_enc)
c906108c 3157{
c5aa993b 3158 struct type *real_type;
c906108c
SS
3159 int full = 0;
3160 int top = -1;
3161 int using_enc = 0;
f23631e4 3162 struct value *new_val;
c906108c
SS
3163
3164 if (rtype)
3165 {
3166 real_type = rtype;
3167 full = xfull;
3168 top = xtop;
3169 using_enc = xusing_enc;
3170 }
3171 else
3172 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3173
3174 /* If no RTTI data, or if object is already complete, do nothing */
3175 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3176 return argp;
3177
3178 /* If we have the full object, but for some reason the enclosing
c5aa993b 3179 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3180 if (full)
3181 {
2b127877 3182 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3183 return argp;
3184 }
3185
3186 /* Check if object is in memory */
3187 if (VALUE_LVAL (argp) != lval_memory)
3188 {
3189 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3190
c906108c
SS
3191 return argp;
3192 }
c5aa993b 3193
c906108c
SS
3194 /* All other cases -- retrieve the complete object */
3195 /* Go back by the computed top_offset from the beginning of the object,
3196 adjusting for the embedded offset of argp if that's what value_rtti_type
3197 used for its computation. */
3198 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3199 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3200 VALUE_BFD_SECTION (argp));
c906108c
SS
3201 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3202 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3203 return new_val;
3204}
3205
3206
3207
3208
3209/* C++: return the value of the class instance variable, if one exists.
3210 Flag COMPLAIN signals an error if the request is made in an
3211 inappropriate context. */
3212
f23631e4 3213struct value *
fba45db2 3214value_of_this (int complain)
c906108c
SS
3215{
3216 struct symbol *func, *sym;
3217 struct block *b;
3218 int i;
3219 static const char funny_this[] = "this";
f23631e4 3220 struct value *this;
c906108c
SS
3221
3222 if (selected_frame == 0)
3223 {
3224 if (complain)
c5aa993b
JM
3225 error ("no frame selected");
3226 else
3227 return 0;
c906108c
SS
3228 }
3229
3230 func = get_frame_function (selected_frame);
3231 if (!func)
3232 {
3233 if (complain)
3234 error ("no `this' in nameless context");
c5aa993b
JM
3235 else
3236 return 0;
c906108c
SS
3237 }
3238
3239 b = SYMBOL_BLOCK_VALUE (func);
3240 i = BLOCK_NSYMS (b);
3241 if (i <= 0)
3242 {
3243 if (complain)
c5aa993b
JM
3244 error ("no args, no `this'");
3245 else
3246 return 0;
c906108c
SS
3247 }
3248
3249 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3250 symbol instead of the LOC_ARG one (if both exist). */
3121eff0 3251 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
c906108c
SS
3252 if (sym == NULL)
3253 {
3254 if (complain)
3255 error ("current stack frame not in method");
3256 else
3257 return NULL;
3258 }
3259
3260 this = read_var_value (sym, selected_frame);
3261 if (this == 0 && complain)
3262 error ("`this' argument at unknown address");
3263 return this;
3264}
3265
3266/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3267 long, starting at LOWBOUND. The result has the same lower bound as
3268 the original ARRAY. */
3269
f23631e4
AC
3270struct value *
3271value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3272{
3273 struct type *slice_range_type, *slice_type, *range_type;
3274 LONGEST lowerbound, upperbound, offset;
f23631e4 3275 struct value *slice;
c906108c
SS
3276 struct type *array_type;
3277 array_type = check_typedef (VALUE_TYPE (array));
3278 COERCE_VARYING_ARRAY (array, array_type);
3279 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3280 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3281 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3282 error ("cannot take slice of non-array");
3283 range_type = TYPE_INDEX_TYPE (array_type);
3284 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3285 error ("slice from bad array or bitstring");
3286 if (lowbound < lowerbound || length < 0
3287 || lowbound + length - 1 > upperbound
c5aa993b 3288 /* Chill allows zero-length strings but not arrays. */
c906108c
SS
3289 || (current_language->la_language == language_chill
3290 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3291 error ("slice out of range");
3292 /* FIXME-type-allocation: need a way to free this type when we are
3293 done with it. */
c5aa993b 3294 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3295 TYPE_TARGET_TYPE (range_type),
3296 lowbound, lowbound + length - 1);
3297 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3298 {
3299 int i;
c5aa993b 3300 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3301 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3302 slice = value_zero (slice_type, not_lval);
3303 for (i = 0; i < length; i++)
3304 {
3305 int element = value_bit_index (array_type,
3306 VALUE_CONTENTS (array),
3307 lowbound + i);
3308 if (element < 0)
3309 error ("internal error accessing bitstring");
3310 else if (element > 0)
3311 {
3312 int j = i % TARGET_CHAR_BIT;
3313 if (BITS_BIG_ENDIAN)
3314 j = TARGET_CHAR_BIT - 1 - j;
3315 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3316 }
3317 }
3318 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3319 can be used on the LHS, but that may require extensions to
3320 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3321 }
3322 else
3323 {
3324 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3325 offset
3326 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3327 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3328 slice_range_type);
3329 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3330 slice = allocate_value (slice_type);
3331 if (VALUE_LAZY (array))
3332 VALUE_LAZY (slice) = 1;
3333 else
3334 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3335 TYPE_LENGTH (slice_type));
3336 if (VALUE_LVAL (array) == lval_internalvar)
3337 VALUE_LVAL (slice) = lval_internalvar_component;
3338 else
3339 VALUE_LVAL (slice) = VALUE_LVAL (array);
3340 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3341 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3342 }
3343 return slice;
3344}
3345
3346/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3347 value as a fixed-length array. */
3348
f23631e4
AC
3349struct value *
3350varying_to_slice (struct value *varray)
c906108c
SS
3351{
3352 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3353 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3354 VALUE_CONTENTS (varray)
3355 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3356 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3357}
3358
070ad9f0
DB
3359/* Create a value for a FORTRAN complex number. Currently most of
3360 the time values are coerced to COMPLEX*16 (i.e. a complex number
3361 composed of 2 doubles. This really should be a smarter routine
3362 that figures out precision inteligently as opposed to assuming
c5aa993b 3363 doubles. FIXME: fmb */
c906108c 3364
f23631e4
AC
3365struct value *
3366value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3367{
f23631e4 3368 struct value *val;
c906108c
SS
3369 struct type *real_type = TYPE_TARGET_TYPE (type);
3370
3371 val = allocate_value (type);
3372 arg1 = value_cast (real_type, arg1);
3373 arg2 = value_cast (real_type, arg2);
3374
3375 memcpy (VALUE_CONTENTS_RAW (val),
3376 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3377 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3378 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3379 return val;
3380}
3381
3382/* Cast a value into the appropriate complex data type. */
3383
f23631e4
AC
3384static struct value *
3385cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3386{
3387 struct type *real_type = TYPE_TARGET_TYPE (type);
3388 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3389 {
3390 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3391 struct value *re_val = allocate_value (val_real_type);
3392 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3393
3394 memcpy (VALUE_CONTENTS_RAW (re_val),
3395 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3396 memcpy (VALUE_CONTENTS_RAW (im_val),
3397 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3398 TYPE_LENGTH (val_real_type));
c906108c
SS
3399
3400 return value_literal_complex (re_val, im_val, type);
3401 }
3402 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3403 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3404 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3405 else
3406 error ("cannot cast non-number to complex");
3407}
3408
3409void
fba45db2 3410_initialize_valops (void)
c906108c
SS
3411{
3412#if 0
3413 add_show_from_set
c5aa993b 3414 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3415 "Set automatic abandonment of expressions upon failure.",
3416 &setlist),
3417 &showlist);
3418#endif
3419
3420 add_show_from_set
c5aa993b 3421 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3422 "Set overload resolution in evaluating C++ functions.",
3423 &setlist),
3424 &showlist);
3425 overload_resolution = 1;
3426
242bfc55
FN
3427 add_show_from_set (
3428 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3429 (char *) &unwind_on_signal_p,
3430"Set unwinding of stack if a signal is received while in a call dummy.\n\
3431The unwindonsignal lets the user determine what gdb should do if a signal\n\
3432is received while in a function called from gdb (call dummy). If set, gdb\n\
3433unwinds the stack and restore the context to what as it was before the call.\n\
3434The default is to stop in the frame where the signal was received.", &setlist),
3435 &showlist);
c906108c 3436}
This page took 0.443748 seconds and 4 git commands to generate.