2003-03-25 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4 2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1e698235 3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
f23631e4 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
fe898f56 36#include "block.h"
c906108c
SS
37
38#include <errno.h>
39#include "gdb_string.h"
4a1970e4 40#include "gdb_assert.h"
c906108c 41
c906108c
SS
42/* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44extern int hp_som_som_object_present;
45
070ad9f0 46extern int overload_debug;
c906108c
SS
47/* Local functions. */
48
ad2f7632
DJ
49static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
c906108c 51
389e51db 52static CORE_ADDR find_function_addr (struct value *, struct type **);
f23631e4 53static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c 54
389e51db 55
f23631e4 56static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 57
f23631e4 58static struct value *search_struct_field (char *, struct value *, int,
a14ed312 59 struct type *, int);
c906108c 60
f23631e4
AC
61static struct value *search_struct_method (char *, struct value **,
62 struct value **,
a14ed312 63 int, int *, struct type *);
c906108c 64
a14ed312 65static int check_field_in (struct type *, const char *);
c906108c 66
a14ed312 67static CORE_ADDR allocate_space_in_inferior (int);
c906108c 68
f23631e4 69static struct value *cast_into_complex (struct type *, struct value *);
c906108c 70
f23631e4 71static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 72 int offset,
a14ed312
KB
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
7a292a7a 76
a14ed312 77void _initialize_valops (void);
c906108c 78
c906108c
SS
79/* Flag for whether we want to abandon failed expression evals by default. */
80
81#if 0
82static int auto_abandon = 0;
83#endif
84
85int overload_resolution = 0;
242bfc55
FN
86
87/* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92int unwind_on_signal_p = 0;
c906108c 93
1e698235
DJ
94/* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115static int coerce_float_to_double;
116\f
389e51db 117
c906108c
SS
118/* Find the address of function name NAME in the inferior. */
119
f23631e4 120struct value *
3bada2a2 121find_function_in_inferior (const char *name)
c906108c
SS
122{
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
c5aa993b 136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
137 if (msymbol != NULL)
138 {
139 struct type *type;
4478b372 140 CORE_ADDR maddr;
c906108c
SS
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
4478b372
JB
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
c906108c
SS
146 }
147 else
148 {
c5aa993b 149 if (!target_has_execution)
c906108c 150 error ("evaluation of this expression requires the target program to be active");
c5aa993b 151 else
c906108c
SS
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155}
156
157/* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
f23631e4 160struct value *
fba45db2 161value_allocate_space_in_inferior (int len)
c906108c 162{
f23631e4 163 struct value *blocklen;
5720643c 164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
c906108c
SS
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
c5aa993b
JM
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
c906108c
SS
174 }
175 return val;
176}
177
178static CORE_ADDR
fba45db2 179allocate_space_in_inferior (int len)
c906108c
SS
180{
181 return value_as_long (value_allocate_space_in_inferior (len));
182}
183
184/* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187/* In C++, casts may change pointer or object representations. */
188
f23631e4
AC
189struct value *
190value_cast (struct type *type, struct value *arg2)
c906108c
SS
191{
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
c5aa993b 198
c906108c
SS
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
c5aa993b 204 COERCE_REF (arg2);
c906108c
SS
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
c5aa993b 215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
c5aa993b 224 warning ("array element type size does not divide object size in cast");
c906108c
SS
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
c5aa993b 263 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
7b83ea04
AC
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
f23631e4 270 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
c5aa993b
JM
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
f23631e4 290 struct value *retvalp;
c5aa993b
JM
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 297 /* force evaluation */
802db21b 298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
2bf1f4a1
JB
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
802db21b 322 return value_from_longest (type, convert_to_boolean ?
716c501e 323 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 324 }
802db21b 325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
634acd5f 328 {
4603e466
DT
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
634acd5f 341 LONGEST longest = value_as_long (arg2);
4603e466 342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 343 {
4603e466
DT
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
c906108c
SS
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
f23631e4 360 struct value *v;
c906108c
SS
361
362 /* Look in the type of the source to see if it contains the
7b83ea04
AC
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
c906108c
SS
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
7b83ea04
AC
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 384 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
385 if (v)
386 {
d174216d
JB
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
c906108c
SS
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
2b127877 398 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
400 return arg2;
401 }
c906108c
SS
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416}
417
418/* Create a value of type TYPE that is zero, and return it. */
419
f23631e4 420struct value *
fba45db2 421value_zero (struct type *type, enum lval_type lv)
c906108c 422{
f23631e4 423 struct value *val = allocate_value (type);
c906108c
SS
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429}
430
070ad9f0 431/* Return a value with type TYPE located at ADDR.
c906108c
SS
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
c906108c
SS
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
f23631e4 443struct value *
fba45db2 444value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 445{
f23631e4 446 struct value *val;
c906108c
SS
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
75af7f68 453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460}
461
462/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
f23631e4 464struct value *
fba45db2 465value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 466{
f23631e4 467 struct value *val;
c906108c
SS
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480}
481
070ad9f0
DB
482/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494int
f23631e4 495value_fetch_lazy (struct value *val)
c906108c
SS
496{
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
c5aa993b 500 struct type *type = VALUE_TYPE (val);
75af7f68 501 if (length)
d4b2399a 502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 503
c906108c
SS
504 VALUE_LAZY (val) = 0;
505 return 0;
506}
507
508
509/* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
f23631e4
AC
512struct value *
513value_assign (struct value *toval, struct value *fromval)
c906108c
SS
514{
515 register struct type *type;
f23631e4 516 struct value *val;
e6cbd02a 517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c 518 int use_buffer = 0;
cb741690 519 struct frame_id old_frame;
c906108c
SS
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
ac9a91a7 538 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
539 {
540 int regno = VALUE_REGNO (toval);
13d01224 541 if (CONVERT_REGISTER_P (regno))
c906108c
SS
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
c906108c 548
cb741690
DJ
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
c906108c
SS
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
c5aa993b
JM
575 CORE_ADDR changed_addr;
576 int changed_len;
c906108c 577
c5aa993b
JM
578 if (VALUE_BITSIZE (toval))
579 {
c906108c
SS
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
c906108c
SS
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
e23792cc 615 target_changed_event ();
c906108c
SS
616 }
617 break;
618
c906108c 619 case lval_reg_frame_relative:
492254e9 620 case lval_register:
c906108c
SS
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
c906108c 625 int amount_copied;
492254e9
AC
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
c906108c
SS
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
492254e9
AC
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
c193f6ac 643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
492254e9
AC
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
c906108c
SS
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
492254e9
AC
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
c906108c 673
492254e9
AC
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
c906108c 676 amount_copied < amount_to_copy;
492254e9 677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c 678 {
492254e9 679 frame_register_read (frame, regno, buffer + amount_copied);
c906108c 680 }
492254e9 681
c906108c
SS
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
492254e9
AC
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
c906108c 689 else if (use_buffer)
492254e9
AC
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
c906108c 693 else
492254e9
AC
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699#ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702#endif
703 }
c906108c 704
492254e9
AC
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
c906108c 707 amount_copied < amount_to_copy;
492254e9 708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c
SS
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
492254e9
AC
713 int realnum;
714
c906108c 715 /* Just find out where to put it. */
492254e9
AC
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
c906108c
SS
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
492254e9
AC
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
c906108c 724 else if (lval == lval_register)
492254e9
AC
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
c906108c
SS
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
e23792cc 733 target_changed_event ();
492254e9 734
c906108c
SS
735 }
736 break;
492254e9
AC
737
738
c906108c
SS
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
cb741690
DJ
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
c906108c
SS
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
2b127877 794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 797
c906108c
SS
798 return val;
799}
800
801/* Extend a value VAL to COUNT repetitions of its type. */
802
f23631e4
AC
803struct value *
804value_repeat (struct value *arg1, int count)
c906108c 805{
f23631e4 806 struct value *val;
c906108c
SS
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822}
823
f23631e4 824struct value *
fba45db2 825value_of_variable (struct symbol *var, struct block *b)
c906108c 826{
f23631e4 827 struct value *val;
c906108c
SS
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
c5aa993b 836 {
c906108c 837 if (BLOCK_FUNCTION (b)
de5ad195 838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
c906108c 839 error ("No frame is currently executing in block %s.",
de5ad195 840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
c906108c
SS
841 else
842 error ("No frame is currently executing in specified block");
c5aa993b 843 }
c906108c
SS
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
de5ad195 848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
c906108c
SS
849
850 return val;
851}
852
853/* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
c5aa993b 874 */
c906108c 875
f23631e4
AC
876struct value *
877value_coerce_array (struct value *arg1)
c906108c
SS
878{
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
4478b372
JB
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
886}
887
888/* Given a value which is a function, return a value which is a pointer
889 to it. */
890
f23631e4
AC
891struct value *
892value_coerce_function (struct value *arg1)
c906108c 893{
f23631e4 894 struct value *retval;
c906108c
SS
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
4478b372
JB
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
c5aa993b 903}
c906108c
SS
904
905/* Return a pointer value for the object for which ARG1 is the contents. */
906
f23631e4
AC
907struct value *
908value_addr (struct value *arg1)
c906108c 909{
f23631e4 910 struct value *arg2;
c906108c
SS
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
c906108c
SS
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
c5aa993b 928 /* Get target memory address */
4478b372
JB
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
933
934 /* This may be a pointer to a base subobject; so remember the
c5aa993b 935 full derived object's type ... */
2b127877 936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941}
942
943/* Given a value of a pointer type, apply the C unary * operator to it. */
944
f23631e4
AC
945struct value *
946value_ind (struct value *arg1)
c906108c
SS
947{
948 struct type *base_type;
f23631e4 949 struct value *arg2;
c906108c
SS
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
c906108c
SS
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
c5aa993b 970 /* Get the real type of the enclosing object */
c906108c
SS
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
1aa20aa8 975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
c906108c
SS
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
2b127877 980 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 989 return 0; /* For lint -- never reached */
c906108c
SS
990}
991\f
992/* Pushing small parts of stack frames. */
993
994/* Push one word (the size of object that a register holds). */
995
996CORE_ADDR
fba45db2 997push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
998{
999 register int len = REGISTER_SIZE;
e6cbd02a 1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017}
1018
1019/* Push LEN bytes with data at BUFFER. */
1020
1021CORE_ADDR
fba45db2 1022push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1023{
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038}
1039
2df3850c
JM
1040#ifndef PARM_BOUNDARY
1041#define PARM_BOUNDARY (0)
1042#endif
1043
1044/* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
c906108c 1046
c906108c 1047static CORE_ADDR
f23631e4 1048value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1049{
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1051 register int container_len = len;
2df3850c
JM
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
d7449b42 1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1061 offset = container_len - len;
1062 else
1063 offset = 0;
c906108c
SS
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
2df3850c
JM
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1070 }
1071 else
1072 {
1073 /* stack grows upward */
2df3850c
JM
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
c906108c
SS
1076 }
1077
1078 return sp;
1079}
1080
392a587b 1081CORE_ADDR
f23631e4 1082default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1083 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1084{
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090}
1091
c906108c
SS
1092/* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
f23631e4 1098static struct value *
290b2c7a
MK
1099value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
c906108c
SS
1101{
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
290b2c7a 1104 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
491b8946
DJ
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
c906108c
SS
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1e698235 1134 if (!is_prototyped && coerce_float_to_double)
c906108c
SS
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
a3162708
EZ
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
c906108c 1149 if (current_language->c_style_arrays)
a3162708
EZ
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171}
1172
070ad9f0 1173/* Determine a function's address and its return type from its value.
c906108c
SS
1174 Calls error() if the function is not valid for calling. */
1175
389e51db 1176static CORE_ADDR
f23631e4 1177find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1178{
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1aa20aa8 1195 funaddr = value_as_address (function);
c906108c
SS
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
c906108c 1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
7b83ea04 1209 Their values are characters since their addresses are char */
c906108c 1210 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1211 funaddr = value_as_address (value_addr (function));
c906108c
SS
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223}
1224
1225/* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234/* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
f23631e4
AC
1243static struct value *
1244hand_function_call (struct value *function, int nargs, struct value **args)
c906108c
SS
1245{
1246 register CORE_ADDR sp;
1247 register int i;
da59e081 1248 int rc;
c906108c
SS
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1253 bigger than REGISTER_SIZE.
c906108c
SS
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
7a292a7a
SS
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1262 target byte order. */
c906108c 1263
7a292a7a
SS
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
c906108c
SS
1267 CORE_ADDR old_sp;
1268 struct type *value_type;
1269 unsigned char struct_return;
1270 CORE_ADDR struct_addr = 0;
36160dc4 1271 struct regcache *retbuf;
26e6c56a 1272 struct cleanup *retbuf_cleanup;
7a292a7a 1273 struct inferior_status *inf_status;
26e6c56a 1274 struct cleanup *inf_status_cleanup;
c906108c 1275 CORE_ADDR funaddr;
c5aa993b 1276 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1277 CORE_ADDR real_pc;
1278 struct type *param_type = NULL;
1279 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1280 int n_method_args = 0;
c906108c 1281
7a292a7a
SS
1282 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1283 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1284 dummy1 = alloca (sizeof_dummy1);
1285 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1286
c906108c 1287 if (!target_has_execution)
c5aa993b 1288 noprocess ();
c906108c 1289
26e6c56a
AC
1290 /* Create a cleanup chain that contains the retbuf (buffer
1291 containing the register values). This chain is create BEFORE the
1292 inf_status chain so that the inferior status can cleaned up
1293 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1294 retbuf = regcache_xmalloc (current_gdbarch);
1295 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1296
1297 /* A cleanup for the inferior status. Create this AFTER the retbuf
1298 so that this can be discarded or applied without interfering with
1299 the regbuf. */
7a292a7a 1300 inf_status = save_inferior_status (1);
26e6c56a 1301 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c 1302
f3824013
AC
1303 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1304 {
1305 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
749b82f6 1306 inferior registers (and frame_pop() for restoring them). (At
f3824013
AC
1307 least on most machines) they are saved on the stack in the
1308 inferior. */
1309 DEPRECATED_PUSH_DUMMY_FRAME;
1310 }
1311 else
1312 {
1313 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1314 to extract the generic dummy frame code from the architecture
1315 vector. Hence this direct call.
1316
1317 A follow-on change is to modify this interface so that it takes
1318 thread OR frame OR tpid as a parameter, and returns a dummy
1319 frame handle. The handle can then be used further down as a
1320 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1321 everything is ment to be using generic dummy frames, why not
1322 even use some of the dummy frame code to here - do a regcache
1323 dup and then pass the duped regcache, along with all the other
1324 stuff, at one single point.
1325
1326 In fact, you can even save the structure's return address in the
1327 dummy frame and fix one of those nasty lost struct return edge
1328 conditions. */
1329 generic_push_dummy_frame ();
1330 }
c906108c 1331
dc604539
AC
1332 old_sp = read_sp ();
1333
1334 /* Ensure that the initial SP is correctly aligned. */
1335 if (gdbarch_frame_align_p (current_gdbarch))
1336 {
1337 /* NOTE: cagney/2002-09-18:
1338
1339 On a RISC architecture, a void parameterless generic dummy
1340 frame (i.e., no parameters, no result) typically does not
1341 need to push anything the stack and hence can leave SP and
1342 FP. Similarly, a framelss (possibly leaf) function does not
1343 push anything on the stack and, hence, that too can leave FP
1344 and SP unchanged. As a consequence, a sequence of void
1345 parameterless generic dummy frame calls to frameless
1346 functions will create a sequence of effectively identical
1347 frames (SP, FP and TOS and PC the same). This, not
1348 suprisingly, results in what appears to be a stack in an
1349 infinite loop --- when GDB tries to find a generic dummy
1350 frame on the internal dummy frame stack, it will always find
1351 the first one.
1352
1353 To avoid this problem, the code below always grows the stack.
1354 That way, two dummy frames can never be identical. It does
1355 burn a few bytes of stack but that is a small price to pay
1356 :-). */
1357 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1358 if (sp == old_sp)
1359 {
1360 if (INNER_THAN (1, 2))
1361 /* Stack grows down. */
1362 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1363 else
1364 /* Stack grows up. */
1365 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1366 }
1367 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1368 || (INNER_THAN (2, 1) && sp >= old_sp));
1369 }
1370 else
1371 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1372 aligned the SP is! Further, per comment above, if the generic
1373 dummy frame ends up empty (because nothing is pushed) GDB won't
1374 be able to correctly perform back traces. If a target is
1375 having trouble with backtraces, first thing to do is add
1376 FRAME_ALIGN() to its architecture vector. After that, try
618ce49f
AC
1377 adding SAVE_DUMMY_FRAME_TOS() and modifying
1378 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1379 generic dummy, it returns the current frame's base. */
dc604539 1380 sp = old_sp;
c906108c
SS
1381
1382 if (INNER_THAN (1, 2))
1383 {
1384 /* Stack grows down */
7a292a7a 1385 sp -= sizeof_dummy1;
c906108c
SS
1386 start_sp = sp;
1387 }
1388 else
1389 {
1390 /* Stack grows up */
1391 start_sp = sp;
7a292a7a 1392 sp += sizeof_dummy1;
c906108c
SS
1393 }
1394
dc604539
AC
1395 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1396 after allocating space for the call dummy. A target can specify
1397 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1398 alignment requirements are met. */
1399
c906108c
SS
1400 funaddr = find_function_addr (function, &value_type);
1401 CHECK_TYPEDEF (value_type);
1402
1403 {
1404 struct block *b = block_for_pc (funaddr);
1405 /* If compiled without -g, assume GCC 2. */
1406 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1407 }
1408
1409 /* Are we returning a value using a structure return or a normal
1410 value return? */
1411
1412 struct_return = using_struct_return (function, funaddr, value_type,
1413 using_gcc);
1414
1415 /* Create a call sequence customized for this function
1416 and the number of arguments for it. */
7a292a7a 1417 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1418 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1419 REGISTER_SIZE,
c5aa993b 1420 (ULONGEST) dummy[i]);
c906108c
SS
1421
1422#ifdef GDB_TARGET_IS_HPPA
1423 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1424 value_type, using_gcc);
1425#else
1426 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1427 value_type, using_gcc);
1428 real_pc = start_sp;
1429#endif
1430
7a292a7a
SS
1431 if (CALL_DUMMY_LOCATION == ON_STACK)
1432 {
c5aa993b 1433 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
07555a72 1434 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a 1435 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
7a292a7a 1436 }
c906108c 1437
7a292a7a
SS
1438 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1439 {
1440 real_pc = funaddr;
07555a72 1441 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a
AC
1442 /* NOTE: cagney/2002-04-13: The entry point is going to be
1443 modified with a single breakpoint. */
1444 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1445 CALL_DUMMY_ADDRESS () + 1);
7a292a7a 1446 }
c906108c
SS
1447
1448#ifdef lint
c5aa993b 1449 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1450#endif
1451
ad2f7632 1452 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1453 error ("too few arguments in function call");
1454
1455 for (i = nargs - 1; i >= 0; i--)
1456 {
ad2f7632 1457 int prototyped;
76b2e19d 1458
ad2f7632
DJ
1459 /* FIXME drow/2002-05-31: Should just always mark methods as
1460 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1461 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1462 prototyped = 1;
1463 else
1464 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1465
ad2f7632
DJ
1466 if (i < TYPE_NFIELDS (ftype))
1467 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1468 prototyped);
c5aa993b 1469 else
ad2f7632 1470 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1471
070ad9f0
DB
1472 /*elz: this code is to handle the case in which the function to be called
1473 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1474 is the address of a function and not a pointer to function variable.
1475 In aCC compiled code, the calls through pointers to functions (in the body
1476 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1477 requires some registers setting, this is taken care of if we call
1478 via a function pointer variable, but not via a function address.
7b83ea04 1479 In cc this is not a problem. */
c906108c
SS
1480
1481 if (using_gcc == 0)
ad2f7632 1482 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1483 /* if this parameter is a pointer to function */
c906108c 1484 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1485 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1486 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1487 to compile the target. We want to issue the error
070ad9f0
DB
1488 message only if the compiler used was HP's aCC.
1489 If we used HP's cc, then there is no problem and no need
7b83ea04 1490 to return at this point */
c5aa993b 1491 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1492 /* go see if the actual parameter is a variable of type
c5aa993b 1493 pointer to function or just a function */
c906108c
SS
1494 if (args[i]->lval == not_lval)
1495 {
1496 char *arg_name;
c5aa993b
JM
1497 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1498 error ("\
c906108c
SS
1499You cannot use function <%s> as argument. \n\
1500You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1501 }
c906108c
SS
1502 }
1503
d03e67c9
AC
1504 if (REG_STRUCT_HAS_ADDR_P ())
1505 {
1506 /* This is a machine like the sparc, where we may need to pass a
1507 pointer to the structure, not the structure itself. */
1508 for (i = nargs - 1; i >= 0; i--)
1509 {
1510 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1511 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1512 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1513 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1514 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1515 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1516 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1517 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1518 && TYPE_LENGTH (arg_type) > 8)
1519 )
1520 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1521 {
1522 CORE_ADDR addr;
1523 int len; /* = TYPE_LENGTH (arg_type); */
1524 int aligned_len;
1525 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1526 len = TYPE_LENGTH (arg_type);
1527
1528 if (STACK_ALIGN_P ())
1529 /* MVS 11/22/96: I think at least some of this
1530 stack_align code is really broken. Better to let
1531 PUSH_ARGUMENTS adjust the stack in a target-defined
1532 manner. */
1533 aligned_len = STACK_ALIGN (len);
1534 else
1535 aligned_len = len;
1536 if (INNER_THAN (1, 2))
1537 {
1538 /* stack grows downward */
1539 sp -= aligned_len;
0b3f98d3
AC
1540 /* ... so the address of the thing we push is the
1541 stack pointer after we push it. */
1542 addr = sp;
d03e67c9
AC
1543 }
1544 else
1545 {
1546 /* The stack grows up, so the address of the thing
1547 we push is the stack pointer before we push it. */
1548 addr = sp;
d03e67c9
AC
1549 sp += aligned_len;
1550 }
0b3f98d3
AC
1551 /* Push the structure. */
1552 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1553 /* The value we're going to pass is the address of the
1554 thing we just pushed. */
1555 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1556 (LONGEST) addr); */
1557 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1558 addr);
1559 }
1560 }
1561 }
1562
c906108c
SS
1563
1564 /* Reserve space for the return structure to be written on the
dc604539
AC
1565 stack, if necessary. Make certain that the value is correctly
1566 aligned. */
c906108c
SS
1567
1568 if (struct_return)
1569 {
1570 int len = TYPE_LENGTH (value_type);
2ada493a
AC
1571 if (STACK_ALIGN_P ())
1572 /* MVS 11/22/96: I think at least some of this stack_align
1573 code is really broken. Better to let PUSH_ARGUMENTS adjust
1574 the stack in a target-defined manner. */
1575 len = STACK_ALIGN (len);
c906108c
SS
1576 if (INNER_THAN (1, 2))
1577 {
dc604539
AC
1578 /* Stack grows downward. Align STRUCT_ADDR and SP after
1579 making space for the return value. */
c906108c 1580 sp -= len;
dc604539
AC
1581 if (gdbarch_frame_align_p (current_gdbarch))
1582 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1583 struct_addr = sp;
1584 }
1585 else
1586 {
dc604539
AC
1587 /* Stack grows upward. Align the frame, allocate space, and
1588 then again, re-align the frame??? */
1589 if (gdbarch_frame_align_p (current_gdbarch))
1590 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1591 struct_addr = sp;
1592 sp += len;
dc604539
AC
1593 if (gdbarch_frame_align_p (current_gdbarch))
1594 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1595 }
1596 }
1597
0a49d05e
AC
1598 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1599 on other architectures. This is because all the alignment is
1600 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1601 in hppa_push_arguments */
1602 if (EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1603 {
0a49d05e
AC
1604 /* MVS 11/22/96: I think at least some of this stack_align code
1605 is really broken. Better to let PUSH_ARGUMENTS adjust the
1606 stack in a target-defined manner. */
1607 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1608 {
1609 /* If stack grows down, we must leave a hole at the top. */
1610 int len = 0;
1611
1612 for (i = nargs - 1; i >= 0; i--)
1613 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1bf6d5cc
AC
1614 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1615 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
0a49d05e
AC
1616 sp -= STACK_ALIGN (len) - len;
1617 }
c906108c 1618 }
c906108c 1619
392a587b 1620 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c 1621
69a0d5f4
AC
1622 if (PUSH_RETURN_ADDRESS_P ())
1623 /* for targets that use no CALL_DUMMY */
1624 /* There are a number of targets now which actually don't write
1625 any CALL_DUMMY instructions into the target, but instead just
1626 save the machine state, push the arguments, and jump directly
1627 to the callee function. Since this doesn't actually involve
1628 executing a JSR/BSR instruction, the return address must be set
1629 up by hand, either by pushing onto the stack or copying into a
1630 return-address register as appropriate. Formerly this has been
1631 done in PUSH_ARGUMENTS, but that's overloading its
1632 functionality a bit, so I'm making it explicit to do it here. */
1633 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1634
2ada493a 1635 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1636 {
1637 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1638 that sp already has been advanced for the arguments! */
1bf6d5cc
AC
1639 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1640 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1641 sp = STACK_ALIGN (sp);
1642 }
c906108c
SS
1643
1644/* XXX This seems wrong. For stacks that grow down we shouldn't do
1645 anything here! */
1646 /* MVS 11/22/96: I think at least some of this stack_align code is
1647 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1648 a target-defined manner. */
1bf6d5cc 1649 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
7a292a7a
SS
1650 if (INNER_THAN (1, 2))
1651 {
1652 /* stack grows downward */
1bf6d5cc 1653 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
7a292a7a 1654 }
c906108c
SS
1655
1656 /* Store the address at which the structure is supposed to be
1657 written. Note that this (and the code which reserved the space
1658 above) assumes that gcc was used to compile this function. Since
1659 it doesn't cost us anything but space and if the function is pcc
1660 it will ignore this value, we will make that assumption.
1661
070ad9f0 1662 Also note that on some machines (like the sparc) pcc uses a
c906108c
SS
1663 convention like gcc's. */
1664
1665 if (struct_return)
1666 STORE_STRUCT_RETURN (struct_addr, sp);
1667
1668 /* Write the stack pointer. This is here because the statements above
1669 might fool with it. On SPARC, this write also stores the register
1670 window into the right place in the new stack frame, which otherwise
1671 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1672 write_sp (sp);
1673
d1e3cf49
AC
1674 if (SAVE_DUMMY_FRAME_TOS_P ())
1675 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1676
c906108c 1677 {
c906108c
SS
1678 char *name;
1679 struct symbol *symbol;
1680
1681 name = NULL;
1682 symbol = find_pc_function (funaddr);
1683 if (symbol)
1684 {
de5ad195 1685 name = SYMBOL_PRINT_NAME (symbol);
c906108c
SS
1686 }
1687 else
1688 {
1689 /* Try the minimal symbols. */
1690 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1691
1692 if (msymbol)
1693 {
de5ad195 1694 name = SYMBOL_PRINT_NAME (msymbol);
c906108c
SS
1695 }
1696 }
1697 if (name == NULL)
1698 {
1699 char format[80];
1700 sprintf (format, "at %s", local_hex_format ());
1701 name = alloca (80);
1702 /* FIXME-32x64: assumes funaddr fits in a long. */
1703 sprintf (name, format, (unsigned long) funaddr);
1704 }
1705
1706 /* Execute the stack dummy routine, calling FUNCTION.
1707 When it is done, discard the empty frame
1708 after storing the contents of all regs into retbuf. */
da59e081
JM
1709 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1710
1711 if (rc == 1)
1712 {
1713 /* We stopped inside the FUNCTION because of a random signal.
1714 Further execution of the FUNCTION is not allowed. */
1715
7b83ea04 1716 if (unwind_on_signal_p)
242bfc55
FN
1717 {
1718 /* The user wants the context restored. */
da59e081 1719
dbe9fe58
AC
1720 /* We must get back to the frame we were before the dummy
1721 call. */
1722 frame_pop (get_current_frame ());
242bfc55
FN
1723
1724 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1725 a C++ name with arguments and stuff. */
1726 error ("\
1727The program being debugged was signaled while in a function called from GDB.\n\
1728GDB has restored the context to what it was before the call.\n\
1729To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1730Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1731 name);
1732 }
1733 else
1734 {
1735 /* The user wants to stay in the frame where we stopped (default).*/
1736
26e6c56a
AC
1737 /* If we restored the inferior status (via the cleanup),
1738 we would print a spurious error message (Unable to
1739 restore previously selected frame), would write the
1740 registers from the inf_status (which is wrong), and
1741 would do other wrong things. */
1742 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1743 discard_inferior_status (inf_status);
1744
1745 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1746 a C++ name with arguments and stuff. */
1747 error ("\
1748The program being debugged was signaled while in a function called from GDB.\n\
1749GDB remains in the frame where the signal was received.\n\
1750To change this behavior use \"set unwindonsignal on\"\n\
1751Evaluation of the expression containing the function (%s) will be abandoned.",
1752 name);
1753 }
da59e081
JM
1754 }
1755
1756 if (rc == 2)
c906108c 1757 {
da59e081 1758 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1759
26e6c56a
AC
1760 /* If we restored the inferior status (via the cleanup), we
1761 would print a spurious error message (Unable to restore
1762 previously selected frame), would write the registers from
1763 the inf_status (which is wrong), and would do other wrong
1764 things. */
1765 discard_cleanups (inf_status_cleanup);
7a292a7a 1766 discard_inferior_status (inf_status);
c906108c
SS
1767
1768 /* The following error message used to say "The expression
1769 which contained the function call has been discarded." It
1770 is a hard concept to explain in a few words. Ideally, GDB
1771 would be able to resume evaluation of the expression when
1772 the function finally is done executing. Perhaps someday
1773 this will be implemented (it would not be easy). */
1774
1775 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1776 a C++ name with arguments and stuff. */
1777 error ("\
1778The program being debugged stopped while in a function called from GDB.\n\
1779When the function (%s) is done executing, GDB will silently\n\
1780stop (instead of continuing to evaluate the expression containing\n\
1781the function call).", name);
1782 }
1783
da59e081 1784 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1785
1786 /* Restore the inferior status, via its cleanup. At this stage,
1787 leave the RETBUF alone. */
1788 do_cleanups (inf_status_cleanup);
c906108c
SS
1789
1790 /* Figure out the value returned by the function. */
dc604539
AC
1791 /* elz: I defined this new macro for the hppa architecture only.
1792 this gives us a way to get the value returned by the function
1793 from the stack, at the same address we told the function to put
1794 it. We cannot assume on the pa that r28 still contains the
1795 address of the returned structure. Usually this will be
1796 overwritten by the callee. I don't know about other
1797 architectures, so I defined this macro */
c906108c
SS
1798#ifdef VALUE_RETURNED_FROM_STACK
1799 if (struct_return)
26e6c56a
AC
1800 {
1801 do_cleanups (retbuf_cleanup);
1802 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1803 }
c906108c 1804#endif
dc604539
AC
1805 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1806 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1807 fetch the return value direct from the stack. This lack of
1808 trust comes about because legacy targets have a nasty habit of
1809 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1810 For such targets, just hope that value_being_returned() can
1811 find the adjusted value. */
1812 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1813 {
1814 struct value *retval = value_at (value_type, struct_addr, NULL);
1815 do_cleanups (retbuf_cleanup);
1816 return retval;
1817 }
1818 else
1819 {
1820 struct value *retval = value_being_returned (value_type, retbuf,
1821 struct_return);
1822 do_cleanups (retbuf_cleanup);
1823 return retval;
1824 }
c906108c
SS
1825 }
1826}
7a292a7a 1827
f23631e4
AC
1828struct value *
1829call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c 1830{
7a292a7a
SS
1831 if (CALL_DUMMY_P)
1832 {
1833 return hand_function_call (function, nargs, args);
1834 }
1835 else
1836 {
1837 error ("Cannot invoke functions on this machine.");
1838 }
c906108c 1839}
c5aa993b 1840\f
7a292a7a 1841
c906108c 1842
c906108c
SS
1843/* Create a value for an array by allocating space in the inferior, copying
1844 the data into that space, and then setting up an array value.
1845
1846 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1847 populated from the values passed in ELEMVEC.
1848
1849 The element type of the array is inherited from the type of the
1850 first element, and all elements must have the same size (though we
1851 don't currently enforce any restriction on their types). */
1852
f23631e4
AC
1853struct value *
1854value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1855{
1856 int nelem;
1857 int idx;
1858 unsigned int typelength;
f23631e4 1859 struct value *val;
c906108c
SS
1860 struct type *rangetype;
1861 struct type *arraytype;
1862 CORE_ADDR addr;
1863
1864 /* Validate that the bounds are reasonable and that each of the elements
1865 have the same size. */
1866
1867 nelem = highbound - lowbound + 1;
1868 if (nelem <= 0)
1869 {
1870 error ("bad array bounds (%d, %d)", lowbound, highbound);
1871 }
1872 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1873 for (idx = 1; idx < nelem; idx++)
1874 {
1875 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1876 {
1877 error ("array elements must all be the same size");
1878 }
1879 }
1880
1881 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1882 lowbound, highbound);
c5aa993b
JM
1883 arraytype = create_array_type ((struct type *) NULL,
1884 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1885
1886 if (!current_language->c_style_arrays)
1887 {
1888 val = allocate_value (arraytype);
1889 for (idx = 0; idx < nelem; idx++)
1890 {
1891 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1892 VALUE_CONTENTS_ALL (elemvec[idx]),
1893 typelength);
1894 }
1895 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1896 return val;
1897 }
1898
1899 /* Allocate space to store the array in the inferior, and then initialize
1900 it by copying in each element. FIXME: Is it worth it to create a
1901 local buffer in which to collect each value and then write all the
1902 bytes in one operation? */
1903
1904 addr = allocate_space_in_inferior (nelem * typelength);
1905 for (idx = 0; idx < nelem; idx++)
1906 {
1907 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1908 typelength);
1909 }
1910
1911 /* Create the array type and set up an array value to be evaluated lazily. */
1912
1913 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1914 return (val);
1915}
1916
1917/* Create a value for a string constant by allocating space in the inferior,
1918 copying the data into that space, and returning the address with type
1919 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1920 of characters.
1921 Note that string types are like array of char types with a lower bound of
1922 zero and an upper bound of LEN - 1. Also note that the string may contain
1923 embedded null bytes. */
1924
f23631e4 1925struct value *
fba45db2 1926value_string (char *ptr, int len)
c906108c 1927{
f23631e4 1928 struct value *val;
c906108c
SS
1929 int lowbound = current_language->string_lower_bound;
1930 struct type *rangetype = create_range_type ((struct type *) NULL,
1931 builtin_type_int,
1932 lowbound, len + lowbound - 1);
1933 struct type *stringtype
c5aa993b 1934 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1935 CORE_ADDR addr;
1936
1937 if (current_language->c_style_arrays == 0)
1938 {
1939 val = allocate_value (stringtype);
1940 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1941 return val;
1942 }
1943
1944
1945 /* Allocate space to store the string in the inferior, and then
1946 copy LEN bytes from PTR in gdb to that address in the inferior. */
1947
1948 addr = allocate_space_in_inferior (len);
1949 write_memory (addr, ptr, len);
1950
1951 val = value_at_lazy (stringtype, addr, NULL);
1952 return (val);
1953}
1954
f23631e4 1955struct value *
fba45db2 1956value_bitstring (char *ptr, int len)
c906108c 1957{
f23631e4 1958 struct value *val;
c906108c
SS
1959 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1960 0, len - 1);
c5aa993b 1961 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1962 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1963 val = allocate_value (type);
1964 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1965 return val;
1966}
1967\f
1968/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1969 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1970 vector. If some arguments need coercion of some sort, then the coerced
1971 values are written into T2. Return value is 0 if the arguments could be
1972 matched, or the position at which they differ if not.
c906108c
SS
1973
1974 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1975 static member function. T2 will still include the ``this'' pointer,
1976 but it will be skipped.
c906108c
SS
1977
1978 For non-static member functions, we ignore the first argument,
1979 which is the type of the instance variable. This is because we want
1980 to handle calls with objects from derived classes. This is not
1981 entirely correct: we should actually check to make sure that a
1982 requested operation is type secure, shouldn't we? FIXME. */
1983
1984static int
ad2f7632
DJ
1985typecmp (int staticp, int varargs, int nargs,
1986 struct field t1[], struct value *t2[])
c906108c
SS
1987{
1988 int i;
1989
1990 if (t2 == 0)
ad2f7632
DJ
1991 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1992
4a1970e4
DJ
1993 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1994 if (staticp)
ad2f7632
DJ
1995 t2 ++;
1996
1997 for (i = 0;
1998 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1999 i++)
c906108c 2000 {
c5aa993b 2001 struct type *tt1, *tt2;
ad2f7632 2002
c5aa993b
JM
2003 if (!t2[i])
2004 return i + 1;
ad2f7632
DJ
2005
2006 tt1 = check_typedef (t1[i].type);
c5aa993b 2007 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 2008
c906108c 2009 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2010 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2011 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2012 {
2013 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2014 t2[i] = value_coerce_array (t2[i]);
2015 else
2016 t2[i] = value_addr (t2[i]);
2017 continue;
2018 }
2019
802db21b
DB
2020 /* djb - 20000715 - Until the new type structure is in the
2021 place, and we can attempt things like implicit conversions,
2022 we need to do this so you can take something like a map<const
2023 char *>, and properly access map["hello"], because the
2024 argument to [] will be a reference to a pointer to a char,
7168a814 2025 and the argument will be a pointer to a char. */
802db21b
DB
2026 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2027 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2028 {
2029 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2030 }
2031 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2032 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2033 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 2034 {
802db21b 2035 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 2036 }
c5aa993b
JM
2037 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2038 continue;
c906108c
SS
2039 /* Array to pointer is a `trivial conversion' according to the ARM. */
2040
2041 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2042 of the ARM), but as a quick kludge, just check for the same type
2043 code. */
ad2f7632 2044 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2045 return i + 1;
c906108c 2046 }
ad2f7632 2047 if (varargs || t2[i] == NULL)
c5aa993b 2048 return 0;
ad2f7632 2049 return i + 1;
c906108c
SS
2050}
2051
2052/* Helper function used by value_struct_elt to recurse through baseclasses.
2053 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2054 and search in it assuming it has (class) type TYPE.
2055 If found, return value, else return NULL.
2056
2057 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2058 look for a baseclass named NAME. */
2059
f23631e4
AC
2060static struct value *
2061search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2062 register struct type *type, int looking_for_baseclass)
c906108c
SS
2063{
2064 int i;
2065 int nbases = TYPE_N_BASECLASSES (type);
2066
2067 CHECK_TYPEDEF (type);
2068
c5aa993b 2069 if (!looking_for_baseclass)
c906108c
SS
2070 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2071 {
2072 char *t_field_name = TYPE_FIELD_NAME (type, i);
2073
db577aea 2074 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2075 {
f23631e4 2076 struct value *v;
c906108c 2077 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2078 {
2079 v = value_static_field (type, i);
2080 if (v == 0)
2081 error ("field %s is nonexistent or has been optimised out",
2082 name);
2083 }
c906108c 2084 else
2c2738a0
DC
2085 {
2086 v = value_primitive_field (arg1, offset, i, type);
2087 if (v == 0)
2088 error ("there is no field named %s", name);
2089 }
c906108c
SS
2090 return v;
2091 }
2092
2093 if (t_field_name
2094 && (t_field_name[0] == '\0'
2095 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2096 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2097 {
2098 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2099 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2100 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2101 {
2102 /* Look for a match through the fields of an anonymous union,
2103 or anonymous struct. C++ provides anonymous unions.
2104
1b831c93
AC
2105 In the GNU Chill (now deleted from GDB)
2106 implementation of variant record types, each
2107 <alternative field> has an (anonymous) union type,
2108 each member of the union represents a <variant
2109 alternative>. Each <variant alternative> is
2110 represented as a struct, with a member for each
2111 <variant field>. */
c5aa993b 2112
f23631e4 2113 struct value *v;
c906108c
SS
2114 int new_offset = offset;
2115
db034ac5
AC
2116 /* This is pretty gross. In G++, the offset in an
2117 anonymous union is relative to the beginning of the
1b831c93
AC
2118 enclosing struct. In the GNU Chill (now deleted
2119 from GDB) implementation of variant records, the
2120 bitpos is zero in an anonymous union field, so we
2121 have to add the offset of the union here. */
c906108c
SS
2122 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2123 || (TYPE_NFIELDS (field_type) > 0
2124 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2125 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2126
2127 v = search_struct_field (name, arg1, new_offset, field_type,
2128 looking_for_baseclass);
2129 if (v)
2130 return v;
2131 }
2132 }
2133 }
2134
c5aa993b 2135 for (i = 0; i < nbases; i++)
c906108c 2136 {
f23631e4 2137 struct value *v;
c906108c
SS
2138 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2139 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2140 hit them. But it could happen that the base part's member name
2141 is not yet filled in. */
c906108c
SS
2142 int found_baseclass = (looking_for_baseclass
2143 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2144 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2145
2146 if (BASETYPE_VIA_VIRTUAL (type, i))
2147 {
2148 int boffset;
f23631e4 2149 struct value *v2 = allocate_value (basetype);
c906108c
SS
2150
2151 boffset = baseclass_offset (type, i,
2152 VALUE_CONTENTS (arg1) + offset,
2153 VALUE_ADDRESS (arg1)
c5aa993b 2154 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2155 if (boffset == -1)
2156 error ("virtual baseclass botch");
2157
2158 /* The virtual base class pointer might have been clobbered by the
2159 user program. Make sure that it still points to a valid memory
2160 location. */
2161
2162 boffset += offset;
2163 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2164 {
2165 CORE_ADDR base_addr;
c5aa993b 2166
c906108c
SS
2167 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2168 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2169 TYPE_LENGTH (basetype)) != 0)
2170 error ("virtual baseclass botch");
2171 VALUE_LVAL (v2) = lval_memory;
2172 VALUE_ADDRESS (v2) = base_addr;
2173 }
2174 else
2175 {
2176 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2177 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2178 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2179 if (VALUE_LAZY (arg1))
2180 VALUE_LAZY (v2) = 1;
2181 else
2182 memcpy (VALUE_CONTENTS_RAW (v2),
2183 VALUE_CONTENTS_RAW (arg1) + boffset,
2184 TYPE_LENGTH (basetype));
2185 }
2186
2187 if (found_baseclass)
2188 return v2;
2189 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2190 looking_for_baseclass);
2191 }
2192 else if (found_baseclass)
2193 v = value_primitive_field (arg1, offset, i, type);
2194 else
2195 v = search_struct_field (name, arg1,
c5aa993b 2196 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2197 basetype, looking_for_baseclass);
c5aa993b
JM
2198 if (v)
2199 return v;
c906108c
SS
2200 }
2201 return NULL;
2202}
2203
2204
2205/* Return the offset (in bytes) of the virtual base of type BASETYPE
2206 * in an object pointed to by VALADDR (on the host), assumed to be of
2207 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2208 * looking (in case VALADDR is the contents of an enclosing object).
2209 *
2210 * This routine recurses on the primary base of the derived class because
2211 * the virtual base entries of the primary base appear before the other
2212 * virtual base entries.
2213 *
2214 * If the virtual base is not found, a negative integer is returned.
2215 * The magnitude of the negative integer is the number of entries in
2216 * the virtual table to skip over (entries corresponding to various
2217 * ancestral classes in the chain of primary bases).
2218 *
2219 * Important: This assumes the HP / Taligent C++ runtime
2220 * conventions. Use baseclass_offset() instead to deal with g++
2221 * conventions. */
2222
2223void
fba45db2
KB
2224find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2225 int offset, int *boffset_p, int *skip_p)
c906108c 2226{
c5aa993b
JM
2227 int boffset; /* offset of virtual base */
2228 int index; /* displacement to use in virtual table */
c906108c 2229 int skip;
c5aa993b 2230
f23631e4 2231 struct value *vp;
c5aa993b
JM
2232 CORE_ADDR vtbl; /* the virtual table pointer */
2233 struct type *pbc; /* the primary base class */
c906108c
SS
2234
2235 /* Look for the virtual base recursively in the primary base, first.
2236 * This is because the derived class object and its primary base
2237 * subobject share the primary virtual table. */
c5aa993b 2238
c906108c 2239 boffset = 0;
c5aa993b 2240 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2241 if (pbc)
2242 {
2243 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2244 if (skip < 0)
c5aa993b
JM
2245 {
2246 *boffset_p = boffset;
2247 *skip_p = -1;
2248 return;
2249 }
c906108c
SS
2250 }
2251 else
2252 skip = 0;
2253
2254
2255 /* Find the index of the virtual base according to HP/Taligent
2256 runtime spec. (Depth-first, left-to-right.) */
2257 index = virtual_base_index_skip_primaries (basetype, type);
2258
c5aa993b
JM
2259 if (index < 0)
2260 {
2261 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2262 *boffset_p = 0;
2263 return;
2264 }
c906108c 2265
c5aa993b 2266 /* pai: FIXME -- 32x64 possible problem */
c906108c 2267 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2268 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2269
c5aa993b 2270 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2271 if (vtbl == 0)
2272 error ("Couldn't find virtual table -- object may not be constructed yet.");
2273
2274
2275 /* Find virtual base's offset -- jump over entries for primary base
2276 * ancestors, then use the index computed above. But also adjust by
2277 * HP_ACC_VBASE_START for the vtable slots before the start of the
2278 * virtual base entries. Offset is negative -- virtual base entries
2279 * appear _before_ the address point of the virtual table. */
c5aa993b 2280
070ad9f0 2281 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2282 & use long type */
c906108c
SS
2283
2284 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2285 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2286 boffset = value_as_long (vp);
2287 *skip_p = -1;
2288 *boffset_p = boffset;
2289 return;
2290}
2291
2292
2293/* Helper function used by value_struct_elt to recurse through baseclasses.
2294 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2295 and search in it assuming it has (class) type TYPE.
2296 If found, return value, else if name matched and args not return (value)-1,
2297 else return NULL. */
2298
f23631e4
AC
2299static struct value *
2300search_struct_method (char *name, struct value **arg1p,
2301 struct value **args, int offset,
fba45db2 2302 int *static_memfuncp, register struct type *type)
c906108c
SS
2303{
2304 int i;
f23631e4 2305 struct value *v;
c906108c
SS
2306 int name_matched = 0;
2307 char dem_opname[64];
2308
2309 CHECK_TYPEDEF (type);
2310 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2311 {
2312 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2313 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2314 if (strncmp (t_field_name, "__", 2) == 0 ||
2315 strncmp (t_field_name, "op", 2) == 0 ||
2316 strncmp (t_field_name, "type", 4) == 0)
c906108c 2317 {
c5aa993b
JM
2318 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2319 t_field_name = dem_opname;
2320 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2321 t_field_name = dem_opname;
c906108c 2322 }
db577aea 2323 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2324 {
2325 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2326 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2327 name_matched = 1;
c906108c 2328
de17c821 2329 check_stub_method_group (type, i);
c906108c
SS
2330 if (j > 0 && args == 0)
2331 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2332 else if (j == 0 && args == 0)
c906108c 2333 {
acf5ed49
DJ
2334 v = value_fn_field (arg1p, f, j, type, offset);
2335 if (v != NULL)
2336 return v;
c906108c 2337 }
acf5ed49
DJ
2338 else
2339 while (j >= 0)
2340 {
acf5ed49 2341 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2342 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2343 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2344 TYPE_FN_FIELD_ARGS (f, j), args))
2345 {
2346 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2347 return value_virtual_fn_field (arg1p, f, j, type, offset);
2348 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2349 *static_memfuncp = 1;
2350 v = value_fn_field (arg1p, f, j, type, offset);
2351 if (v != NULL)
2352 return v;
2353 }
2354 j--;
2355 }
c906108c
SS
2356 }
2357 }
2358
2359 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2360 {
2361 int base_offset;
2362
2363 if (BASETYPE_VIA_VIRTUAL (type, i))
2364 {
c5aa993b
JM
2365 if (TYPE_HAS_VTABLE (type))
2366 {
2367 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2368 according to HP/Taligent runtime spec. */
c5aa993b
JM
2369 int skip;
2370 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2371 VALUE_CONTENTS_ALL (*arg1p),
2372 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2373 &base_offset, &skip);
2374 if (skip >= 0)
2375 error ("Virtual base class offset not found in vtable");
2376 }
2377 else
2378 {
2379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2380 char *base_valaddr;
2381
2382 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2383 user program. Make sure that it still points to a valid memory
2384 location. */
c5aa993b
JM
2385
2386 if (offset < 0 || offset >= TYPE_LENGTH (type))
2387 {
2388 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2389 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2390 + VALUE_OFFSET (*arg1p) + offset,
2391 base_valaddr,
2392 TYPE_LENGTH (baseclass)) != 0)
2393 error ("virtual baseclass botch");
2394 }
2395 else
2396 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2397
2398 base_offset =
2399 baseclass_offset (type, i, base_valaddr,
2400 VALUE_ADDRESS (*arg1p)
2401 + VALUE_OFFSET (*arg1p) + offset);
2402 if (base_offset == -1)
2403 error ("virtual baseclass botch");
2404 }
2405 }
c906108c
SS
2406 else
2407 {
2408 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2409 }
c906108c
SS
2410 v = search_struct_method (name, arg1p, args, base_offset + offset,
2411 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2412 if (v == (struct value *) - 1)
c906108c
SS
2413 {
2414 name_matched = 1;
2415 }
2416 else if (v)
2417 {
2418/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2419/* *arg1p = arg1_tmp; */
c906108c 2420 return v;
c5aa993b 2421 }
c906108c 2422 }
c5aa993b 2423 if (name_matched)
f23631e4 2424 return (struct value *) - 1;
c5aa993b
JM
2425 else
2426 return NULL;
c906108c
SS
2427}
2428
2429/* Given *ARGP, a value of type (pointer to a)* structure/union,
2430 extract the component named NAME from the ultimate target structure/union
2431 and return it as a value with its appropriate type.
2432 ERR is used in the error message if *ARGP's type is wrong.
2433
2434 C++: ARGS is a list of argument types to aid in the selection of
2435 an appropriate method. Also, handle derived types.
2436
2437 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2438 where the truthvalue of whether the function that was resolved was
2439 a static member function or not is stored.
2440
2441 ERR is an error message to be printed in case the field is not found. */
2442
f23631e4
AC
2443struct value *
2444value_struct_elt (struct value **argp, struct value **args,
fba45db2 2445 char *name, int *static_memfuncp, char *err)
c906108c
SS
2446{
2447 register struct type *t;
f23631e4 2448 struct value *v;
c906108c
SS
2449
2450 COERCE_ARRAY (*argp);
2451
2452 t = check_typedef (VALUE_TYPE (*argp));
2453
2454 /* Follow pointers until we get to a non-pointer. */
2455
2456 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2457 {
2458 *argp = value_ind (*argp);
2459 /* Don't coerce fn pointer to fn and then back again! */
2460 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2461 COERCE_ARRAY (*argp);
2462 t = check_typedef (VALUE_TYPE (*argp));
2463 }
2464
2465 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2466 error ("not implemented: member type in value_struct_elt");
2467
c5aa993b 2468 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2469 && TYPE_CODE (t) != TYPE_CODE_UNION)
2470 error ("Attempt to extract a component of a value that is not a %s.", err);
2471
2472 /* Assume it's not, unless we see that it is. */
2473 if (static_memfuncp)
c5aa993b 2474 *static_memfuncp = 0;
c906108c
SS
2475
2476 if (!args)
2477 {
2478 /* if there are no arguments ...do this... */
2479
2480 /* Try as a field first, because if we succeed, there
7b83ea04 2481 is less work to be done. */
c906108c
SS
2482 v = search_struct_field (name, *argp, 0, t, 0);
2483 if (v)
2484 return v;
2485
2486 /* C++: If it was not found as a data field, then try to
7b83ea04 2487 return it as a pointer to a method. */
c906108c
SS
2488
2489 if (destructor_name_p (name, t))
2490 error ("Cannot get value of destructor");
2491
2492 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2493
f23631e4 2494 if (v == (struct value *) - 1)
c906108c
SS
2495 error ("Cannot take address of a method");
2496 else if (v == 0)
2497 {
2498 if (TYPE_NFN_FIELDS (t))
2499 error ("There is no member or method named %s.", name);
2500 else
2501 error ("There is no member named %s.", name);
2502 }
2503 return v;
2504 }
2505
2506 if (destructor_name_p (name, t))
2507 {
2508 if (!args[1])
2509 {
2510 /* Destructors are a special case. */
2511 int m_index, f_index;
2512
2513 v = NULL;
2514 if (get_destructor_fn_field (t, &m_index, &f_index))
2515 {
2516 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2517 f_index, NULL, 0);
2518 }
2519 if (v == NULL)
2520 error ("could not find destructor function named %s.", name);
2521 else
2522 return v;
2523 }
2524 else
2525 {
2526 error ("destructor should not have any argument");
2527 }
2528 }
2529 else
2530 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2531
f23631e4 2532 if (v == (struct value *) - 1)
c906108c 2533 {
7168a814 2534 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2535 }
2536 else if (v == 0)
2537 {
2538 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2539 hand it back. If it's not callable (i.e., a pointer to function),
2540 gdb should give an error. */
c906108c
SS
2541 v = search_struct_field (name, *argp, 0, t, 0);
2542 }
2543
2544 if (!v)
2545 error ("Structure has no component named %s.", name);
2546 return v;
2547}
2548
2549/* Search through the methods of an object (and its bases)
2550 * to find a specified method. Return the pointer to the
2551 * fn_field list of overloaded instances.
2552 * Helper function for value_find_oload_list.
2553 * ARGP is a pointer to a pointer to a value (the object)
2554 * METHOD is a string containing the method name
2555 * OFFSET is the offset within the value
c906108c
SS
2556 * TYPE is the assumed type of the object
2557 * NUM_FNS is the number of overloaded instances
2558 * BASETYPE is set to the actual type of the subobject where the method is found
2559 * BOFFSET is the offset of the base subobject where the method is found */
2560
7a292a7a 2561static struct fn_field *
f23631e4 2562find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2563 struct type *type, int *num_fns,
fba45db2 2564 struct type **basetype, int *boffset)
c906108c
SS
2565{
2566 int i;
c5aa993b 2567 struct fn_field *f;
c906108c
SS
2568 CHECK_TYPEDEF (type);
2569
2570 *num_fns = 0;
2571
c5aa993b
JM
2572 /* First check in object itself */
2573 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2574 {
2575 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2576 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2577 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2578 {
4a1970e4
DJ
2579 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2580 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4a1970e4
DJ
2581
2582 *num_fns = len;
c5aa993b
JM
2583 *basetype = type;
2584 *boffset = offset;
4a1970e4 2585
de17c821
DJ
2586 /* Resolve any stub methods. */
2587 check_stub_method_group (type, i);
4a1970e4
DJ
2588
2589 return f;
c5aa993b
JM
2590 }
2591 }
2592
c906108c
SS
2593 /* Not found in object, check in base subobjects */
2594 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2595 {
2596 int base_offset;
2597 if (BASETYPE_VIA_VIRTUAL (type, i))
2598 {
c5aa993b
JM
2599 if (TYPE_HAS_VTABLE (type))
2600 {
2601 /* HP aCC compiled type, search for virtual base offset
2602 * according to HP/Taligent runtime spec. */
2603 int skip;
2604 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2605 VALUE_CONTENTS_ALL (*argp),
2606 offset + VALUE_EMBEDDED_OFFSET (*argp),
2607 &base_offset, &skip);
2608 if (skip >= 0)
2609 error ("Virtual base class offset not found in vtable");
2610 }
2611 else
2612 {
2613 /* probably g++ runtime model */
2614 base_offset = VALUE_OFFSET (*argp) + offset;
2615 base_offset =
2616 baseclass_offset (type, i,
2617 VALUE_CONTENTS (*argp) + base_offset,
2618 VALUE_ADDRESS (*argp) + base_offset);
2619 if (base_offset == -1)
2620 error ("virtual baseclass botch");
2621 }
2622 }
2623 else
2624 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2625 {
2626 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2627 }
c906108c 2628 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2629 TYPE_BASECLASS (type, i), num_fns, basetype,
2630 boffset);
c906108c 2631 if (f)
c5aa993b 2632 return f;
c906108c 2633 }
c5aa993b 2634 return NULL;
c906108c
SS
2635}
2636
2637/* Return the list of overloaded methods of a specified name.
2638 * ARGP is a pointer to a pointer to a value (the object)
2639 * METHOD is the method name
2640 * OFFSET is the offset within the value contents
c906108c
SS
2641 * NUM_FNS is the number of overloaded instances
2642 * BASETYPE is set to the type of the base subobject that defines the method
2643 * BOFFSET is the offset of the base subobject which defines the method */
2644
2645struct fn_field *
f23631e4 2646value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2647 int *num_fns, struct type **basetype,
2648 int *boffset)
c906108c 2649{
c5aa993b 2650 struct type *t;
c906108c
SS
2651
2652 t = check_typedef (VALUE_TYPE (*argp));
2653
c5aa993b 2654 /* code snarfed from value_struct_elt */
c906108c
SS
2655 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2656 {
2657 *argp = value_ind (*argp);
2658 /* Don't coerce fn pointer to fn and then back again! */
2659 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2660 COERCE_ARRAY (*argp);
2661 t = check_typedef (VALUE_TYPE (*argp));
2662 }
c5aa993b 2663
c906108c
SS
2664 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2665 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2666
2667 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2668 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2669 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2670
4a1970e4 2671 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2672}
2673
2674/* Given an array of argument types (ARGTYPES) (which includes an
2675 entry for "this" in the case of C++ methods), the number of
2676 arguments NARGS, the NAME of a function whether it's a method or
2677 not (METHOD), and the degree of laxness (LAX) in conforming to
2678 overload resolution rules in ANSI C++, find the best function that
2679 matches on the argument types according to the overload resolution
2680 rules.
2681
2682 In the case of class methods, the parameter OBJ is an object value
2683 in which to search for overloaded methods.
2684
2685 In the case of non-method functions, the parameter FSYM is a symbol
2686 corresponding to one of the overloaded functions.
2687
2688 Return value is an integer: 0 -> good match, 10 -> debugger applied
2689 non-standard coercions, 100 -> incompatible.
2690
2691 If a method is being searched for, VALP will hold the value.
2692 If a non-method is being searched for, SYMP will hold the symbol for it.
2693
2694 If a method is being searched for, and it is a static method,
2695 then STATICP will point to a non-zero value.
2696
2697 Note: This function does *not* check the value of
2698 overload_resolution. Caller must check it to see whether overload
2699 resolution is permitted.
c5aa993b 2700 */
c906108c
SS
2701
2702int
fba45db2 2703find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2704 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2705 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2706{
2707 int nparms;
c5aa993b 2708 struct type **parm_types;
c906108c 2709 int champ_nparms = 0;
7f8c9282 2710 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2711
2712 short oload_champ = -1; /* Index of best overloaded function */
2713 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2714 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2715 short oload_ambig_champ = -1; /* 2nd contender for best match */
2716 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2717 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2718
2719 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2720 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2721
f23631e4 2722 struct value *temp = obj;
c5aa993b
JM
2723 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2724 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2725 int num_fns = 0; /* Number of overloaded instances being considered */
2726 struct type *basetype = NULL;
c906108c
SS
2727 int boffset;
2728 register int jj;
2729 register int ix;
4a1970e4 2730 int static_offset;
02f0d45d 2731 struct cleanup *cleanups = NULL;
c906108c 2732
c5aa993b
JM
2733 char *obj_type_name = NULL;
2734 char *func_name = NULL;
c906108c
SS
2735
2736 /* Get the list of overloaded methods or functions */
2737 if (method)
2738 {
2739 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2740 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2741 value rather than the object itself, so try again */
c906108c 2742 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2743 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2744 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2745
2746 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2747 &num_fns,
2748 &basetype, &boffset);
c906108c 2749 if (!fns_ptr || !num_fns)
c5aa993b
JM
2750 error ("Couldn't find method %s%s%s",
2751 obj_type_name,
2752 (obj_type_name && *obj_type_name) ? "::" : "",
2753 name);
4a1970e4
DJ
2754 /* If we are dealing with stub method types, they should have
2755 been resolved by find_method_list via value_find_oload_method_list
2756 above. */
2757 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2758 }
2759 else
2760 {
2761 int i = -1;
22abf04a 2762 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
c906108c 2763
917317f4 2764 /* If the name is NULL this must be a C-style function.
7b83ea04 2765 Just return the same symbol. */
917317f4 2766 if (!func_name)
7b83ea04 2767 {
917317f4 2768 *symp = fsym;
7b83ea04
AC
2769 return 0;
2770 }
917317f4 2771
c906108c 2772 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2773 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2774 while (oload_syms[++i])
c5aa993b 2775 num_fns++;
c906108c 2776 if (!num_fns)
c5aa993b 2777 error ("Couldn't find function %s", func_name);
c906108c 2778 }
c5aa993b 2779
c906108c
SS
2780 oload_champ_bv = NULL;
2781
c5aa993b 2782 /* Consider each candidate in turn */
c906108c
SS
2783 for (ix = 0; ix < num_fns; ix++)
2784 {
4a1970e4 2785 static_offset = 0;
db577aea
AC
2786 if (method)
2787 {
4a1970e4
DJ
2788 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2789 static_offset = 1;
ad2f7632 2790 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2791 }
2792 else
2793 {
2794 /* If it's not a method, this is the proper place */
2795 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2796 }
c906108c 2797
c5aa993b 2798 /* Prepare array of parameter types */
c906108c
SS
2799 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2800 for (jj = 0; jj < nparms; jj++)
db577aea 2801 parm_types[jj] = (method
ad2f7632 2802 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2803 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2804
4a1970e4
DJ
2805 /* Compare parameter types to supplied argument types. Skip THIS for
2806 static methods. */
2807 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2808 nargs - static_offset);
c5aa993b 2809
c906108c 2810 if (!oload_champ_bv)
c5aa993b
JM
2811 {
2812 oload_champ_bv = bv;
2813 oload_champ = 0;
2814 champ_nparms = nparms;
2815 }
c906108c 2816 else
c5aa993b
JM
2817 /* See whether current candidate is better or worse than previous best */
2818 switch (compare_badness (bv, oload_champ_bv))
2819 {
2820 case 0:
2821 oload_ambiguous = 1; /* top two contenders are equally good */
2822 oload_ambig_champ = ix;
2823 break;
2824 case 1:
2825 oload_ambiguous = 2; /* incomparable top contenders */
2826 oload_ambig_champ = ix;
2827 break;
2828 case 2:
2829 oload_champ_bv = bv; /* new champion, record details */
2830 oload_ambiguous = 0;
2831 oload_champ = ix;
2832 oload_ambig_champ = -1;
2833 champ_nparms = nparms;
2834 break;
2835 case 3:
2836 default:
2837 break;
2838 }
b8c9b27d 2839 xfree (parm_types);
6b1ba9a0
ND
2840 if (overload_debug)
2841 {
2842 if (method)
2843 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2844 else
2845 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2846 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2847 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2848 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2849 }
c5aa993b 2850 } /* end loop over all candidates */
db577aea
AC
2851 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2852 if they have the exact same goodness. This is because there is no
2853 way to differentiate based on return type, which we need to in
2854 cases like overloads of .begin() <It's both const and non-const> */
2855#if 0
c906108c
SS
2856 if (oload_ambiguous)
2857 {
2858 if (method)
c5aa993b
JM
2859 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2860 obj_type_name,
2861 (obj_type_name && *obj_type_name) ? "::" : "",
2862 name);
c906108c 2863 else
c5aa993b
JM
2864 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2865 func_name);
c906108c 2866 }
db577aea 2867#endif
c906108c 2868
4a1970e4
DJ
2869 /* Check how bad the best match is. */
2870 static_offset = 0;
2871 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2872 static_offset = 1;
2873 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2874 {
6b1ba9a0
ND
2875 if (oload_champ_bv->rank[ix] >= 100)
2876 oload_incompatible = 1; /* truly mismatched types */
2877
2878 else if (oload_champ_bv->rank[ix] >= 10)
2879 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2880 }
2881 if (oload_incompatible)
2882 {
2883 if (method)
c5aa993b
JM
2884 error ("Cannot resolve method %s%s%s to any overloaded instance",
2885 obj_type_name,
2886 (obj_type_name && *obj_type_name) ? "::" : "",
2887 name);
c906108c 2888 else
c5aa993b
JM
2889 error ("Cannot resolve function %s to any overloaded instance",
2890 func_name);
c906108c
SS
2891 }
2892 else if (oload_non_standard)
2893 {
2894 if (method)
c5aa993b
JM
2895 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2896 obj_type_name,
2897 (obj_type_name && *obj_type_name) ? "::" : "",
2898 name);
c906108c 2899 else
c5aa993b
JM
2900 warning ("Using non-standard conversion to match function %s to supplied arguments",
2901 func_name);
c906108c
SS
2902 }
2903
2904 if (method)
2905 {
4a1970e4
DJ
2906 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2907 *staticp = 1;
2908 else if (staticp)
2909 *staticp = 0;
c906108c 2910 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2911 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2912 else
c5aa993b 2913 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2914 }
2915 else
2916 {
2917 *symp = oload_syms[oload_champ];
b8c9b27d 2918 xfree (func_name);
c906108c
SS
2919 }
2920
7f8c9282
DJ
2921 if (objp)
2922 {
2923 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2924 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2925 {
2926 temp = value_addr (temp);
2927 }
2928 *objp = temp;
2929 }
02f0d45d
DJ
2930 if (cleanups != NULL)
2931 do_cleanups (cleanups);
2932
c906108c
SS
2933 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2934}
2935
2936/* C++: return 1 is NAME is a legitimate name for the destructor
2937 of type TYPE. If TYPE does not have a destructor, or
2938 if NAME is inappropriate for TYPE, an error is signaled. */
2939int
fba45db2 2940destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2941{
2942 /* destructors are a special case. */
2943
2944 if (name[0] == '~')
2945 {
2946 char *dname = type_name_no_tag (type);
2947 char *cp = strchr (dname, '<');
2948 unsigned int len;
2949
2950 /* Do not compare the template part for template classes. */
2951 if (cp == NULL)
2952 len = strlen (dname);
2953 else
2954 len = cp - dname;
2955 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2956 error ("name of destructor must equal name of class");
2957 else
2958 return 1;
2959 }
2960 return 0;
2961}
2962
2963/* Helper function for check_field: Given TYPE, a structure/union,
2964 return 1 if the component named NAME from the ultimate
2965 target structure/union is defined, otherwise, return 0. */
2966
2967static int
fba45db2 2968check_field_in (register struct type *type, const char *name)
c906108c
SS
2969{
2970 register int i;
2971
2972 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2973 {
2974 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2976 return 1;
2977 }
2978
2979 /* C++: If it was not found as a data field, then try to
2980 return it as a pointer to a method. */
2981
2982 /* Destructors are a special case. */
2983 if (destructor_name_p (name, type))
2984 {
2985 int m_index, f_index;
2986
2987 return get_destructor_fn_field (type, &m_index, &f_index);
2988 }
2989
2990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2991 {
db577aea 2992 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
2993 return 1;
2994 }
2995
2996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2997 if (check_field_in (TYPE_BASECLASS (type, i), name))
2998 return 1;
c5aa993b 2999
c906108c
SS
3000 return 0;
3001}
3002
3003
3004/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3005 return 1 if the component named NAME from the ultimate
3006 target structure/union is defined, otherwise, return 0. */
3007
3008int
f23631e4 3009check_field (struct value *arg1, const char *name)
c906108c
SS
3010{
3011 register struct type *t;
3012
3013 COERCE_ARRAY (arg1);
3014
3015 t = VALUE_TYPE (arg1);
3016
3017 /* Follow pointers until we get to a non-pointer. */
3018
3019 for (;;)
3020 {
3021 CHECK_TYPEDEF (t);
3022 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3023 break;
3024 t = TYPE_TARGET_TYPE (t);
3025 }
3026
3027 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3028 error ("not implemented: member type in check_field");
3029
c5aa993b 3030 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3031 && TYPE_CODE (t) != TYPE_CODE_UNION)
3032 error ("Internal error: `this' is not an aggregate");
3033
3034 return check_field_in (t, name);
3035}
3036
3037/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3038 return the address of this member as a "pointer to member"
3039 type. If INTYPE is non-null, then it will be the type
3040 of the member we are looking for. This will help us resolve
3041 "pointers to member functions". This function is used
3042 to resolve user expressions of the form "DOMAIN::NAME". */
3043
f23631e4 3044struct value *
fba45db2
KB
3045value_struct_elt_for_reference (struct type *domain, int offset,
3046 struct type *curtype, char *name,
3047 struct type *intype)
c906108c
SS
3048{
3049 register struct type *t = curtype;
3050 register int i;
f23631e4 3051 struct value *v;
c906108c 3052
c5aa993b 3053 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3054 && TYPE_CODE (t) != TYPE_CODE_UNION)
3055 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3056
3057 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3058 {
3059 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3060
c906108c
SS
3061 if (t_field_name && STREQ (t_field_name, name))
3062 {
3063 if (TYPE_FIELD_STATIC (t, i))
3064 {
3065 v = value_static_field (t, i);
3066 if (v == NULL)
2c2738a0 3067 error ("static field %s has been optimized out",
c906108c
SS
3068 name);
3069 return v;
3070 }
3071 if (TYPE_FIELD_PACKED (t, i))
3072 error ("pointers to bitfield members not allowed");
c5aa993b 3073
c906108c
SS
3074 return value_from_longest
3075 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3076 domain)),
3077 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3078 }
3079 }
3080
3081 /* C++: If it was not found as a data field, then try to
3082 return it as a pointer to a method. */
3083
3084 /* Destructors are a special case. */
3085 if (destructor_name_p (name, t))
3086 {
3087 error ("member pointers to destructors not implemented yet");
3088 }
3089
3090 /* Perform all necessary dereferencing. */
3091 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3092 intype = TYPE_TARGET_TYPE (intype);
3093
3094 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3095 {
3096 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3097 char dem_opname[64];
3098
c5aa993b
JM
3099 if (strncmp (t_field_name, "__", 2) == 0 ||
3100 strncmp (t_field_name, "op", 2) == 0 ||
3101 strncmp (t_field_name, "type", 4) == 0)
c906108c 3102 {
c5aa993b
JM
3103 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3104 t_field_name = dem_opname;
3105 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3106 t_field_name = dem_opname;
c906108c
SS
3107 }
3108 if (t_field_name && STREQ (t_field_name, name))
3109 {
3110 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3111 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3112
de17c821
DJ
3113 check_stub_method_group (t, i);
3114
c906108c
SS
3115 if (intype == 0 && j > 1)
3116 error ("non-unique member `%s' requires type instantiation", name);
3117 if (intype)
3118 {
3119 while (j--)
3120 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3121 break;
3122 if (j < 0)
3123 error ("no member function matches that type instantiation");
3124 }
3125 else
3126 j = 0;
c5aa993b 3127
c906108c
SS
3128 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3129 {
3130 return value_from_longest
3131 (lookup_reference_type
3132 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3133 domain)),
3134 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3135 }
3136 else
3137 {
3138 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3139 0, VAR_NAMESPACE, 0, NULL);
3140 if (s == NULL)
3141 {
3142 v = 0;
3143 }
3144 else
3145 {
3146 v = read_var_value (s, 0);
3147#if 0
3148 VALUE_TYPE (v) = lookup_reference_type
3149 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3150 domain));
3151#endif
3152 }
3153 return v;
3154 }
3155 }
3156 }
3157 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3158 {
f23631e4 3159 struct value *v;
c906108c
SS
3160 int base_offset;
3161
3162 if (BASETYPE_VIA_VIRTUAL (t, i))
3163 base_offset = 0;
3164 else
3165 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3166 v = value_struct_elt_for_reference (domain,
3167 offset + base_offset,
3168 TYPE_BASECLASS (t, i),
3169 name,
3170 intype);
3171 if (v)
3172 return v;
3173 }
3174 return 0;
3175}
3176
3177
c906108c
SS
3178/* Given a pointer value V, find the real (RTTI) type
3179 of the object it points to.
3180 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3181 and refer to the values computed for the object pointed to. */
3182
3183struct type *
f23631e4 3184value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3185{
f23631e4 3186 struct value *target;
c906108c
SS
3187
3188 target = value_ind (v);
3189
3190 return value_rtti_type (target, full, top, using_enc);
3191}
3192
3193/* Given a value pointed to by ARGP, check its real run-time type, and
3194 if that is different from the enclosing type, create a new value
3195 using the real run-time type as the enclosing type (and of the same
3196 type as ARGP) and return it, with the embedded offset adjusted to
3197 be the correct offset to the enclosed object
3198 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3199 parameters, computed by value_rtti_type(). If these are available,
3200 they can be supplied and a second call to value_rtti_type() is avoided.
3201 (Pass RTYPE == NULL if they're not available */
3202
f23631e4
AC
3203struct value *
3204value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3205 int xusing_enc)
c906108c 3206{
c5aa993b 3207 struct type *real_type;
c906108c
SS
3208 int full = 0;
3209 int top = -1;
3210 int using_enc = 0;
f23631e4 3211 struct value *new_val;
c906108c
SS
3212
3213 if (rtype)
3214 {
3215 real_type = rtype;
3216 full = xfull;
3217 top = xtop;
3218 using_enc = xusing_enc;
3219 }
3220 else
3221 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3222
3223 /* If no RTTI data, or if object is already complete, do nothing */
3224 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3225 return argp;
3226
3227 /* If we have the full object, but for some reason the enclosing
c5aa993b 3228 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3229 if (full)
3230 {
2b127877 3231 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3232 return argp;
3233 }
3234
3235 /* Check if object is in memory */
3236 if (VALUE_LVAL (argp) != lval_memory)
3237 {
3238 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3239
c906108c
SS
3240 return argp;
3241 }
c5aa993b 3242
c906108c
SS
3243 /* All other cases -- retrieve the complete object */
3244 /* Go back by the computed top_offset from the beginning of the object,
3245 adjusting for the embedded offset of argp if that's what value_rtti_type
3246 used for its computation. */
3247 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3248 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3249 VALUE_BFD_SECTION (argp));
c906108c
SS
3250 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3251 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3252 return new_val;
3253}
3254
389e51db
AC
3255
3256
3257
d069f99d 3258/* Return the value of the local variable, if one exists.
c906108c
SS
3259 Flag COMPLAIN signals an error if the request is made in an
3260 inappropriate context. */
3261
f23631e4 3262struct value *
d069f99d 3263value_of_local (const char *name, int complain)
c906108c
SS
3264{
3265 struct symbol *func, *sym;
3266 struct block *b;
3267 int i;
d069f99d 3268 struct value * ret;
c906108c 3269
6e7f8b9c 3270 if (deprecated_selected_frame == 0)
c906108c
SS
3271 {
3272 if (complain)
c5aa993b
JM
3273 error ("no frame selected");
3274 else
3275 return 0;
c906108c
SS
3276 }
3277
6e7f8b9c 3278 func = get_frame_function (deprecated_selected_frame);
c906108c
SS
3279 if (!func)
3280 {
3281 if (complain)
2625d86c 3282 error ("no `%s' in nameless context", name);
c5aa993b
JM
3283 else
3284 return 0;
c906108c
SS
3285 }
3286
3287 b = SYMBOL_BLOCK_VALUE (func);
3288 i = BLOCK_NSYMS (b);
3289 if (i <= 0)
3290 {
3291 if (complain)
2625d86c 3292 error ("no args, no `%s'", name);
c5aa993b
JM
3293 else
3294 return 0;
c906108c
SS
3295 }
3296
3297 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3298 symbol instead of the LOC_ARG one (if both exist). */
d069f99d 3299 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
c906108c
SS
3300 if (sym == NULL)
3301 {
3302 if (complain)
2625d86c 3303 error ("current stack frame does not contain a variable named `%s'", name);
c906108c
SS
3304 else
3305 return NULL;
3306 }
3307
6e7f8b9c 3308 ret = read_var_value (sym, deprecated_selected_frame);
d069f99d 3309 if (ret == 0 && complain)
2625d86c 3310 error ("`%s' argument unreadable", name);
d069f99d
AF
3311 return ret;
3312}
3313
3314/* C++/Objective-C: return the value of the class instance variable,
3315 if one exists. Flag COMPLAIN signals an error if the request is
3316 made in an inappropriate context. */
3317
3318struct value *
3319value_of_this (int complain)
3320{
3321 if (current_language->la_language == language_objc)
3322 return value_of_local ("self", complain);
3323 else
3324 return value_of_local ("this", complain);
c906108c
SS
3325}
3326
3327/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3328 long, starting at LOWBOUND. The result has the same lower bound as
3329 the original ARRAY. */
3330
f23631e4
AC
3331struct value *
3332value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3333{
3334 struct type *slice_range_type, *slice_type, *range_type;
7a67d0fe 3335 LONGEST lowerbound, upperbound;
f23631e4 3336 struct value *slice;
c906108c
SS
3337 struct type *array_type;
3338 array_type = check_typedef (VALUE_TYPE (array));
3339 COERCE_VARYING_ARRAY (array, array_type);
3340 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3341 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3342 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3343 error ("cannot take slice of non-array");
3344 range_type = TYPE_INDEX_TYPE (array_type);
3345 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3346 error ("slice from bad array or bitstring");
3347 if (lowbound < lowerbound || length < 0
db034ac5 3348 || lowbound + length - 1 > upperbound)
c906108c
SS
3349 error ("slice out of range");
3350 /* FIXME-type-allocation: need a way to free this type when we are
3351 done with it. */
c5aa993b 3352 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3353 TYPE_TARGET_TYPE (range_type),
3354 lowbound, lowbound + length - 1);
3355 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3356 {
3357 int i;
c5aa993b 3358 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3359 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3360 slice = value_zero (slice_type, not_lval);
3361 for (i = 0; i < length; i++)
3362 {
3363 int element = value_bit_index (array_type,
3364 VALUE_CONTENTS (array),
3365 lowbound + i);
3366 if (element < 0)
3367 error ("internal error accessing bitstring");
3368 else if (element > 0)
3369 {
3370 int j = i % TARGET_CHAR_BIT;
3371 if (BITS_BIG_ENDIAN)
3372 j = TARGET_CHAR_BIT - 1 - j;
3373 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3374 }
3375 }
3376 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3377 can be used on the LHS, but that may require extensions to
3378 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3379 }
3380 else
3381 {
3382 struct type *element_type = TYPE_TARGET_TYPE (array_type);
7a67d0fe 3383 LONGEST offset
c906108c 3384 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3385 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3386 slice_range_type);
3387 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3388 slice = allocate_value (slice_type);
3389 if (VALUE_LAZY (array))
3390 VALUE_LAZY (slice) = 1;
3391 else
3392 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3393 TYPE_LENGTH (slice_type));
3394 if (VALUE_LVAL (array) == lval_internalvar)
3395 VALUE_LVAL (slice) = lval_internalvar_component;
3396 else
3397 VALUE_LVAL (slice) = VALUE_LVAL (array);
3398 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3399 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3400 }
3401 return slice;
3402}
3403
070ad9f0
DB
3404/* Create a value for a FORTRAN complex number. Currently most of
3405 the time values are coerced to COMPLEX*16 (i.e. a complex number
3406 composed of 2 doubles. This really should be a smarter routine
3407 that figures out precision inteligently as opposed to assuming
c5aa993b 3408 doubles. FIXME: fmb */
c906108c 3409
f23631e4
AC
3410struct value *
3411value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3412{
f23631e4 3413 struct value *val;
c906108c
SS
3414 struct type *real_type = TYPE_TARGET_TYPE (type);
3415
3416 val = allocate_value (type);
3417 arg1 = value_cast (real_type, arg1);
3418 arg2 = value_cast (real_type, arg2);
3419
3420 memcpy (VALUE_CONTENTS_RAW (val),
3421 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3422 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3423 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3424 return val;
3425}
3426
3427/* Cast a value into the appropriate complex data type. */
3428
f23631e4
AC
3429static struct value *
3430cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3431{
3432 struct type *real_type = TYPE_TARGET_TYPE (type);
3433 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3434 {
3435 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3436 struct value *re_val = allocate_value (val_real_type);
3437 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3438
3439 memcpy (VALUE_CONTENTS_RAW (re_val),
3440 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3441 memcpy (VALUE_CONTENTS_RAW (im_val),
3442 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3443 TYPE_LENGTH (val_real_type));
c906108c
SS
3444
3445 return value_literal_complex (re_val, im_val, type);
3446 }
3447 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3448 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3449 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3450 else
3451 error ("cannot cast non-number to complex");
3452}
3453
3454void
fba45db2 3455_initialize_valops (void)
c906108c
SS
3456{
3457#if 0
3458 add_show_from_set
c5aa993b 3459 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3460 "Set automatic abandonment of expressions upon failure.",
3461 &setlist),
3462 &showlist);
3463#endif
3464
3465 add_show_from_set
c5aa993b 3466 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3467 "Set overload resolution in evaluating C++ functions.",
3468 &setlist),
3469 &showlist);
3470 overload_resolution = 1;
3471
242bfc55
FN
3472 add_show_from_set (
3473 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3474 (char *) &unwind_on_signal_p,
3475"Set unwinding of stack if a signal is received while in a call dummy.\n\
3476The unwindonsignal lets the user determine what gdb should do if a signal\n\
3477is received while in a function called from gdb (call dummy). If set, gdb\n\
3478unwinds the stack and restore the context to what as it was before the call.\n\
3479The default is to stop in the frame where the signal was received.", &setlist),
3480 &showlist);
1e698235
DJ
3481
3482 add_show_from_set
3483 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3484 (char *) &coerce_float_to_double,
3485 "Set coercion of floats to doubles when calling functions\n"
3486 "Variables of type float should generally be converted to doubles before\n"
3487 "calling an unprototyped function, and left alone when calling a prototyped\n"
3488 "function. However, some older debug info formats do not provide enough\n"
3489 "information to determine that a function is prototyped. If this flag is\n"
3490 "set, GDB will perform the conversion for a function it considers\n"
3491 "unprototyped.\n"
3492 "The default is to perform the conversion.\n",
3493 &setlist),
3494 &showlist);
3495 coerce_float_to_double = 1;
c906108c 3496}
This page took 0.593548 seconds and 4 git commands to generate.