* symfile.c (add_symbol_file_command): Properly reformat "else if"
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c
SS
1/* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
30#include "demangle.h"
31#include "language.h"
32#include "gdbcmd.h"
33
34#include <errno.h>
35#include "gdb_string.h"
36
c906108c
SS
37/* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39extern int hp_som_som_object_present;
40
070ad9f0 41extern int overload_debug;
c906108c
SS
42/* Local functions. */
43
a14ed312 44static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
c906108c 45
a14ed312
KB
46static CORE_ADDR find_function_addr (value_ptr, struct type **);
47static value_ptr value_arg_coerce (value_ptr, struct type *, int);
c906108c
SS
48
49
a14ed312 50static CORE_ADDR value_push (CORE_ADDR, value_ptr);
c906108c 51
a14ed312
KB
52static value_ptr search_struct_field (char *, value_ptr, int,
53 struct type *, int);
c906108c 54
a14ed312
KB
55static value_ptr search_struct_method (char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *);
c906108c 58
a14ed312 59static int check_field_in (struct type *, const char *);
c906108c 60
a14ed312 61static CORE_ADDR allocate_space_in_inferior (int);
c906108c 62
a14ed312 63static value_ptr cast_into_complex (struct type *, value_ptr);
c906108c 64
a14ed312
KB
65static struct fn_field *find_method_list (value_ptr * argp, char *method,
66 int offset, int *static_memfuncp,
67 struct type *type, int *num_fns,
68 struct type **basetype,
69 int *boffset);
7a292a7a 70
a14ed312 71void _initialize_valops (void);
c906108c
SS
72
73#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
74
75/* Flag for whether we want to abandon failed expression evals by default. */
76
77#if 0
78static int auto_abandon = 0;
79#endif
80
81int overload_resolution = 0;
242bfc55
FN
82
83/* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88int unwind_on_signal_p = 0;
c5aa993b 89\f
c906108c
SS
90
91
c906108c
SS
92/* Find the address of function name NAME in the inferior. */
93
94value_ptr
95find_function_in_inferior (name)
96 char *name;
97{
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
c5aa993b 111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
112 if (msymbol != NULL)
113 {
114 struct type *type;
4478b372 115 CORE_ADDR maddr;
c906108c
SS
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
4478b372
JB
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
c906108c
SS
121 }
122 else
123 {
c5aa993b 124 if (!target_has_execution)
c906108c 125 error ("evaluation of this expression requires the target program to be active");
c5aa993b 126 else
c906108c
SS
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130}
131
132/* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135value_ptr
136value_allocate_space_in_inferior (len)
137 int len;
138{
139 value_ptr blocklen;
140 register value_ptr val = find_function_in_inferior ("malloc");
141
142 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
143 val = call_function_by_hand (val, 1, &blocklen);
144 if (value_logical_not (val))
145 {
146 if (!target_has_execution)
c5aa993b
JM
147 error ("No memory available to program now: you need to start the target first");
148 else
149 error ("No memory available to program: call to malloc failed");
c906108c
SS
150 }
151 return val;
152}
153
154static CORE_ADDR
155allocate_space_in_inferior (len)
156 int len;
157{
158 return value_as_long (value_allocate_space_in_inferior (len));
159}
160
161/* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164/* In C++, casts may change pointer or object representations. */
165
166value_ptr
167value_cast (type, arg2)
168 struct type *type;
169 register value_ptr arg2;
170{
171 register enum type_code code1;
172 register enum type_code code2;
173 register int scalar;
174 struct type *type2;
175
176 int convert_to_boolean = 0;
c5aa993b 177
c906108c
SS
178 if (VALUE_TYPE (arg2) == type)
179 return arg2;
180
181 CHECK_TYPEDEF (type);
182 code1 = TYPE_CODE (type);
c5aa993b 183 COERCE_REF (arg2);
c906108c
SS
184 type2 = check_typedef (VALUE_TYPE (arg2));
185
186 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
187 is treated like a cast to (TYPE [N])OBJECT,
188 where N is sizeof(OBJECT)/sizeof(TYPE). */
189 if (code1 == TYPE_CODE_ARRAY)
190 {
191 struct type *element_type = TYPE_TARGET_TYPE (type);
192 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
193 if (element_length > 0
c5aa993b 194 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
195 {
196 struct type *range_type = TYPE_INDEX_TYPE (type);
197 int val_length = TYPE_LENGTH (type2);
198 LONGEST low_bound, high_bound, new_length;
199 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
200 low_bound = 0, high_bound = 0;
201 new_length = val_length / element_length;
202 if (val_length % element_length != 0)
c5aa993b 203 warning ("array element type size does not divide object size in cast");
c906108c
SS
204 /* FIXME-type-allocation: need a way to free this type when we are
205 done with it. */
206 range_type = create_range_type ((struct type *) NULL,
207 TYPE_TARGET_TYPE (range_type),
208 low_bound,
209 new_length + low_bound - 1);
210 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
211 element_type, range_type);
212 return arg2;
213 }
214 }
215
216 if (current_language->c_style_arrays
217 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
218 arg2 = value_coerce_array (arg2);
219
220 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
221 arg2 = value_coerce_function (arg2);
222
223 type2 = check_typedef (VALUE_TYPE (arg2));
224 COERCE_VARYING_ARRAY (arg2, type2);
225 code2 = TYPE_CODE (type2);
226
227 if (code1 == TYPE_CODE_COMPLEX)
228 return cast_into_complex (type, arg2);
229 if (code1 == TYPE_CODE_BOOL)
230 {
231 code1 = TYPE_CODE_INT;
232 convert_to_boolean = 1;
233 }
234 if (code1 == TYPE_CODE_CHAR)
235 code1 = TYPE_CODE_INT;
236 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
237 code2 = TYPE_CODE_INT;
238
239 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
240 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
241
c5aa993b 242 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
243 && code2 == TYPE_CODE_STRUCT
244 && TYPE_NAME (type) != 0)
245 {
246 /* Look in the type of the source to see if it contains the
7b83ea04
AC
247 type of the target as a superclass. If so, we'll need to
248 offset the object in addition to changing its type. */
c906108c
SS
249 value_ptr v = search_struct_field (type_name_no_tag (type),
250 arg2, 0, type2, 1);
251 if (v)
252 {
253 VALUE_TYPE (v) = type;
254 return v;
255 }
256 }
257 if (code1 == TYPE_CODE_FLT && scalar)
258 return value_from_double (type, value_as_double (arg2));
259 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
260 || code1 == TYPE_CODE_RANGE)
261 && (scalar || code2 == TYPE_CODE_PTR))
262 {
263 LONGEST longest;
c5aa993b
JM
264
265 if (hp_som_som_object_present && /* if target compiled by HP aCC */
266 (code2 == TYPE_CODE_PTR))
267 {
268 unsigned int *ptr;
269 value_ptr retvalp;
270
271 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
272 {
273 /* With HP aCC, pointers to data members have a bias */
274 case TYPE_CODE_MEMBER:
275 retvalp = value_from_longest (type, value_as_long (arg2));
276 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
277 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
278 return retvalp;
279
280 /* While pointers to methods don't really point to a function */
281 case TYPE_CODE_METHOD:
282 error ("Pointers to methods not supported with HP aCC");
283
284 default:
285 break; /* fall out and go to normal handling */
286 }
287 }
c906108c
SS
288 longest = value_as_long (arg2);
289 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
290 }
291 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
292 {
293 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
294 {
295 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
296 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 297 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
298 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
299 && !value_logical_not (arg2))
300 {
301 value_ptr v;
302
303 /* Look in the type of the source to see if it contains the
7b83ea04
AC
304 type of the target as a superclass. If so, we'll need to
305 offset the pointer rather than just change its type. */
c906108c
SS
306 if (TYPE_NAME (t1) != NULL)
307 {
308 v = search_struct_field (type_name_no_tag (t1),
309 value_ind (arg2), 0, t2, 1);
310 if (v)
311 {
312 v = value_addr (v);
313 VALUE_TYPE (v) = type;
314 return v;
315 }
316 }
317
318 /* Look in the type of the target to see if it contains the
7b83ea04
AC
319 type of the source as a superclass. If so, we'll need to
320 offset the pointer rather than just change its type.
321 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
322 if (TYPE_NAME (t2) != NULL)
323 {
324 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 325 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
326 if (v)
327 {
328 value_ptr v2 = value_ind (arg2);
329 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
c5aa993b 330 + VALUE_OFFSET (v);
070ad9f0
DB
331
332 /* JYG: adjust the new pointer value and
333 embedded offset. */
334 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
335 VALUE_EMBEDDED_OFFSET (v2) = 0;
336
c906108c
SS
337 v2 = value_addr (v2);
338 VALUE_TYPE (v2) = type;
339 return v2;
340 }
341 }
342 }
343 /* No superclass found, just fall through to change ptr type. */
344 }
345 VALUE_TYPE (arg2) = type;
c5aa993b
JM
346 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
347 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
348 return arg2;
349 }
350 else if (chill_varying_type (type))
351 {
352 struct type *range1, *range2, *eltype1, *eltype2;
353 value_ptr val;
354 int count1, count2;
355 LONGEST low_bound, high_bound;
356 char *valaddr, *valaddr_data;
357 /* For lint warning about eltype2 possibly uninitialized: */
358 eltype2 = NULL;
359 if (code2 == TYPE_CODE_BITSTRING)
360 error ("not implemented: converting bitstring to varying type");
361 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
362 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
363 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
364 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
c5aa993b 365 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
c906108c
SS
366 error ("Invalid conversion to varying type");
367 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
368 range2 = TYPE_FIELD_TYPE (type2, 0);
369 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
370 count1 = -1;
371 else
372 count1 = high_bound - low_bound + 1;
373 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
c5aa993b 374 count1 = -1, count2 = 0; /* To force error before */
c906108c
SS
375 else
376 count2 = high_bound - low_bound + 1;
377 if (count2 > count1)
378 error ("target varying type is too small");
379 val = allocate_value (type);
380 valaddr = VALUE_CONTENTS_RAW (val);
381 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
382 /* Set val's __var_length field to count2. */
383 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
384 count2);
385 /* Set the __var_data field to count2 elements copied from arg2. */
386 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
387 count2 * TYPE_LENGTH (eltype2));
388 /* Zero the rest of the __var_data field of val. */
389 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
390 (count1 - count2) * TYPE_LENGTH (eltype2));
391 return val;
392 }
393 else if (VALUE_LVAL (arg2) == lval_memory)
394 {
395 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
396 VALUE_BFD_SECTION (arg2));
397 }
398 else if (code1 == TYPE_CODE_VOID)
399 {
400 return value_zero (builtin_type_void, not_lval);
401 }
402 else
403 {
404 error ("Invalid cast.");
405 return 0;
406 }
407}
408
409/* Create a value of type TYPE that is zero, and return it. */
410
411value_ptr
412value_zero (type, lv)
413 struct type *type;
414 enum lval_type lv;
415{
416 register value_ptr val = allocate_value (type);
417
418 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
419 VALUE_LVAL (val) = lv;
420
421 return val;
422}
423
070ad9f0 424/* Return a value with type TYPE located at ADDR.
c906108c
SS
425
426 Call value_at only if the data needs to be fetched immediately;
427 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
428 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
429 the data and sets the lazy-evaluation-required flag. The lazy flag
430 is tested in the VALUE_CONTENTS macro, which is used if and when
431 the contents are actually required.
c906108c
SS
432
433 Note: value_at does *NOT* handle embedded offsets; perform such
434 adjustments before or after calling it. */
435
436value_ptr
437value_at (type, addr, sect)
438 struct type *type;
439 CORE_ADDR addr;
440 asection *sect;
441{
442 register value_ptr val;
443
444 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
445 error ("Attempt to dereference a generic pointer.");
446
447 val = allocate_value (type);
448
7a292a7a
SS
449 if (GDB_TARGET_IS_D10V
450 && TYPE_CODE (type) == TYPE_CODE_PTR
c906108c
SS
451 && TYPE_TARGET_TYPE (type)
452 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
453 {
454 /* pointer to function */
455 unsigned long num;
456 unsigned short snum;
457 snum = read_memory_unsigned_integer (addr, 2);
7a292a7a
SS
458 num = D10V_MAKE_IADDR (snum);
459 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c 460 }
7a292a7a 461 else if (GDB_TARGET_IS_D10V
c5aa993b 462 && TYPE_CODE (type) == TYPE_CODE_PTR)
c906108c
SS
463 {
464 /* pointer to data */
465 unsigned long num;
466 unsigned short snum;
467 snum = read_memory_unsigned_integer (addr, 2);
7a292a7a 468 num = D10V_MAKE_DADDR (snum);
c5aa993b 469 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c
SS
470 }
471 else
d4b2399a 472 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_BFD_SECTION (val) = sect;
477
478 return val;
479}
480
481/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
482
483value_ptr
484value_at_lazy (type, addr, sect)
485 struct type *type;
486 CORE_ADDR addr;
487 asection *sect;
488{
489 register value_ptr val;
490
491 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
492 error ("Attempt to dereference a generic pointer.");
493
494 val = allocate_value (type);
495
496 VALUE_LVAL (val) = lval_memory;
497 VALUE_ADDRESS (val) = addr;
498 VALUE_LAZY (val) = 1;
499 VALUE_BFD_SECTION (val) = sect;
500
501 return val;
502}
503
070ad9f0
DB
504/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
505 if the current data for a variable needs to be loaded into
506 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
507 clears the lazy flag to indicate that the data in the buffer is valid.
508
509 If the value is zero-length, we avoid calling read_memory, which would
510 abort. We mark the value as fetched anyway -- all 0 bytes of it.
511
512 This function returns a value because it is used in the VALUE_CONTENTS
513 macro as part of an expression, where a void would not work. The
514 value is ignored. */
515
516int
517value_fetch_lazy (val)
518 register value_ptr val;
519{
520 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
521 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
522
c5aa993b 523 struct type *type = VALUE_TYPE (val);
7a292a7a
SS
524 if (GDB_TARGET_IS_D10V
525 && TYPE_CODE (type) == TYPE_CODE_PTR
c906108c
SS
526 && TYPE_TARGET_TYPE (type)
527 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
528 {
529 /* pointer to function */
530 unsigned long num;
531 unsigned short snum;
532 snum = read_memory_unsigned_integer (addr, 2);
c5aa993b
JM
533 num = D10V_MAKE_IADDR (snum);
534 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c 535 }
7a292a7a 536 else if (GDB_TARGET_IS_D10V
c5aa993b 537 && TYPE_CODE (type) == TYPE_CODE_PTR)
c906108c
SS
538 {
539 /* pointer to data */
540 unsigned long num;
541 unsigned short snum;
542 snum = read_memory_unsigned_integer (addr, 2);
c5aa993b
JM
543 num = D10V_MAKE_DADDR (snum);
544 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c 545 }
7a292a7a 546 else if (length)
d4b2399a
C
547 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
548
c906108c
SS
549 VALUE_LAZY (val) = 0;
550 return 0;
551}
552
553
554/* Store the contents of FROMVAL into the location of TOVAL.
555 Return a new value with the location of TOVAL and contents of FROMVAL. */
556
557value_ptr
558value_assign (toval, fromval)
559 register value_ptr toval, fromval;
560{
561 register struct type *type;
562 register value_ptr val;
563 char raw_buffer[MAX_REGISTER_RAW_SIZE];
564 int use_buffer = 0;
565
566 if (!toval->modifiable)
567 error ("Left operand of assignment is not a modifiable lvalue.");
568
569 COERCE_REF (toval);
570
571 type = VALUE_TYPE (toval);
572 if (VALUE_LVAL (toval) != lval_internalvar)
573 fromval = value_cast (type, fromval);
574 else
575 COERCE_ARRAY (fromval);
576 CHECK_TYPEDEF (type);
577
578 /* If TOVAL is a special machine register requiring conversion
579 of program values to a special raw format,
580 convert FROMVAL's contents now, with result in `raw_buffer',
581 and set USE_BUFFER to the number of bytes to write. */
582
ac9a91a7 583 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
584 {
585 int regno = VALUE_REGNO (toval);
586 if (REGISTER_CONVERTIBLE (regno))
587 {
588 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
589 REGISTER_CONVERT_TO_RAW (fromtype, regno,
590 VALUE_CONTENTS (fromval), raw_buffer);
591 use_buffer = REGISTER_RAW_SIZE (regno);
592 }
593 }
c906108c
SS
594
595 switch (VALUE_LVAL (toval))
596 {
597 case lval_internalvar:
598 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
599 val = value_copy (VALUE_INTERNALVAR (toval)->value);
600 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
601 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
602 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
603 return val;
604
605 case lval_internalvar_component:
606 set_internalvar_component (VALUE_INTERNALVAR (toval),
607 VALUE_OFFSET (toval),
608 VALUE_BITPOS (toval),
609 VALUE_BITSIZE (toval),
610 fromval);
611 break;
612
613 case lval_memory:
614 {
615 char *dest_buffer;
c5aa993b
JM
616 CORE_ADDR changed_addr;
617 int changed_len;
c906108c 618
c5aa993b
JM
619 if (VALUE_BITSIZE (toval))
620 {
c906108c
SS
621 char buffer[sizeof (LONGEST)];
622 /* We assume that the argument to read_memory is in units of
623 host chars. FIXME: Is that correct? */
624 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
625 + VALUE_BITSIZE (toval)
626 + HOST_CHAR_BIT - 1)
627 / HOST_CHAR_BIT;
c906108c
SS
628
629 if (changed_len > (int) sizeof (LONGEST))
630 error ("Can't handle bitfields which don't fit in a %d bit word.",
631 sizeof (LONGEST) * HOST_CHAR_BIT);
632
633 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
634 buffer, changed_len);
635 modify_field (buffer, value_as_long (fromval),
636 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
637 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
638 dest_buffer = buffer;
639 }
640 else if (use_buffer)
641 {
642 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
643 changed_len = use_buffer;
644 dest_buffer = raw_buffer;
645 }
646 else
647 {
648 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
649 changed_len = TYPE_LENGTH (type);
650 dest_buffer = VALUE_CONTENTS (fromval);
651 }
652
653 write_memory (changed_addr, dest_buffer, changed_len);
654 if (memory_changed_hook)
655 memory_changed_hook (changed_addr, changed_len);
656 }
657 break;
658
659 case lval_register:
660 if (VALUE_BITSIZE (toval))
661 {
662 char buffer[sizeof (LONGEST)];
c5aa993b 663 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
c906108c
SS
664
665 if (len > (int) sizeof (LONGEST))
666 error ("Can't handle bitfields in registers larger than %d bits.",
667 sizeof (LONGEST) * HOST_CHAR_BIT);
668
669 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
670 > len * HOST_CHAR_BIT)
671 /* Getting this right would involve being very careful about
672 byte order. */
c2d11a7d
JM
673 error ("Can't assign to bitfields that cross register "
674 "boundaries.");
c906108c 675
c5aa993b
JM
676 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 modify_field (buffer, value_as_long (fromval),
679 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 buffer, len);
c906108c
SS
682 }
683 else if (use_buffer)
684 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
685 raw_buffer, use_buffer);
686 else
c5aa993b 687 {
c906108c
SS
688 /* Do any conversion necessary when storing this type to more
689 than one register. */
690#ifdef REGISTER_CONVERT_FROM_TYPE
691 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c5aa993b 692 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
c906108c
SS
693 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
694 raw_buffer, TYPE_LENGTH (type));
695#else
696 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
c5aa993b 697 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c906108c
SS
698#endif
699 }
700 /* Assigning to the stack pointer, frame pointer, and other
7b83ea04
AC
701 (architecture and calling convention specific) registers may
702 cause the frame cache to be out of date. We just do this
703 on all assignments to registers for simplicity; I doubt the slowdown
704 matters. */
c906108c
SS
705 reinit_frame_cache ();
706 break;
707
708 case lval_reg_frame_relative:
709 {
710 /* value is stored in a series of registers in the frame
711 specified by the structure. Copy that value out, modify
712 it, and copy it back in. */
713 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
714 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
715 int byte_offset = VALUE_OFFSET (toval) % reg_size;
716 int reg_offset = VALUE_OFFSET (toval) / reg_size;
717 int amount_copied;
718
719 /* Make the buffer large enough in all cases. */
720 char *buffer = (char *) alloca (amount_to_copy
721 + sizeof (LONGEST)
722 + MAX_REGISTER_RAW_SIZE);
723
724 int regno;
725 struct frame_info *frame;
726
727 /* Figure out which frame this is in currently. */
728 for (frame = get_current_frame ();
729 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
730 frame = get_prev_frame (frame))
731 ;
732
733 if (!frame)
734 error ("Value being assigned to is no longer active.");
735
736 amount_to_copy += (reg_size - amount_to_copy % reg_size);
737
738 /* Copy it out. */
739 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
740 amount_copied = 0);
741 amount_copied < amount_to_copy;
742 amount_copied += reg_size, regno++)
743 {
744 get_saved_register (buffer + amount_copied,
c5aa993b
JM
745 (int *) NULL, (CORE_ADDR *) NULL,
746 frame, regno, (enum lval_type *) NULL);
c906108c
SS
747 }
748
749 /* Modify what needs to be modified. */
750 if (VALUE_BITSIZE (toval))
751 modify_field (buffer + byte_offset,
752 value_as_long (fromval),
753 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
754 else if (use_buffer)
755 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
756 else
757 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
758 TYPE_LENGTH (type));
759
760 /* Copy it back. */
761 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
762 amount_copied = 0);
763 amount_copied < amount_to_copy;
764 amount_copied += reg_size, regno++)
765 {
766 enum lval_type lval;
767 CORE_ADDR addr;
768 int optim;
769
770 /* Just find out where to put it. */
c5aa993b
JM
771 get_saved_register ((char *) NULL,
772 &optim, &addr, frame, regno, &lval);
773
c906108c
SS
774 if (optim)
775 error ("Attempt to assign to a value that was optimized out.");
776 if (lval == lval_memory)
777 write_memory (addr, buffer + amount_copied, reg_size);
778 else if (lval == lval_register)
779 write_register_bytes (addr, buffer + amount_copied, reg_size);
780 else
781 error ("Attempt to assign to an unmodifiable value.");
782 }
783
784 if (register_changed_hook)
785 register_changed_hook (-1);
786 }
787 break;
c5aa993b 788
c906108c
SS
789
790 default:
791 error ("Left operand of assignment is not an lvalue.");
792 }
793
794 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
795 If the field is signed, and is negative, then sign extend. */
796 if ((VALUE_BITSIZE (toval) > 0)
797 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
798 {
799 LONGEST fieldval = value_as_long (fromval);
800 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
801
802 fieldval &= valmask;
803 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
804 fieldval |= ~valmask;
805
806 fromval = value_from_longest (type, fieldval);
807 }
808
809 val = value_copy (toval);
810 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
811 TYPE_LENGTH (type));
812 VALUE_TYPE (val) = type;
813 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
814 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
815 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 816
c906108c
SS
817 return val;
818}
819
820/* Extend a value VAL to COUNT repetitions of its type. */
821
822value_ptr
823value_repeat (arg1, count)
824 value_ptr arg1;
825 int count;
826{
827 register value_ptr val;
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error ("Only values in memory can be extended with '@'.");
831 if (count < 1)
832 error ("Invalid number %d of repetitions.", count);
833
834 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
835
836 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
837 VALUE_CONTENTS_ALL_RAW (val),
838 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
839 VALUE_LVAL (val) = lval_memory;
840 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
841
842 return val;
843}
844
845value_ptr
846value_of_variable (var, b)
847 struct symbol *var;
848 struct block *b;
849{
850 value_ptr val;
851 struct frame_info *frame = NULL;
852
853 if (!b)
854 frame = NULL; /* Use selected frame. */
855 else if (symbol_read_needs_frame (var))
856 {
857 frame = block_innermost_frame (b);
858 if (!frame)
c5aa993b 859 {
c906108c
SS
860 if (BLOCK_FUNCTION (b)
861 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
862 error ("No frame is currently executing in block %s.",
863 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
864 else
865 error ("No frame is currently executing in specified block");
c5aa993b 866 }
c906108c
SS
867 }
868
869 val = read_var_value (var, frame);
870 if (!val)
871 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
872
873 return val;
874}
875
876/* Given a value which is an array, return a value which is a pointer to its
877 first element, regardless of whether or not the array has a nonzero lower
878 bound.
879
880 FIXME: A previous comment here indicated that this routine should be
881 substracting the array's lower bound. It's not clear to me that this
882 is correct. Given an array subscripting operation, it would certainly
883 work to do the adjustment here, essentially computing:
884
885 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
886
887 However I believe a more appropriate and logical place to account for
888 the lower bound is to do so in value_subscript, essentially computing:
889
890 (&array[0] + ((index - lowerbound) * sizeof array[0]))
891
892 As further evidence consider what would happen with operations other
893 than array subscripting, where the caller would get back a value that
894 had an address somewhere before the actual first element of the array,
895 and the information about the lower bound would be lost because of
896 the coercion to pointer type.
c5aa993b 897 */
c906108c
SS
898
899value_ptr
900value_coerce_array (arg1)
901 value_ptr arg1;
902{
903 register struct type *type = check_typedef (VALUE_TYPE (arg1));
904
905 if (VALUE_LVAL (arg1) != lval_memory)
906 error ("Attempt to take address of value not located in memory.");
907
4478b372
JB
908 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
909 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
910}
911
912/* Given a value which is a function, return a value which is a pointer
913 to it. */
914
915value_ptr
916value_coerce_function (arg1)
917 value_ptr arg1;
918{
919 value_ptr retval;
920
921 if (VALUE_LVAL (arg1) != lval_memory)
922 error ("Attempt to take address of value not located in memory.");
923
4478b372
JB
924 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
925 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
926 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
927 return retval;
c5aa993b 928}
c906108c
SS
929
930/* Return a pointer value for the object for which ARG1 is the contents. */
931
932value_ptr
933value_addr (arg1)
934 value_ptr arg1;
935{
936 value_ptr arg2;
937
938 struct type *type = check_typedef (VALUE_TYPE (arg1));
939 if (TYPE_CODE (type) == TYPE_CODE_REF)
940 {
941 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
942 We keep the same location information, which is efficient,
943 and allows &(&X) to get the location containing the reference. */
c906108c
SS
944 arg2 = value_copy (arg1);
945 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
946 return arg2;
947 }
948 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
949 return value_coerce_function (arg1);
950
951 if (VALUE_LVAL (arg1) != lval_memory)
952 error ("Attempt to take address of value not located in memory.");
953
c5aa993b 954 /* Get target memory address */
4478b372
JB
955 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
956 (VALUE_ADDRESS (arg1)
957 + VALUE_OFFSET (arg1)
958 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
959
960 /* This may be a pointer to a base subobject; so remember the
c5aa993b 961 full derived object's type ... */
c906108c 962 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
c5aa993b
JM
963 /* ... and also the relative position of the subobject in the full object */
964 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
965 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
966 return arg2;
967}
968
969/* Given a value of a pointer type, apply the C unary * operator to it. */
970
971value_ptr
972value_ind (arg1)
973 value_ptr arg1;
974{
975 struct type *base_type;
976 value_ptr arg2;
c906108c
SS
977
978 COERCE_ARRAY (arg1);
979
980 base_type = check_typedef (VALUE_TYPE (arg1));
981
982 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
983 error ("not implemented: member types in value_ind");
984
985 /* Allow * on an integer so we can cast it to whatever we want.
986 This returns an int, which seems like the most C-like thing
987 to do. "long long" variables are rare enough that
988 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
989 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
990 return value_at (builtin_type_int,
991 (CORE_ADDR) value_as_long (arg1),
992 VALUE_BFD_SECTION (arg1));
993 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
994 {
995 struct type *enc_type;
996 /* We may be pointing to something embedded in a larger object */
c5aa993b 997 /* Get the real type of the enclosing object */
c906108c
SS
998 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
999 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
1000 /* Retrieve the enclosing object pointed to */
1001 arg2 = value_at_lazy (enc_type,
1002 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1003 VALUE_BFD_SECTION (arg1));
1004 /* Re-adjust type */
c906108c
SS
1005 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1006 /* Add embedding info */
1007 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1008 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1009
1010 /* We may be pointing to an object of some derived type */
1011 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1012 return arg2;
1013 }
1014
1015 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 1016 return 0; /* For lint -- never reached */
c906108c
SS
1017}
1018\f
1019/* Pushing small parts of stack frames. */
1020
1021/* Push one word (the size of object that a register holds). */
1022
1023CORE_ADDR
1024push_word (sp, word)
1025 CORE_ADDR sp;
1026 ULONGEST word;
1027{
1028 register int len = REGISTER_SIZE;
1029 char buffer[MAX_REGISTER_RAW_SIZE];
1030
1031 store_unsigned_integer (buffer, len, word);
1032 if (INNER_THAN (1, 2))
1033 {
1034 /* stack grows downward */
1035 sp -= len;
1036 write_memory (sp, buffer, len);
1037 }
1038 else
1039 {
1040 /* stack grows upward */
1041 write_memory (sp, buffer, len);
1042 sp += len;
1043 }
1044
1045 return sp;
1046}
1047
1048/* Push LEN bytes with data at BUFFER. */
1049
1050CORE_ADDR
1051push_bytes (sp, buffer, len)
1052 CORE_ADDR sp;
1053 char *buffer;
1054 int len;
1055{
1056 if (INNER_THAN (1, 2))
1057 {
1058 /* stack grows downward */
1059 sp -= len;
1060 write_memory (sp, buffer, len);
1061 }
1062 else
1063 {
1064 /* stack grows upward */
1065 write_memory (sp, buffer, len);
1066 sp += len;
1067 }
1068
1069 return sp;
1070}
1071
2df3850c
JM
1072#ifndef PARM_BOUNDARY
1073#define PARM_BOUNDARY (0)
1074#endif
1075
1076/* Push onto the stack the specified value VALUE. Pad it correctly for
1077 it to be an argument to a function. */
c906108c 1078
c906108c
SS
1079static CORE_ADDR
1080value_push (sp, arg)
1081 register CORE_ADDR sp;
1082 value_ptr arg;
1083{
1084 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1085 register int container_len = len;
2df3850c
JM
1086 register int offset;
1087
1088 /* How big is the container we're going to put this value in? */
1089 if (PARM_BOUNDARY)
1090 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1091 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1092
1093 /* Are we going to put it at the high or low end of the container? */
1094 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1095 offset = container_len - len;
1096 else
1097 offset = 0;
c906108c
SS
1098
1099 if (INNER_THAN (1, 2))
1100 {
1101 /* stack grows downward */
2df3850c
JM
1102 sp -= container_len;
1103 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1104 }
1105 else
1106 {
1107 /* stack grows upward */
2df3850c
JM
1108 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1109 sp += container_len;
c906108c
SS
1110 }
1111
1112 return sp;
1113}
1114
392a587b
JM
1115#ifndef PUSH_ARGUMENTS
1116#define PUSH_ARGUMENTS default_push_arguments
1117#endif
1118
1119CORE_ADDR
ac9a91a7 1120default_push_arguments (nargs, args, sp, struct_return, struct_addr)
392a587b
JM
1121 int nargs;
1122 value_ptr *args;
392a587b 1123 CORE_ADDR sp;
ac9a91a7 1124 int struct_return;
392a587b
JM
1125 CORE_ADDR struct_addr;
1126{
1127 /* ASSERT ( !struct_return); */
1128 int i;
1129 for (i = nargs - 1; i >= 0; i--)
1130 sp = value_push (sp, args[i]);
1131 return sp;
1132}
1133
c906108c 1134
b9a8e3bf
JB
1135/* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1136 when we don't have any type for the argument at hand. This occurs
1137 when we have no debug info, or when passing varargs.
1138
1139 This is an annoying default: the rule the compiler follows is to do
1140 the standard promotions whenever there is no prototype in scope,
1141 and almost all targets want this behavior. But there are some old
1142 architectures which want this odd behavior. If you want to go
1143 through them all and fix them, please do. Modern gdbarch-style
1144 targets may find it convenient to use standard_coerce_float_to_double. */
1145int
1146default_coerce_float_to_double (struct type *formal, struct type *actual)
1147{
1148 return formal == NULL;
1149}
1150
1151
1152/* Always coerce floats to doubles when there is no prototype in scope.
1153 If your architecture follows the standard type promotion rules for
1154 calling unprototyped functions, your gdbarch init function can pass
1155 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1156int
1157standard_coerce_float_to_double (struct type *formal, struct type *actual)
1158{
1159 return 1;
1160}
1161
1162
c906108c
SS
1163/* Perform the standard coercions that are specified
1164 for arguments to be passed to C functions.
1165
1166 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1167 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1168
1169static value_ptr
1170value_arg_coerce (arg, param_type, is_prototyped)
1171 value_ptr arg;
1172 struct type *param_type;
1173 int is_prototyped;
1174{
1175 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1176 register struct type *type
c5aa993b 1177 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1178
1179 switch (TYPE_CODE (type))
1180 {
1181 case TYPE_CODE_REF:
1182 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1183 {
1184 arg = value_addr (arg);
1185 VALUE_TYPE (arg) = param_type;
1186 return arg;
1187 }
1188 break;
1189 case TYPE_CODE_INT:
1190 case TYPE_CODE_CHAR:
1191 case TYPE_CODE_BOOL:
1192 case TYPE_CODE_ENUM:
1193 /* If we don't have a prototype, coerce to integer type if necessary. */
1194 if (!is_prototyped)
1195 {
1196 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1197 type = builtin_type_int;
1198 }
1199 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1200 type for an argument. We may have to conditionalize the following
1201 type coercion for future targets. */
c906108c
SS
1202 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1203 type = builtin_type_int;
1204 break;
1205 case TYPE_CODE_FLT:
1206 /* FIXME: We should always convert floats to doubles in the
7b83ea04
AC
1207 non-prototyped case. As many debugging formats include
1208 no information about prototyping, we have to live with
1209 COERCE_FLOAT_TO_DOUBLE for now. */
b9a8e3bf 1210 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
c906108c
SS
1211 {
1212 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1213 type = builtin_type_double;
1214 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1215 type = builtin_type_long_double;
1216 }
1217 break;
1218 case TYPE_CODE_FUNC:
1219 type = lookup_pointer_type (type);
1220 break;
1221 case TYPE_CODE_ARRAY:
1222 if (current_language->c_style_arrays)
1223 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1224 break;
1225 case TYPE_CODE_UNDEF:
1226 case TYPE_CODE_PTR:
1227 case TYPE_CODE_STRUCT:
1228 case TYPE_CODE_UNION:
1229 case TYPE_CODE_VOID:
1230 case TYPE_CODE_SET:
1231 case TYPE_CODE_RANGE:
1232 case TYPE_CODE_STRING:
1233 case TYPE_CODE_BITSTRING:
1234 case TYPE_CODE_ERROR:
1235 case TYPE_CODE_MEMBER:
1236 case TYPE_CODE_METHOD:
1237 case TYPE_CODE_COMPLEX:
1238 default:
1239 break;
1240 }
1241
1242 return value_cast (type, arg);
1243}
1244
070ad9f0 1245/* Determine a function's address and its return type from its value.
c906108c
SS
1246 Calls error() if the function is not valid for calling. */
1247
1248static CORE_ADDR
1249find_function_addr (function, retval_type)
1250 value_ptr function;
1251 struct type **retval_type;
1252{
1253 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1254 register enum type_code code = TYPE_CODE (ftype);
1255 struct type *value_type;
1256 CORE_ADDR funaddr;
1257
1258 /* If it's a member function, just look at the function
1259 part of it. */
1260
1261 /* Determine address to call. */
1262 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1263 {
1264 funaddr = VALUE_ADDRESS (function);
1265 value_type = TYPE_TARGET_TYPE (ftype);
1266 }
1267 else if (code == TYPE_CODE_PTR)
1268 {
1269 funaddr = value_as_pointer (function);
1270 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1271 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1272 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1273 {
1274#ifdef CONVERT_FROM_FUNC_PTR_ADDR
1275 /* FIXME: This is a workaround for the unusual function
1276 pointer representation on the RS/6000, see comment
1277 in config/rs6000/tm-rs6000.h */
1278 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1279#endif
1280 value_type = TYPE_TARGET_TYPE (ftype);
1281 }
1282 else
1283 value_type = builtin_type_int;
1284 }
1285 else if (code == TYPE_CODE_INT)
1286 {
1287 /* Handle the case of functions lacking debugging info.
7b83ea04 1288 Their values are characters since their addresses are char */
c906108c
SS
1289 if (TYPE_LENGTH (ftype) == 1)
1290 funaddr = value_as_pointer (value_addr (function));
1291 else
1292 /* Handle integer used as address of a function. */
1293 funaddr = (CORE_ADDR) value_as_long (function);
1294
1295 value_type = builtin_type_int;
1296 }
1297 else
1298 error ("Invalid data type for function to be called.");
1299
1300 *retval_type = value_type;
1301 return funaddr;
1302}
1303
1304/* All this stuff with a dummy frame may seem unnecessarily complicated
1305 (why not just save registers in GDB?). The purpose of pushing a dummy
1306 frame which looks just like a real frame is so that if you call a
1307 function and then hit a breakpoint (get a signal, etc), "backtrace"
1308 will look right. Whether the backtrace needs to actually show the
1309 stack at the time the inferior function was called is debatable, but
1310 it certainly needs to not display garbage. So if you are contemplating
1311 making dummy frames be different from normal frames, consider that. */
1312
1313/* Perform a function call in the inferior.
1314 ARGS is a vector of values of arguments (NARGS of them).
1315 FUNCTION is a value, the function to be called.
1316 Returns a value representing what the function returned.
1317 May fail to return, if a breakpoint or signal is hit
1318 during the execution of the function.
1319
1320 ARGS is modified to contain coerced values. */
1321
a14ed312
KB
1322static value_ptr hand_function_call (value_ptr function, int nargs,
1323 value_ptr * args);
7a292a7a
SS
1324static value_ptr
1325hand_function_call (function, nargs, args)
c906108c
SS
1326 value_ptr function;
1327 int nargs;
1328 value_ptr *args;
1329{
1330 register CORE_ADDR sp;
1331 register int i;
da59e081 1332 int rc;
c906108c
SS
1333 CORE_ADDR start_sp;
1334 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1335 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1336 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1337 bigger than REGISTER_SIZE.
c906108c
SS
1338
1339 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1340 sequence of instructions. But CISC machines will have
1341 to pack the instructions into REGISTER_SIZE units (and
1342 so will RISC machines for which INSTRUCTION_SIZE is not
1343 REGISTER_SIZE).
7a292a7a
SS
1344
1345 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1346 target byte order. */
c906108c 1347
7a292a7a
SS
1348 static ULONGEST *dummy;
1349 int sizeof_dummy1;
1350 char *dummy1;
c906108c
SS
1351 CORE_ADDR old_sp;
1352 struct type *value_type;
1353 unsigned char struct_return;
1354 CORE_ADDR struct_addr = 0;
7a292a7a 1355 struct inferior_status *inf_status;
c906108c
SS
1356 struct cleanup *old_chain;
1357 CORE_ADDR funaddr;
c5aa993b 1358 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1359 CORE_ADDR real_pc;
1360 struct type *param_type = NULL;
1361 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1362
7a292a7a
SS
1363 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1364 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1365 dummy1 = alloca (sizeof_dummy1);
1366 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1367
c906108c 1368 if (!target_has_execution)
c5aa993b 1369 noprocess ();
c906108c 1370
7a292a7a 1371 inf_status = save_inferior_status (1);
74b7792f 1372 old_chain = make_cleanup_restore_inferior_status (inf_status);
c906108c
SS
1373
1374 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1375 (and POP_FRAME for restoring them). (At least on most machines)
1376 they are saved on the stack in the inferior. */
1377 PUSH_DUMMY_FRAME;
1378
1379 old_sp = sp = read_sp ();
1380
1381 if (INNER_THAN (1, 2))
1382 {
1383 /* Stack grows down */
7a292a7a 1384 sp -= sizeof_dummy1;
c906108c
SS
1385 start_sp = sp;
1386 }
1387 else
1388 {
1389 /* Stack grows up */
1390 start_sp = sp;
7a292a7a 1391 sp += sizeof_dummy1;
c906108c
SS
1392 }
1393
1394 funaddr = find_function_addr (function, &value_type);
1395 CHECK_TYPEDEF (value_type);
1396
1397 {
1398 struct block *b = block_for_pc (funaddr);
1399 /* If compiled without -g, assume GCC 2. */
1400 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1401 }
1402
1403 /* Are we returning a value using a structure return or a normal
1404 value return? */
1405
1406 struct_return = using_struct_return (function, funaddr, value_type,
1407 using_gcc);
1408
1409 /* Create a call sequence customized for this function
1410 and the number of arguments for it. */
7a292a7a 1411 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1412 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1413 REGISTER_SIZE,
c5aa993b 1414 (ULONGEST) dummy[i]);
c906108c
SS
1415
1416#ifdef GDB_TARGET_IS_HPPA
1417 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1418 value_type, using_gcc);
1419#else
1420 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1421 value_type, using_gcc);
1422 real_pc = start_sp;
1423#endif
1424
7a292a7a
SS
1425 if (CALL_DUMMY_LOCATION == ON_STACK)
1426 {
c5aa993b 1427 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
7a292a7a 1428 }
c906108c 1429
7a292a7a
SS
1430 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1431 {
1432 /* Convex Unix prohibits executing in the stack segment. */
1433 /* Hope there is empty room at the top of the text segment. */
1434 extern CORE_ADDR text_end;
392a587b 1435 static int checked = 0;
7a292a7a
SS
1436 if (!checked)
1437 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1438 if (read_memory_integer (start_sp, 1) != 0)
1439 error ("text segment full -- no place to put call");
1440 checked = 1;
1441 sp = old_sp;
1442 real_pc = text_end - sizeof_dummy1;
c5aa993b 1443 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
7a292a7a 1444 }
c5aa993b 1445
7a292a7a
SS
1446 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1447 {
1448 extern CORE_ADDR text_end;
1449 int errcode;
1450 sp = old_sp;
1451 real_pc = text_end;
c5aa993b 1452 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
7a292a7a
SS
1453 if (errcode != 0)
1454 error ("Cannot write text segment -- call_function failed");
1455 }
c906108c 1456
7a292a7a
SS
1457 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1458 {
1459 real_pc = funaddr;
1460 }
c906108c
SS
1461
1462#ifdef lint
c5aa993b 1463 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1464#endif
1465
1466 if (nargs < TYPE_NFIELDS (ftype))
1467 error ("too few arguments in function call");
1468
1469 for (i = nargs - 1; i >= 0; i--)
1470 {
1471 /* If we're off the end of the known arguments, do the standard
7b83ea04
AC
1472 promotions. FIXME: if we had a prototype, this should only
1473 be allowed if ... were present. */
c906108c
SS
1474 if (i >= TYPE_NFIELDS (ftype))
1475 args[i] = value_arg_coerce (args[i], NULL, 0);
1476
c5aa993b 1477 else
c906108c
SS
1478 {
1479 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1480 param_type = TYPE_FIELD_TYPE (ftype, i);
1481
1482 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1483 }
1484
070ad9f0
DB
1485 /*elz: this code is to handle the case in which the function to be called
1486 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1487 is the address of a function and not a pointer to function variable.
1488 In aCC compiled code, the calls through pointers to functions (in the body
1489 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1490 requires some registers setting, this is taken care of if we call
1491 via a function pointer variable, but not via a function address.
7b83ea04 1492 In cc this is not a problem. */
c906108c
SS
1493
1494 if (using_gcc == 0)
1495 if (param_type)
c5aa993b 1496 /* if this parameter is a pointer to function */
c906108c
SS
1497 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1498 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
070ad9f0 1499 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1500 to compile the target. We want to issue the error
070ad9f0
DB
1501 message only if the compiler used was HP's aCC.
1502 If we used HP's cc, then there is no problem and no need
7b83ea04 1503 to return at this point */
c5aa993b 1504 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1505 /* go see if the actual parameter is a variable of type
c5aa993b 1506 pointer to function or just a function */
c906108c
SS
1507 if (args[i]->lval == not_lval)
1508 {
1509 char *arg_name;
c5aa993b
JM
1510 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1511 error ("\
c906108c
SS
1512You cannot use function <%s> as argument. \n\
1513You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1514 }
c906108c
SS
1515 }
1516
d03e67c9
AC
1517 if (REG_STRUCT_HAS_ADDR_P ())
1518 {
1519 /* This is a machine like the sparc, where we may need to pass a
1520 pointer to the structure, not the structure itself. */
1521 for (i = nargs - 1; i >= 0; i--)
1522 {
1523 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1524 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1525 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1526 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1527 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1528 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1529 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1530 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1531 && TYPE_LENGTH (arg_type) > 8)
1532 )
1533 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1534 {
1535 CORE_ADDR addr;
1536 int len; /* = TYPE_LENGTH (arg_type); */
1537 int aligned_len;
1538 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1539 len = TYPE_LENGTH (arg_type);
1540
1541 if (STACK_ALIGN_P ())
1542 /* MVS 11/22/96: I think at least some of this
1543 stack_align code is really broken. Better to let
1544 PUSH_ARGUMENTS adjust the stack in a target-defined
1545 manner. */
1546 aligned_len = STACK_ALIGN (len);
1547 else
1548 aligned_len = len;
1549 if (INNER_THAN (1, 2))
1550 {
1551 /* stack grows downward */
1552 sp -= aligned_len;
1553 }
1554 else
1555 {
1556 /* The stack grows up, so the address of the thing
1557 we push is the stack pointer before we push it. */
1558 addr = sp;
1559 }
1560 /* Push the structure. */
1561 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1562 if (INNER_THAN (1, 2))
1563 {
1564 /* The stack grows down, so the address of the thing
1565 we push is the stack pointer after we push it. */
1566 addr = sp;
1567 }
1568 else
1569 {
1570 /* stack grows upward */
1571 sp += aligned_len;
1572 }
1573 /* The value we're going to pass is the address of the
1574 thing we just pushed. */
1575 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1576 (LONGEST) addr); */
1577 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1578 addr);
1579 }
1580 }
1581 }
1582
c906108c
SS
1583
1584 /* Reserve space for the return structure to be written on the
1585 stack, if necessary */
1586
1587 if (struct_return)
1588 {
1589 int len = TYPE_LENGTH (value_type);
2ada493a
AC
1590 if (STACK_ALIGN_P ())
1591 /* MVS 11/22/96: I think at least some of this stack_align
1592 code is really broken. Better to let PUSH_ARGUMENTS adjust
1593 the stack in a target-defined manner. */
1594 len = STACK_ALIGN (len);
c906108c
SS
1595 if (INNER_THAN (1, 2))
1596 {
1597 /* stack grows downward */
1598 sp -= len;
1599 struct_addr = sp;
1600 }
1601 else
1602 {
1603 /* stack grows upward */
1604 struct_addr = sp;
1605 sp += len;
1606 }
1607 }
1608
1609/* elz: on HPPA no need for this extra alignment, maybe it is needed
1610 on other architectures. This is because all the alignment is taken care
070ad9f0 1611 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
c5aa993b 1612 hppa_push_arguments */
c906108c
SS
1613#ifndef NO_EXTRA_ALIGNMENT_NEEDED
1614
c906108c
SS
1615 /* MVS 11/22/96: I think at least some of this stack_align code is
1616 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1617 a target-defined manner. */
2ada493a 1618 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
c906108c
SS
1619 {
1620 /* If stack grows down, we must leave a hole at the top. */
1621 int len = 0;
1622
1623 for (i = nargs - 1; i >= 0; i--)
1624 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
7a292a7a
SS
1625 if (CALL_DUMMY_STACK_ADJUST_P)
1626 len += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1627 sp -= STACK_ALIGN (len) - len;
1628 }
c906108c
SS
1629#endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1630
392a587b 1631 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c
SS
1632
1633#ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1634 /* There are a number of targets now which actually don't write any
1635 CALL_DUMMY instructions into the target, but instead just save the
1636 machine state, push the arguments, and jump directly to the callee
1637 function. Since this doesn't actually involve executing a JSR/BSR
1638 instruction, the return address must be set up by hand, either by
1639 pushing onto the stack or copying into a return-address register
070ad9f0 1640 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
c906108c
SS
1641 but that's overloading its functionality a bit, so I'm making it
1642 explicit to do it here. */
c5aa993b
JM
1643 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1644#endif /* PUSH_RETURN_ADDRESS */
c906108c 1645
2ada493a 1646 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1647 {
1648 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1649 that sp already has been advanced for the arguments! */
7a292a7a
SS
1650 if (CALL_DUMMY_STACK_ADJUST_P)
1651 sp += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1652 sp = STACK_ALIGN (sp);
1653 }
c906108c
SS
1654
1655/* XXX This seems wrong. For stacks that grow down we shouldn't do
1656 anything here! */
1657 /* MVS 11/22/96: I think at least some of this stack_align code is
1658 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1659 a target-defined manner. */
7a292a7a
SS
1660 if (CALL_DUMMY_STACK_ADJUST_P)
1661 if (INNER_THAN (1, 2))
1662 {
1663 /* stack grows downward */
1664 sp -= CALL_DUMMY_STACK_ADJUST;
1665 }
c906108c
SS
1666
1667 /* Store the address at which the structure is supposed to be
1668 written. Note that this (and the code which reserved the space
1669 above) assumes that gcc was used to compile this function. Since
1670 it doesn't cost us anything but space and if the function is pcc
1671 it will ignore this value, we will make that assumption.
1672
070ad9f0 1673 Also note that on some machines (like the sparc) pcc uses a
c906108c
SS
1674 convention like gcc's. */
1675
1676 if (struct_return)
1677 STORE_STRUCT_RETURN (struct_addr, sp);
1678
1679 /* Write the stack pointer. This is here because the statements above
1680 might fool with it. On SPARC, this write also stores the register
1681 window into the right place in the new stack frame, which otherwise
1682 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1683 write_sp (sp);
1684
d1e3cf49
AC
1685 if (SAVE_DUMMY_FRAME_TOS_P ())
1686 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1687
c906108c
SS
1688 {
1689 char retbuf[REGISTER_BYTES];
1690 char *name;
1691 struct symbol *symbol;
1692
1693 name = NULL;
1694 symbol = find_pc_function (funaddr);
1695 if (symbol)
1696 {
1697 name = SYMBOL_SOURCE_NAME (symbol);
1698 }
1699 else
1700 {
1701 /* Try the minimal symbols. */
1702 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1703
1704 if (msymbol)
1705 {
1706 name = SYMBOL_SOURCE_NAME (msymbol);
1707 }
1708 }
1709 if (name == NULL)
1710 {
1711 char format[80];
1712 sprintf (format, "at %s", local_hex_format ());
1713 name = alloca (80);
1714 /* FIXME-32x64: assumes funaddr fits in a long. */
1715 sprintf (name, format, (unsigned long) funaddr);
1716 }
1717
1718 /* Execute the stack dummy routine, calling FUNCTION.
1719 When it is done, discard the empty frame
1720 after storing the contents of all regs into retbuf. */
da59e081
JM
1721 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1722
1723 if (rc == 1)
1724 {
1725 /* We stopped inside the FUNCTION because of a random signal.
1726 Further execution of the FUNCTION is not allowed. */
1727
7b83ea04 1728 if (unwind_on_signal_p)
242bfc55
FN
1729 {
1730 /* The user wants the context restored. */
da59e081 1731
7b83ea04
AC
1732 /* We must get back to the frame we were before the dummy call. */
1733 POP_FRAME;
242bfc55
FN
1734
1735 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1736 a C++ name with arguments and stuff. */
1737 error ("\
1738The program being debugged was signaled while in a function called from GDB.\n\
1739GDB has restored the context to what it was before the call.\n\
1740To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1741Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1742 name);
1743 }
1744 else
1745 {
1746 /* The user wants to stay in the frame where we stopped (default).*/
1747
1748 /* If we did the cleanups, we would print a spurious error
1749 message (Unable to restore previously selected frame),
1750 would write the registers from the inf_status (which is
1751 wrong), and would do other wrong things. */
1752 discard_cleanups (old_chain);
1753 discard_inferior_status (inf_status);
1754
1755 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1756 a C++ name with arguments and stuff. */
1757 error ("\
1758The program being debugged was signaled while in a function called from GDB.\n\
1759GDB remains in the frame where the signal was received.\n\
1760To change this behavior use \"set unwindonsignal on\"\n\
1761Evaluation of the expression containing the function (%s) will be abandoned.",
1762 name);
1763 }
da59e081
JM
1764 }
1765
1766 if (rc == 2)
c906108c 1767 {
da59e081 1768 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1769
7a292a7a
SS
1770 /* If we did the cleanups, we would print a spurious error
1771 message (Unable to restore previously selected frame),
1772 would write the registers from the inf_status (which is
1773 wrong), and would do other wrong things. */
c906108c 1774 discard_cleanups (old_chain);
7a292a7a 1775 discard_inferior_status (inf_status);
c906108c
SS
1776
1777 /* The following error message used to say "The expression
1778 which contained the function call has been discarded." It
1779 is a hard concept to explain in a few words. Ideally, GDB
1780 would be able to resume evaluation of the expression when
1781 the function finally is done executing. Perhaps someday
1782 this will be implemented (it would not be easy). */
1783
1784 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1785 a C++ name with arguments and stuff. */
1786 error ("\
1787The program being debugged stopped while in a function called from GDB.\n\
1788When the function (%s) is done executing, GDB will silently\n\
1789stop (instead of continuing to evaluate the expression containing\n\
1790the function call).", name);
1791 }
1792
da59e081 1793 /* If we get here the called FUNCTION run to completion. */
c906108c
SS
1794 do_cleanups (old_chain);
1795
1796 /* Figure out the value returned by the function. */
1797/* elz: I defined this new macro for the hppa architecture only.
1798 this gives us a way to get the value returned by the function from the stack,
1799 at the same address we told the function to put it.
1800 We cannot assume on the pa that r28 still contains the address of the returned
1801 structure. Usually this will be overwritten by the callee.
1802 I don't know about other architectures, so I defined this macro
c5aa993b 1803 */
c906108c
SS
1804
1805#ifdef VALUE_RETURNED_FROM_STACK
1806 if (struct_return)
1807 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1808#endif
1809
1810 return value_being_returned (value_type, retbuf, struct_return);
1811 }
1812}
7a292a7a 1813
c906108c
SS
1814value_ptr
1815call_function_by_hand (function, nargs, args)
1816 value_ptr function;
1817 int nargs;
1818 value_ptr *args;
1819{
7a292a7a
SS
1820 if (CALL_DUMMY_P)
1821 {
1822 return hand_function_call (function, nargs, args);
1823 }
1824 else
1825 {
1826 error ("Cannot invoke functions on this machine.");
1827 }
c906108c 1828}
c5aa993b 1829\f
7a292a7a 1830
c906108c 1831
c906108c
SS
1832/* Create a value for an array by allocating space in the inferior, copying
1833 the data into that space, and then setting up an array value.
1834
1835 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1836 populated from the values passed in ELEMVEC.
1837
1838 The element type of the array is inherited from the type of the
1839 first element, and all elements must have the same size (though we
1840 don't currently enforce any restriction on their types). */
1841
1842value_ptr
1843value_array (lowbound, highbound, elemvec)
1844 int lowbound;
1845 int highbound;
1846 value_ptr *elemvec;
1847{
1848 int nelem;
1849 int idx;
1850 unsigned int typelength;
1851 value_ptr val;
1852 struct type *rangetype;
1853 struct type *arraytype;
1854 CORE_ADDR addr;
1855
1856 /* Validate that the bounds are reasonable and that each of the elements
1857 have the same size. */
1858
1859 nelem = highbound - lowbound + 1;
1860 if (nelem <= 0)
1861 {
1862 error ("bad array bounds (%d, %d)", lowbound, highbound);
1863 }
1864 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1865 for (idx = 1; idx < nelem; idx++)
1866 {
1867 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1868 {
1869 error ("array elements must all be the same size");
1870 }
1871 }
1872
1873 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1874 lowbound, highbound);
c5aa993b
JM
1875 arraytype = create_array_type ((struct type *) NULL,
1876 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1877
1878 if (!current_language->c_style_arrays)
1879 {
1880 val = allocate_value (arraytype);
1881 for (idx = 0; idx < nelem; idx++)
1882 {
1883 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1884 VALUE_CONTENTS_ALL (elemvec[idx]),
1885 typelength);
1886 }
1887 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1888 return val;
1889 }
1890
1891 /* Allocate space to store the array in the inferior, and then initialize
1892 it by copying in each element. FIXME: Is it worth it to create a
1893 local buffer in which to collect each value and then write all the
1894 bytes in one operation? */
1895
1896 addr = allocate_space_in_inferior (nelem * typelength);
1897 for (idx = 0; idx < nelem; idx++)
1898 {
1899 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1900 typelength);
1901 }
1902
1903 /* Create the array type and set up an array value to be evaluated lazily. */
1904
1905 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1906 return (val);
1907}
1908
1909/* Create a value for a string constant by allocating space in the inferior,
1910 copying the data into that space, and returning the address with type
1911 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1912 of characters.
1913 Note that string types are like array of char types with a lower bound of
1914 zero and an upper bound of LEN - 1. Also note that the string may contain
1915 embedded null bytes. */
1916
1917value_ptr
1918value_string (ptr, len)
1919 char *ptr;
1920 int len;
1921{
1922 value_ptr val;
1923 int lowbound = current_language->string_lower_bound;
1924 struct type *rangetype = create_range_type ((struct type *) NULL,
1925 builtin_type_int,
1926 lowbound, len + lowbound - 1);
1927 struct type *stringtype
c5aa993b 1928 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1929 CORE_ADDR addr;
1930
1931 if (current_language->c_style_arrays == 0)
1932 {
1933 val = allocate_value (stringtype);
1934 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1935 return val;
1936 }
1937
1938
1939 /* Allocate space to store the string in the inferior, and then
1940 copy LEN bytes from PTR in gdb to that address in the inferior. */
1941
1942 addr = allocate_space_in_inferior (len);
1943 write_memory (addr, ptr, len);
1944
1945 val = value_at_lazy (stringtype, addr, NULL);
1946 return (val);
1947}
1948
1949value_ptr
1950value_bitstring (ptr, len)
1951 char *ptr;
1952 int len;
1953{
1954 value_ptr val;
1955 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1956 0, len - 1);
c5aa993b 1957 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1958 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1959 val = allocate_value (type);
1960 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1961 return val;
1962}
1963\f
1964/* See if we can pass arguments in T2 to a function which takes arguments
1965 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1966 arguments need coercion of some sort, then the coerced values are written
1967 into T2. Return value is 0 if the arguments could be matched, or the
1968 position at which they differ if not.
1969
1970 STATICP is nonzero if the T1 argument list came from a
1971 static member function.
1972
1973 For non-static member functions, we ignore the first argument,
1974 which is the type of the instance variable. This is because we want
1975 to handle calls with objects from derived classes. This is not
1976 entirely correct: we should actually check to make sure that a
1977 requested operation is type secure, shouldn't we? FIXME. */
1978
1979static int
1980typecmp (staticp, t1, t2)
1981 int staticp;
1982 struct type *t1[];
1983 value_ptr t2[];
1984{
1985 int i;
1986
1987 if (t2 == 0)
1988 return 1;
1989 if (staticp && t1 == 0)
1990 return t2[1] != 0;
1991 if (t1 == 0)
1992 return 1;
c5aa993b
JM
1993 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1994 return 0;
1995 if (t1[!staticp] == 0)
1996 return 0;
c906108c
SS
1997 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1998 {
c5aa993b
JM
1999 struct type *tt1, *tt2;
2000 if (!t2[i])
2001 return i + 1;
c906108c 2002 tt1 = check_typedef (t1[i]);
c5aa993b 2003 tt2 = check_typedef (VALUE_TYPE (t2[i]));
c906108c 2004 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2005 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2006 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2007 {
2008 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2009 t2[i] = value_coerce_array (t2[i]);
2010 else
2011 t2[i] = value_addr (t2[i]);
2012 continue;
2013 }
2014
2015 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
c5aa993b
JM
2016 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2017 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
c906108c 2018 {
c5aa993b
JM
2019 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2020 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
c906108c 2021 }
c5aa993b
JM
2022 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2023 continue;
c906108c
SS
2024 /* Array to pointer is a `trivial conversion' according to the ARM. */
2025
2026 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2027 of the ARM), but as a quick kludge, just check for the same type
2028 code. */
c906108c 2029 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2030 return i + 1;
c906108c 2031 }
c5aa993b
JM
2032 if (!t1[i])
2033 return 0;
2034 return t2[i] ? i + 1 : 0;
c906108c
SS
2035}
2036
2037/* Helper function used by value_struct_elt to recurse through baseclasses.
2038 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2039 and search in it assuming it has (class) type TYPE.
2040 If found, return value, else return NULL.
2041
2042 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2043 look for a baseclass named NAME. */
2044
2045static value_ptr
2046search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2047 char *name;
2048 register value_ptr arg1;
2049 int offset;
2050 register struct type *type;
2051 int looking_for_baseclass;
2052{
2053 int i;
2054 int nbases = TYPE_N_BASECLASSES (type);
2055
2056 CHECK_TYPEDEF (type);
2057
c5aa993b 2058 if (!looking_for_baseclass)
c906108c
SS
2059 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2060 {
2061 char *t_field_name = TYPE_FIELD_NAME (type, i);
2062
db577aea 2063 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2064 {
2065 value_ptr v;
2066 if (TYPE_FIELD_STATIC (type, i))
2067 v = value_static_field (type, i);
2068 else
2069 v = value_primitive_field (arg1, offset, i, type);
2070 if (v == 0)
c5aa993b 2071 error ("there is no field named %s", name);
c906108c
SS
2072 return v;
2073 }
2074
2075 if (t_field_name
2076 && (t_field_name[0] == '\0'
2077 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2078 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2079 {
2080 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2081 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2082 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2083 {
2084 /* Look for a match through the fields of an anonymous union,
2085 or anonymous struct. C++ provides anonymous unions.
2086
2087 In the GNU Chill implementation of variant record types,
2088 each <alternative field> has an (anonymous) union type,
2089 each member of the union represents a <variant alternative>.
2090 Each <variant alternative> is represented as a struct,
2091 with a member for each <variant field>. */
c5aa993b 2092
c906108c
SS
2093 value_ptr v;
2094 int new_offset = offset;
2095
2096 /* This is pretty gross. In G++, the offset in an anonymous
2097 union is relative to the beginning of the enclosing struct.
2098 In the GNU Chill implementation of variant records,
2099 the bitpos is zero in an anonymous union field, so we
2100 have to add the offset of the union here. */
2101 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2102 || (TYPE_NFIELDS (field_type) > 0
2103 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2104 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2105
2106 v = search_struct_field (name, arg1, new_offset, field_type,
2107 looking_for_baseclass);
2108 if (v)
2109 return v;
2110 }
2111 }
2112 }
2113
c5aa993b 2114 for (i = 0; i < nbases; i++)
c906108c
SS
2115 {
2116 value_ptr v;
2117 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2118 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2119 hit them. But it could happen that the base part's member name
2120 is not yet filled in. */
c906108c
SS
2121 int found_baseclass = (looking_for_baseclass
2122 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2123 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2124
2125 if (BASETYPE_VIA_VIRTUAL (type, i))
2126 {
2127 int boffset;
2128 value_ptr v2 = allocate_value (basetype);
2129
2130 boffset = baseclass_offset (type, i,
2131 VALUE_CONTENTS (arg1) + offset,
2132 VALUE_ADDRESS (arg1)
c5aa993b 2133 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2134 if (boffset == -1)
2135 error ("virtual baseclass botch");
2136
2137 /* The virtual base class pointer might have been clobbered by the
2138 user program. Make sure that it still points to a valid memory
2139 location. */
2140
2141 boffset += offset;
2142 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2143 {
2144 CORE_ADDR base_addr;
c5aa993b 2145
c906108c
SS
2146 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2147 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2148 TYPE_LENGTH (basetype)) != 0)
2149 error ("virtual baseclass botch");
2150 VALUE_LVAL (v2) = lval_memory;
2151 VALUE_ADDRESS (v2) = base_addr;
2152 }
2153 else
2154 {
2155 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2156 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2157 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2158 if (VALUE_LAZY (arg1))
2159 VALUE_LAZY (v2) = 1;
2160 else
2161 memcpy (VALUE_CONTENTS_RAW (v2),
2162 VALUE_CONTENTS_RAW (arg1) + boffset,
2163 TYPE_LENGTH (basetype));
2164 }
2165
2166 if (found_baseclass)
2167 return v2;
2168 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2169 looking_for_baseclass);
2170 }
2171 else if (found_baseclass)
2172 v = value_primitive_field (arg1, offset, i, type);
2173 else
2174 v = search_struct_field (name, arg1,
c5aa993b 2175 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2176 basetype, looking_for_baseclass);
c5aa993b
JM
2177 if (v)
2178 return v;
c906108c
SS
2179 }
2180 return NULL;
2181}
2182
2183
2184/* Return the offset (in bytes) of the virtual base of type BASETYPE
2185 * in an object pointed to by VALADDR (on the host), assumed to be of
2186 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2187 * looking (in case VALADDR is the contents of an enclosing object).
2188 *
2189 * This routine recurses on the primary base of the derived class because
2190 * the virtual base entries of the primary base appear before the other
2191 * virtual base entries.
2192 *
2193 * If the virtual base is not found, a negative integer is returned.
2194 * The magnitude of the negative integer is the number of entries in
2195 * the virtual table to skip over (entries corresponding to various
2196 * ancestral classes in the chain of primary bases).
2197 *
2198 * Important: This assumes the HP / Taligent C++ runtime
2199 * conventions. Use baseclass_offset() instead to deal with g++
2200 * conventions. */
2201
2202void
c5aa993b
JM
2203find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2204 struct type *type;
2205 struct type *basetype;
2206 char *valaddr;
2207 int offset;
2208 int *boffset_p;
2209 int *skip_p;
c906108c 2210{
c5aa993b
JM
2211 int boffset; /* offset of virtual base */
2212 int index; /* displacement to use in virtual table */
c906108c 2213 int skip;
c5aa993b
JM
2214
2215 value_ptr vp;
2216 CORE_ADDR vtbl; /* the virtual table pointer */
2217 struct type *pbc; /* the primary base class */
c906108c
SS
2218
2219 /* Look for the virtual base recursively in the primary base, first.
2220 * This is because the derived class object and its primary base
2221 * subobject share the primary virtual table. */
c5aa993b 2222
c906108c 2223 boffset = 0;
c5aa993b 2224 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2225 if (pbc)
2226 {
2227 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2228 if (skip < 0)
c5aa993b
JM
2229 {
2230 *boffset_p = boffset;
2231 *skip_p = -1;
2232 return;
2233 }
c906108c
SS
2234 }
2235 else
2236 skip = 0;
2237
2238
2239 /* Find the index of the virtual base according to HP/Taligent
2240 runtime spec. (Depth-first, left-to-right.) */
2241 index = virtual_base_index_skip_primaries (basetype, type);
2242
c5aa993b
JM
2243 if (index < 0)
2244 {
2245 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2246 *boffset_p = 0;
2247 return;
2248 }
c906108c 2249
c5aa993b 2250 /* pai: FIXME -- 32x64 possible problem */
c906108c 2251 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2252 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2253
c5aa993b 2254 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2255 if (vtbl == 0)
2256 error ("Couldn't find virtual table -- object may not be constructed yet.");
2257
2258
2259 /* Find virtual base's offset -- jump over entries for primary base
2260 * ancestors, then use the index computed above. But also adjust by
2261 * HP_ACC_VBASE_START for the vtable slots before the start of the
2262 * virtual base entries. Offset is negative -- virtual base entries
2263 * appear _before_ the address point of the virtual table. */
c5aa993b 2264
070ad9f0 2265 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2266 & use long type */
c906108c
SS
2267
2268 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2269 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2270 boffset = value_as_long (vp);
2271 *skip_p = -1;
2272 *boffset_p = boffset;
2273 return;
2274}
2275
2276
2277/* Helper function used by value_struct_elt to recurse through baseclasses.
2278 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2279 and search in it assuming it has (class) type TYPE.
2280 If found, return value, else if name matched and args not return (value)-1,
2281 else return NULL. */
2282
2283static value_ptr
2284search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2285 char *name;
2286 register value_ptr *arg1p, *args;
2287 int offset, *static_memfuncp;
2288 register struct type *type;
2289{
2290 int i;
2291 value_ptr v;
2292 int name_matched = 0;
2293 char dem_opname[64];
2294
2295 CHECK_TYPEDEF (type);
2296 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2297 {
2298 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2299 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2300 if (strncmp (t_field_name, "__", 2) == 0 ||
2301 strncmp (t_field_name, "op", 2) == 0 ||
2302 strncmp (t_field_name, "type", 4) == 0)
c906108c 2303 {
c5aa993b
JM
2304 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2305 t_field_name = dem_opname;
2306 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2307 t_field_name = dem_opname;
c906108c 2308 }
db577aea 2309 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2310 {
2311 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2312 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2313 name_matched = 1;
c906108c
SS
2314
2315 if (j > 0 && args == 0)
2316 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2317 while (j >= 0)
2318 {
2319 if (TYPE_FN_FIELD_STUB (f, j))
2320 check_stub_method (type, i, j);
2321 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2322 TYPE_FN_FIELD_ARGS (f, j), args))
2323 {
2324 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2325 return value_virtual_fn_field (arg1p, f, j, type, offset);
2326 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2327 *static_memfuncp = 1;
2328 v = value_fn_field (arg1p, f, j, type, offset);
c5aa993b
JM
2329 if (v != NULL)
2330 return v;
c906108c
SS
2331 }
2332 j--;
2333 }
2334 }
2335 }
2336
2337 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2338 {
2339 int base_offset;
2340
2341 if (BASETYPE_VIA_VIRTUAL (type, i))
2342 {
c5aa993b
JM
2343 if (TYPE_HAS_VTABLE (type))
2344 {
2345 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2346 according to HP/Taligent runtime spec. */
c5aa993b
JM
2347 int skip;
2348 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2349 VALUE_CONTENTS_ALL (*arg1p),
2350 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2351 &base_offset, &skip);
2352 if (skip >= 0)
2353 error ("Virtual base class offset not found in vtable");
2354 }
2355 else
2356 {
2357 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2358 char *base_valaddr;
2359
2360 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2361 user program. Make sure that it still points to a valid memory
2362 location. */
c5aa993b
JM
2363
2364 if (offset < 0 || offset >= TYPE_LENGTH (type))
2365 {
2366 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2367 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2368 + VALUE_OFFSET (*arg1p) + offset,
2369 base_valaddr,
2370 TYPE_LENGTH (baseclass)) != 0)
2371 error ("virtual baseclass botch");
2372 }
2373 else
2374 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2375
2376 base_offset =
2377 baseclass_offset (type, i, base_valaddr,
2378 VALUE_ADDRESS (*arg1p)
2379 + VALUE_OFFSET (*arg1p) + offset);
2380 if (base_offset == -1)
2381 error ("virtual baseclass botch");
2382 }
2383 }
c906108c
SS
2384 else
2385 {
2386 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2387 }
c906108c
SS
2388 v = search_struct_method (name, arg1p, args, base_offset + offset,
2389 static_memfuncp, TYPE_BASECLASS (type, i));
c5aa993b 2390 if (v == (value_ptr) - 1)
c906108c
SS
2391 {
2392 name_matched = 1;
2393 }
2394 else if (v)
2395 {
2396/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2397/* *arg1p = arg1_tmp; */
c906108c 2398 return v;
c5aa993b 2399 }
c906108c 2400 }
c5aa993b
JM
2401 if (name_matched)
2402 return (value_ptr) - 1;
2403 else
2404 return NULL;
c906108c
SS
2405}
2406
2407/* Given *ARGP, a value of type (pointer to a)* structure/union,
2408 extract the component named NAME from the ultimate target structure/union
2409 and return it as a value with its appropriate type.
2410 ERR is used in the error message if *ARGP's type is wrong.
2411
2412 C++: ARGS is a list of argument types to aid in the selection of
2413 an appropriate method. Also, handle derived types.
2414
2415 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2416 where the truthvalue of whether the function that was resolved was
2417 a static member function or not is stored.
2418
2419 ERR is an error message to be printed in case the field is not found. */
2420
2421value_ptr
2422value_struct_elt (argp, args, name, static_memfuncp, err)
2423 register value_ptr *argp, *args;
2424 char *name;
2425 int *static_memfuncp;
2426 char *err;
2427{
2428 register struct type *t;
2429 value_ptr v;
2430
2431 COERCE_ARRAY (*argp);
2432
2433 t = check_typedef (VALUE_TYPE (*argp));
2434
2435 /* Follow pointers until we get to a non-pointer. */
2436
2437 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2438 {
2439 *argp = value_ind (*argp);
2440 /* Don't coerce fn pointer to fn and then back again! */
2441 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2442 COERCE_ARRAY (*argp);
2443 t = check_typedef (VALUE_TYPE (*argp));
2444 }
2445
2446 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2447 error ("not implemented: member type in value_struct_elt");
2448
c5aa993b 2449 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2450 && TYPE_CODE (t) != TYPE_CODE_UNION)
2451 error ("Attempt to extract a component of a value that is not a %s.", err);
2452
2453 /* Assume it's not, unless we see that it is. */
2454 if (static_memfuncp)
c5aa993b 2455 *static_memfuncp = 0;
c906108c
SS
2456
2457 if (!args)
2458 {
2459 /* if there are no arguments ...do this... */
2460
2461 /* Try as a field first, because if we succeed, there
7b83ea04 2462 is less work to be done. */
c906108c
SS
2463 v = search_struct_field (name, *argp, 0, t, 0);
2464 if (v)
2465 return v;
2466
2467 /* C++: If it was not found as a data field, then try to
7b83ea04 2468 return it as a pointer to a method. */
c906108c
SS
2469
2470 if (destructor_name_p (name, t))
2471 error ("Cannot get value of destructor");
2472
2473 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2474
c5aa993b 2475 if (v == (value_ptr) - 1)
c906108c
SS
2476 error ("Cannot take address of a method");
2477 else if (v == 0)
2478 {
2479 if (TYPE_NFN_FIELDS (t))
2480 error ("There is no member or method named %s.", name);
2481 else
2482 error ("There is no member named %s.", name);
2483 }
2484 return v;
2485 }
2486
2487 if (destructor_name_p (name, t))
2488 {
2489 if (!args[1])
2490 {
2491 /* Destructors are a special case. */
2492 int m_index, f_index;
2493
2494 v = NULL;
2495 if (get_destructor_fn_field (t, &m_index, &f_index))
2496 {
2497 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2498 f_index, NULL, 0);
2499 }
2500 if (v == NULL)
2501 error ("could not find destructor function named %s.", name);
2502 else
2503 return v;
2504 }
2505 else
2506 {
2507 error ("destructor should not have any argument");
2508 }
2509 }
2510 else
2511 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2512
c5aa993b 2513 if (v == (value_ptr) - 1)
c906108c 2514 {
c5aa993b 2515 error ("Argument list of %s mismatch with component in the structure.", name);
c906108c
SS
2516 }
2517 else if (v == 0)
2518 {
2519 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2520 hand it back. If it's not callable (i.e., a pointer to function),
2521 gdb should give an error. */
c906108c
SS
2522 v = search_struct_field (name, *argp, 0, t, 0);
2523 }
2524
2525 if (!v)
2526 error ("Structure has no component named %s.", name);
2527 return v;
2528}
2529
2530/* Search through the methods of an object (and its bases)
2531 * to find a specified method. Return the pointer to the
2532 * fn_field list of overloaded instances.
2533 * Helper function for value_find_oload_list.
2534 * ARGP is a pointer to a pointer to a value (the object)
2535 * METHOD is a string containing the method name
2536 * OFFSET is the offset within the value
2537 * STATIC_MEMFUNCP is set if the method is static
2538 * TYPE is the assumed type of the object
2539 * NUM_FNS is the number of overloaded instances
2540 * BASETYPE is set to the actual type of the subobject where the method is found
2541 * BOFFSET is the offset of the base subobject where the method is found */
2542
7a292a7a 2543static struct fn_field *
c906108c 2544find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
7a292a7a 2545 value_ptr *argp;
c5aa993b 2546 char *method;
7a292a7a 2547 int offset;
c5aa993b
JM
2548 int *static_memfuncp;
2549 struct type *type;
2550 int *num_fns;
2551 struct type **basetype;
2552 int *boffset;
c906108c
SS
2553{
2554 int i;
c5aa993b 2555 struct fn_field *f;
c906108c
SS
2556 CHECK_TYPEDEF (type);
2557
2558 *num_fns = 0;
2559
c5aa993b
JM
2560 /* First check in object itself */
2561 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2562 {
2563 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2564 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2565 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b
JM
2566 {
2567 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2568 *basetype = type;
2569 *boffset = offset;
2570 return TYPE_FN_FIELDLIST1 (type, i);
2571 }
2572 }
2573
c906108c
SS
2574 /* Not found in object, check in base subobjects */
2575 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2576 {
2577 int base_offset;
2578 if (BASETYPE_VIA_VIRTUAL (type, i))
2579 {
c5aa993b
JM
2580 if (TYPE_HAS_VTABLE (type))
2581 {
2582 /* HP aCC compiled type, search for virtual base offset
2583 * according to HP/Taligent runtime spec. */
2584 int skip;
2585 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2586 VALUE_CONTENTS_ALL (*argp),
2587 offset + VALUE_EMBEDDED_OFFSET (*argp),
2588 &base_offset, &skip);
2589 if (skip >= 0)
2590 error ("Virtual base class offset not found in vtable");
2591 }
2592 else
2593 {
2594 /* probably g++ runtime model */
2595 base_offset = VALUE_OFFSET (*argp) + offset;
2596 base_offset =
2597 baseclass_offset (type, i,
2598 VALUE_CONTENTS (*argp) + base_offset,
2599 VALUE_ADDRESS (*argp) + base_offset);
2600 if (base_offset == -1)
2601 error ("virtual baseclass botch");
2602 }
2603 }
2604 else
2605 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2606 {
2607 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2608 }
c906108c 2609 f = find_method_list (argp, method, base_offset + offset,
c5aa993b 2610 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
c906108c 2611 if (f)
c5aa993b 2612 return f;
c906108c 2613 }
c5aa993b 2614 return NULL;
c906108c
SS
2615}
2616
2617/* Return the list of overloaded methods of a specified name.
2618 * ARGP is a pointer to a pointer to a value (the object)
2619 * METHOD is the method name
2620 * OFFSET is the offset within the value contents
2621 * STATIC_MEMFUNCP is set if the method is static
2622 * NUM_FNS is the number of overloaded instances
2623 * BASETYPE is set to the type of the base subobject that defines the method
2624 * BOFFSET is the offset of the base subobject which defines the method */
2625
2626struct fn_field *
2627value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
c5aa993b
JM
2628 value_ptr *argp;
2629 char *method;
2630 int offset;
2631 int *static_memfuncp;
2632 int *num_fns;
2633 struct type **basetype;
2634 int *boffset;
c906108c 2635{
c5aa993b 2636 struct type *t;
c906108c
SS
2637
2638 t = check_typedef (VALUE_TYPE (*argp));
2639
c5aa993b 2640 /* code snarfed from value_struct_elt */
c906108c
SS
2641 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2642 {
2643 *argp = value_ind (*argp);
2644 /* Don't coerce fn pointer to fn and then back again! */
2645 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2646 COERCE_ARRAY (*argp);
2647 t = check_typedef (VALUE_TYPE (*argp));
2648 }
c5aa993b 2649
c906108c
SS
2650 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2651 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2652
2653 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2654 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2655 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2656
c906108c
SS
2657 /* Assume it's not static, unless we see that it is. */
2658 if (static_memfuncp)
c5aa993b 2659 *static_memfuncp = 0;
c906108c
SS
2660
2661 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
c5aa993b 2662
c906108c
SS
2663}
2664
2665/* Given an array of argument types (ARGTYPES) (which includes an
2666 entry for "this" in the case of C++ methods), the number of
2667 arguments NARGS, the NAME of a function whether it's a method or
2668 not (METHOD), and the degree of laxness (LAX) in conforming to
2669 overload resolution rules in ANSI C++, find the best function that
2670 matches on the argument types according to the overload resolution
2671 rules.
2672
2673 In the case of class methods, the parameter OBJ is an object value
2674 in which to search for overloaded methods.
2675
2676 In the case of non-method functions, the parameter FSYM is a symbol
2677 corresponding to one of the overloaded functions.
2678
2679 Return value is an integer: 0 -> good match, 10 -> debugger applied
2680 non-standard coercions, 100 -> incompatible.
2681
2682 If a method is being searched for, VALP will hold the value.
2683 If a non-method is being searched for, SYMP will hold the symbol for it.
2684
2685 If a method is being searched for, and it is a static method,
2686 then STATICP will point to a non-zero value.
2687
2688 Note: This function does *not* check the value of
2689 overload_resolution. Caller must check it to see whether overload
2690 resolution is permitted.
c5aa993b 2691 */
c906108c
SS
2692
2693int
2694find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
c5aa993b
JM
2695 struct type **arg_types;
2696 int nargs;
2697 char *name;
2698 int method;
2699 int lax;
2700 value_ptr obj;
2701 struct symbol *fsym;
2702 value_ptr *valp;
2703 struct symbol **symp;
2704 int *staticp;
c906108c
SS
2705{
2706 int nparms;
c5aa993b 2707 struct type **parm_types;
c906108c 2708 int champ_nparms = 0;
c5aa993b
JM
2709
2710 short oload_champ = -1; /* Index of best overloaded function */
2711 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2712 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2713 short oload_ambig_champ = -1; /* 2nd contender for best match */
2714 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2715 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2716
2717 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2718 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2719
c906108c 2720 value_ptr temp = obj;
c5aa993b
JM
2721 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2722 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2723 int num_fns = 0; /* Number of overloaded instances being considered */
2724 struct type *basetype = NULL;
c906108c
SS
2725 int boffset;
2726 register int jj;
2727 register int ix;
2728
c5aa993b
JM
2729 char *obj_type_name = NULL;
2730 char *func_name = NULL;
c906108c
SS
2731
2732 /* Get the list of overloaded methods or functions */
2733 if (method)
2734 {
db577aea
AC
2735 int i;
2736 int len;
2737 struct type *domain;
c906108c
SS
2738 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2739 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2740 value rather than the object itself, so try again */
c906108c 2741 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2742 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2743 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2744
2745 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2746 staticp,
2747 &num_fns,
2748 &basetype, &boffset);
c906108c 2749 if (!fns_ptr || !num_fns)
c5aa993b
JM
2750 error ("Couldn't find method %s%s%s",
2751 obj_type_name,
2752 (obj_type_name && *obj_type_name) ? "::" : "",
2753 name);
db577aea
AC
2754 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2755 len = TYPE_NFN_FIELDS (domain);
2756 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2757 give us the info we need directly in the types. We have to
2758 use the method stub conversion to get it. Be aware that this
2759 is by no means perfect, and if you use STABS, please move to
2760 DWARF-2, or something like it, because trying to improve
2761 overloading using STABS is really a waste of time. */
2762 for (i = 0; i < len; i++)
2763 {
2764 int j;
2765 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2766 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2767
2768 for (j = 0; j < len2; j++)
2769 {
070ad9f0 2770 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
db577aea
AC
2771 check_stub_method (domain, i, j);
2772 }
2773 }
c906108c
SS
2774 }
2775 else
2776 {
2777 int i = -1;
2778 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2779
917317f4 2780 /* If the name is NULL this must be a C-style function.
7b83ea04 2781 Just return the same symbol. */
917317f4 2782 if (!func_name)
7b83ea04 2783 {
917317f4 2784 *symp = fsym;
7b83ea04
AC
2785 return 0;
2786 }
917317f4 2787
c906108c
SS
2788 oload_syms = make_symbol_overload_list (fsym);
2789 while (oload_syms[++i])
c5aa993b 2790 num_fns++;
c906108c 2791 if (!num_fns)
c5aa993b 2792 error ("Couldn't find function %s", func_name);
c906108c 2793 }
c5aa993b 2794
c906108c
SS
2795 oload_champ_bv = NULL;
2796
c5aa993b 2797 /* Consider each candidate in turn */
c906108c
SS
2798 for (ix = 0; ix < num_fns; ix++)
2799 {
db577aea
AC
2800 if (method)
2801 {
2802 /* For static member functions, we won't have a this pointer, but nothing
2803 else seems to handle them right now, so we just pretend ourselves */
2804 nparms=0;
2805
2806 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2807 {
2808 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2809 nparms++;
2810 }
2811 }
2812 else
2813 {
2814 /* If it's not a method, this is the proper place */
2815 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2816 }
c906108c 2817
c5aa993b 2818 /* Prepare array of parameter types */
c906108c
SS
2819 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2820 for (jj = 0; jj < nparms; jj++)
db577aea
AC
2821 parm_types[jj] = (method
2822 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2823 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c
SS
2824
2825 /* Compare parameter types to supplied argument types */
2826 bv = rank_function (parm_types, nparms, arg_types, nargs);
c5aa993b 2827
c906108c 2828 if (!oload_champ_bv)
c5aa993b
JM
2829 {
2830 oload_champ_bv = bv;
2831 oload_champ = 0;
2832 champ_nparms = nparms;
2833 }
c906108c 2834 else
c5aa993b
JM
2835 /* See whether current candidate is better or worse than previous best */
2836 switch (compare_badness (bv, oload_champ_bv))
2837 {
2838 case 0:
2839 oload_ambiguous = 1; /* top two contenders are equally good */
2840 oload_ambig_champ = ix;
2841 break;
2842 case 1:
2843 oload_ambiguous = 2; /* incomparable top contenders */
2844 oload_ambig_champ = ix;
2845 break;
2846 case 2:
2847 oload_champ_bv = bv; /* new champion, record details */
2848 oload_ambiguous = 0;
2849 oload_champ = ix;
2850 oload_ambig_champ = -1;
2851 champ_nparms = nparms;
2852 break;
2853 case 3:
2854 default:
2855 break;
2856 }
c906108c 2857 free (parm_types);
070ad9f0
DB
2858if (overload_debug)
2859{
c906108c 2860 if (method)
070ad9f0 2861 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
c906108c 2862 else
070ad9f0 2863 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
db577aea 2864 for (jj = 0; jj < nargs; jj++)
070ad9f0
DB
2865 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2866 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2867}
c5aa993b 2868 } /* end loop over all candidates */
db577aea
AC
2869 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2870 if they have the exact same goodness. This is because there is no
2871 way to differentiate based on return type, which we need to in
2872 cases like overloads of .begin() <It's both const and non-const> */
2873#if 0
c906108c
SS
2874 if (oload_ambiguous)
2875 {
2876 if (method)
c5aa993b
JM
2877 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2878 obj_type_name,
2879 (obj_type_name && *obj_type_name) ? "::" : "",
2880 name);
c906108c 2881 else
c5aa993b
JM
2882 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2883 func_name);
c906108c 2884 }
db577aea 2885#endif
c906108c 2886
c5aa993b 2887 /* Check how bad the best match is */
c906108c
SS
2888 for (ix = 1; ix <= nargs; ix++)
2889 {
2890 switch (oload_champ_bv->rank[ix])
c5aa993b
JM
2891 {
2892 case 10:
2893 oload_non_standard = 1; /* non-standard type conversions needed */
2894 break;
2895 case 100:
2896 oload_incompatible = 1; /* truly mismatched types */
2897 break;
2898 }
c906108c
SS
2899 }
2900 if (oload_incompatible)
2901 {
2902 if (method)
c5aa993b
JM
2903 error ("Cannot resolve method %s%s%s to any overloaded instance",
2904 obj_type_name,
2905 (obj_type_name && *obj_type_name) ? "::" : "",
2906 name);
c906108c 2907 else
c5aa993b
JM
2908 error ("Cannot resolve function %s to any overloaded instance",
2909 func_name);
c906108c
SS
2910 }
2911 else if (oload_non_standard)
2912 {
2913 if (method)
c5aa993b
JM
2914 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2915 obj_type_name,
2916 (obj_type_name && *obj_type_name) ? "::" : "",
2917 name);
c906108c 2918 else
c5aa993b
JM
2919 warning ("Using non-standard conversion to match function %s to supplied arguments",
2920 func_name);
c906108c
SS
2921 }
2922
2923 if (method)
2924 {
2925 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2926 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2927 else
c5aa993b 2928 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2929 }
2930 else
2931 {
2932 *symp = oload_syms[oload_champ];
2933 free (func_name);
2934 }
2935
2936 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2937}
2938
2939/* C++: return 1 is NAME is a legitimate name for the destructor
2940 of type TYPE. If TYPE does not have a destructor, or
2941 if NAME is inappropriate for TYPE, an error is signaled. */
2942int
2943destructor_name_p (name, type)
2944 const char *name;
2945 const struct type *type;
2946{
2947 /* destructors are a special case. */
2948
2949 if (name[0] == '~')
2950 {
2951 char *dname = type_name_no_tag (type);
2952 char *cp = strchr (dname, '<');
2953 unsigned int len;
2954
2955 /* Do not compare the template part for template classes. */
2956 if (cp == NULL)
2957 len = strlen (dname);
2958 else
2959 len = cp - dname;
2960 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2961 error ("name of destructor must equal name of class");
2962 else
2963 return 1;
2964 }
2965 return 0;
2966}
2967
2968/* Helper function for check_field: Given TYPE, a structure/union,
2969 return 1 if the component named NAME from the ultimate
2970 target structure/union is defined, otherwise, return 0. */
2971
2972static int
2973check_field_in (type, name)
2974 register struct type *type;
2975 const char *name;
2976{
2977 register int i;
2978
2979 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2980 {
2981 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2982 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2983 return 1;
2984 }
2985
2986 /* C++: If it was not found as a data field, then try to
2987 return it as a pointer to a method. */
2988
2989 /* Destructors are a special case. */
2990 if (destructor_name_p (name, type))
2991 {
2992 int m_index, f_index;
2993
2994 return get_destructor_fn_field (type, &m_index, &f_index);
2995 }
2996
2997 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2998 {
db577aea 2999 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
3000 return 1;
3001 }
3002
3003 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3004 if (check_field_in (TYPE_BASECLASS (type, i), name))
3005 return 1;
c5aa993b 3006
c906108c
SS
3007 return 0;
3008}
3009
3010
3011/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3012 return 1 if the component named NAME from the ultimate
3013 target structure/union is defined, otherwise, return 0. */
3014
3015int
3016check_field (arg1, name)
3017 register value_ptr arg1;
3018 const char *name;
3019{
3020 register struct type *t;
3021
3022 COERCE_ARRAY (arg1);
3023
3024 t = VALUE_TYPE (arg1);
3025
3026 /* Follow pointers until we get to a non-pointer. */
3027
3028 for (;;)
3029 {
3030 CHECK_TYPEDEF (t);
3031 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3032 break;
3033 t = TYPE_TARGET_TYPE (t);
3034 }
3035
3036 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3037 error ("not implemented: member type in check_field");
3038
c5aa993b 3039 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3040 && TYPE_CODE (t) != TYPE_CODE_UNION)
3041 error ("Internal error: `this' is not an aggregate");
3042
3043 return check_field_in (t, name);
3044}
3045
3046/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3047 return the address of this member as a "pointer to member"
3048 type. If INTYPE is non-null, then it will be the type
3049 of the member we are looking for. This will help us resolve
3050 "pointers to member functions". This function is used
3051 to resolve user expressions of the form "DOMAIN::NAME". */
3052
3053value_ptr
3054value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3055 struct type *domain, *curtype, *intype;
3056 int offset;
3057 char *name;
3058{
3059 register struct type *t = curtype;
3060 register int i;
3061 value_ptr v;
3062
c5aa993b 3063 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3064 && TYPE_CODE (t) != TYPE_CODE_UNION)
3065 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3066
3067 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3068 {
3069 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3070
c906108c
SS
3071 if (t_field_name && STREQ (t_field_name, name))
3072 {
3073 if (TYPE_FIELD_STATIC (t, i))
3074 {
3075 v = value_static_field (t, i);
3076 if (v == NULL)
3077 error ("Internal error: could not find static variable %s",
3078 name);
3079 return v;
3080 }
3081 if (TYPE_FIELD_PACKED (t, i))
3082 error ("pointers to bitfield members not allowed");
c5aa993b 3083
c906108c
SS
3084 return value_from_longest
3085 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3086 domain)),
3087 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3088 }
3089 }
3090
3091 /* C++: If it was not found as a data field, then try to
3092 return it as a pointer to a method. */
3093
3094 /* Destructors are a special case. */
3095 if (destructor_name_p (name, t))
3096 {
3097 error ("member pointers to destructors not implemented yet");
3098 }
3099
3100 /* Perform all necessary dereferencing. */
3101 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3102 intype = TYPE_TARGET_TYPE (intype);
3103
3104 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3105 {
3106 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3107 char dem_opname[64];
3108
c5aa993b
JM
3109 if (strncmp (t_field_name, "__", 2) == 0 ||
3110 strncmp (t_field_name, "op", 2) == 0 ||
3111 strncmp (t_field_name, "type", 4) == 0)
c906108c 3112 {
c5aa993b
JM
3113 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3114 t_field_name = dem_opname;
3115 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3116 t_field_name = dem_opname;
c906108c
SS
3117 }
3118 if (t_field_name && STREQ (t_field_name, name))
3119 {
3120 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3121 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3122
c906108c
SS
3123 if (intype == 0 && j > 1)
3124 error ("non-unique member `%s' requires type instantiation", name);
3125 if (intype)
3126 {
3127 while (j--)
3128 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3129 break;
3130 if (j < 0)
3131 error ("no member function matches that type instantiation");
3132 }
3133 else
3134 j = 0;
c5aa993b 3135
c906108c
SS
3136 if (TYPE_FN_FIELD_STUB (f, j))
3137 check_stub_method (t, i, j);
3138 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3139 {
3140 return value_from_longest
3141 (lookup_reference_type
3142 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3143 domain)),
3144 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3145 }
3146 else
3147 {
3148 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3149 0, VAR_NAMESPACE, 0, NULL);
3150 if (s == NULL)
3151 {
3152 v = 0;
3153 }
3154 else
3155 {
3156 v = read_var_value (s, 0);
3157#if 0
3158 VALUE_TYPE (v) = lookup_reference_type
3159 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3160 domain));
3161#endif
3162 }
3163 return v;
3164 }
3165 }
3166 }
3167 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3168 {
3169 value_ptr v;
3170 int base_offset;
3171
3172 if (BASETYPE_VIA_VIRTUAL (t, i))
3173 base_offset = 0;
3174 else
3175 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3176 v = value_struct_elt_for_reference (domain,
3177 offset + base_offset,
3178 TYPE_BASECLASS (t, i),
3179 name,
3180 intype);
3181 if (v)
3182 return v;
3183 }
3184 return 0;
3185}
3186
3187
3188/* Find the real run-time type of a value using RTTI.
3189 * V is a pointer to the value.
3190 * A pointer to the struct type entry of the run-time type
3191 * is returneed.
3192 * FULL is a flag that is set only if the value V includes
3193 * the entire contents of an object of the RTTI type.
3194 * TOP is the offset to the top of the enclosing object of
3195 * the real run-time type. This offset may be for the embedded
3196 * object, or for the enclosing object of V.
3197 * USING_ENC is the flag that distinguishes the two cases.
3198 * If it is 1, then the offset is for the enclosing object,
3199 * otherwise for the embedded object.
070ad9f0
DB
3200 *
3201 */
c906108c
SS
3202
3203struct type *
3204value_rtti_type (v, full, top, using_enc)
c5aa993b
JM
3205 value_ptr v;
3206 int *full;
3207 int *top;
3208 int *using_enc;
c906108c 3209{
c5aa993b
JM
3210 struct type *known_type;
3211 struct type *rtti_type;
c906108c
SS
3212 CORE_ADDR coreptr;
3213 value_ptr vp;
3214 int using_enclosing = 0;
3215 long top_offset = 0;
3216 char rtti_type_name[256];
3217
3218 if (full)
3219 *full = 0;
3220 if (top)
3221 *top = -1;
3222 if (using_enc)
3223 *using_enc = 0;
3224
c5aa993b 3225 /* Get declared type */
c906108c
SS
3226 known_type = VALUE_TYPE (v);
3227 CHECK_TYPEDEF (known_type);
c5aa993b 3228 /* RTTI works only or class objects */
c906108c
SS
3229 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3230 return NULL;
070ad9f0
DB
3231 if (TYPE_HAS_VTABLE(known_type))
3232 {
3233 /* If neither the declared type nor the enclosing type of the
3234 * value structure has a HP ANSI C++ style virtual table,
3235 * we can't do anything. */
3236 if (!TYPE_HAS_VTABLE (known_type))
3237 {
3238 known_type = VALUE_ENCLOSING_TYPE (v);
3239 CHECK_TYPEDEF (known_type);
3240 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3241 !TYPE_HAS_VTABLE (known_type))
3242 return NULL; /* No RTTI, or not HP-compiled types */
3243 CHECK_TYPEDEF (known_type);
3244 using_enclosing = 1;
3245 }
c906108c 3246
070ad9f0
DB
3247 if (using_enclosing && using_enc)
3248 *using_enc = 1;
3249
3250 /* First get the virtual table address */
3251 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3252 + VALUE_OFFSET (v)
3253 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3254 if (coreptr == 0)
3255 return NULL; /* return silently -- maybe called on gdb-generated value */
3256
3257 /* Fetch the top offset of the object */
3258 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3259 vp = value_at (builtin_type_int,
3260 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3261 VALUE_BFD_SECTION (v));
3262 top_offset = value_as_long (vp);
3263 if (top)
3264 *top = top_offset;
3265
3266 /* Fetch the typeinfo pointer */
3267 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3268 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3269 /* Indirect through the typeinfo pointer and retrieve the pointer
3270 * to the string name */
3271 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3272 if (!coreptr)
3273 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3274 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3275 /* FIXME possible 32x64 problem */
3276
3277 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3278
3279 read_memory_string (coreptr, rtti_type_name, 256);
3280
3281 if (strlen (rtti_type_name) == 0)
3282 error ("Retrieved null type name from typeinfo");
3283
3284 /* search for type */
3285 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3286
3287 if (!rtti_type)
3288 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3289 CHECK_TYPEDEF (rtti_type);
3290#if 0
3291 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3292#endif
3293 /* Check whether we have the entire object */
3294 if (full /* Non-null pointer passed */
3295 &&
3296 /* Either we checked on the whole object in hand and found the
3297 top offset to be zero */
3298 (((top_offset == 0) &&
3299 using_enclosing &&
3300 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3301 ||
3302 /* Or we checked on the embedded object and top offset was the
3303 same as the embedded offset */
3304 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3305 !using_enclosing &&
3306 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3307
3308 *full = 1;
3309 }
3310 else
3311 /*
3312 Right now this is G++ RTTI. Plan on this changing in the
3313 future as i get around to setting the vtables properly for G++
3314 compiled stuff. Also, i'll be using the type info functions,
3315 which are always right. Deal with it until then.
3316 */
3317 {
3318 CORE_ADDR vtbl;
3319 struct minimal_symbol *minsym;
3320 struct symbol *sym;
3321 char *demangled_name;
3322 struct type *btype;
3323 /* If the type has no vptr fieldno, try to get it filled in */
3324 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3325 fill_in_vptr_fieldno(known_type);
3326
3327 /* If we still can't find one, give up */
3328 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3329 return NULL;
c5aa993b 3330
070ad9f0
DB
3331 /* Make sure our basetype and known type match, otherwise, cast
3332 so we can get at the vtable properly.
3333 */
3334 btype = TYPE_VPTR_BASETYPE (known_type);
3335 CHECK_TYPEDEF (btype);
3336 if (btype != known_type )
3337 {
3338 v = value_cast (btype, v);
3339 if (using_enc)
3340 *using_enc=1;
3341 }
3342 /*
3343 We can't use value_ind here, because it would want to use RTTI, and
3344 we'd waste a bunch of time figuring out we already know the type.
3345 Besides, we don't care about the type, just the actual pointer
3346 */
85c9a9d5 3347 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
070ad9f0 3348 return NULL;
c5aa993b 3349
070ad9f0
DB
3350 /*
3351 If we are enclosed by something that isn't us, adjust the
3352 address properly and set using_enclosing.
3353 */
3354 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3355 {
3356 value_ptr tempval;
3357 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3358 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3359 vtbl=value_as_pointer(tempval);
3360 using_enclosing=1;
3361 }
3362 else
3363 {
3364 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3365 using_enclosing=0;
3366 }
c906108c 3367
070ad9f0
DB
3368 /* Try to find a symbol that is the vtable */
3369 minsym=lookup_minimal_symbol_by_pc(vtbl);
3370 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3371 return NULL;
c906108c 3372
070ad9f0
DB
3373 /* If we just skip the prefix, we get screwed by namespaces */
3374 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3375 *(strchr(demangled_name,' '))=0;
c906108c 3376
070ad9f0
DB
3377 /* Lookup the type for the name */
3378 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
c5aa993b 3379
070ad9f0
DB
3380 if (rtti_type==NULL)
3381 return NULL;
c5aa993b 3382
070ad9f0
DB
3383 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3384 {
3385 if (top)
3386 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3387 if (top && ((*top) >0))
3388 {
3389 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3390 {
3391 if (full)
3392 *full=0;
3393 }
3394 else
3395 {
3396 if (full)
3397 *full=1;
3398 }
3399 }
3400 }
3401 else
3402 {
3403 if (full)
3404 *full=1;
3405 }
3406 if (using_enc)
3407 *using_enc=using_enclosing;
3408 }
c906108c
SS
3409 return rtti_type;
3410}
3411
3412/* Given a pointer value V, find the real (RTTI) type
3413 of the object it points to.
3414 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3415 and refer to the values computed for the object pointed to. */
3416
3417struct type *
3418value_rtti_target_type (v, full, top, using_enc)
c5aa993b
JM
3419 value_ptr v;
3420 int *full;
3421 int *top;
3422 int *using_enc;
c906108c
SS
3423{
3424 value_ptr target;
3425
3426 target = value_ind (v);
3427
3428 return value_rtti_type (target, full, top, using_enc);
3429}
3430
3431/* Given a value pointed to by ARGP, check its real run-time type, and
3432 if that is different from the enclosing type, create a new value
3433 using the real run-time type as the enclosing type (and of the same
3434 type as ARGP) and return it, with the embedded offset adjusted to
3435 be the correct offset to the enclosed object
3436 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3437 parameters, computed by value_rtti_type(). If these are available,
3438 they can be supplied and a second call to value_rtti_type() is avoided.
3439 (Pass RTYPE == NULL if they're not available */
3440
3441value_ptr
3442value_full_object (argp, rtype, xfull, xtop, xusing_enc)
c5aa993b
JM
3443 value_ptr argp;
3444 struct type *rtype;
3445 int xfull;
3446 int xtop;
3447 int xusing_enc;
3448
c906108c 3449{
c5aa993b 3450 struct type *real_type;
c906108c
SS
3451 int full = 0;
3452 int top = -1;
3453 int using_enc = 0;
3454 value_ptr new_val;
3455
3456 if (rtype)
3457 {
3458 real_type = rtype;
3459 full = xfull;
3460 top = xtop;
3461 using_enc = xusing_enc;
3462 }
3463 else
3464 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3465
3466 /* If no RTTI data, or if object is already complete, do nothing */
3467 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3468 return argp;
3469
3470 /* If we have the full object, but for some reason the enclosing
c5aa993b 3471 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3472 if (full)
3473 {
3474 VALUE_ENCLOSING_TYPE (argp) = real_type;
3475 return argp;
3476 }
3477
3478 /* Check if object is in memory */
3479 if (VALUE_LVAL (argp) != lval_memory)
3480 {
3481 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3482
c906108c
SS
3483 return argp;
3484 }
c5aa993b 3485
c906108c
SS
3486 /* All other cases -- retrieve the complete object */
3487 /* Go back by the computed top_offset from the beginning of the object,
3488 adjusting for the embedded offset of argp if that's what value_rtti_type
3489 used for its computation. */
3490 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3491 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3492 VALUE_BFD_SECTION (argp));
c906108c
SS
3493 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3494 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3495 return new_val;
3496}
3497
3498
3499
3500
3501/* C++: return the value of the class instance variable, if one exists.
3502 Flag COMPLAIN signals an error if the request is made in an
3503 inappropriate context. */
3504
3505value_ptr
3506value_of_this (complain)
3507 int complain;
3508{
3509 struct symbol *func, *sym;
3510 struct block *b;
3511 int i;
3512 static const char funny_this[] = "this";
3513 value_ptr this;
3514
3515 if (selected_frame == 0)
3516 {
3517 if (complain)
c5aa993b
JM
3518 error ("no frame selected");
3519 else
3520 return 0;
c906108c
SS
3521 }
3522
3523 func = get_frame_function (selected_frame);
3524 if (!func)
3525 {
3526 if (complain)
3527 error ("no `this' in nameless context");
c5aa993b
JM
3528 else
3529 return 0;
c906108c
SS
3530 }
3531
3532 b = SYMBOL_BLOCK_VALUE (func);
3533 i = BLOCK_NSYMS (b);
3534 if (i <= 0)
3535 {
3536 if (complain)
c5aa993b
JM
3537 error ("no args, no `this'");
3538 else
3539 return 0;
c906108c
SS
3540 }
3541
3542 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3543 symbol instead of the LOC_ARG one (if both exist). */
3544 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3545 if (sym == NULL)
3546 {
3547 if (complain)
3548 error ("current stack frame not in method");
3549 else
3550 return NULL;
3551 }
3552
3553 this = read_var_value (sym, selected_frame);
3554 if (this == 0 && complain)
3555 error ("`this' argument at unknown address");
3556 return this;
3557}
3558
3559/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3560 long, starting at LOWBOUND. The result has the same lower bound as
3561 the original ARRAY. */
3562
3563value_ptr
3564value_slice (array, lowbound, length)
3565 value_ptr array;
3566 int lowbound, length;
3567{
3568 struct type *slice_range_type, *slice_type, *range_type;
3569 LONGEST lowerbound, upperbound, offset;
3570 value_ptr slice;
3571 struct type *array_type;
3572 array_type = check_typedef (VALUE_TYPE (array));
3573 COERCE_VARYING_ARRAY (array, array_type);
3574 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3575 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3576 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3577 error ("cannot take slice of non-array");
3578 range_type = TYPE_INDEX_TYPE (array_type);
3579 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3580 error ("slice from bad array or bitstring");
3581 if (lowbound < lowerbound || length < 0
3582 || lowbound + length - 1 > upperbound
c5aa993b 3583 /* Chill allows zero-length strings but not arrays. */
c906108c
SS
3584 || (current_language->la_language == language_chill
3585 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3586 error ("slice out of range");
3587 /* FIXME-type-allocation: need a way to free this type when we are
3588 done with it. */
c5aa993b 3589 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3590 TYPE_TARGET_TYPE (range_type),
3591 lowbound, lowbound + length - 1);
3592 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3593 {
3594 int i;
c5aa993b 3595 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3596 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3597 slice = value_zero (slice_type, not_lval);
3598 for (i = 0; i < length; i++)
3599 {
3600 int element = value_bit_index (array_type,
3601 VALUE_CONTENTS (array),
3602 lowbound + i);
3603 if (element < 0)
3604 error ("internal error accessing bitstring");
3605 else if (element > 0)
3606 {
3607 int j = i % TARGET_CHAR_BIT;
3608 if (BITS_BIG_ENDIAN)
3609 j = TARGET_CHAR_BIT - 1 - j;
3610 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3611 }
3612 }
3613 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3614 can be used on the LHS, but that may require extensions to
3615 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3616 }
3617 else
3618 {
3619 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3620 offset
3621 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3622 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3623 slice_range_type);
3624 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3625 slice = allocate_value (slice_type);
3626 if (VALUE_LAZY (array))
3627 VALUE_LAZY (slice) = 1;
3628 else
3629 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3630 TYPE_LENGTH (slice_type));
3631 if (VALUE_LVAL (array) == lval_internalvar)
3632 VALUE_LVAL (slice) = lval_internalvar_component;
3633 else
3634 VALUE_LVAL (slice) = VALUE_LVAL (array);
3635 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3636 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3637 }
3638 return slice;
3639}
3640
3641/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3642 value as a fixed-length array. */
3643
3644value_ptr
3645varying_to_slice (varray)
3646 value_ptr varray;
3647{
3648 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3649 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3650 VALUE_CONTENTS (varray)
3651 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3652 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3653}
3654
070ad9f0
DB
3655/* Create a value for a FORTRAN complex number. Currently most of
3656 the time values are coerced to COMPLEX*16 (i.e. a complex number
3657 composed of 2 doubles. This really should be a smarter routine
3658 that figures out precision inteligently as opposed to assuming
c5aa993b 3659 doubles. FIXME: fmb */
c906108c
SS
3660
3661value_ptr
3662value_literal_complex (arg1, arg2, type)
3663 value_ptr arg1;
3664 value_ptr arg2;
3665 struct type *type;
3666{
3667 register value_ptr val;
3668 struct type *real_type = TYPE_TARGET_TYPE (type);
3669
3670 val = allocate_value (type);
3671 arg1 = value_cast (real_type, arg1);
3672 arg2 = value_cast (real_type, arg2);
3673
3674 memcpy (VALUE_CONTENTS_RAW (val),
3675 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3676 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3677 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3678 return val;
3679}
3680
3681/* Cast a value into the appropriate complex data type. */
3682
3683static value_ptr
3684cast_into_complex (type, val)
3685 struct type *type;
3686 register value_ptr val;
3687{
3688 struct type *real_type = TYPE_TARGET_TYPE (type);
3689 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3690 {
3691 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3692 value_ptr re_val = allocate_value (val_real_type);
3693 value_ptr im_val = allocate_value (val_real_type);
3694
3695 memcpy (VALUE_CONTENTS_RAW (re_val),
3696 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3697 memcpy (VALUE_CONTENTS_RAW (im_val),
3698 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3699 TYPE_LENGTH (val_real_type));
c906108c
SS
3700
3701 return value_literal_complex (re_val, im_val, type);
3702 }
3703 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3704 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3705 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3706 else
3707 error ("cannot cast non-number to complex");
3708}
3709
3710void
3711_initialize_valops ()
3712{
3713#if 0
3714 add_show_from_set
c5aa993b 3715 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3716 "Set automatic abandonment of expressions upon failure.",
3717 &setlist),
3718 &showlist);
3719#endif
3720
3721 add_show_from_set
c5aa993b 3722 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3723 "Set overload resolution in evaluating C++ functions.",
3724 &setlist),
3725 &showlist);
3726 overload_resolution = 1;
3727
242bfc55
FN
3728 add_show_from_set (
3729 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3730 (char *) &unwind_on_signal_p,
3731"Set unwinding of stack if a signal is received while in a call dummy.\n\
3732The unwindonsignal lets the user determine what gdb should do if a signal\n\
3733is received while in a function called from gdb (call dummy). If set, gdb\n\
3734unwinds the stack and restore the context to what as it was before the call.\n\
3735The default is to stop in the frame where the signal was received.", &setlist),
3736 &showlist);
c906108c 3737}
This page took 0.228266 seconds and 4 git commands to generate.