2003-03-25 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4 2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1e698235 3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
f23631e4 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
fe898f56 36#include "block.h"
c906108c
SS
37
38#include <errno.h>
39#include "gdb_string.h"
4a1970e4 40#include "gdb_assert.h"
c906108c 41
c906108c
SS
42/* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44extern int hp_som_som_object_present;
45
070ad9f0 46extern int overload_debug;
c906108c
SS
47/* Local functions. */
48
ad2f7632
DJ
49static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
c906108c 51
389e51db 52static CORE_ADDR find_function_addr (struct value *, struct type **);
f23631e4 53static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c 54
389e51db 55
f23631e4 56static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 57
f23631e4 58static struct value *search_struct_field (char *, struct value *, int,
a14ed312 59 struct type *, int);
c906108c 60
f23631e4
AC
61static struct value *search_struct_method (char *, struct value **,
62 struct value **,
a14ed312 63 int, int *, struct type *);
c906108c 64
a14ed312 65static int check_field_in (struct type *, const char *);
c906108c 66
a14ed312 67static CORE_ADDR allocate_space_in_inferior (int);
c906108c 68
f23631e4 69static struct value *cast_into_complex (struct type *, struct value *);
c906108c 70
f23631e4 71static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 72 int offset,
a14ed312
KB
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
7a292a7a 76
a14ed312 77void _initialize_valops (void);
c906108c 78
c906108c
SS
79/* Flag for whether we want to abandon failed expression evals by default. */
80
81#if 0
82static int auto_abandon = 0;
83#endif
84
85int overload_resolution = 0;
242bfc55
FN
86
87/* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92int unwind_on_signal_p = 0;
c906108c 93
1e698235
DJ
94/* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115static int coerce_float_to_double;
116\f
389e51db 117
c906108c
SS
118/* Find the address of function name NAME in the inferior. */
119
f23631e4 120struct value *
3bada2a2 121find_function_in_inferior (const char *name)
c906108c
SS
122{
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
c5aa993b 136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
137 if (msymbol != NULL)
138 {
139 struct type *type;
4478b372 140 CORE_ADDR maddr;
c906108c
SS
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
4478b372
JB
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
c906108c
SS
146 }
147 else
148 {
c5aa993b 149 if (!target_has_execution)
c906108c 150 error ("evaluation of this expression requires the target program to be active");
c5aa993b 151 else
c906108c
SS
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155}
156
157/* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
f23631e4 160struct value *
fba45db2 161value_allocate_space_in_inferior (int len)
c906108c 162{
f23631e4 163 struct value *blocklen;
5720643c 164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
c906108c
SS
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
c5aa993b
JM
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
c906108c
SS
174 }
175 return val;
176}
177
178static CORE_ADDR
fba45db2 179allocate_space_in_inferior (int len)
c906108c
SS
180{
181 return value_as_long (value_allocate_space_in_inferior (len));
182}
183
184/* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187/* In C++, casts may change pointer or object representations. */
188
f23631e4
AC
189struct value *
190value_cast (struct type *type, struct value *arg2)
c906108c
SS
191{
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
c5aa993b 198
c906108c
SS
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
c5aa993b 204 COERCE_REF (arg2);
c906108c
SS
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
c5aa993b 215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
c5aa993b 224 warning ("array element type size does not divide object size in cast");
c906108c
SS
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
c5aa993b 263 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
7b83ea04
AC
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
f23631e4 270 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
c5aa993b
JM
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
f23631e4 290 struct value *retvalp;
c5aa993b
JM
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 297 /* force evaluation */
802db21b 298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
2bf1f4a1
JB
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
802db21b 322 return value_from_longest (type, convert_to_boolean ?
716c501e 323 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 324 }
802db21b 325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
634acd5f 328 {
4603e466
DT
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
634acd5f 341 LONGEST longest = value_as_long (arg2);
4603e466 342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 343 {
4603e466
DT
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
c906108c
SS
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
f23631e4 360 struct value *v;
c906108c
SS
361
362 /* Look in the type of the source to see if it contains the
7b83ea04
AC
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
c906108c
SS
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
7b83ea04
AC
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 384 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
385 if (v)
386 {
d174216d
JB
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
c906108c
SS
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
2b127877 398 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
400 return arg2;
401 }
c906108c
SS
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416}
417
418/* Create a value of type TYPE that is zero, and return it. */
419
f23631e4 420struct value *
fba45db2 421value_zero (struct type *type, enum lval_type lv)
c906108c 422{
f23631e4 423 struct value *val = allocate_value (type);
c906108c
SS
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429}
430
070ad9f0 431/* Return a value with type TYPE located at ADDR.
c906108c
SS
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
c906108c
SS
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
f23631e4 443struct value *
fba45db2 444value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 445{
f23631e4 446 struct value *val;
c906108c
SS
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
75af7f68 453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460}
461
462/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
f23631e4 464struct value *
fba45db2 465value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 466{
f23631e4 467 struct value *val;
c906108c
SS
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480}
481
070ad9f0
DB
482/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494int
f23631e4 495value_fetch_lazy (struct value *val)
c906108c
SS
496{
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
c5aa993b 500 struct type *type = VALUE_TYPE (val);
75af7f68 501 if (length)
d4b2399a 502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 503
c906108c
SS
504 VALUE_LAZY (val) = 0;
505 return 0;
506}
507
508
509/* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
f23631e4
AC
512struct value *
513value_assign (struct value *toval, struct value *fromval)
c906108c
SS
514{
515 register struct type *type;
f23631e4 516 struct value *val;
e6cbd02a 517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c 518 int use_buffer = 0;
cb741690 519 struct frame_id old_frame;
c906108c
SS
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
ac9a91a7 538 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
539 {
540 int regno = VALUE_REGNO (toval);
13d01224 541 if (CONVERT_REGISTER_P (regno))
c906108c
SS
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
c906108c 548
cb741690
DJ
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
c906108c
SS
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
c5aa993b
JM
575 CORE_ADDR changed_addr;
576 int changed_len;
c906108c 577
c5aa993b
JM
578 if (VALUE_BITSIZE (toval))
579 {
c906108c
SS
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
c906108c
SS
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
e23792cc 615 target_changed_event ();
c906108c
SS
616 }
617 break;
618
c906108c 619 case lval_reg_frame_relative:
492254e9 620 case lval_register:
c906108c
SS
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
c906108c 625 int amount_copied;
492254e9
AC
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
c906108c
SS
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
492254e9
AC
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
c193f6ac 643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
492254e9
AC
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
c906108c
SS
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
492254e9
AC
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
c906108c 673
492254e9
AC
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
c906108c 676 amount_copied < amount_to_copy;
492254e9 677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c 678 {
492254e9 679 frame_register_read (frame, regno, buffer + amount_copied);
c906108c 680 }
492254e9 681
c906108c
SS
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
492254e9
AC
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
c906108c 689 else if (use_buffer)
492254e9
AC
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
c906108c 693 else
492254e9
AC
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699#ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702#endif
703 }
c906108c 704
492254e9
AC
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
c906108c 707 amount_copied < amount_to_copy;
492254e9 708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c
SS
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
492254e9
AC
713 int realnum;
714
c906108c 715 /* Just find out where to put it. */
492254e9
AC
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
c906108c
SS
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
492254e9
AC
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
c906108c 724 else if (lval == lval_register)
492254e9
AC
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
c906108c
SS
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
e23792cc 733 target_changed_event ();
492254e9 734
c906108c
SS
735 }
736 break;
492254e9
AC
737
738
c906108c
SS
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
cb741690
DJ
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
c906108c
SS
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
2b127877 794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 797
c906108c
SS
798 return val;
799}
800
801/* Extend a value VAL to COUNT repetitions of its type. */
802
f23631e4
AC
803struct value *
804value_repeat (struct value *arg1, int count)
c906108c 805{
f23631e4 806 struct value *val;
c906108c
SS
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822}
823
f23631e4 824struct value *
fba45db2 825value_of_variable (struct symbol *var, struct block *b)
c906108c 826{
f23631e4 827 struct value *val;
c906108c
SS
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
c5aa993b 836 {
c906108c 837 if (BLOCK_FUNCTION (b)
de5ad195 838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
c906108c 839 error ("No frame is currently executing in block %s.",
de5ad195 840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
c906108c
SS
841 else
842 error ("No frame is currently executing in specified block");
c5aa993b 843 }
c906108c
SS
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
de5ad195 848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
c906108c
SS
849
850 return val;
851}
852
853/* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
c5aa993b 874 */
c906108c 875
f23631e4
AC
876struct value *
877value_coerce_array (struct value *arg1)
c906108c
SS
878{
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
4478b372
JB
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
886}
887
888/* Given a value which is a function, return a value which is a pointer
889 to it. */
890
f23631e4
AC
891struct value *
892value_coerce_function (struct value *arg1)
c906108c 893{
f23631e4 894 struct value *retval;
c906108c
SS
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
4478b372
JB
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
c5aa993b 903}
c906108c
SS
904
905/* Return a pointer value for the object for which ARG1 is the contents. */
906
f23631e4
AC
907struct value *
908value_addr (struct value *arg1)
c906108c 909{
f23631e4 910 struct value *arg2;
c906108c
SS
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
c906108c
SS
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
c5aa993b 928 /* Get target memory address */
4478b372
JB
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
933
934 /* This may be a pointer to a base subobject; so remember the
c5aa993b 935 full derived object's type ... */
2b127877 936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941}
942
943/* Given a value of a pointer type, apply the C unary * operator to it. */
944
f23631e4
AC
945struct value *
946value_ind (struct value *arg1)
c906108c
SS
947{
948 struct type *base_type;
f23631e4 949 struct value *arg2;
c906108c
SS
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
c906108c
SS
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
c5aa993b 970 /* Get the real type of the enclosing object */
c906108c
SS
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
1aa20aa8 975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
c906108c
SS
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
2b127877 980 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 989 return 0; /* For lint -- never reached */
c906108c
SS
990}
991\f
992/* Pushing small parts of stack frames. */
993
994/* Push one word (the size of object that a register holds). */
995
996CORE_ADDR
fba45db2 997push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
998{
999 register int len = REGISTER_SIZE;
e6cbd02a 1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017}
1018
1019/* Push LEN bytes with data at BUFFER. */
1020
1021CORE_ADDR
fba45db2 1022push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1023{
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038}
1039
2df3850c
JM
1040#ifndef PARM_BOUNDARY
1041#define PARM_BOUNDARY (0)
1042#endif
1043
1044/* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
c906108c 1046
c906108c 1047static CORE_ADDR
f23631e4 1048value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1049{
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1051 register int container_len = len;
2df3850c
JM
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
d7449b42 1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1061 offset = container_len - len;
1062 else
1063 offset = 0;
c906108c
SS
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
2df3850c
JM
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1070 }
1071 else
1072 {
1073 /* stack grows upward */
2df3850c
JM
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
c906108c
SS
1076 }
1077
1078 return sp;
1079}
1080
392a587b 1081CORE_ADDR
f23631e4 1082default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1083 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1084{
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090}
1091
c906108c
SS
1092/* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
f23631e4 1098static struct value *
290b2c7a
MK
1099value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
c906108c
SS
1101{
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
290b2c7a 1104 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
491b8946
DJ
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
c906108c
SS
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1e698235 1134 if (!is_prototyped && coerce_float_to_double)
c906108c
SS
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
a3162708
EZ
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
c906108c 1149 if (current_language->c_style_arrays)
a3162708
EZ
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171}
1172
070ad9f0 1173/* Determine a function's address and its return type from its value.
c906108c
SS
1174 Calls error() if the function is not valid for calling. */
1175
389e51db 1176static CORE_ADDR
f23631e4 1177find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1178{
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1aa20aa8 1195 funaddr = value_as_address (function);
c906108c
SS
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
c906108c 1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
7b83ea04 1209 Their values are characters since their addresses are char */
c906108c 1210 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1211 funaddr = value_as_address (value_addr (function));
c906108c
SS
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223}
1224
1225/* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234/* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
f23631e4
AC
1243static struct value *
1244hand_function_call (struct value *function, int nargs, struct value **args)
c906108c
SS
1245{
1246 register CORE_ADDR sp;
1247 register int i;
da59e081 1248 int rc;
c906108c
SS
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1253 bigger than REGISTER_SIZE.
c906108c
SS
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
7a292a7a
SS
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1262 target byte order. */
c906108c 1263
7a292a7a
SS
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
c906108c
SS
1267 CORE_ADDR old_sp;
1268 struct type *value_type;
1269 unsigned char struct_return;
1270 CORE_ADDR struct_addr = 0;
36160dc4 1271 struct regcache *retbuf;
26e6c56a 1272 struct cleanup *retbuf_cleanup;
7a292a7a 1273 struct inferior_status *inf_status;
26e6c56a 1274 struct cleanup *inf_status_cleanup;
c906108c 1275 CORE_ADDR funaddr;
c5aa993b 1276 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1277 CORE_ADDR real_pc;
1278 struct type *param_type = NULL;
1279 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1280 int n_method_args = 0;
c906108c 1281
7a292a7a
SS
1282 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1283 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1284 dummy1 = alloca (sizeof_dummy1);
1285 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1286
c906108c 1287 if (!target_has_execution)
c5aa993b 1288 noprocess ();
c906108c 1289
26e6c56a
AC
1290 /* Create a cleanup chain that contains the retbuf (buffer
1291 containing the register values). This chain is create BEFORE the
1292 inf_status chain so that the inferior status can cleaned up
1293 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1294 retbuf = regcache_xmalloc (current_gdbarch);
1295 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1296
1297 /* A cleanup for the inferior status. Create this AFTER the retbuf
1298 so that this can be discarded or applied without interfering with
1299 the regbuf. */
7a292a7a 1300 inf_status = save_inferior_status (1);
26e6c56a 1301 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c 1302
f3824013
AC
1303 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1304 {
1305 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
749b82f6 1306 inferior registers (and frame_pop() for restoring them). (At
f3824013
AC
1307 least on most machines) they are saved on the stack in the
1308 inferior. */
1309 DEPRECATED_PUSH_DUMMY_FRAME;
1310 }
1311 else
1312 {
1313 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1314 to extract the generic dummy frame code from the architecture
1315 vector. Hence this direct call.
1316
1317 A follow-on change is to modify this interface so that it takes
1318 thread OR frame OR tpid as a parameter, and returns a dummy
1319 frame handle. The handle can then be used further down as a
1320 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1321 everything is ment to be using generic dummy frames, why not
1322 even use some of the dummy frame code to here - do a regcache
1323 dup and then pass the duped regcache, along with all the other
1324 stuff, at one single point.
1325
1326 In fact, you can even save the structure's return address in the
1327 dummy frame and fix one of those nasty lost struct return edge
1328 conditions. */
1329 generic_push_dummy_frame ();
1330 }
c906108c 1331
dc604539
AC
1332 old_sp = read_sp ();
1333
1334 /* Ensure that the initial SP is correctly aligned. */
1335 if (gdbarch_frame_align_p (current_gdbarch))
1336 {
1337 /* NOTE: cagney/2002-09-18:
1338
1339 On a RISC architecture, a void parameterless generic dummy
1340 frame (i.e., no parameters, no result) typically does not
1341 need to push anything the stack and hence can leave SP and
1342 FP. Similarly, a framelss (possibly leaf) function does not
1343 push anything on the stack and, hence, that too can leave FP
1344 and SP unchanged. As a consequence, a sequence of void
1345 parameterless generic dummy frame calls to frameless
1346 functions will create a sequence of effectively identical
1347 frames (SP, FP and TOS and PC the same). This, not
1348 suprisingly, results in what appears to be a stack in an
1349 infinite loop --- when GDB tries to find a generic dummy
1350 frame on the internal dummy frame stack, it will always find
1351 the first one.
1352
1353 To avoid this problem, the code below always grows the stack.
1354 That way, two dummy frames can never be identical. It does
1355 burn a few bytes of stack but that is a small price to pay
1356 :-). */
1357 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1358 if (sp == old_sp)
1359 {
1360 if (INNER_THAN (1, 2))
1361 /* Stack grows down. */
1362 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1363 else
1364 /* Stack grows up. */
1365 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1366 }
1367 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1368 || (INNER_THAN (2, 1) && sp >= old_sp));
1369 }
1370 else
1371 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1372 aligned the SP is! Further, per comment above, if the generic
1373 dummy frame ends up empty (because nothing is pushed) GDB won't
1374 be able to correctly perform back traces. If a target is
1375 having trouble with backtraces, first thing to do is add
1376 FRAME_ALIGN() to its architecture vector. After that, try
618ce49f
AC
1377 adding SAVE_DUMMY_FRAME_TOS() and modifying
1378 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1379 generic dummy, it returns the current frame's base. */
dc604539 1380 sp = old_sp;
c906108c
SS
1381
1382 if (INNER_THAN (1, 2))
1383 {
1384 /* Stack grows down */
7a292a7a 1385 sp -= sizeof_dummy1;
c906108c
SS
1386 start_sp = sp;
1387 }
1388 else
1389 {
1390 /* Stack grows up */
1391 start_sp = sp;
7a292a7a 1392 sp += sizeof_dummy1;
c906108c
SS
1393 }
1394
dc604539
AC
1395 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1396 after allocating space for the call dummy. A target can specify
1397 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1398 alignment requirements are met. */
1399
c906108c
SS
1400 funaddr = find_function_addr (function, &value_type);
1401 CHECK_TYPEDEF (value_type);
1402
1403 {
1404 struct block *b = block_for_pc (funaddr);
1405 /* If compiled without -g, assume GCC 2. */
1406 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1407 }
1408
1409 /* Are we returning a value using a structure return or a normal
1410 value return? */
1411
1412 struct_return = using_struct_return (function, funaddr, value_type,
1413 using_gcc);
1414
1415 /* Create a call sequence customized for this function
1416 and the number of arguments for it. */
7a292a7a 1417 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1418 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1419 REGISTER_SIZE,
c5aa993b 1420 (ULONGEST) dummy[i]);
c906108c
SS
1421
1422#ifdef GDB_TARGET_IS_HPPA
1423 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1424 value_type, using_gcc);
1425#else
1426 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1427 value_type, using_gcc);
1428 real_pc = start_sp;
1429#endif
1430
7a292a7a
SS
1431 if (CALL_DUMMY_LOCATION == ON_STACK)
1432 {
c5aa993b 1433 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
07555a72 1434 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a 1435 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
7a292a7a 1436 }
c906108c 1437
7a292a7a
SS
1438 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1439 {
1440 real_pc = funaddr;
07555a72 1441 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a
AC
1442 /* NOTE: cagney/2002-04-13: The entry point is going to be
1443 modified with a single breakpoint. */
1444 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1445 CALL_DUMMY_ADDRESS () + 1);
7a292a7a 1446 }
c906108c
SS
1447
1448#ifdef lint
c5aa993b 1449 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1450#endif
1451
ad2f7632 1452 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1453 error ("too few arguments in function call");
1454
1455 for (i = nargs - 1; i >= 0; i--)
1456 {
ad2f7632 1457 int prototyped;
76b2e19d 1458
ad2f7632
DJ
1459 /* FIXME drow/2002-05-31: Should just always mark methods as
1460 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1461 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1462 prototyped = 1;
1463 else
1464 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1465
ad2f7632
DJ
1466 if (i < TYPE_NFIELDS (ftype))
1467 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1468 prototyped);
c5aa993b 1469 else
ad2f7632 1470 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1471
070ad9f0
DB
1472 /*elz: this code is to handle the case in which the function to be called
1473 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1474 is the address of a function and not a pointer to function variable.
1475 In aCC compiled code, the calls through pointers to functions (in the body
1476 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1477 requires some registers setting, this is taken care of if we call
1478 via a function pointer variable, but not via a function address.
7b83ea04 1479 In cc this is not a problem. */
c906108c
SS
1480
1481 if (using_gcc == 0)
ad2f7632 1482 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1483 /* if this parameter is a pointer to function */
c906108c 1484 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1485 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1486 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1487 to compile the target. We want to issue the error
070ad9f0
DB
1488 message only if the compiler used was HP's aCC.
1489 If we used HP's cc, then there is no problem and no need
7b83ea04 1490 to return at this point */
c5aa993b 1491 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1492 /* go see if the actual parameter is a variable of type
c5aa993b 1493 pointer to function or just a function */
c906108c
SS
1494 if (args[i]->lval == not_lval)
1495 {
1496 char *arg_name;
c5aa993b
JM
1497 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1498 error ("\
c906108c
SS
1499You cannot use function <%s> as argument. \n\
1500You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1501 }
c906108c
SS
1502 }
1503
d03e67c9
AC
1504 if (REG_STRUCT_HAS_ADDR_P ())
1505 {
1506 /* This is a machine like the sparc, where we may need to pass a
1507 pointer to the structure, not the structure itself. */
1508 for (i = nargs - 1; i >= 0; i--)
1509 {
1510 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1511 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1512 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1513 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1514 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1515 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1516 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1517 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1518 && TYPE_LENGTH (arg_type) > 8)
1519 )
1520 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1521 {
1522 CORE_ADDR addr;
1523 int len; /* = TYPE_LENGTH (arg_type); */
1524 int aligned_len;
1525 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1526 len = TYPE_LENGTH (arg_type);
1527
1528 if (STACK_ALIGN_P ())
1529 /* MVS 11/22/96: I think at least some of this
1530 stack_align code is really broken. Better to let
1531 PUSH_ARGUMENTS adjust the stack in a target-defined
1532 manner. */
1533 aligned_len = STACK_ALIGN (len);
1534 else
1535 aligned_len = len;
1536 if (INNER_THAN (1, 2))
1537 {
1538 /* stack grows downward */
1539 sp -= aligned_len;
0b3f98d3
AC
1540 /* ... so the address of the thing we push is the
1541 stack pointer after we push it. */
1542 addr = sp;
d03e67c9
AC
1543 }
1544 else
1545 {
1546 /* The stack grows up, so the address of the thing
1547 we push is the stack pointer before we push it. */
1548 addr = sp;
d03e67c9
AC
1549 sp += aligned_len;
1550 }
0b3f98d3
AC
1551 /* Push the structure. */
1552 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1553 /* The value we're going to pass is the address of the
1554 thing we just pushed. */
1555 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1556 (LONGEST) addr); */
1557 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1558 addr);
1559 }
1560 }
1561 }
1562
c906108c
SS
1563
1564 /* Reserve space for the return structure to be written on the
dc604539
AC
1565 stack, if necessary. Make certain that the value is correctly
1566 aligned. */
c906108c
SS
1567
1568 if (struct_return)
1569 {
1570 int len = TYPE_LENGTH (value_type);
2ada493a
AC
1571 if (STACK_ALIGN_P ())
1572 /* MVS 11/22/96: I think at least some of this stack_align
1573 code is really broken. Better to let PUSH_ARGUMENTS adjust
1574 the stack in a target-defined manner. */
1575 len = STACK_ALIGN (len);
c906108c
SS
1576 if (INNER_THAN (1, 2))
1577 {
dc604539
AC
1578 /* Stack grows downward. Align STRUCT_ADDR and SP after
1579 making space for the return value. */
c906108c 1580 sp -= len;
dc604539
AC
1581 if (gdbarch_frame_align_p (current_gdbarch))
1582 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1583 struct_addr = sp;
1584 }
1585 else
1586 {
dc604539
AC
1587 /* Stack grows upward. Align the frame, allocate space, and
1588 then again, re-align the frame??? */
1589 if (gdbarch_frame_align_p (current_gdbarch))
1590 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1591 struct_addr = sp;
1592 sp += len;
dc604539
AC
1593 if (gdbarch_frame_align_p (current_gdbarch))
1594 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1595 }
1596 }
1597
0a49d05e
AC
1598 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1599 on other architectures. This is because all the alignment is
1600 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1601 in hppa_push_arguments */
1602 if (EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1603 {
0a49d05e
AC
1604 /* MVS 11/22/96: I think at least some of this stack_align code
1605 is really broken. Better to let PUSH_ARGUMENTS adjust the
1606 stack in a target-defined manner. */
1607 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1608 {
1609 /* If stack grows down, we must leave a hole at the top. */
1610 int len = 0;
1611
1612 for (i = nargs - 1; i >= 0; i--)
1613 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1bf6d5cc
AC
1614 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1615 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
0a49d05e
AC
1616 sp -= STACK_ALIGN (len) - len;
1617 }
c906108c 1618 }
c906108c 1619
392a587b 1620 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c 1621
69a0d5f4
AC
1622 if (PUSH_RETURN_ADDRESS_P ())
1623 /* for targets that use no CALL_DUMMY */
1624 /* There are a number of targets now which actually don't write
1625 any CALL_DUMMY instructions into the target, but instead just
1626 save the machine state, push the arguments, and jump directly
1627 to the callee function. Since this doesn't actually involve
1628 executing a JSR/BSR instruction, the return address must be set
1629 up by hand, either by pushing onto the stack or copying into a
1630 return-address register as appropriate. Formerly this has been
1631 done in PUSH_ARGUMENTS, but that's overloading its
1632 functionality a bit, so I'm making it explicit to do it here. */
1633 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1634
2ada493a 1635 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1636 {
1637 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1638 that sp already has been advanced for the arguments! */
1bf6d5cc
AC
1639 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1640 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1641 sp = STACK_ALIGN (sp);
1642 }
c906108c
SS
1643
1644/* XXX This seems wrong. For stacks that grow down we shouldn't do
1645 anything here! */
1646 /* MVS 11/22/96: I think at least some of this stack_align code is
1647 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1648 a target-defined manner. */
1bf6d5cc 1649 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
7a292a7a
SS
1650 if (INNER_THAN (1, 2))
1651 {
1652 /* stack grows downward */
1bf6d5cc 1653 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
7a292a7a 1654 }
c906108c
SS
1655
1656 /* Store the address at which the structure is supposed to be
4183d812
AC
1657 written. */
1658 /* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
1659 store the struct return address, this call is entirely redundant. */
1660 if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
1661 DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
c906108c
SS
1662
1663 /* Write the stack pointer. This is here because the statements above
1664 might fool with it. On SPARC, this write also stores the register
1665 window into the right place in the new stack frame, which otherwise
1666 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1667 write_sp (sp);
1668
d1e3cf49
AC
1669 if (SAVE_DUMMY_FRAME_TOS_P ())
1670 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1671
c906108c 1672 {
c906108c
SS
1673 char *name;
1674 struct symbol *symbol;
1675
1676 name = NULL;
1677 symbol = find_pc_function (funaddr);
1678 if (symbol)
1679 {
de5ad195 1680 name = SYMBOL_PRINT_NAME (symbol);
c906108c
SS
1681 }
1682 else
1683 {
1684 /* Try the minimal symbols. */
1685 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1686
1687 if (msymbol)
1688 {
de5ad195 1689 name = SYMBOL_PRINT_NAME (msymbol);
c906108c
SS
1690 }
1691 }
1692 if (name == NULL)
1693 {
1694 char format[80];
1695 sprintf (format, "at %s", local_hex_format ());
1696 name = alloca (80);
1697 /* FIXME-32x64: assumes funaddr fits in a long. */
1698 sprintf (name, format, (unsigned long) funaddr);
1699 }
1700
1701 /* Execute the stack dummy routine, calling FUNCTION.
1702 When it is done, discard the empty frame
1703 after storing the contents of all regs into retbuf. */
da59e081
JM
1704 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1705
1706 if (rc == 1)
1707 {
1708 /* We stopped inside the FUNCTION because of a random signal.
1709 Further execution of the FUNCTION is not allowed. */
1710
7b83ea04 1711 if (unwind_on_signal_p)
242bfc55
FN
1712 {
1713 /* The user wants the context restored. */
da59e081 1714
dbe9fe58
AC
1715 /* We must get back to the frame we were before the dummy
1716 call. */
1717 frame_pop (get_current_frame ());
242bfc55
FN
1718
1719 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1720 a C++ name with arguments and stuff. */
1721 error ("\
1722The program being debugged was signaled while in a function called from GDB.\n\
1723GDB has restored the context to what it was before the call.\n\
1724To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1725Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1726 name);
1727 }
1728 else
1729 {
1730 /* The user wants to stay in the frame where we stopped (default).*/
1731
26e6c56a
AC
1732 /* If we restored the inferior status (via the cleanup),
1733 we would print a spurious error message (Unable to
1734 restore previously selected frame), would write the
1735 registers from the inf_status (which is wrong), and
1736 would do other wrong things. */
1737 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1738 discard_inferior_status (inf_status);
1739
1740 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1741 a C++ name with arguments and stuff. */
1742 error ("\
1743The program being debugged was signaled while in a function called from GDB.\n\
1744GDB remains in the frame where the signal was received.\n\
1745To change this behavior use \"set unwindonsignal on\"\n\
1746Evaluation of the expression containing the function (%s) will be abandoned.",
1747 name);
1748 }
da59e081
JM
1749 }
1750
1751 if (rc == 2)
c906108c 1752 {
da59e081 1753 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1754
26e6c56a
AC
1755 /* If we restored the inferior status (via the cleanup), we
1756 would print a spurious error message (Unable to restore
1757 previously selected frame), would write the registers from
1758 the inf_status (which is wrong), and would do other wrong
1759 things. */
1760 discard_cleanups (inf_status_cleanup);
7a292a7a 1761 discard_inferior_status (inf_status);
c906108c
SS
1762
1763 /* The following error message used to say "The expression
1764 which contained the function call has been discarded." It
1765 is a hard concept to explain in a few words. Ideally, GDB
1766 would be able to resume evaluation of the expression when
1767 the function finally is done executing. Perhaps someday
1768 this will be implemented (it would not be easy). */
1769
1770 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1771 a C++ name with arguments and stuff. */
1772 error ("\
1773The program being debugged stopped while in a function called from GDB.\n\
1774When the function (%s) is done executing, GDB will silently\n\
1775stop (instead of continuing to evaluate the expression containing\n\
1776the function call).", name);
1777 }
1778
da59e081 1779 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1780
1781 /* Restore the inferior status, via its cleanup. At this stage,
1782 leave the RETBUF alone. */
1783 do_cleanups (inf_status_cleanup);
c906108c
SS
1784
1785 /* Figure out the value returned by the function. */
dc604539
AC
1786 /* elz: I defined this new macro for the hppa architecture only.
1787 this gives us a way to get the value returned by the function
1788 from the stack, at the same address we told the function to put
1789 it. We cannot assume on the pa that r28 still contains the
1790 address of the returned structure. Usually this will be
1791 overwritten by the callee. I don't know about other
1792 architectures, so I defined this macro */
c906108c
SS
1793#ifdef VALUE_RETURNED_FROM_STACK
1794 if (struct_return)
26e6c56a
AC
1795 {
1796 do_cleanups (retbuf_cleanup);
1797 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1798 }
c906108c 1799#endif
dc604539
AC
1800 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1801 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1802 fetch the return value direct from the stack. This lack of
1803 trust comes about because legacy targets have a nasty habit of
1804 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1805 For such targets, just hope that value_being_returned() can
1806 find the adjusted value. */
1807 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1808 {
1809 struct value *retval = value_at (value_type, struct_addr, NULL);
1810 do_cleanups (retbuf_cleanup);
1811 return retval;
1812 }
1813 else
1814 {
1815 struct value *retval = value_being_returned (value_type, retbuf,
1816 struct_return);
1817 do_cleanups (retbuf_cleanup);
1818 return retval;
1819 }
c906108c
SS
1820 }
1821}
7a292a7a 1822
f23631e4
AC
1823struct value *
1824call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c 1825{
7a292a7a
SS
1826 if (CALL_DUMMY_P)
1827 {
1828 return hand_function_call (function, nargs, args);
1829 }
1830 else
1831 {
1832 error ("Cannot invoke functions on this machine.");
1833 }
c906108c 1834}
c5aa993b 1835\f
7a292a7a 1836
c906108c 1837
c906108c
SS
1838/* Create a value for an array by allocating space in the inferior, copying
1839 the data into that space, and then setting up an array value.
1840
1841 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1842 populated from the values passed in ELEMVEC.
1843
1844 The element type of the array is inherited from the type of the
1845 first element, and all elements must have the same size (though we
1846 don't currently enforce any restriction on their types). */
1847
f23631e4
AC
1848struct value *
1849value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1850{
1851 int nelem;
1852 int idx;
1853 unsigned int typelength;
f23631e4 1854 struct value *val;
c906108c
SS
1855 struct type *rangetype;
1856 struct type *arraytype;
1857 CORE_ADDR addr;
1858
1859 /* Validate that the bounds are reasonable and that each of the elements
1860 have the same size. */
1861
1862 nelem = highbound - lowbound + 1;
1863 if (nelem <= 0)
1864 {
1865 error ("bad array bounds (%d, %d)", lowbound, highbound);
1866 }
1867 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1868 for (idx = 1; idx < nelem; idx++)
1869 {
1870 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1871 {
1872 error ("array elements must all be the same size");
1873 }
1874 }
1875
1876 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1877 lowbound, highbound);
c5aa993b
JM
1878 arraytype = create_array_type ((struct type *) NULL,
1879 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1880
1881 if (!current_language->c_style_arrays)
1882 {
1883 val = allocate_value (arraytype);
1884 for (idx = 0; idx < nelem; idx++)
1885 {
1886 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1887 VALUE_CONTENTS_ALL (elemvec[idx]),
1888 typelength);
1889 }
1890 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1891 return val;
1892 }
1893
1894 /* Allocate space to store the array in the inferior, and then initialize
1895 it by copying in each element. FIXME: Is it worth it to create a
1896 local buffer in which to collect each value and then write all the
1897 bytes in one operation? */
1898
1899 addr = allocate_space_in_inferior (nelem * typelength);
1900 for (idx = 0; idx < nelem; idx++)
1901 {
1902 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1903 typelength);
1904 }
1905
1906 /* Create the array type and set up an array value to be evaluated lazily. */
1907
1908 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1909 return (val);
1910}
1911
1912/* Create a value for a string constant by allocating space in the inferior,
1913 copying the data into that space, and returning the address with type
1914 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1915 of characters.
1916 Note that string types are like array of char types with a lower bound of
1917 zero and an upper bound of LEN - 1. Also note that the string may contain
1918 embedded null bytes. */
1919
f23631e4 1920struct value *
fba45db2 1921value_string (char *ptr, int len)
c906108c 1922{
f23631e4 1923 struct value *val;
c906108c
SS
1924 int lowbound = current_language->string_lower_bound;
1925 struct type *rangetype = create_range_type ((struct type *) NULL,
1926 builtin_type_int,
1927 lowbound, len + lowbound - 1);
1928 struct type *stringtype
c5aa993b 1929 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1930 CORE_ADDR addr;
1931
1932 if (current_language->c_style_arrays == 0)
1933 {
1934 val = allocate_value (stringtype);
1935 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1936 return val;
1937 }
1938
1939
1940 /* Allocate space to store the string in the inferior, and then
1941 copy LEN bytes from PTR in gdb to that address in the inferior. */
1942
1943 addr = allocate_space_in_inferior (len);
1944 write_memory (addr, ptr, len);
1945
1946 val = value_at_lazy (stringtype, addr, NULL);
1947 return (val);
1948}
1949
f23631e4 1950struct value *
fba45db2 1951value_bitstring (char *ptr, int len)
c906108c 1952{
f23631e4 1953 struct value *val;
c906108c
SS
1954 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1955 0, len - 1);
c5aa993b 1956 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1957 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1958 val = allocate_value (type);
1959 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1960 return val;
1961}
1962\f
1963/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1964 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1965 vector. If some arguments need coercion of some sort, then the coerced
1966 values are written into T2. Return value is 0 if the arguments could be
1967 matched, or the position at which they differ if not.
c906108c
SS
1968
1969 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1970 static member function. T2 will still include the ``this'' pointer,
1971 but it will be skipped.
c906108c
SS
1972
1973 For non-static member functions, we ignore the first argument,
1974 which is the type of the instance variable. This is because we want
1975 to handle calls with objects from derived classes. This is not
1976 entirely correct: we should actually check to make sure that a
1977 requested operation is type secure, shouldn't we? FIXME. */
1978
1979static int
ad2f7632
DJ
1980typecmp (int staticp, int varargs, int nargs,
1981 struct field t1[], struct value *t2[])
c906108c
SS
1982{
1983 int i;
1984
1985 if (t2 == 0)
ad2f7632
DJ
1986 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1987
4a1970e4
DJ
1988 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1989 if (staticp)
ad2f7632
DJ
1990 t2 ++;
1991
1992 for (i = 0;
1993 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1994 i++)
c906108c 1995 {
c5aa993b 1996 struct type *tt1, *tt2;
ad2f7632 1997
c5aa993b
JM
1998 if (!t2[i])
1999 return i + 1;
ad2f7632
DJ
2000
2001 tt1 = check_typedef (t1[i].type);
c5aa993b 2002 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 2003
c906108c 2004 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2005 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2006 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2007 {
2008 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2009 t2[i] = value_coerce_array (t2[i]);
2010 else
2011 t2[i] = value_addr (t2[i]);
2012 continue;
2013 }
2014
802db21b
DB
2015 /* djb - 20000715 - Until the new type structure is in the
2016 place, and we can attempt things like implicit conversions,
2017 we need to do this so you can take something like a map<const
2018 char *>, and properly access map["hello"], because the
2019 argument to [] will be a reference to a pointer to a char,
7168a814 2020 and the argument will be a pointer to a char. */
802db21b
DB
2021 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2022 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2023 {
2024 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2025 }
2026 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2027 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2028 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 2029 {
802db21b 2030 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 2031 }
c5aa993b
JM
2032 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2033 continue;
c906108c
SS
2034 /* Array to pointer is a `trivial conversion' according to the ARM. */
2035
2036 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2037 of the ARM), but as a quick kludge, just check for the same type
2038 code. */
ad2f7632 2039 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2040 return i + 1;
c906108c 2041 }
ad2f7632 2042 if (varargs || t2[i] == NULL)
c5aa993b 2043 return 0;
ad2f7632 2044 return i + 1;
c906108c
SS
2045}
2046
2047/* Helper function used by value_struct_elt to recurse through baseclasses.
2048 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2049 and search in it assuming it has (class) type TYPE.
2050 If found, return value, else return NULL.
2051
2052 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2053 look for a baseclass named NAME. */
2054
f23631e4
AC
2055static struct value *
2056search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2057 register struct type *type, int looking_for_baseclass)
c906108c
SS
2058{
2059 int i;
2060 int nbases = TYPE_N_BASECLASSES (type);
2061
2062 CHECK_TYPEDEF (type);
2063
c5aa993b 2064 if (!looking_for_baseclass)
c906108c
SS
2065 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2066 {
2067 char *t_field_name = TYPE_FIELD_NAME (type, i);
2068
db577aea 2069 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2070 {
f23631e4 2071 struct value *v;
c906108c 2072 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2073 {
2074 v = value_static_field (type, i);
2075 if (v == 0)
2076 error ("field %s is nonexistent or has been optimised out",
2077 name);
2078 }
c906108c 2079 else
2c2738a0
DC
2080 {
2081 v = value_primitive_field (arg1, offset, i, type);
2082 if (v == 0)
2083 error ("there is no field named %s", name);
2084 }
c906108c
SS
2085 return v;
2086 }
2087
2088 if (t_field_name
2089 && (t_field_name[0] == '\0'
2090 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2091 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2092 {
2093 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2094 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2095 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2096 {
2097 /* Look for a match through the fields of an anonymous union,
2098 or anonymous struct. C++ provides anonymous unions.
2099
1b831c93
AC
2100 In the GNU Chill (now deleted from GDB)
2101 implementation of variant record types, each
2102 <alternative field> has an (anonymous) union type,
2103 each member of the union represents a <variant
2104 alternative>. Each <variant alternative> is
2105 represented as a struct, with a member for each
2106 <variant field>. */
c5aa993b 2107
f23631e4 2108 struct value *v;
c906108c
SS
2109 int new_offset = offset;
2110
db034ac5
AC
2111 /* This is pretty gross. In G++, the offset in an
2112 anonymous union is relative to the beginning of the
1b831c93
AC
2113 enclosing struct. In the GNU Chill (now deleted
2114 from GDB) implementation of variant records, the
2115 bitpos is zero in an anonymous union field, so we
2116 have to add the offset of the union here. */
c906108c
SS
2117 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2118 || (TYPE_NFIELDS (field_type) > 0
2119 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2120 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2121
2122 v = search_struct_field (name, arg1, new_offset, field_type,
2123 looking_for_baseclass);
2124 if (v)
2125 return v;
2126 }
2127 }
2128 }
2129
c5aa993b 2130 for (i = 0; i < nbases; i++)
c906108c 2131 {
f23631e4 2132 struct value *v;
c906108c
SS
2133 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2134 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2135 hit them. But it could happen that the base part's member name
2136 is not yet filled in. */
c906108c
SS
2137 int found_baseclass = (looking_for_baseclass
2138 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2139 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2140
2141 if (BASETYPE_VIA_VIRTUAL (type, i))
2142 {
2143 int boffset;
f23631e4 2144 struct value *v2 = allocate_value (basetype);
c906108c
SS
2145
2146 boffset = baseclass_offset (type, i,
2147 VALUE_CONTENTS (arg1) + offset,
2148 VALUE_ADDRESS (arg1)
c5aa993b 2149 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2150 if (boffset == -1)
2151 error ("virtual baseclass botch");
2152
2153 /* The virtual base class pointer might have been clobbered by the
2154 user program. Make sure that it still points to a valid memory
2155 location. */
2156
2157 boffset += offset;
2158 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2159 {
2160 CORE_ADDR base_addr;
c5aa993b 2161
c906108c
SS
2162 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2163 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2164 TYPE_LENGTH (basetype)) != 0)
2165 error ("virtual baseclass botch");
2166 VALUE_LVAL (v2) = lval_memory;
2167 VALUE_ADDRESS (v2) = base_addr;
2168 }
2169 else
2170 {
2171 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2172 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2173 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2174 if (VALUE_LAZY (arg1))
2175 VALUE_LAZY (v2) = 1;
2176 else
2177 memcpy (VALUE_CONTENTS_RAW (v2),
2178 VALUE_CONTENTS_RAW (arg1) + boffset,
2179 TYPE_LENGTH (basetype));
2180 }
2181
2182 if (found_baseclass)
2183 return v2;
2184 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2185 looking_for_baseclass);
2186 }
2187 else if (found_baseclass)
2188 v = value_primitive_field (arg1, offset, i, type);
2189 else
2190 v = search_struct_field (name, arg1,
c5aa993b 2191 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2192 basetype, looking_for_baseclass);
c5aa993b
JM
2193 if (v)
2194 return v;
c906108c
SS
2195 }
2196 return NULL;
2197}
2198
2199
2200/* Return the offset (in bytes) of the virtual base of type BASETYPE
2201 * in an object pointed to by VALADDR (on the host), assumed to be of
2202 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2203 * looking (in case VALADDR is the contents of an enclosing object).
2204 *
2205 * This routine recurses on the primary base of the derived class because
2206 * the virtual base entries of the primary base appear before the other
2207 * virtual base entries.
2208 *
2209 * If the virtual base is not found, a negative integer is returned.
2210 * The magnitude of the negative integer is the number of entries in
2211 * the virtual table to skip over (entries corresponding to various
2212 * ancestral classes in the chain of primary bases).
2213 *
2214 * Important: This assumes the HP / Taligent C++ runtime
2215 * conventions. Use baseclass_offset() instead to deal with g++
2216 * conventions. */
2217
2218void
fba45db2
KB
2219find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2220 int offset, int *boffset_p, int *skip_p)
c906108c 2221{
c5aa993b
JM
2222 int boffset; /* offset of virtual base */
2223 int index; /* displacement to use in virtual table */
c906108c 2224 int skip;
c5aa993b 2225
f23631e4 2226 struct value *vp;
c5aa993b
JM
2227 CORE_ADDR vtbl; /* the virtual table pointer */
2228 struct type *pbc; /* the primary base class */
c906108c
SS
2229
2230 /* Look for the virtual base recursively in the primary base, first.
2231 * This is because the derived class object and its primary base
2232 * subobject share the primary virtual table. */
c5aa993b 2233
c906108c 2234 boffset = 0;
c5aa993b 2235 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2236 if (pbc)
2237 {
2238 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2239 if (skip < 0)
c5aa993b
JM
2240 {
2241 *boffset_p = boffset;
2242 *skip_p = -1;
2243 return;
2244 }
c906108c
SS
2245 }
2246 else
2247 skip = 0;
2248
2249
2250 /* Find the index of the virtual base according to HP/Taligent
2251 runtime spec. (Depth-first, left-to-right.) */
2252 index = virtual_base_index_skip_primaries (basetype, type);
2253
c5aa993b
JM
2254 if (index < 0)
2255 {
2256 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2257 *boffset_p = 0;
2258 return;
2259 }
c906108c 2260
c5aa993b 2261 /* pai: FIXME -- 32x64 possible problem */
c906108c 2262 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2263 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2264
c5aa993b 2265 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2266 if (vtbl == 0)
2267 error ("Couldn't find virtual table -- object may not be constructed yet.");
2268
2269
2270 /* Find virtual base's offset -- jump over entries for primary base
2271 * ancestors, then use the index computed above. But also adjust by
2272 * HP_ACC_VBASE_START for the vtable slots before the start of the
2273 * virtual base entries. Offset is negative -- virtual base entries
2274 * appear _before_ the address point of the virtual table. */
c5aa993b 2275
070ad9f0 2276 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2277 & use long type */
c906108c
SS
2278
2279 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2280 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2281 boffset = value_as_long (vp);
2282 *skip_p = -1;
2283 *boffset_p = boffset;
2284 return;
2285}
2286
2287
2288/* Helper function used by value_struct_elt to recurse through baseclasses.
2289 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2290 and search in it assuming it has (class) type TYPE.
2291 If found, return value, else if name matched and args not return (value)-1,
2292 else return NULL. */
2293
f23631e4
AC
2294static struct value *
2295search_struct_method (char *name, struct value **arg1p,
2296 struct value **args, int offset,
fba45db2 2297 int *static_memfuncp, register struct type *type)
c906108c
SS
2298{
2299 int i;
f23631e4 2300 struct value *v;
c906108c
SS
2301 int name_matched = 0;
2302 char dem_opname[64];
2303
2304 CHECK_TYPEDEF (type);
2305 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2306 {
2307 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2308 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2309 if (strncmp (t_field_name, "__", 2) == 0 ||
2310 strncmp (t_field_name, "op", 2) == 0 ||
2311 strncmp (t_field_name, "type", 4) == 0)
c906108c 2312 {
c5aa993b
JM
2313 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2314 t_field_name = dem_opname;
2315 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2316 t_field_name = dem_opname;
c906108c 2317 }
db577aea 2318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2319 {
2320 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2321 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2322 name_matched = 1;
c906108c 2323
de17c821 2324 check_stub_method_group (type, i);
c906108c
SS
2325 if (j > 0 && args == 0)
2326 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2327 else if (j == 0 && args == 0)
c906108c 2328 {
acf5ed49
DJ
2329 v = value_fn_field (arg1p, f, j, type, offset);
2330 if (v != NULL)
2331 return v;
c906108c 2332 }
acf5ed49
DJ
2333 else
2334 while (j >= 0)
2335 {
acf5ed49 2336 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2337 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2338 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2339 TYPE_FN_FIELD_ARGS (f, j), args))
2340 {
2341 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2342 return value_virtual_fn_field (arg1p, f, j, type, offset);
2343 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2344 *static_memfuncp = 1;
2345 v = value_fn_field (arg1p, f, j, type, offset);
2346 if (v != NULL)
2347 return v;
2348 }
2349 j--;
2350 }
c906108c
SS
2351 }
2352 }
2353
2354 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2355 {
2356 int base_offset;
2357
2358 if (BASETYPE_VIA_VIRTUAL (type, i))
2359 {
c5aa993b
JM
2360 if (TYPE_HAS_VTABLE (type))
2361 {
2362 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2363 according to HP/Taligent runtime spec. */
c5aa993b
JM
2364 int skip;
2365 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2366 VALUE_CONTENTS_ALL (*arg1p),
2367 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2368 &base_offset, &skip);
2369 if (skip >= 0)
2370 error ("Virtual base class offset not found in vtable");
2371 }
2372 else
2373 {
2374 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2375 char *base_valaddr;
2376
2377 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2378 user program. Make sure that it still points to a valid memory
2379 location. */
c5aa993b
JM
2380
2381 if (offset < 0 || offset >= TYPE_LENGTH (type))
2382 {
2383 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2384 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2385 + VALUE_OFFSET (*arg1p) + offset,
2386 base_valaddr,
2387 TYPE_LENGTH (baseclass)) != 0)
2388 error ("virtual baseclass botch");
2389 }
2390 else
2391 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2392
2393 base_offset =
2394 baseclass_offset (type, i, base_valaddr,
2395 VALUE_ADDRESS (*arg1p)
2396 + VALUE_OFFSET (*arg1p) + offset);
2397 if (base_offset == -1)
2398 error ("virtual baseclass botch");
2399 }
2400 }
c906108c
SS
2401 else
2402 {
2403 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2404 }
c906108c
SS
2405 v = search_struct_method (name, arg1p, args, base_offset + offset,
2406 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2407 if (v == (struct value *) - 1)
c906108c
SS
2408 {
2409 name_matched = 1;
2410 }
2411 else if (v)
2412 {
2413/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2414/* *arg1p = arg1_tmp; */
c906108c 2415 return v;
c5aa993b 2416 }
c906108c 2417 }
c5aa993b 2418 if (name_matched)
f23631e4 2419 return (struct value *) - 1;
c5aa993b
JM
2420 else
2421 return NULL;
c906108c
SS
2422}
2423
2424/* Given *ARGP, a value of type (pointer to a)* structure/union,
2425 extract the component named NAME from the ultimate target structure/union
2426 and return it as a value with its appropriate type.
2427 ERR is used in the error message if *ARGP's type is wrong.
2428
2429 C++: ARGS is a list of argument types to aid in the selection of
2430 an appropriate method. Also, handle derived types.
2431
2432 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2433 where the truthvalue of whether the function that was resolved was
2434 a static member function or not is stored.
2435
2436 ERR is an error message to be printed in case the field is not found. */
2437
f23631e4
AC
2438struct value *
2439value_struct_elt (struct value **argp, struct value **args,
fba45db2 2440 char *name, int *static_memfuncp, char *err)
c906108c
SS
2441{
2442 register struct type *t;
f23631e4 2443 struct value *v;
c906108c
SS
2444
2445 COERCE_ARRAY (*argp);
2446
2447 t = check_typedef (VALUE_TYPE (*argp));
2448
2449 /* Follow pointers until we get to a non-pointer. */
2450
2451 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2452 {
2453 *argp = value_ind (*argp);
2454 /* Don't coerce fn pointer to fn and then back again! */
2455 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2456 COERCE_ARRAY (*argp);
2457 t = check_typedef (VALUE_TYPE (*argp));
2458 }
2459
2460 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2461 error ("not implemented: member type in value_struct_elt");
2462
c5aa993b 2463 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2464 && TYPE_CODE (t) != TYPE_CODE_UNION)
2465 error ("Attempt to extract a component of a value that is not a %s.", err);
2466
2467 /* Assume it's not, unless we see that it is. */
2468 if (static_memfuncp)
c5aa993b 2469 *static_memfuncp = 0;
c906108c
SS
2470
2471 if (!args)
2472 {
2473 /* if there are no arguments ...do this... */
2474
2475 /* Try as a field first, because if we succeed, there
7b83ea04 2476 is less work to be done. */
c906108c
SS
2477 v = search_struct_field (name, *argp, 0, t, 0);
2478 if (v)
2479 return v;
2480
2481 /* C++: If it was not found as a data field, then try to
7b83ea04 2482 return it as a pointer to a method. */
c906108c
SS
2483
2484 if (destructor_name_p (name, t))
2485 error ("Cannot get value of destructor");
2486
2487 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2488
f23631e4 2489 if (v == (struct value *) - 1)
c906108c
SS
2490 error ("Cannot take address of a method");
2491 else if (v == 0)
2492 {
2493 if (TYPE_NFN_FIELDS (t))
2494 error ("There is no member or method named %s.", name);
2495 else
2496 error ("There is no member named %s.", name);
2497 }
2498 return v;
2499 }
2500
2501 if (destructor_name_p (name, t))
2502 {
2503 if (!args[1])
2504 {
2505 /* Destructors are a special case. */
2506 int m_index, f_index;
2507
2508 v = NULL;
2509 if (get_destructor_fn_field (t, &m_index, &f_index))
2510 {
2511 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2512 f_index, NULL, 0);
2513 }
2514 if (v == NULL)
2515 error ("could not find destructor function named %s.", name);
2516 else
2517 return v;
2518 }
2519 else
2520 {
2521 error ("destructor should not have any argument");
2522 }
2523 }
2524 else
2525 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2526
f23631e4 2527 if (v == (struct value *) - 1)
c906108c 2528 {
7168a814 2529 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2530 }
2531 else if (v == 0)
2532 {
2533 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2534 hand it back. If it's not callable (i.e., a pointer to function),
2535 gdb should give an error. */
c906108c
SS
2536 v = search_struct_field (name, *argp, 0, t, 0);
2537 }
2538
2539 if (!v)
2540 error ("Structure has no component named %s.", name);
2541 return v;
2542}
2543
2544/* Search through the methods of an object (and its bases)
2545 * to find a specified method. Return the pointer to the
2546 * fn_field list of overloaded instances.
2547 * Helper function for value_find_oload_list.
2548 * ARGP is a pointer to a pointer to a value (the object)
2549 * METHOD is a string containing the method name
2550 * OFFSET is the offset within the value
c906108c
SS
2551 * TYPE is the assumed type of the object
2552 * NUM_FNS is the number of overloaded instances
2553 * BASETYPE is set to the actual type of the subobject where the method is found
2554 * BOFFSET is the offset of the base subobject where the method is found */
2555
7a292a7a 2556static struct fn_field *
f23631e4 2557find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2558 struct type *type, int *num_fns,
fba45db2 2559 struct type **basetype, int *boffset)
c906108c
SS
2560{
2561 int i;
c5aa993b 2562 struct fn_field *f;
c906108c
SS
2563 CHECK_TYPEDEF (type);
2564
2565 *num_fns = 0;
2566
c5aa993b
JM
2567 /* First check in object itself */
2568 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2569 {
2570 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2571 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2572 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2573 {
4a1970e4
DJ
2574 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2575 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4a1970e4
DJ
2576
2577 *num_fns = len;
c5aa993b
JM
2578 *basetype = type;
2579 *boffset = offset;
4a1970e4 2580
de17c821
DJ
2581 /* Resolve any stub methods. */
2582 check_stub_method_group (type, i);
4a1970e4
DJ
2583
2584 return f;
c5aa993b
JM
2585 }
2586 }
2587
c906108c
SS
2588 /* Not found in object, check in base subobjects */
2589 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2590 {
2591 int base_offset;
2592 if (BASETYPE_VIA_VIRTUAL (type, i))
2593 {
c5aa993b
JM
2594 if (TYPE_HAS_VTABLE (type))
2595 {
2596 /* HP aCC compiled type, search for virtual base offset
2597 * according to HP/Taligent runtime spec. */
2598 int skip;
2599 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2600 VALUE_CONTENTS_ALL (*argp),
2601 offset + VALUE_EMBEDDED_OFFSET (*argp),
2602 &base_offset, &skip);
2603 if (skip >= 0)
2604 error ("Virtual base class offset not found in vtable");
2605 }
2606 else
2607 {
2608 /* probably g++ runtime model */
2609 base_offset = VALUE_OFFSET (*argp) + offset;
2610 base_offset =
2611 baseclass_offset (type, i,
2612 VALUE_CONTENTS (*argp) + base_offset,
2613 VALUE_ADDRESS (*argp) + base_offset);
2614 if (base_offset == -1)
2615 error ("virtual baseclass botch");
2616 }
2617 }
2618 else
2619 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2620 {
2621 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2622 }
c906108c 2623 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2624 TYPE_BASECLASS (type, i), num_fns, basetype,
2625 boffset);
c906108c 2626 if (f)
c5aa993b 2627 return f;
c906108c 2628 }
c5aa993b 2629 return NULL;
c906108c
SS
2630}
2631
2632/* Return the list of overloaded methods of a specified name.
2633 * ARGP is a pointer to a pointer to a value (the object)
2634 * METHOD is the method name
2635 * OFFSET is the offset within the value contents
c906108c
SS
2636 * NUM_FNS is the number of overloaded instances
2637 * BASETYPE is set to the type of the base subobject that defines the method
2638 * BOFFSET is the offset of the base subobject which defines the method */
2639
2640struct fn_field *
f23631e4 2641value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2642 int *num_fns, struct type **basetype,
2643 int *boffset)
c906108c 2644{
c5aa993b 2645 struct type *t;
c906108c
SS
2646
2647 t = check_typedef (VALUE_TYPE (*argp));
2648
c5aa993b 2649 /* code snarfed from value_struct_elt */
c906108c
SS
2650 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2651 {
2652 *argp = value_ind (*argp);
2653 /* Don't coerce fn pointer to fn and then back again! */
2654 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2655 COERCE_ARRAY (*argp);
2656 t = check_typedef (VALUE_TYPE (*argp));
2657 }
c5aa993b 2658
c906108c
SS
2659 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2660 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2661
2662 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2663 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2664 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2665
4a1970e4 2666 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2667}
2668
2669/* Given an array of argument types (ARGTYPES) (which includes an
2670 entry for "this" in the case of C++ methods), the number of
2671 arguments NARGS, the NAME of a function whether it's a method or
2672 not (METHOD), and the degree of laxness (LAX) in conforming to
2673 overload resolution rules in ANSI C++, find the best function that
2674 matches on the argument types according to the overload resolution
2675 rules.
2676
2677 In the case of class methods, the parameter OBJ is an object value
2678 in which to search for overloaded methods.
2679
2680 In the case of non-method functions, the parameter FSYM is a symbol
2681 corresponding to one of the overloaded functions.
2682
2683 Return value is an integer: 0 -> good match, 10 -> debugger applied
2684 non-standard coercions, 100 -> incompatible.
2685
2686 If a method is being searched for, VALP will hold the value.
2687 If a non-method is being searched for, SYMP will hold the symbol for it.
2688
2689 If a method is being searched for, and it is a static method,
2690 then STATICP will point to a non-zero value.
2691
2692 Note: This function does *not* check the value of
2693 overload_resolution. Caller must check it to see whether overload
2694 resolution is permitted.
c5aa993b 2695 */
c906108c
SS
2696
2697int
fba45db2 2698find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2699 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2700 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2701{
2702 int nparms;
c5aa993b 2703 struct type **parm_types;
c906108c 2704 int champ_nparms = 0;
7f8c9282 2705 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2706
2707 short oload_champ = -1; /* Index of best overloaded function */
2708 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2709 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2710 short oload_ambig_champ = -1; /* 2nd contender for best match */
2711 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2712 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2713
2714 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2715 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2716
f23631e4 2717 struct value *temp = obj;
c5aa993b
JM
2718 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2719 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2720 int num_fns = 0; /* Number of overloaded instances being considered */
2721 struct type *basetype = NULL;
c906108c
SS
2722 int boffset;
2723 register int jj;
2724 register int ix;
4a1970e4 2725 int static_offset;
02f0d45d 2726 struct cleanup *cleanups = NULL;
c906108c 2727
c5aa993b
JM
2728 char *obj_type_name = NULL;
2729 char *func_name = NULL;
c906108c
SS
2730
2731 /* Get the list of overloaded methods or functions */
2732 if (method)
2733 {
2734 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2735 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2736 value rather than the object itself, so try again */
c906108c 2737 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2738 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2739 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2740
2741 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2742 &num_fns,
2743 &basetype, &boffset);
c906108c 2744 if (!fns_ptr || !num_fns)
c5aa993b
JM
2745 error ("Couldn't find method %s%s%s",
2746 obj_type_name,
2747 (obj_type_name && *obj_type_name) ? "::" : "",
2748 name);
4a1970e4
DJ
2749 /* If we are dealing with stub method types, they should have
2750 been resolved by find_method_list via value_find_oload_method_list
2751 above. */
2752 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2753 }
2754 else
2755 {
2756 int i = -1;
22abf04a 2757 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
c906108c 2758
917317f4 2759 /* If the name is NULL this must be a C-style function.
7b83ea04 2760 Just return the same symbol. */
917317f4 2761 if (!func_name)
7b83ea04 2762 {
917317f4 2763 *symp = fsym;
7b83ea04
AC
2764 return 0;
2765 }
917317f4 2766
c906108c 2767 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2768 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2769 while (oload_syms[++i])
c5aa993b 2770 num_fns++;
c906108c 2771 if (!num_fns)
c5aa993b 2772 error ("Couldn't find function %s", func_name);
c906108c 2773 }
c5aa993b 2774
c906108c
SS
2775 oload_champ_bv = NULL;
2776
c5aa993b 2777 /* Consider each candidate in turn */
c906108c
SS
2778 for (ix = 0; ix < num_fns; ix++)
2779 {
4a1970e4 2780 static_offset = 0;
db577aea
AC
2781 if (method)
2782 {
4a1970e4
DJ
2783 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2784 static_offset = 1;
ad2f7632 2785 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2786 }
2787 else
2788 {
2789 /* If it's not a method, this is the proper place */
2790 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2791 }
c906108c 2792
c5aa993b 2793 /* Prepare array of parameter types */
c906108c
SS
2794 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2795 for (jj = 0; jj < nparms; jj++)
db577aea 2796 parm_types[jj] = (method
ad2f7632 2797 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2798 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2799
4a1970e4
DJ
2800 /* Compare parameter types to supplied argument types. Skip THIS for
2801 static methods. */
2802 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2803 nargs - static_offset);
c5aa993b 2804
c906108c 2805 if (!oload_champ_bv)
c5aa993b
JM
2806 {
2807 oload_champ_bv = bv;
2808 oload_champ = 0;
2809 champ_nparms = nparms;
2810 }
c906108c 2811 else
c5aa993b
JM
2812 /* See whether current candidate is better or worse than previous best */
2813 switch (compare_badness (bv, oload_champ_bv))
2814 {
2815 case 0:
2816 oload_ambiguous = 1; /* top two contenders are equally good */
2817 oload_ambig_champ = ix;
2818 break;
2819 case 1:
2820 oload_ambiguous = 2; /* incomparable top contenders */
2821 oload_ambig_champ = ix;
2822 break;
2823 case 2:
2824 oload_champ_bv = bv; /* new champion, record details */
2825 oload_ambiguous = 0;
2826 oload_champ = ix;
2827 oload_ambig_champ = -1;
2828 champ_nparms = nparms;
2829 break;
2830 case 3:
2831 default:
2832 break;
2833 }
b8c9b27d 2834 xfree (parm_types);
6b1ba9a0
ND
2835 if (overload_debug)
2836 {
2837 if (method)
2838 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2839 else
2840 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2841 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2842 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2843 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2844 }
c5aa993b 2845 } /* end loop over all candidates */
db577aea
AC
2846 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2847 if they have the exact same goodness. This is because there is no
2848 way to differentiate based on return type, which we need to in
2849 cases like overloads of .begin() <It's both const and non-const> */
2850#if 0
c906108c
SS
2851 if (oload_ambiguous)
2852 {
2853 if (method)
c5aa993b
JM
2854 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2855 obj_type_name,
2856 (obj_type_name && *obj_type_name) ? "::" : "",
2857 name);
c906108c 2858 else
c5aa993b
JM
2859 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2860 func_name);
c906108c 2861 }
db577aea 2862#endif
c906108c 2863
4a1970e4
DJ
2864 /* Check how bad the best match is. */
2865 static_offset = 0;
2866 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2867 static_offset = 1;
2868 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2869 {
6b1ba9a0
ND
2870 if (oload_champ_bv->rank[ix] >= 100)
2871 oload_incompatible = 1; /* truly mismatched types */
2872
2873 else if (oload_champ_bv->rank[ix] >= 10)
2874 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2875 }
2876 if (oload_incompatible)
2877 {
2878 if (method)
c5aa993b
JM
2879 error ("Cannot resolve method %s%s%s to any overloaded instance",
2880 obj_type_name,
2881 (obj_type_name && *obj_type_name) ? "::" : "",
2882 name);
c906108c 2883 else
c5aa993b
JM
2884 error ("Cannot resolve function %s to any overloaded instance",
2885 func_name);
c906108c
SS
2886 }
2887 else if (oload_non_standard)
2888 {
2889 if (method)
c5aa993b
JM
2890 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2891 obj_type_name,
2892 (obj_type_name && *obj_type_name) ? "::" : "",
2893 name);
c906108c 2894 else
c5aa993b
JM
2895 warning ("Using non-standard conversion to match function %s to supplied arguments",
2896 func_name);
c906108c
SS
2897 }
2898
2899 if (method)
2900 {
4a1970e4
DJ
2901 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2902 *staticp = 1;
2903 else if (staticp)
2904 *staticp = 0;
c906108c 2905 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2906 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2907 else
c5aa993b 2908 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2909 }
2910 else
2911 {
2912 *symp = oload_syms[oload_champ];
b8c9b27d 2913 xfree (func_name);
c906108c
SS
2914 }
2915
7f8c9282
DJ
2916 if (objp)
2917 {
2918 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2919 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2920 {
2921 temp = value_addr (temp);
2922 }
2923 *objp = temp;
2924 }
02f0d45d
DJ
2925 if (cleanups != NULL)
2926 do_cleanups (cleanups);
2927
c906108c
SS
2928 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2929}
2930
2931/* C++: return 1 is NAME is a legitimate name for the destructor
2932 of type TYPE. If TYPE does not have a destructor, or
2933 if NAME is inappropriate for TYPE, an error is signaled. */
2934int
fba45db2 2935destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2936{
2937 /* destructors are a special case. */
2938
2939 if (name[0] == '~')
2940 {
2941 char *dname = type_name_no_tag (type);
2942 char *cp = strchr (dname, '<');
2943 unsigned int len;
2944
2945 /* Do not compare the template part for template classes. */
2946 if (cp == NULL)
2947 len = strlen (dname);
2948 else
2949 len = cp - dname;
2950 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2951 error ("name of destructor must equal name of class");
2952 else
2953 return 1;
2954 }
2955 return 0;
2956}
2957
2958/* Helper function for check_field: Given TYPE, a structure/union,
2959 return 1 if the component named NAME from the ultimate
2960 target structure/union is defined, otherwise, return 0. */
2961
2962static int
fba45db2 2963check_field_in (register struct type *type, const char *name)
c906108c
SS
2964{
2965 register int i;
2966
2967 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2968 {
2969 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2970 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2971 return 1;
2972 }
2973
2974 /* C++: If it was not found as a data field, then try to
2975 return it as a pointer to a method. */
2976
2977 /* Destructors are a special case. */
2978 if (destructor_name_p (name, type))
2979 {
2980 int m_index, f_index;
2981
2982 return get_destructor_fn_field (type, &m_index, &f_index);
2983 }
2984
2985 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2986 {
db577aea 2987 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
2988 return 1;
2989 }
2990
2991 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2992 if (check_field_in (TYPE_BASECLASS (type, i), name))
2993 return 1;
c5aa993b 2994
c906108c
SS
2995 return 0;
2996}
2997
2998
2999/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3000 return 1 if the component named NAME from the ultimate
3001 target structure/union is defined, otherwise, return 0. */
3002
3003int
f23631e4 3004check_field (struct value *arg1, const char *name)
c906108c
SS
3005{
3006 register struct type *t;
3007
3008 COERCE_ARRAY (arg1);
3009
3010 t = VALUE_TYPE (arg1);
3011
3012 /* Follow pointers until we get to a non-pointer. */
3013
3014 for (;;)
3015 {
3016 CHECK_TYPEDEF (t);
3017 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3018 break;
3019 t = TYPE_TARGET_TYPE (t);
3020 }
3021
3022 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3023 error ("not implemented: member type in check_field");
3024
c5aa993b 3025 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3026 && TYPE_CODE (t) != TYPE_CODE_UNION)
3027 error ("Internal error: `this' is not an aggregate");
3028
3029 return check_field_in (t, name);
3030}
3031
3032/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3033 return the address of this member as a "pointer to member"
3034 type. If INTYPE is non-null, then it will be the type
3035 of the member we are looking for. This will help us resolve
3036 "pointers to member functions". This function is used
3037 to resolve user expressions of the form "DOMAIN::NAME". */
3038
f23631e4 3039struct value *
fba45db2
KB
3040value_struct_elt_for_reference (struct type *domain, int offset,
3041 struct type *curtype, char *name,
3042 struct type *intype)
c906108c
SS
3043{
3044 register struct type *t = curtype;
3045 register int i;
f23631e4 3046 struct value *v;
c906108c 3047
c5aa993b 3048 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3049 && TYPE_CODE (t) != TYPE_CODE_UNION)
3050 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3051
3052 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3053 {
3054 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3055
c906108c
SS
3056 if (t_field_name && STREQ (t_field_name, name))
3057 {
3058 if (TYPE_FIELD_STATIC (t, i))
3059 {
3060 v = value_static_field (t, i);
3061 if (v == NULL)
2c2738a0 3062 error ("static field %s has been optimized out",
c906108c
SS
3063 name);
3064 return v;
3065 }
3066 if (TYPE_FIELD_PACKED (t, i))
3067 error ("pointers to bitfield members not allowed");
c5aa993b 3068
c906108c
SS
3069 return value_from_longest
3070 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3071 domain)),
3072 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3073 }
3074 }
3075
3076 /* C++: If it was not found as a data field, then try to
3077 return it as a pointer to a method. */
3078
3079 /* Destructors are a special case. */
3080 if (destructor_name_p (name, t))
3081 {
3082 error ("member pointers to destructors not implemented yet");
3083 }
3084
3085 /* Perform all necessary dereferencing. */
3086 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3087 intype = TYPE_TARGET_TYPE (intype);
3088
3089 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3090 {
3091 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3092 char dem_opname[64];
3093
c5aa993b
JM
3094 if (strncmp (t_field_name, "__", 2) == 0 ||
3095 strncmp (t_field_name, "op", 2) == 0 ||
3096 strncmp (t_field_name, "type", 4) == 0)
c906108c 3097 {
c5aa993b
JM
3098 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3099 t_field_name = dem_opname;
3100 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3101 t_field_name = dem_opname;
c906108c
SS
3102 }
3103 if (t_field_name && STREQ (t_field_name, name))
3104 {
3105 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3106 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3107
de17c821
DJ
3108 check_stub_method_group (t, i);
3109
c906108c
SS
3110 if (intype == 0 && j > 1)
3111 error ("non-unique member `%s' requires type instantiation", name);
3112 if (intype)
3113 {
3114 while (j--)
3115 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3116 break;
3117 if (j < 0)
3118 error ("no member function matches that type instantiation");
3119 }
3120 else
3121 j = 0;
c5aa993b 3122
c906108c
SS
3123 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3124 {
3125 return value_from_longest
3126 (lookup_reference_type
3127 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3128 domain)),
3129 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3130 }
3131 else
3132 {
3133 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3134 0, VAR_NAMESPACE, 0, NULL);
3135 if (s == NULL)
3136 {
3137 v = 0;
3138 }
3139 else
3140 {
3141 v = read_var_value (s, 0);
3142#if 0
3143 VALUE_TYPE (v) = lookup_reference_type
3144 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3145 domain));
3146#endif
3147 }
3148 return v;
3149 }
3150 }
3151 }
3152 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3153 {
f23631e4 3154 struct value *v;
c906108c
SS
3155 int base_offset;
3156
3157 if (BASETYPE_VIA_VIRTUAL (t, i))
3158 base_offset = 0;
3159 else
3160 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3161 v = value_struct_elt_for_reference (domain,
3162 offset + base_offset,
3163 TYPE_BASECLASS (t, i),
3164 name,
3165 intype);
3166 if (v)
3167 return v;
3168 }
3169 return 0;
3170}
3171
3172
c906108c
SS
3173/* Given a pointer value V, find the real (RTTI) type
3174 of the object it points to.
3175 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3176 and refer to the values computed for the object pointed to. */
3177
3178struct type *
f23631e4 3179value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3180{
f23631e4 3181 struct value *target;
c906108c
SS
3182
3183 target = value_ind (v);
3184
3185 return value_rtti_type (target, full, top, using_enc);
3186}
3187
3188/* Given a value pointed to by ARGP, check its real run-time type, and
3189 if that is different from the enclosing type, create a new value
3190 using the real run-time type as the enclosing type (and of the same
3191 type as ARGP) and return it, with the embedded offset adjusted to
3192 be the correct offset to the enclosed object
3193 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3194 parameters, computed by value_rtti_type(). If these are available,
3195 they can be supplied and a second call to value_rtti_type() is avoided.
3196 (Pass RTYPE == NULL if they're not available */
3197
f23631e4
AC
3198struct value *
3199value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3200 int xusing_enc)
c906108c 3201{
c5aa993b 3202 struct type *real_type;
c906108c
SS
3203 int full = 0;
3204 int top = -1;
3205 int using_enc = 0;
f23631e4 3206 struct value *new_val;
c906108c
SS
3207
3208 if (rtype)
3209 {
3210 real_type = rtype;
3211 full = xfull;
3212 top = xtop;
3213 using_enc = xusing_enc;
3214 }
3215 else
3216 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3217
3218 /* If no RTTI data, or if object is already complete, do nothing */
3219 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3220 return argp;
3221
3222 /* If we have the full object, but for some reason the enclosing
c5aa993b 3223 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3224 if (full)
3225 {
2b127877 3226 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3227 return argp;
3228 }
3229
3230 /* Check if object is in memory */
3231 if (VALUE_LVAL (argp) != lval_memory)
3232 {
3233 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3234
c906108c
SS
3235 return argp;
3236 }
c5aa993b 3237
c906108c
SS
3238 /* All other cases -- retrieve the complete object */
3239 /* Go back by the computed top_offset from the beginning of the object,
3240 adjusting for the embedded offset of argp if that's what value_rtti_type
3241 used for its computation. */
3242 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3243 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3244 VALUE_BFD_SECTION (argp));
c906108c
SS
3245 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3246 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3247 return new_val;
3248}
3249
389e51db
AC
3250
3251
3252
d069f99d 3253/* Return the value of the local variable, if one exists.
c906108c
SS
3254 Flag COMPLAIN signals an error if the request is made in an
3255 inappropriate context. */
3256
f23631e4 3257struct value *
d069f99d 3258value_of_local (const char *name, int complain)
c906108c
SS
3259{
3260 struct symbol *func, *sym;
3261 struct block *b;
3262 int i;
d069f99d 3263 struct value * ret;
c906108c 3264
6e7f8b9c 3265 if (deprecated_selected_frame == 0)
c906108c
SS
3266 {
3267 if (complain)
c5aa993b
JM
3268 error ("no frame selected");
3269 else
3270 return 0;
c906108c
SS
3271 }
3272
6e7f8b9c 3273 func = get_frame_function (deprecated_selected_frame);
c906108c
SS
3274 if (!func)
3275 {
3276 if (complain)
2625d86c 3277 error ("no `%s' in nameless context", name);
c5aa993b
JM
3278 else
3279 return 0;
c906108c
SS
3280 }
3281
3282 b = SYMBOL_BLOCK_VALUE (func);
3283 i = BLOCK_NSYMS (b);
3284 if (i <= 0)
3285 {
3286 if (complain)
2625d86c 3287 error ("no args, no `%s'", name);
c5aa993b
JM
3288 else
3289 return 0;
c906108c
SS
3290 }
3291
3292 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3293 symbol instead of the LOC_ARG one (if both exist). */
d069f99d 3294 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
c906108c
SS
3295 if (sym == NULL)
3296 {
3297 if (complain)
2625d86c 3298 error ("current stack frame does not contain a variable named `%s'", name);
c906108c
SS
3299 else
3300 return NULL;
3301 }
3302
6e7f8b9c 3303 ret = read_var_value (sym, deprecated_selected_frame);
d069f99d 3304 if (ret == 0 && complain)
2625d86c 3305 error ("`%s' argument unreadable", name);
d069f99d
AF
3306 return ret;
3307}
3308
3309/* C++/Objective-C: return the value of the class instance variable,
3310 if one exists. Flag COMPLAIN signals an error if the request is
3311 made in an inappropriate context. */
3312
3313struct value *
3314value_of_this (int complain)
3315{
3316 if (current_language->la_language == language_objc)
3317 return value_of_local ("self", complain);
3318 else
3319 return value_of_local ("this", complain);
c906108c
SS
3320}
3321
3322/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3323 long, starting at LOWBOUND. The result has the same lower bound as
3324 the original ARRAY. */
3325
f23631e4
AC
3326struct value *
3327value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3328{
3329 struct type *slice_range_type, *slice_type, *range_type;
7a67d0fe 3330 LONGEST lowerbound, upperbound;
f23631e4 3331 struct value *slice;
c906108c
SS
3332 struct type *array_type;
3333 array_type = check_typedef (VALUE_TYPE (array));
3334 COERCE_VARYING_ARRAY (array, array_type);
3335 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3336 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3337 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3338 error ("cannot take slice of non-array");
3339 range_type = TYPE_INDEX_TYPE (array_type);
3340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3341 error ("slice from bad array or bitstring");
3342 if (lowbound < lowerbound || length < 0
db034ac5 3343 || lowbound + length - 1 > upperbound)
c906108c
SS
3344 error ("slice out of range");
3345 /* FIXME-type-allocation: need a way to free this type when we are
3346 done with it. */
c5aa993b 3347 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3348 TYPE_TARGET_TYPE (range_type),
3349 lowbound, lowbound + length - 1);
3350 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3351 {
3352 int i;
c5aa993b 3353 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3354 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3355 slice = value_zero (slice_type, not_lval);
3356 for (i = 0; i < length; i++)
3357 {
3358 int element = value_bit_index (array_type,
3359 VALUE_CONTENTS (array),
3360 lowbound + i);
3361 if (element < 0)
3362 error ("internal error accessing bitstring");
3363 else if (element > 0)
3364 {
3365 int j = i % TARGET_CHAR_BIT;
3366 if (BITS_BIG_ENDIAN)
3367 j = TARGET_CHAR_BIT - 1 - j;
3368 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3369 }
3370 }
3371 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3372 can be used on the LHS, but that may require extensions to
3373 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3374 }
3375 else
3376 {
3377 struct type *element_type = TYPE_TARGET_TYPE (array_type);
7a67d0fe 3378 LONGEST offset
c906108c 3379 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3380 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3381 slice_range_type);
3382 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3383 slice = allocate_value (slice_type);
3384 if (VALUE_LAZY (array))
3385 VALUE_LAZY (slice) = 1;
3386 else
3387 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3388 TYPE_LENGTH (slice_type));
3389 if (VALUE_LVAL (array) == lval_internalvar)
3390 VALUE_LVAL (slice) = lval_internalvar_component;
3391 else
3392 VALUE_LVAL (slice) = VALUE_LVAL (array);
3393 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3394 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3395 }
3396 return slice;
3397}
3398
070ad9f0
DB
3399/* Create a value for a FORTRAN complex number. Currently most of
3400 the time values are coerced to COMPLEX*16 (i.e. a complex number
3401 composed of 2 doubles. This really should be a smarter routine
3402 that figures out precision inteligently as opposed to assuming
c5aa993b 3403 doubles. FIXME: fmb */
c906108c 3404
f23631e4
AC
3405struct value *
3406value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3407{
f23631e4 3408 struct value *val;
c906108c
SS
3409 struct type *real_type = TYPE_TARGET_TYPE (type);
3410
3411 val = allocate_value (type);
3412 arg1 = value_cast (real_type, arg1);
3413 arg2 = value_cast (real_type, arg2);
3414
3415 memcpy (VALUE_CONTENTS_RAW (val),
3416 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3417 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3418 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3419 return val;
3420}
3421
3422/* Cast a value into the appropriate complex data type. */
3423
f23631e4
AC
3424static struct value *
3425cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3426{
3427 struct type *real_type = TYPE_TARGET_TYPE (type);
3428 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3429 {
3430 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3431 struct value *re_val = allocate_value (val_real_type);
3432 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3433
3434 memcpy (VALUE_CONTENTS_RAW (re_val),
3435 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3436 memcpy (VALUE_CONTENTS_RAW (im_val),
3437 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3438 TYPE_LENGTH (val_real_type));
c906108c
SS
3439
3440 return value_literal_complex (re_val, im_val, type);
3441 }
3442 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3443 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3444 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3445 else
3446 error ("cannot cast non-number to complex");
3447}
3448
3449void
fba45db2 3450_initialize_valops (void)
c906108c
SS
3451{
3452#if 0
3453 add_show_from_set
c5aa993b 3454 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3455 "Set automatic abandonment of expressions upon failure.",
3456 &setlist),
3457 &showlist);
3458#endif
3459
3460 add_show_from_set
c5aa993b 3461 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3462 "Set overload resolution in evaluating C++ functions.",
3463 &setlist),
3464 &showlist);
3465 overload_resolution = 1;
3466
242bfc55
FN
3467 add_show_from_set (
3468 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3469 (char *) &unwind_on_signal_p,
3470"Set unwinding of stack if a signal is received while in a call dummy.\n\
3471The unwindonsignal lets the user determine what gdb should do if a signal\n\
3472is received while in a function called from gdb (call dummy). If set, gdb\n\
3473unwinds the stack and restore the context to what as it was before the call.\n\
3474The default is to stop in the frame where the signal was received.", &setlist),
3475 &showlist);
1e698235
DJ
3476
3477 add_show_from_set
3478 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3479 (char *) &coerce_float_to_double,
3480 "Set coercion of floats to doubles when calling functions\n"
3481 "Variables of type float should generally be converted to doubles before\n"
3482 "calling an unprototyped function, and left alone when calling a prototyped\n"
3483 "function. However, some older debug info formats do not provide enough\n"
3484 "information to determine that a function is prototyped. If this flag is\n"
3485 "set, GDB will perform the conversion for a function it considers\n"
3486 "unprototyped.\n"
3487 "The default is to perform the conversion.\n",
3488 &setlist),
3489 &showlist);
3490 coerce_float_to_double = 1;
c906108c 3491}
This page took 0.640814 seconds and 4 git commands to generate.