Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
9b254dd1 DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, | |
7b6bb8da | 5 | 2008, 2009, 2010, 2011 Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
4e052eda | 33 | #include "regcache.h" |
015a42b4 | 34 | #include "cp-abi.h" |
fe898f56 | 35 | #include "block.h" |
04714b91 | 36 | #include "infcall.h" |
de4f826b | 37 | #include "dictionary.h" |
b6429628 | 38 | #include "cp-support.h" |
4ef30785 | 39 | #include "dfp.h" |
029a67e4 | 40 | #include "user-regs.h" |
e6ca34fc | 41 | #include "tracepoint.h" |
c906108c SS |
42 | #include <errno.h> |
43 | #include "gdb_string.h" | |
4a1970e4 | 44 | #include "gdb_assert.h" |
79c2c32d | 45 | #include "cp-support.h" |
f4c5303c | 46 | #include "observer.h" |
3e3b026f UW |
47 | #include "objfiles.h" |
48 | #include "symtab.h" | |
79afc5ef | 49 | #include "exceptions.h" |
c906108c | 50 | |
070ad9f0 | 51 | extern int overload_debug; |
c906108c SS |
52 | /* Local functions. */ |
53 | ||
ad2f7632 DJ |
54 | static int typecmp (int staticp, int varargs, int nargs, |
55 | struct field t1[], struct value *t2[]); | |
c906108c | 56 | |
714f19d5 | 57 | static struct value *search_struct_field (const char *, struct value *, |
ac3eeb49 | 58 | int, struct type *, int); |
c906108c | 59 | |
714f19d5 TT |
60 | static struct value *search_struct_method (const char *, struct value **, |
61 | struct value **, | |
62 | int, int *, struct type *); | |
c906108c | 63 | |
ac3eeb49 MS |
64 | static int find_oload_champ_namespace (struct type **, int, |
65 | const char *, const char *, | |
66 | struct symbol ***, | |
7322dca9 SW |
67 | struct badness_vector **, |
68 | const int no_adl); | |
8d577d32 DC |
69 | |
70 | static | |
ac3eeb49 MS |
71 | int find_oload_champ_namespace_loop (struct type **, int, |
72 | const char *, const char *, | |
73 | int, struct symbol ***, | |
7322dca9 SW |
74 | struct badness_vector **, int *, |
75 | const int no_adl); | |
ac3eeb49 MS |
76 | |
77 | static int find_oload_champ (struct type **, int, int, int, | |
78 | struct fn_field *, struct symbol **, | |
79 | struct badness_vector **); | |
80 | ||
81 | static int oload_method_static (int, struct fn_field *, int); | |
8d577d32 DC |
82 | |
83 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
84 | ||
85 | static enum | |
ac3eeb49 MS |
86 | oload_classification classify_oload_match (struct badness_vector *, |
87 | int, int); | |
8d577d32 | 88 | |
ac3eeb49 MS |
89 | static struct value *value_struct_elt_for_reference (struct type *, |
90 | int, struct type *, | |
91 | char *, | |
92 | struct type *, | |
93 | int, enum noside); | |
79c2c32d | 94 | |
ac3eeb49 MS |
95 | static struct value *value_namespace_elt (const struct type *, |
96 | char *, int , enum noside); | |
79c2c32d | 97 | |
ac3eeb49 MS |
98 | static struct value *value_maybe_namespace_elt (const struct type *, |
99 | char *, int, | |
100 | enum noside); | |
63d06c5c | 101 | |
a14ed312 | 102 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 103 | |
f23631e4 | 104 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 105 | |
714f19d5 | 106 | static struct fn_field *find_method_list (struct value **, const char *, |
ac3eeb49 MS |
107 | int, struct type *, int *, |
108 | struct type **, int *); | |
7a292a7a | 109 | |
a14ed312 | 110 | void _initialize_valops (void); |
c906108c | 111 | |
c906108c | 112 | #if 0 |
ac3eeb49 MS |
113 | /* Flag for whether we want to abandon failed expression evals by |
114 | default. */ | |
115 | ||
c906108c SS |
116 | static int auto_abandon = 0; |
117 | #endif | |
118 | ||
119 | int overload_resolution = 0; | |
920d2a44 AC |
120 | static void |
121 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
122 | struct cmd_list_element *c, |
123 | const char *value) | |
920d2a44 | 124 | { |
3e43a32a MS |
125 | fprintf_filtered (file, _("Overload resolution in evaluating " |
126 | "C++ functions is %s.\n"), | |
920d2a44 AC |
127 | value); |
128 | } | |
242bfc55 | 129 | |
3e3b026f UW |
130 | /* Find the address of function name NAME in the inferior. If OBJF_P |
131 | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | |
132 | is defined. */ | |
c906108c | 133 | |
f23631e4 | 134 | struct value * |
3e3b026f | 135 | find_function_in_inferior (const char *name, struct objfile **objf_p) |
c906108c | 136 | { |
52f0bd74 | 137 | struct symbol *sym; |
a109c7c1 | 138 | |
2570f2b7 | 139 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
c906108c SS |
140 | if (sym != NULL) |
141 | { | |
142 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
143 | { | |
8a3fe4f8 | 144 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
145 | name); |
146 | } | |
3e3b026f UW |
147 | |
148 | if (objf_p) | |
149 | *objf_p = SYMBOL_SYMTAB (sym)->objfile; | |
150 | ||
c906108c SS |
151 | return value_of_variable (sym, NULL); |
152 | } | |
153 | else | |
154 | { | |
ac3eeb49 MS |
155 | struct minimal_symbol *msymbol = |
156 | lookup_minimal_symbol (name, NULL, NULL); | |
a109c7c1 | 157 | |
c906108c SS |
158 | if (msymbol != NULL) |
159 | { | |
3e3b026f UW |
160 | struct objfile *objfile = msymbol_objfile (msymbol); |
161 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
162 | ||
c906108c | 163 | struct type *type; |
4478b372 | 164 | CORE_ADDR maddr; |
3e3b026f | 165 | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
c906108c SS |
166 | type = lookup_function_type (type); |
167 | type = lookup_pointer_type (type); | |
4478b372 | 168 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
3e3b026f UW |
169 | |
170 | if (objf_p) | |
171 | *objf_p = objfile; | |
172 | ||
4478b372 | 173 | return value_from_pointer (type, maddr); |
c906108c SS |
174 | } |
175 | else | |
176 | { | |
c5aa993b | 177 | if (!target_has_execution) |
3e43a32a MS |
178 | error (_("evaluation of this expression " |
179 | "requires the target program to be active")); | |
c5aa993b | 180 | else |
3e43a32a MS |
181 | error (_("evaluation of this expression requires the " |
182 | "program to have a function \"%s\"."), | |
183 | name); | |
c906108c SS |
184 | } |
185 | } | |
186 | } | |
187 | ||
ac3eeb49 MS |
188 | /* Allocate NBYTES of space in the inferior using the inferior's |
189 | malloc and return a value that is a pointer to the allocated | |
190 | space. */ | |
c906108c | 191 | |
f23631e4 | 192 | struct value * |
fba45db2 | 193 | value_allocate_space_in_inferior (int len) |
c906108c | 194 | { |
3e3b026f UW |
195 | struct objfile *objf; |
196 | struct value *val = find_function_in_inferior ("malloc", &objf); | |
197 | struct gdbarch *gdbarch = get_objfile_arch (objf); | |
f23631e4 | 198 | struct value *blocklen; |
c906108c | 199 | |
3e3b026f | 200 | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
c906108c SS |
201 | val = call_function_by_hand (val, 1, &blocklen); |
202 | if (value_logical_not (val)) | |
203 | { | |
204 | if (!target_has_execution) | |
3e43a32a MS |
205 | error (_("No memory available to program now: " |
206 | "you need to start the target first")); | |
c5aa993b | 207 | else |
8a3fe4f8 | 208 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
209 | } |
210 | return val; | |
211 | } | |
212 | ||
213 | static CORE_ADDR | |
fba45db2 | 214 | allocate_space_in_inferior (int len) |
c906108c SS |
215 | { |
216 | return value_as_long (value_allocate_space_in_inferior (len)); | |
217 | } | |
218 | ||
6af87b03 AR |
219 | /* Cast struct value VAL to type TYPE and return as a value. |
220 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
694182d2 DJ |
221 | for this to work. Typedef to one of the codes is permitted. |
222 | Returns NULL if the cast is neither an upcast nor a downcast. */ | |
6af87b03 AR |
223 | |
224 | static struct value * | |
225 | value_cast_structs (struct type *type, struct value *v2) | |
226 | { | |
227 | struct type *t1; | |
228 | struct type *t2; | |
229 | struct value *v; | |
230 | ||
231 | gdb_assert (type != NULL && v2 != NULL); | |
232 | ||
233 | t1 = check_typedef (type); | |
234 | t2 = check_typedef (value_type (v2)); | |
235 | ||
236 | /* Check preconditions. */ | |
237 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
238 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
239 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
240 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
241 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
242 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
243 | ||
191ca0a1 CM |
244 | if (TYPE_NAME (t1) != NULL |
245 | && TYPE_NAME (t2) != NULL | |
246 | && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) | |
247 | return NULL; | |
248 | ||
6af87b03 AR |
249 | /* Upcasting: look in the type of the source to see if it contains the |
250 | type of the target as a superclass. If so, we'll need to | |
251 | offset the pointer rather than just change its type. */ | |
252 | if (TYPE_NAME (t1) != NULL) | |
253 | { | |
254 | v = search_struct_field (type_name_no_tag (t1), | |
255 | v2, 0, t2, 1); | |
256 | if (v) | |
257 | return v; | |
258 | } | |
259 | ||
260 | /* Downcasting: look in the type of the target to see if it contains the | |
261 | type of the source as a superclass. If so, we'll need to | |
9c3c02fd | 262 | offset the pointer rather than just change its type. */ |
6af87b03 AR |
263 | if (TYPE_NAME (t2) != NULL) |
264 | { | |
9c3c02fd TT |
265 | /* Try downcasting using the run-time type of the value. */ |
266 | int full, top, using_enc; | |
267 | struct type *real_type; | |
268 | ||
269 | real_type = value_rtti_type (v2, &full, &top, &using_enc); | |
270 | if (real_type) | |
271 | { | |
272 | v = value_full_object (v2, real_type, full, top, using_enc); | |
273 | v = value_at_lazy (real_type, value_address (v)); | |
274 | ||
275 | /* We might be trying to cast to the outermost enclosing | |
276 | type, in which case search_struct_field won't work. */ | |
277 | if (TYPE_NAME (real_type) != NULL | |
278 | && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) | |
279 | return v; | |
280 | ||
281 | v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1); | |
282 | if (v) | |
283 | return v; | |
284 | } | |
285 | ||
286 | /* Try downcasting using information from the destination type | |
287 | T2. This wouldn't work properly for classes with virtual | |
288 | bases, but those were handled above. */ | |
6af87b03 AR |
289 | v = search_struct_field (type_name_no_tag (t2), |
290 | value_zero (t1, not_lval), 0, t1, 1); | |
291 | if (v) | |
292 | { | |
293 | /* Downcasting is possible (t1 is superclass of v2). */ | |
42ae5230 | 294 | CORE_ADDR addr2 = value_address (v2); |
a109c7c1 | 295 | |
42ae5230 | 296 | addr2 -= value_address (v) + value_embedded_offset (v); |
6af87b03 AR |
297 | return value_at (type, addr2); |
298 | } | |
299 | } | |
694182d2 DJ |
300 | |
301 | return NULL; | |
6af87b03 AR |
302 | } |
303 | ||
fb933624 DJ |
304 | /* Cast one pointer or reference type to another. Both TYPE and |
305 | the type of ARG2 should be pointer types, or else both should be | |
306 | reference types. Returns the new pointer or reference. */ | |
307 | ||
308 | struct value * | |
309 | value_cast_pointers (struct type *type, struct value *arg2) | |
310 | { | |
d160942f | 311 | struct type *type1 = check_typedef (type); |
fb933624 | 312 | struct type *type2 = check_typedef (value_type (arg2)); |
d160942f | 313 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
fb933624 DJ |
314 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
315 | ||
316 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
317 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
318 | && !value_logical_not (arg2)) | |
319 | { | |
6af87b03 | 320 | struct value *v2; |
fb933624 | 321 | |
6af87b03 AR |
322 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
323 | v2 = coerce_ref (arg2); | |
324 | else | |
325 | v2 = value_ind (arg2); | |
3e43a32a MS |
326 | gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) |
327 | == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); | |
6af87b03 AR |
328 | v2 = value_cast_structs (t1, v2); |
329 | /* At this point we have what we can have, un-dereference if needed. */ | |
330 | if (v2) | |
fb933624 | 331 | { |
6af87b03 | 332 | struct value *v = value_addr (v2); |
a109c7c1 | 333 | |
6af87b03 AR |
334 | deprecated_set_value_type (v, type); |
335 | return v; | |
fb933624 | 336 | } |
6af87b03 | 337 | } |
fb933624 DJ |
338 | |
339 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 340 | arg2 = value_copy (arg2); |
fb933624 | 341 | deprecated_set_value_type (arg2, type); |
4dfea560 | 342 | set_value_enclosing_type (arg2, type); |
fb933624 DJ |
343 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
344 | return arg2; | |
345 | } | |
346 | ||
c906108c SS |
347 | /* Cast value ARG2 to type TYPE and return as a value. |
348 | More general than a C cast: accepts any two types of the same length, | |
349 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
350 | /* In C++, casts may change pointer or object representations. */ | |
351 | ||
f23631e4 AC |
352 | struct value * |
353 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 354 | { |
52f0bd74 AC |
355 | enum type_code code1; |
356 | enum type_code code2; | |
357 | int scalar; | |
c906108c SS |
358 | struct type *type2; |
359 | ||
360 | int convert_to_boolean = 0; | |
c5aa993b | 361 | |
df407dfe | 362 | if (value_type (arg2) == type) |
c906108c SS |
363 | return arg2; |
364 | ||
6af87b03 AR |
365 | code1 = TYPE_CODE (check_typedef (type)); |
366 | ||
367 | /* Check if we are casting struct reference to struct reference. */ | |
368 | if (code1 == TYPE_CODE_REF) | |
369 | { | |
370 | /* We dereference type; then we recurse and finally | |
581e13c1 | 371 | we generate value of the given reference. Nothing wrong with |
6af87b03 AR |
372 | that. */ |
373 | struct type *t1 = check_typedef (type); | |
374 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
375 | struct value *val = value_cast (dereftype, arg2); | |
a109c7c1 | 376 | |
6af87b03 AR |
377 | return value_ref (val); |
378 | } | |
379 | ||
380 | code2 = TYPE_CODE (check_typedef (value_type (arg2))); | |
381 | ||
382 | if (code2 == TYPE_CODE_REF) | |
383 | /* We deref the value and then do the cast. */ | |
384 | return value_cast (type, coerce_ref (arg2)); | |
385 | ||
c906108c SS |
386 | CHECK_TYPEDEF (type); |
387 | code1 = TYPE_CODE (type); | |
994b9211 | 388 | arg2 = coerce_ref (arg2); |
df407dfe | 389 | type2 = check_typedef (value_type (arg2)); |
c906108c | 390 | |
fb933624 DJ |
391 | /* You can't cast to a reference type. See value_cast_pointers |
392 | instead. */ | |
393 | gdb_assert (code1 != TYPE_CODE_REF); | |
394 | ||
ac3eeb49 MS |
395 | /* A cast to an undetermined-length array_type, such as |
396 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
397 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
398 | if (code1 == TYPE_CODE_ARRAY) |
399 | { | |
400 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
401 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
a109c7c1 | 402 | |
d78df370 | 403 | if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
c906108c SS |
404 | { |
405 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
406 | int val_length = TYPE_LENGTH (type2); | |
407 | LONGEST low_bound, high_bound, new_length; | |
a109c7c1 | 408 | |
c906108c SS |
409 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
410 | low_bound = 0, high_bound = 0; | |
411 | new_length = val_length / element_length; | |
412 | if (val_length % element_length != 0) | |
3e43a32a MS |
413 | warning (_("array element type size does not " |
414 | "divide object size in cast")); | |
ac3eeb49 MS |
415 | /* FIXME-type-allocation: need a way to free this type when |
416 | we are done with it. */ | |
c906108c SS |
417 | range_type = create_range_type ((struct type *) NULL, |
418 | TYPE_TARGET_TYPE (range_type), | |
419 | low_bound, | |
420 | new_length + low_bound - 1); | |
ac3eeb49 MS |
421 | deprecated_set_value_type (arg2, |
422 | create_array_type ((struct type *) NULL, | |
423 | element_type, | |
424 | range_type)); | |
c906108c SS |
425 | return arg2; |
426 | } | |
427 | } | |
428 | ||
429 | if (current_language->c_style_arrays | |
3bdf2bbd KW |
430 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY |
431 | && !TYPE_VECTOR (type2)) | |
c906108c SS |
432 | arg2 = value_coerce_array (arg2); |
433 | ||
434 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
435 | arg2 = value_coerce_function (arg2); | |
436 | ||
df407dfe | 437 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
438 | code2 = TYPE_CODE (type2); |
439 | ||
440 | if (code1 == TYPE_CODE_COMPLEX) | |
441 | return cast_into_complex (type, arg2); | |
442 | if (code1 == TYPE_CODE_BOOL) | |
443 | { | |
444 | code1 = TYPE_CODE_INT; | |
445 | convert_to_boolean = 1; | |
446 | } | |
447 | if (code1 == TYPE_CODE_CHAR) | |
448 | code1 = TYPE_CODE_INT; | |
449 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
450 | code2 = TYPE_CODE_INT; | |
451 | ||
452 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
453 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
454 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 455 | |
6af87b03 AR |
456 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
457 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 458 | && TYPE_NAME (type) != 0) |
694182d2 DJ |
459 | { |
460 | struct value *v = value_cast_structs (type, arg2); | |
a109c7c1 | 461 | |
694182d2 DJ |
462 | if (v) |
463 | return v; | |
464 | } | |
465 | ||
c906108c SS |
466 | if (code1 == TYPE_CODE_FLT && scalar) |
467 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
468 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
469 | { | |
e17a4113 | 470 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
4ef30785 TJB |
471 | int dec_len = TYPE_LENGTH (type); |
472 | gdb_byte dec[16]; | |
473 | ||
474 | if (code2 == TYPE_CODE_FLT) | |
e17a4113 | 475 | decimal_from_floating (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
476 | else if (code2 == TYPE_CODE_DECFLOAT) |
477 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
e17a4113 | 478 | byte_order, dec, dec_len, byte_order); |
4ef30785 TJB |
479 | else |
480 | /* The only option left is an integral type. */ | |
e17a4113 | 481 | decimal_from_integral (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
482 | |
483 | return value_from_decfloat (type, dec); | |
484 | } | |
c906108c SS |
485 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
486 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
487 | && (scalar || code2 == TYPE_CODE_PTR |
488 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
489 | { |
490 | LONGEST longest; | |
c5aa993b | 491 | |
2bf1f4a1 | 492 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 493 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
494 | represents, as value_as_long would. GDB should evaluate |
495 | expressions just as the compiler would --- and the compiler | |
496 | sees a cast as a simple reinterpretation of the pointer's | |
497 | bits. */ | |
498 | if (code2 == TYPE_CODE_PTR) | |
e17a4113 UW |
499 | longest = extract_unsigned_integer |
500 | (value_contents (arg2), TYPE_LENGTH (type2), | |
501 | gdbarch_byte_order (get_type_arch (type2))); | |
2bf1f4a1 JB |
502 | else |
503 | longest = value_as_long (arg2); | |
802db21b | 504 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 505 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 506 | } |
ac3eeb49 MS |
507 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
508 | || code2 == TYPE_CODE_ENUM | |
509 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 510 | { |
4603e466 DT |
511 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
512 | want the length of an address! -- we are really dealing with | |
513 | addresses (i.e., gdb representations) not pointers (i.e., | |
514 | target representations) here. | |
515 | ||
516 | This allows things like "print *(int *)0x01000234" to work | |
517 | without printing a misleading message -- which would | |
518 | otherwise occur when dealing with a target having two byte | |
519 | pointers and four byte addresses. */ | |
520 | ||
50810684 | 521 | int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
634acd5f | 522 | LONGEST longest = value_as_long (arg2); |
a109c7c1 | 523 | |
4603e466 | 524 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 525 | { |
4603e466 DT |
526 | if (longest >= ((LONGEST) 1 << addr_bit) |
527 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 528 | warning (_("value truncated")); |
634acd5f AC |
529 | } |
530 | return value_from_longest (type, longest); | |
531 | } | |
0d5de010 DJ |
532 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
533 | && value_as_long (arg2) == 0) | |
534 | { | |
535 | struct value *result = allocate_value (type); | |
a109c7c1 | 536 | |
ad4820ab | 537 | cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); |
0d5de010 DJ |
538 | return result; |
539 | } | |
540 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
541 | && value_as_long (arg2) == 0) | |
542 | { | |
543 | /* The Itanium C++ ABI represents NULL pointers to members as | |
544 | minus one, instead of biasing the normal case. */ | |
545 | return value_from_longest (type, -1); | |
546 | } | |
3bdf2bbd KW |
547 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar) |
548 | { | |
549 | /* Widen the scalar to a vector. */ | |
550 | struct type *eltype; | |
551 | struct value *val; | |
dbc98a8b KW |
552 | LONGEST low_bound, high_bound; |
553 | int i; | |
554 | ||
555 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
556 | error (_("Could not determine the vector bounds")); | |
3bdf2bbd KW |
557 | |
558 | eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
559 | arg2 = value_cast (eltype, arg2); | |
560 | val = allocate_value (type); | |
3bdf2bbd | 561 | |
dbc98a8b | 562 | for (i = 0; i < high_bound - low_bound + 1; i++) |
3bdf2bbd KW |
563 | { |
564 | /* Duplicate the contents of arg2 into the destination vector. */ | |
565 | memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), | |
566 | value_contents_all (arg2), TYPE_LENGTH (eltype)); | |
567 | } | |
568 | return val; | |
569 | } | |
c906108c SS |
570 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
571 | { | |
572 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
fb933624 DJ |
573 | return value_cast_pointers (type, arg2); |
574 | ||
0d5de010 | 575 | arg2 = value_copy (arg2); |
04624583 | 576 | deprecated_set_value_type (arg2, type); |
4dfea560 | 577 | set_value_enclosing_type (arg2, type); |
b44d461b | 578 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
579 | return arg2; |
580 | } | |
c906108c | 581 | else if (VALUE_LVAL (arg2) == lval_memory) |
42ae5230 | 582 | return value_at_lazy (type, value_address (arg2)); |
c906108c SS |
583 | else if (code1 == TYPE_CODE_VOID) |
584 | { | |
48319d1f | 585 | return value_zero (type, not_lval); |
c906108c SS |
586 | } |
587 | else | |
588 | { | |
8a3fe4f8 | 589 | error (_("Invalid cast.")); |
c906108c SS |
590 | return 0; |
591 | } | |
592 | } | |
593 | ||
4e8f195d TT |
594 | /* The C++ reinterpret_cast operator. */ |
595 | ||
596 | struct value * | |
597 | value_reinterpret_cast (struct type *type, struct value *arg) | |
598 | { | |
599 | struct value *result; | |
600 | struct type *real_type = check_typedef (type); | |
601 | struct type *arg_type, *dest_type; | |
602 | int is_ref = 0; | |
603 | enum type_code dest_code, arg_code; | |
604 | ||
605 | /* Do reference, function, and array conversion. */ | |
606 | arg = coerce_array (arg); | |
607 | ||
608 | /* Attempt to preserve the type the user asked for. */ | |
609 | dest_type = type; | |
610 | ||
611 | /* If we are casting to a reference type, transform | |
612 | reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */ | |
613 | if (TYPE_CODE (real_type) == TYPE_CODE_REF) | |
614 | { | |
615 | is_ref = 1; | |
616 | arg = value_addr (arg); | |
617 | dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); | |
618 | real_type = lookup_pointer_type (real_type); | |
619 | } | |
620 | ||
621 | arg_type = value_type (arg); | |
622 | ||
623 | dest_code = TYPE_CODE (real_type); | |
624 | arg_code = TYPE_CODE (arg_type); | |
625 | ||
626 | /* We can convert pointer types, or any pointer type to int, or int | |
627 | type to pointer. */ | |
628 | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | |
629 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | |
630 | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | |
631 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | |
632 | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | |
633 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | |
634 | || (dest_code == arg_code | |
635 | && (dest_code == TYPE_CODE_PTR | |
636 | || dest_code == TYPE_CODE_METHODPTR | |
637 | || dest_code == TYPE_CODE_MEMBERPTR))) | |
638 | result = value_cast (dest_type, arg); | |
639 | else | |
640 | error (_("Invalid reinterpret_cast")); | |
641 | ||
642 | if (is_ref) | |
643 | result = value_cast (type, value_ref (value_ind (result))); | |
644 | ||
645 | return result; | |
646 | } | |
647 | ||
648 | /* A helper for value_dynamic_cast. This implements the first of two | |
649 | runtime checks: we iterate over all the base classes of the value's | |
650 | class which are equal to the desired class; if only one of these | |
651 | holds the value, then it is the answer. */ | |
652 | ||
653 | static int | |
654 | dynamic_cast_check_1 (struct type *desired_type, | |
8af8e3bc PA |
655 | const gdb_byte *valaddr, |
656 | int embedded_offset, | |
4e8f195d | 657 | CORE_ADDR address, |
8af8e3bc | 658 | struct value *val, |
4e8f195d TT |
659 | struct type *search_type, |
660 | CORE_ADDR arg_addr, | |
661 | struct type *arg_type, | |
662 | struct value **result) | |
663 | { | |
664 | int i, result_count = 0; | |
665 | ||
666 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
667 | { | |
8af8e3bc PA |
668 | int offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
669 | address, val); | |
a109c7c1 | 670 | |
4e8f195d TT |
671 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
672 | { | |
8af8e3bc PA |
673 | if (address + embedded_offset + offset >= arg_addr |
674 | && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type)) | |
4e8f195d TT |
675 | { |
676 | ++result_count; | |
677 | if (!*result) | |
678 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 679 | address + embedded_offset + offset); |
4e8f195d TT |
680 | } |
681 | } | |
682 | else | |
683 | result_count += dynamic_cast_check_1 (desired_type, | |
8af8e3bc PA |
684 | valaddr, |
685 | embedded_offset + offset, | |
686 | address, val, | |
4e8f195d TT |
687 | TYPE_BASECLASS (search_type, i), |
688 | arg_addr, | |
689 | arg_type, | |
690 | result); | |
691 | } | |
692 | ||
693 | return result_count; | |
694 | } | |
695 | ||
696 | /* A helper for value_dynamic_cast. This implements the second of two | |
697 | runtime checks: we look for a unique public sibling class of the | |
698 | argument's declared class. */ | |
699 | ||
700 | static int | |
701 | dynamic_cast_check_2 (struct type *desired_type, | |
8af8e3bc PA |
702 | const gdb_byte *valaddr, |
703 | int embedded_offset, | |
4e8f195d | 704 | CORE_ADDR address, |
8af8e3bc | 705 | struct value *val, |
4e8f195d TT |
706 | struct type *search_type, |
707 | struct value **result) | |
708 | { | |
709 | int i, result_count = 0; | |
710 | ||
711 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
712 | { | |
713 | int offset; | |
714 | ||
715 | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | |
716 | continue; | |
717 | ||
8af8e3bc PA |
718 | offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
719 | address, val); | |
4e8f195d TT |
720 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
721 | { | |
722 | ++result_count; | |
723 | if (*result == NULL) | |
724 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 725 | address + embedded_offset + offset); |
4e8f195d TT |
726 | } |
727 | else | |
728 | result_count += dynamic_cast_check_2 (desired_type, | |
8af8e3bc PA |
729 | valaddr, |
730 | embedded_offset + offset, | |
731 | address, val, | |
4e8f195d TT |
732 | TYPE_BASECLASS (search_type, i), |
733 | result); | |
734 | } | |
735 | ||
736 | return result_count; | |
737 | } | |
738 | ||
739 | /* The C++ dynamic_cast operator. */ | |
740 | ||
741 | struct value * | |
742 | value_dynamic_cast (struct type *type, struct value *arg) | |
743 | { | |
8f78b329 | 744 | int full, top, using_enc; |
4e8f195d TT |
745 | struct type *resolved_type = check_typedef (type); |
746 | struct type *arg_type = check_typedef (value_type (arg)); | |
747 | struct type *class_type, *rtti_type; | |
748 | struct value *result, *tem, *original_arg = arg; | |
749 | CORE_ADDR addr; | |
750 | int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF; | |
751 | ||
752 | if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR | |
753 | && TYPE_CODE (resolved_type) != TYPE_CODE_REF) | |
754 | error (_("Argument to dynamic_cast must be a pointer or reference type")); | |
755 | if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID | |
756 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS) | |
757 | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); | |
758 | ||
759 | class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); | |
760 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
761 | { | |
762 | if (TYPE_CODE (arg_type) != TYPE_CODE_PTR | |
763 | && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT | |
764 | && value_as_long (arg) == 0)) | |
765 | error (_("Argument to dynamic_cast does not have pointer type")); | |
766 | if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) | |
767 | { | |
768 | arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
769 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
3e43a32a MS |
770 | error (_("Argument to dynamic_cast does " |
771 | "not have pointer to class type")); | |
4e8f195d TT |
772 | } |
773 | ||
774 | /* Handle NULL pointers. */ | |
775 | if (value_as_long (arg) == 0) | |
776 | return value_zero (type, not_lval); | |
777 | ||
778 | arg = value_ind (arg); | |
779 | } | |
780 | else | |
781 | { | |
782 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
783 | error (_("Argument to dynamic_cast does not have class type")); | |
784 | } | |
785 | ||
786 | /* If the classes are the same, just return the argument. */ | |
787 | if (class_types_same_p (class_type, arg_type)) | |
788 | return value_cast (type, arg); | |
789 | ||
790 | /* If the target type is a unique base class of the argument's | |
791 | declared type, just cast it. */ | |
792 | if (is_ancestor (class_type, arg_type)) | |
793 | { | |
794 | if (is_unique_ancestor (class_type, arg)) | |
795 | return value_cast (type, original_arg); | |
796 | error (_("Ambiguous dynamic_cast")); | |
797 | } | |
798 | ||
799 | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | |
800 | if (! rtti_type) | |
801 | error (_("Couldn't determine value's most derived type for dynamic_cast")); | |
802 | ||
803 | /* Compute the most derived object's address. */ | |
804 | addr = value_address (arg); | |
805 | if (full) | |
806 | { | |
807 | /* Done. */ | |
808 | } | |
809 | else if (using_enc) | |
810 | addr += top; | |
811 | else | |
812 | addr += top + value_embedded_offset (arg); | |
813 | ||
814 | /* dynamic_cast<void *> means to return a pointer to the | |
815 | most-derived object. */ | |
816 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR | |
817 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) | |
818 | return value_at_lazy (type, addr); | |
819 | ||
820 | tem = value_at (type, addr); | |
821 | ||
822 | /* The first dynamic check specified in 5.2.7. */ | |
823 | if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) | |
824 | { | |
825 | if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) | |
826 | return tem; | |
827 | result = NULL; | |
828 | if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
829 | value_contents_for_printing (tem), |
830 | value_embedded_offset (tem), | |
831 | value_address (tem), tem, | |
4e8f195d TT |
832 | rtti_type, addr, |
833 | arg_type, | |
834 | &result) == 1) | |
835 | return value_cast (type, | |
836 | is_ref ? value_ref (result) : value_addr (result)); | |
837 | } | |
838 | ||
839 | /* The second dynamic check specified in 5.2.7. */ | |
840 | result = NULL; | |
841 | if (is_public_ancestor (arg_type, rtti_type) | |
842 | && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
843 | value_contents_for_printing (tem), |
844 | value_embedded_offset (tem), | |
845 | value_address (tem), tem, | |
4e8f195d TT |
846 | rtti_type, &result) == 1) |
847 | return value_cast (type, | |
848 | is_ref ? value_ref (result) : value_addr (result)); | |
849 | ||
850 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
851 | return value_zero (type, not_lval); | |
852 | ||
853 | error (_("dynamic_cast failed")); | |
854 | } | |
855 | ||
c906108c SS |
856 | /* Create a value of type TYPE that is zero, and return it. */ |
857 | ||
f23631e4 | 858 | struct value * |
fba45db2 | 859 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 860 | { |
f23631e4 | 861 | struct value *val = allocate_value (type); |
c906108c | 862 | |
bb7da2bf | 863 | VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv); |
c906108c SS |
864 | return val; |
865 | } | |
866 | ||
18a46dbe | 867 | /* Create a not_lval value of numeric type TYPE that is one, and return it. */ |
301f0ecf DE |
868 | |
869 | struct value * | |
18a46dbe | 870 | value_one (struct type *type) |
301f0ecf DE |
871 | { |
872 | struct type *type1 = check_typedef (type); | |
4e608b4f | 873 | struct value *val; |
301f0ecf DE |
874 | |
875 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
876 | { | |
e17a4113 | 877 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
301f0ecf | 878 | gdb_byte v[16]; |
a109c7c1 | 879 | |
e17a4113 | 880 | decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); |
301f0ecf DE |
881 | val = value_from_decfloat (type, v); |
882 | } | |
883 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
884 | { | |
885 | val = value_from_double (type, (DOUBLEST) 1); | |
886 | } | |
887 | else if (is_integral_type (type1)) | |
888 | { | |
889 | val = value_from_longest (type, (LONGEST) 1); | |
890 | } | |
120bd360 KW |
891 | else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) |
892 | { | |
893 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); | |
cfa6f054 KW |
894 | int i; |
895 | LONGEST low_bound, high_bound; | |
120bd360 KW |
896 | struct value *tmp; |
897 | ||
cfa6f054 KW |
898 | if (!get_array_bounds (type1, &low_bound, &high_bound)) |
899 | error (_("Could not determine the vector bounds")); | |
900 | ||
120bd360 | 901 | val = allocate_value (type); |
cfa6f054 | 902 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 | 903 | { |
18a46dbe | 904 | tmp = value_one (eltype); |
120bd360 KW |
905 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), |
906 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
907 | } | |
908 | } | |
301f0ecf DE |
909 | else |
910 | { | |
911 | error (_("Not a numeric type.")); | |
912 | } | |
913 | ||
18a46dbe JK |
914 | /* value_one result is never used for assignments to. */ |
915 | gdb_assert (VALUE_LVAL (val) == not_lval); | |
916 | ||
301f0ecf DE |
917 | return val; |
918 | } | |
919 | ||
4e5d721f DE |
920 | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */ |
921 | ||
922 | static struct value * | |
923 | get_value_at (struct type *type, CORE_ADDR addr, int lazy) | |
924 | { | |
925 | struct value *val; | |
926 | ||
927 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
928 | error (_("Attempt to dereference a generic pointer.")); | |
929 | ||
a3d34bf4 | 930 | val = value_from_contents_and_address (type, NULL, addr); |
4e5d721f | 931 | |
a3d34bf4 PA |
932 | if (!lazy) |
933 | value_fetch_lazy (val); | |
4e5d721f DE |
934 | |
935 | return val; | |
936 | } | |
937 | ||
070ad9f0 | 938 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
939 | |
940 | Call value_at only if the data needs to be fetched immediately; | |
941 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
942 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 943 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 944 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 945 | the contents are actually required. |
c906108c SS |
946 | |
947 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 948 | adjustments before or after calling it. */ |
c906108c | 949 | |
f23631e4 | 950 | struct value * |
00a4c844 | 951 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 952 | { |
4e5d721f | 953 | return get_value_at (type, addr, 0); |
c906108c SS |
954 | } |
955 | ||
956 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
957 | ||
f23631e4 | 958 | struct value * |
00a4c844 | 959 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 960 | { |
4e5d721f | 961 | return get_value_at (type, addr, 1); |
c906108c SS |
962 | } |
963 | ||
0fd88904 | 964 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 965 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 966 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
967 | clears the lazy flag to indicate that the data in the buffer is |
968 | valid. | |
c906108c | 969 | |
ac3eeb49 MS |
970 | If the value is zero-length, we avoid calling read_memory, which |
971 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
972 | it. | |
c906108c | 973 | |
ac3eeb49 MS |
974 | This function returns a value because it is used in the |
975 | value_contents macro as part of an expression, where a void would | |
976 | not work. The value is ignored. */ | |
c906108c SS |
977 | |
978 | int | |
f23631e4 | 979 | value_fetch_lazy (struct value *val) |
c906108c | 980 | { |
3e3d7139 JG |
981 | gdb_assert (value_lazy (val)); |
982 | allocate_value_contents (val); | |
4ea48cc1 DJ |
983 | if (value_bitsize (val)) |
984 | { | |
985 | /* To read a lazy bitfield, read the entire enclosing value. This | |
986 | prevents reading the same block of (possibly volatile) memory once | |
987 | per bitfield. It would be even better to read only the containing | |
988 | word, but we have no way to record that just specific bits of a | |
989 | value have been fetched. */ | |
990 | struct type *type = check_typedef (value_type (val)); | |
991 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); | |
992 | struct value *parent = value_parent (val); | |
993 | LONGEST offset = value_offset (val); | |
5467c6c8 | 994 | LONGEST num; |
4ea48cc1 | 995 | int length = TYPE_LENGTH (type); |
a109c7c1 | 996 | |
0e03807e TT |
997 | if (!value_bits_valid (val, |
998 | TARGET_CHAR_BIT * offset + value_bitpos (val), | |
999 | value_bitsize (val))) | |
1000 | error (_("value has been optimized out")); | |
1001 | ||
5467c6c8 PA |
1002 | if (!unpack_value_bits_as_long (value_type (val), |
1003 | value_contents_for_printing (parent), | |
1004 | offset, | |
1005 | value_bitpos (val), | |
1006 | value_bitsize (val), parent, &num)) | |
1007 | mark_value_bytes_unavailable (val, | |
1008 | value_embedded_offset (val), | |
1009 | length); | |
1010 | else | |
1011 | store_signed_integer (value_contents_raw (val), length, | |
1012 | byte_order, num); | |
4ea48cc1 DJ |
1013 | } |
1014 | else if (VALUE_LVAL (val) == lval_memory) | |
9214ee5f | 1015 | { |
42ae5230 | 1016 | CORE_ADDR addr = value_address (val); |
694182d2 | 1017 | int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val))); |
9214ee5f | 1018 | |
9214ee5f | 1019 | if (length) |
e6ca34fc PA |
1020 | read_value_memory (val, 0, value_stack (val), |
1021 | addr, value_contents_all_raw (val), length); | |
9214ee5f DJ |
1022 | } |
1023 | else if (VALUE_LVAL (val) == lval_register) | |
1024 | { | |
669fac23 DJ |
1025 | struct frame_info *frame; |
1026 | int regnum; | |
9214ee5f | 1027 | struct type *type = check_typedef (value_type (val)); |
669fac23 | 1028 | struct value *new_val = val, *mark = value_mark (); |
c906108c | 1029 | |
669fac23 DJ |
1030 | /* Offsets are not supported here; lazy register values must |
1031 | refer to the entire register. */ | |
1032 | gdb_assert (value_offset (val) == 0); | |
9214ee5f | 1033 | |
669fac23 DJ |
1034 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) |
1035 | { | |
1036 | frame = frame_find_by_id (VALUE_FRAME_ID (new_val)); | |
1037 | regnum = VALUE_REGNUM (new_val); | |
1038 | ||
1039 | gdb_assert (frame != NULL); | |
9214ee5f | 1040 | |
669fac23 DJ |
1041 | /* Convertible register routines are used for multi-register |
1042 | values and for interpretation in different types | |
1043 | (e.g. float or int from a double register). Lazy | |
1044 | register values should have the register's natural type, | |
1045 | so they do not apply. */ | |
1046 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), | |
1047 | regnum, type)); | |
1048 | ||
1049 | new_val = get_frame_register_value (frame, regnum); | |
1050 | } | |
1051 | ||
1052 | /* If it's still lazy (for instance, a saved register on the | |
1053 | stack), fetch it. */ | |
1054 | if (value_lazy (new_val)) | |
1055 | value_fetch_lazy (new_val); | |
1056 | ||
39d37385 | 1057 | /* If the register was not saved, mark it optimized out. */ |
669fac23 | 1058 | if (value_optimized_out (new_val)) |
9214ee5f | 1059 | set_value_optimized_out (val, 1); |
669fac23 | 1060 | else |
39d37385 PA |
1061 | { |
1062 | set_value_lazy (val, 0); | |
1063 | value_contents_copy (val, value_embedded_offset (val), | |
1064 | new_val, value_embedded_offset (new_val), | |
1065 | TYPE_LENGTH (type)); | |
1066 | } | |
669fac23 DJ |
1067 | |
1068 | if (frame_debug) | |
1069 | { | |
029a67e4 | 1070 | struct gdbarch *gdbarch; |
669fac23 DJ |
1071 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
1072 | regnum = VALUE_REGNUM (val); | |
029a67e4 | 1073 | gdbarch = get_frame_arch (frame); |
669fac23 | 1074 | |
3e43a32a MS |
1075 | fprintf_unfiltered (gdb_stdlog, |
1076 | "{ value_fetch_lazy " | |
1077 | "(frame=%d,regnum=%d(%s),...) ", | |
669fac23 | 1078 | frame_relative_level (frame), regnum, |
029a67e4 | 1079 | user_reg_map_regnum_to_name (gdbarch, regnum)); |
669fac23 DJ |
1080 | |
1081 | fprintf_unfiltered (gdb_stdlog, "->"); | |
1082 | if (value_optimized_out (new_val)) | |
1083 | fprintf_unfiltered (gdb_stdlog, " optimized out"); | |
1084 | else | |
1085 | { | |
1086 | int i; | |
1087 | const gdb_byte *buf = value_contents (new_val); | |
1088 | ||
1089 | if (VALUE_LVAL (new_val) == lval_register) | |
1090 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
1091 | VALUE_REGNUM (new_val)); | |
1092 | else if (VALUE_LVAL (new_val) == lval_memory) | |
5af949e3 UW |
1093 | fprintf_unfiltered (gdb_stdlog, " address=%s", |
1094 | paddress (gdbarch, | |
1095 | value_address (new_val))); | |
669fac23 DJ |
1096 | else |
1097 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
1098 | ||
1099 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
1100 | fprintf_unfiltered (gdb_stdlog, "["); | |
029a67e4 | 1101 | for (i = 0; i < register_size (gdbarch, regnum); i++) |
669fac23 DJ |
1102 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); |
1103 | fprintf_unfiltered (gdb_stdlog, "]"); | |
1104 | } | |
1105 | ||
1106 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
1107 | } | |
1108 | ||
1109 | /* Dispose of the intermediate values. This prevents | |
1110 | watchpoints from trying to watch the saved frame pointer. */ | |
1111 | value_free_to_mark (mark); | |
9214ee5f | 1112 | } |
5f5233d4 PA |
1113 | else if (VALUE_LVAL (val) == lval_computed) |
1114 | value_computed_funcs (val)->read (val); | |
41e8491f JK |
1115 | else if (value_optimized_out (val)) |
1116 | /* Keep it optimized out. */; | |
9214ee5f | 1117 | else |
9b20d036 | 1118 | internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); |
802db21b | 1119 | |
dfa52d88 | 1120 | set_value_lazy (val, 0); |
c906108c SS |
1121 | return 0; |
1122 | } | |
1123 | ||
e6ca34fc PA |
1124 | void |
1125 | read_value_memory (struct value *val, int embedded_offset, | |
1126 | int stack, CORE_ADDR memaddr, | |
1127 | gdb_byte *buffer, size_t length) | |
1128 | { | |
1129 | if (length) | |
1130 | { | |
1131 | VEC(mem_range_s) *available_memory; | |
1132 | ||
1133 | if (get_traceframe_number () < 0 | |
1134 | || !traceframe_available_memory (&available_memory, memaddr, length)) | |
1135 | { | |
1136 | if (stack) | |
1137 | read_stack (memaddr, buffer, length); | |
1138 | else | |
1139 | read_memory (memaddr, buffer, length); | |
1140 | } | |
1141 | else | |
1142 | { | |
1143 | struct target_section_table *table; | |
1144 | struct cleanup *old_chain; | |
1145 | CORE_ADDR unavail; | |
1146 | mem_range_s *r; | |
1147 | int i; | |
1148 | ||
1149 | /* Fallback to reading from read-only sections. */ | |
1150 | table = target_get_section_table (&exec_ops); | |
1151 | available_memory = | |
1152 | section_table_available_memory (available_memory, | |
1153 | memaddr, length, | |
1154 | table->sections, | |
1155 | table->sections_end); | |
1156 | ||
1157 | old_chain = make_cleanup (VEC_cleanup(mem_range_s), | |
1158 | &available_memory); | |
1159 | ||
1160 | normalize_mem_ranges (available_memory); | |
1161 | ||
1162 | /* Mark which bytes are unavailable, and read those which | |
1163 | are available. */ | |
1164 | ||
1165 | unavail = memaddr; | |
1166 | ||
1167 | for (i = 0; | |
1168 | VEC_iterate (mem_range_s, available_memory, i, r); | |
1169 | i++) | |
1170 | { | |
1171 | if (mem_ranges_overlap (r->start, r->length, | |
1172 | memaddr, length)) | |
1173 | { | |
1174 | CORE_ADDR lo1, hi1, lo2, hi2; | |
1175 | CORE_ADDR start, end; | |
1176 | ||
1177 | /* Get the intersection window. */ | |
1178 | lo1 = memaddr; | |
1179 | hi1 = memaddr + length; | |
1180 | lo2 = r->start; | |
1181 | hi2 = r->start + r->length; | |
1182 | start = max (lo1, lo2); | |
1183 | end = min (hi1, hi2); | |
1184 | ||
1185 | gdb_assert (end - memaddr <= length); | |
1186 | ||
1187 | if (start > unavail) | |
1188 | mark_value_bytes_unavailable (val, | |
1189 | (embedded_offset | |
1190 | + unavail - memaddr), | |
1191 | start - unavail); | |
1192 | unavail = end; | |
1193 | ||
1194 | read_memory (start, buffer + start - memaddr, end - start); | |
1195 | } | |
1196 | } | |
1197 | ||
1198 | if (unavail != memaddr + length) | |
1199 | mark_value_bytes_unavailable (val, | |
1200 | embedded_offset + unavail - memaddr, | |
1201 | (memaddr + length) - unavail); | |
1202 | ||
1203 | do_cleanups (old_chain); | |
1204 | } | |
1205 | } | |
1206 | } | |
c906108c SS |
1207 | |
1208 | /* Store the contents of FROMVAL into the location of TOVAL. | |
1209 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
1210 | ||
f23631e4 AC |
1211 | struct value * |
1212 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 1213 | { |
52f0bd74 | 1214 | struct type *type; |
f23631e4 | 1215 | struct value *val; |
cb741690 | 1216 | struct frame_id old_frame; |
c906108c | 1217 | |
88e3b34b | 1218 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 1219 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 1220 | |
994b9211 | 1221 | toval = coerce_ref (toval); |
c906108c | 1222 | |
df407dfe | 1223 | type = value_type (toval); |
c906108c | 1224 | if (VALUE_LVAL (toval) != lval_internalvar) |
3cbaedff | 1225 | fromval = value_cast (type, fromval); |
c906108c | 1226 | else |
63092375 DJ |
1227 | { |
1228 | /* Coerce arrays and functions to pointers, except for arrays | |
1229 | which only live in GDB's storage. */ | |
1230 | if (!value_must_coerce_to_target (fromval)) | |
1231 | fromval = coerce_array (fromval); | |
1232 | } | |
1233 | ||
c906108c SS |
1234 | CHECK_TYPEDEF (type); |
1235 | ||
ac3eeb49 MS |
1236 | /* Since modifying a register can trash the frame chain, and |
1237 | modifying memory can trash the frame cache, we save the old frame | |
1238 | and then restore the new frame afterwards. */ | |
206415a3 | 1239 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 1240 | |
c906108c SS |
1241 | switch (VALUE_LVAL (toval)) |
1242 | { | |
1243 | case lval_internalvar: | |
1244 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
4aac0db7 UW |
1245 | return value_of_internalvar (get_type_arch (type), |
1246 | VALUE_INTERNALVAR (toval)); | |
c906108c SS |
1247 | |
1248 | case lval_internalvar_component: | |
1249 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
1250 | value_offset (toval), |
1251 | value_bitpos (toval), | |
1252 | value_bitsize (toval), | |
c906108c SS |
1253 | fromval); |
1254 | break; | |
1255 | ||
1256 | case lval_memory: | |
1257 | { | |
fc1a4b47 | 1258 | const gdb_byte *dest_buffer; |
c5aa993b JM |
1259 | CORE_ADDR changed_addr; |
1260 | int changed_len; | |
10c42a71 | 1261 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 1262 | |
df407dfe | 1263 | if (value_bitsize (toval)) |
c5aa993b | 1264 | { |
2d88202a | 1265 | struct value *parent = value_parent (toval); |
2d88202a | 1266 | |
a109c7c1 | 1267 | changed_addr = value_address (parent) + value_offset (toval); |
df407dfe AC |
1268 | changed_len = (value_bitpos (toval) |
1269 | + value_bitsize (toval) | |
c5aa993b JM |
1270 | + HOST_CHAR_BIT - 1) |
1271 | / HOST_CHAR_BIT; | |
c906108c | 1272 | |
4ea48cc1 DJ |
1273 | /* If we can read-modify-write exactly the size of the |
1274 | containing type (e.g. short or int) then do so. This | |
1275 | is safer for volatile bitfields mapped to hardware | |
1276 | registers. */ | |
1277 | if (changed_len < TYPE_LENGTH (type) | |
1278 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) | |
2d88202a | 1279 | && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
4ea48cc1 DJ |
1280 | changed_len = TYPE_LENGTH (type); |
1281 | ||
c906108c | 1282 | if (changed_len > (int) sizeof (LONGEST)) |
3e43a32a MS |
1283 | error (_("Can't handle bitfields which " |
1284 | "don't fit in a %d bit word."), | |
baa6f10b | 1285 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 1286 | |
2d88202a | 1287 | read_memory (changed_addr, buffer, changed_len); |
50810684 | 1288 | modify_field (type, buffer, value_as_long (fromval), |
df407dfe | 1289 | value_bitpos (toval), value_bitsize (toval)); |
c906108c SS |
1290 | dest_buffer = buffer; |
1291 | } | |
c906108c SS |
1292 | else |
1293 | { | |
42ae5230 | 1294 | changed_addr = value_address (toval); |
c906108c | 1295 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 1296 | dest_buffer = value_contents (fromval); |
c906108c SS |
1297 | } |
1298 | ||
1299 | write_memory (changed_addr, dest_buffer, changed_len); | |
8cebebb9 PP |
1300 | observer_notify_memory_changed (changed_addr, changed_len, |
1301 | dest_buffer); | |
c906108c SS |
1302 | } |
1303 | break; | |
1304 | ||
492254e9 | 1305 | case lval_register: |
c906108c | 1306 | { |
c906108c | 1307 | struct frame_info *frame; |
d80b854b | 1308 | struct gdbarch *gdbarch; |
ff2e87ac | 1309 | int value_reg; |
c906108c SS |
1310 | |
1311 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
1312 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
1313 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
1314 | |
1315 | if (!frame) | |
8a3fe4f8 | 1316 | error (_("Value being assigned to is no longer active.")); |
d80b854b UW |
1317 | |
1318 | gdbarch = get_frame_arch (frame); | |
1319 | if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 1320 | { |
ff2e87ac | 1321 | /* If TOVAL is a special machine register requiring |
ac3eeb49 MS |
1322 | conversion of program values to a special raw |
1323 | format. */ | |
d80b854b | 1324 | gdbarch_value_to_register (gdbarch, frame, |
ac3eeb49 MS |
1325 | VALUE_REGNUM (toval), type, |
1326 | value_contents (fromval)); | |
492254e9 | 1327 | } |
c906108c | 1328 | else |
492254e9 | 1329 | { |
df407dfe | 1330 | if (value_bitsize (toval)) |
00fa51f6 | 1331 | { |
2d88202a UW |
1332 | struct value *parent = value_parent (toval); |
1333 | int offset = value_offset (parent) + value_offset (toval); | |
00fa51f6 UW |
1334 | int changed_len; |
1335 | gdb_byte buffer[sizeof (LONGEST)]; | |
8af8e3bc | 1336 | int optim, unavail; |
00fa51f6 UW |
1337 | |
1338 | changed_len = (value_bitpos (toval) | |
1339 | + value_bitsize (toval) | |
1340 | + HOST_CHAR_BIT - 1) | |
1341 | / HOST_CHAR_BIT; | |
1342 | ||
1343 | if (changed_len > (int) sizeof (LONGEST)) | |
3e43a32a MS |
1344 | error (_("Can't handle bitfields which " |
1345 | "don't fit in a %d bit word."), | |
00fa51f6 UW |
1346 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
1347 | ||
8dccd430 PA |
1348 | if (!get_frame_register_bytes (frame, value_reg, offset, |
1349 | changed_len, buffer, | |
1350 | &optim, &unavail)) | |
1351 | { | |
1352 | if (optim) | |
1353 | error (_("value has been optimized out")); | |
1354 | if (unavail) | |
1355 | throw_error (NOT_AVAILABLE_ERROR, | |
1356 | _("value is not available")); | |
1357 | } | |
00fa51f6 | 1358 | |
50810684 UW |
1359 | modify_field (type, buffer, value_as_long (fromval), |
1360 | value_bitpos (toval), value_bitsize (toval)); | |
00fa51f6 | 1361 | |
2d88202a | 1362 | put_frame_register_bytes (frame, value_reg, offset, |
00fa51f6 UW |
1363 | changed_len, buffer); |
1364 | } | |
c906108c | 1365 | else |
00fa51f6 UW |
1366 | { |
1367 | put_frame_register_bytes (frame, value_reg, | |
1368 | value_offset (toval), | |
1369 | TYPE_LENGTH (type), | |
1370 | value_contents (fromval)); | |
1371 | } | |
ff2e87ac | 1372 | } |
00fa51f6 | 1373 | |
9a4105ab AC |
1374 | if (deprecated_register_changed_hook) |
1375 | deprecated_register_changed_hook (-1); | |
f4c5303c | 1376 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 1377 | break; |
c906108c | 1378 | } |
5f5233d4 PA |
1379 | |
1380 | case lval_computed: | |
1381 | { | |
c8f2448a | 1382 | const struct lval_funcs *funcs = value_computed_funcs (toval); |
5f5233d4 PA |
1383 | |
1384 | funcs->write (toval, fromval); | |
1385 | } | |
1386 | break; | |
1387 | ||
c906108c | 1388 | default: |
8a3fe4f8 | 1389 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
1390 | } |
1391 | ||
cb741690 DJ |
1392 | /* Assigning to the stack pointer, frame pointer, and other |
1393 | (architecture and calling convention specific) registers may | |
1394 | cause the frame cache to be out of date. Assigning to memory | |
1395 | also can. We just do this on all assignments to registers or | |
1396 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
1397 | switch (VALUE_LVAL (toval)) | |
1398 | { | |
1399 | case lval_memory: | |
1400 | case lval_register: | |
0e03807e | 1401 | case lval_computed: |
cb741690 DJ |
1402 | |
1403 | reinit_frame_cache (); | |
1404 | ||
ac3eeb49 MS |
1405 | /* Having destroyed the frame cache, restore the selected |
1406 | frame. */ | |
cb741690 DJ |
1407 | |
1408 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
1409 | doing this. Instead of constantly saving/restoring the | |
1410 | frame. Why not create a get_selected_frame() function that, | |
1411 | having saved the selected frame's ID can automatically | |
1412 | re-find the previously selected frame automatically. */ | |
1413 | ||
1414 | { | |
1415 | struct frame_info *fi = frame_find_by_id (old_frame); | |
a109c7c1 | 1416 | |
cb741690 DJ |
1417 | if (fi != NULL) |
1418 | select_frame (fi); | |
1419 | } | |
1420 | ||
1421 | break; | |
1422 | default: | |
1423 | break; | |
1424 | } | |
1425 | ||
ac3eeb49 MS |
1426 | /* If the field does not entirely fill a LONGEST, then zero the sign |
1427 | bits. If the field is signed, and is negative, then sign | |
1428 | extend. */ | |
df407dfe AC |
1429 | if ((value_bitsize (toval) > 0) |
1430 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
1431 | { |
1432 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 1433 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
1434 | |
1435 | fieldval &= valmask; | |
ac3eeb49 MS |
1436 | if (!TYPE_UNSIGNED (type) |
1437 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
1438 | fieldval |= ~valmask; |
1439 | ||
1440 | fromval = value_from_longest (type, fieldval); | |
1441 | } | |
1442 | ||
4aac0db7 UW |
1443 | /* The return value is a copy of TOVAL so it shares its location |
1444 | information, but its contents are updated from FROMVAL. This | |
1445 | implies the returned value is not lazy, even if TOVAL was. */ | |
c906108c | 1446 | val = value_copy (toval); |
4aac0db7 | 1447 | set_value_lazy (val, 0); |
0fd88904 | 1448 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 1449 | TYPE_LENGTH (type)); |
4aac0db7 UW |
1450 | |
1451 | /* We copy over the enclosing type and pointed-to offset from FROMVAL | |
1452 | in the case of pointer types. For object types, the enclosing type | |
1453 | and embedded offset must *not* be copied: the target object refered | |
1454 | to by TOVAL retains its original dynamic type after assignment. */ | |
1455 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
1456 | { | |
1457 | set_value_enclosing_type (val, value_enclosing_type (fromval)); | |
1458 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
1459 | } | |
c5aa993b | 1460 | |
c906108c SS |
1461 | return val; |
1462 | } | |
1463 | ||
1464 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
1465 | ||
f23631e4 AC |
1466 | struct value * |
1467 | value_repeat (struct value *arg1, int count) | |
c906108c | 1468 | { |
f23631e4 | 1469 | struct value *val; |
c906108c SS |
1470 | |
1471 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1472 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 1473 | if (count < 1) |
8a3fe4f8 | 1474 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 1475 | |
4754a64e | 1476 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 1477 | |
c906108c | 1478 | VALUE_LVAL (val) = lval_memory; |
42ae5230 | 1479 | set_value_address (val, value_address (arg1)); |
c906108c | 1480 | |
24e6bcee PA |
1481 | read_value_memory (val, 0, value_stack (val), value_address (val), |
1482 | value_contents_all_raw (val), | |
1483 | TYPE_LENGTH (value_enclosing_type (val))); | |
1484 | ||
c906108c SS |
1485 | return val; |
1486 | } | |
1487 | ||
f23631e4 | 1488 | struct value * |
fba45db2 | 1489 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 1490 | { |
f23631e4 | 1491 | struct value *val; |
61212c0f | 1492 | struct frame_info *frame; |
c906108c | 1493 | |
61212c0f UW |
1494 | if (!symbol_read_needs_frame (var)) |
1495 | frame = NULL; | |
1496 | else if (!b) | |
1497 | frame = get_selected_frame (_("No frame selected.")); | |
1498 | else | |
c906108c SS |
1499 | { |
1500 | frame = block_innermost_frame (b); | |
1501 | if (!frame) | |
c5aa993b | 1502 | { |
edb3359d | 1503 | if (BLOCK_FUNCTION (b) && !block_inlined_p (b) |
de5ad195 | 1504 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 1505 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 1506 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 1507 | else |
8a3fe4f8 | 1508 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 1509 | } |
c906108c SS |
1510 | } |
1511 | ||
1512 | val = read_var_value (var, frame); | |
1513 | if (!val) | |
8a3fe4f8 | 1514 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
1515 | |
1516 | return val; | |
1517 | } | |
1518 | ||
61212c0f UW |
1519 | struct value * |
1520 | address_of_variable (struct symbol *var, struct block *b) | |
1521 | { | |
1522 | struct type *type = SYMBOL_TYPE (var); | |
1523 | struct value *val; | |
1524 | ||
1525 | /* Evaluate it first; if the result is a memory address, we're fine. | |
581e13c1 | 1526 | Lazy evaluation pays off here. */ |
61212c0f UW |
1527 | |
1528 | val = value_of_variable (var, b); | |
1529 | ||
1530 | if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) | |
1531 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1532 | { | |
42ae5230 | 1533 | CORE_ADDR addr = value_address (val); |
a109c7c1 | 1534 | |
61212c0f UW |
1535 | return value_from_pointer (lookup_pointer_type (type), addr); |
1536 | } | |
1537 | ||
1538 | /* Not a memory address; check what the problem was. */ | |
1539 | switch (VALUE_LVAL (val)) | |
1540 | { | |
1541 | case lval_register: | |
1542 | { | |
1543 | struct frame_info *frame; | |
1544 | const char *regname; | |
1545 | ||
1546 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
1547 | gdb_assert (frame); | |
1548 | ||
1549 | regname = gdbarch_register_name (get_frame_arch (frame), | |
1550 | VALUE_REGNUM (val)); | |
1551 | gdb_assert (regname && *regname); | |
1552 | ||
1553 | error (_("Address requested for identifier " | |
1554 | "\"%s\" which is in register $%s"), | |
1555 | SYMBOL_PRINT_NAME (var), regname); | |
1556 | break; | |
1557 | } | |
1558 | ||
1559 | default: | |
1560 | error (_("Can't take address of \"%s\" which isn't an lvalue."), | |
1561 | SYMBOL_PRINT_NAME (var)); | |
1562 | break; | |
1563 | } | |
1564 | ||
1565 | return val; | |
1566 | } | |
1567 | ||
63092375 DJ |
1568 | /* Return one if VAL does not live in target memory, but should in order |
1569 | to operate on it. Otherwise return zero. */ | |
1570 | ||
1571 | int | |
1572 | value_must_coerce_to_target (struct value *val) | |
1573 | { | |
1574 | struct type *valtype; | |
1575 | ||
1576 | /* The only lval kinds which do not live in target memory. */ | |
1577 | if (VALUE_LVAL (val) != not_lval | |
1578 | && VALUE_LVAL (val) != lval_internalvar) | |
1579 | return 0; | |
1580 | ||
1581 | valtype = check_typedef (value_type (val)); | |
1582 | ||
1583 | switch (TYPE_CODE (valtype)) | |
1584 | { | |
1585 | case TYPE_CODE_ARRAY: | |
3cbaedff | 1586 | return TYPE_VECTOR (valtype) ? 0 : 1; |
63092375 DJ |
1587 | case TYPE_CODE_STRING: |
1588 | return 1; | |
1589 | default: | |
1590 | return 0; | |
1591 | } | |
1592 | } | |
1593 | ||
3e43a32a MS |
1594 | /* Make sure that VAL lives in target memory if it's supposed to. For |
1595 | instance, strings are constructed as character arrays in GDB's | |
1596 | storage, and this function copies them to the target. */ | |
63092375 DJ |
1597 | |
1598 | struct value * | |
1599 | value_coerce_to_target (struct value *val) | |
1600 | { | |
1601 | LONGEST length; | |
1602 | CORE_ADDR addr; | |
1603 | ||
1604 | if (!value_must_coerce_to_target (val)) | |
1605 | return val; | |
1606 | ||
1607 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1608 | addr = allocate_space_in_inferior (length); | |
1609 | write_memory (addr, value_contents (val), length); | |
1610 | return value_at_lazy (value_type (val), addr); | |
1611 | } | |
1612 | ||
ac3eeb49 MS |
1613 | /* Given a value which is an array, return a value which is a pointer |
1614 | to its first element, regardless of whether or not the array has a | |
1615 | nonzero lower bound. | |
c906108c | 1616 | |
ac3eeb49 MS |
1617 | FIXME: A previous comment here indicated that this routine should |
1618 | be substracting the array's lower bound. It's not clear to me that | |
1619 | this is correct. Given an array subscripting operation, it would | |
1620 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1621 | |
1622 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1623 | ||
ac3eeb49 MS |
1624 | However I believe a more appropriate and logical place to account |
1625 | for the lower bound is to do so in value_subscript, essentially | |
1626 | computing: | |
c906108c SS |
1627 | |
1628 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1629 | ||
ac3eeb49 MS |
1630 | As further evidence consider what would happen with operations |
1631 | other than array subscripting, where the caller would get back a | |
1632 | value that had an address somewhere before the actual first element | |
1633 | of the array, and the information about the lower bound would be | |
581e13c1 | 1634 | lost because of the coercion to pointer type. */ |
c906108c | 1635 | |
f23631e4 AC |
1636 | struct value * |
1637 | value_coerce_array (struct value *arg1) | |
c906108c | 1638 | { |
df407dfe | 1639 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1640 | |
63092375 DJ |
1641 | /* If the user tries to do something requiring a pointer with an |
1642 | array that has not yet been pushed to the target, then this would | |
1643 | be a good time to do so. */ | |
1644 | arg1 = value_coerce_to_target (arg1); | |
1645 | ||
c906108c | 1646 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1647 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1648 | |
4478b372 | 1649 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
42ae5230 | 1650 | value_address (arg1)); |
c906108c SS |
1651 | } |
1652 | ||
1653 | /* Given a value which is a function, return a value which is a pointer | |
1654 | to it. */ | |
1655 | ||
f23631e4 AC |
1656 | struct value * |
1657 | value_coerce_function (struct value *arg1) | |
c906108c | 1658 | { |
f23631e4 | 1659 | struct value *retval; |
c906108c SS |
1660 | |
1661 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1662 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1663 | |
df407dfe | 1664 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1665 | value_address (arg1)); |
c906108c | 1666 | return retval; |
c5aa993b | 1667 | } |
c906108c | 1668 | |
ac3eeb49 MS |
1669 | /* Return a pointer value for the object for which ARG1 is the |
1670 | contents. */ | |
c906108c | 1671 | |
f23631e4 AC |
1672 | struct value * |
1673 | value_addr (struct value *arg1) | |
c906108c | 1674 | { |
f23631e4 | 1675 | struct value *arg2; |
df407dfe | 1676 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1677 | |
c906108c SS |
1678 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1679 | { | |
ac3eeb49 MS |
1680 | /* Copy the value, but change the type from (T&) to (T*). We |
1681 | keep the same location information, which is efficient, and | |
1682 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 1683 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
1684 | deprecated_set_value_type (arg2, |
1685 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
1686 | return arg2; |
1687 | } | |
1688 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1689 | return value_coerce_function (arg1); | |
1690 | ||
63092375 DJ |
1691 | /* If this is an array that has not yet been pushed to the target, |
1692 | then this would be a good time to force it to memory. */ | |
1693 | arg1 = value_coerce_to_target (arg1); | |
1694 | ||
c906108c | 1695 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1696 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1697 | |
581e13c1 | 1698 | /* Get target memory address. */ |
df407dfe | 1699 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1700 | (value_address (arg1) |
13c3b5f5 | 1701 | + value_embedded_offset (arg1))); |
c906108c SS |
1702 | |
1703 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1704 | full derived object's type ... */ |
4dfea560 DE |
1705 | set_value_enclosing_type (arg2, |
1706 | lookup_pointer_type (value_enclosing_type (arg1))); | |
ac3eeb49 MS |
1707 | /* ... and also the relative position of the subobject in the full |
1708 | object. */ | |
b44d461b | 1709 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1710 | return arg2; |
1711 | } | |
1712 | ||
ac3eeb49 MS |
1713 | /* Return a reference value for the object for which ARG1 is the |
1714 | contents. */ | |
fb933624 DJ |
1715 | |
1716 | struct value * | |
1717 | value_ref (struct value *arg1) | |
1718 | { | |
1719 | struct value *arg2; | |
fb933624 | 1720 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1721 | |
fb933624 DJ |
1722 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1723 | return arg1; | |
1724 | ||
1725 | arg2 = value_addr (arg1); | |
1726 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
1727 | return arg2; | |
1728 | } | |
1729 | ||
ac3eeb49 MS |
1730 | /* Given a value of a pointer type, apply the C unary * operator to |
1731 | it. */ | |
c906108c | 1732 | |
f23631e4 AC |
1733 | struct value * |
1734 | value_ind (struct value *arg1) | |
c906108c SS |
1735 | { |
1736 | struct type *base_type; | |
f23631e4 | 1737 | struct value *arg2; |
c906108c | 1738 | |
994b9211 | 1739 | arg1 = coerce_array (arg1); |
c906108c | 1740 | |
df407dfe | 1741 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1742 | |
8cf6f0b1 TT |
1743 | if (VALUE_LVAL (arg1) == lval_computed) |
1744 | { | |
c8f2448a | 1745 | const struct lval_funcs *funcs = value_computed_funcs (arg1); |
8cf6f0b1 TT |
1746 | |
1747 | if (funcs->indirect) | |
1748 | { | |
1749 | struct value *result = funcs->indirect (arg1); | |
1750 | ||
1751 | if (result) | |
1752 | return result; | |
1753 | } | |
1754 | } | |
1755 | ||
22fe0fbb | 1756 | if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
c906108c SS |
1757 | { |
1758 | struct type *enc_type; | |
a109c7c1 | 1759 | |
ac3eeb49 MS |
1760 | /* We may be pointing to something embedded in a larger object. |
1761 | Get the real type of the enclosing object. */ | |
4754a64e | 1762 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1763 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1764 | |
1765 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1766 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1767 | /* For functions, go through find_function_addr, which knows | |
1768 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1769 | arg2 = value_at_lazy (enc_type, |
1770 | find_function_addr (arg1, NULL)); | |
0d5de010 | 1771 | else |
581e13c1 | 1772 | /* Retrieve the enclosing object pointed to. */ |
ac3eeb49 MS |
1773 | arg2 = value_at_lazy (enc_type, |
1774 | (value_as_address (arg1) | |
1775 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1776 | |
ac3eeb49 | 1777 | /* Re-adjust type. */ |
04624583 | 1778 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
ac3eeb49 | 1779 | /* Add embedding info. */ |
4dfea560 | 1780 | set_value_enclosing_type (arg2, enc_type); |
b44d461b | 1781 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c | 1782 | |
ac3eeb49 | 1783 | /* We may be pointing to an object of some derived type. */ |
c906108c SS |
1784 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); |
1785 | return arg2; | |
1786 | } | |
1787 | ||
8a3fe4f8 | 1788 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 1789 | return 0; /* For lint -- never reached. */ |
c906108c SS |
1790 | } |
1791 | \f | |
39d37385 PA |
1792 | /* Create a value for an array by allocating space in GDB, copying the |
1793 | data into that space, and then setting up an array value. | |
c906108c | 1794 | |
ac3eeb49 MS |
1795 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1796 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1797 | |
1798 | The element type of the array is inherited from the type of the | |
1799 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1800 | don't currently enforce any restriction on their types). */ |
c906108c | 1801 | |
f23631e4 AC |
1802 | struct value * |
1803 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1804 | { |
1805 | int nelem; | |
1806 | int idx; | |
1807 | unsigned int typelength; | |
f23631e4 | 1808 | struct value *val; |
c906108c | 1809 | struct type *arraytype; |
c906108c | 1810 | |
ac3eeb49 MS |
1811 | /* Validate that the bounds are reasonable and that each of the |
1812 | elements have the same size. */ | |
c906108c SS |
1813 | |
1814 | nelem = highbound - lowbound + 1; | |
1815 | if (nelem <= 0) | |
1816 | { | |
8a3fe4f8 | 1817 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1818 | } |
4754a64e | 1819 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
1820 | for (idx = 1; idx < nelem; idx++) |
1821 | { | |
4754a64e | 1822 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 1823 | { |
8a3fe4f8 | 1824 | error (_("array elements must all be the same size")); |
c906108c SS |
1825 | } |
1826 | } | |
1827 | ||
e3506a9f UW |
1828 | arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
1829 | lowbound, highbound); | |
c906108c SS |
1830 | |
1831 | if (!current_language->c_style_arrays) | |
1832 | { | |
1833 | val = allocate_value (arraytype); | |
1834 | for (idx = 0; idx < nelem; idx++) | |
39d37385 PA |
1835 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, |
1836 | typelength); | |
c906108c SS |
1837 | return val; |
1838 | } | |
1839 | ||
63092375 DJ |
1840 | /* Allocate space to store the array, and then initialize it by |
1841 | copying in each element. */ | |
c906108c | 1842 | |
63092375 | 1843 | val = allocate_value (arraytype); |
c906108c | 1844 | for (idx = 0; idx < nelem; idx++) |
39d37385 | 1845 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength); |
63092375 | 1846 | return val; |
c906108c SS |
1847 | } |
1848 | ||
6c7a06a3 | 1849 | struct value * |
3b7538c0 | 1850 | value_cstring (char *ptr, int len, struct type *char_type) |
6c7a06a3 TT |
1851 | { |
1852 | struct value *val; | |
1853 | int lowbound = current_language->string_lower_bound; | |
1854 | int highbound = len / TYPE_LENGTH (char_type); | |
6c7a06a3 | 1855 | struct type *stringtype |
e3506a9f | 1856 | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
6c7a06a3 TT |
1857 | |
1858 | val = allocate_value (stringtype); | |
1859 | memcpy (value_contents_raw (val), ptr, len); | |
1860 | return val; | |
1861 | } | |
1862 | ||
ac3eeb49 MS |
1863 | /* Create a value for a string constant by allocating space in the |
1864 | inferior, copying the data into that space, and returning the | |
1865 | address with type TYPE_CODE_STRING. PTR points to the string | |
1866 | constant data; LEN is number of characters. | |
1867 | ||
1868 | Note that string types are like array of char types with a lower | |
1869 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1870 | string may contain embedded null bytes. */ | |
c906108c | 1871 | |
f23631e4 | 1872 | struct value * |
3b7538c0 | 1873 | value_string (char *ptr, int len, struct type *char_type) |
c906108c | 1874 | { |
f23631e4 | 1875 | struct value *val; |
c906108c | 1876 | int lowbound = current_language->string_lower_bound; |
3b7538c0 | 1877 | int highbound = len / TYPE_LENGTH (char_type); |
c906108c | 1878 | struct type *stringtype |
e3506a9f | 1879 | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
c906108c | 1880 | |
3b7538c0 UW |
1881 | val = allocate_value (stringtype); |
1882 | memcpy (value_contents_raw (val), ptr, len); | |
1883 | return val; | |
c906108c SS |
1884 | } |
1885 | ||
f23631e4 | 1886 | struct value * |
22601c15 | 1887 | value_bitstring (char *ptr, int len, struct type *index_type) |
c906108c | 1888 | { |
f23631e4 | 1889 | struct value *val; |
22601c15 UW |
1890 | struct type *domain_type |
1891 | = create_range_type (NULL, index_type, 0, len - 1); | |
1892 | struct type *type = create_set_type (NULL, domain_type); | |
a109c7c1 | 1893 | |
c906108c SS |
1894 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1895 | val = allocate_value (type); | |
990a07ab | 1896 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1897 | return val; |
1898 | } | |
1899 | \f | |
ac3eeb49 MS |
1900 | /* See if we can pass arguments in T2 to a function which takes |
1901 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1902 | a NULL-terminated vector. If some arguments need coercion of some | |
1903 | sort, then the coerced values are written into T2. Return value is | |
1904 | 0 if the arguments could be matched, or the position at which they | |
1905 | differ if not. | |
c906108c | 1906 | |
ac3eeb49 MS |
1907 | STATICP is nonzero if the T1 argument list came from a static |
1908 | member function. T2 will still include the ``this'' pointer, but | |
1909 | it will be skipped. | |
c906108c SS |
1910 | |
1911 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1912 | which is the type of the instance variable. This is because we |
1913 | want to handle calls with objects from derived classes. This is | |
1914 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1915 | requested operation is type secure, shouldn't we? FIXME. */ |
1916 | ||
1917 | static int | |
ad2f7632 DJ |
1918 | typecmp (int staticp, int varargs, int nargs, |
1919 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1920 | { |
1921 | int i; | |
1922 | ||
1923 | if (t2 == 0) | |
ac3eeb49 MS |
1924 | internal_error (__FILE__, __LINE__, |
1925 | _("typecmp: no argument list")); | |
ad2f7632 | 1926 | |
ac3eeb49 MS |
1927 | /* Skip ``this'' argument if applicable. T2 will always include |
1928 | THIS. */ | |
4a1970e4 | 1929 | if (staticp) |
ad2f7632 DJ |
1930 | t2 ++; |
1931 | ||
1932 | for (i = 0; | |
1933 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1934 | i++) | |
c906108c | 1935 | { |
c5aa993b | 1936 | struct type *tt1, *tt2; |
ad2f7632 | 1937 | |
c5aa993b JM |
1938 | if (!t2[i]) |
1939 | return i + 1; | |
ad2f7632 DJ |
1940 | |
1941 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1942 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1943 | |
c906108c | 1944 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1945 | /* We should be doing hairy argument matching, as below. */ |
3e43a32a MS |
1946 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) |
1947 | == TYPE_CODE (tt2))) | |
c906108c SS |
1948 | { |
1949 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1950 | t2[i] = value_coerce_array (t2[i]); | |
1951 | else | |
fb933624 | 1952 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1953 | continue; |
1954 | } | |
1955 | ||
802db21b DB |
1956 | /* djb - 20000715 - Until the new type structure is in the |
1957 | place, and we can attempt things like implicit conversions, | |
1958 | we need to do this so you can take something like a map<const | |
1959 | char *>, and properly access map["hello"], because the | |
1960 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1961 | and the argument will be a pointer to a char. */ |
1962 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1963 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1964 | { |
1965 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1966 | } | |
ac3eeb49 MS |
1967 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1968 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1969 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1970 | { |
ac3eeb49 | 1971 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1972 | } |
c5aa993b JM |
1973 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1974 | continue; | |
ac3eeb49 MS |
1975 | /* Array to pointer is a `trivial conversion' according to the |
1976 | ARM. */ | |
c906108c | 1977 | |
ac3eeb49 MS |
1978 | /* We should be doing much hairier argument matching (see |
1979 | section 13.2 of the ARM), but as a quick kludge, just check | |
1980 | for the same type code. */ | |
df407dfe | 1981 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1982 | return i + 1; |
c906108c | 1983 | } |
ad2f7632 | 1984 | if (varargs || t2[i] == NULL) |
c5aa993b | 1985 | return 0; |
ad2f7632 | 1986 | return i + 1; |
c906108c SS |
1987 | } |
1988 | ||
ac3eeb49 | 1989 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 1990 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
1991 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
1992 | TYPE. If found, return value, else return NULL. | |
c906108c | 1993 | |
ac3eeb49 MS |
1994 | If LOOKING_FOR_BASECLASS, then instead of looking for struct |
1995 | fields, look for a baseclass named NAME. */ | |
c906108c | 1996 | |
f23631e4 | 1997 | static struct value * |
714f19d5 | 1998 | search_struct_field (const char *name, struct value *arg1, int offset, |
aa1ee363 | 1999 | struct type *type, int looking_for_baseclass) |
c906108c SS |
2000 | { |
2001 | int i; | |
edf3d5f3 | 2002 | int nbases; |
c906108c SS |
2003 | |
2004 | CHECK_TYPEDEF (type); | |
edf3d5f3 | 2005 | nbases = TYPE_N_BASECLASSES (type); |
c906108c | 2006 | |
c5aa993b | 2007 | if (!looking_for_baseclass) |
c906108c SS |
2008 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2009 | { | |
2010 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2011 | ||
db577aea | 2012 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 2013 | { |
f23631e4 | 2014 | struct value *v; |
a109c7c1 | 2015 | |
d6a843b5 | 2016 | if (field_is_static (&TYPE_FIELD (type, i))) |
2c2738a0 DC |
2017 | { |
2018 | v = value_static_field (type, i); | |
2019 | if (v == 0) | |
3e43a32a MS |
2020 | error (_("field %s is nonexistent or " |
2021 | "has been optimized out"), | |
2c2738a0 DC |
2022 | name); |
2023 | } | |
c906108c | 2024 | else |
2c2738a0 DC |
2025 | { |
2026 | v = value_primitive_field (arg1, offset, i, type); | |
2027 | if (v == 0) | |
8a3fe4f8 | 2028 | error (_("there is no field named %s"), name); |
2c2738a0 | 2029 | } |
c906108c SS |
2030 | return v; |
2031 | } | |
2032 | ||
2033 | if (t_field_name | |
2034 | && (t_field_name[0] == '\0' | |
2035 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2036 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2037 | { |
2038 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
a109c7c1 | 2039 | |
c906108c SS |
2040 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
2041 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2042 | { | |
ac3eeb49 MS |
2043 | /* Look for a match through the fields of an anonymous |
2044 | union, or anonymous struct. C++ provides anonymous | |
2045 | unions. | |
c906108c | 2046 | |
1b831c93 AC |
2047 | In the GNU Chill (now deleted from GDB) |
2048 | implementation of variant record types, each | |
2049 | <alternative field> has an (anonymous) union type, | |
2050 | each member of the union represents a <variant | |
2051 | alternative>. Each <variant alternative> is | |
2052 | represented as a struct, with a member for each | |
2053 | <variant field>. */ | |
c5aa993b | 2054 | |
f23631e4 | 2055 | struct value *v; |
c906108c SS |
2056 | int new_offset = offset; |
2057 | ||
db034ac5 AC |
2058 | /* This is pretty gross. In G++, the offset in an |
2059 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
2060 | enclosing struct. In the GNU Chill (now deleted |
2061 | from GDB) implementation of variant records, the | |
2062 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 2063 | have to add the offset of the union here. */ |
c906108c SS |
2064 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
2065 | || (TYPE_NFIELDS (field_type) > 0 | |
2066 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2067 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2068 | ||
ac3eeb49 MS |
2069 | v = search_struct_field (name, arg1, new_offset, |
2070 | field_type, | |
c906108c SS |
2071 | looking_for_baseclass); |
2072 | if (v) | |
2073 | return v; | |
2074 | } | |
2075 | } | |
2076 | } | |
2077 | ||
c5aa993b | 2078 | for (i = 0; i < nbases; i++) |
c906108c | 2079 | { |
f23631e4 | 2080 | struct value *v; |
c906108c | 2081 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
2082 | /* If we are looking for baseclasses, this is what we get when |
2083 | we hit them. But it could happen that the base part's member | |
2084 | name is not yet filled in. */ | |
c906108c SS |
2085 | int found_baseclass = (looking_for_baseclass |
2086 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
2087 | && (strcmp_iw (name, |
2088 | TYPE_BASECLASS_NAME (type, | |
2089 | i)) == 0)); | |
c906108c SS |
2090 | |
2091 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2092 | { | |
2093 | int boffset; | |
3e3d7139 | 2094 | struct value *v2; |
c906108c SS |
2095 | |
2096 | boffset = baseclass_offset (type, i, | |
8af8e3bc PA |
2097 | value_contents_for_printing (arg1), |
2098 | value_embedded_offset (arg1) + offset, | |
2099 | value_address (arg1), | |
2100 | arg1); | |
c906108c | 2101 | |
ac3eeb49 | 2102 | /* The virtual base class pointer might have been clobbered |
581e13c1 | 2103 | by the user program. Make sure that it still points to a |
ac3eeb49 | 2104 | valid memory location. */ |
c906108c | 2105 | |
1a334831 TT |
2106 | boffset += value_embedded_offset (arg1) + offset; |
2107 | if (boffset < 0 | |
2108 | || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) | |
c906108c SS |
2109 | { |
2110 | CORE_ADDR base_addr; | |
c5aa993b | 2111 | |
3e3d7139 | 2112 | v2 = allocate_value (basetype); |
42ae5230 | 2113 | base_addr = value_address (arg1) + boffset; |
ac3eeb49 MS |
2114 | if (target_read_memory (base_addr, |
2115 | value_contents_raw (v2), | |
c906108c | 2116 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 2117 | error (_("virtual baseclass botch")); |
c906108c | 2118 | VALUE_LVAL (v2) = lval_memory; |
42ae5230 | 2119 | set_value_address (v2, base_addr); |
c906108c SS |
2120 | } |
2121 | else | |
2122 | { | |
1a334831 TT |
2123 | v2 = value_copy (arg1); |
2124 | deprecated_set_value_type (v2, basetype); | |
2125 | set_value_embedded_offset (v2, boffset); | |
c906108c SS |
2126 | } |
2127 | ||
2128 | if (found_baseclass) | |
2129 | return v2; | |
ac3eeb49 MS |
2130 | v = search_struct_field (name, v2, 0, |
2131 | TYPE_BASECLASS (type, i), | |
c906108c SS |
2132 | looking_for_baseclass); |
2133 | } | |
2134 | else if (found_baseclass) | |
2135 | v = value_primitive_field (arg1, offset, i, type); | |
2136 | else | |
2137 | v = search_struct_field (name, arg1, | |
ac3eeb49 MS |
2138 | offset + TYPE_BASECLASS_BITPOS (type, |
2139 | i) / 8, | |
c906108c | 2140 | basetype, looking_for_baseclass); |
c5aa993b JM |
2141 | if (v) |
2142 | return v; | |
c906108c SS |
2143 | } |
2144 | return NULL; | |
2145 | } | |
2146 | ||
ac3eeb49 | 2147 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 2148 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
2149 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
2150 | TYPE. | |
2151 | ||
2152 | If found, return value, else if name matched and args not return | |
2153 | (value) -1, else return NULL. */ | |
c906108c | 2154 | |
f23631e4 | 2155 | static struct value * |
714f19d5 | 2156 | search_struct_method (const char *name, struct value **arg1p, |
f23631e4 | 2157 | struct value **args, int offset, |
aa1ee363 | 2158 | int *static_memfuncp, struct type *type) |
c906108c SS |
2159 | { |
2160 | int i; | |
f23631e4 | 2161 | struct value *v; |
c906108c SS |
2162 | int name_matched = 0; |
2163 | char dem_opname[64]; | |
2164 | ||
2165 | CHECK_TYPEDEF (type); | |
2166 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2167 | { | |
2168 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
a109c7c1 | 2169 | |
581e13c1 | 2170 | /* FIXME! May need to check for ARM demangling here. */ |
c5aa993b JM |
2171 | if (strncmp (t_field_name, "__", 2) == 0 || |
2172 | strncmp (t_field_name, "op", 2) == 0 || | |
2173 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2174 | { |
c5aa993b JM |
2175 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2176 | t_field_name = dem_opname; | |
2177 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2178 | t_field_name = dem_opname; |
c906108c | 2179 | } |
db577aea | 2180 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2181 | { |
2182 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2183 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c906108c | 2184 | |
a109c7c1 | 2185 | name_matched = 1; |
de17c821 | 2186 | check_stub_method_group (type, i); |
c906108c | 2187 | if (j > 0 && args == 0) |
3e43a32a MS |
2188 | error (_("cannot resolve overloaded method " |
2189 | "`%s': no arguments supplied"), name); | |
acf5ed49 | 2190 | else if (j == 0 && args == 0) |
c906108c | 2191 | { |
acf5ed49 DJ |
2192 | v = value_fn_field (arg1p, f, j, type, offset); |
2193 | if (v != NULL) | |
2194 | return v; | |
c906108c | 2195 | } |
acf5ed49 DJ |
2196 | else |
2197 | while (j >= 0) | |
2198 | { | |
acf5ed49 | 2199 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
2200 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2201 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2202 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2203 | { | |
2204 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
2205 | return value_virtual_fn_field (arg1p, f, j, |
2206 | type, offset); | |
2207 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
2208 | && static_memfuncp) | |
acf5ed49 DJ |
2209 | *static_memfuncp = 1; |
2210 | v = value_fn_field (arg1p, f, j, type, offset); | |
2211 | if (v != NULL) | |
2212 | return v; | |
2213 | } | |
2214 | j--; | |
2215 | } | |
c906108c SS |
2216 | } |
2217 | } | |
2218 | ||
2219 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2220 | { | |
2221 | int base_offset; | |
8af8e3bc PA |
2222 | int skip = 0; |
2223 | int this_offset; | |
c906108c SS |
2224 | |
2225 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2226 | { | |
086280be | 2227 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
8af8e3bc | 2228 | struct value *base_val; |
086280be UW |
2229 | const gdb_byte *base_valaddr; |
2230 | ||
2231 | /* The virtual base class pointer might have been | |
581e13c1 | 2232 | clobbered by the user program. Make sure that it |
086280be UW |
2233 | still points to a valid memory location. */ |
2234 | ||
2235 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 2236 | { |
086280be | 2237 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
8af8e3bc | 2238 | CORE_ADDR address = value_address (*arg1p); |
a109c7c1 | 2239 | |
8af8e3bc | 2240 | if (target_read_memory (address + offset, |
086280be UW |
2241 | tmp, TYPE_LENGTH (baseclass)) != 0) |
2242 | error (_("virtual baseclass botch")); | |
8af8e3bc PA |
2243 | |
2244 | base_val = value_from_contents_and_address (baseclass, | |
2245 | tmp, | |
2246 | address + offset); | |
2247 | base_valaddr = value_contents_for_printing (base_val); | |
2248 | this_offset = 0; | |
c5aa993b JM |
2249 | } |
2250 | else | |
8af8e3bc PA |
2251 | { |
2252 | base_val = *arg1p; | |
2253 | base_valaddr = value_contents_for_printing (*arg1p); | |
2254 | this_offset = offset; | |
2255 | } | |
c5aa993b | 2256 | |
086280be | 2257 | base_offset = baseclass_offset (type, i, base_valaddr, |
8af8e3bc PA |
2258 | this_offset, value_address (base_val), |
2259 | base_val); | |
c5aa993b | 2260 | } |
c906108c SS |
2261 | else |
2262 | { | |
2263 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2264 | } |
c906108c SS |
2265 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2266 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2267 | if (v == (struct value *) - 1) |
c906108c SS |
2268 | { |
2269 | name_matched = 1; | |
2270 | } | |
2271 | else if (v) | |
2272 | { | |
ac3eeb49 MS |
2273 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
2274 | /* *arg1p = arg1_tmp; */ | |
c906108c | 2275 | return v; |
c5aa993b | 2276 | } |
c906108c | 2277 | } |
c5aa993b | 2278 | if (name_matched) |
f23631e4 | 2279 | return (struct value *) - 1; |
c5aa993b JM |
2280 | else |
2281 | return NULL; | |
c906108c SS |
2282 | } |
2283 | ||
2284 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2285 | extract the component named NAME from the ultimate target |
2286 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
2287 | ERR is used in the error message if *ARGP's type is wrong. |
2288 | ||
2289 | C++: ARGS is a list of argument types to aid in the selection of | |
581e13c1 | 2290 | an appropriate method. Also, handle derived types. |
c906108c SS |
2291 | |
2292 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2293 | where the truthvalue of whether the function that was resolved was | |
2294 | a static member function or not is stored. | |
2295 | ||
ac3eeb49 MS |
2296 | ERR is an error message to be printed in case the field is not |
2297 | found. */ | |
c906108c | 2298 | |
f23631e4 AC |
2299 | struct value * |
2300 | value_struct_elt (struct value **argp, struct value **args, | |
714f19d5 | 2301 | const char *name, int *static_memfuncp, const char *err) |
c906108c | 2302 | { |
52f0bd74 | 2303 | struct type *t; |
f23631e4 | 2304 | struct value *v; |
c906108c | 2305 | |
994b9211 | 2306 | *argp = coerce_array (*argp); |
c906108c | 2307 | |
df407dfe | 2308 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2309 | |
2310 | /* Follow pointers until we get to a non-pointer. */ | |
2311 | ||
2312 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2313 | { | |
2314 | *argp = value_ind (*argp); | |
2315 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2316 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2317 | *argp = coerce_array (*argp); |
df407dfe | 2318 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2319 | } |
2320 | ||
c5aa993b | 2321 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2322 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
2323 | error (_("Attempt to extract a component of a value that is not a %s."), |
2324 | err); | |
c906108c SS |
2325 | |
2326 | /* Assume it's not, unless we see that it is. */ | |
2327 | if (static_memfuncp) | |
c5aa993b | 2328 | *static_memfuncp = 0; |
c906108c SS |
2329 | |
2330 | if (!args) | |
2331 | { | |
2332 | /* if there are no arguments ...do this... */ | |
2333 | ||
ac3eeb49 MS |
2334 | /* Try as a field first, because if we succeed, there is less |
2335 | work to be done. */ | |
c906108c SS |
2336 | v = search_struct_field (name, *argp, 0, t, 0); |
2337 | if (v) | |
2338 | return v; | |
2339 | ||
2340 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2341 | return it as a pointer to a method. */ |
ac3eeb49 MS |
2342 | v = search_struct_method (name, argp, args, 0, |
2343 | static_memfuncp, t); | |
c906108c | 2344 | |
f23631e4 | 2345 | if (v == (struct value *) - 1) |
55b39184 | 2346 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
2347 | else if (v == 0) |
2348 | { | |
2349 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 2350 | error (_("There is no member or method named %s."), name); |
c906108c | 2351 | else |
8a3fe4f8 | 2352 | error (_("There is no member named %s."), name); |
c906108c SS |
2353 | } |
2354 | return v; | |
2355 | } | |
2356 | ||
ac3eeb49 MS |
2357 | v = search_struct_method (name, argp, args, 0, |
2358 | static_memfuncp, t); | |
7168a814 | 2359 | |
f23631e4 | 2360 | if (v == (struct value *) - 1) |
c906108c | 2361 | { |
3e43a32a MS |
2362 | error (_("One of the arguments you tried to pass to %s could not " |
2363 | "be converted to what the function wants."), name); | |
c906108c SS |
2364 | } |
2365 | else if (v == 0) | |
2366 | { | |
ac3eeb49 MS |
2367 | /* See if user tried to invoke data as function. If so, hand it |
2368 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 2369 | gdb should give an error. */ |
c906108c | 2370 | v = search_struct_field (name, *argp, 0, t, 0); |
fa8de41e TT |
2371 | /* If we found an ordinary field, then it is not a method call. |
2372 | So, treat it as if it were a static member function. */ | |
2373 | if (v && static_memfuncp) | |
2374 | *static_memfuncp = 1; | |
c906108c SS |
2375 | } |
2376 | ||
2377 | if (!v) | |
79afc5ef SW |
2378 | throw_error (NOT_FOUND_ERROR, |
2379 | _("Structure has no component named %s."), name); | |
c906108c SS |
2380 | return v; |
2381 | } | |
2382 | ||
ac3eeb49 | 2383 | /* Search through the methods of an object (and its bases) to find a |
cfe9eade | 2384 | specified method. Return the pointer to the fn_field list of |
ac3eeb49 MS |
2385 | overloaded instances. |
2386 | ||
2387 | Helper function for value_find_oload_list. | |
2388 | ARGP is a pointer to a pointer to a value (the object). | |
2389 | METHOD is a string containing the method name. | |
2390 | OFFSET is the offset within the value. | |
2391 | TYPE is the assumed type of the object. | |
2392 | NUM_FNS is the number of overloaded instances. | |
2393 | BASETYPE is set to the actual type of the subobject where the | |
2394 | method is found. | |
581e13c1 | 2395 | BOFFSET is the offset of the base subobject where the method is found. */ |
c906108c | 2396 | |
7a292a7a | 2397 | static struct fn_field * |
714f19d5 | 2398 | find_method_list (struct value **argp, const char *method, |
ac3eeb49 | 2399 | int offset, struct type *type, int *num_fns, |
fba45db2 | 2400 | struct type **basetype, int *boffset) |
c906108c SS |
2401 | { |
2402 | int i; | |
c5aa993b | 2403 | struct fn_field *f; |
c906108c SS |
2404 | CHECK_TYPEDEF (type); |
2405 | ||
2406 | *num_fns = 0; | |
2407 | ||
ac3eeb49 | 2408 | /* First check in object itself. */ |
c5aa993b | 2409 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c906108c | 2410 | { |
ac3eeb49 | 2411 | /* pai: FIXME What about operators and type conversions? */ |
c5aa993b | 2412 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
a109c7c1 | 2413 | |
db577aea | 2414 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 2415 | { |
4a1970e4 DJ |
2416 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
2417 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
2418 | |
2419 | *num_fns = len; | |
c5aa993b JM |
2420 | *basetype = type; |
2421 | *boffset = offset; | |
4a1970e4 | 2422 | |
de17c821 DJ |
2423 | /* Resolve any stub methods. */ |
2424 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
2425 | |
2426 | return f; | |
c5aa993b JM |
2427 | } |
2428 | } | |
2429 | ||
ac3eeb49 | 2430 | /* Not found in object, check in base subobjects. */ |
c906108c SS |
2431 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
2432 | { | |
2433 | int base_offset; | |
a109c7c1 | 2434 | |
c906108c SS |
2435 | if (BASETYPE_VIA_VIRTUAL (type, i)) |
2436 | { | |
086280be | 2437 | base_offset = baseclass_offset (type, i, |
8af8e3bc PA |
2438 | value_contents_for_printing (*argp), |
2439 | value_offset (*argp) + offset, | |
2440 | value_address (*argp), *argp); | |
c5aa993b | 2441 | } |
ac3eeb49 MS |
2442 | else /* Non-virtual base, simply use bit position from debug |
2443 | info. */ | |
c906108c SS |
2444 | { |
2445 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2446 | } |
c906108c | 2447 | f = find_method_list (argp, method, base_offset + offset, |
ac3eeb49 MS |
2448 | TYPE_BASECLASS (type, i), num_fns, |
2449 | basetype, boffset); | |
c906108c | 2450 | if (f) |
c5aa993b | 2451 | return f; |
c906108c | 2452 | } |
c5aa993b | 2453 | return NULL; |
c906108c SS |
2454 | } |
2455 | ||
2456 | /* Return the list of overloaded methods of a specified name. | |
ac3eeb49 MS |
2457 | |
2458 | ARGP is a pointer to a pointer to a value (the object). | |
2459 | METHOD is the method name. | |
2460 | OFFSET is the offset within the value contents. | |
2461 | NUM_FNS is the number of overloaded instances. | |
2462 | BASETYPE is set to the type of the base subobject that defines the | |
2463 | method. | |
581e13c1 | 2464 | BOFFSET is the offset of the base subobject which defines the method. */ |
c906108c SS |
2465 | |
2466 | struct fn_field * | |
714f19d5 | 2467 | value_find_oload_method_list (struct value **argp, const char *method, |
ac3eeb49 MS |
2468 | int offset, int *num_fns, |
2469 | struct type **basetype, int *boffset) | |
c906108c | 2470 | { |
c5aa993b | 2471 | struct type *t; |
c906108c | 2472 | |
df407dfe | 2473 | t = check_typedef (value_type (*argp)); |
c906108c | 2474 | |
ac3eeb49 | 2475 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
2476 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2477 | { | |
2478 | *argp = value_ind (*argp); | |
2479 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2480 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2481 | *argp = coerce_array (*argp); |
df407dfe | 2482 | t = check_typedef (value_type (*argp)); |
c906108c | 2483 | } |
c5aa993b | 2484 | |
c5aa993b JM |
2485 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
2486 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
3e43a32a MS |
2487 | error (_("Attempt to extract a component of a " |
2488 | "value that is not a struct or union")); | |
c5aa993b | 2489 | |
ac3eeb49 MS |
2490 | return find_method_list (argp, method, 0, t, num_fns, |
2491 | basetype, boffset); | |
c906108c SS |
2492 | } |
2493 | ||
2494 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2495 | entry for "this" in the case of C++ methods), the number of | |
2496 | arguments NARGS, the NAME of a function whether it's a method or | |
2497 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2498 | overload resolution rules in ANSI C++, find the best function that | |
2499 | matches on the argument types according to the overload resolution | |
2500 | rules. | |
2501 | ||
4c3376c8 SW |
2502 | METHOD can be one of three values: |
2503 | NON_METHOD for non-member functions. | |
2504 | METHOD: for member functions. | |
2505 | BOTH: used for overload resolution of operators where the | |
2506 | candidates are expected to be either member or non member | |
581e13c1 | 2507 | functions. In this case the first argument ARGTYPES |
4c3376c8 SW |
2508 | (representing 'this') is expected to be a reference to the |
2509 | target object, and will be dereferenced when attempting the | |
2510 | non-member search. | |
2511 | ||
c906108c SS |
2512 | In the case of class methods, the parameter OBJ is an object value |
2513 | in which to search for overloaded methods. | |
2514 | ||
2515 | In the case of non-method functions, the parameter FSYM is a symbol | |
2516 | corresponding to one of the overloaded functions. | |
2517 | ||
2518 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2519 | non-standard coercions, 100 -> incompatible. | |
2520 | ||
2521 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
2522 | If a non-method is being searched for, SYMP will hold the symbol |
2523 | for it. | |
c906108c SS |
2524 | |
2525 | If a method is being searched for, and it is a static method, | |
2526 | then STATICP will point to a non-zero value. | |
2527 | ||
7322dca9 SW |
2528 | If NO_ADL argument dependent lookup is disabled. This is used to prevent |
2529 | ADL overload candidates when performing overload resolution for a fully | |
2530 | qualified name. | |
2531 | ||
c906108c SS |
2532 | Note: This function does *not* check the value of |
2533 | overload_resolution. Caller must check it to see whether overload | |
581e13c1 | 2534 | resolution is permitted. */ |
c906108c SS |
2535 | |
2536 | int | |
ac3eeb49 | 2537 | find_overload_match (struct type **arg_types, int nargs, |
4c3376c8 SW |
2538 | const char *name, enum oload_search_type method, |
2539 | int lax, struct value **objp, struct symbol *fsym, | |
ac3eeb49 | 2540 | struct value **valp, struct symbol **symp, |
7322dca9 | 2541 | int *staticp, const int no_adl) |
c906108c | 2542 | { |
7f8c9282 | 2543 | struct value *obj = (objp ? *objp : NULL); |
ac3eeb49 | 2544 | /* Index of best overloaded function. */ |
4c3376c8 SW |
2545 | int func_oload_champ = -1; |
2546 | int method_oload_champ = -1; | |
2547 | ||
ac3eeb49 | 2548 | /* The measure for the current best match. */ |
4c3376c8 SW |
2549 | struct badness_vector *method_badness = NULL; |
2550 | struct badness_vector *func_badness = NULL; | |
2551 | ||
f23631e4 | 2552 | struct value *temp = obj; |
ac3eeb49 MS |
2553 | /* For methods, the list of overloaded methods. */ |
2554 | struct fn_field *fns_ptr = NULL; | |
2555 | /* For non-methods, the list of overloaded function symbols. */ | |
2556 | struct symbol **oload_syms = NULL; | |
2557 | /* Number of overloaded instances being considered. */ | |
2558 | int num_fns = 0; | |
c5aa993b | 2559 | struct type *basetype = NULL; |
c906108c | 2560 | int boffset; |
7322dca9 SW |
2561 | |
2562 | struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL); | |
c906108c | 2563 | |
8d577d32 | 2564 | const char *obj_type_name = NULL; |
7322dca9 | 2565 | const char *func_name = NULL; |
8d577d32 | 2566 | enum oload_classification match_quality; |
4c3376c8 SW |
2567 | enum oload_classification method_match_quality = INCOMPATIBLE; |
2568 | enum oload_classification func_match_quality = INCOMPATIBLE; | |
c906108c | 2569 | |
ac3eeb49 | 2570 | /* Get the list of overloaded methods or functions. */ |
4c3376c8 | 2571 | if (method == METHOD || method == BOTH) |
c906108c | 2572 | { |
a2ca50ae | 2573 | gdb_assert (obj); |
94af9270 KS |
2574 | |
2575 | /* OBJ may be a pointer value rather than the object itself. */ | |
2576 | obj = coerce_ref (obj); | |
2577 | while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) | |
2578 | obj = coerce_ref (value_ind (obj)); | |
df407dfe | 2579 | obj_type_name = TYPE_NAME (value_type (obj)); |
94af9270 KS |
2580 | |
2581 | /* First check whether this is a data member, e.g. a pointer to | |
2582 | a function. */ | |
2583 | if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) | |
2584 | { | |
2585 | *valp = search_struct_field (name, obj, 0, | |
2586 | check_typedef (value_type (obj)), 0); | |
2587 | if (*valp) | |
2588 | { | |
2589 | *staticp = 1; | |
f748fb40 | 2590 | do_cleanups (all_cleanups); |
94af9270 KS |
2591 | return 0; |
2592 | } | |
2593 | } | |
c906108c | 2594 | |
4c3376c8 | 2595 | /* Retrieve the list of methods with the name NAME. */ |
ac3eeb49 MS |
2596 | fns_ptr = value_find_oload_method_list (&temp, name, |
2597 | 0, &num_fns, | |
c5aa993b | 2598 | &basetype, &boffset); |
4c3376c8 SW |
2599 | /* If this is a method only search, and no methods were found |
2600 | the search has faild. */ | |
2601 | if (method == METHOD && (!fns_ptr || !num_fns)) | |
8a3fe4f8 | 2602 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2603 | obj_type_name, |
2604 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2605 | name); | |
4a1970e4 | 2606 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2607 | been resolved by find_method_list via |
2608 | value_find_oload_method_list above. */ | |
4c3376c8 SW |
2609 | if (fns_ptr) |
2610 | { | |
2611 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
2612 | method_oload_champ = find_oload_champ (arg_types, nargs, method, | |
2613 | num_fns, fns_ptr, | |
2614 | oload_syms, &method_badness); | |
2615 | ||
2616 | method_match_quality = | |
2617 | classify_oload_match (method_badness, nargs, | |
2618 | oload_method_static (method, fns_ptr, | |
2619 | method_oload_champ)); | |
2620 | ||
2621 | make_cleanup (xfree, method_badness); | |
2622 | } | |
2623 | ||
c906108c | 2624 | } |
4c3376c8 SW |
2625 | |
2626 | if (method == NON_METHOD || method == BOTH) | |
c906108c | 2627 | { |
7322dca9 | 2628 | const char *qualified_name = NULL; |
c906108c | 2629 | |
b021a221 MS |
2630 | /* If the overload match is being search for both as a method |
2631 | and non member function, the first argument must now be | |
2632 | dereferenced. */ | |
4c3376c8 SW |
2633 | if (method == BOTH) |
2634 | arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]); | |
2635 | ||
7322dca9 SW |
2636 | if (fsym) |
2637 | { | |
2638 | qualified_name = SYMBOL_NATURAL_NAME (fsym); | |
2639 | ||
2640 | /* If we have a function with a C++ name, try to extract just | |
2641 | the function part. Do not try this for non-functions (e.g. | |
2642 | function pointers). */ | |
2643 | if (qualified_name | |
3e43a32a MS |
2644 | && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) |
2645 | == TYPE_CODE_FUNC) | |
7322dca9 SW |
2646 | { |
2647 | char *temp; | |
2648 | ||
2649 | temp = cp_func_name (qualified_name); | |
2650 | ||
2651 | /* If cp_func_name did not remove anything, the name of the | |
2652 | symbol did not include scope or argument types - it was | |
2653 | probably a C-style function. */ | |
2654 | if (temp) | |
2655 | { | |
2656 | make_cleanup (xfree, temp); | |
2657 | if (strcmp (temp, qualified_name) == 0) | |
2658 | func_name = NULL; | |
2659 | else | |
2660 | func_name = temp; | |
2661 | } | |
2662 | } | |
2663 | } | |
2664 | else | |
94af9270 | 2665 | { |
7322dca9 SW |
2666 | func_name = name; |
2667 | qualified_name = name; | |
94af9270 | 2668 | } |
d9639e13 | 2669 | |
94af9270 KS |
2670 | /* If there was no C++ name, this must be a C-style function or |
2671 | not a function at all. Just return the same symbol. Do the | |
2672 | same if cp_func_name fails for some reason. */ | |
8d577d32 | 2673 | if (func_name == NULL) |
7b83ea04 | 2674 | { |
917317f4 | 2675 | *symp = fsym; |
5fe41fbf | 2676 | do_cleanups (all_cleanups); |
7b83ea04 AC |
2677 | return 0; |
2678 | } | |
917317f4 | 2679 | |
4c3376c8 SW |
2680 | func_oload_champ = find_oload_champ_namespace (arg_types, nargs, |
2681 | func_name, | |
2682 | qualified_name, | |
2683 | &oload_syms, | |
2684 | &func_badness, | |
2685 | no_adl); | |
8d577d32 | 2686 | |
4c3376c8 SW |
2687 | if (func_oload_champ >= 0) |
2688 | func_match_quality = classify_oload_match (func_badness, nargs, 0); | |
2689 | ||
2690 | make_cleanup (xfree, oload_syms); | |
2691 | make_cleanup (xfree, func_badness); | |
8d577d32 DC |
2692 | } |
2693 | ||
7322dca9 | 2694 | /* Did we find a match ? */ |
4c3376c8 | 2695 | if (method_oload_champ == -1 && func_oload_champ == -1) |
79afc5ef SW |
2696 | throw_error (NOT_FOUND_ERROR, |
2697 | _("No symbol \"%s\" in current context."), | |
2698 | name); | |
8d577d32 | 2699 | |
4c3376c8 SW |
2700 | /* If we have found both a method match and a function |
2701 | match, find out which one is better, and calculate match | |
2702 | quality. */ | |
2703 | if (method_oload_champ >= 0 && func_oload_champ >= 0) | |
2704 | { | |
2705 | switch (compare_badness (func_badness, method_badness)) | |
2706 | { | |
2707 | case 0: /* Top two contenders are equally good. */ | |
b021a221 MS |
2708 | /* FIXME: GDB does not support the general ambiguous case. |
2709 | All candidates should be collected and presented the | |
2710 | user. */ | |
4c3376c8 SW |
2711 | error (_("Ambiguous overload resolution")); |
2712 | break; | |
2713 | case 1: /* Incomparable top contenders. */ | |
2714 | /* This is an error incompatible candidates | |
2715 | should not have been proposed. */ | |
3e43a32a MS |
2716 | error (_("Internal error: incompatible " |
2717 | "overload candidates proposed")); | |
4c3376c8 SW |
2718 | break; |
2719 | case 2: /* Function champion. */ | |
2720 | method_oload_champ = -1; | |
2721 | match_quality = func_match_quality; | |
2722 | break; | |
2723 | case 3: /* Method champion. */ | |
2724 | func_oload_champ = -1; | |
2725 | match_quality = method_match_quality; | |
2726 | break; | |
2727 | default: | |
2728 | error (_("Internal error: unexpected overload comparison result")); | |
2729 | break; | |
2730 | } | |
2731 | } | |
2732 | else | |
2733 | { | |
2734 | /* We have either a method match or a function match. */ | |
2735 | if (method_oload_champ >= 0) | |
2736 | match_quality = method_match_quality; | |
2737 | else | |
2738 | match_quality = func_match_quality; | |
2739 | } | |
8d577d32 DC |
2740 | |
2741 | if (match_quality == INCOMPATIBLE) | |
2742 | { | |
4c3376c8 | 2743 | if (method == METHOD) |
8a3fe4f8 | 2744 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2745 | obj_type_name, |
2746 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2747 | name); | |
2748 | else | |
8a3fe4f8 | 2749 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2750 | func_name); |
2751 | } | |
2752 | else if (match_quality == NON_STANDARD) | |
2753 | { | |
4c3376c8 | 2754 | if (method == METHOD) |
3e43a32a MS |
2755 | warning (_("Using non-standard conversion to match " |
2756 | "method %s%s%s to supplied arguments"), | |
8d577d32 DC |
2757 | obj_type_name, |
2758 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2759 | name); | |
2760 | else | |
3e43a32a MS |
2761 | warning (_("Using non-standard conversion to match " |
2762 | "function %s to supplied arguments"), | |
8d577d32 DC |
2763 | func_name); |
2764 | } | |
2765 | ||
4c3376c8 SW |
2766 | if (staticp != NULL) |
2767 | *staticp = oload_method_static (method, fns_ptr, method_oload_champ); | |
2768 | ||
2769 | if (method_oload_champ >= 0) | |
8d577d32 | 2770 | { |
4c3376c8 SW |
2771 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)) |
2772 | *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ, | |
ac3eeb49 | 2773 | basetype, boffset); |
8d577d32 | 2774 | else |
4c3376c8 | 2775 | *valp = value_fn_field (&temp, fns_ptr, method_oload_champ, |
ac3eeb49 | 2776 | basetype, boffset); |
8d577d32 DC |
2777 | } |
2778 | else | |
4c3376c8 | 2779 | *symp = oload_syms[func_oload_champ]; |
8d577d32 DC |
2780 | |
2781 | if (objp) | |
2782 | { | |
a4295225 TT |
2783 | struct type *temp_type = check_typedef (value_type (temp)); |
2784 | struct type *obj_type = check_typedef (value_type (*objp)); | |
a109c7c1 | 2785 | |
a4295225 TT |
2786 | if (TYPE_CODE (temp_type) != TYPE_CODE_PTR |
2787 | && (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
2788 | || TYPE_CODE (obj_type) == TYPE_CODE_REF)) | |
8d577d32 DC |
2789 | { |
2790 | temp = value_addr (temp); | |
2791 | } | |
2792 | *objp = temp; | |
2793 | } | |
7322dca9 SW |
2794 | |
2795 | do_cleanups (all_cleanups); | |
8d577d32 DC |
2796 | |
2797 | switch (match_quality) | |
2798 | { | |
2799 | case INCOMPATIBLE: | |
2800 | return 100; | |
2801 | case NON_STANDARD: | |
2802 | return 10; | |
2803 | default: /* STANDARD */ | |
2804 | return 0; | |
2805 | } | |
2806 | } | |
2807 | ||
2808 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2809 | contained in QUALIFIED_NAME until it either finds a good match or | |
2810 | runs out of namespaces. It stores the overloaded functions in | |
2811 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2812 | calling function is responsible for freeing *OLOAD_SYMS and | |
7322dca9 SW |
2813 | *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not |
2814 | performned. */ | |
8d577d32 DC |
2815 | |
2816 | static int | |
2817 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
2818 | const char *func_name, | |
2819 | const char *qualified_name, | |
2820 | struct symbol ***oload_syms, | |
7322dca9 SW |
2821 | struct badness_vector **oload_champ_bv, |
2822 | const int no_adl) | |
8d577d32 DC |
2823 | { |
2824 | int oload_champ; | |
2825 | ||
2826 | find_oload_champ_namespace_loop (arg_types, nargs, | |
2827 | func_name, | |
2828 | qualified_name, 0, | |
2829 | oload_syms, oload_champ_bv, | |
7322dca9 SW |
2830 | &oload_champ, |
2831 | no_adl); | |
8d577d32 DC |
2832 | |
2833 | return oload_champ; | |
2834 | } | |
2835 | ||
2836 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2837 | how deep we've looked for namespaces, and the champ is stored in | |
2838 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
7322dca9 SW |
2839 | if it isn't. Other arguments are the same as in |
2840 | find_oload_champ_namespace | |
8d577d32 DC |
2841 | |
2842 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2843 | *OLOAD_CHAMP_BV. */ | |
2844 | ||
2845 | static int | |
2846 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
2847 | const char *func_name, | |
2848 | const char *qualified_name, | |
2849 | int namespace_len, | |
2850 | struct symbol ***oload_syms, | |
2851 | struct badness_vector **oload_champ_bv, | |
7322dca9 SW |
2852 | int *oload_champ, |
2853 | const int no_adl) | |
8d577d32 DC |
2854 | { |
2855 | int next_namespace_len = namespace_len; | |
2856 | int searched_deeper = 0; | |
2857 | int num_fns = 0; | |
2858 | struct cleanup *old_cleanups; | |
2859 | int new_oload_champ; | |
2860 | struct symbol **new_oload_syms; | |
2861 | struct badness_vector *new_oload_champ_bv; | |
2862 | char *new_namespace; | |
2863 | ||
2864 | if (next_namespace_len != 0) | |
2865 | { | |
2866 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2867 | next_namespace_len += 2; | |
c906108c | 2868 | } |
ac3eeb49 MS |
2869 | next_namespace_len += |
2870 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
2871 | |
2872 | /* Initialize these to values that can safely be xfree'd. */ | |
2873 | *oload_syms = NULL; | |
2874 | *oload_champ_bv = NULL; | |
c5aa993b | 2875 | |
581e13c1 | 2876 | /* First, see if we have a deeper namespace we can search in. |
ac3eeb49 | 2877 | If we get a good match there, use it. */ |
8d577d32 DC |
2878 | |
2879 | if (qualified_name[next_namespace_len] == ':') | |
2880 | { | |
2881 | searched_deeper = 1; | |
2882 | ||
2883 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2884 | func_name, qualified_name, | |
2885 | next_namespace_len, | |
2886 | oload_syms, oload_champ_bv, | |
7322dca9 | 2887 | oload_champ, no_adl)) |
8d577d32 DC |
2888 | { |
2889 | return 1; | |
2890 | } | |
2891 | }; | |
2892 | ||
2893 | /* If we reach here, either we're in the deepest namespace or we | |
2894 | didn't find a good match in a deeper namespace. But, in the | |
2895 | latter case, we still have a bad match in a deeper namespace; | |
2896 | note that we might not find any match at all in the current | |
2897 | namespace. (There's always a match in the deepest namespace, | |
2898 | because this overload mechanism only gets called if there's a | |
2899 | function symbol to start off with.) */ | |
2900 | ||
2901 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
ec322823 | 2902 | make_cleanup (xfree, *oload_champ_bv); |
8d577d32 DC |
2903 | new_namespace = alloca (namespace_len + 1); |
2904 | strncpy (new_namespace, qualified_name, namespace_len); | |
2905 | new_namespace[namespace_len] = '\0'; | |
2906 | new_oload_syms = make_symbol_overload_list (func_name, | |
2907 | new_namespace); | |
7322dca9 SW |
2908 | |
2909 | /* If we have reached the deepest level perform argument | |
2910 | determined lookup. */ | |
2911 | if (!searched_deeper && !no_adl) | |
2912 | make_symbol_overload_list_adl (arg_types, nargs, func_name); | |
2913 | ||
8d577d32 DC |
2914 | while (new_oload_syms[num_fns]) |
2915 | ++num_fns; | |
2916 | ||
2917 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2918 | NULL, new_oload_syms, | |
2919 | &new_oload_champ_bv); | |
2920 | ||
2921 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2922 | and return it. Case 2: We didn't find a good match, but we're | |
2923 | not the deepest function. Then go with the bad match that the | |
2924 | deeper function found. Case 3: We found a bad match, and we're | |
2925 | the deepest function. Then return what we found, even though | |
2926 | it's a bad match. */ | |
2927 | ||
2928 | if (new_oload_champ != -1 | |
2929 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2930 | { | |
2931 | *oload_syms = new_oload_syms; | |
2932 | *oload_champ = new_oload_champ; | |
2933 | *oload_champ_bv = new_oload_champ_bv; | |
2934 | do_cleanups (old_cleanups); | |
2935 | return 1; | |
2936 | } | |
2937 | else if (searched_deeper) | |
2938 | { | |
2939 | xfree (new_oload_syms); | |
2940 | xfree (new_oload_champ_bv); | |
2941 | discard_cleanups (old_cleanups); | |
2942 | return 0; | |
2943 | } | |
2944 | else | |
2945 | { | |
8d577d32 DC |
2946 | *oload_syms = new_oload_syms; |
2947 | *oload_champ = new_oload_champ; | |
2948 | *oload_champ_bv = new_oload_champ_bv; | |
2a7d6a25 | 2949 | do_cleanups (old_cleanups); |
8d577d32 DC |
2950 | return 0; |
2951 | } | |
2952 | } | |
2953 | ||
2954 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2955 | the best match from among the overloaded methods or functions | |
2956 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2957 | The number of methods/functions in the list is given by NUM_FNS. | |
2958 | Return the index of the best match; store an indication of the | |
2959 | quality of the match in OLOAD_CHAMP_BV. | |
2960 | ||
2961 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2962 | ||
2963 | static int | |
2964 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2965 | int num_fns, struct fn_field *fns_ptr, | |
2966 | struct symbol **oload_syms, | |
2967 | struct badness_vector **oload_champ_bv) | |
2968 | { | |
2969 | int ix; | |
ac3eeb49 MS |
2970 | /* A measure of how good an overloaded instance is. */ |
2971 | struct badness_vector *bv; | |
2972 | /* Index of best overloaded function. */ | |
2973 | int oload_champ = -1; | |
2974 | /* Current ambiguity state for overload resolution. */ | |
2975 | int oload_ambiguous = 0; | |
2976 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 DC |
2977 | |
2978 | *oload_champ_bv = NULL; | |
c906108c | 2979 | |
ac3eeb49 | 2980 | /* Consider each candidate in turn. */ |
c906108c SS |
2981 | for (ix = 0; ix < num_fns; ix++) |
2982 | { | |
8d577d32 DC |
2983 | int jj; |
2984 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2985 | int nparms; | |
2986 | struct type **parm_types; | |
2987 | ||
db577aea AC |
2988 | if (method) |
2989 | { | |
ad2f7632 | 2990 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2991 | } |
2992 | else | |
2993 | { | |
ac3eeb49 MS |
2994 | /* If it's not a method, this is the proper place. */ |
2995 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
db577aea | 2996 | } |
c906108c | 2997 | |
ac3eeb49 MS |
2998 | /* Prepare array of parameter types. */ |
2999 | parm_types = (struct type **) | |
3000 | xmalloc (nparms * (sizeof (struct type *))); | |
c906108c | 3001 | for (jj = 0; jj < nparms; jj++) |
db577aea | 3002 | parm_types[jj] = (method |
ad2f7632 | 3003 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
ac3eeb49 MS |
3004 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
3005 | jj)); | |
c906108c | 3006 | |
ac3eeb49 MS |
3007 | /* Compare parameter types to supplied argument types. Skip |
3008 | THIS for static methods. */ | |
3009 | bv = rank_function (parm_types, nparms, | |
3010 | arg_types + static_offset, | |
4a1970e4 | 3011 | nargs - static_offset); |
c5aa993b | 3012 | |
8d577d32 | 3013 | if (!*oload_champ_bv) |
c5aa993b | 3014 | { |
8d577d32 | 3015 | *oload_champ_bv = bv; |
c5aa993b | 3016 | oload_champ = 0; |
c5aa993b | 3017 | } |
ac3eeb49 MS |
3018 | else /* See whether current candidate is better or worse than |
3019 | previous best. */ | |
8d577d32 | 3020 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 3021 | { |
ac3eeb49 MS |
3022 | case 0: /* Top two contenders are equally good. */ |
3023 | oload_ambiguous = 1; | |
c5aa993b | 3024 | break; |
ac3eeb49 MS |
3025 | case 1: /* Incomparable top contenders. */ |
3026 | oload_ambiguous = 2; | |
c5aa993b | 3027 | break; |
ac3eeb49 MS |
3028 | case 2: /* New champion, record details. */ |
3029 | *oload_champ_bv = bv; | |
c5aa993b JM |
3030 | oload_ambiguous = 0; |
3031 | oload_champ = ix; | |
c5aa993b JM |
3032 | break; |
3033 | case 3: | |
3034 | default: | |
3035 | break; | |
3036 | } | |
b8c9b27d | 3037 | xfree (parm_types); |
6b1ba9a0 ND |
3038 | if (overload_debug) |
3039 | { | |
3040 | if (method) | |
ac3eeb49 | 3041 | fprintf_filtered (gdb_stderr, |
3e43a32a | 3042 | "Overloaded method instance %s, # of parms %d\n", |
ac3eeb49 | 3043 | fns_ptr[ix].physname, nparms); |
6b1ba9a0 | 3044 | else |
ac3eeb49 | 3045 | fprintf_filtered (gdb_stderr, |
3e43a32a MS |
3046 | "Overloaded function instance " |
3047 | "%s # of parms %d\n", | |
ac3eeb49 MS |
3048 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), |
3049 | nparms); | |
4a1970e4 | 3050 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
3051 | fprintf_filtered (gdb_stderr, |
3052 | "...Badness @ %d : %d\n", | |
6403aeea | 3053 | jj, bv->rank[jj].rank); |
3e43a32a MS |
3054 | fprintf_filtered (gdb_stderr, "Overload resolution " |
3055 | "champion is %d, ambiguous? %d\n", | |
ac3eeb49 | 3056 | oload_champ, oload_ambiguous); |
6b1ba9a0 | 3057 | } |
c906108c SS |
3058 | } |
3059 | ||
8d577d32 DC |
3060 | return oload_champ; |
3061 | } | |
6b1ba9a0 | 3062 | |
8d577d32 DC |
3063 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
3064 | a non-static method or a function that isn't a method. */ | |
c906108c | 3065 | |
8d577d32 DC |
3066 | static int |
3067 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
3068 | { | |
4c3376c8 SW |
3069 | if (method && fns_ptr && index >= 0 |
3070 | && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
8d577d32 | 3071 | return 1; |
c906108c | 3072 | else |
8d577d32 DC |
3073 | return 0; |
3074 | } | |
c906108c | 3075 | |
8d577d32 DC |
3076 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
3077 | ||
3078 | static enum oload_classification | |
3079 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
3080 | int nargs, | |
3081 | int static_offset) | |
3082 | { | |
3083 | int ix; | |
3084 | ||
3085 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 3086 | { |
6403aeea SW |
3087 | /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS |
3088 | or worse return INCOMPATIBLE. */ | |
3089 | if (compare_ranks (oload_champ_bv->rank[ix], | |
3090 | INCOMPATIBLE_TYPE_BADNESS) <= 0) | |
ac3eeb49 | 3091 | return INCOMPATIBLE; /* Truly mismatched types. */ |
6403aeea SW |
3092 | /* Otherwise If this conversion is as bad as |
3093 | NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */ | |
3094 | else if (compare_ranks (oload_champ_bv->rank[ix], | |
3095 | NS_POINTER_CONVERSION_BADNESS) <= 0) | |
ac3eeb49 MS |
3096 | return NON_STANDARD; /* Non-standard type conversions |
3097 | needed. */ | |
7f8c9282 | 3098 | } |
02f0d45d | 3099 | |
8d577d32 | 3100 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
3101 | } |
3102 | ||
ac3eeb49 MS |
3103 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
3104 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
d8228535 JK |
3105 | inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet |
3106 | have CHECK_TYPEDEF applied, this function will apply it itself. */ | |
3107 | ||
c906108c | 3108 | int |
d8228535 | 3109 | destructor_name_p (const char *name, struct type *type) |
c906108c | 3110 | { |
c906108c SS |
3111 | if (name[0] == '~') |
3112 | { | |
d8228535 JK |
3113 | const char *dname = type_name_no_tag_or_error (type); |
3114 | const char *cp = strchr (dname, '<'); | |
c906108c SS |
3115 | unsigned int len; |
3116 | ||
3117 | /* Do not compare the template part for template classes. */ | |
3118 | if (cp == NULL) | |
3119 | len = strlen (dname); | |
3120 | else | |
3121 | len = cp - dname; | |
bf896cb0 | 3122 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 3123 | error (_("name of destructor must equal name of class")); |
c906108c SS |
3124 | else |
3125 | return 1; | |
3126 | } | |
3127 | return 0; | |
3128 | } | |
3129 | ||
2b2d9e11 | 3130 | /* Given TYPE, a structure/union, |
ac3eeb49 MS |
3131 | return 1 if the component named NAME from the ultimate target |
3132 | structure/union is defined, otherwise, return 0. */ | |
c906108c | 3133 | |
2b2d9e11 VP |
3134 | int |
3135 | check_field (struct type *type, const char *name) | |
c906108c | 3136 | { |
52f0bd74 | 3137 | int i; |
c906108c | 3138 | |
edf3d5f3 TT |
3139 | /* The type may be a stub. */ |
3140 | CHECK_TYPEDEF (type); | |
3141 | ||
c906108c SS |
3142 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) |
3143 | { | |
3144 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
a109c7c1 | 3145 | |
db577aea | 3146 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
3147 | return 1; |
3148 | } | |
3149 | ||
ac3eeb49 MS |
3150 | /* C++: If it was not found as a data field, then try to return it |
3151 | as a pointer to a method. */ | |
c906108c | 3152 | |
c906108c SS |
3153 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) |
3154 | { | |
db577aea | 3155 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
3156 | return 1; |
3157 | } | |
3158 | ||
3159 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2b2d9e11 | 3160 | if (check_field (TYPE_BASECLASS (type, i), name)) |
c906108c | 3161 | return 1; |
c5aa993b | 3162 | |
c906108c SS |
3163 | return 0; |
3164 | } | |
3165 | ||
79c2c32d | 3166 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
3167 | return the appropriate member (or the address of the member, if |
3168 | WANT_ADDRESS). This function is used to resolve user expressions | |
3169 | of the form "DOMAIN::NAME". For more details on what happens, see | |
3170 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
3171 | |
3172 | struct value * | |
072bba3b KS |
3173 | value_aggregate_elt (struct type *curtype, char *name, |
3174 | struct type *expect_type, int want_address, | |
79c2c32d DC |
3175 | enum noside noside) |
3176 | { | |
3177 | switch (TYPE_CODE (curtype)) | |
3178 | { | |
3179 | case TYPE_CODE_STRUCT: | |
3180 | case TYPE_CODE_UNION: | |
ac3eeb49 | 3181 | return value_struct_elt_for_reference (curtype, 0, curtype, |
072bba3b | 3182 | name, expect_type, |
0d5de010 | 3183 | want_address, noside); |
79c2c32d | 3184 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
3185 | return value_namespace_elt (curtype, name, |
3186 | want_address, noside); | |
79c2c32d DC |
3187 | default: |
3188 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 3189 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
3190 | } |
3191 | } | |
3192 | ||
072bba3b | 3193 | /* Compares the two method/function types T1 and T2 for "equality" |
b021a221 | 3194 | with respect to the methods' parameters. If the types of the |
072bba3b KS |
3195 | two parameter lists are the same, returns 1; 0 otherwise. This |
3196 | comparison may ignore any artificial parameters in T1 if | |
3197 | SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip | |
3198 | the first artificial parameter in T1, assumed to be a 'this' pointer. | |
3199 | ||
3200 | The type T2 is expected to have come from make_params (in eval.c). */ | |
3201 | ||
3202 | static int | |
3203 | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | |
3204 | { | |
3205 | int start = 0; | |
3206 | ||
80b23b6a | 3207 | if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0)) |
072bba3b KS |
3208 | ++start; |
3209 | ||
3210 | /* If skipping artificial fields, find the first real field | |
581e13c1 | 3211 | in T1. */ |
072bba3b KS |
3212 | if (skip_artificial) |
3213 | { | |
3214 | while (start < TYPE_NFIELDS (t1) | |
3215 | && TYPE_FIELD_ARTIFICIAL (t1, start)) | |
3216 | ++start; | |
3217 | } | |
3218 | ||
581e13c1 | 3219 | /* Now compare parameters. */ |
072bba3b KS |
3220 | |
3221 | /* Special case: a method taking void. T1 will contain no | |
3222 | non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ | |
3223 | if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 | |
3224 | && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) | |
3225 | return 1; | |
3226 | ||
3227 | if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) | |
3228 | { | |
3229 | int i; | |
a109c7c1 | 3230 | |
072bba3b KS |
3231 | for (i = 0; i < TYPE_NFIELDS (t2); ++i) |
3232 | { | |
6403aeea SW |
3233 | if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), |
3234 | TYPE_FIELD_TYPE (t2, i)), | |
3235 | EXACT_MATCH_BADNESS) != 0) | |
072bba3b KS |
3236 | return 0; |
3237 | } | |
3238 | ||
3239 | return 1; | |
3240 | } | |
3241 | ||
3242 | return 0; | |
3243 | } | |
3244 | ||
c906108c | 3245 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
3246 | return the address of this member as a "pointer to member" type. |
3247 | If INTYPE is non-null, then it will be the type of the member we | |
3248 | are looking for. This will help us resolve "pointers to member | |
3249 | functions". This function is used to resolve user expressions of | |
3250 | the form "DOMAIN::NAME". */ | |
c906108c | 3251 | |
63d06c5c | 3252 | static struct value * |
fba45db2 KB |
3253 | value_struct_elt_for_reference (struct type *domain, int offset, |
3254 | struct type *curtype, char *name, | |
ac3eeb49 MS |
3255 | struct type *intype, |
3256 | int want_address, | |
63d06c5c | 3257 | enum noside noside) |
c906108c | 3258 | { |
52f0bd74 AC |
3259 | struct type *t = curtype; |
3260 | int i; | |
0d5de010 | 3261 | struct value *v, *result; |
c906108c | 3262 | |
c5aa993b | 3263 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 3264 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
3265 | error (_("Internal error: non-aggregate type " |
3266 | "to value_struct_elt_for_reference")); | |
c906108c SS |
3267 | |
3268 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3269 | { | |
3270 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3271 | |
6314a349 | 3272 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3273 | { |
d6a843b5 | 3274 | if (field_is_static (&TYPE_FIELD (t, i))) |
c906108c SS |
3275 | { |
3276 | v = value_static_field (t, i); | |
3277 | if (v == NULL) | |
8a3fe4f8 | 3278 | error (_("static field %s has been optimized out"), |
c906108c | 3279 | name); |
0d5de010 DJ |
3280 | if (want_address) |
3281 | v = value_addr (v); | |
c906108c SS |
3282 | return v; |
3283 | } | |
3284 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 3285 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 3286 | |
0d5de010 DJ |
3287 | if (want_address) |
3288 | return value_from_longest | |
3289 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
3290 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3291 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3292 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
3293 | else | |
3294 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
3295 | } |
3296 | } | |
3297 | ||
ac3eeb49 MS |
3298 | /* C++: If it was not found as a data field, then try to return it |
3299 | as a pointer to a method. */ | |
c906108c | 3300 | |
c906108c SS |
3301 | /* Perform all necessary dereferencing. */ |
3302 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3303 | intype = TYPE_TARGET_TYPE (intype); | |
3304 | ||
3305 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3306 | { | |
3307 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3308 | char dem_opname[64]; | |
3309 | ||
ac3eeb49 MS |
3310 | if (strncmp (t_field_name, "__", 2) == 0 |
3311 | || strncmp (t_field_name, "op", 2) == 0 | |
3312 | || strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3313 | { |
ac3eeb49 MS |
3314 | if (cplus_demangle_opname (t_field_name, |
3315 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 3316 | t_field_name = dem_opname; |
ac3eeb49 MS |
3317 | else if (cplus_demangle_opname (t_field_name, |
3318 | dem_opname, 0)) | |
c906108c | 3319 | t_field_name = dem_opname; |
c906108c | 3320 | } |
6314a349 | 3321 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3322 | { |
072bba3b KS |
3323 | int j; |
3324 | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
c906108c | 3325 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); |
c5aa993b | 3326 | |
de17c821 DJ |
3327 | check_stub_method_group (t, i); |
3328 | ||
c906108c SS |
3329 | if (intype) |
3330 | { | |
072bba3b KS |
3331 | for (j = 0; j < len; ++j) |
3332 | { | |
3333 | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) | |
3e43a32a MS |
3334 | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), |
3335 | intype, 1)) | |
072bba3b KS |
3336 | break; |
3337 | } | |
3338 | ||
3339 | if (j == len) | |
3e43a32a MS |
3340 | error (_("no member function matches " |
3341 | "that type instantiation")); | |
7f79b1c5 | 3342 | } |
c906108c | 3343 | else |
072bba3b KS |
3344 | { |
3345 | int ii; | |
7f79b1c5 DJ |
3346 | |
3347 | j = -1; | |
53832f31 | 3348 | for (ii = 0; ii < len; ++ii) |
072bba3b | 3349 | { |
7f79b1c5 DJ |
3350 | /* Skip artificial methods. This is necessary if, |
3351 | for example, the user wants to "print | |
3352 | subclass::subclass" with only one user-defined | |
53832f31 TT |
3353 | constructor. There is no ambiguity in this case. |
3354 | We are careful here to allow artificial methods | |
3355 | if they are the unique result. */ | |
072bba3b | 3356 | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) |
53832f31 TT |
3357 | { |
3358 | if (j == -1) | |
3359 | j = ii; | |
3360 | continue; | |
3361 | } | |
072bba3b | 3362 | |
7f79b1c5 DJ |
3363 | /* Desired method is ambiguous if more than one |
3364 | method is defined. */ | |
53832f31 | 3365 | if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j)) |
3e43a32a MS |
3366 | error (_("non-unique member `%s' requires " |
3367 | "type instantiation"), name); | |
072bba3b | 3368 | |
7f79b1c5 DJ |
3369 | j = ii; |
3370 | } | |
53832f31 TT |
3371 | |
3372 | if (j == -1) | |
3373 | error (_("no matching member function")); | |
072bba3b | 3374 | } |
c5aa993b | 3375 | |
0d5de010 DJ |
3376 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
3377 | { | |
ac3eeb49 MS |
3378 | struct symbol *s = |
3379 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3380 | 0, VAR_DOMAIN, 0); |
a109c7c1 | 3381 | |
0d5de010 DJ |
3382 | if (s == NULL) |
3383 | return NULL; | |
3384 | ||
3385 | if (want_address) | |
3386 | return value_addr (read_var_value (s, 0)); | |
3387 | else | |
3388 | return read_var_value (s, 0); | |
3389 | } | |
3390 | ||
c906108c SS |
3391 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3392 | { | |
0d5de010 DJ |
3393 | if (want_address) |
3394 | { | |
3395 | result = allocate_value | |
3396 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
ad4820ab UW |
3397 | cplus_make_method_ptr (value_type (result), |
3398 | value_contents_writeable (result), | |
0d5de010 DJ |
3399 | TYPE_FN_FIELD_VOFFSET (f, j), 1); |
3400 | } | |
3401 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3402 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
3403 | else | |
3404 | error (_("Cannot reference virtual member function \"%s\""), | |
3405 | name); | |
c906108c SS |
3406 | } |
3407 | else | |
3408 | { | |
ac3eeb49 MS |
3409 | struct symbol *s = |
3410 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3411 | 0, VAR_DOMAIN, 0); |
a109c7c1 | 3412 | |
c906108c | 3413 | if (s == NULL) |
0d5de010 DJ |
3414 | return NULL; |
3415 | ||
3416 | v = read_var_value (s, 0); | |
3417 | if (!want_address) | |
3418 | result = v; | |
c906108c SS |
3419 | else |
3420 | { | |
0d5de010 | 3421 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
ad4820ab UW |
3422 | cplus_make_method_ptr (value_type (result), |
3423 | value_contents_writeable (result), | |
42ae5230 | 3424 | value_address (v), 0); |
c906108c | 3425 | } |
c906108c | 3426 | } |
0d5de010 | 3427 | return result; |
c906108c SS |
3428 | } |
3429 | } | |
3430 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3431 | { | |
f23631e4 | 3432 | struct value *v; |
c906108c SS |
3433 | int base_offset; |
3434 | ||
3435 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3436 | base_offset = 0; | |
3437 | else | |
3438 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3439 | v = value_struct_elt_for_reference (domain, | |
3440 | offset + base_offset, | |
3441 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
3442 | name, intype, |
3443 | want_address, noside); | |
c906108c SS |
3444 | if (v) |
3445 | return v; | |
3446 | } | |
63d06c5c DC |
3447 | |
3448 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
3449 | it up that way; this (frequently) works for types nested inside | |
3450 | classes. */ | |
3451 | ||
ac3eeb49 MS |
3452 | return value_maybe_namespace_elt (curtype, name, |
3453 | want_address, noside); | |
c906108c SS |
3454 | } |
3455 | ||
79c2c32d DC |
3456 | /* C++: Return the member NAME of the namespace given by the type |
3457 | CURTYPE. */ | |
3458 | ||
3459 | static struct value * | |
3460 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 3461 | char *name, int want_address, |
79c2c32d | 3462 | enum noside noside) |
63d06c5c DC |
3463 | { |
3464 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
3465 | want_address, |
3466 | noside); | |
63d06c5c DC |
3467 | |
3468 | if (retval == NULL) | |
ac3eeb49 MS |
3469 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
3470 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
3471 | |
3472 | return retval; | |
3473 | } | |
3474 | ||
3475 | /* A helper function used by value_namespace_elt and | |
3476 | value_struct_elt_for_reference. It looks up NAME inside the | |
3477 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
3478 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
3479 | to, say, some base class of CURTYPE). */ | |
3480 | ||
3481 | static struct value * | |
3482 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 3483 | char *name, int want_address, |
63d06c5c | 3484 | enum noside noside) |
79c2c32d DC |
3485 | { |
3486 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
3487 | struct symbol *sym; | |
0d5de010 | 3488 | struct value *result; |
79c2c32d | 3489 | |
13387711 | 3490 | sym = cp_lookup_symbol_namespace (namespace_name, name, |
41f62f39 JK |
3491 | get_selected_block (0), VAR_DOMAIN); |
3492 | ||
3493 | if (sym == NULL) | |
3494 | { | |
3495 | char *concatenated_name = alloca (strlen (namespace_name) + 2 | |
3496 | + strlen (name) + 1); | |
3497 | ||
3498 | sprintf (concatenated_name, "%s::%s", namespace_name, name); | |
3499 | sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN); | |
3500 | } | |
79c2c32d DC |
3501 | |
3502 | if (sym == NULL) | |
63d06c5c | 3503 | return NULL; |
79c2c32d DC |
3504 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
3505 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 3506 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 3507 | else |
0d5de010 DJ |
3508 | result = value_of_variable (sym, get_selected_block (0)); |
3509 | ||
3510 | if (result && want_address) | |
3511 | result = value_addr (result); | |
3512 | ||
3513 | return result; | |
79c2c32d DC |
3514 | } |
3515 | ||
ac3eeb49 MS |
3516 | /* Given a pointer value V, find the real (RTTI) type of the object it |
3517 | points to. | |
3518 | ||
c906108c | 3519 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 3520 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
3521 | |
3522 | struct type * | |
ac3eeb49 MS |
3523 | value_rtti_target_type (struct value *v, int *full, |
3524 | int *top, int *using_enc) | |
c906108c | 3525 | { |
f23631e4 | 3526 | struct value *target; |
c906108c SS |
3527 | |
3528 | target = value_ind (v); | |
3529 | ||
3530 | return value_rtti_type (target, full, top, using_enc); | |
3531 | } | |
3532 | ||
3533 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3534 | if that is different from the enclosing type, create a new value | |
3535 | using the real run-time type as the enclosing type (and of the same | |
3536 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
3537 | be the correct offset to the enclosed object. RTYPE is the type, |
3538 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
3539 | by value_rtti_type(). If these are available, they can be supplied | |
3540 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
3541 | NULL if they're not available. */ | |
c906108c | 3542 | |
f23631e4 | 3543 | struct value * |
ac3eeb49 MS |
3544 | value_full_object (struct value *argp, |
3545 | struct type *rtype, | |
3546 | int xfull, int xtop, | |
fba45db2 | 3547 | int xusing_enc) |
c906108c | 3548 | { |
c5aa993b | 3549 | struct type *real_type; |
c906108c SS |
3550 | int full = 0; |
3551 | int top = -1; | |
3552 | int using_enc = 0; | |
f23631e4 | 3553 | struct value *new_val; |
c906108c SS |
3554 | |
3555 | if (rtype) | |
3556 | { | |
3557 | real_type = rtype; | |
3558 | full = xfull; | |
3559 | top = xtop; | |
3560 | using_enc = xusing_enc; | |
3561 | } | |
3562 | else | |
3563 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3564 | ||
ac3eeb49 | 3565 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 3566 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
3567 | return argp; |
3568 | ||
3569 | /* If we have the full object, but for some reason the enclosing | |
ac3eeb49 MS |
3570 | type is wrong, set it. */ |
3571 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
3572 | if (full) |
3573 | { | |
4dfea560 DE |
3574 | argp = value_copy (argp); |
3575 | set_value_enclosing_type (argp, real_type); | |
c906108c SS |
3576 | return argp; |
3577 | } | |
3578 | ||
581e13c1 | 3579 | /* Check if object is in memory. */ |
c906108c SS |
3580 | if (VALUE_LVAL (argp) != lval_memory) |
3581 | { | |
3e43a32a MS |
3582 | warning (_("Couldn't retrieve complete object of RTTI " |
3583 | "type %s; object may be in register(s)."), | |
ac3eeb49 | 3584 | TYPE_NAME (real_type)); |
c5aa993b | 3585 | |
c906108c SS |
3586 | return argp; |
3587 | } | |
c5aa993b | 3588 | |
ac3eeb49 MS |
3589 | /* All other cases -- retrieve the complete object. */ |
3590 | /* Go back by the computed top_offset from the beginning of the | |
3591 | object, adjusting for the embedded offset of argp if that's what | |
3592 | value_rtti_type used for its computation. */ | |
42ae5230 | 3593 | new_val = value_at_lazy (real_type, value_address (argp) - top + |
13c3b5f5 | 3594 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 3595 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
3596 | set_value_embedded_offset (new_val, (using_enc |
3597 | ? top + value_embedded_offset (argp) | |
3598 | : top)); | |
c906108c SS |
3599 | return new_val; |
3600 | } | |
3601 | ||
389e51db | 3602 | |
85bc8cb7 JK |
3603 | /* Return the value of the local variable, if one exists. Throw error |
3604 | otherwise, such as if the request is made in an inappropriate context. */ | |
c906108c | 3605 | |
f23631e4 | 3606 | struct value * |
85bc8cb7 | 3607 | value_of_this (const struct language_defn *lang) |
c906108c | 3608 | { |
66a17cb6 | 3609 | struct symbol *sym; |
c906108c | 3610 | struct block *b; |
206415a3 | 3611 | struct frame_info *frame; |
c906108c | 3612 | |
66a17cb6 | 3613 | if (!lang->la_name_of_this) |
85bc8cb7 | 3614 | error (_("no `this' in current language")); |
aee28ec6 | 3615 | |
85bc8cb7 | 3616 | frame = get_selected_frame (_("no frame selected")); |
c906108c | 3617 | |
66a17cb6 | 3618 | b = get_frame_block (frame, NULL); |
c906108c | 3619 | |
66a17cb6 | 3620 | sym = lookup_language_this (lang, b); |
c906108c | 3621 | if (sym == NULL) |
85bc8cb7 JK |
3622 | error (_("current stack frame does not contain a variable named `%s'"), |
3623 | lang->la_name_of_this); | |
3624 | ||
3625 | return read_var_value (sym, frame); | |
3626 | } | |
3627 | ||
3628 | /* Return the value of the local variable, if one exists. Return NULL | |
3629 | otherwise. Never throw error. */ | |
3630 | ||
3631 | struct value * | |
3632 | value_of_this_silent (const struct language_defn *lang) | |
3633 | { | |
3634 | struct value *ret = NULL; | |
3635 | volatile struct gdb_exception except; | |
3636 | ||
3637 | TRY_CATCH (except, RETURN_MASK_ERROR) | |
c906108c | 3638 | { |
85bc8cb7 | 3639 | ret = value_of_this (lang); |
c906108c SS |
3640 | } |
3641 | ||
d069f99d AF |
3642 | return ret; |
3643 | } | |
3644 | ||
ac3eeb49 MS |
3645 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
3646 | elements long, starting at LOWBOUND. The result has the same lower | |
3647 | bound as the original ARRAY. */ | |
c906108c | 3648 | |
f23631e4 AC |
3649 | struct value * |
3650 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3651 | { |
3652 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3653 | LONGEST lowerbound, upperbound; |
f23631e4 | 3654 | struct value *slice; |
c906108c | 3655 | struct type *array_type; |
ac3eeb49 | 3656 | |
df407dfe | 3657 | array_type = check_typedef (value_type (array)); |
c906108c SS |
3658 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
3659 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3660 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 3661 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 3662 | |
c906108c SS |
3663 | range_type = TYPE_INDEX_TYPE (array_type); |
3664 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 3665 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 3666 | |
c906108c | 3667 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 3668 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 3669 | error (_("slice out of range")); |
ac3eeb49 | 3670 | |
c906108c SS |
3671 | /* FIXME-type-allocation: need a way to free this type when we are |
3672 | done with it. */ | |
c5aa993b | 3673 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c | 3674 | TYPE_TARGET_TYPE (range_type), |
ac3eeb49 MS |
3675 | lowbound, |
3676 | lowbound + length - 1); | |
c906108c SS |
3677 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) |
3678 | { | |
3679 | int i; | |
ac3eeb49 MS |
3680 | |
3681 | slice_type = create_set_type ((struct type *) NULL, | |
3682 | slice_range_type); | |
c906108c SS |
3683 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3684 | slice = value_zero (slice_type, not_lval); | |
ac3eeb49 | 3685 | |
c906108c SS |
3686 | for (i = 0; i < length; i++) |
3687 | { | |
3688 | int element = value_bit_index (array_type, | |
0fd88904 | 3689 | value_contents (array), |
c906108c | 3690 | lowbound + i); |
a109c7c1 | 3691 | |
c906108c | 3692 | if (element < 0) |
8a3fe4f8 | 3693 | error (_("internal error accessing bitstring")); |
c906108c SS |
3694 | else if (element > 0) |
3695 | { | |
3696 | int j = i % TARGET_CHAR_BIT; | |
a109c7c1 | 3697 | |
50810684 | 3698 | if (gdbarch_bits_big_endian (get_type_arch (array_type))) |
c906108c | 3699 | j = TARGET_CHAR_BIT - 1 - j; |
990a07ab | 3700 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
3701 | } |
3702 | } | |
ac3eeb49 MS |
3703 | /* We should set the address, bitssize, and bitspos, so the |
3704 | slice can be used on the LHS, but that may require extensions | |
3705 | to value_assign. For now, just leave as a non_lval. | |
3706 | FIXME. */ | |
c906108c SS |
3707 | } |
3708 | else | |
3709 | { | |
3710 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
ac3eeb49 MS |
3711 | LONGEST offset = |
3712 | (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
3713 | ||
3714 | slice_type = create_array_type ((struct type *) NULL, | |
3715 | element_type, | |
c906108c SS |
3716 | slice_range_type); |
3717 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 3718 | |
9214ee5f | 3719 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
3e3d7139 | 3720 | slice = allocate_value_lazy (slice_type); |
c906108c | 3721 | else |
3e3d7139 JG |
3722 | { |
3723 | slice = allocate_value (slice_type); | |
39d37385 PA |
3724 | value_contents_copy (slice, 0, array, offset, |
3725 | TYPE_LENGTH (slice_type)); | |
3e3d7139 | 3726 | } |
ac3eeb49 | 3727 | |
74bcbdf3 | 3728 | set_value_component_location (slice, array); |
65d3800a | 3729 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 3730 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
3731 | } |
3732 | return slice; | |
3733 | } | |
3734 | ||
ac3eeb49 MS |
3735 | /* Create a value for a FORTRAN complex number. Currently most of the |
3736 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
3737 | composed of 2 doubles. This really should be a smarter routine |
3738 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 3739 | doubles. FIXME: fmb */ |
c906108c | 3740 | |
f23631e4 | 3741 | struct value * |
ac3eeb49 MS |
3742 | value_literal_complex (struct value *arg1, |
3743 | struct value *arg2, | |
3744 | struct type *type) | |
c906108c | 3745 | { |
f23631e4 | 3746 | struct value *val; |
c906108c SS |
3747 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3748 | ||
3749 | val = allocate_value (type); | |
3750 | arg1 = value_cast (real_type, arg1); | |
3751 | arg2 = value_cast (real_type, arg2); | |
3752 | ||
990a07ab | 3753 | memcpy (value_contents_raw (val), |
0fd88904 | 3754 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 3755 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 3756 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
3757 | return val; |
3758 | } | |
3759 | ||
ac3eeb49 | 3760 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 3761 | |
f23631e4 AC |
3762 | static struct value * |
3763 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3764 | { |
3765 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3766 | |
df407dfe | 3767 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3768 | { |
df407dfe | 3769 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3770 | struct value *re_val = allocate_value (val_real_type); |
3771 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3772 | |
990a07ab | 3773 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3774 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3775 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3776 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3777 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3778 | |
3779 | return value_literal_complex (re_val, im_val, type); | |
3780 | } | |
df407dfe AC |
3781 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3782 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3783 | return value_literal_complex (val, |
3784 | value_zero (real_type, not_lval), | |
3785 | type); | |
c906108c | 3786 | else |
8a3fe4f8 | 3787 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3788 | } |
3789 | ||
3790 | void | |
fba45db2 | 3791 | _initialize_valops (void) |
c906108c | 3792 | { |
5bf193a2 AC |
3793 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3794 | &overload_resolution, _("\ | |
3795 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3796 | Show overload resolution in evaluating C++ functions."), |
3797 | NULL, NULL, | |
920d2a44 | 3798 | show_overload_resolution, |
5bf193a2 | 3799 | &setlist, &showlist); |
c906108c | 3800 | overload_resolution = 1; |
c906108c | 3801 | } |