Stop GCC thinking a shift will overflow.
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c
SS
1/* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
30#include "demangle.h"
31#include "language.h"
32#include "gdbcmd.h"
33
34#include <errno.h>
35#include "gdb_string.h"
36
c906108c
SS
37/* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39extern int hp_som_som_object_present;
40
41
42/* Local functions. */
43
c5aa993b 44static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
c906108c 45
c906108c
SS
46static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
c906108c
SS
48
49
c906108c 50static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
c906108c
SS
51
52static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
c906108c
SS
55static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59static int check_field_in PARAMS ((struct type *, const char *));
60
61static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
c5aa993b 65static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
7a292a7a 66
c906108c
SS
67void _initialize_valops PARAMS ((void));
68
69#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71/* Flag for whether we want to abandon failed expression evals by default. */
72
73#if 0
74static int auto_abandon = 0;
75#endif
76
77int overload_resolution = 0;
242bfc55
FN
78
79/* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84int unwind_on_signal_p = 0;
c5aa993b 85\f
c906108c
SS
86
87
c906108c
SS
88/* Find the address of function name NAME in the inferior. */
89
90value_ptr
91find_function_in_inferior (name)
92 char *name;
93{
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
c5aa993b 107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 LONGEST maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_longest (type, maddr);
117 }
118 else
119 {
c5aa993b 120 if (!target_has_execution)
c906108c 121 error ("evaluation of this expression requires the target program to be active");
c5aa993b 122 else
c906108c
SS
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126}
127
128/* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131value_ptr
132value_allocate_space_in_inferior (len)
133 int len;
134{
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
c5aa993b
JM
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
c906108c
SS
146 }
147 return val;
148}
149
150static CORE_ADDR
151allocate_space_in_inferior (len)
152 int len;
153{
154 return value_as_long (value_allocate_space_in_inferior (len));
155}
156
157/* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160/* In C++, casts may change pointer or object representations. */
161
162value_ptr
163value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166{
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
c5aa993b 173
c906108c
SS
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
c5aa993b 179 COERCE_REF (arg2);
c906108c
SS
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
c5aa993b 190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
c5aa993b 199 warning ("array element type size does not divide object size in cast");
c906108c
SS
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
c5aa993b 238 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
7b83ea04
AC
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
c906108c
SS
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
c5aa993b
JM
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
c906108c
SS
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
7b83ea04
AC
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
c906108c
SS
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
7b83ea04
AC
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 321 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
c5aa993b 326 + VALUE_OFFSET (v);
c906108c
SS
327 v2 = value_addr (v2);
328 VALUE_TYPE (v2) = type;
329 return v2;
330 }
331 }
332 }
333 /* No superclass found, just fall through to change ptr type. */
334 }
335 VALUE_TYPE (arg2) = type;
c5aa993b
JM
336 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
337 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
338 return arg2;
339 }
340 else if (chill_varying_type (type))
341 {
342 struct type *range1, *range2, *eltype1, *eltype2;
343 value_ptr val;
344 int count1, count2;
345 LONGEST low_bound, high_bound;
346 char *valaddr, *valaddr_data;
347 /* For lint warning about eltype2 possibly uninitialized: */
348 eltype2 = NULL;
349 if (code2 == TYPE_CODE_BITSTRING)
350 error ("not implemented: converting bitstring to varying type");
351 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
352 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
353 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
354 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
c5aa993b 355 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
c906108c
SS
356 error ("Invalid conversion to varying type");
357 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
358 range2 = TYPE_FIELD_TYPE (type2, 0);
359 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
360 count1 = -1;
361 else
362 count1 = high_bound - low_bound + 1;
363 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
c5aa993b 364 count1 = -1, count2 = 0; /* To force error before */
c906108c
SS
365 else
366 count2 = high_bound - low_bound + 1;
367 if (count2 > count1)
368 error ("target varying type is too small");
369 val = allocate_value (type);
370 valaddr = VALUE_CONTENTS_RAW (val);
371 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
372 /* Set val's __var_length field to count2. */
373 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
374 count2);
375 /* Set the __var_data field to count2 elements copied from arg2. */
376 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
377 count2 * TYPE_LENGTH (eltype2));
378 /* Zero the rest of the __var_data field of val. */
379 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
380 (count1 - count2) * TYPE_LENGTH (eltype2));
381 return val;
382 }
383 else if (VALUE_LVAL (arg2) == lval_memory)
384 {
385 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
386 VALUE_BFD_SECTION (arg2));
387 }
388 else if (code1 == TYPE_CODE_VOID)
389 {
390 return value_zero (builtin_type_void, not_lval);
391 }
392 else
393 {
394 error ("Invalid cast.");
395 return 0;
396 }
397}
398
399/* Create a value of type TYPE that is zero, and return it. */
400
401value_ptr
402value_zero (type, lv)
403 struct type *type;
404 enum lval_type lv;
405{
406 register value_ptr val = allocate_value (type);
407
408 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
409 VALUE_LVAL (val) = lv;
410
411 return val;
412}
413
7b83ea04 414/* Return a value with type TYPE located at ADDR.
c906108c
SS
415
416 Call value_at only if the data needs to be fetched immediately;
417 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
418 value_at_lazy instead. value_at_lazy simply records the address of
7b83ea04
AC
419 the data and sets the lazy-evaluation-required flag. The lazy flag
420 is tested in the VALUE_CONTENTS macro, which is used if and when
421 the contents are actually required.
c906108c
SS
422
423 Note: value_at does *NOT* handle embedded offsets; perform such
424 adjustments before or after calling it. */
425
426value_ptr
427value_at (type, addr, sect)
428 struct type *type;
429 CORE_ADDR addr;
430 asection *sect;
431{
432 register value_ptr val;
433
434 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
435 error ("Attempt to dereference a generic pointer.");
436
437 val = allocate_value (type);
438
7a292a7a
SS
439 if (GDB_TARGET_IS_D10V
440 && TYPE_CODE (type) == TYPE_CODE_PTR
c906108c
SS
441 && TYPE_TARGET_TYPE (type)
442 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
443 {
444 /* pointer to function */
445 unsigned long num;
446 unsigned short snum;
447 snum = read_memory_unsigned_integer (addr, 2);
7a292a7a
SS
448 num = D10V_MAKE_IADDR (snum);
449 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c 450 }
7a292a7a 451 else if (GDB_TARGET_IS_D10V
c5aa993b 452 && TYPE_CODE (type) == TYPE_CODE_PTR)
c906108c
SS
453 {
454 /* pointer to data */
455 unsigned long num;
456 unsigned short snum;
457 snum = read_memory_unsigned_integer (addr, 2);
7a292a7a 458 num = D10V_MAKE_DADDR (snum);
c5aa993b 459 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c
SS
460 }
461 else
c906108c
SS
462 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
463
464 VALUE_LVAL (val) = lval_memory;
465 VALUE_ADDRESS (val) = addr;
466 VALUE_BFD_SECTION (val) = sect;
467
468 return val;
469}
470
471/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
472
473value_ptr
474value_at_lazy (type, addr, sect)
475 struct type *type;
476 CORE_ADDR addr;
477 asection *sect;
478{
479 register value_ptr val;
480
481 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
482 error ("Attempt to dereference a generic pointer.");
483
484 val = allocate_value (type);
485
486 VALUE_LVAL (val) = lval_memory;
487 VALUE_ADDRESS (val) = addr;
488 VALUE_LAZY (val) = 1;
489 VALUE_BFD_SECTION (val) = sect;
490
491 return val;
492}
493
7b83ea04
AC
494/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
495 if the current data for a variable needs to be loaded into
496 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
497 clears the lazy flag to indicate that the data in the buffer is valid.
498
499 If the value is zero-length, we avoid calling read_memory, which would
500 abort. We mark the value as fetched anyway -- all 0 bytes of it.
501
502 This function returns a value because it is used in the VALUE_CONTENTS
503 macro as part of an expression, where a void would not work. The
504 value is ignored. */
505
506int
507value_fetch_lazy (val)
508 register value_ptr val;
509{
510 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
511 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
512
c5aa993b 513 struct type *type = VALUE_TYPE (val);
7a292a7a
SS
514 if (GDB_TARGET_IS_D10V
515 && TYPE_CODE (type) == TYPE_CODE_PTR
c906108c
SS
516 && TYPE_TARGET_TYPE (type)
517 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
518 {
519 /* pointer to function */
520 unsigned long num;
521 unsigned short snum;
522 snum = read_memory_unsigned_integer (addr, 2);
c5aa993b
JM
523 num = D10V_MAKE_IADDR (snum);
524 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c 525 }
7a292a7a 526 else if (GDB_TARGET_IS_D10V
c5aa993b 527 && TYPE_CODE (type) == TYPE_CODE_PTR)
c906108c
SS
528 {
529 /* pointer to data */
530 unsigned long num;
531 unsigned short snum;
532 snum = read_memory_unsigned_integer (addr, 2);
c5aa993b
JM
533 num = D10V_MAKE_DADDR (snum);
534 store_address (VALUE_CONTENTS_RAW (val), 4, num);
c906108c 535 }
7a292a7a 536 else if (length)
c906108c
SS
537 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
538 VALUE_BFD_SECTION (val));
539 VALUE_LAZY (val) = 0;
540 return 0;
541}
542
543
544/* Store the contents of FROMVAL into the location of TOVAL.
545 Return a new value with the location of TOVAL and contents of FROMVAL. */
546
547value_ptr
548value_assign (toval, fromval)
549 register value_ptr toval, fromval;
550{
551 register struct type *type;
552 register value_ptr val;
553 char raw_buffer[MAX_REGISTER_RAW_SIZE];
554 int use_buffer = 0;
555
556 if (!toval->modifiable)
557 error ("Left operand of assignment is not a modifiable lvalue.");
558
559 COERCE_REF (toval);
560
561 type = VALUE_TYPE (toval);
562 if (VALUE_LVAL (toval) != lval_internalvar)
563 fromval = value_cast (type, fromval);
564 else
565 COERCE_ARRAY (fromval);
566 CHECK_TYPEDEF (type);
567
568 /* If TOVAL is a special machine register requiring conversion
569 of program values to a special raw format,
570 convert FROMVAL's contents now, with result in `raw_buffer',
571 and set USE_BUFFER to the number of bytes to write. */
572
ac9a91a7 573 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
574 {
575 int regno = VALUE_REGNO (toval);
576 if (REGISTER_CONVERTIBLE (regno))
577 {
578 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
579 REGISTER_CONVERT_TO_RAW (fromtype, regno,
580 VALUE_CONTENTS (fromval), raw_buffer);
581 use_buffer = REGISTER_RAW_SIZE (regno);
582 }
583 }
c906108c
SS
584
585 switch (VALUE_LVAL (toval))
586 {
587 case lval_internalvar:
588 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
589 val = value_copy (VALUE_INTERNALVAR (toval)->value);
590 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
591 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
592 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
593 return val;
594
595 case lval_internalvar_component:
596 set_internalvar_component (VALUE_INTERNALVAR (toval),
597 VALUE_OFFSET (toval),
598 VALUE_BITPOS (toval),
599 VALUE_BITSIZE (toval),
600 fromval);
601 break;
602
603 case lval_memory:
604 {
605 char *dest_buffer;
c5aa993b
JM
606 CORE_ADDR changed_addr;
607 int changed_len;
c906108c 608
c5aa993b
JM
609 if (VALUE_BITSIZE (toval))
610 {
c906108c
SS
611 char buffer[sizeof (LONGEST)];
612 /* We assume that the argument to read_memory is in units of
613 host chars. FIXME: Is that correct? */
614 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
615 + VALUE_BITSIZE (toval)
616 + HOST_CHAR_BIT - 1)
617 / HOST_CHAR_BIT;
c906108c
SS
618
619 if (changed_len > (int) sizeof (LONGEST))
620 error ("Can't handle bitfields which don't fit in a %d bit word.",
621 sizeof (LONGEST) * HOST_CHAR_BIT);
622
623 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
624 buffer, changed_len);
625 modify_field (buffer, value_as_long (fromval),
626 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 dest_buffer = buffer;
629 }
630 else if (use_buffer)
631 {
632 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
633 changed_len = use_buffer;
634 dest_buffer = raw_buffer;
635 }
636 else
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = TYPE_LENGTH (type);
640 dest_buffer = VALUE_CONTENTS (fromval);
641 }
642
643 write_memory (changed_addr, dest_buffer, changed_len);
644 if (memory_changed_hook)
645 memory_changed_hook (changed_addr, changed_len);
646 }
647 break;
648
649 case lval_register:
650 if (VALUE_BITSIZE (toval))
651 {
652 char buffer[sizeof (LONGEST)];
c5aa993b 653 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
c906108c
SS
654
655 if (len > (int) sizeof (LONGEST))
656 error ("Can't handle bitfields in registers larger than %d bits.",
657 sizeof (LONGEST) * HOST_CHAR_BIT);
658
659 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
660 > len * HOST_CHAR_BIT)
661 /* Getting this right would involve being very careful about
662 byte order. */
c2d11a7d
JM
663 error ("Can't assign to bitfields that cross register "
664 "boundaries.");
c906108c 665
c5aa993b
JM
666 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
667 buffer, len);
668 modify_field (buffer, value_as_long (fromval),
669 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
670 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
671 buffer, len);
c906108c
SS
672 }
673 else if (use_buffer)
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, use_buffer);
676 else
c5aa993b 677 {
c906108c
SS
678 /* Do any conversion necessary when storing this type to more
679 than one register. */
680#ifdef REGISTER_CONVERT_FROM_TYPE
681 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c5aa993b 682 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
c906108c
SS
683 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
684 raw_buffer, TYPE_LENGTH (type));
685#else
686 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
c5aa993b 687 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
c906108c
SS
688#endif
689 }
690 /* Assigning to the stack pointer, frame pointer, and other
7b83ea04
AC
691 (architecture and calling convention specific) registers may
692 cause the frame cache to be out of date. We just do this
693 on all assignments to registers for simplicity; I doubt the slowdown
694 matters. */
c906108c
SS
695 reinit_frame_cache ();
696 break;
697
698 case lval_reg_frame_relative:
699 {
700 /* value is stored in a series of registers in the frame
701 specified by the structure. Copy that value out, modify
702 it, and copy it back in. */
703 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
704 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
705 int byte_offset = VALUE_OFFSET (toval) % reg_size;
706 int reg_offset = VALUE_OFFSET (toval) / reg_size;
707 int amount_copied;
708
709 /* Make the buffer large enough in all cases. */
710 char *buffer = (char *) alloca (amount_to_copy
711 + sizeof (LONGEST)
712 + MAX_REGISTER_RAW_SIZE);
713
714 int regno;
715 struct frame_info *frame;
716
717 /* Figure out which frame this is in currently. */
718 for (frame = get_current_frame ();
719 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
720 frame = get_prev_frame (frame))
721 ;
722
723 if (!frame)
724 error ("Value being assigned to is no longer active.");
725
726 amount_to_copy += (reg_size - amount_to_copy % reg_size);
727
728 /* Copy it out. */
729 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
730 amount_copied = 0);
731 amount_copied < amount_to_copy;
732 amount_copied += reg_size, regno++)
733 {
734 get_saved_register (buffer + amount_copied,
c5aa993b
JM
735 (int *) NULL, (CORE_ADDR *) NULL,
736 frame, regno, (enum lval_type *) NULL);
c906108c
SS
737 }
738
739 /* Modify what needs to be modified. */
740 if (VALUE_BITSIZE (toval))
741 modify_field (buffer + byte_offset,
742 value_as_long (fromval),
743 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
744 else if (use_buffer)
745 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
746 else
747 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
748 TYPE_LENGTH (type));
749
750 /* Copy it back. */
751 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
752 amount_copied = 0);
753 amount_copied < amount_to_copy;
754 amount_copied += reg_size, regno++)
755 {
756 enum lval_type lval;
757 CORE_ADDR addr;
758 int optim;
759
760 /* Just find out where to put it. */
c5aa993b
JM
761 get_saved_register ((char *) NULL,
762 &optim, &addr, frame, regno, &lval);
763
c906108c
SS
764 if (optim)
765 error ("Attempt to assign to a value that was optimized out.");
766 if (lval == lval_memory)
767 write_memory (addr, buffer + amount_copied, reg_size);
768 else if (lval == lval_register)
769 write_register_bytes (addr, buffer + amount_copied, reg_size);
770 else
771 error ("Attempt to assign to an unmodifiable value.");
772 }
773
774 if (register_changed_hook)
775 register_changed_hook (-1);
776 }
777 break;
c5aa993b 778
c906108c
SS
779
780 default:
781 error ("Left operand of assignment is not an lvalue.");
782 }
783
784 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
785 If the field is signed, and is negative, then sign extend. */
786 if ((VALUE_BITSIZE (toval) > 0)
787 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
788 {
789 LONGEST fieldval = value_as_long (fromval);
790 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
791
792 fieldval &= valmask;
793 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
794 fieldval |= ~valmask;
795
796 fromval = value_from_longest (type, fieldval);
797 }
798
799 val = value_copy (toval);
800 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
801 TYPE_LENGTH (type));
802 VALUE_TYPE (val) = type;
803 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
804 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
805 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 806
c906108c
SS
807 return val;
808}
809
810/* Extend a value VAL to COUNT repetitions of its type. */
811
812value_ptr
813value_repeat (arg1, count)
814 value_ptr arg1;
815 int count;
816{
817 register value_ptr val;
818
819 if (VALUE_LVAL (arg1) != lval_memory)
820 error ("Only values in memory can be extended with '@'.");
821 if (count < 1)
822 error ("Invalid number %d of repetitions.", count);
823
824 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
825
826 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
827 VALUE_CONTENTS_ALL_RAW (val),
828 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
829 VALUE_LVAL (val) = lval_memory;
830 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
831
832 return val;
833}
834
835value_ptr
836value_of_variable (var, b)
837 struct symbol *var;
838 struct block *b;
839{
840 value_ptr val;
841 struct frame_info *frame = NULL;
842
843 if (!b)
844 frame = NULL; /* Use selected frame. */
845 else if (symbol_read_needs_frame (var))
846 {
847 frame = block_innermost_frame (b);
848 if (!frame)
c5aa993b 849 {
c906108c
SS
850 if (BLOCK_FUNCTION (b)
851 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
852 error ("No frame is currently executing in block %s.",
853 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
854 else
855 error ("No frame is currently executing in specified block");
c5aa993b 856 }
c906108c
SS
857 }
858
859 val = read_var_value (var, frame);
860 if (!val)
861 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
862
863 return val;
864}
865
866/* Given a value which is an array, return a value which is a pointer to its
867 first element, regardless of whether or not the array has a nonzero lower
868 bound.
869
870 FIXME: A previous comment here indicated that this routine should be
871 substracting the array's lower bound. It's not clear to me that this
872 is correct. Given an array subscripting operation, it would certainly
873 work to do the adjustment here, essentially computing:
874
875 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
876
877 However I believe a more appropriate and logical place to account for
878 the lower bound is to do so in value_subscript, essentially computing:
879
880 (&array[0] + ((index - lowerbound) * sizeof array[0]))
881
882 As further evidence consider what would happen with operations other
883 than array subscripting, where the caller would get back a value that
884 had an address somewhere before the actual first element of the array,
885 and the information about the lower bound would be lost because of
886 the coercion to pointer type.
c5aa993b 887 */
c906108c
SS
888
889value_ptr
890value_coerce_array (arg1)
891 value_ptr arg1;
892{
893 register struct type *type = check_typedef (VALUE_TYPE (arg1));
894
895 if (VALUE_LVAL (arg1) != lval_memory)
896 error ("Attempt to take address of value not located in memory.");
897
898 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
c5aa993b 899 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
900}
901
902/* Given a value which is a function, return a value which is a pointer
903 to it. */
904
905value_ptr
906value_coerce_function (arg1)
907 value_ptr arg1;
908{
909 value_ptr retval;
910
911 if (VALUE_LVAL (arg1) != lval_memory)
912 error ("Attempt to take address of value not located in memory.");
913
914 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
c5aa993b 915 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
916 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
917 return retval;
c5aa993b 918}
c906108c
SS
919
920/* Return a pointer value for the object for which ARG1 is the contents. */
921
922value_ptr
923value_addr (arg1)
924 value_ptr arg1;
925{
926 value_ptr arg2;
927
928 struct type *type = check_typedef (VALUE_TYPE (arg1));
929 if (TYPE_CODE (type) == TYPE_CODE_REF)
930 {
931 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
932 We keep the same location information, which is efficient,
933 and allows &(&X) to get the location containing the reference. */
c906108c
SS
934 arg2 = value_copy (arg1);
935 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
936 return arg2;
937 }
938 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
939 return value_coerce_function (arg1);
940
941 if (VALUE_LVAL (arg1) != lval_memory)
942 error ("Attempt to take address of value not located in memory.");
943
c5aa993b 944 /* Get target memory address */
c906108c 945 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
c5aa993b
JM
946 (LONGEST) (VALUE_ADDRESS (arg1)
947 + VALUE_OFFSET (arg1)
948 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
949
950 /* This may be a pointer to a base subobject; so remember the
c5aa993b 951 full derived object's type ... */
c906108c 952 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
c5aa993b
JM
953 /* ... and also the relative position of the subobject in the full object */
954 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
955 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
956 return arg2;
957}
958
959/* Given a value of a pointer type, apply the C unary * operator to it. */
960
961value_ptr
962value_ind (arg1)
963 value_ptr arg1;
964{
965 struct type *base_type;
966 value_ptr arg2;
c906108c
SS
967
968 COERCE_ARRAY (arg1);
969
970 base_type = check_typedef (VALUE_TYPE (arg1));
971
972 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
973 error ("not implemented: member types in value_ind");
974
975 /* Allow * on an integer so we can cast it to whatever we want.
976 This returns an int, which seems like the most C-like thing
977 to do. "long long" variables are rare enough that
978 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
979 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
980 return value_at (builtin_type_int,
981 (CORE_ADDR) value_as_long (arg1),
982 VALUE_BFD_SECTION (arg1));
983 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
984 {
985 struct type *enc_type;
986 /* We may be pointing to something embedded in a larger object */
c5aa993b 987 /* Get the real type of the enclosing object */
c906108c
SS
988 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
989 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
990 /* Retrieve the enclosing object pointed to */
991 arg2 = value_at_lazy (enc_type,
992 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
993 VALUE_BFD_SECTION (arg1));
994 /* Re-adjust type */
c906108c
SS
995 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
996 /* Add embedding info */
997 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
998 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
999
1000 /* We may be pointing to an object of some derived type */
1001 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1002 return arg2;
1003 }
1004
1005 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 1006 return 0; /* For lint -- never reached */
c906108c
SS
1007}
1008\f
1009/* Pushing small parts of stack frames. */
1010
1011/* Push one word (the size of object that a register holds). */
1012
1013CORE_ADDR
1014push_word (sp, word)
1015 CORE_ADDR sp;
1016 ULONGEST word;
1017{
1018 register int len = REGISTER_SIZE;
1019 char buffer[MAX_REGISTER_RAW_SIZE];
1020
1021 store_unsigned_integer (buffer, len, word);
1022 if (INNER_THAN (1, 2))
1023 {
1024 /* stack grows downward */
1025 sp -= len;
1026 write_memory (sp, buffer, len);
1027 }
1028 else
1029 {
1030 /* stack grows upward */
1031 write_memory (sp, buffer, len);
1032 sp += len;
1033 }
1034
1035 return sp;
1036}
1037
1038/* Push LEN bytes with data at BUFFER. */
1039
1040CORE_ADDR
1041push_bytes (sp, buffer, len)
1042 CORE_ADDR sp;
1043 char *buffer;
1044 int len;
1045{
1046 if (INNER_THAN (1, 2))
1047 {
1048 /* stack grows downward */
1049 sp -= len;
1050 write_memory (sp, buffer, len);
1051 }
1052 else
1053 {
1054 /* stack grows upward */
1055 write_memory (sp, buffer, len);
1056 sp += len;
1057 }
1058
1059 return sp;
1060}
1061
2df3850c
JM
1062#ifndef PARM_BOUNDARY
1063#define PARM_BOUNDARY (0)
1064#endif
1065
1066/* Push onto the stack the specified value VALUE. Pad it correctly for
1067 it to be an argument to a function. */
c906108c 1068
c906108c
SS
1069static CORE_ADDR
1070value_push (sp, arg)
1071 register CORE_ADDR sp;
1072 value_ptr arg;
1073{
1074 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1075 register int container_len = len;
2df3850c
JM
1076 register int offset;
1077
1078 /* How big is the container we're going to put this value in? */
1079 if (PARM_BOUNDARY)
1080 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1081 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1082
1083 /* Are we going to put it at the high or low end of the container? */
1084 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1085 offset = container_len - len;
1086 else
1087 offset = 0;
c906108c
SS
1088
1089 if (INNER_THAN (1, 2))
1090 {
1091 /* stack grows downward */
2df3850c
JM
1092 sp -= container_len;
1093 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1094 }
1095 else
1096 {
1097 /* stack grows upward */
2df3850c
JM
1098 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1099 sp += container_len;
c906108c
SS
1100 }
1101
1102 return sp;
1103}
1104
392a587b
JM
1105#ifndef PUSH_ARGUMENTS
1106#define PUSH_ARGUMENTS default_push_arguments
1107#endif
1108
1109CORE_ADDR
ac9a91a7 1110default_push_arguments (nargs, args, sp, struct_return, struct_addr)
392a587b
JM
1111 int nargs;
1112 value_ptr *args;
392a587b 1113 CORE_ADDR sp;
ac9a91a7 1114 int struct_return;
392a587b
JM
1115 CORE_ADDR struct_addr;
1116{
1117 /* ASSERT ( !struct_return); */
1118 int i;
1119 for (i = nargs - 1; i >= 0; i--)
1120 sp = value_push (sp, args[i]);
1121 return sp;
1122}
1123
c906108c 1124
b9a8e3bf
JB
1125/* If we're calling a function declared without a prototype, should we
1126 promote floats to doubles? FORMAL and ACTUAL are the types of the
1127 arguments; FORMAL may be NULL.
1128
1129 If we have no definition for this macro, either from the target or
1130 from gdbarch, provide a default. */
1131#ifndef COERCE_FLOAT_TO_DOUBLE
1132#define COERCE_FLOAT_TO_DOUBLE(formal, actual) \
1133 (default_coerce_float_to_double ((formal), (actual)))
7b83ea04 1134#endif
b9a8e3bf
JB
1135
1136
1137/* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1138 when we don't have any type for the argument at hand. This occurs
1139 when we have no debug info, or when passing varargs.
1140
1141 This is an annoying default: the rule the compiler follows is to do
1142 the standard promotions whenever there is no prototype in scope,
1143 and almost all targets want this behavior. But there are some old
1144 architectures which want this odd behavior. If you want to go
1145 through them all and fix them, please do. Modern gdbarch-style
1146 targets may find it convenient to use standard_coerce_float_to_double. */
1147int
1148default_coerce_float_to_double (struct type *formal, struct type *actual)
1149{
1150 return formal == NULL;
1151}
1152
1153
1154/* Always coerce floats to doubles when there is no prototype in scope.
1155 If your architecture follows the standard type promotion rules for
1156 calling unprototyped functions, your gdbarch init function can pass
1157 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1158int
1159standard_coerce_float_to_double (struct type *formal, struct type *actual)
1160{
1161 return 1;
1162}
1163
1164
c906108c
SS
1165/* Perform the standard coercions that are specified
1166 for arguments to be passed to C functions.
1167
1168 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1169 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1170
1171static value_ptr
1172value_arg_coerce (arg, param_type, is_prototyped)
1173 value_ptr arg;
1174 struct type *param_type;
1175 int is_prototyped;
1176{
1177 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1178 register struct type *type
c5aa993b 1179 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1180
1181 switch (TYPE_CODE (type))
1182 {
1183 case TYPE_CODE_REF:
1184 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1185 {
1186 arg = value_addr (arg);
1187 VALUE_TYPE (arg) = param_type;
1188 return arg;
1189 }
1190 break;
1191 case TYPE_CODE_INT:
1192 case TYPE_CODE_CHAR:
1193 case TYPE_CODE_BOOL:
1194 case TYPE_CODE_ENUM:
1195 /* If we don't have a prototype, coerce to integer type if necessary. */
1196 if (!is_prototyped)
1197 {
1198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1199 type = builtin_type_int;
1200 }
1201 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1202 type for an argument. We may have to conditionalize the following
1203 type coercion for future targets. */
c906108c
SS
1204 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1205 type = builtin_type_int;
1206 break;
1207 case TYPE_CODE_FLT:
1208 /* FIXME: We should always convert floats to doubles in the
7b83ea04
AC
1209 non-prototyped case. As many debugging formats include
1210 no information about prototyping, we have to live with
1211 COERCE_FLOAT_TO_DOUBLE for now. */
b9a8e3bf 1212 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
c906108c
SS
1213 {
1214 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1215 type = builtin_type_double;
1216 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1217 type = builtin_type_long_double;
1218 }
1219 break;
1220 case TYPE_CODE_FUNC:
1221 type = lookup_pointer_type (type);
1222 break;
1223 case TYPE_CODE_ARRAY:
1224 if (current_language->c_style_arrays)
1225 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1226 break;
1227 case TYPE_CODE_UNDEF:
1228 case TYPE_CODE_PTR:
1229 case TYPE_CODE_STRUCT:
1230 case TYPE_CODE_UNION:
1231 case TYPE_CODE_VOID:
1232 case TYPE_CODE_SET:
1233 case TYPE_CODE_RANGE:
1234 case TYPE_CODE_STRING:
1235 case TYPE_CODE_BITSTRING:
1236 case TYPE_CODE_ERROR:
1237 case TYPE_CODE_MEMBER:
1238 case TYPE_CODE_METHOD:
1239 case TYPE_CODE_COMPLEX:
1240 default:
1241 break;
1242 }
1243
1244 return value_cast (type, arg);
1245}
1246
7b83ea04 1247/* Determine a function's address and its return type from its value.
c906108c
SS
1248 Calls error() if the function is not valid for calling. */
1249
1250static CORE_ADDR
1251find_function_addr (function, retval_type)
1252 value_ptr function;
1253 struct type **retval_type;
1254{
1255 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1256 register enum type_code code = TYPE_CODE (ftype);
1257 struct type *value_type;
1258 CORE_ADDR funaddr;
1259
1260 /* If it's a member function, just look at the function
1261 part of it. */
1262
1263 /* Determine address to call. */
1264 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1265 {
1266 funaddr = VALUE_ADDRESS (function);
1267 value_type = TYPE_TARGET_TYPE (ftype);
1268 }
1269 else if (code == TYPE_CODE_PTR)
1270 {
1271 funaddr = value_as_pointer (function);
1272 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1273 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1274 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1275 {
1276#ifdef CONVERT_FROM_FUNC_PTR_ADDR
1277 /* FIXME: This is a workaround for the unusual function
1278 pointer representation on the RS/6000, see comment
1279 in config/rs6000/tm-rs6000.h */
1280 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1281#endif
1282 value_type = TYPE_TARGET_TYPE (ftype);
1283 }
1284 else
1285 value_type = builtin_type_int;
1286 }
1287 else if (code == TYPE_CODE_INT)
1288 {
1289 /* Handle the case of functions lacking debugging info.
7b83ea04 1290 Their values are characters since their addresses are char */
c906108c
SS
1291 if (TYPE_LENGTH (ftype) == 1)
1292 funaddr = value_as_pointer (value_addr (function));
1293 else
1294 /* Handle integer used as address of a function. */
1295 funaddr = (CORE_ADDR) value_as_long (function);
1296
1297 value_type = builtin_type_int;
1298 }
1299 else
1300 error ("Invalid data type for function to be called.");
1301
1302 *retval_type = value_type;
1303 return funaddr;
1304}
1305
1306/* All this stuff with a dummy frame may seem unnecessarily complicated
1307 (why not just save registers in GDB?). The purpose of pushing a dummy
1308 frame which looks just like a real frame is so that if you call a
1309 function and then hit a breakpoint (get a signal, etc), "backtrace"
1310 will look right. Whether the backtrace needs to actually show the
1311 stack at the time the inferior function was called is debatable, but
1312 it certainly needs to not display garbage. So if you are contemplating
1313 making dummy frames be different from normal frames, consider that. */
1314
1315/* Perform a function call in the inferior.
1316 ARGS is a vector of values of arguments (NARGS of them).
1317 FUNCTION is a value, the function to be called.
1318 Returns a value representing what the function returned.
1319 May fail to return, if a breakpoint or signal is hit
1320 during the execution of the function.
1321
1322 ARGS is modified to contain coerced values. */
1323
c5aa993b 1324static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
7a292a7a
SS
1325static value_ptr
1326hand_function_call (function, nargs, args)
c906108c
SS
1327 value_ptr function;
1328 int nargs;
1329 value_ptr *args;
1330{
1331 register CORE_ADDR sp;
1332 register int i;
da59e081 1333 int rc;
c906108c
SS
1334 CORE_ADDR start_sp;
1335 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1336 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1337 and remove any extra bytes which might exist because ULONGEST is
7b83ea04 1338 bigger than REGISTER_SIZE.
c906108c
SS
1339
1340 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1341 sequence of instructions. But CISC machines will have
1342 to pack the instructions into REGISTER_SIZE units (and
1343 so will RISC machines for which INSTRUCTION_SIZE is not
1344 REGISTER_SIZE).
7a292a7a
SS
1345
1346 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1347 target byte order. */
c906108c 1348
7a292a7a
SS
1349 static ULONGEST *dummy;
1350 int sizeof_dummy1;
1351 char *dummy1;
c906108c
SS
1352 CORE_ADDR old_sp;
1353 struct type *value_type;
1354 unsigned char struct_return;
1355 CORE_ADDR struct_addr = 0;
7a292a7a 1356 struct inferior_status *inf_status;
c906108c
SS
1357 struct cleanup *old_chain;
1358 CORE_ADDR funaddr;
c5aa993b 1359 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1360 CORE_ADDR real_pc;
1361 struct type *param_type = NULL;
1362 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1363
7a292a7a
SS
1364 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1365 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1366 dummy1 = alloca (sizeof_dummy1);
1367 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1368
c906108c 1369 if (!target_has_execution)
c5aa993b 1370 noprocess ();
c906108c 1371
7a292a7a 1372 inf_status = save_inferior_status (1);
c5aa993b
JM
1373 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1374 inf_status);
c906108c
SS
1375
1376 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1377 (and POP_FRAME for restoring them). (At least on most machines)
1378 they are saved on the stack in the inferior. */
1379 PUSH_DUMMY_FRAME;
1380
1381 old_sp = sp = read_sp ();
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
7a292a7a 1386 sp -= sizeof_dummy1;
c906108c
SS
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
7a292a7a 1393 sp += sizeof_dummy1;
c906108c
SS
1394 }
1395
1396 funaddr = find_function_addr (function, &value_type);
1397 CHECK_TYPEDEF (value_type);
1398
1399 {
1400 struct block *b = block_for_pc (funaddr);
1401 /* If compiled without -g, assume GCC 2. */
1402 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1403 }
1404
1405 /* Are we returning a value using a structure return or a normal
1406 value return? */
1407
1408 struct_return = using_struct_return (function, funaddr, value_type,
1409 using_gcc);
1410
1411 /* Create a call sequence customized for this function
1412 and the number of arguments for it. */
7a292a7a 1413 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1414 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1415 REGISTER_SIZE,
c5aa993b 1416 (ULONGEST) dummy[i]);
c906108c
SS
1417
1418#ifdef GDB_TARGET_IS_HPPA
1419 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1420 value_type, using_gcc);
1421#else
1422 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1423 value_type, using_gcc);
1424 real_pc = start_sp;
1425#endif
1426
7a292a7a
SS
1427 if (CALL_DUMMY_LOCATION == ON_STACK)
1428 {
c5aa993b 1429 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
7a292a7a 1430 }
c906108c 1431
7a292a7a
SS
1432 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1433 {
1434 /* Convex Unix prohibits executing in the stack segment. */
1435 /* Hope there is empty room at the top of the text segment. */
1436 extern CORE_ADDR text_end;
392a587b 1437 static int checked = 0;
7a292a7a
SS
1438 if (!checked)
1439 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1440 if (read_memory_integer (start_sp, 1) != 0)
1441 error ("text segment full -- no place to put call");
1442 checked = 1;
1443 sp = old_sp;
1444 real_pc = text_end - sizeof_dummy1;
c5aa993b 1445 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
7a292a7a 1446 }
c5aa993b 1447
7a292a7a
SS
1448 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1449 {
1450 extern CORE_ADDR text_end;
1451 int errcode;
1452 sp = old_sp;
1453 real_pc = text_end;
c5aa993b 1454 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
7a292a7a
SS
1455 if (errcode != 0)
1456 error ("Cannot write text segment -- call_function failed");
1457 }
c906108c 1458
7a292a7a
SS
1459 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1460 {
1461 real_pc = funaddr;
1462 }
c906108c
SS
1463
1464#ifdef lint
c5aa993b 1465 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1466#endif
1467
1468 if (nargs < TYPE_NFIELDS (ftype))
1469 error ("too few arguments in function call");
1470
1471 for (i = nargs - 1; i >= 0; i--)
1472 {
1473 /* If we're off the end of the known arguments, do the standard
7b83ea04
AC
1474 promotions. FIXME: if we had a prototype, this should only
1475 be allowed if ... were present. */
c906108c
SS
1476 if (i >= TYPE_NFIELDS (ftype))
1477 args[i] = value_arg_coerce (args[i], NULL, 0);
1478
c5aa993b 1479 else
c906108c
SS
1480 {
1481 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1482 param_type = TYPE_FIELD_TYPE (ftype, i);
1483
1484 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1485 }
1486
7b83ea04
AC
1487 /*elz: this code is to handle the case in which the function to be called
1488 has a pointer to function as parameter and the corresponding actual argument
1489 is the address of a function and not a pointer to function variable.
1490 In aCC compiled code, the calls through pointers to functions (in the body
1491 of the function called by hand) are made via $$dyncall_external which
1492 requires some registers setting, this is taken care of if we call
1493 via a function pointer variable, but not via a function address.
1494 In cc this is not a problem. */
c906108c
SS
1495
1496 if (using_gcc == 0)
1497 if (param_type)
c5aa993b 1498 /* if this parameter is a pointer to function */
c906108c
SS
1499 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1500 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
7b83ea04
AC
1501 /* elz: FIXME here should go the test about the compiler used
1502 to compile the target. We want to issue the error
1503 message only if the compiler used was HP's aCC.
1504 If we used HP's cc, then there is no problem and no need
1505 to return at this point */
c5aa993b 1506 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1507 /* go see if the actual parameter is a variable of type
c5aa993b 1508 pointer to function or just a function */
c906108c
SS
1509 if (args[i]->lval == not_lval)
1510 {
1511 char *arg_name;
c5aa993b
JM
1512 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1513 error ("\
c906108c
SS
1514You cannot use function <%s> as argument. \n\
1515You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1516 }
c906108c
SS
1517 }
1518
1519#if defined (REG_STRUCT_HAS_ADDR)
1520 {
1521 /* This is a machine like the sparc, where we may need to pass a pointer
1522 to the structure, not the structure itself. */
1523 for (i = nargs - 1; i >= 0; i--)
1524 {
1525 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1526 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1527 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1528 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1529 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1530 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1531 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1532 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1533 && TYPE_LENGTH (arg_type) > 8)
c5aa993b
JM
1534 )
1535 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
c906108c
SS
1536 {
1537 CORE_ADDR addr;
c5aa993b
JM
1538 int len; /* = TYPE_LENGTH (arg_type); */
1539 int aligned_len;
1540 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1541 len = TYPE_LENGTH (arg_type);
c906108c
SS
1542
1543#ifdef STACK_ALIGN
c5aa993b
JM
1544 /* MVS 11/22/96: I think at least some of this stack_align code is
1545 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1546 a target-defined manner. */
c906108c
SS
1547 aligned_len = STACK_ALIGN (len);
1548#else
1549 aligned_len = len;
1550#endif
1551 if (INNER_THAN (1, 2))
1552 {
1553 /* stack grows downward */
1554 sp -= aligned_len;
1555 }
1556 else
1557 {
1558 /* The stack grows up, so the address of the thing we push
1559 is the stack pointer before we push it. */
1560 addr = sp;
1561 }
1562 /* Push the structure. */
1563 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1564 if (INNER_THAN (1, 2))
1565 {
1566 /* The stack grows down, so the address of the thing we push
1567 is the stack pointer after we push it. */
1568 addr = sp;
1569 }
1570 else
1571 {
1572 /* stack grows upward */
1573 sp += aligned_len;
1574 }
1575 /* The value we're going to pass is the address of the thing
1576 we just pushed. */
1577 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
c5aa993b
JM
1578 (LONGEST) addr); */
1579 args[i] = value_from_longest (lookup_pointer_type (arg_type),
c906108c
SS
1580 (LONGEST) addr);
1581 }
1582 }
1583 }
1584#endif /* REG_STRUCT_HAS_ADDR. */
1585
1586 /* Reserve space for the return structure to be written on the
1587 stack, if necessary */
1588
1589 if (struct_return)
1590 {
1591 int len = TYPE_LENGTH (value_type);
1592#ifdef STACK_ALIGN
c5aa993b 1593 /* MVS 11/22/96: I think at least some of this stack_align code is
7b83ea04
AC
1594 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1595 a target-defined manner. */
c906108c
SS
1596 len = STACK_ALIGN (len);
1597#endif
1598 if (INNER_THAN (1, 2))
1599 {
1600 /* stack grows downward */
1601 sp -= len;
1602 struct_addr = sp;
1603 }
1604 else
1605 {
1606 /* stack grows upward */
1607 struct_addr = sp;
1608 sp += len;
1609 }
1610 }
1611
1612/* elz: on HPPA no need for this extra alignment, maybe it is needed
1613 on other architectures. This is because all the alignment is taken care
7b83ea04 1614 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
c5aa993b 1615 hppa_push_arguments */
c906108c
SS
1616#ifndef NO_EXTRA_ALIGNMENT_NEEDED
1617
1618#if defined(STACK_ALIGN)
1619 /* MVS 11/22/96: I think at least some of this stack_align code is
1620 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1621 a target-defined manner. */
1622 if (INNER_THAN (1, 2))
1623 {
1624 /* If stack grows down, we must leave a hole at the top. */
1625 int len = 0;
1626
1627 for (i = nargs - 1; i >= 0; i--)
1628 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
7a292a7a
SS
1629 if (CALL_DUMMY_STACK_ADJUST_P)
1630 len += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1631 sp -= STACK_ALIGN (len) - len;
1632 }
1633#endif /* STACK_ALIGN */
1634#endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1635
392a587b 1636 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c
SS
1637
1638#ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1639 /* There are a number of targets now which actually don't write any
1640 CALL_DUMMY instructions into the target, but instead just save the
1641 machine state, push the arguments, and jump directly to the callee
1642 function. Since this doesn't actually involve executing a JSR/BSR
1643 instruction, the return address must be set up by hand, either by
1644 pushing onto the stack or copying into a return-address register
7b83ea04 1645 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
c906108c
SS
1646 but that's overloading its functionality a bit, so I'm making it
1647 explicit to do it here. */
c5aa993b
JM
1648 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1649#endif /* PUSH_RETURN_ADDRESS */
c906108c
SS
1650
1651#if defined(STACK_ALIGN)
c5aa993b 1652 if (!INNER_THAN (1, 2))
c906108c
SS
1653 {
1654 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1655 that sp already has been advanced for the arguments! */
7a292a7a
SS
1656 if (CALL_DUMMY_STACK_ADJUST_P)
1657 sp += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1658 sp = STACK_ALIGN (sp);
1659 }
1660#endif /* STACK_ALIGN */
1661
1662/* XXX This seems wrong. For stacks that grow down we shouldn't do
1663 anything here! */
1664 /* MVS 11/22/96: I think at least some of this stack_align code is
1665 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1666 a target-defined manner. */
7a292a7a
SS
1667 if (CALL_DUMMY_STACK_ADJUST_P)
1668 if (INNER_THAN (1, 2))
1669 {
1670 /* stack grows downward */
1671 sp -= CALL_DUMMY_STACK_ADJUST;
1672 }
c906108c
SS
1673
1674 /* Store the address at which the structure is supposed to be
1675 written. Note that this (and the code which reserved the space
1676 above) assumes that gcc was used to compile this function. Since
1677 it doesn't cost us anything but space and if the function is pcc
1678 it will ignore this value, we will make that assumption.
1679
7b83ea04 1680 Also note that on some machines (like the sparc) pcc uses a
c906108c
SS
1681 convention like gcc's. */
1682
1683 if (struct_return)
1684 STORE_STRUCT_RETURN (struct_addr, sp);
1685
1686 /* Write the stack pointer. This is here because the statements above
1687 might fool with it. On SPARC, this write also stores the register
1688 window into the right place in the new stack frame, which otherwise
1689 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1690 write_sp (sp);
1691
43ff13b4
JM
1692#ifdef SAVE_DUMMY_FRAME_TOS
1693 SAVE_DUMMY_FRAME_TOS (sp);
1694#endif
1695
c906108c
SS
1696 {
1697 char retbuf[REGISTER_BYTES];
1698 char *name;
1699 struct symbol *symbol;
1700
1701 name = NULL;
1702 symbol = find_pc_function (funaddr);
1703 if (symbol)
1704 {
1705 name = SYMBOL_SOURCE_NAME (symbol);
1706 }
1707 else
1708 {
1709 /* Try the minimal symbols. */
1710 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1711
1712 if (msymbol)
1713 {
1714 name = SYMBOL_SOURCE_NAME (msymbol);
1715 }
1716 }
1717 if (name == NULL)
1718 {
1719 char format[80];
1720 sprintf (format, "at %s", local_hex_format ());
1721 name = alloca (80);
1722 /* FIXME-32x64: assumes funaddr fits in a long. */
1723 sprintf (name, format, (unsigned long) funaddr);
1724 }
1725
1726 /* Execute the stack dummy routine, calling FUNCTION.
1727 When it is done, discard the empty frame
1728 after storing the contents of all regs into retbuf. */
da59e081
JM
1729 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1730
1731 if (rc == 1)
1732 {
1733 /* We stopped inside the FUNCTION because of a random signal.
1734 Further execution of the FUNCTION is not allowed. */
1735
7b83ea04 1736 if (unwind_on_signal_p)
242bfc55
FN
1737 {
1738 /* The user wants the context restored. */
da59e081 1739
7b83ea04
AC
1740 /* We must get back to the frame we were before the dummy call. */
1741 POP_FRAME;
242bfc55
FN
1742
1743 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1744 a C++ name with arguments and stuff. */
1745 error ("\
1746The program being debugged was signaled while in a function called from GDB.\n\
1747GDB has restored the context to what it was before the call.\n\
1748To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1749Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1750 name);
1751 }
1752 else
1753 {
1754 /* The user wants to stay in the frame where we stopped (default).*/
1755
1756 /* If we did the cleanups, we would print a spurious error
1757 message (Unable to restore previously selected frame),
1758 would write the registers from the inf_status (which is
1759 wrong), and would do other wrong things. */
1760 discard_cleanups (old_chain);
1761 discard_inferior_status (inf_status);
1762
1763 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1764 a C++ name with arguments and stuff. */
1765 error ("\
1766The program being debugged was signaled while in a function called from GDB.\n\
1767GDB remains in the frame where the signal was received.\n\
1768To change this behavior use \"set unwindonsignal on\"\n\
1769Evaluation of the expression containing the function (%s) will be abandoned.",
1770 name);
1771 }
da59e081
JM
1772 }
1773
1774 if (rc == 2)
c906108c 1775 {
da59e081 1776 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1777
7a292a7a
SS
1778 /* If we did the cleanups, we would print a spurious error
1779 message (Unable to restore previously selected frame),
1780 would write the registers from the inf_status (which is
1781 wrong), and would do other wrong things. */
c906108c 1782 discard_cleanups (old_chain);
7a292a7a 1783 discard_inferior_status (inf_status);
c906108c
SS
1784
1785 /* The following error message used to say "The expression
1786 which contained the function call has been discarded." It
1787 is a hard concept to explain in a few words. Ideally, GDB
1788 would be able to resume evaluation of the expression when
1789 the function finally is done executing. Perhaps someday
1790 this will be implemented (it would not be easy). */
1791
1792 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1793 a C++ name with arguments and stuff. */
1794 error ("\
1795The program being debugged stopped while in a function called from GDB.\n\
1796When the function (%s) is done executing, GDB will silently\n\
1797stop (instead of continuing to evaluate the expression containing\n\
1798the function call).", name);
1799 }
1800
da59e081 1801 /* If we get here the called FUNCTION run to completion. */
c906108c
SS
1802 do_cleanups (old_chain);
1803
1804 /* Figure out the value returned by the function. */
1805/* elz: I defined this new macro for the hppa architecture only.
1806 this gives us a way to get the value returned by the function from the stack,
1807 at the same address we told the function to put it.
1808 We cannot assume on the pa that r28 still contains the address of the returned
1809 structure. Usually this will be overwritten by the callee.
1810 I don't know about other architectures, so I defined this macro
c5aa993b 1811 */
c906108c
SS
1812
1813#ifdef VALUE_RETURNED_FROM_STACK
1814 if (struct_return)
1815 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1816#endif
1817
1818 return value_being_returned (value_type, retbuf, struct_return);
1819 }
1820}
7a292a7a 1821
c906108c
SS
1822value_ptr
1823call_function_by_hand (function, nargs, args)
1824 value_ptr function;
1825 int nargs;
1826 value_ptr *args;
1827{
7a292a7a
SS
1828 if (CALL_DUMMY_P)
1829 {
1830 return hand_function_call (function, nargs, args);
1831 }
1832 else
1833 {
1834 error ("Cannot invoke functions on this machine.");
1835 }
c906108c 1836}
c5aa993b 1837\f
7a292a7a 1838
c906108c 1839
c906108c
SS
1840/* Create a value for an array by allocating space in the inferior, copying
1841 the data into that space, and then setting up an array value.
1842
1843 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1844 populated from the values passed in ELEMVEC.
1845
1846 The element type of the array is inherited from the type of the
1847 first element, and all elements must have the same size (though we
1848 don't currently enforce any restriction on their types). */
1849
1850value_ptr
1851value_array (lowbound, highbound, elemvec)
1852 int lowbound;
1853 int highbound;
1854 value_ptr *elemvec;
1855{
1856 int nelem;
1857 int idx;
1858 unsigned int typelength;
1859 value_ptr val;
1860 struct type *rangetype;
1861 struct type *arraytype;
1862 CORE_ADDR addr;
1863
1864 /* Validate that the bounds are reasonable and that each of the elements
1865 have the same size. */
1866
1867 nelem = highbound - lowbound + 1;
1868 if (nelem <= 0)
1869 {
1870 error ("bad array bounds (%d, %d)", lowbound, highbound);
1871 }
1872 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1873 for (idx = 1; idx < nelem; idx++)
1874 {
1875 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1876 {
1877 error ("array elements must all be the same size");
1878 }
1879 }
1880
1881 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1882 lowbound, highbound);
c5aa993b
JM
1883 arraytype = create_array_type ((struct type *) NULL,
1884 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1885
1886 if (!current_language->c_style_arrays)
1887 {
1888 val = allocate_value (arraytype);
1889 for (idx = 0; idx < nelem; idx++)
1890 {
1891 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1892 VALUE_CONTENTS_ALL (elemvec[idx]),
1893 typelength);
1894 }
1895 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1896 return val;
1897 }
1898
1899 /* Allocate space to store the array in the inferior, and then initialize
1900 it by copying in each element. FIXME: Is it worth it to create a
1901 local buffer in which to collect each value and then write all the
1902 bytes in one operation? */
1903
1904 addr = allocate_space_in_inferior (nelem * typelength);
1905 for (idx = 0; idx < nelem; idx++)
1906 {
1907 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1908 typelength);
1909 }
1910
1911 /* Create the array type and set up an array value to be evaluated lazily. */
1912
1913 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1914 return (val);
1915}
1916
1917/* Create a value for a string constant by allocating space in the inferior,
1918 copying the data into that space, and returning the address with type
1919 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1920 of characters.
1921 Note that string types are like array of char types with a lower bound of
1922 zero and an upper bound of LEN - 1. Also note that the string may contain
1923 embedded null bytes. */
1924
1925value_ptr
1926value_string (ptr, len)
1927 char *ptr;
1928 int len;
1929{
1930 value_ptr val;
1931 int lowbound = current_language->string_lower_bound;
1932 struct type *rangetype = create_range_type ((struct type *) NULL,
1933 builtin_type_int,
1934 lowbound, len + lowbound - 1);
1935 struct type *stringtype
c5aa993b 1936 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1937 CORE_ADDR addr;
1938
1939 if (current_language->c_style_arrays == 0)
1940 {
1941 val = allocate_value (stringtype);
1942 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1943 return val;
1944 }
1945
1946
1947 /* Allocate space to store the string in the inferior, and then
1948 copy LEN bytes from PTR in gdb to that address in the inferior. */
1949
1950 addr = allocate_space_in_inferior (len);
1951 write_memory (addr, ptr, len);
1952
1953 val = value_at_lazy (stringtype, addr, NULL);
1954 return (val);
1955}
1956
1957value_ptr
1958value_bitstring (ptr, len)
1959 char *ptr;
1960 int len;
1961{
1962 value_ptr val;
1963 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1964 0, len - 1);
c5aa993b 1965 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1966 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1967 val = allocate_value (type);
1968 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1969 return val;
1970}
1971\f
1972/* See if we can pass arguments in T2 to a function which takes arguments
1973 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1974 arguments need coercion of some sort, then the coerced values are written
1975 into T2. Return value is 0 if the arguments could be matched, or the
1976 position at which they differ if not.
1977
1978 STATICP is nonzero if the T1 argument list came from a
1979 static member function.
1980
1981 For non-static member functions, we ignore the first argument,
1982 which is the type of the instance variable. This is because we want
1983 to handle calls with objects from derived classes. This is not
1984 entirely correct: we should actually check to make sure that a
1985 requested operation is type secure, shouldn't we? FIXME. */
1986
1987static int
1988typecmp (staticp, t1, t2)
1989 int staticp;
1990 struct type *t1[];
1991 value_ptr t2[];
1992{
1993 int i;
1994
1995 if (t2 == 0)
1996 return 1;
1997 if (staticp && t1 == 0)
1998 return t2[1] != 0;
1999 if (t1 == 0)
2000 return 1;
c5aa993b
JM
2001 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
2002 return 0;
2003 if (t1[!staticp] == 0)
2004 return 0;
c906108c
SS
2005 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
2006 {
c5aa993b
JM
2007 struct type *tt1, *tt2;
2008 if (!t2[i])
2009 return i + 1;
c906108c 2010 tt1 = check_typedef (t1[i]);
c5aa993b 2011 tt2 = check_typedef (VALUE_TYPE (t2[i]));
c906108c 2012 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2013 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2014 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2015 {
2016 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2017 t2[i] = value_coerce_array (t2[i]);
2018 else
2019 t2[i] = value_addr (t2[i]);
2020 continue;
2021 }
2022
2023 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
c5aa993b
JM
2024 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2025 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
c906108c 2026 {
c5aa993b
JM
2027 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2028 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
c906108c 2029 }
c5aa993b
JM
2030 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2031 continue;
c906108c
SS
2032 /* Array to pointer is a `trivial conversion' according to the ARM. */
2033
2034 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2035 of the ARM), but as a quick kludge, just check for the same type
2036 code. */
c906108c 2037 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2038 return i + 1;
c906108c 2039 }
c5aa993b
JM
2040 if (!t1[i])
2041 return 0;
2042 return t2[i] ? i + 1 : 0;
c906108c
SS
2043}
2044
2045/* Helper function used by value_struct_elt to recurse through baseclasses.
2046 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2047 and search in it assuming it has (class) type TYPE.
2048 If found, return value, else return NULL.
2049
2050 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2051 look for a baseclass named NAME. */
2052
2053static value_ptr
2054search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2055 char *name;
2056 register value_ptr arg1;
2057 int offset;
2058 register struct type *type;
2059 int looking_for_baseclass;
2060{
2061 int i;
2062 int nbases = TYPE_N_BASECLASSES (type);
2063
2064 CHECK_TYPEDEF (type);
2065
c5aa993b 2066 if (!looking_for_baseclass)
c906108c
SS
2067 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2068 {
2069 char *t_field_name = TYPE_FIELD_NAME (type, i);
2070
db577aea 2071 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2072 {
2073 value_ptr v;
2074 if (TYPE_FIELD_STATIC (type, i))
2075 v = value_static_field (type, i);
2076 else
2077 v = value_primitive_field (arg1, offset, i, type);
2078 if (v == 0)
c5aa993b 2079 error ("there is no field named %s", name);
c906108c
SS
2080 return v;
2081 }
2082
2083 if (t_field_name
2084 && (t_field_name[0] == '\0'
2085 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2086 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2087 {
2088 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2089 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2090 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2091 {
2092 /* Look for a match through the fields of an anonymous union,
2093 or anonymous struct. C++ provides anonymous unions.
2094
2095 In the GNU Chill implementation of variant record types,
2096 each <alternative field> has an (anonymous) union type,
2097 each member of the union represents a <variant alternative>.
2098 Each <variant alternative> is represented as a struct,
2099 with a member for each <variant field>. */
c5aa993b 2100
c906108c
SS
2101 value_ptr v;
2102 int new_offset = offset;
2103
2104 /* This is pretty gross. In G++, the offset in an anonymous
2105 union is relative to the beginning of the enclosing struct.
2106 In the GNU Chill implementation of variant records,
2107 the bitpos is zero in an anonymous union field, so we
2108 have to add the offset of the union here. */
2109 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2110 || (TYPE_NFIELDS (field_type) > 0
2111 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2112 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2113
2114 v = search_struct_field (name, arg1, new_offset, field_type,
2115 looking_for_baseclass);
2116 if (v)
2117 return v;
2118 }
2119 }
2120 }
2121
c5aa993b 2122 for (i = 0; i < nbases; i++)
c906108c
SS
2123 {
2124 value_ptr v;
2125 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2126 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2127 hit them. But it could happen that the base part's member name
2128 is not yet filled in. */
c906108c
SS
2129 int found_baseclass = (looking_for_baseclass
2130 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2131 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2132
2133 if (BASETYPE_VIA_VIRTUAL (type, i))
2134 {
2135 int boffset;
2136 value_ptr v2 = allocate_value (basetype);
2137
2138 boffset = baseclass_offset (type, i,
2139 VALUE_CONTENTS (arg1) + offset,
2140 VALUE_ADDRESS (arg1)
c5aa993b 2141 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2142 if (boffset == -1)
2143 error ("virtual baseclass botch");
2144
2145 /* The virtual base class pointer might have been clobbered by the
2146 user program. Make sure that it still points to a valid memory
2147 location. */
2148
2149 boffset += offset;
2150 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2151 {
2152 CORE_ADDR base_addr;
c5aa993b 2153
c906108c
SS
2154 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2155 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2156 TYPE_LENGTH (basetype)) != 0)
2157 error ("virtual baseclass botch");
2158 VALUE_LVAL (v2) = lval_memory;
2159 VALUE_ADDRESS (v2) = base_addr;
2160 }
2161 else
2162 {
2163 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2164 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2165 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2166 if (VALUE_LAZY (arg1))
2167 VALUE_LAZY (v2) = 1;
2168 else
2169 memcpy (VALUE_CONTENTS_RAW (v2),
2170 VALUE_CONTENTS_RAW (arg1) + boffset,
2171 TYPE_LENGTH (basetype));
2172 }
2173
2174 if (found_baseclass)
2175 return v2;
2176 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2177 looking_for_baseclass);
2178 }
2179 else if (found_baseclass)
2180 v = value_primitive_field (arg1, offset, i, type);
2181 else
2182 v = search_struct_field (name, arg1,
c5aa993b 2183 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2184 basetype, looking_for_baseclass);
c5aa993b
JM
2185 if (v)
2186 return v;
c906108c
SS
2187 }
2188 return NULL;
2189}
2190
2191
2192/* Return the offset (in bytes) of the virtual base of type BASETYPE
2193 * in an object pointed to by VALADDR (on the host), assumed to be of
2194 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2195 * looking (in case VALADDR is the contents of an enclosing object).
2196 *
2197 * This routine recurses on the primary base of the derived class because
2198 * the virtual base entries of the primary base appear before the other
2199 * virtual base entries.
2200 *
2201 * If the virtual base is not found, a negative integer is returned.
2202 * The magnitude of the negative integer is the number of entries in
2203 * the virtual table to skip over (entries corresponding to various
2204 * ancestral classes in the chain of primary bases).
2205 *
2206 * Important: This assumes the HP / Taligent C++ runtime
2207 * conventions. Use baseclass_offset() instead to deal with g++
2208 * conventions. */
2209
2210void
c5aa993b
JM
2211find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2212 struct type *type;
2213 struct type *basetype;
2214 char *valaddr;
2215 int offset;
2216 int *boffset_p;
2217 int *skip_p;
c906108c 2218{
c5aa993b
JM
2219 int boffset; /* offset of virtual base */
2220 int index; /* displacement to use in virtual table */
c906108c 2221 int skip;
c5aa993b
JM
2222
2223 value_ptr vp;
2224 CORE_ADDR vtbl; /* the virtual table pointer */
2225 struct type *pbc; /* the primary base class */
c906108c
SS
2226
2227 /* Look for the virtual base recursively in the primary base, first.
2228 * This is because the derived class object and its primary base
2229 * subobject share the primary virtual table. */
c5aa993b 2230
c906108c 2231 boffset = 0;
c5aa993b 2232 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2233 if (pbc)
2234 {
2235 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2236 if (skip < 0)
c5aa993b
JM
2237 {
2238 *boffset_p = boffset;
2239 *skip_p = -1;
2240 return;
2241 }
c906108c
SS
2242 }
2243 else
2244 skip = 0;
2245
2246
2247 /* Find the index of the virtual base according to HP/Taligent
2248 runtime spec. (Depth-first, left-to-right.) */
2249 index = virtual_base_index_skip_primaries (basetype, type);
2250
c5aa993b
JM
2251 if (index < 0)
2252 {
2253 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2254 *boffset_p = 0;
2255 return;
2256 }
c906108c 2257
c5aa993b 2258 /* pai: FIXME -- 32x64 possible problem */
c906108c 2259 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2260 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2261
c5aa993b 2262 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2263 if (vtbl == 0)
2264 error ("Couldn't find virtual table -- object may not be constructed yet.");
2265
2266
2267 /* Find virtual base's offset -- jump over entries for primary base
2268 * ancestors, then use the index computed above. But also adjust by
2269 * HP_ACC_VBASE_START for the vtable slots before the start of the
2270 * virtual base entries. Offset is negative -- virtual base entries
2271 * appear _before_ the address point of the virtual table. */
c5aa993b 2272
7b83ea04 2273 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2274 & use long type */
c906108c
SS
2275
2276 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2277 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2278 boffset = value_as_long (vp);
2279 *skip_p = -1;
2280 *boffset_p = boffset;
2281 return;
2282}
2283
2284
2285/* Helper function used by value_struct_elt to recurse through baseclasses.
2286 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2287 and search in it assuming it has (class) type TYPE.
2288 If found, return value, else if name matched and args not return (value)-1,
2289 else return NULL. */
2290
2291static value_ptr
2292search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2293 char *name;
2294 register value_ptr *arg1p, *args;
2295 int offset, *static_memfuncp;
2296 register struct type *type;
2297{
2298 int i;
2299 value_ptr v;
2300 int name_matched = 0;
2301 char dem_opname[64];
2302
2303 CHECK_TYPEDEF (type);
2304 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2305 {
2306 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2307 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2308 if (strncmp (t_field_name, "__", 2) == 0 ||
2309 strncmp (t_field_name, "op", 2) == 0 ||
2310 strncmp (t_field_name, "type", 4) == 0)
c906108c 2311 {
c5aa993b
JM
2312 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2313 t_field_name = dem_opname;
2314 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2315 t_field_name = dem_opname;
c906108c 2316 }
db577aea 2317 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2318 {
2319 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2320 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2321 name_matched = 1;
c906108c
SS
2322
2323 if (j > 0 && args == 0)
2324 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2325 while (j >= 0)
2326 {
2327 if (TYPE_FN_FIELD_STUB (f, j))
2328 check_stub_method (type, i, j);
2329 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2330 TYPE_FN_FIELD_ARGS (f, j), args))
2331 {
2332 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2333 return value_virtual_fn_field (arg1p, f, j, type, offset);
2334 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2335 *static_memfuncp = 1;
2336 v = value_fn_field (arg1p, f, j, type, offset);
c5aa993b
JM
2337 if (v != NULL)
2338 return v;
c906108c
SS
2339 }
2340 j--;
2341 }
2342 }
2343 }
2344
2345 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2346 {
2347 int base_offset;
2348
2349 if (BASETYPE_VIA_VIRTUAL (type, i))
2350 {
c5aa993b
JM
2351 if (TYPE_HAS_VTABLE (type))
2352 {
2353 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2354 according to HP/Taligent runtime spec. */
c5aa993b
JM
2355 int skip;
2356 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2357 VALUE_CONTENTS_ALL (*arg1p),
2358 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2359 &base_offset, &skip);
2360 if (skip >= 0)
2361 error ("Virtual base class offset not found in vtable");
2362 }
2363 else
2364 {
2365 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2366 char *base_valaddr;
2367
2368 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2369 user program. Make sure that it still points to a valid memory
2370 location. */
c5aa993b
JM
2371
2372 if (offset < 0 || offset >= TYPE_LENGTH (type))
2373 {
2374 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2375 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2376 + VALUE_OFFSET (*arg1p) + offset,
2377 base_valaddr,
2378 TYPE_LENGTH (baseclass)) != 0)
2379 error ("virtual baseclass botch");
2380 }
2381 else
2382 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2383
2384 base_offset =
2385 baseclass_offset (type, i, base_valaddr,
2386 VALUE_ADDRESS (*arg1p)
2387 + VALUE_OFFSET (*arg1p) + offset);
2388 if (base_offset == -1)
2389 error ("virtual baseclass botch");
2390 }
2391 }
c906108c
SS
2392 else
2393 {
2394 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2395 }
c906108c
SS
2396 v = search_struct_method (name, arg1p, args, base_offset + offset,
2397 static_memfuncp, TYPE_BASECLASS (type, i));
c5aa993b 2398 if (v == (value_ptr) - 1)
c906108c
SS
2399 {
2400 name_matched = 1;
2401 }
2402 else if (v)
2403 {
2404/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2405/* *arg1p = arg1_tmp; */
c906108c 2406 return v;
c5aa993b 2407 }
c906108c 2408 }
c5aa993b
JM
2409 if (name_matched)
2410 return (value_ptr) - 1;
2411 else
2412 return NULL;
c906108c
SS
2413}
2414
2415/* Given *ARGP, a value of type (pointer to a)* structure/union,
2416 extract the component named NAME from the ultimate target structure/union
2417 and return it as a value with its appropriate type.
2418 ERR is used in the error message if *ARGP's type is wrong.
2419
2420 C++: ARGS is a list of argument types to aid in the selection of
2421 an appropriate method. Also, handle derived types.
2422
2423 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2424 where the truthvalue of whether the function that was resolved was
2425 a static member function or not is stored.
2426
2427 ERR is an error message to be printed in case the field is not found. */
2428
2429value_ptr
2430value_struct_elt (argp, args, name, static_memfuncp, err)
2431 register value_ptr *argp, *args;
2432 char *name;
2433 int *static_memfuncp;
2434 char *err;
2435{
2436 register struct type *t;
2437 value_ptr v;
2438
2439 COERCE_ARRAY (*argp);
2440
2441 t = check_typedef (VALUE_TYPE (*argp));
2442
2443 /* Follow pointers until we get to a non-pointer. */
2444
2445 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2446 {
2447 *argp = value_ind (*argp);
2448 /* Don't coerce fn pointer to fn and then back again! */
2449 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2450 COERCE_ARRAY (*argp);
2451 t = check_typedef (VALUE_TYPE (*argp));
2452 }
2453
2454 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2455 error ("not implemented: member type in value_struct_elt");
2456
c5aa993b 2457 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2458 && TYPE_CODE (t) != TYPE_CODE_UNION)
2459 error ("Attempt to extract a component of a value that is not a %s.", err);
2460
2461 /* Assume it's not, unless we see that it is. */
2462 if (static_memfuncp)
c5aa993b 2463 *static_memfuncp = 0;
c906108c
SS
2464
2465 if (!args)
2466 {
2467 /* if there are no arguments ...do this... */
2468
2469 /* Try as a field first, because if we succeed, there
7b83ea04 2470 is less work to be done. */
c906108c
SS
2471 v = search_struct_field (name, *argp, 0, t, 0);
2472 if (v)
2473 return v;
2474
2475 /* C++: If it was not found as a data field, then try to
7b83ea04 2476 return it as a pointer to a method. */
c906108c
SS
2477
2478 if (destructor_name_p (name, t))
2479 error ("Cannot get value of destructor");
2480
2481 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2482
c5aa993b 2483 if (v == (value_ptr) - 1)
c906108c
SS
2484 error ("Cannot take address of a method");
2485 else if (v == 0)
2486 {
2487 if (TYPE_NFN_FIELDS (t))
2488 error ("There is no member or method named %s.", name);
2489 else
2490 error ("There is no member named %s.", name);
2491 }
2492 return v;
2493 }
2494
2495 if (destructor_name_p (name, t))
2496 {
2497 if (!args[1])
2498 {
2499 /* Destructors are a special case. */
2500 int m_index, f_index;
2501
2502 v = NULL;
2503 if (get_destructor_fn_field (t, &m_index, &f_index))
2504 {
2505 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2506 f_index, NULL, 0);
2507 }
2508 if (v == NULL)
2509 error ("could not find destructor function named %s.", name);
2510 else
2511 return v;
2512 }
2513 else
2514 {
2515 error ("destructor should not have any argument");
2516 }
2517 }
2518 else
2519 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2520
c5aa993b 2521 if (v == (value_ptr) - 1)
c906108c 2522 {
c5aa993b 2523 error ("Argument list of %s mismatch with component in the structure.", name);
c906108c
SS
2524 }
2525 else if (v == 0)
2526 {
2527 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2528 hand it back. If it's not callable (i.e., a pointer to function),
2529 gdb should give an error. */
c906108c
SS
2530 v = search_struct_field (name, *argp, 0, t, 0);
2531 }
2532
2533 if (!v)
2534 error ("Structure has no component named %s.", name);
2535 return v;
2536}
2537
2538/* Search through the methods of an object (and its bases)
2539 * to find a specified method. Return the pointer to the
2540 * fn_field list of overloaded instances.
2541 * Helper function for value_find_oload_list.
2542 * ARGP is a pointer to a pointer to a value (the object)
2543 * METHOD is a string containing the method name
2544 * OFFSET is the offset within the value
2545 * STATIC_MEMFUNCP is set if the method is static
2546 * TYPE is the assumed type of the object
2547 * NUM_FNS is the number of overloaded instances
2548 * BASETYPE is set to the actual type of the subobject where the method is found
2549 * BOFFSET is the offset of the base subobject where the method is found */
2550
7a292a7a 2551static struct fn_field *
c906108c 2552find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
7a292a7a 2553 value_ptr *argp;
c5aa993b 2554 char *method;
7a292a7a 2555 int offset;
c5aa993b
JM
2556 int *static_memfuncp;
2557 struct type *type;
2558 int *num_fns;
2559 struct type **basetype;
2560 int *boffset;
c906108c
SS
2561{
2562 int i;
c5aa993b 2563 struct fn_field *f;
c906108c
SS
2564 CHECK_TYPEDEF (type);
2565
2566 *num_fns = 0;
2567
c5aa993b
JM
2568 /* First check in object itself */
2569 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2570 {
2571 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2572 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2573 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b
JM
2574 {
2575 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2576 *basetype = type;
2577 *boffset = offset;
2578 return TYPE_FN_FIELDLIST1 (type, i);
2579 }
2580 }
2581
c906108c
SS
2582 /* Not found in object, check in base subobjects */
2583 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2584 {
2585 int base_offset;
2586 if (BASETYPE_VIA_VIRTUAL (type, i))
2587 {
c5aa993b
JM
2588 if (TYPE_HAS_VTABLE (type))
2589 {
2590 /* HP aCC compiled type, search for virtual base offset
2591 * according to HP/Taligent runtime spec. */
2592 int skip;
2593 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2594 VALUE_CONTENTS_ALL (*argp),
2595 offset + VALUE_EMBEDDED_OFFSET (*argp),
2596 &base_offset, &skip);
2597 if (skip >= 0)
2598 error ("Virtual base class offset not found in vtable");
2599 }
2600 else
2601 {
2602 /* probably g++ runtime model */
2603 base_offset = VALUE_OFFSET (*argp) + offset;
2604 base_offset =
2605 baseclass_offset (type, i,
2606 VALUE_CONTENTS (*argp) + base_offset,
2607 VALUE_ADDRESS (*argp) + base_offset);
2608 if (base_offset == -1)
2609 error ("virtual baseclass botch");
2610 }
2611 }
2612 else
2613 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2614 {
2615 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2616 }
c906108c 2617 f = find_method_list (argp, method, base_offset + offset,
c5aa993b 2618 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
c906108c 2619 if (f)
c5aa993b 2620 return f;
c906108c 2621 }
c5aa993b 2622 return NULL;
c906108c
SS
2623}
2624
2625/* Return the list of overloaded methods of a specified name.
2626 * ARGP is a pointer to a pointer to a value (the object)
2627 * METHOD is the method name
2628 * OFFSET is the offset within the value contents
2629 * STATIC_MEMFUNCP is set if the method is static
2630 * NUM_FNS is the number of overloaded instances
2631 * BASETYPE is set to the type of the base subobject that defines the method
2632 * BOFFSET is the offset of the base subobject which defines the method */
2633
2634struct fn_field *
2635value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
c5aa993b
JM
2636 value_ptr *argp;
2637 char *method;
2638 int offset;
2639 int *static_memfuncp;
2640 int *num_fns;
2641 struct type **basetype;
2642 int *boffset;
c906108c 2643{
c5aa993b 2644 struct type *t;
c906108c
SS
2645
2646 t = check_typedef (VALUE_TYPE (*argp));
2647
c5aa993b 2648 /* code snarfed from value_struct_elt */
c906108c
SS
2649 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2650 {
2651 *argp = value_ind (*argp);
2652 /* Don't coerce fn pointer to fn and then back again! */
2653 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2654 COERCE_ARRAY (*argp);
2655 t = check_typedef (VALUE_TYPE (*argp));
2656 }
c5aa993b 2657
c906108c
SS
2658 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2659 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2660
2661 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2662 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2663 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2664
c906108c
SS
2665 /* Assume it's not static, unless we see that it is. */
2666 if (static_memfuncp)
c5aa993b 2667 *static_memfuncp = 0;
c906108c
SS
2668
2669 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
c5aa993b 2670
c906108c
SS
2671}
2672
2673/* Given an array of argument types (ARGTYPES) (which includes an
2674 entry for "this" in the case of C++ methods), the number of
2675 arguments NARGS, the NAME of a function whether it's a method or
2676 not (METHOD), and the degree of laxness (LAX) in conforming to
2677 overload resolution rules in ANSI C++, find the best function that
2678 matches on the argument types according to the overload resolution
2679 rules.
2680
2681 In the case of class methods, the parameter OBJ is an object value
2682 in which to search for overloaded methods.
2683
2684 In the case of non-method functions, the parameter FSYM is a symbol
2685 corresponding to one of the overloaded functions.
2686
2687 Return value is an integer: 0 -> good match, 10 -> debugger applied
2688 non-standard coercions, 100 -> incompatible.
2689
2690 If a method is being searched for, VALP will hold the value.
2691 If a non-method is being searched for, SYMP will hold the symbol for it.
2692
2693 If a method is being searched for, and it is a static method,
2694 then STATICP will point to a non-zero value.
2695
2696 Note: This function does *not* check the value of
2697 overload_resolution. Caller must check it to see whether overload
2698 resolution is permitted.
c5aa993b 2699 */
c906108c
SS
2700
2701int
2702find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
c5aa993b
JM
2703 struct type **arg_types;
2704 int nargs;
2705 char *name;
2706 int method;
2707 int lax;
2708 value_ptr obj;
2709 struct symbol *fsym;
2710 value_ptr *valp;
2711 struct symbol **symp;
2712 int *staticp;
c906108c
SS
2713{
2714 int nparms;
c5aa993b 2715 struct type **parm_types;
c906108c 2716 int champ_nparms = 0;
c5aa993b
JM
2717
2718 short oload_champ = -1; /* Index of best overloaded function */
2719 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2720 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2721 short oload_ambig_champ = -1; /* 2nd contender for best match */
2722 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2723 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2724
2725 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2726 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2727
c906108c 2728 value_ptr temp = obj;
c5aa993b
JM
2729 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2730 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2731 int num_fns = 0; /* Number of overloaded instances being considered */
2732 struct type *basetype = NULL;
c906108c
SS
2733 int boffset;
2734 register int jj;
2735 register int ix;
2736
c5aa993b
JM
2737 char *obj_type_name = NULL;
2738 char *func_name = NULL;
c906108c
SS
2739
2740 /* Get the list of overloaded methods or functions */
2741 if (method)
2742 {
db577aea
AC
2743 int i;
2744 int len;
2745 struct type *domain;
c906108c
SS
2746 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2747 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2748 value rather than the object itself, so try again */
c906108c 2749 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2750 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2751 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2752
2753 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2754 staticp,
2755 &num_fns,
2756 &basetype, &boffset);
c906108c 2757 if (!fns_ptr || !num_fns)
c5aa993b
JM
2758 error ("Couldn't find method %s%s%s",
2759 obj_type_name,
2760 (obj_type_name && *obj_type_name) ? "::" : "",
2761 name);
db577aea
AC
2762 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2763 len = TYPE_NFN_FIELDS (domain);
2764 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2765 give us the info we need directly in the types. We have to
2766 use the method stub conversion to get it. Be aware that this
2767 is by no means perfect, and if you use STABS, please move to
2768 DWARF-2, or something like it, because trying to improve
2769 overloading using STABS is really a waste of time. */
2770 for (i = 0; i < len; i++)
2771 {
2772 int j;
2773 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2774 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2775
2776 for (j = 0; j < len2; j++)
2777 {
2778 if (TYPE_FN_FIELD_STUB (f, j))
2779 check_stub_method (domain, i, j);
2780 }
2781 }
c906108c
SS
2782 }
2783 else
2784 {
2785 int i = -1;
2786 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2787
917317f4 2788 /* If the name is NULL this must be a C-style function.
7b83ea04 2789 Just return the same symbol. */
917317f4 2790 if (!func_name)
7b83ea04 2791 {
917317f4 2792 *symp = fsym;
7b83ea04
AC
2793 return 0;
2794 }
917317f4 2795
c906108c
SS
2796 oload_syms = make_symbol_overload_list (fsym);
2797 while (oload_syms[++i])
c5aa993b 2798 num_fns++;
c906108c 2799 if (!num_fns)
c5aa993b 2800 error ("Couldn't find function %s", func_name);
c906108c 2801 }
c5aa993b 2802
c906108c
SS
2803 oload_champ_bv = NULL;
2804
c5aa993b 2805 /* Consider each candidate in turn */
c906108c
SS
2806 for (ix = 0; ix < num_fns; ix++)
2807 {
db577aea
AC
2808 if (method)
2809 {
2810 /* For static member functions, we won't have a this pointer, but nothing
2811 else seems to handle them right now, so we just pretend ourselves */
2812 nparms=0;
2813
2814 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2815 {
2816 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2817 nparms++;
2818 }
2819 }
2820 else
2821 {
2822 /* If it's not a method, this is the proper place */
2823 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2824 }
c906108c 2825
c5aa993b 2826 /* Prepare array of parameter types */
c906108c
SS
2827 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2828 for (jj = 0; jj < nparms; jj++)
db577aea
AC
2829 parm_types[jj] = (method
2830 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2831 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c
SS
2832
2833 /* Compare parameter types to supplied argument types */
2834 bv = rank_function (parm_types, nparms, arg_types, nargs);
c5aa993b 2835
c906108c 2836 if (!oload_champ_bv)
c5aa993b
JM
2837 {
2838 oload_champ_bv = bv;
2839 oload_champ = 0;
2840 champ_nparms = nparms;
2841 }
c906108c 2842 else
c5aa993b
JM
2843 /* See whether current candidate is better or worse than previous best */
2844 switch (compare_badness (bv, oload_champ_bv))
2845 {
2846 case 0:
2847 oload_ambiguous = 1; /* top two contenders are equally good */
2848 oload_ambig_champ = ix;
2849 break;
2850 case 1:
2851 oload_ambiguous = 2; /* incomparable top contenders */
2852 oload_ambig_champ = ix;
2853 break;
2854 case 2:
2855 oload_champ_bv = bv; /* new champion, record details */
2856 oload_ambiguous = 0;
2857 oload_champ = ix;
2858 oload_ambig_champ = -1;
2859 champ_nparms = nparms;
2860 break;
2861 case 3:
2862 default:
2863 break;
2864 }
c906108c
SS
2865 free (parm_types);
2866#ifdef DEBUG_OLOAD
db577aea
AC
2867 /* FIXME: cagney/2000-03-12: Send the output to gdb_stderr. See
2868 comments above about adding a ``set debug'' command. */
c906108c 2869 if (method)
c5aa993b 2870 printf ("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
c906108c 2871 else
c5aa993b 2872 printf ("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
db577aea 2873 for (jj = 0; jj < nargs; jj++)
c5aa993b
JM
2874 printf ("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2875 printf ("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
c906108c 2876#endif
c5aa993b 2877 } /* end loop over all candidates */
c906108c 2878
db577aea
AC
2879 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2880 if they have the exact same goodness. This is because there is no
2881 way to differentiate based on return type, which we need to in
2882 cases like overloads of .begin() <It's both const and non-const> */
2883#if 0
c906108c
SS
2884 if (oload_ambiguous)
2885 {
2886 if (method)
c5aa993b
JM
2887 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2888 obj_type_name,
2889 (obj_type_name && *obj_type_name) ? "::" : "",
2890 name);
c906108c 2891 else
c5aa993b
JM
2892 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2893 func_name);
c906108c 2894 }
db577aea 2895#endif
c906108c 2896
c5aa993b 2897 /* Check how bad the best match is */
c906108c
SS
2898 for (ix = 1; ix <= nargs; ix++)
2899 {
2900 switch (oload_champ_bv->rank[ix])
c5aa993b
JM
2901 {
2902 case 10:
2903 oload_non_standard = 1; /* non-standard type conversions needed */
2904 break;
2905 case 100:
2906 oload_incompatible = 1; /* truly mismatched types */
2907 break;
2908 }
c906108c
SS
2909 }
2910 if (oload_incompatible)
2911 {
2912 if (method)
c5aa993b
JM
2913 error ("Cannot resolve method %s%s%s to any overloaded instance",
2914 obj_type_name,
2915 (obj_type_name && *obj_type_name) ? "::" : "",
2916 name);
c906108c 2917 else
c5aa993b
JM
2918 error ("Cannot resolve function %s to any overloaded instance",
2919 func_name);
c906108c
SS
2920 }
2921 else if (oload_non_standard)
2922 {
2923 if (method)
c5aa993b
JM
2924 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2925 obj_type_name,
2926 (obj_type_name && *obj_type_name) ? "::" : "",
2927 name);
c906108c 2928 else
c5aa993b
JM
2929 warning ("Using non-standard conversion to match function %s to supplied arguments",
2930 func_name);
c906108c
SS
2931 }
2932
2933 if (method)
2934 {
2935 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2936 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2937 else
c5aa993b 2938 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2939 }
2940 else
2941 {
2942 *symp = oload_syms[oload_champ];
2943 free (func_name);
2944 }
2945
2946 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2947}
2948
2949/* C++: return 1 is NAME is a legitimate name for the destructor
2950 of type TYPE. If TYPE does not have a destructor, or
2951 if NAME is inappropriate for TYPE, an error is signaled. */
2952int
2953destructor_name_p (name, type)
2954 const char *name;
2955 const struct type *type;
2956{
2957 /* destructors are a special case. */
2958
2959 if (name[0] == '~')
2960 {
2961 char *dname = type_name_no_tag (type);
2962 char *cp = strchr (dname, '<');
2963 unsigned int len;
2964
2965 /* Do not compare the template part for template classes. */
2966 if (cp == NULL)
2967 len = strlen (dname);
2968 else
2969 len = cp - dname;
2970 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2971 error ("name of destructor must equal name of class");
2972 else
2973 return 1;
2974 }
2975 return 0;
2976}
2977
2978/* Helper function for check_field: Given TYPE, a structure/union,
2979 return 1 if the component named NAME from the ultimate
2980 target structure/union is defined, otherwise, return 0. */
2981
2982static int
2983check_field_in (type, name)
2984 register struct type *type;
2985 const char *name;
2986{
2987 register int i;
2988
2989 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2990 {
2991 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2992 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2993 return 1;
2994 }
2995
2996 /* C++: If it was not found as a data field, then try to
2997 return it as a pointer to a method. */
2998
2999 /* Destructors are a special case. */
3000 if (destructor_name_p (name, type))
3001 {
3002 int m_index, f_index;
3003
3004 return get_destructor_fn_field (type, &m_index, &f_index);
3005 }
3006
3007 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3008 {
db577aea 3009 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
3010 return 1;
3011 }
3012
3013 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3014 if (check_field_in (TYPE_BASECLASS (type, i), name))
3015 return 1;
c5aa993b 3016
c906108c
SS
3017 return 0;
3018}
3019
3020
3021/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3022 return 1 if the component named NAME from the ultimate
3023 target structure/union is defined, otherwise, return 0. */
3024
3025int
3026check_field (arg1, name)
3027 register value_ptr arg1;
3028 const char *name;
3029{
3030 register struct type *t;
3031
3032 COERCE_ARRAY (arg1);
3033
3034 t = VALUE_TYPE (arg1);
3035
3036 /* Follow pointers until we get to a non-pointer. */
3037
3038 for (;;)
3039 {
3040 CHECK_TYPEDEF (t);
3041 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3042 break;
3043 t = TYPE_TARGET_TYPE (t);
3044 }
3045
3046 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3047 error ("not implemented: member type in check_field");
3048
c5aa993b 3049 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3050 && TYPE_CODE (t) != TYPE_CODE_UNION)
3051 error ("Internal error: `this' is not an aggregate");
3052
3053 return check_field_in (t, name);
3054}
3055
3056/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3057 return the address of this member as a "pointer to member"
3058 type. If INTYPE is non-null, then it will be the type
3059 of the member we are looking for. This will help us resolve
3060 "pointers to member functions". This function is used
3061 to resolve user expressions of the form "DOMAIN::NAME". */
3062
3063value_ptr
3064value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3065 struct type *domain, *curtype, *intype;
3066 int offset;
3067 char *name;
3068{
3069 register struct type *t = curtype;
3070 register int i;
3071 value_ptr v;
3072
c5aa993b 3073 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3074 && TYPE_CODE (t) != TYPE_CODE_UNION)
3075 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3076
3077 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3078 {
3079 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3080
c906108c
SS
3081 if (t_field_name && STREQ (t_field_name, name))
3082 {
3083 if (TYPE_FIELD_STATIC (t, i))
3084 {
3085 v = value_static_field (t, i);
3086 if (v == NULL)
3087 error ("Internal error: could not find static variable %s",
3088 name);
3089 return v;
3090 }
3091 if (TYPE_FIELD_PACKED (t, i))
3092 error ("pointers to bitfield members not allowed");
c5aa993b 3093
c906108c
SS
3094 return value_from_longest
3095 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3096 domain)),
3097 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3098 }
3099 }
3100
3101 /* C++: If it was not found as a data field, then try to
3102 return it as a pointer to a method. */
3103
3104 /* Destructors are a special case. */
3105 if (destructor_name_p (name, t))
3106 {
3107 error ("member pointers to destructors not implemented yet");
3108 }
3109
3110 /* Perform all necessary dereferencing. */
3111 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3112 intype = TYPE_TARGET_TYPE (intype);
3113
3114 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3115 {
3116 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3117 char dem_opname[64];
3118
c5aa993b
JM
3119 if (strncmp (t_field_name, "__", 2) == 0 ||
3120 strncmp (t_field_name, "op", 2) == 0 ||
3121 strncmp (t_field_name, "type", 4) == 0)
c906108c 3122 {
c5aa993b
JM
3123 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3124 t_field_name = dem_opname;
3125 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3126 t_field_name = dem_opname;
c906108c
SS
3127 }
3128 if (t_field_name && STREQ (t_field_name, name))
3129 {
3130 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3131 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3132
c906108c
SS
3133 if (intype == 0 && j > 1)
3134 error ("non-unique member `%s' requires type instantiation", name);
3135 if (intype)
3136 {
3137 while (j--)
3138 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3139 break;
3140 if (j < 0)
3141 error ("no member function matches that type instantiation");
3142 }
3143 else
3144 j = 0;
c5aa993b 3145
c906108c
SS
3146 if (TYPE_FN_FIELD_STUB (f, j))
3147 check_stub_method (t, i, j);
3148 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3149 {
3150 return value_from_longest
3151 (lookup_reference_type
3152 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3153 domain)),
3154 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3155 }
3156 else
3157 {
3158 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3159 0, VAR_NAMESPACE, 0, NULL);
3160 if (s == NULL)
3161 {
3162 v = 0;
3163 }
3164 else
3165 {
3166 v = read_var_value (s, 0);
3167#if 0
3168 VALUE_TYPE (v) = lookup_reference_type
3169 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3170 domain));
3171#endif
3172 }
3173 return v;
3174 }
3175 }
3176 }
3177 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3178 {
3179 value_ptr v;
3180 int base_offset;
3181
3182 if (BASETYPE_VIA_VIRTUAL (t, i))
3183 base_offset = 0;
3184 else
3185 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3186 v = value_struct_elt_for_reference (domain,
3187 offset + base_offset,
3188 TYPE_BASECLASS (t, i),
3189 name,
3190 intype);
3191 if (v)
3192 return v;
3193 }
3194 return 0;
3195}
3196
3197
3198/* Find the real run-time type of a value using RTTI.
3199 * V is a pointer to the value.
3200 * A pointer to the struct type entry of the run-time type
3201 * is returneed.
3202 * FULL is a flag that is set only if the value V includes
3203 * the entire contents of an object of the RTTI type.
3204 * TOP is the offset to the top of the enclosing object of
3205 * the real run-time type. This offset may be for the embedded
3206 * object, or for the enclosing object of V.
3207 * USING_ENC is the flag that distinguishes the two cases.
3208 * If it is 1, then the offset is for the enclosing object,
3209 * otherwise for the embedded object.
7b83ea04 3210 *
c906108c
SS
3211 * This currently works only for RTTI information generated
3212 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3213 * does not appear to support RTTI. This function returns a
3214 * NULL value for objects in the g++ runtime model. */
3215
3216struct type *
3217value_rtti_type (v, full, top, using_enc)
c5aa993b
JM
3218 value_ptr v;
3219 int *full;
3220 int *top;
3221 int *using_enc;
c906108c 3222{
c5aa993b
JM
3223 struct type *known_type;
3224 struct type *rtti_type;
c906108c
SS
3225 CORE_ADDR coreptr;
3226 value_ptr vp;
3227 int using_enclosing = 0;
3228 long top_offset = 0;
3229 char rtti_type_name[256];
3230
3231 if (full)
3232 *full = 0;
3233 if (top)
3234 *top = -1;
3235 if (using_enc)
3236 *using_enc = 0;
3237
c5aa993b 3238 /* Get declared type */
c906108c
SS
3239 known_type = VALUE_TYPE (v);
3240 CHECK_TYPEDEF (known_type);
c5aa993b 3241 /* RTTI works only or class objects */
c906108c
SS
3242 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3243 return NULL;
3244
3245 /* If neither the declared type nor the enclosing type of the
3246 * value structure has a HP ANSI C++ style virtual table,
3247 * we can't do anything. */
3248 if (!TYPE_HAS_VTABLE (known_type))
3249 {
3250 known_type = VALUE_ENCLOSING_TYPE (v);
3251 CHECK_TYPEDEF (known_type);
3252 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
c5aa993b
JM
3253 !TYPE_HAS_VTABLE (known_type))
3254 return NULL; /* No RTTI, or not HP-compiled types */
c906108c
SS
3255 CHECK_TYPEDEF (known_type);
3256 using_enclosing = 1;
3257 }
3258
3259 if (using_enclosing && using_enc)
3260 *using_enc = 1;
3261
3262 /* First get the virtual table address */
c5aa993b
JM
3263 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3264 + VALUE_OFFSET (v)
3265 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
c906108c 3266 if (coreptr == 0)
c5aa993b 3267 return NULL; /* return silently -- maybe called on gdb-generated value */
c906108c 3268
c5aa993b 3269 /* Fetch the top offset of the object */
c906108c 3270 /* FIXME possible 32x64 problem with pointer size & arithmetic */
c5aa993b
JM
3271 vp = value_at (builtin_type_int,
3272 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3273 VALUE_BFD_SECTION (v));
c906108c
SS
3274 top_offset = value_as_long (vp);
3275 if (top)
3276 *top = top_offset;
3277
3278 /* Fetch the typeinfo pointer */
3279 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3280 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3281 /* Indirect through the typeinfo pointer and retrieve the pointer
3282 * to the string name */
c5aa993b 3283 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
c906108c
SS
3284 if (!coreptr)
3285 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
c5aa993b
JM
3286 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3287 /* FIXME possible 32x64 problem */
c906108c 3288
c5aa993b 3289 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
c906108c
SS
3290
3291 read_memory_string (coreptr, rtti_type_name, 256);
3292
3293 if (strlen (rtti_type_name) == 0)
3294 error ("Retrieved null type name from typeinfo");
c5aa993b 3295
c906108c
SS
3296 /* search for type */
3297 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
c5aa993b 3298
c906108c
SS
3299 if (!rtti_type)
3300 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3301 CHECK_TYPEDEF (rtti_type);
3302
c5aa993b
JM
3303#if 0 /* debugging */
3304 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
c906108c
SS
3305#endif
3306
3307 /* Check whether we have the entire object */
c5aa993b 3308 if (full /* Non-null pointer passed */
c906108c
SS
3309
3310 &&
c5aa993b
JM
3311 /* Either we checked on the whole object in hand and found the
3312 top offset to be zero */
3313 (((top_offset == 0) &&
3314 using_enclosing &&
3315 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3316 ||
3317 /* Or we checked on the embedded object and top offset was the
3318 same as the embedded offset */
3319 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3320 !using_enclosing &&
3321 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3322
c906108c 3323 *full = 1;
c5aa993b 3324
c906108c
SS
3325 return rtti_type;
3326}
3327
3328/* Given a pointer value V, find the real (RTTI) type
3329 of the object it points to.
3330 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3331 and refer to the values computed for the object pointed to. */
3332
3333struct type *
3334value_rtti_target_type (v, full, top, using_enc)
c5aa993b
JM
3335 value_ptr v;
3336 int *full;
3337 int *top;
3338 int *using_enc;
c906108c
SS
3339{
3340 value_ptr target;
3341
3342 target = value_ind (v);
3343
3344 return value_rtti_type (target, full, top, using_enc);
3345}
3346
3347/* Given a value pointed to by ARGP, check its real run-time type, and
3348 if that is different from the enclosing type, create a new value
3349 using the real run-time type as the enclosing type (and of the same
3350 type as ARGP) and return it, with the embedded offset adjusted to
3351 be the correct offset to the enclosed object
3352 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3353 parameters, computed by value_rtti_type(). If these are available,
3354 they can be supplied and a second call to value_rtti_type() is avoided.
3355 (Pass RTYPE == NULL if they're not available */
3356
3357value_ptr
3358value_full_object (argp, rtype, xfull, xtop, xusing_enc)
c5aa993b
JM
3359 value_ptr argp;
3360 struct type *rtype;
3361 int xfull;
3362 int xtop;
3363 int xusing_enc;
3364
c906108c 3365{
c5aa993b 3366 struct type *real_type;
c906108c
SS
3367 int full = 0;
3368 int top = -1;
3369 int using_enc = 0;
3370 value_ptr new_val;
3371
3372 if (rtype)
3373 {
3374 real_type = rtype;
3375 full = xfull;
3376 top = xtop;
3377 using_enc = xusing_enc;
3378 }
3379 else
3380 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3381
3382 /* If no RTTI data, or if object is already complete, do nothing */
3383 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3384 return argp;
3385
3386 /* If we have the full object, but for some reason the enclosing
c5aa993b 3387 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3388 if (full)
3389 {
3390 VALUE_ENCLOSING_TYPE (argp) = real_type;
3391 return argp;
3392 }
3393
3394 /* Check if object is in memory */
3395 if (VALUE_LVAL (argp) != lval_memory)
3396 {
3397 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3398
c906108c
SS
3399 return argp;
3400 }
c5aa993b 3401
c906108c
SS
3402 /* All other cases -- retrieve the complete object */
3403 /* Go back by the computed top_offset from the beginning of the object,
3404 adjusting for the embedded offset of argp if that's what value_rtti_type
3405 used for its computation. */
3406 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3407 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3408 VALUE_BFD_SECTION (argp));
c906108c
SS
3409 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3410 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3411 return new_val;
3412}
3413
3414
3415
3416
3417/* C++: return the value of the class instance variable, if one exists.
3418 Flag COMPLAIN signals an error if the request is made in an
3419 inappropriate context. */
3420
3421value_ptr
3422value_of_this (complain)
3423 int complain;
3424{
3425 struct symbol *func, *sym;
3426 struct block *b;
3427 int i;
3428 static const char funny_this[] = "this";
3429 value_ptr this;
3430
3431 if (selected_frame == 0)
3432 {
3433 if (complain)
c5aa993b
JM
3434 error ("no frame selected");
3435 else
3436 return 0;
c906108c
SS
3437 }
3438
3439 func = get_frame_function (selected_frame);
3440 if (!func)
3441 {
3442 if (complain)
3443 error ("no `this' in nameless context");
c5aa993b
JM
3444 else
3445 return 0;
c906108c
SS
3446 }
3447
3448 b = SYMBOL_BLOCK_VALUE (func);
3449 i = BLOCK_NSYMS (b);
3450 if (i <= 0)
3451 {
3452 if (complain)
c5aa993b
JM
3453 error ("no args, no `this'");
3454 else
3455 return 0;
c906108c
SS
3456 }
3457
3458 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3459 symbol instead of the LOC_ARG one (if both exist). */
3460 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3461 if (sym == NULL)
3462 {
3463 if (complain)
3464 error ("current stack frame not in method");
3465 else
3466 return NULL;
3467 }
3468
3469 this = read_var_value (sym, selected_frame);
3470 if (this == 0 && complain)
3471 error ("`this' argument at unknown address");
3472 return this;
3473}
3474
3475/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3476 long, starting at LOWBOUND. The result has the same lower bound as
3477 the original ARRAY. */
3478
3479value_ptr
3480value_slice (array, lowbound, length)
3481 value_ptr array;
3482 int lowbound, length;
3483{
3484 struct type *slice_range_type, *slice_type, *range_type;
3485 LONGEST lowerbound, upperbound, offset;
3486 value_ptr slice;
3487 struct type *array_type;
3488 array_type = check_typedef (VALUE_TYPE (array));
3489 COERCE_VARYING_ARRAY (array, array_type);
3490 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3491 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3492 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3493 error ("cannot take slice of non-array");
3494 range_type = TYPE_INDEX_TYPE (array_type);
3495 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3496 error ("slice from bad array or bitstring");
3497 if (lowbound < lowerbound || length < 0
3498 || lowbound + length - 1 > upperbound
c5aa993b 3499 /* Chill allows zero-length strings but not arrays. */
c906108c
SS
3500 || (current_language->la_language == language_chill
3501 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3502 error ("slice out of range");
3503 /* FIXME-type-allocation: need a way to free this type when we are
3504 done with it. */
c5aa993b 3505 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3506 TYPE_TARGET_TYPE (range_type),
3507 lowbound, lowbound + length - 1);
3508 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3509 {
3510 int i;
c5aa993b 3511 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3512 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3513 slice = value_zero (slice_type, not_lval);
3514 for (i = 0; i < length; i++)
3515 {
3516 int element = value_bit_index (array_type,
3517 VALUE_CONTENTS (array),
3518 lowbound + i);
3519 if (element < 0)
3520 error ("internal error accessing bitstring");
3521 else if (element > 0)
3522 {
3523 int j = i % TARGET_CHAR_BIT;
3524 if (BITS_BIG_ENDIAN)
3525 j = TARGET_CHAR_BIT - 1 - j;
3526 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3527 }
3528 }
3529 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3530 can be used on the LHS, but that may require extensions to
3531 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3532 }
3533 else
3534 {
3535 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3536 offset
3537 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3538 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3539 slice_range_type);
3540 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3541 slice = allocate_value (slice_type);
3542 if (VALUE_LAZY (array))
3543 VALUE_LAZY (slice) = 1;
3544 else
3545 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3546 TYPE_LENGTH (slice_type));
3547 if (VALUE_LVAL (array) == lval_internalvar)
3548 VALUE_LVAL (slice) = lval_internalvar_component;
3549 else
3550 VALUE_LVAL (slice) = VALUE_LVAL (array);
3551 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3552 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3553 }
3554 return slice;
3555}
3556
3557/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3558 value as a fixed-length array. */
3559
3560value_ptr
3561varying_to_slice (varray)
3562 value_ptr varray;
3563{
3564 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3565 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3566 VALUE_CONTENTS (varray)
3567 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3568 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3569}
3570
7b83ea04
AC
3571/* Create a value for a FORTRAN complex number. Currently most of
3572 the time values are coerced to COMPLEX*16 (i.e. a complex number
3573 composed of 2 doubles. This really should be a smarter routine
3574 that figures out precision inteligently as opposed to assuming
c5aa993b 3575 doubles. FIXME: fmb */
c906108c
SS
3576
3577value_ptr
3578value_literal_complex (arg1, arg2, type)
3579 value_ptr arg1;
3580 value_ptr arg2;
3581 struct type *type;
3582{
3583 register value_ptr val;
3584 struct type *real_type = TYPE_TARGET_TYPE (type);
3585
3586 val = allocate_value (type);
3587 arg1 = value_cast (real_type, arg1);
3588 arg2 = value_cast (real_type, arg2);
3589
3590 memcpy (VALUE_CONTENTS_RAW (val),
3591 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3592 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3593 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3594 return val;
3595}
3596
3597/* Cast a value into the appropriate complex data type. */
3598
3599static value_ptr
3600cast_into_complex (type, val)
3601 struct type *type;
3602 register value_ptr val;
3603{
3604 struct type *real_type = TYPE_TARGET_TYPE (type);
3605 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3606 {
3607 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3608 value_ptr re_val = allocate_value (val_real_type);
3609 value_ptr im_val = allocate_value (val_real_type);
3610
3611 memcpy (VALUE_CONTENTS_RAW (re_val),
3612 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3613 memcpy (VALUE_CONTENTS_RAW (im_val),
3614 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3615 TYPE_LENGTH (val_real_type));
c906108c
SS
3616
3617 return value_literal_complex (re_val, im_val, type);
3618 }
3619 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3620 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3621 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3622 else
3623 error ("cannot cast non-number to complex");
3624}
3625
3626void
3627_initialize_valops ()
3628{
3629#if 0
3630 add_show_from_set
c5aa993b 3631 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3632 "Set automatic abandonment of expressions upon failure.",
3633 &setlist),
3634 &showlist);
3635#endif
3636
3637 add_show_from_set
c5aa993b 3638 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3639 "Set overload resolution in evaluating C++ functions.",
3640 &setlist),
3641 &showlist);
3642 overload_resolution = 1;
3643
242bfc55
FN
3644 add_show_from_set (
3645 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3646 (char *) &unwind_on_signal_p,
3647"Set unwinding of stack if a signal is received while in a call dummy.\n\
3648The unwindonsignal lets the user determine what gdb should do if a signal\n\
3649is received while in a function called from gdb (call dummy). If set, gdb\n\
3650unwinds the stack and restore the context to what as it was before the call.\n\
3651The default is to stop in the frame where the signal was received.", &setlist),
3652 &showlist);
c906108c 3653}
This page took 0.206335 seconds and 4 git commands to generate.