add xfail for "print u_var" test in gdb.ada/packed_array.exp
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 5 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
0c3acc09 38#include "ada-lang.h"
c906108c
SS
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
777ea8f1 44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
45 int len, int *errnoptr);
46
a14ed312 47static void show_print (char *, int);
c906108c 48
a14ed312 49static void set_print (char *, int);
c906108c 50
a14ed312 51static void set_radix (char *, int);
c906108c 52
a14ed312 53static void show_radix (char *, int);
c906108c 54
a14ed312 55static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 56
a14ed312 57static void set_input_radix_1 (int, unsigned);
c906108c 58
a14ed312 59static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 60
a14ed312 61static void set_output_radix_1 (int, unsigned);
c906108c 62
a14ed312 63void _initialize_valprint (void);
c906108c 64
581e13c1 65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
a6bac58e
TT
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
79a45b7d
TT
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
920d2a44
AC
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
3e43a32a
MS
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
920d2a44
AC
123 value);
124}
125
c906108c
SS
126
127/* Default input and output radixes, and output format letter. */
128
129unsigned input_radix = 10;
920d2a44
AC
130static void
131show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133{
3e43a32a
MS
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
136 value);
137}
138
c906108c 139unsigned output_radix = 10;
920d2a44
AC
140static void
141show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
3e43a32a
MS
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
146 value);
147}
c906108c 148
e79af960
JB
149/* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
e79af960
JB
152static void
153show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157}
158
c906108c
SS
159/* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
581e13c1 161 print routines. */
c906108c 162
920d2a44
AC
163static void
164show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169}
c906108c 170
581e13c1 171/* If nonzero, stops printing of char arrays at first null. */
c906108c 172
920d2a44
AC
173static void
174show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
3e43a32a
MS
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
920d2a44
AC
180 value);
181}
c906108c 182
581e13c1 183/* Controls pretty printing of structures. */
c906108c 184
920d2a44
AC
185static void
186show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188{
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190}
c906108c
SS
191
192/* Controls pretty printing of arrays. */
193
920d2a44
AC
194static void
195show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199}
c906108c
SS
200
201/* If nonzero, causes unions inside structures or other unions to be
581e13c1 202 printed. */
c906108c 203
920d2a44
AC
204static void
205show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207{
3e43a32a
MS
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
210 value);
211}
c906108c 212
581e13c1 213/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 214
920d2a44
AC
215static void
216show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218{
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220}
c906108c 221\f
c5aa993b 222
a6bac58e
TT
223/* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227static int
228scalar_type_p (struct type *type)
229{
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248}
249
0e03807e
TT
250/* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260static int
261valprint_check_validity (struct ui_file *stream,
262 struct type *type,
4e07d55f 263 int embedded_offset,
0e03807e
TT
264 const struct value *val)
265{
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
4e07d55f
PA
272 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 274 {
585fdaa1 275 val_print_optimized_out (stream);
0e03807e
TT
276 return 0;
277 }
8cf6f0b1 278
4e07d55f 279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
4e07d55f
PA
285
286 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
287 {
288 val_print_unavailable (stream);
289 return 0;
290 }
0e03807e
TT
291 }
292
293 return 1;
294}
295
585fdaa1
PA
296void
297val_print_optimized_out (struct ui_file *stream)
298{
299 fprintf_filtered (stream, _("<optimized out>"));
300}
301
4e07d55f
PA
302void
303val_print_unavailable (struct ui_file *stream)
304{
305 fprintf_filtered (stream, _("<unavailable>"));
306}
307
8af8e3bc
PA
308void
309val_print_invalid_address (struct ui_file *stream)
310{
311 fprintf_filtered (stream, _("<invalid address>"));
312}
313
32b72a42
PA
314/* Print using the given LANGUAGE the data of type TYPE located at
315 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
316 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
317 STREAM according to OPTIONS. VAL is the whole object that came
318 from ADDRESS. VALADDR must point to the head of VAL's contents
319 buffer.
320
321 The language printers will pass down an adjusted EMBEDDED_OFFSET to
322 further helper subroutines as subfields of TYPE are printed. In
323 such cases, VALADDR is passed down unadjusted, as well as VAL, so
324 that VAL can be queried for metadata about the contents data being
325 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
326 buffer. For example: "has this field been optimized out", or "I'm
327 printing an object while inspecting a traceframe; has this
328 particular piece of data been collected?".
329
330 RECURSE indicates the amount of indentation to supply before
331 continuation lines; this amount is roughly twice the value of
332 RECURSE.
333
334 If the data is printed as a string, returns the number of string
335 characters printed. */
c906108c
SS
336
337int
fc1a4b47 338val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 339 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 340 const struct value *val,
79a45b7d 341 const struct value_print_options *options,
d8ca156b 342 const struct language_defn *language)
c906108c 343{
19ca80ba
DJ
344 volatile struct gdb_exception except;
345 int ret = 0;
79a45b7d 346 struct value_print_options local_opts = *options;
c906108c 347 struct type *real_type = check_typedef (type);
79a45b7d
TT
348
349 if (local_opts.pretty == Val_pretty_default)
350 local_opts.pretty = (local_opts.prettyprint_structs
351 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 352
c906108c
SS
353 QUIT;
354
355 /* Ensure that the type is complete and not just a stub. If the type is
356 only a stub and we can't find and substitute its complete type, then
357 print appropriate string and return. */
358
74a9bb82 359 if (TYPE_STUB (real_type))
c906108c 360 {
0e03807e 361 fprintf_filtered (stream, _("<incomplete type>"));
c906108c
SS
362 gdb_flush (stream);
363 return (0);
364 }
c5aa993b 365
0e03807e
TT
366 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
367 return 0;
368
a6bac58e
TT
369 if (!options->raw)
370 {
371 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
0e03807e
TT
372 address, stream, recurse,
373 val, options, language);
a6bac58e
TT
374 if (ret)
375 return ret;
376 }
377
378 /* Handle summary mode. If the value is a scalar, print it;
379 otherwise, print an ellipsis. */
380 if (options->summary && !scalar_type_p (type))
381 {
382 fprintf_filtered (stream, "...");
383 return 0;
384 }
385
19ca80ba
DJ
386 TRY_CATCH (except, RETURN_MASK_ERROR)
387 {
d8ca156b 388 ret = language->la_val_print (type, valaddr, embedded_offset, address,
0e03807e
TT
389 stream, recurse, val,
390 &local_opts);
19ca80ba
DJ
391 }
392 if (except.reason < 0)
393 fprintf_filtered (stream, _("<error reading variable>"));
394
395 return ret;
c906108c
SS
396}
397
806048c6
DJ
398/* Check whether the value VAL is printable. Return 1 if it is;
399 return 0 and print an appropriate error message to STREAM if it
400 is not. */
c906108c 401
806048c6
DJ
402static int
403value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
404{
405 if (val == 0)
406 {
806048c6 407 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
408 return 0;
409 }
806048c6 410
0e03807e 411 if (value_entirely_optimized_out (val))
c906108c 412 {
585fdaa1 413 val_print_optimized_out (stream);
c906108c
SS
414 return 0;
415 }
806048c6 416
bc3b79fd
TJB
417 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
418 {
419 fprintf_filtered (stream, _("<internal function %s>"),
420 value_internal_function_name (val));
421 return 0;
422 }
423
806048c6
DJ
424 return 1;
425}
426
d8ca156b 427/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 428 to OPTIONS.
806048c6
DJ
429
430 If the data are a string pointer, returns the number of string characters
431 printed.
432
433 This is a preferable interface to val_print, above, because it uses
434 GDB's value mechanism. */
435
436int
79a45b7d
TT
437common_val_print (struct value *val, struct ui_file *stream, int recurse,
438 const struct value_print_options *options,
d8ca156b 439 const struct language_defn *language)
806048c6
DJ
440{
441 if (!value_check_printable (val, stream))
442 return 0;
443
0c3acc09
JB
444 if (language->la_language == language_ada)
445 /* The value might have a dynamic type, which would cause trouble
446 below when trying to extract the value contents (since the value
447 size is determined from the type size which is unknown). So
448 get a fixed representation of our value. */
449 val = ada_to_fixed_value (val);
450
0e03807e 451 return val_print (value_type (val), value_contents_for_printing (val),
42ae5230 452 value_embedded_offset (val), value_address (val),
0e03807e
TT
453 stream, recurse,
454 val, options, language);
806048c6
DJ
455}
456
7348c5e1
JB
457/* Print on stream STREAM the value VAL according to OPTIONS. The value
458 is printed using the current_language syntax.
459
460 If the object printed is a string pointer, return the number of string
461 bytes printed. */
806048c6
DJ
462
463int
79a45b7d
TT
464value_print (struct value *val, struct ui_file *stream,
465 const struct value_print_options *options)
806048c6
DJ
466{
467 if (!value_check_printable (val, stream))
468 return 0;
469
a6bac58e
TT
470 if (!options->raw)
471 {
472 int r = apply_val_pretty_printer (value_type (val),
0e03807e 473 value_contents_for_printing (val),
a6bac58e
TT
474 value_embedded_offset (val),
475 value_address (val),
0e03807e
TT
476 stream, 0,
477 val, options, current_language);
a109c7c1 478
a6bac58e
TT
479 if (r)
480 return r;
481 }
482
79a45b7d 483 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
484}
485
486/* Called by various <lang>_val_print routines to print
487 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
488 value. STREAM is where to print the value. */
489
490void
fc1a4b47 491val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 492 struct ui_file *stream)
c906108c 493{
50810684 494 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 495
c906108c
SS
496 if (TYPE_LENGTH (type) > sizeof (LONGEST))
497 {
498 LONGEST val;
499
500 if (TYPE_UNSIGNED (type)
501 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 502 byte_order, &val))
c906108c
SS
503 {
504 print_longest (stream, 'u', 0, val);
505 }
506 else
507 {
508 /* Signed, or we couldn't turn an unsigned value into a
509 LONGEST. For signed values, one could assume two's
510 complement (a reasonable assumption, I think) and do
511 better than this. */
512 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 513 TYPE_LENGTH (type), byte_order);
c906108c
SS
514 }
515 }
516 else
517 {
c906108c
SS
518 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
519 unpack_long (type, valaddr));
c906108c
SS
520 }
521}
522
4f2aea11
MK
523void
524val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
525 struct ui_file *stream)
526{
befae759 527 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
528 int bitpos, nfields = TYPE_NFIELDS (type);
529
530 fputs_filtered ("[ ", stream);
531 for (bitpos = 0; bitpos < nfields; bitpos++)
532 {
316703b9
MK
533 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
534 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
535 {
536 if (TYPE_FIELD_NAME (type, bitpos))
537 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
538 else
539 fprintf_filtered (stream, "#%d ", bitpos);
540 }
541 }
542 fputs_filtered ("]", stream);
ab2188aa
PA
543
544/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
545 according to OPTIONS and SIZE on STREAM. Format i is not supported
546 at this level.
547
548 This is how the elements of an array or structure are printed
549 with a format. */
550}
551
552void
553val_print_scalar_formatted (struct type *type,
554 const gdb_byte *valaddr, int embedded_offset,
555 const struct value *val,
556 const struct value_print_options *options,
557 int size,
558 struct ui_file *stream)
559{
560 gdb_assert (val != NULL);
561 gdb_assert (valaddr == value_contents_for_printing_const (val));
562
563 /* If we get here with a string format, try again without it. Go
564 all the way back to the language printers, which may call us
565 again. */
566 if (options->format == 's')
567 {
568 struct value_print_options opts = *options;
569 opts.format = 0;
570 opts.deref_ref = 0;
571 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
572 current_language);
573 return;
574 }
575
576 /* A scalar object that does not have all bits available can't be
577 printed, because all bits contribute to its representation. */
578 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
579 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
580 val_print_optimized_out (stream);
4e07d55f
PA
581 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
582 val_print_unavailable (stream);
ab2188aa
PA
583 else
584 print_scalar_formatted (valaddr + embedded_offset, type,
585 options, size, stream);
4f2aea11
MK
586}
587
c906108c
SS
588/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
589 The raison d'etre of this function is to consolidate printing of
581e13c1 590 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 591 from print_scalar_formatted(). Numbers are printed using C
581e13c1 592 format.
bb599908
PH
593
594 USE_C_FORMAT means to use C format in all cases. Without it,
595 'o' and 'x' format do not include the standard C radix prefix
596 (leading 0 or 0x).
597
598 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
599 and was intended to request formating according to the current
600 language and would be used for most integers that GDB prints. The
601 exceptional cases were things like protocols where the format of
602 the integer is a protocol thing, not a user-visible thing). The
603 parameter remains to preserve the information of what things might
604 be printed with language-specific format, should we ever resurrect
581e13c1 605 that capability. */
c906108c
SS
606
607void
bb599908 608print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 609 LONGEST val_long)
c906108c 610{
2bfb72ee
AC
611 const char *val;
612
c906108c
SS
613 switch (format)
614 {
615 case 'd':
bb599908 616 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 617 case 'u':
bb599908 618 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 619 case 'x':
bb599908 620 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 621 case 'b':
bb599908 622 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 623 case 'h':
bb599908 624 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 625 case 'w':
bb599908 626 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 627 case 'g':
bb599908 628 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
629 break;
630 case 'o':
bb599908 631 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 632 default:
3e43a32a
MS
633 internal_error (__FILE__, __LINE__,
634 _("failed internal consistency check"));
bb599908 635 }
2bfb72ee 636 fputs_filtered (val, stream);
c906108c
SS
637}
638
c906108c
SS
639/* This used to be a macro, but I don't think it is called often enough
640 to merit such treatment. */
641/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
642 arguments to a function, number in a value history, register number, etc.)
643 where the value must not be larger than can fit in an int. */
644
645int
fba45db2 646longest_to_int (LONGEST arg)
c906108c 647{
581e13c1 648 /* Let the compiler do the work. */
c906108c
SS
649 int rtnval = (int) arg;
650
581e13c1 651 /* Check for overflows or underflows. */
c906108c
SS
652 if (sizeof (LONGEST) > sizeof (int))
653 {
654 if (rtnval != arg)
655 {
8a3fe4f8 656 error (_("Value out of range."));
c906108c
SS
657 }
658 }
659 return (rtnval);
660}
661
a73c86fb
AC
662/* Print a floating point value of type TYPE (not always a
663 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
664
665void
fc1a4b47 666print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 667 struct ui_file *stream)
c906108c
SS
668{
669 DOUBLEST doub;
670 int inv;
a73c86fb 671 const struct floatformat *fmt = NULL;
c906108c 672 unsigned len = TYPE_LENGTH (type);
20389057 673 enum float_kind kind;
c5aa993b 674
a73c86fb
AC
675 /* If it is a floating-point, check for obvious problems. */
676 if (TYPE_CODE (type) == TYPE_CODE_FLT)
677 fmt = floatformat_from_type (type);
20389057 678 if (fmt != NULL)
39424bef 679 {
20389057
DJ
680 kind = floatformat_classify (fmt, valaddr);
681 if (kind == float_nan)
682 {
683 if (floatformat_is_negative (fmt, valaddr))
684 fprintf_filtered (stream, "-");
685 fprintf_filtered (stream, "nan(");
686 fputs_filtered ("0x", stream);
687 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
688 fprintf_filtered (stream, ")");
689 return;
690 }
691 else if (kind == float_infinite)
692 {
693 if (floatformat_is_negative (fmt, valaddr))
694 fputs_filtered ("-", stream);
695 fputs_filtered ("inf", stream);
696 return;
697 }
7355ddba 698 }
c906108c 699
a73c86fb
AC
700 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
701 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
702 needs to be used as that takes care of any necessary type
703 conversions. Such conversions are of course direct to DOUBLEST
704 and disregard any possible target floating point limitations.
705 For instance, a u64 would be converted and displayed exactly on a
706 host with 80 bit DOUBLEST but with loss of information on a host
707 with 64 bit DOUBLEST. */
c2f05ac9 708
c906108c
SS
709 doub = unpack_double (type, valaddr, &inv);
710 if (inv)
711 {
712 fprintf_filtered (stream, "<invalid float value>");
713 return;
714 }
715
39424bef
MK
716 /* FIXME: kettenis/2001-01-20: The following code makes too much
717 assumptions about the host and target floating point format. */
718
a73c86fb 719 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 720 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
721 instead uses the type's length to determine the precision of the
722 floating-point value being printed. */
c2f05ac9 723
c906108c 724 if (len < sizeof (double))
c5aa993b 725 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 726 else if (len == sizeof (double))
c5aa993b 727 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
728 else
729#ifdef PRINTF_HAS_LONG_DOUBLE
730 fprintf_filtered (stream, "%.35Lg", doub);
731#else
39424bef
MK
732 /* This at least wins with values that are representable as
733 doubles. */
c906108c
SS
734 fprintf_filtered (stream, "%.17g", (double) doub);
735#endif
736}
737
7678ef8f
TJB
738void
739print_decimal_floating (const gdb_byte *valaddr, struct type *type,
740 struct ui_file *stream)
741{
e17a4113 742 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
743 char decstr[MAX_DECIMAL_STRING];
744 unsigned len = TYPE_LENGTH (type);
745
e17a4113 746 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
747 fputs_filtered (decstr, stream);
748 return;
749}
750
c5aa993b 751void
fc1a4b47 752print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 753 unsigned len, enum bfd_endian byte_order)
c906108c
SS
754{
755
756#define BITS_IN_BYTES 8
757
fc1a4b47 758 const gdb_byte *p;
745b8ca0 759 unsigned int i;
c5aa993b 760 int b;
c906108c
SS
761
762 /* Declared "int" so it will be signed.
581e13c1
MS
763 This ensures that right shift will shift in zeros. */
764
c5aa993b 765 const int mask = 0x080;
c906108c
SS
766
767 /* FIXME: We should be not printing leading zeroes in most cases. */
768
d44e8473 769 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
770 {
771 for (p = valaddr;
772 p < valaddr + len;
773 p++)
774 {
c5aa993b 775 /* Every byte has 8 binary characters; peel off
581e13c1
MS
776 and print from the MSB end. */
777
c5aa993b
JM
778 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
779 {
780 if (*p & (mask >> i))
781 b = 1;
782 else
783 b = 0;
784
785 fprintf_filtered (stream, "%1d", b);
786 }
c906108c
SS
787 }
788 }
789 else
790 {
791 for (p = valaddr + len - 1;
792 p >= valaddr;
793 p--)
794 {
c5aa993b
JM
795 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
796 {
797 if (*p & (mask >> i))
798 b = 1;
799 else
800 b = 0;
801
802 fprintf_filtered (stream, "%1d", b);
803 }
c906108c
SS
804 }
805 }
c906108c
SS
806}
807
808/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
809 Print it in octal on stream or format it in buf. */
810
c906108c 811void
fc1a4b47 812print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 813 unsigned len, enum bfd_endian byte_order)
c906108c 814{
fc1a4b47 815 const gdb_byte *p;
c906108c 816 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
817 int cycle;
818
c906108c
SS
819 /* FIXME: We should be not printing leading zeroes in most cases. */
820
821
822 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
823 * the extra bits, which cycle every three bytes:
824 *
825 * Byte side: 0 1 2 3
826 * | | | |
827 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
828 *
829 * Octal side: 0 1 carry 3 4 carry ...
830 *
831 * Cycle number: 0 1 2
832 *
833 * But of course we are printing from the high side, so we have to
834 * figure out where in the cycle we are so that we end up with no
835 * left over bits at the end.
836 */
837#define BITS_IN_OCTAL 3
838#define HIGH_ZERO 0340
839#define LOW_ZERO 0016
840#define CARRY_ZERO 0003
841#define HIGH_ONE 0200
842#define MID_ONE 0160
843#define LOW_ONE 0016
844#define CARRY_ONE 0001
845#define HIGH_TWO 0300
846#define MID_TWO 0070
847#define LOW_TWO 0007
848
849 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
850 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
851
c906108c
SS
852 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
853 carry = 0;
c5aa993b 854
bb599908 855 fputs_filtered ("0", stream);
d44e8473 856 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
857 {
858 for (p = valaddr;
859 p < valaddr + len;
860 p++)
861 {
c5aa993b
JM
862 switch (cycle)
863 {
864 case 0:
581e13c1
MS
865 /* No carry in, carry out two bits. */
866
c5aa993b
JM
867 octa1 = (HIGH_ZERO & *p) >> 5;
868 octa2 = (LOW_ZERO & *p) >> 2;
869 carry = (CARRY_ZERO & *p);
870 fprintf_filtered (stream, "%o", octa1);
871 fprintf_filtered (stream, "%o", octa2);
872 break;
873
874 case 1:
581e13c1
MS
875 /* Carry in two bits, carry out one bit. */
876
c5aa993b
JM
877 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
878 octa2 = (MID_ONE & *p) >> 4;
879 octa3 = (LOW_ONE & *p) >> 1;
880 carry = (CARRY_ONE & *p);
881 fprintf_filtered (stream, "%o", octa1);
882 fprintf_filtered (stream, "%o", octa2);
883 fprintf_filtered (stream, "%o", octa3);
884 break;
885
886 case 2:
581e13c1
MS
887 /* Carry in one bit, no carry out. */
888
c5aa993b
JM
889 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
890 octa2 = (MID_TWO & *p) >> 3;
891 octa3 = (LOW_TWO & *p);
892 carry = 0;
893 fprintf_filtered (stream, "%o", octa1);
894 fprintf_filtered (stream, "%o", octa2);
895 fprintf_filtered (stream, "%o", octa3);
896 break;
897
898 default:
8a3fe4f8 899 error (_("Internal error in octal conversion;"));
c5aa993b
JM
900 }
901
902 cycle++;
903 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
904 }
905 }
906 else
907 {
908 for (p = valaddr + len - 1;
909 p >= valaddr;
910 p--)
911 {
c5aa993b
JM
912 switch (cycle)
913 {
914 case 0:
915 /* Carry out, no carry in */
581e13c1 916
c5aa993b
JM
917 octa1 = (HIGH_ZERO & *p) >> 5;
918 octa2 = (LOW_ZERO & *p) >> 2;
919 carry = (CARRY_ZERO & *p);
920 fprintf_filtered (stream, "%o", octa1);
921 fprintf_filtered (stream, "%o", octa2);
922 break;
923
924 case 1:
925 /* Carry in, carry out */
581e13c1 926
c5aa993b
JM
927 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
928 octa2 = (MID_ONE & *p) >> 4;
929 octa3 = (LOW_ONE & *p) >> 1;
930 carry = (CARRY_ONE & *p);
931 fprintf_filtered (stream, "%o", octa1);
932 fprintf_filtered (stream, "%o", octa2);
933 fprintf_filtered (stream, "%o", octa3);
934 break;
935
936 case 2:
937 /* Carry in, no carry out */
581e13c1 938
c5aa993b
JM
939 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
940 octa2 = (MID_TWO & *p) >> 3;
941 octa3 = (LOW_TWO & *p);
942 carry = 0;
943 fprintf_filtered (stream, "%o", octa1);
944 fprintf_filtered (stream, "%o", octa2);
945 fprintf_filtered (stream, "%o", octa3);
946 break;
947
948 default:
8a3fe4f8 949 error (_("Internal error in octal conversion;"));
c5aa993b
JM
950 }
951
952 cycle++;
953 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
954 }
955 }
956
c906108c
SS
957}
958
959/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
960 Print it in decimal on stream or format it in buf. */
961
c906108c 962void
fc1a4b47 963print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 964 unsigned len, enum bfd_endian byte_order)
c906108c
SS
965{
966#define TEN 10
c5aa993b 967#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
968#define CARRY_LEFT( x ) ((x) % TEN)
969#define SHIFT( x ) ((x) << 4)
c906108c
SS
970#define LOW_NIBBLE( x ) ( (x) & 0x00F)
971#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
972
fc1a4b47 973 const gdb_byte *p;
c906108c 974 unsigned char *digits;
c5aa993b
JM
975 int carry;
976 int decimal_len;
977 int i, j, decimal_digits;
978 int dummy;
979 int flip;
980
c906108c 981 /* Base-ten number is less than twice as many digits
581e13c1
MS
982 as the base 16 number, which is 2 digits per byte. */
983
c906108c 984 decimal_len = len * 2 * 2;
3c37485b 985 digits = xmalloc (decimal_len);
c906108c 986
c5aa993b
JM
987 for (i = 0; i < decimal_len; i++)
988 {
c906108c 989 digits[i] = 0;
c5aa993b 990 }
c906108c 991
c906108c
SS
992 /* Ok, we have an unknown number of bytes of data to be printed in
993 * decimal.
994 *
995 * Given a hex number (in nibbles) as XYZ, we start by taking X and
996 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
997 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
998 *
999 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1000 * the individual digits are > 10.
c906108c
SS
1001 *
1002 * Outer loop is per nibble (hex digit) of input, from MSD end to
1003 * LSD end.
1004 */
c5aa993b 1005 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1006 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1007 flip = 0;
d44e8473 1008 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1009 {
c906108c
SS
1010 /*
1011 * Multiply current base-ten number by 16 in place.
1012 * Each digit was between 0 and 9, now is between
1013 * 0 and 144.
1014 */
c5aa993b
JM
1015 for (j = 0; j < decimal_digits; j++)
1016 {
1017 digits[j] = SHIFT (digits[j]);
1018 }
1019
c906108c
SS
1020 /* Take the next nibble off the input and add it to what
1021 * we've got in the LSB position. Bottom 'digit' is now
1022 * between 0 and 159.
1023 *
1024 * "flip" is used to run this loop twice for each byte.
1025 */
c5aa993b
JM
1026 if (flip == 0)
1027 {
581e13c1
MS
1028 /* Take top nibble. */
1029
c5aa993b
JM
1030 digits[0] += HIGH_NIBBLE (*p);
1031 flip = 1;
1032 }
1033 else
1034 {
581e13c1
MS
1035 /* Take low nibble and bump our pointer "p". */
1036
c5aa993b 1037 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1038 if (byte_order == BFD_ENDIAN_BIG)
1039 p++;
1040 else
1041 p--;
c5aa993b
JM
1042 flip = 0;
1043 }
c906108c
SS
1044
1045 /* Re-decimalize. We have to do this often enough
1046 * that we don't overflow, but once per nibble is
1047 * overkill. Easier this way, though. Note that the
1048 * carry is often larger than 10 (e.g. max initial
1049 * carry out of lowest nibble is 15, could bubble all
1050 * the way up greater than 10). So we have to do
1051 * the carrying beyond the last current digit.
1052 */
1053 carry = 0;
c5aa993b
JM
1054 for (j = 0; j < decimal_len - 1; j++)
1055 {
1056 digits[j] += carry;
1057
1058 /* "/" won't handle an unsigned char with
1059 * a value that if signed would be negative.
1060 * So extend to longword int via "dummy".
1061 */
1062 dummy = digits[j];
1063 carry = CARRY_OUT (dummy);
1064 digits[j] = CARRY_LEFT (dummy);
1065
1066 if (j >= decimal_digits && carry == 0)
1067 {
1068 /*
1069 * All higher digits are 0 and we
1070 * no longer have a carry.
1071 *
1072 * Note: "j" is 0-based, "decimal_digits" is
1073 * 1-based.
1074 */
1075 decimal_digits = j + 1;
1076 break;
1077 }
1078 }
1079 }
c906108c
SS
1080
1081 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1082 the "decimal_digits" actual digits. Print! */
1083
c5aa993b
JM
1084 for (i = decimal_digits - 1; i >= 0; i--)
1085 {
1086 fprintf_filtered (stream, "%1d", digits[i]);
1087 }
b8c9b27d 1088 xfree (digits);
c906108c
SS
1089}
1090
1091/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1092
6b9acc27 1093void
fc1a4b47 1094print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1095 unsigned len, enum bfd_endian byte_order)
c906108c 1096{
fc1a4b47 1097 const gdb_byte *p;
c906108c
SS
1098
1099 /* FIXME: We should be not printing leading zeroes in most cases. */
1100
bb599908 1101 fputs_filtered ("0x", stream);
d44e8473 1102 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1103 {
1104 for (p = valaddr;
1105 p < valaddr + len;
1106 p++)
1107 {
1108 fprintf_filtered (stream, "%02x", *p);
1109 }
1110 }
1111 else
1112 {
1113 for (p = valaddr + len - 1;
1114 p >= valaddr;
1115 p--)
1116 {
1117 fprintf_filtered (stream, "%02x", *p);
1118 }
1119 }
c906108c
SS
1120}
1121
3e43a32a 1122/* VALADDR points to a char integer of LEN bytes.
581e13c1 1123 Print it out in appropriate language form on stream.
6b9acc27
JJ
1124 Omit any leading zero chars. */
1125
1126void
6c7a06a3
TT
1127print_char_chars (struct ui_file *stream, struct type *type,
1128 const gdb_byte *valaddr,
d44e8473 1129 unsigned len, enum bfd_endian byte_order)
6b9acc27 1130{
fc1a4b47 1131 const gdb_byte *p;
6b9acc27 1132
d44e8473 1133 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1134 {
1135 p = valaddr;
1136 while (p < valaddr + len - 1 && *p == 0)
1137 ++p;
1138
1139 while (p < valaddr + len)
1140 {
6c7a06a3 1141 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1142 ++p;
1143 }
1144 }
1145 else
1146 {
1147 p = valaddr + len - 1;
1148 while (p > valaddr && *p == 0)
1149 --p;
1150
1151 while (p >= valaddr)
1152 {
6c7a06a3 1153 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1154 --p;
1155 }
1156 }
1157}
1158
79a45b7d 1159/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1160 at INDEX of an array whose index type is INDEX_TYPE. */
1161
1162void
1163maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1164 struct ui_file *stream,
1165 const struct value_print_options *options)
e79af960
JB
1166{
1167 struct value *index_value;
1168
79a45b7d 1169 if (!options->print_array_indexes)
e79af960
JB
1170 return;
1171
1172 index_value = value_from_longest (index_type, index);
1173
79a45b7d
TT
1174 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1175}
e79af960 1176
c906108c 1177/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1178 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1179
c5aa993b
JM
1180 (FIXME?) Assumes array element separator is a comma, which is correct
1181 for all languages currently handled.
1182 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1183 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1184
1185void
490f124f
PA
1186val_print_array_elements (struct type *type,
1187 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1188 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1189 int recurse,
0e03807e 1190 const struct value *val,
79a45b7d 1191 const struct value_print_options *options,
fba45db2 1192 unsigned int i)
c906108c
SS
1193{
1194 unsigned int things_printed = 0;
1195 unsigned len;
e79af960 1196 struct type *elttype, *index_type;
c906108c
SS
1197 unsigned eltlen;
1198 /* Position of the array element we are examining to see
1199 whether it is repeated. */
1200 unsigned int rep1;
1201 /* Number of repetitions we have detected so far. */
1202 unsigned int reps;
dbc98a8b 1203 LONGEST low_bound, high_bound;
c5aa993b 1204
c906108c
SS
1205 elttype = TYPE_TARGET_TYPE (type);
1206 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1207 index_type = TYPE_INDEX_TYPE (type);
c906108c 1208
dbc98a8b 1209 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b
JB
1210 {
1211 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1212 But we have to be a little extra careful, because some languages
1213 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1214 empty arrays. In that situation, the array length is just zero,
1215 not negative! */
1216 if (low_bound > high_bound)
1217 len = 0;
1218 else
1219 len = high_bound - low_bound + 1;
1220 }
e936309c
JB
1221 else
1222 {
dbc98a8b
KW
1223 warning (_("unable to get bounds of array, assuming null array"));
1224 low_bound = 0;
1225 len = 0;
168de233
JB
1226 }
1227
c906108c
SS
1228 annotate_array_section_begin (i, elttype);
1229
79a45b7d 1230 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1231 {
1232 if (i != 0)
1233 {
79a45b7d 1234 if (options->prettyprint_arrays)
c906108c
SS
1235 {
1236 fprintf_filtered (stream, ",\n");
1237 print_spaces_filtered (2 + 2 * recurse, stream);
1238 }
1239 else
1240 {
1241 fprintf_filtered (stream, ", ");
1242 }
1243 }
1244 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1245 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1246 stream, options);
c906108c
SS
1247
1248 rep1 = i + 1;
1249 reps = 1;
490f124f 1250 while (rep1 < len
c8c1c22f
PA
1251 && value_available_contents_eq (val,
1252 embedded_offset + i * eltlen,
1253 val,
1254 embedded_offset + rep1 * eltlen,
1255 eltlen))
c906108c
SS
1256 {
1257 ++reps;
1258 ++rep1;
1259 }
1260
79a45b7d 1261 if (reps > options->repeat_count_threshold)
c906108c 1262 {
490f124f
PA
1263 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1264 address, stream, recurse + 1, val, options,
1265 current_language);
c906108c
SS
1266 annotate_elt_rep (reps);
1267 fprintf_filtered (stream, " <repeats %u times>", reps);
1268 annotate_elt_rep_end ();
1269
1270 i = rep1 - 1;
79a45b7d 1271 things_printed += options->repeat_count_threshold;
c906108c
SS
1272 }
1273 else
1274 {
490f124f
PA
1275 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1276 address,
0e03807e 1277 stream, recurse + 1, val, options, current_language);
c906108c
SS
1278 annotate_elt ();
1279 things_printed++;
1280 }
1281 }
1282 annotate_array_section_end ();
1283 if (i < len)
1284 {
1285 fprintf_filtered (stream, "...");
1286 }
1287}
1288
917317f4
JM
1289/* Read LEN bytes of target memory at address MEMADDR, placing the
1290 results in GDB's memory at MYADDR. Returns a count of the bytes
1291 actually read, and optionally an errno value in the location
581e13c1 1292 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
917317f4
JM
1293
1294/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1295 function be eliminated. */
1296
1297static int
3e43a32a
MS
1298partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1299 int len, int *errnoptr)
917317f4 1300{
581e13c1
MS
1301 int nread; /* Number of bytes actually read. */
1302 int errcode; /* Error from last read. */
917317f4 1303
581e13c1 1304 /* First try a complete read. */
917317f4
JM
1305 errcode = target_read_memory (memaddr, myaddr, len);
1306 if (errcode == 0)
1307 {
581e13c1 1308 /* Got it all. */
917317f4
JM
1309 nread = len;
1310 }
1311 else
1312 {
581e13c1 1313 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1314 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1315 {
1316 errcode = target_read_memory (memaddr++, myaddr++, 1);
1317 }
581e13c1 1318 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1319 if (errcode != 0)
1320 {
1321 nread--;
1322 }
1323 }
1324 if (errnoptr != NULL)
1325 {
1326 *errnoptr = errcode;
1327 }
1328 return (nread);
1329}
1330
ae6a3a4c
TJB
1331/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1332 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1333 allocated buffer containing the string, which the caller is responsible to
1334 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1335 success, or errno on failure.
1336
1337 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1338 the middle or end of the string). If LEN is -1, stops at the first
1339 null character (not necessarily the first null byte) up to a maximum
1340 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1341 characters as possible from the string.
1342
1343 Unless an exception is thrown, BUFFER will always be allocated, even on
1344 failure. In this case, some characters might have been read before the
1345 failure happened. Check BYTES_READ to recognize this situation.
1346
1347 Note: There was a FIXME asking to make this code use target_read_string,
1348 but this function is more general (can read past null characters, up to
581e13c1 1349 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1350 so it is more tested. Perhaps callers of target_read_string should use
1351 this function instead? */
c906108c
SS
1352
1353int
ae6a3a4c 1354read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1355 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1356{
ae6a3a4c
TJB
1357 int found_nul; /* Non-zero if we found the nul char. */
1358 int errcode; /* Errno returned from bad reads. */
1359 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1360 unsigned int chunksize; /* Size of each fetch, in chars. */
3e43a32a
MS
1361 gdb_byte *bufptr; /* Pointer to next available byte in
1362 buffer. */
ae6a3a4c
TJB
1363 gdb_byte *limit; /* First location past end of fetch buffer. */
1364 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1365
1366 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1367 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1368 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1369 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1370 well read in blocks that are large enough to be efficient, but not so
1371 large as to be slow if fetchlimit happens to be large. So we choose the
1372 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1373 200 is way too big for remote debugging over a serial line. */
1374
1375 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1376
ae6a3a4c
TJB
1377 /* Loop until we either have all the characters, or we encounter
1378 some error, such as bumping into the end of the address space. */
c906108c
SS
1379
1380 found_nul = 0;
b5096abe
PM
1381 *buffer = NULL;
1382
1383 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1384
1385 if (len > 0)
1386 {
ae6a3a4c
TJB
1387 *buffer = (gdb_byte *) xmalloc (len * width);
1388 bufptr = *buffer;
c906108c 1389
917317f4 1390 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1391 / width;
1392 addr += nfetch * width;
1393 bufptr += nfetch * width;
1394 }
1395 else if (len == -1)
1396 {
1397 unsigned long bufsize = 0;
ae6a3a4c 1398
c906108c
SS
1399 do
1400 {
1401 QUIT;
1402 nfetch = min (chunksize, fetchlimit - bufsize);
1403
ae6a3a4c
TJB
1404 if (*buffer == NULL)
1405 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1406 else
b5096abe
PM
1407 *buffer = (gdb_byte *) xrealloc (*buffer,
1408 (nfetch + bufsize) * width);
c906108c 1409
ae6a3a4c 1410 bufptr = *buffer + bufsize * width;
c906108c
SS
1411 bufsize += nfetch;
1412
ae6a3a4c 1413 /* Read as much as we can. */
917317f4 1414 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1415 / width;
c906108c 1416
ae6a3a4c 1417 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1418 to print. If found, we don't need to fetch any more. Note
1419 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1420 after the null character, or at the next character after the end
1421 of the buffer. */
c906108c
SS
1422
1423 limit = bufptr + nfetch * width;
1424 while (bufptr < limit)
1425 {
1426 unsigned long c;
1427
e17a4113 1428 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1429 addr += width;
1430 bufptr += width;
1431 if (c == 0)
1432 {
1433 /* We don't care about any error which happened after
ae6a3a4c 1434 the NUL terminator. */
c906108c
SS
1435 errcode = 0;
1436 found_nul = 1;
1437 break;
1438 }
1439 }
1440 }
c5aa993b 1441 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1442 && bufptr - *buffer < fetchlimit * width /* no overrun */
1443 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1444 }
1445 else
ae6a3a4c
TJB
1446 { /* Length of string is really 0! */
1447 /* We always allocate *buffer. */
1448 *buffer = bufptr = xmalloc (1);
c906108c
SS
1449 errcode = 0;
1450 }
1451
1452 /* bufptr and addr now point immediately beyond the last byte which we
1453 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1454 *bytes_read = bufptr - *buffer;
1455
1456 QUIT;
1457
1458 discard_cleanups (old_chain);
1459
1460 return errcode;
1461}
1462
1463/* Print a string from the inferior, starting at ADDR and printing up to LEN
1464 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1465 stops at the first null byte, otherwise printing proceeds (including null
1466 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
1467 whichever is smaller. ENCODING is the name of the string's
1468 encoding. It can be NULL, in which case the target encoding is
1469 assumed. */
ae6a3a4c
TJB
1470
1471int
09ca9e2e
TT
1472val_print_string (struct type *elttype, const char *encoding,
1473 CORE_ADDR addr, int len,
6c7a06a3 1474 struct ui_file *stream,
ae6a3a4c
TJB
1475 const struct value_print_options *options)
1476{
1477 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1478 int errcode; /* Errno returned from bad reads. */
581e13c1 1479 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
1480 unsigned int fetchlimit; /* Maximum number of chars to print. */
1481 int bytes_read;
1482 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1483 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1484 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1485 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1486 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1487
1488 /* First we need to figure out the limit on the number of characters we are
1489 going to attempt to fetch and print. This is actually pretty simple. If
1490 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1491 LEN is -1, then the limit is print_max. This is true regardless of
1492 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1493 because finding the null byte (or available memory) is what actually
1494 limits the fetch. */
1495
3e43a32a
MS
1496 fetchlimit = (len == -1 ? options->print_max : min (len,
1497 options->print_max));
ae6a3a4c 1498
e17a4113
UW
1499 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1500 &buffer, &bytes_read);
ae6a3a4c
TJB
1501 old_chain = make_cleanup (xfree, buffer);
1502
1503 addr += bytes_read;
c906108c 1504
3e43a32a
MS
1505 /* We now have either successfully filled the buffer to fetchlimit,
1506 or terminated early due to an error or finding a null char when
1507 LEN is -1. */
ae6a3a4c
TJB
1508
1509 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1510 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1511 byte_order) == 0;
c906108c
SS
1512 if (len == -1 && !found_nul)
1513 {
777ea8f1 1514 gdb_byte *peekbuf;
c906108c 1515
ae6a3a4c 1516 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1517 to peek at the next character. If not successful, or it is not
1518 a null byte, then force ellipsis to be printed. */
c906108c 1519
777ea8f1 1520 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1521
1522 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1523 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1524 force_ellipsis = 1;
1525 }
ae6a3a4c 1526 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1527 {
1528 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1529 than the number of characters actually requested, always make us
ae6a3a4c 1530 print ellipsis. */
c906108c
SS
1531 force_ellipsis = 1;
1532 }
1533
c906108c
SS
1534 /* If we get an error before fetching anything, don't print a string.
1535 But if we fetch something and then get an error, print the string
1536 and then the error message. */
ae6a3a4c 1537 if (errcode == 0 || bytes_read > 0)
c906108c 1538 {
79a45b7d 1539 if (options->addressprint)
c906108c
SS
1540 {
1541 fputs_filtered (" ", stream);
1542 }
be759fcf 1543 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 1544 encoding, force_ellipsis, options);
c906108c
SS
1545 }
1546
1547 if (errcode != 0)
1548 {
1549 if (errcode == EIO)
1550 {
1551 fprintf_filtered (stream, " <Address ");
5af949e3 1552 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1553 fprintf_filtered (stream, " out of bounds>");
1554 }
1555 else
1556 {
1557 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1558 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1559 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1560 }
1561 }
ae6a3a4c 1562
c906108c
SS
1563 gdb_flush (stream);
1564 do_cleanups (old_chain);
ae6a3a4c
TJB
1565
1566 return (bytes_read / width);
c906108c 1567}
c906108c 1568\f
c5aa993b 1569
09e6485f
PA
1570/* The 'set input-radix' command writes to this auxiliary variable.
1571 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1572 it is left unchanged. */
1573
1574static unsigned input_radix_1 = 10;
1575
c906108c
SS
1576/* Validate an input or output radix setting, and make sure the user
1577 knows what they really did here. Radix setting is confusing, e.g.
1578 setting the input radix to "10" never changes it! */
1579
c906108c 1580static void
fba45db2 1581set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1582{
09e6485f 1583 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1584}
1585
c906108c 1586static void
fba45db2 1587set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1588{
1589 /* We don't currently disallow any input radix except 0 or 1, which don't
1590 make any mathematical sense. In theory, we can deal with any input
1591 radix greater than 1, even if we don't have unique digits for every
1592 value from 0 to radix-1, but in practice we lose on large radix values.
1593 We should either fix the lossage or restrict the radix range more.
581e13c1 1594 (FIXME). */
c906108c
SS
1595
1596 if (radix < 2)
1597 {
09e6485f 1598 input_radix_1 = input_radix;
8a3fe4f8 1599 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1600 radix);
1601 }
09e6485f 1602 input_radix_1 = input_radix = radix;
c906108c
SS
1603 if (from_tty)
1604 {
3e43a32a
MS
1605 printf_filtered (_("Input radix now set to "
1606 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1607 radix, radix, radix);
1608 }
1609}
1610
09e6485f
PA
1611/* The 'set output-radix' command writes to this auxiliary variable.
1612 If the requested radix is valid, OUTPUT_RADIX is updated,
1613 otherwise, it is left unchanged. */
1614
1615static unsigned output_radix_1 = 10;
1616
c906108c 1617static void
fba45db2 1618set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1619{
09e6485f 1620 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1621}
1622
1623static void
fba45db2 1624set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1625{
1626 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 1627 handle correctly, leaving the radix unchanged. */
c906108c
SS
1628 switch (radix)
1629 {
1630 case 16:
79a45b7d 1631 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1632 break;
1633 case 10:
79a45b7d 1634 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1635 break;
1636 case 8:
79a45b7d 1637 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1638 break;
1639 default:
09e6485f 1640 output_radix_1 = output_radix;
3e43a32a
MS
1641 error (_("Unsupported output radix ``decimal %u''; "
1642 "output radix unchanged."),
c906108c
SS
1643 radix);
1644 }
09e6485f 1645 output_radix_1 = output_radix = radix;
c906108c
SS
1646 if (from_tty)
1647 {
3e43a32a
MS
1648 printf_filtered (_("Output radix now set to "
1649 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1650 radix, radix, radix);
1651 }
1652}
1653
1654/* Set both the input and output radix at once. Try to set the output radix
1655 first, since it has the most restrictive range. An radix that is valid as
1656 an output radix is also valid as an input radix.
1657
1658 It may be useful to have an unusual input radix. If the user wishes to
1659 set an input radix that is not valid as an output radix, he needs to use
581e13c1 1660 the 'set input-radix' command. */
c906108c
SS
1661
1662static void
fba45db2 1663set_radix (char *arg, int from_tty)
c906108c
SS
1664{
1665 unsigned radix;
1666
bb518678 1667 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1668 set_output_radix_1 (0, radix);
1669 set_input_radix_1 (0, radix);
1670 if (from_tty)
1671 {
3e43a32a
MS
1672 printf_filtered (_("Input and output radices now set to "
1673 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1674 radix, radix, radix);
1675 }
1676}
1677
581e13c1 1678/* Show both the input and output radices. */
c906108c 1679
c906108c 1680static void
fba45db2 1681show_radix (char *arg, int from_tty)
c906108c
SS
1682{
1683 if (from_tty)
1684 {
1685 if (input_radix == output_radix)
1686 {
3e43a32a
MS
1687 printf_filtered (_("Input and output radices set to "
1688 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1689 input_radix, input_radix, input_radix);
1690 }
1691 else
1692 {
3e43a32a
MS
1693 printf_filtered (_("Input radix set to decimal "
1694 "%u, hex %x, octal %o.\n"),
c906108c 1695 input_radix, input_radix, input_radix);
3e43a32a
MS
1696 printf_filtered (_("Output radix set to decimal "
1697 "%u, hex %x, octal %o.\n"),
c906108c
SS
1698 output_radix, output_radix, output_radix);
1699 }
1700 }
1701}
c906108c 1702\f
c5aa993b 1703
c906108c 1704static void
fba45db2 1705set_print (char *arg, int from_tty)
c906108c
SS
1706{
1707 printf_unfiltered (
c5aa993b 1708 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1709 help_list (setprintlist, "set print ", -1, gdb_stdout);
1710}
1711
c906108c 1712static void
fba45db2 1713show_print (char *args, int from_tty)
c906108c
SS
1714{
1715 cmd_show_list (showprintlist, from_tty, "");
1716}
1717\f
1718void
fba45db2 1719_initialize_valprint (void)
c906108c 1720{
c906108c 1721 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1722 _("Generic command for setting how things print."),
c906108c 1723 &setprintlist, "set print ", 0, &setlist);
c5aa993b 1724 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 1725 /* Prefer set print to set prompt. */
c906108c
SS
1726 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1727
1728 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1729 _("Generic command for showing print settings."),
c906108c 1730 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1731 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1732 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1733
79a45b7d
TT
1734 add_setshow_uinteger_cmd ("elements", no_class,
1735 &user_print_options.print_max, _("\
35096d9d
AC
1736Set limit on string chars or array elements to print."), _("\
1737Show limit on string chars or array elements to print."), _("\
1738\"set print elements 0\" causes there to be no limit."),
1739 NULL,
920d2a44 1740 show_print_max,
35096d9d 1741 &setprintlist, &showprintlist);
c906108c 1742
79a45b7d
TT
1743 add_setshow_boolean_cmd ("null-stop", no_class,
1744 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1745Set printing of char arrays to stop at first null char."), _("\
1746Show printing of char arrays to stop at first null char."), NULL,
1747 NULL,
920d2a44 1748 show_stop_print_at_null,
5bf193a2 1749 &setprintlist, &showprintlist);
c906108c 1750
35096d9d 1751 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1752 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1753Set threshold for repeated print elements."), _("\
1754Show threshold for repeated print elements."), _("\
1755\"set print repeats 0\" causes all elements to be individually printed."),
1756 NULL,
920d2a44 1757 show_repeat_count_threshold,
35096d9d 1758 &setprintlist, &showprintlist);
c906108c 1759
79a45b7d
TT
1760 add_setshow_boolean_cmd ("pretty", class_support,
1761 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1762Set prettyprinting of structures."), _("\
1763Show prettyprinting of structures."), NULL,
1764 NULL,
920d2a44 1765 show_prettyprint_structs,
5bf193a2
AC
1766 &setprintlist, &showprintlist);
1767
79a45b7d
TT
1768 add_setshow_boolean_cmd ("union", class_support,
1769 &user_print_options.unionprint, _("\
5bf193a2
AC
1770Set printing of unions interior to structures."), _("\
1771Show printing of unions interior to structures."), NULL,
1772 NULL,
920d2a44 1773 show_unionprint,
5bf193a2
AC
1774 &setprintlist, &showprintlist);
1775
79a45b7d
TT
1776 add_setshow_boolean_cmd ("array", class_support,
1777 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1778Set prettyprinting of arrays."), _("\
1779Show prettyprinting of arrays."), NULL,
1780 NULL,
920d2a44 1781 show_prettyprint_arrays,
5bf193a2
AC
1782 &setprintlist, &showprintlist);
1783
79a45b7d
TT
1784 add_setshow_boolean_cmd ("address", class_support,
1785 &user_print_options.addressprint, _("\
5bf193a2
AC
1786Set printing of addresses."), _("\
1787Show printing of addresses."), NULL,
1788 NULL,
920d2a44 1789 show_addressprint,
5bf193a2 1790 &setprintlist, &showprintlist);
c906108c 1791
1e8fb976
PA
1792 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1793 _("\
35096d9d
AC
1794Set default input radix for entering numbers."), _("\
1795Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1796 set_input_radix,
1797 show_input_radix,
1798 &setlist, &showlist);
35096d9d 1799
1e8fb976
PA
1800 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1801 _("\
35096d9d
AC
1802Set default output radix for printing of values."), _("\
1803Show default output radix for printing of values."), NULL,
1e8fb976
PA
1804 set_output_radix,
1805 show_output_radix,
1806 &setlist, &showlist);
c906108c 1807
cb1a6d5f
AC
1808 /* The "set radix" and "show radix" commands are special in that
1809 they are like normal set and show commands but allow two normally
1810 independent variables to be either set or shown with a single
b66df561 1811 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 1812 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1813 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1814 longer true - show can display anything. */
1a966eab
AC
1815 add_cmd ("radix", class_support, set_radix, _("\
1816Set default input and output number radices.\n\
c906108c 1817Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1818Without an argument, sets both radices back to the default value of 10."),
c906108c 1819 &setlist);
1a966eab
AC
1820 add_cmd ("radix", class_support, show_radix, _("\
1821Show the default input and output number radices.\n\
1822Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1823 &showlist);
1824
e79af960 1825 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1826 &user_print_options.print_array_indexes, _("\
e79af960
JB
1827Set printing of array indexes."), _("\
1828Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1829 &setprintlist, &showprintlist);
c906108c 1830}
This page took 1.186031 seconds and 4 git commands to generate.