* MAINTAINERS: Add Jon Beniston to write after approval list.
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75
JB
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
c906108c
SS
37
38#include <errno.h>
39
40/* Prototypes for local functions */
41
777ea8f1 42static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
43 int len, int *errnoptr);
44
a14ed312 45static void show_print (char *, int);
c906108c 46
a14ed312 47static void set_print (char *, int);
c906108c 48
a14ed312 49static void set_radix (char *, int);
c906108c 50
a14ed312 51static void show_radix (char *, int);
c906108c 52
a14ed312 53static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 54
a14ed312 55static void set_input_radix_1 (int, unsigned);
c906108c 56
a14ed312 57static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 58
a14ed312 59static void set_output_radix_1 (int, unsigned);
c906108c 60
a14ed312 61void _initialize_valprint (void);
c906108c 62
c906108c 63#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
64
65struct value_print_options user_print_options =
66{
67 Val_pretty_default, /* pretty */
68 0, /* prettyprint_arrays */
69 0, /* prettyprint_structs */
70 0, /* vtblprint */
71 1, /* unionprint */
72 1, /* addressprint */
73 0, /* objectprint */
74 PRINT_MAX_DEFAULT, /* print_max */
75 10, /* repeat_count_threshold */
76 0, /* output_format */
77 0, /* format */
78 0, /* stop_print_at_null */
79 0, /* inspect_it */
80 0, /* print_array_indexes */
81 0, /* deref_ref */
82 1, /* static_field_print */
83 1 /* pascal_static_field_print */
84};
85
86/* Initialize *OPTS to be a copy of the user print options. */
87void
88get_user_print_options (struct value_print_options *opts)
89{
90 *opts = user_print_options;
91}
92
93/* Initialize *OPTS to be a copy of the user print options, but with
94 pretty-printing disabled. */
95void
96get_raw_print_options (struct value_print_options *opts)
97{
98 *opts = user_print_options;
99 opts->pretty = Val_no_prettyprint;
100}
101
102/* Initialize *OPTS to be a copy of the user print options, but using
103 FORMAT as the formatting option. */
104void
105get_formatted_print_options (struct value_print_options *opts,
106 char format)
107{
108 *opts = user_print_options;
109 opts->format = format;
110}
111
920d2a44
AC
112static void
113show_print_max (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115{
116 fprintf_filtered (file, _("\
117Limit on string chars or array elements to print is %s.\n"),
118 value);
119}
120
c906108c
SS
121
122/* Default input and output radixes, and output format letter. */
123
124unsigned input_radix = 10;
920d2a44
AC
125static void
126show_input_radix (struct ui_file *file, int from_tty,
127 struct cmd_list_element *c, const char *value)
128{
129 fprintf_filtered (file, _("\
130Default input radix for entering numbers is %s.\n"),
131 value);
132}
133
c906108c 134unsigned output_radix = 10;
920d2a44
AC
135static void
136show_output_radix (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("\
140Default output radix for printing of values is %s.\n"),
141 value);
142}
c906108c 143
e79af960
JB
144/* By default we print arrays without printing the index of each element in
145 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
146
e79af960
JB
147static void
148show_print_array_indexes (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
152}
153
c906108c
SS
154/* Print repeat counts if there are more than this many repetitions of an
155 element in an array. Referenced by the low level language dependent
156 print routines. */
157
920d2a44
AC
158static void
159show_repeat_count_threshold (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161{
162 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
163 value);
164}
c906108c
SS
165
166/* If nonzero, stops printing of char arrays at first null. */
167
920d2a44
AC
168static void
169show_stop_print_at_null (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("\
173Printing of char arrays to stop at first null char is %s.\n"),
174 value);
175}
c906108c
SS
176
177/* Controls pretty printing of structures. */
178
920d2a44
AC
179static void
180show_prettyprint_structs (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
184}
c906108c
SS
185
186/* Controls pretty printing of arrays. */
187
920d2a44
AC
188static void
189show_prettyprint_arrays (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191{
192 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
193}
c906108c
SS
194
195/* If nonzero, causes unions inside structures or other unions to be
196 printed. */
197
920d2a44
AC
198static void
199show_unionprint (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201{
202 fprintf_filtered (file, _("\
203Printing of unions interior to structures is %s.\n"),
204 value);
205}
c906108c
SS
206
207/* If nonzero, causes machine addresses to be printed in certain contexts. */
208
920d2a44
AC
209static void
210show_addressprint (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212{
213 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
214}
c906108c 215\f
c5aa993b 216
d8ca156b
JB
217/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
218 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 219 stdio stream STREAM according to OPTIONS.
c906108c
SS
220
221 If the data are a string pointer, returns the number of string characters
222 printed.
223
224 FIXME: The data at VALADDR is in target byte order. If gdb is ever
225 enhanced to be able to debug more than the single target it was compiled
226 for (specific CPU type and thus specific target byte ordering), then
227 either the print routines are going to have to take this into account,
228 or the data is going to have to be passed into here already converted
229 to the host byte ordering, whichever is more convenient. */
230
231
232int
fc1a4b47 233val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d
TT
234 CORE_ADDR address, struct ui_file *stream, int recurse,
235 const struct value_print_options *options,
d8ca156b 236 const struct language_defn *language)
c906108c 237{
19ca80ba
DJ
238 volatile struct gdb_exception except;
239 int ret = 0;
79a45b7d 240 struct value_print_options local_opts = *options;
c906108c 241 struct type *real_type = check_typedef (type);
79a45b7d
TT
242
243 if (local_opts.pretty == Val_pretty_default)
244 local_opts.pretty = (local_opts.prettyprint_structs
245 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 246
c906108c
SS
247 QUIT;
248
249 /* Ensure that the type is complete and not just a stub. If the type is
250 only a stub and we can't find and substitute its complete type, then
251 print appropriate string and return. */
252
74a9bb82 253 if (TYPE_STUB (real_type))
c906108c
SS
254 {
255 fprintf_filtered (stream, "<incomplete type>");
256 gdb_flush (stream);
257 return (0);
258 }
c5aa993b 259
19ca80ba
DJ
260 TRY_CATCH (except, RETURN_MASK_ERROR)
261 {
d8ca156b 262 ret = language->la_val_print (type, valaddr, embedded_offset, address,
79a45b7d 263 stream, recurse, &local_opts);
19ca80ba
DJ
264 }
265 if (except.reason < 0)
266 fprintf_filtered (stream, _("<error reading variable>"));
267
268 return ret;
c906108c
SS
269}
270
806048c6
DJ
271/* Check whether the value VAL is printable. Return 1 if it is;
272 return 0 and print an appropriate error message to STREAM if it
273 is not. */
c906108c 274
806048c6
DJ
275static int
276value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
277{
278 if (val == 0)
279 {
806048c6 280 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
281 return 0;
282 }
806048c6 283
feb13ab0 284 if (value_optimized_out (val))
c906108c 285 {
806048c6 286 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
287 return 0;
288 }
806048c6 289
bc3b79fd
TJB
290 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
291 {
292 fprintf_filtered (stream, _("<internal function %s>"),
293 value_internal_function_name (val));
294 return 0;
295 }
296
806048c6
DJ
297 return 1;
298}
299
d8ca156b 300/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 301 to OPTIONS.
806048c6
DJ
302
303 If the data are a string pointer, returns the number of string characters
304 printed.
305
306 This is a preferable interface to val_print, above, because it uses
307 GDB's value mechanism. */
308
309int
79a45b7d
TT
310common_val_print (struct value *val, struct ui_file *stream, int recurse,
311 const struct value_print_options *options,
d8ca156b 312 const struct language_defn *language)
806048c6
DJ
313{
314 if (!value_check_printable (val, stream))
315 return 0;
316
317 return val_print (value_type (val), value_contents_all (val),
318 value_embedded_offset (val), VALUE_ADDRESS (val),
79a45b7d 319 stream, recurse, options, language);
806048c6
DJ
320}
321
79a45b7d
TT
322/* Print the value VAL in C-ish syntax on stream STREAM according to
323 OPTIONS.
806048c6
DJ
324 If the object printed is a string pointer, returns
325 the number of string bytes printed. */
326
327int
79a45b7d
TT
328value_print (struct value *val, struct ui_file *stream,
329 const struct value_print_options *options)
806048c6
DJ
330{
331 if (!value_check_printable (val, stream))
332 return 0;
333
79a45b7d 334 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
335}
336
337/* Called by various <lang>_val_print routines to print
338 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
339 value. STREAM is where to print the value. */
340
341void
fc1a4b47 342val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 343 struct ui_file *stream)
c906108c 344{
d44e8473
MD
345 enum bfd_endian byte_order = gdbarch_byte_order (current_gdbarch);
346
c906108c
SS
347 if (TYPE_LENGTH (type) > sizeof (LONGEST))
348 {
349 LONGEST val;
350
351 if (TYPE_UNSIGNED (type)
352 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
353 &val))
354 {
355 print_longest (stream, 'u', 0, val);
356 }
357 else
358 {
359 /* Signed, or we couldn't turn an unsigned value into a
360 LONGEST. For signed values, one could assume two's
361 complement (a reasonable assumption, I think) and do
362 better than this. */
363 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 364 TYPE_LENGTH (type), byte_order);
c906108c
SS
365 }
366 }
367 else
368 {
c906108c
SS
369 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
370 unpack_long (type, valaddr));
c906108c
SS
371 }
372}
373
4f2aea11
MK
374void
375val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
376 struct ui_file *stream)
377{
befae759 378 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
379 int bitpos, nfields = TYPE_NFIELDS (type);
380
381 fputs_filtered ("[ ", stream);
382 for (bitpos = 0; bitpos < nfields; bitpos++)
383 {
316703b9
MK
384 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
385 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
386 {
387 if (TYPE_FIELD_NAME (type, bitpos))
388 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
389 else
390 fprintf_filtered (stream, "#%d ", bitpos);
391 }
392 }
393 fputs_filtered ("]", stream);
394}
395
c906108c
SS
396/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
397 The raison d'etre of this function is to consolidate printing of
bb599908
PH
398 LONG_LONG's into this one function. The format chars b,h,w,g are
399 from print_scalar_formatted(). Numbers are printed using C
400 format.
401
402 USE_C_FORMAT means to use C format in all cases. Without it,
403 'o' and 'x' format do not include the standard C radix prefix
404 (leading 0 or 0x).
405
406 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
407 and was intended to request formating according to the current
408 language and would be used for most integers that GDB prints. The
409 exceptional cases were things like protocols where the format of
410 the integer is a protocol thing, not a user-visible thing). The
411 parameter remains to preserve the information of what things might
412 be printed with language-specific format, should we ever resurrect
413 that capability. */
c906108c
SS
414
415void
bb599908 416print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 417 LONGEST val_long)
c906108c 418{
2bfb72ee
AC
419 const char *val;
420
c906108c
SS
421 switch (format)
422 {
423 case 'd':
bb599908 424 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 425 case 'u':
bb599908 426 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 427 case 'x':
bb599908 428 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 429 case 'b':
bb599908 430 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 431 case 'h':
bb599908 432 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 433 case 'w':
bb599908 434 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 435 case 'g':
bb599908 436 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
437 break;
438 case 'o':
bb599908 439 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 440 default:
e2e0b3e5 441 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 442 }
2bfb72ee 443 fputs_filtered (val, stream);
c906108c
SS
444}
445
c906108c
SS
446/* This used to be a macro, but I don't think it is called often enough
447 to merit such treatment. */
448/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
449 arguments to a function, number in a value history, register number, etc.)
450 where the value must not be larger than can fit in an int. */
451
452int
fba45db2 453longest_to_int (LONGEST arg)
c906108c
SS
454{
455 /* Let the compiler do the work */
456 int rtnval = (int) arg;
457
458 /* Check for overflows or underflows */
459 if (sizeof (LONGEST) > sizeof (int))
460 {
461 if (rtnval != arg)
462 {
8a3fe4f8 463 error (_("Value out of range."));
c906108c
SS
464 }
465 }
466 return (rtnval);
467}
468
a73c86fb
AC
469/* Print a floating point value of type TYPE (not always a
470 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
471
472void
fc1a4b47 473print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 474 struct ui_file *stream)
c906108c
SS
475{
476 DOUBLEST doub;
477 int inv;
a73c86fb 478 const struct floatformat *fmt = NULL;
c906108c 479 unsigned len = TYPE_LENGTH (type);
20389057 480 enum float_kind kind;
c5aa993b 481
a73c86fb
AC
482 /* If it is a floating-point, check for obvious problems. */
483 if (TYPE_CODE (type) == TYPE_CODE_FLT)
484 fmt = floatformat_from_type (type);
20389057 485 if (fmt != NULL)
39424bef 486 {
20389057
DJ
487 kind = floatformat_classify (fmt, valaddr);
488 if (kind == float_nan)
489 {
490 if (floatformat_is_negative (fmt, valaddr))
491 fprintf_filtered (stream, "-");
492 fprintf_filtered (stream, "nan(");
493 fputs_filtered ("0x", stream);
494 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
495 fprintf_filtered (stream, ")");
496 return;
497 }
498 else if (kind == float_infinite)
499 {
500 if (floatformat_is_negative (fmt, valaddr))
501 fputs_filtered ("-", stream);
502 fputs_filtered ("inf", stream);
503 return;
504 }
7355ddba 505 }
c906108c 506
a73c86fb
AC
507 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
508 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
509 needs to be used as that takes care of any necessary type
510 conversions. Such conversions are of course direct to DOUBLEST
511 and disregard any possible target floating point limitations.
512 For instance, a u64 would be converted and displayed exactly on a
513 host with 80 bit DOUBLEST but with loss of information on a host
514 with 64 bit DOUBLEST. */
c2f05ac9 515
c906108c
SS
516 doub = unpack_double (type, valaddr, &inv);
517 if (inv)
518 {
519 fprintf_filtered (stream, "<invalid float value>");
520 return;
521 }
522
39424bef
MK
523 /* FIXME: kettenis/2001-01-20: The following code makes too much
524 assumptions about the host and target floating point format. */
525
a73c86fb 526 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 527 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
528 instead uses the type's length to determine the precision of the
529 floating-point value being printed. */
c2f05ac9 530
c906108c 531 if (len < sizeof (double))
c5aa993b 532 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 533 else if (len == sizeof (double))
c5aa993b 534 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
535 else
536#ifdef PRINTF_HAS_LONG_DOUBLE
537 fprintf_filtered (stream, "%.35Lg", doub);
538#else
39424bef
MK
539 /* This at least wins with values that are representable as
540 doubles. */
c906108c
SS
541 fprintf_filtered (stream, "%.17g", (double) doub);
542#endif
543}
544
7678ef8f
TJB
545void
546print_decimal_floating (const gdb_byte *valaddr, struct type *type,
547 struct ui_file *stream)
548{
549 char decstr[MAX_DECIMAL_STRING];
550 unsigned len = TYPE_LENGTH (type);
551
552 decimal_to_string (valaddr, len, decstr);
553 fputs_filtered (decstr, stream);
554 return;
555}
556
c5aa993b 557void
fc1a4b47 558print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 559 unsigned len, enum bfd_endian byte_order)
c906108c
SS
560{
561
562#define BITS_IN_BYTES 8
563
fc1a4b47 564 const gdb_byte *p;
745b8ca0 565 unsigned int i;
c5aa993b 566 int b;
c906108c
SS
567
568 /* Declared "int" so it will be signed.
569 * This ensures that right shift will shift in zeros.
570 */
c5aa993b 571 const int mask = 0x080;
c906108c
SS
572
573 /* FIXME: We should be not printing leading zeroes in most cases. */
574
d44e8473 575 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
576 {
577 for (p = valaddr;
578 p < valaddr + len;
579 p++)
580 {
c5aa993b
JM
581 /* Every byte has 8 binary characters; peel off
582 * and print from the MSB end.
583 */
584 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
585 {
586 if (*p & (mask >> i))
587 b = 1;
588 else
589 b = 0;
590
591 fprintf_filtered (stream, "%1d", b);
592 }
c906108c
SS
593 }
594 }
595 else
596 {
597 for (p = valaddr + len - 1;
598 p >= valaddr;
599 p--)
600 {
c5aa993b
JM
601 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
602 {
603 if (*p & (mask >> i))
604 b = 1;
605 else
606 b = 0;
607
608 fprintf_filtered (stream, "%1d", b);
609 }
c906108c
SS
610 }
611 }
c906108c
SS
612}
613
614/* VALADDR points to an integer of LEN bytes.
615 * Print it in octal on stream or format it in buf.
616 */
617void
fc1a4b47 618print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 619 unsigned len, enum bfd_endian byte_order)
c906108c 620{
fc1a4b47 621 const gdb_byte *p;
c906108c 622 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
623 int cycle;
624
c906108c
SS
625 /* FIXME: We should be not printing leading zeroes in most cases. */
626
627
628 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
629 * the extra bits, which cycle every three bytes:
630 *
631 * Byte side: 0 1 2 3
632 * | | | |
633 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
634 *
635 * Octal side: 0 1 carry 3 4 carry ...
636 *
637 * Cycle number: 0 1 2
638 *
639 * But of course we are printing from the high side, so we have to
640 * figure out where in the cycle we are so that we end up with no
641 * left over bits at the end.
642 */
643#define BITS_IN_OCTAL 3
644#define HIGH_ZERO 0340
645#define LOW_ZERO 0016
646#define CARRY_ZERO 0003
647#define HIGH_ONE 0200
648#define MID_ONE 0160
649#define LOW_ONE 0016
650#define CARRY_ONE 0001
651#define HIGH_TWO 0300
652#define MID_TWO 0070
653#define LOW_TWO 0007
654
655 /* For 32 we start in cycle 2, with two bits and one bit carry;
656 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
657 */
658 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
659 carry = 0;
c5aa993b 660
bb599908 661 fputs_filtered ("0", stream);
d44e8473 662 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
663 {
664 for (p = valaddr;
665 p < valaddr + len;
666 p++)
667 {
c5aa993b
JM
668 switch (cycle)
669 {
670 case 0:
671 /* No carry in, carry out two bits.
672 */
673 octa1 = (HIGH_ZERO & *p) >> 5;
674 octa2 = (LOW_ZERO & *p) >> 2;
675 carry = (CARRY_ZERO & *p);
676 fprintf_filtered (stream, "%o", octa1);
677 fprintf_filtered (stream, "%o", octa2);
678 break;
679
680 case 1:
681 /* Carry in two bits, carry out one bit.
682 */
683 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
684 octa2 = (MID_ONE & *p) >> 4;
685 octa3 = (LOW_ONE & *p) >> 1;
686 carry = (CARRY_ONE & *p);
687 fprintf_filtered (stream, "%o", octa1);
688 fprintf_filtered (stream, "%o", octa2);
689 fprintf_filtered (stream, "%o", octa3);
690 break;
691
692 case 2:
693 /* Carry in one bit, no carry out.
694 */
695 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
696 octa2 = (MID_TWO & *p) >> 3;
697 octa3 = (LOW_TWO & *p);
698 carry = 0;
699 fprintf_filtered (stream, "%o", octa1);
700 fprintf_filtered (stream, "%o", octa2);
701 fprintf_filtered (stream, "%o", octa3);
702 break;
703
704 default:
8a3fe4f8 705 error (_("Internal error in octal conversion;"));
c5aa993b
JM
706 }
707
708 cycle++;
709 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
710 }
711 }
712 else
713 {
714 for (p = valaddr + len - 1;
715 p >= valaddr;
716 p--)
717 {
c5aa993b
JM
718 switch (cycle)
719 {
720 case 0:
721 /* Carry out, no carry in */
722 octa1 = (HIGH_ZERO & *p) >> 5;
723 octa2 = (LOW_ZERO & *p) >> 2;
724 carry = (CARRY_ZERO & *p);
725 fprintf_filtered (stream, "%o", octa1);
726 fprintf_filtered (stream, "%o", octa2);
727 break;
728
729 case 1:
730 /* Carry in, carry out */
731 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
732 octa2 = (MID_ONE & *p) >> 4;
733 octa3 = (LOW_ONE & *p) >> 1;
734 carry = (CARRY_ONE & *p);
735 fprintf_filtered (stream, "%o", octa1);
736 fprintf_filtered (stream, "%o", octa2);
737 fprintf_filtered (stream, "%o", octa3);
738 break;
739
740 case 2:
741 /* Carry in, no carry out */
742 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
743 octa2 = (MID_TWO & *p) >> 3;
744 octa3 = (LOW_TWO & *p);
745 carry = 0;
746 fprintf_filtered (stream, "%o", octa1);
747 fprintf_filtered (stream, "%o", octa2);
748 fprintf_filtered (stream, "%o", octa3);
749 break;
750
751 default:
8a3fe4f8 752 error (_("Internal error in octal conversion;"));
c5aa993b
JM
753 }
754
755 cycle++;
756 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
757 }
758 }
759
c906108c
SS
760}
761
762/* VALADDR points to an integer of LEN bytes.
763 * Print it in decimal on stream or format it in buf.
764 */
765void
fc1a4b47 766print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 767 unsigned len, enum bfd_endian byte_order)
c906108c
SS
768{
769#define TEN 10
c5aa993b 770#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
771#define CARRY_LEFT( x ) ((x) % TEN)
772#define SHIFT( x ) ((x) << 4)
c906108c
SS
773#define LOW_NIBBLE( x ) ( (x) & 0x00F)
774#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
775
fc1a4b47 776 const gdb_byte *p;
c906108c 777 unsigned char *digits;
c5aa993b
JM
778 int carry;
779 int decimal_len;
780 int i, j, decimal_digits;
781 int dummy;
782 int flip;
783
c906108c
SS
784 /* Base-ten number is less than twice as many digits
785 * as the base 16 number, which is 2 digits per byte.
786 */
787 decimal_len = len * 2 * 2;
3c37485b 788 digits = xmalloc (decimal_len);
c906108c 789
c5aa993b
JM
790 for (i = 0; i < decimal_len; i++)
791 {
c906108c 792 digits[i] = 0;
c5aa993b 793 }
c906108c 794
c906108c
SS
795 /* Ok, we have an unknown number of bytes of data to be printed in
796 * decimal.
797 *
798 * Given a hex number (in nibbles) as XYZ, we start by taking X and
799 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
800 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
801 *
802 * The trick is that "digits" holds a base-10 number, but sometimes
803 * the individual digits are > 10.
804 *
805 * Outer loop is per nibble (hex digit) of input, from MSD end to
806 * LSD end.
807 */
c5aa993b 808 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 809 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 810 flip = 0;
d44e8473 811 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 812 {
c906108c
SS
813 /*
814 * Multiply current base-ten number by 16 in place.
815 * Each digit was between 0 and 9, now is between
816 * 0 and 144.
817 */
c5aa993b
JM
818 for (j = 0; j < decimal_digits; j++)
819 {
820 digits[j] = SHIFT (digits[j]);
821 }
822
c906108c
SS
823 /* Take the next nibble off the input and add it to what
824 * we've got in the LSB position. Bottom 'digit' is now
825 * between 0 and 159.
826 *
827 * "flip" is used to run this loop twice for each byte.
828 */
c5aa993b
JM
829 if (flip == 0)
830 {
831 /* Take top nibble.
832 */
833 digits[0] += HIGH_NIBBLE (*p);
834 flip = 1;
835 }
836 else
837 {
838 /* Take low nibble and bump our pointer "p".
839 */
840 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
841 if (byte_order == BFD_ENDIAN_BIG)
842 p++;
843 else
844 p--;
c5aa993b
JM
845 flip = 0;
846 }
c906108c
SS
847
848 /* Re-decimalize. We have to do this often enough
849 * that we don't overflow, but once per nibble is
850 * overkill. Easier this way, though. Note that the
851 * carry is often larger than 10 (e.g. max initial
852 * carry out of lowest nibble is 15, could bubble all
853 * the way up greater than 10). So we have to do
854 * the carrying beyond the last current digit.
855 */
856 carry = 0;
c5aa993b
JM
857 for (j = 0; j < decimal_len - 1; j++)
858 {
859 digits[j] += carry;
860
861 /* "/" won't handle an unsigned char with
862 * a value that if signed would be negative.
863 * So extend to longword int via "dummy".
864 */
865 dummy = digits[j];
866 carry = CARRY_OUT (dummy);
867 digits[j] = CARRY_LEFT (dummy);
868
869 if (j >= decimal_digits && carry == 0)
870 {
871 /*
872 * All higher digits are 0 and we
873 * no longer have a carry.
874 *
875 * Note: "j" is 0-based, "decimal_digits" is
876 * 1-based.
877 */
878 decimal_digits = j + 1;
879 break;
880 }
881 }
882 }
c906108c
SS
883
884 /* Ok, now "digits" is the decimal representation, with
885 * the "decimal_digits" actual digits. Print!
886 */
c5aa993b
JM
887 for (i = decimal_digits - 1; i >= 0; i--)
888 {
889 fprintf_filtered (stream, "%1d", digits[i]);
890 }
b8c9b27d 891 xfree (digits);
c906108c
SS
892}
893
894/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
895
6b9acc27 896void
fc1a4b47 897print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 898 unsigned len, enum bfd_endian byte_order)
c906108c 899{
fc1a4b47 900 const gdb_byte *p;
c906108c
SS
901
902 /* FIXME: We should be not printing leading zeroes in most cases. */
903
bb599908 904 fputs_filtered ("0x", stream);
d44e8473 905 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
906 {
907 for (p = valaddr;
908 p < valaddr + len;
909 p++)
910 {
911 fprintf_filtered (stream, "%02x", *p);
912 }
913 }
914 else
915 {
916 for (p = valaddr + len - 1;
917 p >= valaddr;
918 p--)
919 {
920 fprintf_filtered (stream, "%02x", *p);
921 }
922 }
c906108c
SS
923}
924
6b9acc27
JJ
925/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
926 Omit any leading zero chars. */
927
928void
6c7a06a3
TT
929print_char_chars (struct ui_file *stream, struct type *type,
930 const gdb_byte *valaddr,
d44e8473 931 unsigned len, enum bfd_endian byte_order)
6b9acc27 932{
fc1a4b47 933 const gdb_byte *p;
6b9acc27 934
d44e8473 935 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
936 {
937 p = valaddr;
938 while (p < valaddr + len - 1 && *p == 0)
939 ++p;
940
941 while (p < valaddr + len)
942 {
6c7a06a3 943 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
944 ++p;
945 }
946 }
947 else
948 {
949 p = valaddr + len - 1;
950 while (p > valaddr && *p == 0)
951 --p;
952
953 while (p >= valaddr)
954 {
6c7a06a3 955 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
956 --p;
957 }
958 }
959}
960
e936309c
JB
961/* Assuming TYPE is a simple, non-empty array type, compute its upper
962 and lower bound. Save the low bound into LOW_BOUND if not NULL.
963 Save the high bound into HIGH_BOUND if not NULL.
e79af960
JB
964
965 Return 1 if the operation was successful. Return zero otherwise,
e936309c 966 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
e79af960 967
e936309c
JB
968 Computing the array upper and lower bounds is pretty easy, but this
969 function does some additional verifications before returning them.
e79af960
JB
970 If something incorrect is detected, it is better to return a status
971 rather than throwing an error, making it easier for the caller to
972 implement an error-recovery plan. For instance, it may decide to
e936309c
JB
973 warn the user that the bounds were not found and then use some
974 default values instead. */
e79af960
JB
975
976int
e936309c 977get_array_bounds (struct type *type, long *low_bound, long *high_bound)
e79af960
JB
978{
979 struct type *index = TYPE_INDEX_TYPE (type);
980 long low = 0;
e936309c 981 long high = 0;
e79af960
JB
982
983 if (index == NULL)
984 return 0;
985
e936309c
JB
986 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
987 {
988 low = TYPE_LOW_BOUND (index);
989 high = TYPE_HIGH_BOUND (index);
990 }
991 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
992 {
993 const int n_enums = TYPE_NFIELDS (index);
994
995 low = TYPE_FIELD_BITPOS (index, 0);
996 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
997 }
998 else
e79af960
JB
999 return 0;
1000
e936309c
JB
1001 /* Abort if the lower bound is greater than the higher bound, except
1002 when low = high + 1. This is a very common idiom used in Ada when
1003 defining empty ranges (for instance "range 1 .. 0"). */
1004 if (low > high + 1)
e79af960
JB
1005 return 0;
1006
1007 if (low_bound)
1008 *low_bound = low;
1009
e936309c
JB
1010 if (high_bound)
1011 *high_bound = high;
1012
e79af960
JB
1013 return 1;
1014}
e936309c 1015
79a45b7d 1016/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1017 at INDEX of an array whose index type is INDEX_TYPE. */
1018
1019void
1020maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1021 struct ui_file *stream,
1022 const struct value_print_options *options)
e79af960
JB
1023{
1024 struct value *index_value;
1025
79a45b7d 1026 if (!options->print_array_indexes)
e79af960
JB
1027 return;
1028
1029 index_value = value_from_longest (index_type, index);
1030
79a45b7d
TT
1031 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1032}
e79af960 1033
c906108c 1034/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1035 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1036
c5aa993b
JM
1037 (FIXME?) Assumes array element separator is a comma, which is correct
1038 for all languages currently handled.
1039 (FIXME?) Some languages have a notation for repeated array elements,
1040 perhaps we should try to use that notation when appropriate.
1041 */
c906108c
SS
1042
1043void
fc1a4b47 1044val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1045 CORE_ADDR address, struct ui_file *stream,
79a45b7d
TT
1046 int recurse,
1047 const struct value_print_options *options,
fba45db2 1048 unsigned int i)
c906108c
SS
1049{
1050 unsigned int things_printed = 0;
1051 unsigned len;
e79af960 1052 struct type *elttype, *index_type;
c906108c
SS
1053 unsigned eltlen;
1054 /* Position of the array element we are examining to see
1055 whether it is repeated. */
1056 unsigned int rep1;
1057 /* Number of repetitions we have detected so far. */
1058 unsigned int reps;
168de233 1059 long low_bound_index = 0;
c5aa993b 1060
c906108c
SS
1061 elttype = TYPE_TARGET_TYPE (type);
1062 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1063 index_type = TYPE_INDEX_TYPE (type);
c906108c 1064
e936309c
JB
1065 /* Compute the number of elements in the array. On most arrays,
1066 the size of its elements is not zero, and so the number of elements
1067 is simply the size of the array divided by the size of the elements.
1068 But for arrays of elements whose size is zero, we need to look at
1069 the bounds. */
1070 if (eltlen != 0)
1071 len = TYPE_LENGTH (type) / eltlen;
1072 else
1073 {
1074 long low, hi;
1075 if (get_array_bounds (type, &low, &hi))
1076 len = hi - low + 1;
1077 else
1078 {
1079 warning (_("unable to get bounds of array, assuming null array"));
1080 len = 0;
1081 }
1082 }
1083
168de233
JB
1084 /* Get the array low bound. This only makes sense if the array
1085 has one or more element in it. */
e936309c 1086 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
168de233 1087 {
e936309c 1088 warning (_("unable to get low bound of array, using zero as default"));
168de233
JB
1089 low_bound_index = 0;
1090 }
1091
c906108c
SS
1092 annotate_array_section_begin (i, elttype);
1093
79a45b7d 1094 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1095 {
1096 if (i != 0)
1097 {
79a45b7d 1098 if (options->prettyprint_arrays)
c906108c
SS
1099 {
1100 fprintf_filtered (stream, ",\n");
1101 print_spaces_filtered (2 + 2 * recurse, stream);
1102 }
1103 else
1104 {
1105 fprintf_filtered (stream, ", ");
1106 }
1107 }
1108 wrap_here (n_spaces (2 + 2 * recurse));
e79af960 1109 maybe_print_array_index (index_type, i + low_bound_index,
79a45b7d 1110 stream, options);
c906108c
SS
1111
1112 rep1 = i + 1;
1113 reps = 1;
c5aa993b 1114 while ((rep1 < len) &&
c906108c
SS
1115 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1116 {
1117 ++reps;
1118 ++rep1;
1119 }
1120
79a45b7d 1121 if (reps > options->repeat_count_threshold)
c906108c 1122 {
f9e31323
TT
1123 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1124 stream, recurse + 1, options, current_language);
c906108c
SS
1125 annotate_elt_rep (reps);
1126 fprintf_filtered (stream, " <repeats %u times>", reps);
1127 annotate_elt_rep_end ();
1128
1129 i = rep1 - 1;
79a45b7d 1130 things_printed += options->repeat_count_threshold;
c906108c
SS
1131 }
1132 else
1133 {
f9e31323
TT
1134 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1135 stream, recurse + 1, options, current_language);
c906108c
SS
1136 annotate_elt ();
1137 things_printed++;
1138 }
1139 }
1140 annotate_array_section_end ();
1141 if (i < len)
1142 {
1143 fprintf_filtered (stream, "...");
1144 }
1145}
1146
917317f4
JM
1147/* Read LEN bytes of target memory at address MEMADDR, placing the
1148 results in GDB's memory at MYADDR. Returns a count of the bytes
1149 actually read, and optionally an errno value in the location
1150 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1151
1152/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1153 function be eliminated. */
1154
1155static int
777ea8f1 1156partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1157{
1158 int nread; /* Number of bytes actually read. */
1159 int errcode; /* Error from last read. */
1160
1161 /* First try a complete read. */
1162 errcode = target_read_memory (memaddr, myaddr, len);
1163 if (errcode == 0)
1164 {
1165 /* Got it all. */
1166 nread = len;
1167 }
1168 else
1169 {
1170 /* Loop, reading one byte at a time until we get as much as we can. */
1171 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1172 {
1173 errcode = target_read_memory (memaddr++, myaddr++, 1);
1174 }
1175 /* If an error, the last read was unsuccessful, so adjust count. */
1176 if (errcode != 0)
1177 {
1178 nread--;
1179 }
1180 }
1181 if (errnoptr != NULL)
1182 {
1183 *errnoptr = errcode;
1184 }
1185 return (nread);
1186}
1187
ae6a3a4c
TJB
1188/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1189 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1190 allocated buffer containing the string, which the caller is responsible to
1191 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1192 success, or errno on failure.
1193
1194 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1195 the middle or end of the string). If LEN is -1, stops at the first
1196 null character (not necessarily the first null byte) up to a maximum
1197 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1198 characters as possible from the string.
1199
1200 Unless an exception is thrown, BUFFER will always be allocated, even on
1201 failure. In this case, some characters might have been read before the
1202 failure happened. Check BYTES_READ to recognize this situation.
1203
1204 Note: There was a FIXME asking to make this code use target_read_string,
1205 but this function is more general (can read past null characters, up to
1206 given LEN). Besides, it is used much more often than target_read_string
1207 so it is more tested. Perhaps callers of target_read_string should use
1208 this function instead? */
c906108c
SS
1209
1210int
ae6a3a4c
TJB
1211read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1212 gdb_byte **buffer, int *bytes_read)
c906108c 1213{
ae6a3a4c
TJB
1214 int found_nul; /* Non-zero if we found the nul char. */
1215 int errcode; /* Errno returned from bad reads. */
1216 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1217 unsigned int chunksize; /* Size of each fetch, in chars. */
1218 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1219 gdb_byte *limit; /* First location past end of fetch buffer. */
1220 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1221
1222 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1223 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1224 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1225 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1226 well read in blocks that are large enough to be efficient, but not so
1227 large as to be slow if fetchlimit happens to be large. So we choose the
1228 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1229 200 is way too big for remote debugging over a serial line. */
1230
1231 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1232
ae6a3a4c
TJB
1233 /* Loop until we either have all the characters, or we encounter
1234 some error, such as bumping into the end of the address space. */
c906108c
SS
1235
1236 found_nul = 0;
b5096abe
PM
1237 *buffer = NULL;
1238
1239 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1240
1241 if (len > 0)
1242 {
ae6a3a4c
TJB
1243 *buffer = (gdb_byte *) xmalloc (len * width);
1244 bufptr = *buffer;
c906108c 1245
917317f4 1246 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1247 / width;
1248 addr += nfetch * width;
1249 bufptr += nfetch * width;
1250 }
1251 else if (len == -1)
1252 {
1253 unsigned long bufsize = 0;
ae6a3a4c 1254
c906108c
SS
1255 do
1256 {
1257 QUIT;
1258 nfetch = min (chunksize, fetchlimit - bufsize);
1259
ae6a3a4c
TJB
1260 if (*buffer == NULL)
1261 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1262 else
b5096abe
PM
1263 *buffer = (gdb_byte *) xrealloc (*buffer,
1264 (nfetch + bufsize) * width);
c906108c 1265
ae6a3a4c 1266 bufptr = *buffer + bufsize * width;
c906108c
SS
1267 bufsize += nfetch;
1268
ae6a3a4c 1269 /* Read as much as we can. */
917317f4 1270 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1271 / width;
c906108c 1272
ae6a3a4c 1273 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1274 to print. If found, we don't need to fetch any more. Note
1275 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1276 after the null character, or at the next character after the end
1277 of the buffer. */
c906108c
SS
1278
1279 limit = bufptr + nfetch * width;
1280 while (bufptr < limit)
1281 {
1282 unsigned long c;
1283
1284 c = extract_unsigned_integer (bufptr, width);
1285 addr += width;
1286 bufptr += width;
1287 if (c == 0)
1288 {
1289 /* We don't care about any error which happened after
ae6a3a4c 1290 the NUL terminator. */
c906108c
SS
1291 errcode = 0;
1292 found_nul = 1;
1293 break;
1294 }
1295 }
1296 }
c5aa993b 1297 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1298 && bufptr - *buffer < fetchlimit * width /* no overrun */
1299 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1300 }
1301 else
ae6a3a4c
TJB
1302 { /* Length of string is really 0! */
1303 /* We always allocate *buffer. */
1304 *buffer = bufptr = xmalloc (1);
c906108c
SS
1305 errcode = 0;
1306 }
1307
1308 /* bufptr and addr now point immediately beyond the last byte which we
1309 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1310 *bytes_read = bufptr - *buffer;
1311
1312 QUIT;
1313
1314 discard_cleanups (old_chain);
1315
1316 return errcode;
1317}
1318
1319/* Print a string from the inferior, starting at ADDR and printing up to LEN
1320 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1321 stops at the first null byte, otherwise printing proceeds (including null
1322 bytes) until either print_max or LEN characters have been printed,
1323 whichever is smaller. */
1324
1325int
6c7a06a3
TT
1326val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1327 struct ui_file *stream,
ae6a3a4c
TJB
1328 const struct value_print_options *options)
1329{
1330 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1331 int errcode; /* Errno returned from bad reads. */
1332 int found_nul; /* Non-zero if we found the nul char */
1333 unsigned int fetchlimit; /* Maximum number of chars to print. */
1334 int bytes_read;
1335 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1336 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
6c7a06a3 1337 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1338
1339 /* First we need to figure out the limit on the number of characters we are
1340 going to attempt to fetch and print. This is actually pretty simple. If
1341 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1342 LEN is -1, then the limit is print_max. This is true regardless of
1343 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1344 because finding the null byte (or available memory) is what actually
1345 limits the fetch. */
1346
1347 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1348
1349 errcode = read_string (addr, len, width, fetchlimit, &buffer, &bytes_read);
1350 old_chain = make_cleanup (xfree, buffer);
1351
1352 addr += bytes_read;
c906108c
SS
1353
1354 /* We now have either successfully filled the buffer to fetchlimit, or
ae6a3a4c
TJB
1355 terminated early due to an error or finding a null char when LEN is -1. */
1356
1357 /* Determine found_nul by looking at the last character read. */
1358 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width) == 0;
c906108c
SS
1359
1360 if (len == -1 && !found_nul)
1361 {
777ea8f1 1362 gdb_byte *peekbuf;
c906108c 1363
ae6a3a4c 1364 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1365 to peek at the next character. If not successful, or it is not
1366 a null byte, then force ellipsis to be printed. */
c906108c 1367
777ea8f1 1368 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1369
1370 if (target_read_memory (addr, peekbuf, width) == 0
1371 && extract_unsigned_integer (peekbuf, width) != 0)
1372 force_ellipsis = 1;
1373 }
ae6a3a4c 1374 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1375 {
1376 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1377 than the number of characters actually requested, always make us
ae6a3a4c 1378 print ellipsis. */
c906108c
SS
1379 force_ellipsis = 1;
1380 }
1381
c906108c
SS
1382 /* If we get an error before fetching anything, don't print a string.
1383 But if we fetch something and then get an error, print the string
1384 and then the error message. */
ae6a3a4c 1385 if (errcode == 0 || bytes_read > 0)
c906108c 1386 {
79a45b7d 1387 if (options->addressprint)
c906108c
SS
1388 {
1389 fputs_filtered (" ", stream);
1390 }
6c7a06a3 1391 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, force_ellipsis, options);
c906108c
SS
1392 }
1393
1394 if (errcode != 0)
1395 {
1396 if (errcode == EIO)
1397 {
1398 fprintf_filtered (stream, " <Address ");
ed49a04f 1399 fputs_filtered (paddress (addr), stream);
c906108c
SS
1400 fprintf_filtered (stream, " out of bounds>");
1401 }
1402 else
1403 {
1404 fprintf_filtered (stream, " <Error reading address ");
ed49a04f 1405 fputs_filtered (paddress (addr), stream);
c906108c
SS
1406 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1407 }
1408 }
ae6a3a4c 1409
c906108c
SS
1410 gdb_flush (stream);
1411 do_cleanups (old_chain);
ae6a3a4c
TJB
1412
1413 return (bytes_read / width);
c906108c 1414}
c906108c 1415\f
c5aa993b 1416
09e6485f
PA
1417/* The 'set input-radix' command writes to this auxiliary variable.
1418 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1419 it is left unchanged. */
1420
1421static unsigned input_radix_1 = 10;
1422
c906108c
SS
1423/* Validate an input or output radix setting, and make sure the user
1424 knows what they really did here. Radix setting is confusing, e.g.
1425 setting the input radix to "10" never changes it! */
1426
c906108c 1427static void
fba45db2 1428set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1429{
09e6485f 1430 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1431}
1432
c906108c 1433static void
fba45db2 1434set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1435{
1436 /* We don't currently disallow any input radix except 0 or 1, which don't
1437 make any mathematical sense. In theory, we can deal with any input
1438 radix greater than 1, even if we don't have unique digits for every
1439 value from 0 to radix-1, but in practice we lose on large radix values.
1440 We should either fix the lossage or restrict the radix range more.
1441 (FIXME). */
1442
1443 if (radix < 2)
1444 {
09e6485f 1445 input_radix_1 = input_radix;
8a3fe4f8 1446 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1447 radix);
1448 }
09e6485f 1449 input_radix_1 = input_radix = radix;
c906108c
SS
1450 if (from_tty)
1451 {
a3f17187 1452 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1453 radix, radix, radix);
1454 }
1455}
1456
09e6485f
PA
1457/* The 'set output-radix' command writes to this auxiliary variable.
1458 If the requested radix is valid, OUTPUT_RADIX is updated,
1459 otherwise, it is left unchanged. */
1460
1461static unsigned output_radix_1 = 10;
1462
c906108c 1463static void
fba45db2 1464set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1465{
09e6485f 1466 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1467}
1468
1469static void
fba45db2 1470set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1471{
1472 /* Validate the radix and disallow ones that we aren't prepared to
1473 handle correctly, leaving the radix unchanged. */
1474 switch (radix)
1475 {
1476 case 16:
79a45b7d 1477 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1478 break;
1479 case 10:
79a45b7d 1480 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1481 break;
1482 case 8:
79a45b7d 1483 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1484 break;
1485 default:
09e6485f 1486 output_radix_1 = output_radix;
8a3fe4f8 1487 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1488 radix);
1489 }
09e6485f 1490 output_radix_1 = output_radix = radix;
c906108c
SS
1491 if (from_tty)
1492 {
a3f17187 1493 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1494 radix, radix, radix);
1495 }
1496}
1497
1498/* Set both the input and output radix at once. Try to set the output radix
1499 first, since it has the most restrictive range. An radix that is valid as
1500 an output radix is also valid as an input radix.
1501
1502 It may be useful to have an unusual input radix. If the user wishes to
1503 set an input radix that is not valid as an output radix, he needs to use
1504 the 'set input-radix' command. */
1505
1506static void
fba45db2 1507set_radix (char *arg, int from_tty)
c906108c
SS
1508{
1509 unsigned radix;
1510
bb518678 1511 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1512 set_output_radix_1 (0, radix);
1513 set_input_radix_1 (0, radix);
1514 if (from_tty)
1515 {
a3f17187 1516 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1517 radix, radix, radix);
1518 }
1519}
1520
1521/* Show both the input and output radices. */
1522
c906108c 1523static void
fba45db2 1524show_radix (char *arg, int from_tty)
c906108c
SS
1525{
1526 if (from_tty)
1527 {
1528 if (input_radix == output_radix)
1529 {
a3f17187 1530 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1531 input_radix, input_radix, input_radix);
1532 }
1533 else
1534 {
a3f17187 1535 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1536 input_radix, input_radix, input_radix);
a3f17187 1537 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1538 output_radix, output_radix, output_radix);
1539 }
1540 }
1541}
c906108c 1542\f
c5aa993b 1543
c906108c 1544static void
fba45db2 1545set_print (char *arg, int from_tty)
c906108c
SS
1546{
1547 printf_unfiltered (
c5aa993b 1548 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1549 help_list (setprintlist, "set print ", -1, gdb_stdout);
1550}
1551
c906108c 1552static void
fba45db2 1553show_print (char *args, int from_tty)
c906108c
SS
1554{
1555 cmd_show_list (showprintlist, from_tty, "");
1556}
1557\f
1558void
fba45db2 1559_initialize_valprint (void)
c906108c
SS
1560{
1561 struct cmd_list_element *c;
1562
1563 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1564 _("Generic command for setting how things print."),
c906108c 1565 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1566 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1567 /* prefer set print to set prompt */
c906108c
SS
1568 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1569
1570 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1571 _("Generic command for showing print settings."),
c906108c 1572 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1573 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1574 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1575
79a45b7d
TT
1576 add_setshow_uinteger_cmd ("elements", no_class,
1577 &user_print_options.print_max, _("\
35096d9d
AC
1578Set limit on string chars or array elements to print."), _("\
1579Show limit on string chars or array elements to print."), _("\
1580\"set print elements 0\" causes there to be no limit."),
1581 NULL,
920d2a44 1582 show_print_max,
35096d9d 1583 &setprintlist, &showprintlist);
c906108c 1584
79a45b7d
TT
1585 add_setshow_boolean_cmd ("null-stop", no_class,
1586 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1587Set printing of char arrays to stop at first null char."), _("\
1588Show printing of char arrays to stop at first null char."), NULL,
1589 NULL,
920d2a44 1590 show_stop_print_at_null,
5bf193a2 1591 &setprintlist, &showprintlist);
c906108c 1592
35096d9d 1593 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1594 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1595Set threshold for repeated print elements."), _("\
1596Show threshold for repeated print elements."), _("\
1597\"set print repeats 0\" causes all elements to be individually printed."),
1598 NULL,
920d2a44 1599 show_repeat_count_threshold,
35096d9d 1600 &setprintlist, &showprintlist);
c906108c 1601
79a45b7d
TT
1602 add_setshow_boolean_cmd ("pretty", class_support,
1603 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1604Set prettyprinting of structures."), _("\
1605Show prettyprinting of structures."), NULL,
1606 NULL,
920d2a44 1607 show_prettyprint_structs,
5bf193a2
AC
1608 &setprintlist, &showprintlist);
1609
79a45b7d
TT
1610 add_setshow_boolean_cmd ("union", class_support,
1611 &user_print_options.unionprint, _("\
5bf193a2
AC
1612Set printing of unions interior to structures."), _("\
1613Show printing of unions interior to structures."), NULL,
1614 NULL,
920d2a44 1615 show_unionprint,
5bf193a2
AC
1616 &setprintlist, &showprintlist);
1617
79a45b7d
TT
1618 add_setshow_boolean_cmd ("array", class_support,
1619 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1620Set prettyprinting of arrays."), _("\
1621Show prettyprinting of arrays."), NULL,
1622 NULL,
920d2a44 1623 show_prettyprint_arrays,
5bf193a2
AC
1624 &setprintlist, &showprintlist);
1625
79a45b7d
TT
1626 add_setshow_boolean_cmd ("address", class_support,
1627 &user_print_options.addressprint, _("\
5bf193a2
AC
1628Set printing of addresses."), _("\
1629Show printing of addresses."), NULL,
1630 NULL,
920d2a44 1631 show_addressprint,
5bf193a2 1632 &setprintlist, &showprintlist);
c906108c 1633
1e8fb976
PA
1634 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1635 _("\
35096d9d
AC
1636Set default input radix for entering numbers."), _("\
1637Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1638 set_input_radix,
1639 show_input_radix,
1640 &setlist, &showlist);
35096d9d 1641
1e8fb976
PA
1642 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1643 _("\
35096d9d
AC
1644Set default output radix for printing of values."), _("\
1645Show default output radix for printing of values."), NULL,
1e8fb976
PA
1646 set_output_radix,
1647 show_output_radix,
1648 &setlist, &showlist);
c906108c 1649
cb1a6d5f
AC
1650 /* The "set radix" and "show radix" commands are special in that
1651 they are like normal set and show commands but allow two normally
1652 independent variables to be either set or shown with a single
b66df561 1653 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1654 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1655 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1656 longer true - show can display anything. */
1a966eab
AC
1657 add_cmd ("radix", class_support, set_radix, _("\
1658Set default input and output number radices.\n\
c906108c 1659Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1660Without an argument, sets both radices back to the default value of 10."),
c906108c 1661 &setlist);
1a966eab
AC
1662 add_cmd ("radix", class_support, show_radix, _("\
1663Show the default input and output number radices.\n\
1664Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1665 &showlist);
1666
e79af960 1667 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1668 &user_print_options.print_array_indexes, _("\
e79af960
JB
1669Set printing of array indexes."), _("\
1670Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1671 &setprintlist, &showprintlist);
c906108c 1672}
This page took 1.029986 seconds and 4 git commands to generate.