[ARC] Add checking for LP_COUNT reg usage, improve error reporting.
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
3f2f83dd 37#include "typeprint.h"
3b2b8fea 38#include <ctype.h>
325fac50 39#include <algorithm>
c906108c 40
0d63ecda
KS
41/* Maximum number of wchars returned from wchar_iterate. */
42#define MAX_WCHARS 4
43
44/* A convenience macro to compute the size of a wchar_t buffer containing X
45 characters. */
46#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
47
48/* Character buffer size saved while iterating over wchars. */
49#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
50
51/* A structure to encapsulate state information from iterated
52 character conversions. */
53struct converted_character
54{
55 /* The number of characters converted. */
56 int num_chars;
57
58 /* The result of the conversion. See charset.h for more. */
59 enum wchar_iterate_result result;
60
61 /* The (saved) converted character(s). */
62 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
63
64 /* The first converted target byte. */
65 const gdb_byte *buf;
66
67 /* The number of bytes converted. */
68 size_t buflen;
69
70 /* How many times this character(s) is repeated. */
71 int repeat_count;
72};
73
74typedef struct converted_character converted_character_d;
75DEF_VEC_O (converted_character_d);
76
e7045703
DE
77/* Command lists for set/show print raw. */
78struct cmd_list_element *setprintrawlist;
79struct cmd_list_element *showprintrawlist;
0d63ecda 80
c906108c
SS
81/* Prototypes for local functions */
82
777ea8f1 83static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 84 int len, int *errptr);
917317f4 85
a14ed312 86static void show_print (char *, int);
c906108c 87
a14ed312 88static void set_print (char *, int);
c906108c 89
a14ed312 90static void set_radix (char *, int);
c906108c 91
a14ed312 92static void show_radix (char *, int);
c906108c 93
a14ed312 94static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 95
a14ed312 96static void set_input_radix_1 (int, unsigned);
c906108c 97
a14ed312 98static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 99
a14ed312 100static void set_output_radix_1 (int, unsigned);
c906108c 101
81516450
DE
102static void val_print_type_code_flags (struct type *type,
103 const gdb_byte *valaddr,
104 struct ui_file *stream);
105
a14ed312 106void _initialize_valprint (void);
c906108c 107
581e13c1 108#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
109
110struct value_print_options user_print_options =
111{
2a998fc0
DE
112 Val_prettyformat_default, /* prettyformat */
113 0, /* prettyformat_arrays */
114 0, /* prettyformat_structs */
79a45b7d
TT
115 0, /* vtblprint */
116 1, /* unionprint */
117 1, /* addressprint */
118 0, /* objectprint */
119 PRINT_MAX_DEFAULT, /* print_max */
120 10, /* repeat_count_threshold */
121 0, /* output_format */
122 0, /* format */
123 0, /* stop_print_at_null */
79a45b7d
TT
124 0, /* print_array_indexes */
125 0, /* deref_ref */
126 1, /* static_field_print */
a6bac58e
TT
127 1, /* pascal_static_field_print */
128 0, /* raw */
9cb709b6
TT
129 0, /* summary */
130 1 /* symbol_print */
79a45b7d
TT
131};
132
133/* Initialize *OPTS to be a copy of the user print options. */
134void
135get_user_print_options (struct value_print_options *opts)
136{
137 *opts = user_print_options;
138}
139
140/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 141 pretty-formatting disabled. */
79a45b7d 142void
2a998fc0 143get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
144{
145 *opts = user_print_options;
2a998fc0 146 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
147}
148
149/* Initialize *OPTS to be a copy of the user print options, but using
150 FORMAT as the formatting option. */
151void
152get_formatted_print_options (struct value_print_options *opts,
153 char format)
154{
155 *opts = user_print_options;
156 opts->format = format;
157}
158
920d2a44
AC
159static void
160show_print_max (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
3e43a32a
MS
163 fprintf_filtered (file,
164 _("Limit on string chars or array "
165 "elements to print is %s.\n"),
920d2a44
AC
166 value);
167}
168
c906108c
SS
169
170/* Default input and output radixes, and output format letter. */
171
172unsigned input_radix = 10;
920d2a44
AC
173static void
174show_input_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
3e43a32a
MS
177 fprintf_filtered (file,
178 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
179 value);
180}
181
c906108c 182unsigned output_radix = 10;
920d2a44
AC
183static void
184show_output_radix (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
3e43a32a
MS
187 fprintf_filtered (file,
188 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
189 value);
190}
c906108c 191
e79af960
JB
192/* By default we print arrays without printing the index of each element in
193 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
194
e79af960
JB
195static void
196show_print_array_indexes (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
200}
201
c906108c
SS
202/* Print repeat counts if there are more than this many repetitions of an
203 element in an array. Referenced by the low level language dependent
581e13c1 204 print routines. */
c906108c 205
920d2a44
AC
206static void
207show_repeat_count_threshold (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
211 value);
212}
c906108c 213
581e13c1 214/* If nonzero, stops printing of char arrays at first null. */
c906108c 215
920d2a44
AC
216static void
217show_stop_print_at_null (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219{
3e43a32a
MS
220 fprintf_filtered (file,
221 _("Printing of char arrays to stop "
222 "at first null char is %s.\n"),
920d2a44
AC
223 value);
224}
c906108c 225
581e13c1 226/* Controls pretty printing of structures. */
c906108c 227
920d2a44 228static void
2a998fc0 229show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
230 struct cmd_list_element *c, const char *value)
231{
2a998fc0 232 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 233}
c906108c
SS
234
235/* Controls pretty printing of arrays. */
236
920d2a44 237static void
2a998fc0 238show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
239 struct cmd_list_element *c, const char *value)
240{
2a998fc0 241 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 242}
c906108c
SS
243
244/* If nonzero, causes unions inside structures or other unions to be
581e13c1 245 printed. */
c906108c 246
920d2a44
AC
247static void
248show_unionprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
3e43a32a
MS
251 fprintf_filtered (file,
252 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
253 value);
254}
c906108c 255
581e13c1 256/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 257
920d2a44
AC
258static void
259show_addressprint (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261{
262 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
263}
9cb709b6
TT
264
265static void
266show_symbol_print (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268{
269 fprintf_filtered (file,
270 _("Printing of symbols when printing pointers is %s.\n"),
271 value);
272}
273
c906108c 274\f
c5aa993b 275
a6bac58e
TT
276/* A helper function for val_print. When printing in "summary" mode,
277 we want to print scalar arguments, but not aggregate arguments.
278 This function distinguishes between the two. */
279
6211c335
YQ
280int
281val_print_scalar_type_p (struct type *type)
a6bac58e 282{
f168693b 283 type = check_typedef (type);
a6bac58e
TT
284 while (TYPE_CODE (type) == TYPE_CODE_REF)
285 {
286 type = TYPE_TARGET_TYPE (type);
f168693b 287 type = check_typedef (type);
a6bac58e
TT
288 }
289 switch (TYPE_CODE (type))
290 {
291 case TYPE_CODE_ARRAY:
292 case TYPE_CODE_STRUCT:
293 case TYPE_CODE_UNION:
294 case TYPE_CODE_SET:
295 case TYPE_CODE_STRING:
a6bac58e
TT
296 return 0;
297 default:
298 return 1;
299 }
300}
301
a72c8f6a 302/* See its definition in value.h. */
0e03807e 303
a72c8f6a 304int
0e03807e
TT
305valprint_check_validity (struct ui_file *stream,
306 struct type *type,
6b850546 307 LONGEST embedded_offset,
0e03807e
TT
308 const struct value *val)
309{
f168693b 310 type = check_typedef (type);
0e03807e 311
3f2f83dd
KB
312 if (type_not_associated (type))
313 {
314 val_print_not_associated (stream);
315 return 0;
316 }
317
318 if (type_not_allocated (type))
319 {
320 val_print_not_allocated (stream);
321 return 0;
322 }
323
0e03807e
TT
324 if (TYPE_CODE (type) != TYPE_CODE_UNION
325 && TYPE_CODE (type) != TYPE_CODE_STRUCT
326 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
327 {
9a0dc9e3
PA
328 if (value_bits_any_optimized_out (val,
329 TARGET_CHAR_BIT * embedded_offset,
330 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 331 {
901461f8 332 val_print_optimized_out (val, stream);
0e03807e
TT
333 return 0;
334 }
8cf6f0b1 335
4e07d55f 336 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
337 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
338 {
3326303b
MG
339 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
340 int ref_is_addressable = 0;
341
342 if (is_ref)
343 {
344 const struct value *deref_val = coerce_ref_if_computed (val);
345
346 if (deref_val != NULL)
347 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
348 }
349
350 if (!is_ref || !ref_is_addressable)
351 fputs_filtered (_("<synthetic pointer>"), stream);
352
353 /* C++ references should be valid even if they're synthetic. */
354 return is_ref;
8cf6f0b1 355 }
4e07d55f
PA
356
357 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
358 {
359 val_print_unavailable (stream);
360 return 0;
361 }
0e03807e
TT
362 }
363
364 return 1;
365}
366
585fdaa1 367void
901461f8 368val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 369{
901461f8 370 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 371 val_print_not_saved (stream);
901461f8
PA
372 else
373 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
374}
375
782d47df
PA
376void
377val_print_not_saved (struct ui_file *stream)
378{
379 fprintf_filtered (stream, _("<not saved>"));
380}
381
4e07d55f
PA
382void
383val_print_unavailable (struct ui_file *stream)
384{
385 fprintf_filtered (stream, _("<unavailable>"));
386}
387
8af8e3bc
PA
388void
389val_print_invalid_address (struct ui_file *stream)
390{
391 fprintf_filtered (stream, _("<invalid address>"));
392}
393
9f436164
SM
394/* Print a pointer based on the type of its target.
395
396 Arguments to this functions are roughly the same as those in
397 generic_val_print. A difference is that ADDRESS is the address to print,
398 with embedded_offset already added. ELTTYPE represents
399 the pointed type after check_typedef. */
400
401static void
402print_unpacked_pointer (struct type *type, struct type *elttype,
403 CORE_ADDR address, struct ui_file *stream,
404 const struct value_print_options *options)
405{
406 struct gdbarch *gdbarch = get_type_arch (type);
407
408 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
409 {
410 /* Try to print what function it points to. */
411 print_function_pointer_address (options, gdbarch, address, stream);
412 return;
413 }
414
415 if (options->symbol_print)
416 print_address_demangle (options, gdbarch, address, stream, demangle);
417 else if (options->addressprint)
418 fputs_filtered (paddress (gdbarch, address), stream);
419}
420
557dbe8a
SM
421/* generic_val_print helper for TYPE_CODE_ARRAY. */
422
423static void
e8b24d9f 424generic_val_print_array (struct type *type,
00272ec4
TT
425 int embedded_offset, CORE_ADDR address,
426 struct ui_file *stream, int recurse,
e8b24d9f 427 struct value *original_value,
00272ec4
TT
428 const struct value_print_options *options,
429 const struct
430 generic_val_print_decorations *decorations)
557dbe8a
SM
431{
432 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
433 struct type *elttype = check_typedef (unresolved_elttype);
434
435 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
436 {
437 LONGEST low_bound, high_bound;
438
439 if (!get_array_bounds (type, &low_bound, &high_bound))
440 error (_("Could not determine the array high bound"));
441
442 if (options->prettyformat_arrays)
443 {
444 print_spaces_filtered (2 + 2 * recurse, stream);
445 }
446
00272ec4 447 fputs_filtered (decorations->array_start, stream);
e8b24d9f 448 val_print_array_elements (type, embedded_offset,
557dbe8a
SM
449 address, stream,
450 recurse, original_value, options, 0);
00272ec4 451 fputs_filtered (decorations->array_end, stream);
557dbe8a
SM
452 }
453 else
454 {
455 /* Array of unspecified length: treat like pointer to first elt. */
456 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
457 options);
458 }
459
460}
461
81eb921a
SM
462/* generic_val_print helper for TYPE_CODE_PTR. */
463
464static void
e8b24d9f 465generic_val_print_ptr (struct type *type,
81eb921a 466 int embedded_offset, struct ui_file *stream,
e8b24d9f 467 struct value *original_value,
81eb921a
SM
468 const struct value_print_options *options)
469{
3ae385af
SM
470 struct gdbarch *gdbarch = get_type_arch (type);
471 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
472
81eb921a
SM
473 if (options->format && options->format != 's')
474 {
e8b24d9f 475 val_print_scalar_formatted (type, embedded_offset,
81eb921a
SM
476 original_value, options, 0, stream);
477 }
478 else
479 {
480 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
481 struct type *elttype = check_typedef (unresolved_elttype);
e8b24d9f 482 const gdb_byte *valaddr = value_contents_for_printing (original_value);
3ae385af
SM
483 CORE_ADDR addr = unpack_pointer (type,
484 valaddr + embedded_offset * unit_size);
81eb921a
SM
485
486 print_unpacked_pointer (type, elttype, addr, stream, options);
487 }
488}
489
45000ea2
SM
490
491/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
492
493static void
e8b24d9f 494generic_val_print_memberptr (struct type *type,
45000ea2 495 int embedded_offset, struct ui_file *stream,
e8b24d9f 496 struct value *original_value,
45000ea2
SM
497 const struct value_print_options *options)
498{
e8b24d9f 499 val_print_scalar_formatted (type, embedded_offset,
45000ea2
SM
500 original_value, options, 0, stream);
501}
502
3326303b
MG
503/* Print '@' followed by the address contained in ADDRESS_BUFFER. */
504
505static void
506print_ref_address (struct type *type, const gdb_byte *address_buffer,
507 int embedded_offset, struct ui_file *stream)
508{
509 struct gdbarch *gdbarch = get_type_arch (type);
510
511 if (address_buffer != NULL)
512 {
513 CORE_ADDR address
514 = extract_typed_address (address_buffer + embedded_offset, type);
515
516 fprintf_filtered (stream, "@");
517 fputs_filtered (paddress (gdbarch, address), stream);
518 }
519 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
520}
521
522/* If VAL is addressable, return the value contents buffer of a value that
523 represents a pointer to VAL. Otherwise return NULL. */
524
525static const gdb_byte *
526get_value_addr_contents (struct value *deref_val)
527{
528 gdb_assert (deref_val != NULL);
529
530 if (value_lval_const (deref_val) == lval_memory)
531 return value_contents_for_printing_const (value_addr (deref_val));
532 else
533 {
534 /* We have a non-addressable value, such as a DW_AT_const_value. */
535 return NULL;
536 }
537}
538
fe43fede
SM
539/* generic_val_print helper for TYPE_CODE_REF. */
540
541static void
e8b24d9f 542generic_val_print_ref (struct type *type,
fe43fede 543 int embedded_offset, struct ui_file *stream, int recurse,
e8b24d9f 544 struct value *original_value,
fe43fede
SM
545 const struct value_print_options *options)
546{
fe43fede 547 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
3326303b
MG
548 struct value *deref_val = NULL;
549 const int value_is_synthetic
550 = value_bits_synthetic_pointer (original_value,
551 TARGET_CHAR_BIT * embedded_offset,
552 TARGET_CHAR_BIT * TYPE_LENGTH (type));
553 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
554 || options->deref_ref);
555 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
e8b24d9f 556 const gdb_byte *valaddr = value_contents_for_printing (original_value);
3326303b
MG
557
558 if (must_coerce_ref && type_is_defined)
559 {
560 deref_val = coerce_ref_if_computed (original_value);
561
562 if (deref_val != NULL)
563 {
564 /* More complicated computed references are not supported. */
565 gdb_assert (embedded_offset == 0);
566 }
567 else
568 deref_val = value_at (TYPE_TARGET_TYPE (type),
569 unpack_pointer (type, valaddr + embedded_offset));
570 }
571 /* Else, original_value isn't a synthetic reference or we don't have to print
572 the reference's contents.
573
574 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
575 cause original_value to be a not_lval instead of an lval_computed,
576 which will make value_bits_synthetic_pointer return false.
577 This happens because if options->objectprint is true, c_value_print will
578 overwrite original_value's contents with the result of coercing
579 the reference through value_addr, and then set its type back to
580 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
581 we can simply treat it as non-synthetic and move on. */
fe43fede
SM
582
583 if (options->addressprint)
584 {
3326303b
MG
585 const gdb_byte *address = (value_is_synthetic && type_is_defined
586 ? get_value_addr_contents (deref_val)
587 : valaddr);
588
589 print_ref_address (type, address, embedded_offset, stream);
fe43fede 590
fe43fede
SM
591 if (options->deref_ref)
592 fputs_filtered (": ", stream);
593 }
3326303b 594
fe43fede
SM
595 if (options->deref_ref)
596 {
3326303b
MG
597 if (type_is_defined)
598 common_val_print (deref_val, stream, recurse, options,
599 current_language);
fe43fede
SM
600 else
601 fputs_filtered ("???", stream);
602 }
603}
604
81516450
DE
605/* Helper function for generic_val_print_enum.
606 This is also used to print enums in TYPE_CODE_FLAGS values. */
ef0bc0dd
SM
607
608static void
81516450
DE
609generic_val_print_enum_1 (struct type *type, LONGEST val,
610 struct ui_file *stream)
ef0bc0dd
SM
611{
612 unsigned int i;
613 unsigned int len;
ef0bc0dd 614
ef0bc0dd 615 len = TYPE_NFIELDS (type);
ef0bc0dd
SM
616 for (i = 0; i < len; i++)
617 {
618 QUIT;
619 if (val == TYPE_FIELD_ENUMVAL (type, i))
620 {
621 break;
622 }
623 }
624 if (i < len)
625 {
626 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
627 }
628 else if (TYPE_FLAG_ENUM (type))
629 {
630 int first = 1;
631
632 /* We have a "flag" enum, so we try to decompose it into
633 pieces as appropriate. A flag enum has disjoint
634 constants by definition. */
635 fputs_filtered ("(", stream);
636 for (i = 0; i < len; ++i)
637 {
638 QUIT;
639
640 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
641 {
642 if (!first)
643 fputs_filtered (" | ", stream);
644 first = 0;
645
646 val &= ~TYPE_FIELD_ENUMVAL (type, i);
647 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
648 }
649 }
650
651 if (first || val != 0)
652 {
653 if (!first)
654 fputs_filtered (" | ", stream);
655 fputs_filtered ("unknown: ", stream);
656 print_longest (stream, 'd', 0, val);
657 }
658
659 fputs_filtered (")", stream);
660 }
661 else
662 print_longest (stream, 'd', 0, val);
663}
664
81516450
DE
665/* generic_val_print helper for TYPE_CODE_ENUM. */
666
667static void
e8b24d9f 668generic_val_print_enum (struct type *type,
81516450 669 int embedded_offset, struct ui_file *stream,
e8b24d9f 670 struct value *original_value,
81516450
DE
671 const struct value_print_options *options)
672{
673 LONGEST val;
674 struct gdbarch *gdbarch = get_type_arch (type);
675 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
676
677 if (options->format)
678 {
e8b24d9f 679 val_print_scalar_formatted (type, embedded_offset,
81516450 680 original_value, options, 0, stream);
81516450 681 }
e8b24d9f
YQ
682 else
683 {
684 const gdb_byte *valaddr = value_contents_for_printing (original_value);
685
686 val = unpack_long (type, valaddr + embedded_offset * unit_size);
81516450 687
e8b24d9f
YQ
688 generic_val_print_enum_1 (type, val, stream);
689 }
81516450
DE
690}
691
d93880bd
SM
692/* generic_val_print helper for TYPE_CODE_FLAGS. */
693
694static void
e8b24d9f 695generic_val_print_flags (struct type *type,
d93880bd 696 int embedded_offset, struct ui_file *stream,
e8b24d9f 697 struct value *original_value,
d93880bd
SM
698 const struct value_print_options *options)
699
700{
701 if (options->format)
e8b24d9f 702 val_print_scalar_formatted (type, embedded_offset, original_value,
d93880bd
SM
703 options, 0, stream);
704 else
e8b24d9f
YQ
705 {
706 const gdb_byte *valaddr = value_contents_for_printing (original_value);
707
708 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
709 }
d93880bd
SM
710}
711
4a8c372f
SM
712/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
713
714static void
e8b24d9f 715generic_val_print_func (struct type *type,
4a8c372f
SM
716 int embedded_offset, CORE_ADDR address,
717 struct ui_file *stream,
e8b24d9f 718 struct value *original_value,
4a8c372f
SM
719 const struct value_print_options *options)
720{
721 struct gdbarch *gdbarch = get_type_arch (type);
722
723 if (options->format)
724 {
e8b24d9f 725 val_print_scalar_formatted (type, embedded_offset,
4a8c372f
SM
726 original_value, options, 0, stream);
727 }
728 else
729 {
730 /* FIXME, we should consider, at least for ANSI C language,
731 eliminating the distinction made between FUNCs and POINTERs
732 to FUNCs. */
733 fprintf_filtered (stream, "{");
734 type_print (type, "", stream, -1);
735 fprintf_filtered (stream, "} ");
736 /* Try to print what function it points to, and its address. */
737 print_address_demangle (options, gdbarch, address, stream, demangle);
738 }
739}
740
e5bead4b
SM
741/* generic_val_print helper for TYPE_CODE_BOOL. */
742
743static void
e8b24d9f 744generic_val_print_bool (struct type *type,
e5bead4b 745 int embedded_offset, struct ui_file *stream,
e8b24d9f 746 struct value *original_value,
e5bead4b
SM
747 const struct value_print_options *options,
748 const struct generic_val_print_decorations *decorations)
749{
750 LONGEST val;
3ae385af
SM
751 struct gdbarch *gdbarch = get_type_arch (type);
752 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
e5bead4b
SM
753
754 if (options->format || options->output_format)
755 {
756 struct value_print_options opts = *options;
757 opts.format = (options->format ? options->format
758 : options->output_format);
e8b24d9f 759 val_print_scalar_formatted (type, embedded_offset,
e5bead4b
SM
760 original_value, &opts, 0, stream);
761 }
762 else
763 {
e8b24d9f
YQ
764 const gdb_byte *valaddr = value_contents_for_printing (original_value);
765
3ae385af 766 val = unpack_long (type, valaddr + embedded_offset * unit_size);
e5bead4b
SM
767 if (val == 0)
768 fputs_filtered (decorations->false_name, stream);
769 else if (val == 1)
770 fputs_filtered (decorations->true_name, stream);
771 else
772 print_longest (stream, 'd', 0, val);
773 }
774}
775
b21b6342
SM
776/* generic_val_print helper for TYPE_CODE_INT. */
777
778static void
e8b24d9f 779generic_val_print_int (struct type *type,
b21b6342 780 int embedded_offset, struct ui_file *stream,
e8b24d9f 781 struct value *original_value,
b21b6342
SM
782 const struct value_print_options *options)
783{
3ae385af
SM
784 struct gdbarch *gdbarch = get_type_arch (type);
785 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
786
b21b6342
SM
787 if (options->format || options->output_format)
788 {
789 struct value_print_options opts = *options;
790
791 opts.format = (options->format ? options->format
792 : options->output_format);
e8b24d9f 793 val_print_scalar_formatted (type, embedded_offset,
b21b6342
SM
794 original_value, &opts, 0, stream);
795 }
796 else
e8b24d9f
YQ
797 {
798 const gdb_byte *valaddr = value_contents_for_printing (original_value);
799
800 val_print_type_code_int (type, valaddr + embedded_offset * unit_size,
801 stream);
802 }
b21b6342
SM
803}
804
385f5aff
SM
805/* generic_val_print helper for TYPE_CODE_CHAR. */
806
807static void
808generic_val_print_char (struct type *type, struct type *unresolved_type,
e8b24d9f 809 int embedded_offset,
385f5aff 810 struct ui_file *stream,
e8b24d9f 811 struct value *original_value,
385f5aff
SM
812 const struct value_print_options *options)
813{
814 LONGEST val;
3ae385af
SM
815 struct gdbarch *gdbarch = get_type_arch (type);
816 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
385f5aff
SM
817
818 if (options->format || options->output_format)
819 {
820 struct value_print_options opts = *options;
821
822 opts.format = (options->format ? options->format
823 : options->output_format);
e8b24d9f 824 val_print_scalar_formatted (type, embedded_offset,
385f5aff
SM
825 original_value, &opts, 0, stream);
826 }
827 else
828 {
e8b24d9f
YQ
829 const gdb_byte *valaddr = value_contents_for_printing (original_value);
830
3ae385af 831 val = unpack_long (type, valaddr + embedded_offset * unit_size);
385f5aff
SM
832 if (TYPE_UNSIGNED (type))
833 fprintf_filtered (stream, "%u", (unsigned int) val);
834 else
835 fprintf_filtered (stream, "%d", (int) val);
836 fputs_filtered (" ", stream);
837 LA_PRINT_CHAR (val, unresolved_type, stream);
838 }
839}
840
7784724b
SM
841/* generic_val_print helper for TYPE_CODE_FLT. */
842
843static void
e8b24d9f 844generic_val_print_float (struct type *type,
7784724b 845 int embedded_offset, struct ui_file *stream,
e8b24d9f 846 struct value *original_value,
7784724b
SM
847 const struct value_print_options *options)
848{
3ae385af
SM
849 struct gdbarch *gdbarch = get_type_arch (type);
850 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
851
7784724b
SM
852 if (options->format)
853 {
e8b24d9f 854 val_print_scalar_formatted (type, embedded_offset,
7784724b
SM
855 original_value, options, 0, stream);
856 }
857 else
858 {
e8b24d9f
YQ
859 const gdb_byte *valaddr = value_contents_for_printing (original_value);
860
3ae385af 861 print_floating (valaddr + embedded_offset * unit_size, type, stream);
7784724b
SM
862 }
863}
864
9550ae5e
SM
865/* generic_val_print helper for TYPE_CODE_DECFLOAT. */
866
867static void
e8b24d9f 868generic_val_print_decfloat (struct type *type,
9550ae5e 869 int embedded_offset, struct ui_file *stream,
e8b24d9f 870 struct value *original_value,
9550ae5e
SM
871 const struct value_print_options *options)
872{
3ae385af
SM
873 struct gdbarch *gdbarch = get_type_arch (type);
874 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
875
9550ae5e 876 if (options->format)
e8b24d9f 877 val_print_scalar_formatted (type, embedded_offset, original_value,
9550ae5e
SM
878 options, 0, stream);
879 else
e8b24d9f
YQ
880 {
881 const gdb_byte *valaddr = value_contents_for_printing (original_value);
882
883 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
884 stream);
885 }
9550ae5e
SM
886}
887
0c87c0bf
SM
888/* generic_val_print helper for TYPE_CODE_COMPLEX. */
889
890static void
e8b24d9f 891generic_val_print_complex (struct type *type,
0c87c0bf 892 int embedded_offset, struct ui_file *stream,
e8b24d9f 893 struct value *original_value,
0c87c0bf
SM
894 const struct value_print_options *options,
895 const struct generic_val_print_decorations
896 *decorations)
897{
3ae385af
SM
898 struct gdbarch *gdbarch = get_type_arch (type);
899 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
e8b24d9f 900 const gdb_byte *valaddr = value_contents_for_printing (original_value);
3ae385af 901
0c87c0bf
SM
902 fprintf_filtered (stream, "%s", decorations->complex_prefix);
903 if (options->format)
e8b24d9f 904 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
0c87c0bf
SM
905 embedded_offset, original_value, options, 0,
906 stream);
907 else
3ae385af
SM
908 print_floating (valaddr + embedded_offset * unit_size,
909 TYPE_TARGET_TYPE (type), stream);
0c87c0bf
SM
910 fprintf_filtered (stream, "%s", decorations->complex_infix);
911 if (options->format)
e8b24d9f 912 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
0c87c0bf 913 embedded_offset
3ae385af 914 + type_length_units (TYPE_TARGET_TYPE (type)),
0c87c0bf
SM
915 original_value, options, 0, stream);
916 else
3ae385af 917 print_floating (valaddr + embedded_offset * unit_size
0c87c0bf
SM
918 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
919 TYPE_TARGET_TYPE (type), stream);
920 fprintf_filtered (stream, "%s", decorations->complex_suffix);
921}
922
e88acd96
TT
923/* A generic val_print that is suitable for use by language
924 implementations of the la_val_print method. This function can
925 handle most type codes, though not all, notably exception
926 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
927 the caller.
928
929 Most arguments are as to val_print.
930
931 The additional DECORATIONS argument can be used to customize the
932 output in some small, language-specific ways. */
933
934void
e8b24d9f 935generic_val_print (struct type *type,
e88acd96
TT
936 int embedded_offset, CORE_ADDR address,
937 struct ui_file *stream, int recurse,
e8b24d9f 938 struct value *original_value,
e88acd96
TT
939 const struct value_print_options *options,
940 const struct generic_val_print_decorations *decorations)
941{
e88acd96 942 struct type *unresolved_type = type;
e88acd96 943
f168693b 944 type = check_typedef (type);
e88acd96
TT
945 switch (TYPE_CODE (type))
946 {
947 case TYPE_CODE_ARRAY:
e8b24d9f 948 generic_val_print_array (type, embedded_offset, address, stream,
00272ec4 949 recurse, original_value, options, decorations);
9f436164 950 break;
e88acd96
TT
951
952 case TYPE_CODE_MEMBERPTR:
e8b24d9f 953 generic_val_print_memberptr (type, embedded_offset, stream,
45000ea2 954 original_value, options);
e88acd96
TT
955 break;
956
957 case TYPE_CODE_PTR:
e8b24d9f 958 generic_val_print_ptr (type, embedded_offset, stream,
81eb921a 959 original_value, options);
e88acd96
TT
960 break;
961
962 case TYPE_CODE_REF:
e8b24d9f 963 generic_val_print_ref (type, embedded_offset, stream, recurse,
fe43fede 964 original_value, options);
e88acd96
TT
965 break;
966
967 case TYPE_CODE_ENUM:
e8b24d9f 968 generic_val_print_enum (type, embedded_offset, stream,
ef0bc0dd 969 original_value, options);
e88acd96
TT
970 break;
971
972 case TYPE_CODE_FLAGS:
e8b24d9f 973 generic_val_print_flags (type, embedded_offset, stream,
d93880bd 974 original_value, options);
e88acd96
TT
975 break;
976
977 case TYPE_CODE_FUNC:
978 case TYPE_CODE_METHOD:
e8b24d9f 979 generic_val_print_func (type, embedded_offset, address, stream,
4a8c372f 980 original_value, options);
e88acd96
TT
981 break;
982
983 case TYPE_CODE_BOOL:
e8b24d9f 984 generic_val_print_bool (type, embedded_offset, stream,
e5bead4b 985 original_value, options, decorations);
e88acd96
TT
986 break;
987
988 case TYPE_CODE_RANGE:
0c9c3474 989 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
990 range type (I think it probably should copy it from the
991 target type), so we won't print values which are too large to
992 fit in a signed integer correctly. */
993 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
994 print with the target type, though, because the size of our
995 type and the target type might differ). */
996
997 /* FALLTHROUGH */
998
999 case TYPE_CODE_INT:
e8b24d9f 1000 generic_val_print_int (type, embedded_offset, stream,
b21b6342 1001 original_value, options);
e88acd96
TT
1002 break;
1003
1004 case TYPE_CODE_CHAR:
e8b24d9f 1005 generic_val_print_char (type, unresolved_type, embedded_offset,
385f5aff 1006 stream, original_value, options);
e88acd96
TT
1007 break;
1008
1009 case TYPE_CODE_FLT:
e8b24d9f 1010 generic_val_print_float (type, embedded_offset, stream,
7784724b 1011 original_value, options);
e88acd96
TT
1012 break;
1013
1014 case TYPE_CODE_DECFLOAT:
e8b24d9f 1015 generic_val_print_decfloat (type, embedded_offset, stream,
9550ae5e 1016 original_value, options);
e88acd96
TT
1017 break;
1018
1019 case TYPE_CODE_VOID:
1020 fputs_filtered (decorations->void_name, stream);
1021 break;
1022
1023 case TYPE_CODE_ERROR:
1024 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1025 break;
1026
1027 case TYPE_CODE_UNDEF:
a9ff5f12
UW
1028 /* This happens (without TYPE_STUB set) on systems which don't use
1029 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1030 and no complete type for struct foo in that file. */
e88acd96
TT
1031 fprintf_filtered (stream, _("<incomplete type>"));
1032 break;
1033
1034 case TYPE_CODE_COMPLEX:
e8b24d9f 1035 generic_val_print_complex (type, embedded_offset, stream,
0c87c0bf 1036 original_value, options, decorations);
e88acd96
TT
1037 break;
1038
1039 case TYPE_CODE_UNION:
1040 case TYPE_CODE_STRUCT:
1041 case TYPE_CODE_METHODPTR:
1042 default:
1043 error (_("Unhandled type code %d in symbol table."),
1044 TYPE_CODE (type));
1045 }
1046 gdb_flush (stream);
1047}
1048
32b72a42 1049/* Print using the given LANGUAGE the data of type TYPE located at
e8b24d9f
YQ
1050 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1051 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1052 stdio stream STREAM according to OPTIONS. VAL is the whole object
1053 that came from ADDRESS.
32b72a42
PA
1054
1055 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1056 further helper subroutines as subfields of TYPE are printed. In
e8b24d9f 1057 such cases, VAL is passed down unadjusted, so
32b72a42
PA
1058 that VAL can be queried for metadata about the contents data being
1059 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1060 buffer. For example: "has this field been optimized out", or "I'm
1061 printing an object while inspecting a traceframe; has this
1062 particular piece of data been collected?".
1063
1064 RECURSE indicates the amount of indentation to supply before
1065 continuation lines; this amount is roughly twice the value of
35c0084b 1066 RECURSE. */
32b72a42 1067
35c0084b 1068void
e8b24d9f 1069val_print (struct type *type, LONGEST embedded_offset,
79a45b7d 1070 CORE_ADDR address, struct ui_file *stream, int recurse,
e8b24d9f 1071 struct value *val,
79a45b7d 1072 const struct value_print_options *options,
d8ca156b 1073 const struct language_defn *language)
c906108c 1074{
19ca80ba 1075 int ret = 0;
79a45b7d 1076 struct value_print_options local_opts = *options;
c906108c 1077 struct type *real_type = check_typedef (type);
79a45b7d 1078
2a998fc0
DE
1079 if (local_opts.prettyformat == Val_prettyformat_default)
1080 local_opts.prettyformat = (local_opts.prettyformat_structs
1081 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 1082
c906108c
SS
1083 QUIT;
1084
1085 /* Ensure that the type is complete and not just a stub. If the type is
1086 only a stub and we can't find and substitute its complete type, then
1087 print appropriate string and return. */
1088
74a9bb82 1089 if (TYPE_STUB (real_type))
c906108c 1090 {
0e03807e 1091 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 1092 gdb_flush (stream);
35c0084b 1093 return;
c906108c 1094 }
c5aa993b 1095
0e03807e 1096 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 1097 return;
0e03807e 1098
a6bac58e
TT
1099 if (!options->raw)
1100 {
668e1674 1101 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
6dddc817
DE
1102 address, stream, recurse,
1103 val, options, language);
a6bac58e 1104 if (ret)
35c0084b 1105 return;
a6bac58e
TT
1106 }
1107
1108 /* Handle summary mode. If the value is a scalar, print it;
1109 otherwise, print an ellipsis. */
6211c335 1110 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
1111 {
1112 fprintf_filtered (stream, "...");
35c0084b 1113 return;
a6bac58e
TT
1114 }
1115
492d29ea 1116 TRY
19ca80ba 1117 {
e8b24d9f 1118 language->la_val_print (type, embedded_offset, address,
d3eab38a
TT
1119 stream, recurse, val,
1120 &local_opts);
19ca80ba 1121 }
492d29ea
PA
1122 CATCH (except, RETURN_MASK_ERROR)
1123 {
1124 fprintf_filtered (stream, _("<error reading variable>"));
1125 }
1126 END_CATCH
c906108c
SS
1127}
1128
806048c6 1129/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
1130 return 0 and print an appropriate error message to STREAM according to
1131 OPTIONS if it is not. */
c906108c 1132
806048c6 1133static int
6501578c
YQ
1134value_check_printable (struct value *val, struct ui_file *stream,
1135 const struct value_print_options *options)
c906108c
SS
1136{
1137 if (val == 0)
1138 {
806048c6 1139 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
1140 return 0;
1141 }
806048c6 1142
0e03807e 1143 if (value_entirely_optimized_out (val))
c906108c 1144 {
6211c335 1145 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
1146 fprintf_filtered (stream, "...");
1147 else
901461f8 1148 val_print_optimized_out (val, stream);
c906108c
SS
1149 return 0;
1150 }
806048c6 1151
eebc056c
AB
1152 if (value_entirely_unavailable (val))
1153 {
1154 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1155 fprintf_filtered (stream, "...");
1156 else
1157 val_print_unavailable (stream);
1158 return 0;
1159 }
1160
bc3b79fd
TJB
1161 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1162 {
1163 fprintf_filtered (stream, _("<internal function %s>"),
1164 value_internal_function_name (val));
1165 return 0;
1166 }
1167
3f2f83dd
KB
1168 if (type_not_associated (value_type (val)))
1169 {
1170 val_print_not_associated (stream);
1171 return 0;
1172 }
1173
1174 if (type_not_allocated (value_type (val)))
1175 {
1176 val_print_not_allocated (stream);
1177 return 0;
1178 }
1179
806048c6
DJ
1180 return 1;
1181}
1182
d8ca156b 1183/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 1184 to OPTIONS.
806048c6 1185
806048c6
DJ
1186 This is a preferable interface to val_print, above, because it uses
1187 GDB's value mechanism. */
1188
a1f5dd1b 1189void
79a45b7d
TT
1190common_val_print (struct value *val, struct ui_file *stream, int recurse,
1191 const struct value_print_options *options,
d8ca156b 1192 const struct language_defn *language)
806048c6 1193{
6501578c 1194 if (!value_check_printable (val, stream, options))
a1f5dd1b 1195 return;
806048c6 1196
0c3acc09
JB
1197 if (language->la_language == language_ada)
1198 /* The value might have a dynamic type, which would cause trouble
1199 below when trying to extract the value contents (since the value
1200 size is determined from the type size which is unknown). So
1201 get a fixed representation of our value. */
1202 val = ada_to_fixed_value (val);
1203
e8b24d9f 1204 val_print (value_type (val),
a1f5dd1b
TT
1205 value_embedded_offset (val), value_address (val),
1206 stream, recurse,
1207 val, options, language);
806048c6
DJ
1208}
1209
7348c5e1 1210/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 1211 is printed using the current_language syntax. */
7348c5e1 1212
8e069a98 1213void
79a45b7d
TT
1214value_print (struct value *val, struct ui_file *stream,
1215 const struct value_print_options *options)
806048c6 1216{
6501578c 1217 if (!value_check_printable (val, stream, options))
8e069a98 1218 return;
806048c6 1219
a6bac58e
TT
1220 if (!options->raw)
1221 {
6dddc817
DE
1222 int r
1223 = apply_ext_lang_val_pretty_printer (value_type (val),
6dddc817
DE
1224 value_embedded_offset (val),
1225 value_address (val),
1226 stream, 0,
1227 val, options, current_language);
a109c7c1 1228
a6bac58e 1229 if (r)
8e069a98 1230 return;
a6bac58e
TT
1231 }
1232
8e069a98 1233 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
1234}
1235
1236/* Called by various <lang>_val_print routines to print
1237 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1238 value. STREAM is where to print the value. */
1239
1240void
fc1a4b47 1241val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 1242 struct ui_file *stream)
c906108c 1243{
50810684 1244 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 1245
c906108c
SS
1246 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1247 {
1248 LONGEST val;
1249
1250 if (TYPE_UNSIGNED (type)
1251 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 1252 byte_order, &val))
c906108c
SS
1253 {
1254 print_longest (stream, 'u', 0, val);
1255 }
1256 else
1257 {
1258 /* Signed, or we couldn't turn an unsigned value into a
1259 LONGEST. For signed values, one could assume two's
1260 complement (a reasonable assumption, I think) and do
1261 better than this. */
1262 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 1263 TYPE_LENGTH (type), byte_order);
c906108c
SS
1264 }
1265 }
1266 else
1267 {
c906108c
SS
1268 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1269 unpack_long (type, valaddr));
c906108c
SS
1270 }
1271}
1272
81516450 1273static void
4f2aea11
MK
1274val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1275 struct ui_file *stream)
1276{
befae759 1277 ULONGEST val = unpack_long (type, valaddr);
81516450
DE
1278 int field, nfields = TYPE_NFIELDS (type);
1279 struct gdbarch *gdbarch = get_type_arch (type);
1280 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
4f2aea11 1281
81516450
DE
1282 fputs_filtered ("[", stream);
1283 for (field = 0; field < nfields; field++)
4f2aea11 1284 {
81516450 1285 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
4f2aea11 1286 {
81516450
DE
1287 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1288
1289 if (field_type == bool_type
1290 /* We require boolean types here to be one bit wide. This is a
1291 problematic place to notify the user of an internal error
1292 though. Instead just fall through and print the field as an
1293 int. */
1294 && TYPE_FIELD_BITSIZE (type, field) == 1)
1295 {
1296 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1297 fprintf_filtered (stream, " %s",
1298 TYPE_FIELD_NAME (type, field));
1299 }
4f2aea11 1300 else
81516450
DE
1301 {
1302 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1303 ULONGEST field_val
1304 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1305
1306 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1307 field_val &= ((ULONGEST) 1 << field_len) - 1;
1308 fprintf_filtered (stream, " %s=",
1309 TYPE_FIELD_NAME (type, field));
1310 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1311 generic_val_print_enum_1 (field_type, field_val, stream);
1312 else
1313 print_longest (stream, 'd', 0, field_val);
1314 }
4f2aea11
MK
1315 }
1316 }
81516450 1317 fputs_filtered (" ]", stream);
19c37f24 1318}
ab2188aa
PA
1319
1320/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1321 according to OPTIONS and SIZE on STREAM. Format i is not supported
1322 at this level.
1323
1324 This is how the elements of an array or structure are printed
1325 with a format. */
ab2188aa
PA
1326
1327void
1328val_print_scalar_formatted (struct type *type,
e8b24d9f
YQ
1329 LONGEST embedded_offset,
1330 struct value *val,
ab2188aa
PA
1331 const struct value_print_options *options,
1332 int size,
1333 struct ui_file *stream)
1334{
3ae385af
SM
1335 struct gdbarch *arch = get_type_arch (type);
1336 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1337
ab2188aa 1338 gdb_assert (val != NULL);
ab2188aa
PA
1339
1340 /* If we get here with a string format, try again without it. Go
1341 all the way back to the language printers, which may call us
1342 again. */
1343 if (options->format == 's')
1344 {
1345 struct value_print_options opts = *options;
1346 opts.format = 0;
1347 opts.deref_ref = 0;
e8b24d9f 1348 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
ab2188aa
PA
1349 current_language);
1350 return;
1351 }
1352
e8b24d9f
YQ
1353 /* value_contents_for_printing fetches all VAL's contents. They are
1354 needed to check whether VAL is optimized-out or unavailable
1355 below. */
1356 const gdb_byte *valaddr = value_contents_for_printing (val);
1357
ab2188aa
PA
1358 /* A scalar object that does not have all bits available can't be
1359 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1360 if (value_bits_any_optimized_out (val,
1361 TARGET_CHAR_BIT * embedded_offset,
1362 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1363 val_print_optimized_out (val, stream);
4e07d55f
PA
1364 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1365 val_print_unavailable (stream);
ab2188aa 1366 else
3ae385af 1367 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
ab2188aa 1368 options, size, stream);
4f2aea11
MK
1369}
1370
c906108c
SS
1371/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1372 The raison d'etre of this function is to consolidate printing of
581e13c1 1373 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1374 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1375 format.
bb599908
PH
1376
1377 USE_C_FORMAT means to use C format in all cases. Without it,
1378 'o' and 'x' format do not include the standard C radix prefix
1379 (leading 0 or 0x).
1380
1381 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1382 and was intended to request formating according to the current
1383 language and would be used for most integers that GDB prints. The
1384 exceptional cases were things like protocols where the format of
1385 the integer is a protocol thing, not a user-visible thing). The
1386 parameter remains to preserve the information of what things might
1387 be printed with language-specific format, should we ever resurrect
581e13c1 1388 that capability. */
c906108c
SS
1389
1390void
bb599908 1391print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1392 LONGEST val_long)
c906108c 1393{
2bfb72ee
AC
1394 const char *val;
1395
c906108c
SS
1396 switch (format)
1397 {
1398 case 'd':
bb599908 1399 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1400 case 'u':
bb599908 1401 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1402 case 'x':
bb599908 1403 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1404 case 'b':
bb599908 1405 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1406 case 'h':
bb599908 1407 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1408 case 'w':
bb599908 1409 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1410 case 'g':
bb599908 1411 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1412 break;
1413 case 'o':
bb599908 1414 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1415 default:
3e43a32a
MS
1416 internal_error (__FILE__, __LINE__,
1417 _("failed internal consistency check"));
bb599908 1418 }
2bfb72ee 1419 fputs_filtered (val, stream);
c906108c
SS
1420}
1421
c906108c
SS
1422/* This used to be a macro, but I don't think it is called often enough
1423 to merit such treatment. */
1424/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1425 arguments to a function, number in a value history, register number, etc.)
1426 where the value must not be larger than can fit in an int. */
1427
1428int
fba45db2 1429longest_to_int (LONGEST arg)
c906108c 1430{
581e13c1 1431 /* Let the compiler do the work. */
c906108c
SS
1432 int rtnval = (int) arg;
1433
581e13c1 1434 /* Check for overflows or underflows. */
c906108c
SS
1435 if (sizeof (LONGEST) > sizeof (int))
1436 {
1437 if (rtnval != arg)
1438 {
8a3fe4f8 1439 error (_("Value out of range."));
c906108c
SS
1440 }
1441 }
1442 return (rtnval);
1443}
1444
a73c86fb
AC
1445/* Print a floating point value of type TYPE (not always a
1446 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1447
1448void
fc1a4b47 1449print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1450 struct ui_file *stream)
c906108c
SS
1451{
1452 DOUBLEST doub;
1453 int inv;
a73c86fb 1454 const struct floatformat *fmt = NULL;
c906108c 1455 unsigned len = TYPE_LENGTH (type);
20389057 1456 enum float_kind kind;
c5aa993b 1457
a73c86fb
AC
1458 /* If it is a floating-point, check for obvious problems. */
1459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1460 fmt = floatformat_from_type (type);
20389057 1461 if (fmt != NULL)
39424bef 1462 {
20389057
DJ
1463 kind = floatformat_classify (fmt, valaddr);
1464 if (kind == float_nan)
1465 {
1466 if (floatformat_is_negative (fmt, valaddr))
1467 fprintf_filtered (stream, "-");
1468 fprintf_filtered (stream, "nan(");
1469 fputs_filtered ("0x", stream);
1470 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1471 fprintf_filtered (stream, ")");
1472 return;
1473 }
1474 else if (kind == float_infinite)
1475 {
1476 if (floatformat_is_negative (fmt, valaddr))
1477 fputs_filtered ("-", stream);
1478 fputs_filtered ("inf", stream);
1479 return;
1480 }
7355ddba 1481 }
c906108c 1482
a73c86fb
AC
1483 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1484 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1485 needs to be used as that takes care of any necessary type
1486 conversions. Such conversions are of course direct to DOUBLEST
1487 and disregard any possible target floating point limitations.
1488 For instance, a u64 would be converted and displayed exactly on a
1489 host with 80 bit DOUBLEST but with loss of information on a host
1490 with 64 bit DOUBLEST. */
c2f05ac9 1491
c906108c
SS
1492 doub = unpack_double (type, valaddr, &inv);
1493 if (inv)
1494 {
1495 fprintf_filtered (stream, "<invalid float value>");
1496 return;
1497 }
1498
39424bef
MK
1499 /* FIXME: kettenis/2001-01-20: The following code makes too much
1500 assumptions about the host and target floating point format. */
1501
a73c86fb 1502 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1503 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1504 instead uses the type's length to determine the precision of the
1505 floating-point value being printed. */
c2f05ac9 1506
c906108c 1507 if (len < sizeof (double))
c5aa993b 1508 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1509 else if (len == sizeof (double))
c5aa993b 1510 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1511 else
1512#ifdef PRINTF_HAS_LONG_DOUBLE
1513 fprintf_filtered (stream, "%.35Lg", doub);
1514#else
39424bef
MK
1515 /* This at least wins with values that are representable as
1516 doubles. */
c906108c
SS
1517 fprintf_filtered (stream, "%.17g", (double) doub);
1518#endif
1519}
1520
7678ef8f
TJB
1521void
1522print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1523 struct ui_file *stream)
1524{
e17a4113 1525 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1526 char decstr[MAX_DECIMAL_STRING];
1527 unsigned len = TYPE_LENGTH (type);
1528
e17a4113 1529 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1530 fputs_filtered (decstr, stream);
1531 return;
1532}
1533
c5aa993b 1534void
fc1a4b47 1535print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1536 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1537{
1538
1539#define BITS_IN_BYTES 8
1540
fc1a4b47 1541 const gdb_byte *p;
745b8ca0 1542 unsigned int i;
c5aa993b 1543 int b;
c906108c
SS
1544
1545 /* Declared "int" so it will be signed.
581e13c1
MS
1546 This ensures that right shift will shift in zeros. */
1547
c5aa993b 1548 const int mask = 0x080;
c906108c
SS
1549
1550 /* FIXME: We should be not printing leading zeroes in most cases. */
1551
d44e8473 1552 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1553 {
1554 for (p = valaddr;
1555 p < valaddr + len;
1556 p++)
1557 {
c5aa993b 1558 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1559 and print from the MSB end. */
1560
c5aa993b
JM
1561 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1562 {
1563 if (*p & (mask >> i))
1564 b = 1;
1565 else
1566 b = 0;
1567
1568 fprintf_filtered (stream, "%1d", b);
1569 }
c906108c
SS
1570 }
1571 }
1572 else
1573 {
1574 for (p = valaddr + len - 1;
1575 p >= valaddr;
1576 p--)
1577 {
c5aa993b
JM
1578 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1579 {
1580 if (*p & (mask >> i))
1581 b = 1;
1582 else
1583 b = 0;
1584
1585 fprintf_filtered (stream, "%1d", b);
1586 }
c906108c
SS
1587 }
1588 }
c906108c
SS
1589}
1590
1591/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1592 Print it in octal on stream or format it in buf. */
1593
c906108c 1594void
fc1a4b47 1595print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1596 unsigned len, enum bfd_endian byte_order)
c906108c 1597{
fc1a4b47 1598 const gdb_byte *p;
c906108c 1599 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1600 int cycle;
1601
c906108c
SS
1602 /* FIXME: We should be not printing leading zeroes in most cases. */
1603
1604
1605 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1606 * the extra bits, which cycle every three bytes:
1607 *
1608 * Byte side: 0 1 2 3
1609 * | | | |
1610 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1611 *
1612 * Octal side: 0 1 carry 3 4 carry ...
1613 *
1614 * Cycle number: 0 1 2
1615 *
1616 * But of course we are printing from the high side, so we have to
1617 * figure out where in the cycle we are so that we end up with no
1618 * left over bits at the end.
1619 */
1620#define BITS_IN_OCTAL 3
1621#define HIGH_ZERO 0340
1622#define LOW_ZERO 0016
1623#define CARRY_ZERO 0003
1624#define HIGH_ONE 0200
1625#define MID_ONE 0160
1626#define LOW_ONE 0016
1627#define CARRY_ONE 0001
1628#define HIGH_TWO 0300
1629#define MID_TWO 0070
1630#define LOW_TWO 0007
1631
1632 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1633 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1634
c906108c
SS
1635 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1636 carry = 0;
c5aa993b 1637
bb599908 1638 fputs_filtered ("0", stream);
d44e8473 1639 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1640 {
1641 for (p = valaddr;
1642 p < valaddr + len;
1643 p++)
1644 {
c5aa993b
JM
1645 switch (cycle)
1646 {
1647 case 0:
581e13c1
MS
1648 /* No carry in, carry out two bits. */
1649
c5aa993b
JM
1650 octa1 = (HIGH_ZERO & *p) >> 5;
1651 octa2 = (LOW_ZERO & *p) >> 2;
1652 carry = (CARRY_ZERO & *p);
1653 fprintf_filtered (stream, "%o", octa1);
1654 fprintf_filtered (stream, "%o", octa2);
1655 break;
1656
1657 case 1:
581e13c1
MS
1658 /* Carry in two bits, carry out one bit. */
1659
c5aa993b
JM
1660 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1661 octa2 = (MID_ONE & *p) >> 4;
1662 octa3 = (LOW_ONE & *p) >> 1;
1663 carry = (CARRY_ONE & *p);
1664 fprintf_filtered (stream, "%o", octa1);
1665 fprintf_filtered (stream, "%o", octa2);
1666 fprintf_filtered (stream, "%o", octa3);
1667 break;
1668
1669 case 2:
581e13c1
MS
1670 /* Carry in one bit, no carry out. */
1671
c5aa993b
JM
1672 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1673 octa2 = (MID_TWO & *p) >> 3;
1674 octa3 = (LOW_TWO & *p);
1675 carry = 0;
1676 fprintf_filtered (stream, "%o", octa1);
1677 fprintf_filtered (stream, "%o", octa2);
1678 fprintf_filtered (stream, "%o", octa3);
1679 break;
1680
1681 default:
8a3fe4f8 1682 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1683 }
1684
1685 cycle++;
1686 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1687 }
1688 }
1689 else
1690 {
1691 for (p = valaddr + len - 1;
1692 p >= valaddr;
1693 p--)
1694 {
c5aa993b
JM
1695 switch (cycle)
1696 {
1697 case 0:
1698 /* Carry out, no carry in */
581e13c1 1699
c5aa993b
JM
1700 octa1 = (HIGH_ZERO & *p) >> 5;
1701 octa2 = (LOW_ZERO & *p) >> 2;
1702 carry = (CARRY_ZERO & *p);
1703 fprintf_filtered (stream, "%o", octa1);
1704 fprintf_filtered (stream, "%o", octa2);
1705 break;
1706
1707 case 1:
1708 /* Carry in, carry out */
581e13c1 1709
c5aa993b
JM
1710 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1711 octa2 = (MID_ONE & *p) >> 4;
1712 octa3 = (LOW_ONE & *p) >> 1;
1713 carry = (CARRY_ONE & *p);
1714 fprintf_filtered (stream, "%o", octa1);
1715 fprintf_filtered (stream, "%o", octa2);
1716 fprintf_filtered (stream, "%o", octa3);
1717 break;
1718
1719 case 2:
1720 /* Carry in, no carry out */
581e13c1 1721
c5aa993b
JM
1722 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1723 octa2 = (MID_TWO & *p) >> 3;
1724 octa3 = (LOW_TWO & *p);
1725 carry = 0;
1726 fprintf_filtered (stream, "%o", octa1);
1727 fprintf_filtered (stream, "%o", octa2);
1728 fprintf_filtered (stream, "%o", octa3);
1729 break;
1730
1731 default:
8a3fe4f8 1732 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1733 }
1734
1735 cycle++;
1736 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1737 }
1738 }
1739
c906108c
SS
1740}
1741
1742/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1743 Print it in decimal on stream or format it in buf. */
1744
c906108c 1745void
fc1a4b47 1746print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1747 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1748{
1749#define TEN 10
c5aa993b 1750#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1751#define CARRY_LEFT( x ) ((x) % TEN)
1752#define SHIFT( x ) ((x) << 4)
c906108c
SS
1753#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1754#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1755
fc1a4b47 1756 const gdb_byte *p;
c906108c 1757 unsigned char *digits;
c5aa993b
JM
1758 int carry;
1759 int decimal_len;
1760 int i, j, decimal_digits;
1761 int dummy;
1762 int flip;
1763
c906108c 1764 /* Base-ten number is less than twice as many digits
581e13c1
MS
1765 as the base 16 number, which is 2 digits per byte. */
1766
c906108c 1767 decimal_len = len * 2 * 2;
224c3ddb 1768 digits = (unsigned char *) xmalloc (decimal_len);
c906108c 1769
c5aa993b
JM
1770 for (i = 0; i < decimal_len; i++)
1771 {
c906108c 1772 digits[i] = 0;
c5aa993b 1773 }
c906108c 1774
c906108c
SS
1775 /* Ok, we have an unknown number of bytes of data to be printed in
1776 * decimal.
1777 *
1778 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1779 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1780 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1781 *
1782 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1783 * the individual digits are > 10.
c906108c
SS
1784 *
1785 * Outer loop is per nibble (hex digit) of input, from MSD end to
1786 * LSD end.
1787 */
c5aa993b 1788 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1789 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1790 flip = 0;
d44e8473 1791 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1792 {
c906108c
SS
1793 /*
1794 * Multiply current base-ten number by 16 in place.
1795 * Each digit was between 0 and 9, now is between
1796 * 0 and 144.
1797 */
c5aa993b
JM
1798 for (j = 0; j < decimal_digits; j++)
1799 {
1800 digits[j] = SHIFT (digits[j]);
1801 }
1802
c906108c
SS
1803 /* Take the next nibble off the input and add it to what
1804 * we've got in the LSB position. Bottom 'digit' is now
1805 * between 0 and 159.
1806 *
1807 * "flip" is used to run this loop twice for each byte.
1808 */
c5aa993b
JM
1809 if (flip == 0)
1810 {
581e13c1
MS
1811 /* Take top nibble. */
1812
c5aa993b
JM
1813 digits[0] += HIGH_NIBBLE (*p);
1814 flip = 1;
1815 }
1816 else
1817 {
581e13c1
MS
1818 /* Take low nibble and bump our pointer "p". */
1819
c5aa993b 1820 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1821 if (byte_order == BFD_ENDIAN_BIG)
1822 p++;
1823 else
1824 p--;
c5aa993b
JM
1825 flip = 0;
1826 }
c906108c
SS
1827
1828 /* Re-decimalize. We have to do this often enough
1829 * that we don't overflow, but once per nibble is
1830 * overkill. Easier this way, though. Note that the
1831 * carry is often larger than 10 (e.g. max initial
1832 * carry out of lowest nibble is 15, could bubble all
1833 * the way up greater than 10). So we have to do
1834 * the carrying beyond the last current digit.
1835 */
1836 carry = 0;
c5aa993b
JM
1837 for (j = 0; j < decimal_len - 1; j++)
1838 {
1839 digits[j] += carry;
1840
1841 /* "/" won't handle an unsigned char with
1842 * a value that if signed would be negative.
1843 * So extend to longword int via "dummy".
1844 */
1845 dummy = digits[j];
1846 carry = CARRY_OUT (dummy);
1847 digits[j] = CARRY_LEFT (dummy);
1848
1849 if (j >= decimal_digits && carry == 0)
1850 {
1851 /*
1852 * All higher digits are 0 and we
1853 * no longer have a carry.
1854 *
1855 * Note: "j" is 0-based, "decimal_digits" is
1856 * 1-based.
1857 */
1858 decimal_digits = j + 1;
1859 break;
1860 }
1861 }
1862 }
c906108c
SS
1863
1864 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1865 the "decimal_digits" actual digits. Print! */
1866
c5aa993b
JM
1867 for (i = decimal_digits - 1; i >= 0; i--)
1868 {
1869 fprintf_filtered (stream, "%1d", digits[i]);
1870 }
b8c9b27d 1871 xfree (digits);
c906108c
SS
1872}
1873
1874/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1875
6b9acc27 1876void
fc1a4b47 1877print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1878 unsigned len, enum bfd_endian byte_order)
c906108c 1879{
fc1a4b47 1880 const gdb_byte *p;
c906108c
SS
1881
1882 /* FIXME: We should be not printing leading zeroes in most cases. */
1883
bb599908 1884 fputs_filtered ("0x", stream);
d44e8473 1885 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1886 {
1887 for (p = valaddr;
1888 p < valaddr + len;
1889 p++)
1890 {
1891 fprintf_filtered (stream, "%02x", *p);
1892 }
1893 }
1894 else
1895 {
1896 for (p = valaddr + len - 1;
1897 p >= valaddr;
1898 p--)
1899 {
1900 fprintf_filtered (stream, "%02x", *p);
1901 }
1902 }
c906108c
SS
1903}
1904
3e43a32a 1905/* VALADDR points to a char integer of LEN bytes.
581e13c1 1906 Print it out in appropriate language form on stream.
6b9acc27
JJ
1907 Omit any leading zero chars. */
1908
1909void
6c7a06a3
TT
1910print_char_chars (struct ui_file *stream, struct type *type,
1911 const gdb_byte *valaddr,
d44e8473 1912 unsigned len, enum bfd_endian byte_order)
6b9acc27 1913{
fc1a4b47 1914 const gdb_byte *p;
6b9acc27 1915
d44e8473 1916 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1917 {
1918 p = valaddr;
1919 while (p < valaddr + len - 1 && *p == 0)
1920 ++p;
1921
1922 while (p < valaddr + len)
1923 {
6c7a06a3 1924 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1925 ++p;
1926 }
1927 }
1928 else
1929 {
1930 p = valaddr + len - 1;
1931 while (p > valaddr && *p == 0)
1932 --p;
1933
1934 while (p >= valaddr)
1935 {
6c7a06a3 1936 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1937 --p;
1938 }
1939 }
1940}
1941
132c57b4
TT
1942/* Print function pointer with inferior address ADDRESS onto stdio
1943 stream STREAM. */
1944
1945void
edf0c1b7
TT
1946print_function_pointer_address (const struct value_print_options *options,
1947 struct gdbarch *gdbarch,
132c57b4 1948 CORE_ADDR address,
edf0c1b7 1949 struct ui_file *stream)
132c57b4
TT
1950{
1951 CORE_ADDR func_addr
1952 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1953 &current_target);
1954
1955 /* If the function pointer is represented by a description, print
1956 the address of the description. */
edf0c1b7 1957 if (options->addressprint && func_addr != address)
132c57b4
TT
1958 {
1959 fputs_filtered ("@", stream);
1960 fputs_filtered (paddress (gdbarch, address), stream);
1961 fputs_filtered (": ", stream);
1962 }
edf0c1b7 1963 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1964}
1965
1966
79a45b7d 1967/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1968 at INDEX of an array whose index type is INDEX_TYPE. */
1969
1970void
1971maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1972 struct ui_file *stream,
1973 const struct value_print_options *options)
e79af960
JB
1974{
1975 struct value *index_value;
1976
79a45b7d 1977 if (!options->print_array_indexes)
e79af960
JB
1978 return;
1979
1980 index_value = value_from_longest (index_type, index);
1981
79a45b7d
TT
1982 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1983}
e79af960 1984
c906108c 1985/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1986 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1987
c5aa993b
JM
1988 (FIXME?) Assumes array element separator is a comma, which is correct
1989 for all languages currently handled.
1990 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1991 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1992
1993void
490f124f 1994val_print_array_elements (struct type *type,
e8b24d9f 1995 LONGEST embedded_offset,
a2bd3dcd 1996 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1997 int recurse,
e8b24d9f 1998 struct value *val,
79a45b7d 1999 const struct value_print_options *options,
fba45db2 2000 unsigned int i)
c906108c
SS
2001{
2002 unsigned int things_printed = 0;
2003 unsigned len;
aa715135 2004 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
2005 unsigned eltlen;
2006 /* Position of the array element we are examining to see
2007 whether it is repeated. */
2008 unsigned int rep1;
2009 /* Number of repetitions we have detected so far. */
2010 unsigned int reps;
dbc98a8b 2011 LONGEST low_bound, high_bound;
aa715135 2012 LONGEST low_pos, high_pos;
c5aa993b 2013
c906108c 2014 elttype = TYPE_TARGET_TYPE (type);
3ae385af 2015 eltlen = type_length_units (check_typedef (elttype));
e79af960 2016 index_type = TYPE_INDEX_TYPE (type);
c906108c 2017
dbc98a8b 2018 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 2019 {
aa715135
JG
2020 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2021 base_index_type = TYPE_TARGET_TYPE (index_type);
2022 else
2023 base_index_type = index_type;
2024
2025 /* Non-contiguous enumerations types can by used as index types
2026 in some languages (e.g. Ada). In this case, the array length
2027 shall be computed from the positions of the first and last
2028 literal in the enumeration type, and not from the values
2029 of these literals. */
2030 if (!discrete_position (base_index_type, low_bound, &low_pos)
2031 || !discrete_position (base_index_type, high_bound, &high_pos))
2032 {
2033 warning (_("unable to get positions in array, use bounds instead"));
2034 low_pos = low_bound;
2035 high_pos = high_bound;
2036 }
2037
2038 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 2039 But we have to be a little extra careful, because some languages
aa715135 2040 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
2041 empty arrays. In that situation, the array length is just zero,
2042 not negative! */
aa715135 2043 if (low_pos > high_pos)
75be741b
JB
2044 len = 0;
2045 else
aa715135 2046 len = high_pos - low_pos + 1;
75be741b 2047 }
e936309c
JB
2048 else
2049 {
dbc98a8b
KW
2050 warning (_("unable to get bounds of array, assuming null array"));
2051 low_bound = 0;
2052 len = 0;
168de233
JB
2053 }
2054
c906108c
SS
2055 annotate_array_section_begin (i, elttype);
2056
79a45b7d 2057 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
2058 {
2059 if (i != 0)
2060 {
2a998fc0 2061 if (options->prettyformat_arrays)
c906108c
SS
2062 {
2063 fprintf_filtered (stream, ",\n");
2064 print_spaces_filtered (2 + 2 * recurse, stream);
2065 }
2066 else
2067 {
2068 fprintf_filtered (stream, ", ");
2069 }
2070 }
2071 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 2072 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 2073 stream, options);
c906108c
SS
2074
2075 rep1 = i + 1;
2076 reps = 1;
35bef4fd
TT
2077 /* Only check for reps if repeat_count_threshold is not set to
2078 UINT_MAX (unlimited). */
2079 if (options->repeat_count_threshold < UINT_MAX)
c906108c 2080 {
35bef4fd 2081 while (rep1 < len
9a0dc9e3
PA
2082 && value_contents_eq (val,
2083 embedded_offset + i * eltlen,
2084 val,
2085 (embedded_offset
2086 + rep1 * eltlen),
2087 eltlen))
35bef4fd
TT
2088 {
2089 ++reps;
2090 ++rep1;
2091 }
c906108c
SS
2092 }
2093
79a45b7d 2094 if (reps > options->repeat_count_threshold)
c906108c 2095 {
e8b24d9f 2096 val_print (elttype, embedded_offset + i * eltlen,
490f124f
PA
2097 address, stream, recurse + 1, val, options,
2098 current_language);
c906108c
SS
2099 annotate_elt_rep (reps);
2100 fprintf_filtered (stream, " <repeats %u times>", reps);
2101 annotate_elt_rep_end ();
2102
2103 i = rep1 - 1;
79a45b7d 2104 things_printed += options->repeat_count_threshold;
c906108c
SS
2105 }
2106 else
2107 {
e8b24d9f 2108 val_print (elttype, embedded_offset + i * eltlen,
490f124f 2109 address,
0e03807e 2110 stream, recurse + 1, val, options, current_language);
c906108c
SS
2111 annotate_elt ();
2112 things_printed++;
2113 }
2114 }
2115 annotate_array_section_end ();
2116 if (i < len)
2117 {
2118 fprintf_filtered (stream, "...");
2119 }
2120}
2121
917317f4
JM
2122/* Read LEN bytes of target memory at address MEMADDR, placing the
2123 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 2124 actually read, and optionally a target_xfer_status value in the
578d3588 2125 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
2126
2127/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2128 function be eliminated. */
2129
2130static int
3e43a32a 2131partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 2132 int len, int *errptr)
917317f4 2133{
581e13c1
MS
2134 int nread; /* Number of bytes actually read. */
2135 int errcode; /* Error from last read. */
917317f4 2136
581e13c1 2137 /* First try a complete read. */
917317f4
JM
2138 errcode = target_read_memory (memaddr, myaddr, len);
2139 if (errcode == 0)
2140 {
581e13c1 2141 /* Got it all. */
917317f4
JM
2142 nread = len;
2143 }
2144 else
2145 {
581e13c1 2146 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
2147 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2148 {
2149 errcode = target_read_memory (memaddr++, myaddr++, 1);
2150 }
581e13c1 2151 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
2152 if (errcode != 0)
2153 {
2154 nread--;
2155 }
2156 }
578d3588 2157 if (errptr != NULL)
917317f4 2158 {
578d3588 2159 *errptr = errcode;
917317f4
JM
2160 }
2161 return (nread);
2162}
2163
ae6a3a4c
TJB
2164/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2165 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2166 allocated buffer containing the string, which the caller is responsible to
2167 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 2168 success, or a target_xfer_status on failure.
ae6a3a4c 2169
f380848e
SA
2170 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2171 (including eventual NULs in the middle or end of the string).
2172
2173 If LEN is -1, stops at the first null character (not necessarily
2174 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2175 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2176 the string.
ae6a3a4c
TJB
2177
2178 Unless an exception is thrown, BUFFER will always be allocated, even on
2179 failure. In this case, some characters might have been read before the
2180 failure happened. Check BYTES_READ to recognize this situation.
2181
2182 Note: There was a FIXME asking to make this code use target_read_string,
2183 but this function is more general (can read past null characters, up to
581e13c1 2184 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
2185 so it is more tested. Perhaps callers of target_read_string should use
2186 this function instead? */
c906108c
SS
2187
2188int
ae6a3a4c 2189read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 2190 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 2191{
ae6a3a4c
TJB
2192 int errcode; /* Errno returned from bad reads. */
2193 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
2194 gdb_byte *bufptr; /* Pointer to next available byte in
2195 buffer. */
ae6a3a4c
TJB
2196 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2197
ae6a3a4c
TJB
2198 /* Loop until we either have all the characters, or we encounter
2199 some error, such as bumping into the end of the address space. */
c906108c 2200
b5096abe
PM
2201 *buffer = NULL;
2202
2203 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
2204
2205 if (len > 0)
2206 {
88db67ef
YQ
2207 /* We want fetchlimit chars, so we might as well read them all in
2208 one operation. */
325fac50 2209 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
f380848e
SA
2210
2211 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 2212 bufptr = *buffer;
c906108c 2213
f380848e 2214 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
2215 / width;
2216 addr += nfetch * width;
2217 bufptr += nfetch * width;
2218 }
2219 else if (len == -1)
2220 {
2221 unsigned long bufsize = 0;
88db67ef
YQ
2222 unsigned int chunksize; /* Size of each fetch, in chars. */
2223 int found_nul; /* Non-zero if we found the nul char. */
2224 gdb_byte *limit; /* First location past end of fetch buffer. */
2225
2226 found_nul = 0;
2227 /* We are looking for a NUL terminator to end the fetching, so we
2228 might as well read in blocks that are large enough to be efficient,
2229 but not so large as to be slow if fetchlimit happens to be large.
2230 So we choose the minimum of 8 and fetchlimit. We used to use 200
2231 instead of 8 but 200 is way too big for remote debugging over a
2232 serial line. */
325fac50 2233 chunksize = std::min (8u, fetchlimit);
ae6a3a4c 2234
c906108c
SS
2235 do
2236 {
2237 QUIT;
325fac50 2238 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
c906108c 2239
ae6a3a4c
TJB
2240 if (*buffer == NULL)
2241 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 2242 else
b5096abe
PM
2243 *buffer = (gdb_byte *) xrealloc (*buffer,
2244 (nfetch + bufsize) * width);
c906108c 2245
ae6a3a4c 2246 bufptr = *buffer + bufsize * width;
c906108c
SS
2247 bufsize += nfetch;
2248
ae6a3a4c 2249 /* Read as much as we can. */
917317f4 2250 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 2251 / width;
c906108c 2252
ae6a3a4c 2253 /* Scan this chunk for the null character that terminates the string
c906108c
SS
2254 to print. If found, we don't need to fetch any more. Note
2255 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
2256 after the null character, or at the next character after the end
2257 of the buffer. */
c906108c
SS
2258
2259 limit = bufptr + nfetch * width;
2260 while (bufptr < limit)
2261 {
2262 unsigned long c;
2263
e17a4113 2264 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
2265 addr += width;
2266 bufptr += width;
2267 if (c == 0)
2268 {
2269 /* We don't care about any error which happened after
ae6a3a4c 2270 the NUL terminator. */
c906108c
SS
2271 errcode = 0;
2272 found_nul = 1;
2273 break;
2274 }
2275 }
2276 }
c5aa993b 2277 while (errcode == 0 /* no error */
ae6a3a4c
TJB
2278 && bufptr - *buffer < fetchlimit * width /* no overrun */
2279 && !found_nul); /* haven't found NUL yet */
c906108c
SS
2280 }
2281 else
ae6a3a4c
TJB
2282 { /* Length of string is really 0! */
2283 /* We always allocate *buffer. */
224c3ddb 2284 *buffer = bufptr = (gdb_byte *) xmalloc (1);
c906108c
SS
2285 errcode = 0;
2286 }
2287
2288 /* bufptr and addr now point immediately beyond the last byte which we
2289 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
2290 *bytes_read = bufptr - *buffer;
2291
2292 QUIT;
2293
2294 discard_cleanups (old_chain);
2295
2296 return errcode;
2297}
2298
3b2b8fea
TT
2299/* Return true if print_wchar can display W without resorting to a
2300 numeric escape, false otherwise. */
2301
2302static int
2303wchar_printable (gdb_wchar_t w)
2304{
2305 return (gdb_iswprint (w)
2306 || w == LCST ('\a') || w == LCST ('\b')
2307 || w == LCST ('\f') || w == LCST ('\n')
2308 || w == LCST ('\r') || w == LCST ('\t')
2309 || w == LCST ('\v'));
2310}
2311
2312/* A helper function that converts the contents of STRING to wide
2313 characters and then appends them to OUTPUT. */
2314
2315static void
2316append_string_as_wide (const char *string,
2317 struct obstack *output)
2318{
2319 for (; *string; ++string)
2320 {
2321 gdb_wchar_t w = gdb_btowc (*string);
2322 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2323 }
2324}
2325
2326/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2327 original (target) bytes representing the character, ORIG_LEN is the
2328 number of valid bytes. WIDTH is the number of bytes in a base
2329 characters of the type. OUTPUT is an obstack to which wide
2330 characters are emitted. QUOTER is a (narrow) character indicating
2331 the style of quotes surrounding the character to be printed.
2332 NEED_ESCAPE is an in/out flag which is used to track numeric
2333 escapes across calls. */
2334
2335static void
2336print_wchar (gdb_wint_t w, const gdb_byte *orig,
2337 int orig_len, int width,
2338 enum bfd_endian byte_order,
2339 struct obstack *output,
2340 int quoter, int *need_escapep)
2341{
2342 int need_escape = *need_escapep;
2343
2344 *need_escapep = 0;
3b2b8fea 2345
95c64f92
YQ
2346 /* iswprint implementation on Windows returns 1 for tab character.
2347 In order to avoid different printout on this host, we explicitly
2348 use wchar_printable function. */
2349 switch (w)
3b2b8fea 2350 {
95c64f92
YQ
2351 case LCST ('\a'):
2352 obstack_grow_wstr (output, LCST ("\\a"));
2353 break;
2354 case LCST ('\b'):
2355 obstack_grow_wstr (output, LCST ("\\b"));
2356 break;
2357 case LCST ('\f'):
2358 obstack_grow_wstr (output, LCST ("\\f"));
2359 break;
2360 case LCST ('\n'):
2361 obstack_grow_wstr (output, LCST ("\\n"));
2362 break;
2363 case LCST ('\r'):
2364 obstack_grow_wstr (output, LCST ("\\r"));
2365 break;
2366 case LCST ('\t'):
2367 obstack_grow_wstr (output, LCST ("\\t"));
2368 break;
2369 case LCST ('\v'):
2370 obstack_grow_wstr (output, LCST ("\\v"));
2371 break;
2372 default:
3b2b8fea 2373 {
95c64f92
YQ
2374 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2375 && w != LCST ('8')
2376 && w != LCST ('9'))))
2377 {
2378 gdb_wchar_t wchar = w;
3b2b8fea 2379
95c64f92
YQ
2380 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2381 obstack_grow_wstr (output, LCST ("\\"));
2382 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2383 }
2384 else
2385 {
2386 int i;
3b2b8fea 2387
95c64f92
YQ
2388 for (i = 0; i + width <= orig_len; i += width)
2389 {
2390 char octal[30];
2391 ULONGEST value;
2392
2393 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2394 byte_order);
95c64f92
YQ
2395 /* If the value fits in 3 octal digits, print it that
2396 way. Otherwise, print it as a hex escape. */
2397 if (value <= 0777)
2398 xsnprintf (octal, sizeof (octal), "\\%.3o",
2399 (int) (value & 0777));
2400 else
2401 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2402 append_string_as_wide (octal, output);
2403 }
2404 /* If we somehow have extra bytes, print them now. */
2405 while (i < orig_len)
2406 {
2407 char octal[5];
2408
2409 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2410 append_string_as_wide (octal, output);
2411 ++i;
2412 }
2413
2414 *need_escapep = 1;
2415 }
3b2b8fea
TT
2416 break;
2417 }
2418 }
2419}
2420
2421/* Print the character C on STREAM as part of the contents of a
2422 literal string whose delimiter is QUOTER. ENCODING names the
2423 encoding of C. */
2424
2425void
2426generic_emit_char (int c, struct type *type, struct ui_file *stream,
2427 int quoter, const char *encoding)
2428{
2429 enum bfd_endian byte_order
2430 = gdbarch_byte_order (get_type_arch (type));
2431 struct obstack wchar_buf, output;
2432 struct cleanup *cleanups;
2433 gdb_byte *buf;
3b2b8fea
TT
2434 int need_escape = 0;
2435
224c3ddb 2436 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
3b2b8fea
TT
2437 pack_long (buf, type, c);
2438
cda6c55b 2439 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
3b2b8fea
TT
2440
2441 /* This holds the printable form of the wchar_t data. */
2442 obstack_init (&wchar_buf);
cda6c55b 2443 cleanups = make_cleanup_obstack_free (&wchar_buf);
3b2b8fea
TT
2444
2445 while (1)
2446 {
2447 int num_chars;
2448 gdb_wchar_t *chars;
2449 const gdb_byte *buf;
2450 size_t buflen;
2451 int print_escape = 1;
2452 enum wchar_iterate_result result;
2453
cda6c55b 2454 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
3b2b8fea
TT
2455 if (num_chars < 0)
2456 break;
2457 if (num_chars > 0)
2458 {
2459 /* If all characters are printable, print them. Otherwise,
2460 we're going to have to print an escape sequence. We
2461 check all characters because we want to print the target
2462 bytes in the escape sequence, and we don't know character
2463 boundaries there. */
2464 int i;
2465
2466 print_escape = 0;
2467 for (i = 0; i < num_chars; ++i)
2468 if (!wchar_printable (chars[i]))
2469 {
2470 print_escape = 1;
2471 break;
2472 }
2473
2474 if (!print_escape)
2475 {
2476 for (i = 0; i < num_chars; ++i)
2477 print_wchar (chars[i], buf, buflen,
2478 TYPE_LENGTH (type), byte_order,
2479 &wchar_buf, quoter, &need_escape);
2480 }
2481 }
2482
2483 /* This handles the NUM_CHARS == 0 case as well. */
2484 if (print_escape)
2485 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2486 byte_order, &wchar_buf, quoter, &need_escape);
2487 }
2488
2489 /* The output in the host encoding. */
2490 obstack_init (&output);
2491 make_cleanup_obstack_free (&output);
2492
2493 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2494 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2495 obstack_object_size (&wchar_buf),
fff10684 2496 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2497 obstack_1grow (&output, '\0');
2498
79f33898 2499 fputs_filtered ((const char *) obstack_base (&output), stream);
3b2b8fea
TT
2500
2501 do_cleanups (cleanups);
2502}
2503
0d63ecda
KS
2504/* Return the repeat count of the next character/byte in ITER,
2505 storing the result in VEC. */
2506
2507static int
cda6c55b 2508count_next_character (wchar_iterator *iter,
0d63ecda
KS
2509 VEC (converted_character_d) **vec)
2510{
2511 struct converted_character *current;
2512
2513 if (VEC_empty (converted_character_d, *vec))
2514 {
2515 struct converted_character tmp;
2516 gdb_wchar_t *chars;
2517
2518 tmp.num_chars
cda6c55b 2519 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
0d63ecda
KS
2520 if (tmp.num_chars > 0)
2521 {
2522 gdb_assert (tmp.num_chars < MAX_WCHARS);
2523 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2524 }
2525 VEC_safe_push (converted_character_d, *vec, &tmp);
2526 }
2527
2528 current = VEC_last (converted_character_d, *vec);
2529
2530 /* Count repeated characters or bytes. */
2531 current->repeat_count = 1;
2532 if (current->num_chars == -1)
2533 {
2534 /* EOF */
2535 return -1;
2536 }
2537 else
2538 {
2539 gdb_wchar_t *chars;
2540 struct converted_character d;
2541 int repeat;
2542
2543 d.repeat_count = 0;
2544
2545 while (1)
2546 {
2547 /* Get the next character. */
cda6c55b 2548 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
0d63ecda
KS
2549
2550 /* If a character was successfully converted, save the character
2551 into the converted character. */
2552 if (d.num_chars > 0)
2553 {
2554 gdb_assert (d.num_chars < MAX_WCHARS);
2555 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2556 }
2557
2558 /* Determine if the current character is the same as this
2559 new character. */
2560 if (d.num_chars == current->num_chars && d.result == current->result)
2561 {
2562 /* There are two cases to consider:
2563
2564 1) Equality of converted character (num_chars > 0)
2565 2) Equality of non-converted character (num_chars == 0) */
2566 if ((current->num_chars > 0
2567 && memcmp (current->chars, d.chars,
2568 WCHAR_BUFLEN (current->num_chars)) == 0)
2569 || (current->num_chars == 0
2570 && current->buflen == d.buflen
2571 && memcmp (current->buf, d.buf, current->buflen) == 0))
2572 ++current->repeat_count;
2573 else
2574 break;
2575 }
2576 else
2577 break;
2578 }
2579
2580 /* Push this next converted character onto the result vector. */
2581 repeat = current->repeat_count;
2582 VEC_safe_push (converted_character_d, *vec, &d);
2583 return repeat;
2584 }
2585}
2586
2587/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2588 character to use with string output. WIDTH is the size of the output
2589 character type. BYTE_ORDER is the the target byte order. OPTIONS
2590 is the user's print options. */
2591
2592static void
2593print_converted_chars_to_obstack (struct obstack *obstack,
2594 VEC (converted_character_d) *chars,
2595 int quote_char, int width,
2596 enum bfd_endian byte_order,
2597 const struct value_print_options *options)
2598{
2599 unsigned int idx;
2600 struct converted_character *elem;
2601 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2602 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2603 int need_escape = 0;
2604
2605 /* Set the start state. */
2606 idx = 0;
2607 last = state = START;
2608 elem = NULL;
2609
2610 while (1)
2611 {
2612 switch (state)
2613 {
2614 case START:
2615 /* Nothing to do. */
2616 break;
2617
2618 case SINGLE:
2619 {
2620 int j;
2621
2622 /* We are outputting a single character
2623 (< options->repeat_count_threshold). */
2624
2625 if (last != SINGLE)
2626 {
2627 /* We were outputting some other type of content, so we
2628 must output and a comma and a quote. */
2629 if (last != START)
2630 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2631 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2632 }
2633 /* Output the character. */
2634 for (j = 0; j < elem->repeat_count; ++j)
2635 {
2636 if (elem->result == wchar_iterate_ok)
2637 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2638 byte_order, obstack, quote_char, &need_escape);
2639 else
2640 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2641 byte_order, obstack, quote_char, &need_escape);
2642 }
2643 }
2644 break;
2645
2646 case REPEAT:
2647 {
2648 int j;
2649 char *s;
2650
2651 /* We are outputting a character with a repeat count
2652 greater than options->repeat_count_threshold. */
2653
2654 if (last == SINGLE)
2655 {
2656 /* We were outputting a single string. Terminate the
2657 string. */
0d63ecda
KS
2658 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2659 }
2660 if (last != START)
2661 obstack_grow_wstr (obstack, LCST (", "));
2662
2663 /* Output the character and repeat string. */
2664 obstack_grow_wstr (obstack, LCST ("'"));
2665 if (elem->result == wchar_iterate_ok)
2666 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2667 byte_order, obstack, quote_char, &need_escape);
2668 else
2669 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2670 byte_order, obstack, quote_char, &need_escape);
2671 obstack_grow_wstr (obstack, LCST ("'"));
2672 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2673 for (j = 0; s[j]; ++j)
2674 {
2675 gdb_wchar_t w = gdb_btowc (s[j]);
2676 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2677 }
2678 xfree (s);
2679 }
2680 break;
2681
2682 case INCOMPLETE:
2683 /* We are outputting an incomplete sequence. */
2684 if (last == SINGLE)
2685 {
2686 /* If we were outputting a string of SINGLE characters,
2687 terminate the quote. */
0d63ecda
KS
2688 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2689 }
2690 if (last != START)
2691 obstack_grow_wstr (obstack, LCST (", "));
2692
2693 /* Output the incomplete sequence string. */
2694 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2695 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2696 obstack, 0, &need_escape);
2697 obstack_grow_wstr (obstack, LCST (">"));
2698
2699 /* We do not attempt to outupt anything after this. */
2700 state = FINISH;
2701 break;
2702
2703 case FINISH:
2704 /* All done. If we were outputting a string of SINGLE
2705 characters, the string must be terminated. Otherwise,
2706 REPEAT and INCOMPLETE are always left properly terminated. */
2707 if (last == SINGLE)
e93a8774 2708 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2709
2710 return;
2711 }
2712
2713 /* Get the next element and state. */
2714 last = state;
2715 if (state != FINISH)
2716 {
2717 elem = VEC_index (converted_character_d, chars, idx++);
2718 switch (elem->result)
2719 {
2720 case wchar_iterate_ok:
2721 case wchar_iterate_invalid:
2722 if (elem->repeat_count > options->repeat_count_threshold)
2723 state = REPEAT;
2724 else
2725 state = SINGLE;
2726 break;
2727
2728 case wchar_iterate_incomplete:
2729 state = INCOMPLETE;
2730 break;
2731
2732 case wchar_iterate_eof:
2733 state = FINISH;
2734 break;
2735 }
2736 }
2737 }
2738}
2739
3b2b8fea
TT
2740/* Print the character string STRING, printing at most LENGTH
2741 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2742 the type of each character. OPTIONS holds the printing options;
2743 printing stops early if the number hits print_max; repeat counts
2744 are printed as appropriate. Print ellipses at the end if we had to
2745 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2746 QUOTE_CHAR is the character to print at each end of the string. If
2747 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2748 omitted. */
2749
2750void
2751generic_printstr (struct ui_file *stream, struct type *type,
2752 const gdb_byte *string, unsigned int length,
2753 const char *encoding, int force_ellipses,
2754 int quote_char, int c_style_terminator,
2755 const struct value_print_options *options)
2756{
2757 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2758 unsigned int i;
3b2b8fea
TT
2759 int width = TYPE_LENGTH (type);
2760 struct obstack wchar_buf, output;
2761 struct cleanup *cleanup;
3b2b8fea 2762 int finished = 0;
0d63ecda
KS
2763 struct converted_character *last;
2764 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2765
2766 if (length == -1)
2767 {
2768 unsigned long current_char = 1;
2769
2770 for (i = 0; current_char; ++i)
2771 {
2772 QUIT;
2773 current_char = extract_unsigned_integer (string + i * width,
2774 width, byte_order);
2775 }
2776 length = i;
2777 }
2778
2779 /* If the string was not truncated due to `set print elements', and
2780 the last byte of it is a null, we don't print that, in
2781 traditional C style. */
2782 if (c_style_terminator
2783 && !force_ellipses
2784 && length > 0
2785 && (extract_unsigned_integer (string + (length - 1) * width,
2786 width, byte_order) == 0))
2787 length--;
2788
2789 if (length == 0)
2790 {
2791 fputs_filtered ("\"\"", stream);
2792 return;
2793 }
2794
2795 /* Arrange to iterate over the characters, in wchar_t form. */
cda6c55b 2796 wchar_iterator iter (string, length * width, encoding, width);
0d63ecda 2797 converted_chars = NULL;
cda6c55b
TT
2798 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2799 &converted_chars);
3b2b8fea 2800
0d63ecda
KS
2801 /* Convert characters until the string is over or the maximum
2802 number of printed characters has been reached. */
2803 i = 0;
2804 while (i < options->print_max)
3b2b8fea 2805 {
0d63ecda 2806 int r;
3b2b8fea
TT
2807
2808 QUIT;
2809
0d63ecda 2810 /* Grab the next character and repeat count. */
cda6c55b 2811 r = count_next_character (&iter, &converted_chars);
3b2b8fea 2812
0d63ecda
KS
2813 /* If less than zero, the end of the input string was reached. */
2814 if (r < 0)
2815 break;
3b2b8fea 2816
0d63ecda
KS
2817 /* Otherwise, add the count to the total print count and get
2818 the next character. */
2819 i += r;
2820 }
3b2b8fea 2821
0d63ecda
KS
2822 /* Get the last element and determine if the entire string was
2823 processed. */
2824 last = VEC_last (converted_character_d, converted_chars);
2825 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2826
0d63ecda
KS
2827 /* Ensure that CONVERTED_CHARS is terminated. */
2828 last->result = wchar_iterate_eof;
3b2b8fea 2829
0d63ecda
KS
2830 /* WCHAR_BUF is the obstack we use to represent the string in
2831 wchar_t form. */
2832 obstack_init (&wchar_buf);
2833 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2834
0d63ecda
KS
2835 /* Print the output string to the obstack. */
2836 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2837 width, byte_order, options);
3b2b8fea
TT
2838
2839 if (force_ellipses || !finished)
2840 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2841
2842 /* OUTPUT is where we collect `char's for printing. */
2843 obstack_init (&output);
2844 make_cleanup_obstack_free (&output);
2845
2846 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2847 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2848 obstack_object_size (&wchar_buf),
fff10684 2849 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2850 obstack_1grow (&output, '\0');
2851
79f33898 2852 fputs_filtered ((const char *) obstack_base (&output), stream);
3b2b8fea
TT
2853
2854 do_cleanups (cleanup);
2855}
2856
ae6a3a4c
TJB
2857/* Print a string from the inferior, starting at ADDR and printing up to LEN
2858 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2859 stops at the first null byte, otherwise printing proceeds (including null
2860 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2861 whichever is smaller. ENCODING is the name of the string's
2862 encoding. It can be NULL, in which case the target encoding is
2863 assumed. */
ae6a3a4c
TJB
2864
2865int
09ca9e2e
TT
2866val_print_string (struct type *elttype, const char *encoding,
2867 CORE_ADDR addr, int len,
6c7a06a3 2868 struct ui_file *stream,
ae6a3a4c
TJB
2869 const struct value_print_options *options)
2870{
2871 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
d09f2c3f 2872 int err; /* Non-zero if we got a bad read. */
581e13c1 2873 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2874 unsigned int fetchlimit; /* Maximum number of chars to print. */
2875 int bytes_read;
2876 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2877 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2878 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2880 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2881
2882 /* First we need to figure out the limit on the number of characters we are
2883 going to attempt to fetch and print. This is actually pretty simple. If
2884 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2885 LEN is -1, then the limit is print_max. This is true regardless of
2886 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2887 because finding the null byte (or available memory) is what actually
2888 limits the fetch. */
2889
325fac50
PA
2890 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2891 options->print_max));
ae6a3a4c 2892
d09f2c3f
PA
2893 err = read_string (addr, len, width, fetchlimit, byte_order,
2894 &buffer, &bytes_read);
ae6a3a4c
TJB
2895 old_chain = make_cleanup (xfree, buffer);
2896
2897 addr += bytes_read;
c906108c 2898
3e43a32a
MS
2899 /* We now have either successfully filled the buffer to fetchlimit,
2900 or terminated early due to an error or finding a null char when
2901 LEN is -1. */
ae6a3a4c
TJB
2902
2903 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2904 found_nul = 0;
2905 if (bytes_read >= width)
2906 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2907 byte_order) == 0;
c906108c
SS
2908 if (len == -1 && !found_nul)
2909 {
777ea8f1 2910 gdb_byte *peekbuf;
c906108c 2911
ae6a3a4c 2912 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2913 to peek at the next character. If not successful, or it is not
2914 a null byte, then force ellipsis to be printed. */
c906108c 2915
777ea8f1 2916 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2917
2918 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2919 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2920 force_ellipsis = 1;
2921 }
d09f2c3f 2922 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
c906108c
SS
2923 {
2924 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2925 than the number of characters actually requested, always make us
ae6a3a4c 2926 print ellipsis. */
c906108c
SS
2927 force_ellipsis = 1;
2928 }
2929
c906108c
SS
2930 /* If we get an error before fetching anything, don't print a string.
2931 But if we fetch something and then get an error, print the string
2932 and then the error message. */
d09f2c3f 2933 if (err == 0 || bytes_read > 0)
c906108c 2934 {
be759fcf 2935 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2936 encoding, force_ellipsis, options);
c906108c
SS
2937 }
2938
d09f2c3f 2939 if (err != 0)
c906108c 2940 {
578d3588
PA
2941 char *str;
2942
d09f2c3f 2943 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
578d3588
PA
2944 make_cleanup (xfree, str);
2945
2946 fprintf_filtered (stream, "<error: ");
2947 fputs_filtered (str, stream);
2948 fprintf_filtered (stream, ">");
c906108c 2949 }
ae6a3a4c 2950
c906108c
SS
2951 gdb_flush (stream);
2952 do_cleanups (old_chain);
ae6a3a4c
TJB
2953
2954 return (bytes_read / width);
c906108c 2955}
c906108c 2956\f
c5aa993b 2957
09e6485f
PA
2958/* The 'set input-radix' command writes to this auxiliary variable.
2959 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2960 it is left unchanged. */
2961
2962static unsigned input_radix_1 = 10;
2963
c906108c
SS
2964/* Validate an input or output radix setting, and make sure the user
2965 knows what they really did here. Radix setting is confusing, e.g.
2966 setting the input radix to "10" never changes it! */
2967
c906108c 2968static void
fba45db2 2969set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2970{
09e6485f 2971 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2972}
2973
c906108c 2974static void
fba45db2 2975set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2976{
2977 /* We don't currently disallow any input radix except 0 or 1, which don't
2978 make any mathematical sense. In theory, we can deal with any input
2979 radix greater than 1, even if we don't have unique digits for every
2980 value from 0 to radix-1, but in practice we lose on large radix values.
2981 We should either fix the lossage or restrict the radix range more.
581e13c1 2982 (FIXME). */
c906108c
SS
2983
2984 if (radix < 2)
2985 {
09e6485f 2986 input_radix_1 = input_radix;
8a3fe4f8 2987 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2988 radix);
2989 }
09e6485f 2990 input_radix_1 = input_radix = radix;
c906108c
SS
2991 if (from_tty)
2992 {
3e43a32a
MS
2993 printf_filtered (_("Input radix now set to "
2994 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2995 radix, radix, radix);
2996 }
2997}
2998
09e6485f
PA
2999/* The 'set output-radix' command writes to this auxiliary variable.
3000 If the requested radix is valid, OUTPUT_RADIX is updated,
3001 otherwise, it is left unchanged. */
3002
3003static unsigned output_radix_1 = 10;
3004
c906108c 3005static void
fba45db2 3006set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 3007{
09e6485f 3008 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
3009}
3010
3011static void
fba45db2 3012set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
3013{
3014 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 3015 handle correctly, leaving the radix unchanged. */
c906108c
SS
3016 switch (radix)
3017 {
3018 case 16:
79a45b7d 3019 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
3020 break;
3021 case 10:
79a45b7d 3022 user_print_options.output_format = 0; /* decimal */
c906108c
SS
3023 break;
3024 case 8:
79a45b7d 3025 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
3026 break;
3027 default:
09e6485f 3028 output_radix_1 = output_radix;
3e43a32a
MS
3029 error (_("Unsupported output radix ``decimal %u''; "
3030 "output radix unchanged."),
c906108c
SS
3031 radix);
3032 }
09e6485f 3033 output_radix_1 = output_radix = radix;
c906108c
SS
3034 if (from_tty)
3035 {
3e43a32a
MS
3036 printf_filtered (_("Output radix now set to "
3037 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3038 radix, radix, radix);
3039 }
3040}
3041
3042/* Set both the input and output radix at once. Try to set the output radix
3043 first, since it has the most restrictive range. An radix that is valid as
3044 an output radix is also valid as an input radix.
3045
3046 It may be useful to have an unusual input radix. If the user wishes to
3047 set an input radix that is not valid as an output radix, he needs to use
581e13c1 3048 the 'set input-radix' command. */
c906108c
SS
3049
3050static void
fba45db2 3051set_radix (char *arg, int from_tty)
c906108c
SS
3052{
3053 unsigned radix;
3054
bb518678 3055 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
3056 set_output_radix_1 (0, radix);
3057 set_input_radix_1 (0, radix);
3058 if (from_tty)
3059 {
3e43a32a
MS
3060 printf_filtered (_("Input and output radices now set to "
3061 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3062 radix, radix, radix);
3063 }
3064}
3065
581e13c1 3066/* Show both the input and output radices. */
c906108c 3067
c906108c 3068static void
fba45db2 3069show_radix (char *arg, int from_tty)
c906108c
SS
3070{
3071 if (from_tty)
3072 {
3073 if (input_radix == output_radix)
3074 {
3e43a32a
MS
3075 printf_filtered (_("Input and output radices set to "
3076 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3077 input_radix, input_radix, input_radix);
3078 }
3079 else
3080 {
3e43a32a
MS
3081 printf_filtered (_("Input radix set to decimal "
3082 "%u, hex %x, octal %o.\n"),
c906108c 3083 input_radix, input_radix, input_radix);
3e43a32a
MS
3084 printf_filtered (_("Output radix set to decimal "
3085 "%u, hex %x, octal %o.\n"),
c906108c
SS
3086 output_radix, output_radix, output_radix);
3087 }
3088 }
3089}
c906108c 3090\f
c5aa993b 3091
c906108c 3092static void
fba45db2 3093set_print (char *arg, int from_tty)
c906108c
SS
3094{
3095 printf_unfiltered (
c5aa993b 3096 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 3097 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
3098}
3099
c906108c 3100static void
fba45db2 3101show_print (char *args, int from_tty)
c906108c
SS
3102{
3103 cmd_show_list (showprintlist, from_tty, "");
3104}
e7045703
DE
3105
3106static void
3107set_print_raw (char *arg, int from_tty)
3108{
3109 printf_unfiltered (
3110 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 3111 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
3112}
3113
3114static void
3115show_print_raw (char *args, int from_tty)
3116{
3117 cmd_show_list (showprintrawlist, from_tty, "");
3118}
3119
c906108c
SS
3120\f
3121void
fba45db2 3122_initialize_valprint (void)
c906108c 3123{
c906108c 3124 add_prefix_cmd ("print", no_class, set_print,
1bedd215 3125 _("Generic command for setting how things print."),
c906108c 3126 &setprintlist, "set print ", 0, &setlist);
c5aa993b 3127 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 3128 /* Prefer set print to set prompt. */
c906108c
SS
3129 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3130
3131 add_prefix_cmd ("print", no_class, show_print,
1bedd215 3132 _("Generic command for showing print settings."),
c906108c 3133 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
3134 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3135 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 3136
e7045703
DE
3137 add_prefix_cmd ("raw", no_class, set_print_raw,
3138 _("\
3139Generic command for setting what things to print in \"raw\" mode."),
3140 &setprintrawlist, "set print raw ", 0, &setprintlist);
3141 add_prefix_cmd ("raw", no_class, show_print_raw,
3142 _("Generic command for showing \"print raw\" settings."),
3143 &showprintrawlist, "show print raw ", 0, &showprintlist);
3144
79a45b7d
TT
3145 add_setshow_uinteger_cmd ("elements", no_class,
3146 &user_print_options.print_max, _("\
35096d9d
AC
3147Set limit on string chars or array elements to print."), _("\
3148Show limit on string chars or array elements to print."), _("\
f81d1120 3149\"set print elements unlimited\" causes there to be no limit."),
35096d9d 3150 NULL,
920d2a44 3151 show_print_max,
35096d9d 3152 &setprintlist, &showprintlist);
c906108c 3153
79a45b7d
TT
3154 add_setshow_boolean_cmd ("null-stop", no_class,
3155 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
3156Set printing of char arrays to stop at first null char."), _("\
3157Show printing of char arrays to stop at first null char."), NULL,
3158 NULL,
920d2a44 3159 show_stop_print_at_null,
5bf193a2 3160 &setprintlist, &showprintlist);
c906108c 3161
35096d9d 3162 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 3163 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
3164Set threshold for repeated print elements."), _("\
3165Show threshold for repeated print elements."), _("\
f81d1120 3166\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 3167 NULL,
920d2a44 3168 show_repeat_count_threshold,
35096d9d 3169 &setprintlist, &showprintlist);
c906108c 3170
79a45b7d 3171 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
3172 &user_print_options.prettyformat_structs, _("\
3173Set pretty formatting of structures."), _("\
3174Show pretty formatting of structures."), NULL,
5bf193a2 3175 NULL,
2a998fc0 3176 show_prettyformat_structs,
5bf193a2
AC
3177 &setprintlist, &showprintlist);
3178
79a45b7d
TT
3179 add_setshow_boolean_cmd ("union", class_support,
3180 &user_print_options.unionprint, _("\
5bf193a2
AC
3181Set printing of unions interior to structures."), _("\
3182Show printing of unions interior to structures."), NULL,
3183 NULL,
920d2a44 3184 show_unionprint,
5bf193a2
AC
3185 &setprintlist, &showprintlist);
3186
79a45b7d 3187 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
3188 &user_print_options.prettyformat_arrays, _("\
3189Set pretty formatting of arrays."), _("\
3190Show pretty formatting of arrays."), NULL,
5bf193a2 3191 NULL,
2a998fc0 3192 show_prettyformat_arrays,
5bf193a2
AC
3193 &setprintlist, &showprintlist);
3194
79a45b7d
TT
3195 add_setshow_boolean_cmd ("address", class_support,
3196 &user_print_options.addressprint, _("\
5bf193a2
AC
3197Set printing of addresses."), _("\
3198Show printing of addresses."), NULL,
3199 NULL,
920d2a44 3200 show_addressprint,
5bf193a2 3201 &setprintlist, &showprintlist);
c906108c 3202
9cb709b6
TT
3203 add_setshow_boolean_cmd ("symbol", class_support,
3204 &user_print_options.symbol_print, _("\
3205Set printing of symbol names when printing pointers."), _("\
3206Show printing of symbol names when printing pointers."),
3207 NULL, NULL,
3208 show_symbol_print,
3209 &setprintlist, &showprintlist);
3210
1e8fb976
PA
3211 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3212 _("\
35096d9d
AC
3213Set default input radix for entering numbers."), _("\
3214Show default input radix for entering numbers."), NULL,
1e8fb976
PA
3215 set_input_radix,
3216 show_input_radix,
3217 &setlist, &showlist);
35096d9d 3218
1e8fb976
PA
3219 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3220 _("\
35096d9d
AC
3221Set default output radix for printing of values."), _("\
3222Show default output radix for printing of values."), NULL,
1e8fb976
PA
3223 set_output_radix,
3224 show_output_radix,
3225 &setlist, &showlist);
c906108c 3226
cb1a6d5f
AC
3227 /* The "set radix" and "show radix" commands are special in that
3228 they are like normal set and show commands but allow two normally
3229 independent variables to be either set or shown with a single
b66df561 3230 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 3231 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
3232 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3233 longer true - show can display anything. */
1a966eab
AC
3234 add_cmd ("radix", class_support, set_radix, _("\
3235Set default input and output number radices.\n\
c906108c 3236Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 3237Without an argument, sets both radices back to the default value of 10."),
c906108c 3238 &setlist);
1a966eab
AC
3239 add_cmd ("radix", class_support, show_radix, _("\
3240Show the default input and output number radices.\n\
3241Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
3242 &showlist);
3243
e79af960 3244 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 3245 &user_print_options.print_array_indexes, _("\
e79af960
JB
3246Set printing of array indexes."), _("\
3247Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3248 &setprintlist, &showprintlist);
c906108c 3249}
This page took 1.930974 seconds and 4 git commands to generate.