*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
197e01b6 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
777ea8f1
DJ
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
c906108c 32#include "language.h"
c906108c
SS
33#include "annotate.h"
34#include "valprint.h"
39424bef 35#include "floatformat.h"
d16aafd8 36#include "doublest.h"
19ca80ba 37#include "exceptions.h"
c906108c
SS
38
39#include <errno.h>
40
41/* Prototypes for local functions */
42
777ea8f1 43static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
44 int len, int *errnoptr);
45
a14ed312 46static void show_print (char *, int);
c906108c 47
a14ed312 48static void set_print (char *, int);
c906108c 49
a14ed312 50static void set_radix (char *, int);
c906108c 51
a14ed312 52static void show_radix (char *, int);
c906108c 53
a14ed312 54static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 55
a14ed312 56static void set_input_radix_1 (int, unsigned);
c906108c 57
a14ed312 58static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 59
a14ed312 60static void set_output_radix_1 (int, unsigned);
c906108c 61
a14ed312 62void _initialize_valprint (void);
c906108c
SS
63
64/* Maximum number of chars to print for a string pointer value or vector
65 contents, or UINT_MAX for no limit. Note that "set print elements 0"
66 stores UINT_MAX in print_max, which displays in a show command as
67 "unlimited". */
68
69unsigned int print_max;
70#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
920d2a44
AC
71static void
72show_print_max (struct ui_file *file, int from_tty,
73 struct cmd_list_element *c, const char *value)
74{
75 fprintf_filtered (file, _("\
76Limit on string chars or array elements to print is %s.\n"),
77 value);
78}
79
c906108c
SS
80
81/* Default input and output radixes, and output format letter. */
82
83unsigned input_radix = 10;
920d2a44
AC
84static void
85show_input_radix (struct ui_file *file, int from_tty,
86 struct cmd_list_element *c, const char *value)
87{
88 fprintf_filtered (file, _("\
89Default input radix for entering numbers is %s.\n"),
90 value);
91}
92
c906108c 93unsigned output_radix = 10;
920d2a44
AC
94static void
95show_output_radix (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("\
99Default output radix for printing of values is %s.\n"),
100 value);
101}
c906108c
SS
102int output_format = 0;
103
e79af960
JB
104/* By default we print arrays without printing the index of each element in
105 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
106
107static int print_array_indexes = 0;
108static void
109show_print_array_indexes (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111{
112 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
113}
114
c906108c
SS
115/* Print repeat counts if there are more than this many repetitions of an
116 element in an array. Referenced by the low level language dependent
117 print routines. */
118
119unsigned int repeat_count_threshold = 10;
920d2a44
AC
120static void
121show_repeat_count_threshold (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123{
124 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
125 value);
126}
c906108c
SS
127
128/* If nonzero, stops printing of char arrays at first null. */
129
130int stop_print_at_null;
920d2a44
AC
131static void
132show_stop_print_at_null (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134{
135 fprintf_filtered (file, _("\
136Printing of char arrays to stop at first null char is %s.\n"),
137 value);
138}
c906108c
SS
139
140/* Controls pretty printing of structures. */
141
142int prettyprint_structs;
920d2a44
AC
143static void
144show_prettyprint_structs (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
148}
c906108c
SS
149
150/* Controls pretty printing of arrays. */
151
152int prettyprint_arrays;
920d2a44
AC
153static void
154show_prettyprint_arrays (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
158}
c906108c
SS
159
160/* If nonzero, causes unions inside structures or other unions to be
161 printed. */
162
163int unionprint; /* Controls printing of nested unions. */
920d2a44
AC
164static void
165show_unionprint (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("\
169Printing of unions interior to structures is %s.\n"),
170 value);
171}
c906108c
SS
172
173/* If nonzero, causes machine addresses to be printed in certain contexts. */
174
175int addressprint; /* Controls printing of machine addresses */
920d2a44
AC
176static void
177show_addressprint (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179{
180 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
181}
c906108c 182\f
c5aa993b 183
c906108c
SS
184/* Print data of type TYPE located at VALADDR (within GDB), which came from
185 the inferior at address ADDRESS, onto stdio stream STREAM according to
186 FORMAT (a letter, or 0 for natural format using TYPE).
187
188 If DEREF_REF is nonzero, then dereference references, otherwise just print
189 them like pointers.
190
191 The PRETTY parameter controls prettyprinting.
192
193 If the data are a string pointer, returns the number of string characters
194 printed.
195
196 FIXME: The data at VALADDR is in target byte order. If gdb is ever
197 enhanced to be able to debug more than the single target it was compiled
198 for (specific CPU type and thus specific target byte ordering), then
199 either the print routines are going to have to take this into account,
200 or the data is going to have to be passed into here already converted
201 to the host byte ordering, whichever is more convenient. */
202
203
204int
fc1a4b47 205val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd
AC
206 CORE_ADDR address, struct ui_file *stream, int format,
207 int deref_ref, int recurse, enum val_prettyprint pretty)
c906108c 208{
19ca80ba
DJ
209 volatile struct gdb_exception except;
210 int ret = 0;
211
c906108c
SS
212 struct type *real_type = check_typedef (type);
213 if (pretty == Val_pretty_default)
214 {
215 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
216 }
c5aa993b 217
c906108c
SS
218 QUIT;
219
220 /* Ensure that the type is complete and not just a stub. If the type is
221 only a stub and we can't find and substitute its complete type, then
222 print appropriate string and return. */
223
74a9bb82 224 if (TYPE_STUB (real_type))
c906108c
SS
225 {
226 fprintf_filtered (stream, "<incomplete type>");
227 gdb_flush (stream);
228 return (0);
229 }
c5aa993b 230
19ca80ba
DJ
231 TRY_CATCH (except, RETURN_MASK_ERROR)
232 {
233 ret = LA_VAL_PRINT (type, valaddr, embedded_offset, address,
234 stream, format, deref_ref, recurse, pretty);
235 }
236 if (except.reason < 0)
237 fprintf_filtered (stream, _("<error reading variable>"));
238
239 return ret;
c906108c
SS
240}
241
806048c6
DJ
242/* Check whether the value VAL is printable. Return 1 if it is;
243 return 0 and print an appropriate error message to STREAM if it
244 is not. */
c906108c 245
806048c6
DJ
246static int
247value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
248{
249 if (val == 0)
250 {
806048c6 251 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
252 return 0;
253 }
806048c6 254
feb13ab0 255 if (value_optimized_out (val))
c906108c 256 {
806048c6 257 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
258 return 0;
259 }
806048c6
DJ
260
261 return 1;
262}
263
264/* Print the value VAL onto stream STREAM according to FORMAT (a
265 letter, or 0 for natural format using TYPE).
266
267 If DEREF_REF is nonzero, then dereference references, otherwise just print
268 them like pointers.
269
270 The PRETTY parameter controls prettyprinting.
271
272 If the data are a string pointer, returns the number of string characters
273 printed.
274
275 This is a preferable interface to val_print, above, because it uses
276 GDB's value mechanism. */
277
278int
279common_val_print (struct value *val, struct ui_file *stream, int format,
280 int deref_ref, int recurse, enum val_prettyprint pretty)
281{
282 if (!value_check_printable (val, stream))
283 return 0;
284
285 return val_print (value_type (val), value_contents_all (val),
286 value_embedded_offset (val), VALUE_ADDRESS (val),
287 stream, format, deref_ref, recurse, pretty);
288}
289
290/* Print the value VAL in C-ish syntax on stream STREAM.
291 FORMAT is a format-letter, or 0 for print in natural format of data type.
292 If the object printed is a string pointer, returns
293 the number of string bytes printed. */
294
295int
296value_print (struct value *val, struct ui_file *stream, int format,
297 enum val_prettyprint pretty)
298{
299 if (!value_check_printable (val, stream))
300 return 0;
301
c906108c
SS
302 return LA_VALUE_PRINT (val, stream, format, pretty);
303}
304
305/* Called by various <lang>_val_print routines to print
306 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
307 value. STREAM is where to print the value. */
308
309void
fc1a4b47 310val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 311 struct ui_file *stream)
c906108c
SS
312{
313 if (TYPE_LENGTH (type) > sizeof (LONGEST))
314 {
315 LONGEST val;
316
317 if (TYPE_UNSIGNED (type)
318 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
319 &val))
320 {
321 print_longest (stream, 'u', 0, val);
322 }
323 else
324 {
325 /* Signed, or we couldn't turn an unsigned value into a
326 LONGEST. For signed values, one could assume two's
327 complement (a reasonable assumption, I think) and do
328 better than this. */
329 print_hex_chars (stream, (unsigned char *) valaddr,
330 TYPE_LENGTH (type));
331 }
332 }
333 else
334 {
c906108c
SS
335 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
336 unpack_long (type, valaddr));
c906108c
SS
337 }
338}
339
4f2aea11
MK
340void
341val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
342 struct ui_file *stream)
343{
344 LONGEST val = unpack_long (type, valaddr);
345 int bitpos, nfields = TYPE_NFIELDS (type);
346
347 fputs_filtered ("[ ", stream);
348 for (bitpos = 0; bitpos < nfields; bitpos++)
349 {
350 if (TYPE_FIELD_BITPOS (type, bitpos) != -1 && (val & (1 << bitpos)))
351 {
352 if (TYPE_FIELD_NAME (type, bitpos))
353 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
354 else
355 fprintf_filtered (stream, "#%d ", bitpos);
356 }
357 }
358 fputs_filtered ("]", stream);
359}
360
c906108c
SS
361/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
362 The raison d'etre of this function is to consolidate printing of
bb599908
PH
363 LONG_LONG's into this one function. The format chars b,h,w,g are
364 from print_scalar_formatted(). Numbers are printed using C
365 format.
366
367 USE_C_FORMAT means to use C format in all cases. Without it,
368 'o' and 'x' format do not include the standard C radix prefix
369 (leading 0 or 0x).
370
371 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
372 and was intended to request formating according to the current
373 language and would be used for most integers that GDB prints. The
374 exceptional cases were things like protocols where the format of
375 the integer is a protocol thing, not a user-visible thing). The
376 parameter remains to preserve the information of what things might
377 be printed with language-specific format, should we ever resurrect
378 that capability. */
c906108c
SS
379
380void
bb599908 381print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 382 LONGEST val_long)
c906108c 383{
2bfb72ee
AC
384 const char *val;
385
c906108c
SS
386 switch (format)
387 {
388 case 'd':
bb599908 389 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 390 case 'u':
bb599908 391 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 392 case 'x':
bb599908 393 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 394 case 'b':
bb599908 395 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 396 case 'h':
bb599908 397 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 398 case 'w':
bb599908 399 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 400 case 'g':
bb599908 401 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
402 break;
403 case 'o':
bb599908 404 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 405 default:
e2e0b3e5 406 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 407 }
2bfb72ee 408 fputs_filtered (val, stream);
c906108c
SS
409}
410
c906108c
SS
411/* This used to be a macro, but I don't think it is called often enough
412 to merit such treatment. */
413/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
414 arguments to a function, number in a value history, register number, etc.)
415 where the value must not be larger than can fit in an int. */
416
417int
fba45db2 418longest_to_int (LONGEST arg)
c906108c
SS
419{
420 /* Let the compiler do the work */
421 int rtnval = (int) arg;
422
423 /* Check for overflows or underflows */
424 if (sizeof (LONGEST) > sizeof (int))
425 {
426 if (rtnval != arg)
427 {
8a3fe4f8 428 error (_("Value out of range."));
c906108c
SS
429 }
430 }
431 return (rtnval);
432}
433
a73c86fb
AC
434/* Print a floating point value of type TYPE (not always a
435 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
436
437void
fc1a4b47 438print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 439 struct ui_file *stream)
c906108c
SS
440{
441 DOUBLEST doub;
442 int inv;
a73c86fb 443 const struct floatformat *fmt = NULL;
c906108c 444 unsigned len = TYPE_LENGTH (type);
c5aa993b 445
a73c86fb
AC
446 /* If it is a floating-point, check for obvious problems. */
447 if (TYPE_CODE (type) == TYPE_CODE_FLT)
448 fmt = floatformat_from_type (type);
449 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
39424bef
MK
450 {
451 if (floatformat_is_negative (fmt, valaddr))
452 fprintf_filtered (stream, "-");
453 fprintf_filtered (stream, "nan(");
bb599908 454 fputs_filtered ("0x", stream);
306d9ac5 455 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
39424bef
MK
456 fprintf_filtered (stream, ")");
457 return;
7355ddba 458 }
c906108c 459
a73c86fb
AC
460 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
461 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
462 needs to be used as that takes care of any necessary type
463 conversions. Such conversions are of course direct to DOUBLEST
464 and disregard any possible target floating point limitations.
465 For instance, a u64 would be converted and displayed exactly on a
466 host with 80 bit DOUBLEST but with loss of information on a host
467 with 64 bit DOUBLEST. */
c2f05ac9 468
c906108c
SS
469 doub = unpack_double (type, valaddr, &inv);
470 if (inv)
471 {
472 fprintf_filtered (stream, "<invalid float value>");
473 return;
474 }
475
39424bef
MK
476 /* FIXME: kettenis/2001-01-20: The following code makes too much
477 assumptions about the host and target floating point format. */
478
a73c86fb 479 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 480 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
481 instead uses the type's length to determine the precision of the
482 floating-point value being printed. */
c2f05ac9 483
c906108c 484 if (len < sizeof (double))
c5aa993b 485 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 486 else if (len == sizeof (double))
c5aa993b 487 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
488 else
489#ifdef PRINTF_HAS_LONG_DOUBLE
490 fprintf_filtered (stream, "%.35Lg", doub);
491#else
39424bef
MK
492 /* This at least wins with values that are representable as
493 doubles. */
c906108c
SS
494 fprintf_filtered (stream, "%.17g", (double) doub);
495#endif
496}
497
c5aa993b 498void
fc1a4b47 499print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
fba45db2 500 unsigned len)
c906108c
SS
501{
502
503#define BITS_IN_BYTES 8
504
fc1a4b47 505 const gdb_byte *p;
745b8ca0 506 unsigned int i;
c5aa993b 507 int b;
c906108c
SS
508
509 /* Declared "int" so it will be signed.
510 * This ensures that right shift will shift in zeros.
511 */
c5aa993b 512 const int mask = 0x080;
c906108c
SS
513
514 /* FIXME: We should be not printing leading zeroes in most cases. */
515
d7449b42 516 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
517 {
518 for (p = valaddr;
519 p < valaddr + len;
520 p++)
521 {
c5aa993b
JM
522 /* Every byte has 8 binary characters; peel off
523 * and print from the MSB end.
524 */
525 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
526 {
527 if (*p & (mask >> i))
528 b = 1;
529 else
530 b = 0;
531
532 fprintf_filtered (stream, "%1d", b);
533 }
c906108c
SS
534 }
535 }
536 else
537 {
538 for (p = valaddr + len - 1;
539 p >= valaddr;
540 p--)
541 {
c5aa993b
JM
542 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
543 {
544 if (*p & (mask >> i))
545 b = 1;
546 else
547 b = 0;
548
549 fprintf_filtered (stream, "%1d", b);
550 }
c906108c
SS
551 }
552 }
c906108c
SS
553}
554
555/* VALADDR points to an integer of LEN bytes.
556 * Print it in octal on stream or format it in buf.
557 */
558void
fc1a4b47 559print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
6c403953 560 unsigned len)
c906108c 561{
fc1a4b47 562 const gdb_byte *p;
c906108c 563 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
564 int cycle;
565
c906108c
SS
566 /* FIXME: We should be not printing leading zeroes in most cases. */
567
568
569 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
570 * the extra bits, which cycle every three bytes:
571 *
572 * Byte side: 0 1 2 3
573 * | | | |
574 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
575 *
576 * Octal side: 0 1 carry 3 4 carry ...
577 *
578 * Cycle number: 0 1 2
579 *
580 * But of course we are printing from the high side, so we have to
581 * figure out where in the cycle we are so that we end up with no
582 * left over bits at the end.
583 */
584#define BITS_IN_OCTAL 3
585#define HIGH_ZERO 0340
586#define LOW_ZERO 0016
587#define CARRY_ZERO 0003
588#define HIGH_ONE 0200
589#define MID_ONE 0160
590#define LOW_ONE 0016
591#define CARRY_ONE 0001
592#define HIGH_TWO 0300
593#define MID_TWO 0070
594#define LOW_TWO 0007
595
596 /* For 32 we start in cycle 2, with two bits and one bit carry;
597 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
598 */
599 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
600 carry = 0;
c5aa993b 601
bb599908 602 fputs_filtered ("0", stream);
d7449b42 603 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
604 {
605 for (p = valaddr;
606 p < valaddr + len;
607 p++)
608 {
c5aa993b
JM
609 switch (cycle)
610 {
611 case 0:
612 /* No carry in, carry out two bits.
613 */
614 octa1 = (HIGH_ZERO & *p) >> 5;
615 octa2 = (LOW_ZERO & *p) >> 2;
616 carry = (CARRY_ZERO & *p);
617 fprintf_filtered (stream, "%o", octa1);
618 fprintf_filtered (stream, "%o", octa2);
619 break;
620
621 case 1:
622 /* Carry in two bits, carry out one bit.
623 */
624 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
625 octa2 = (MID_ONE & *p) >> 4;
626 octa3 = (LOW_ONE & *p) >> 1;
627 carry = (CARRY_ONE & *p);
628 fprintf_filtered (stream, "%o", octa1);
629 fprintf_filtered (stream, "%o", octa2);
630 fprintf_filtered (stream, "%o", octa3);
631 break;
632
633 case 2:
634 /* Carry in one bit, no carry out.
635 */
636 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
637 octa2 = (MID_TWO & *p) >> 3;
638 octa3 = (LOW_TWO & *p);
639 carry = 0;
640 fprintf_filtered (stream, "%o", octa1);
641 fprintf_filtered (stream, "%o", octa2);
642 fprintf_filtered (stream, "%o", octa3);
643 break;
644
645 default:
8a3fe4f8 646 error (_("Internal error in octal conversion;"));
c5aa993b
JM
647 }
648
649 cycle++;
650 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
651 }
652 }
653 else
654 {
655 for (p = valaddr + len - 1;
656 p >= valaddr;
657 p--)
658 {
c5aa993b
JM
659 switch (cycle)
660 {
661 case 0:
662 /* Carry out, no carry in */
663 octa1 = (HIGH_ZERO & *p) >> 5;
664 octa2 = (LOW_ZERO & *p) >> 2;
665 carry = (CARRY_ZERO & *p);
666 fprintf_filtered (stream, "%o", octa1);
667 fprintf_filtered (stream, "%o", octa2);
668 break;
669
670 case 1:
671 /* Carry in, carry out */
672 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
673 octa2 = (MID_ONE & *p) >> 4;
674 octa3 = (LOW_ONE & *p) >> 1;
675 carry = (CARRY_ONE & *p);
676 fprintf_filtered (stream, "%o", octa1);
677 fprintf_filtered (stream, "%o", octa2);
678 fprintf_filtered (stream, "%o", octa3);
679 break;
680
681 case 2:
682 /* Carry in, no carry out */
683 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
684 octa2 = (MID_TWO & *p) >> 3;
685 octa3 = (LOW_TWO & *p);
686 carry = 0;
687 fprintf_filtered (stream, "%o", octa1);
688 fprintf_filtered (stream, "%o", octa2);
689 fprintf_filtered (stream, "%o", octa3);
690 break;
691
692 default:
8a3fe4f8 693 error (_("Internal error in octal conversion;"));
c5aa993b
JM
694 }
695
696 cycle++;
697 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
698 }
699 }
700
c906108c
SS
701}
702
703/* VALADDR points to an integer of LEN bytes.
704 * Print it in decimal on stream or format it in buf.
705 */
706void
fc1a4b47 707print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
fba45db2 708 unsigned len)
c906108c
SS
709{
710#define TEN 10
711#define TWO_TO_FOURTH 16
c5aa993b 712#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
713#define CARRY_LEFT( x ) ((x) % TEN)
714#define SHIFT( x ) ((x) << 4)
715#define START_P \
d7449b42 716 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
c906108c 717#define NOT_END_P \
d7449b42 718 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c906108c 719#define NEXT_P \
d7449b42 720 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
c906108c
SS
721#define LOW_NIBBLE( x ) ( (x) & 0x00F)
722#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
723
fc1a4b47 724 const gdb_byte *p;
c906108c 725 unsigned char *digits;
c5aa993b
JM
726 int carry;
727 int decimal_len;
728 int i, j, decimal_digits;
729 int dummy;
730 int flip;
731
c906108c
SS
732 /* Base-ten number is less than twice as many digits
733 * as the base 16 number, which is 2 digits per byte.
734 */
735 decimal_len = len * 2 * 2;
3c37485b 736 digits = xmalloc (decimal_len);
c906108c 737
c5aa993b
JM
738 for (i = 0; i < decimal_len; i++)
739 {
c906108c 740 digits[i] = 0;
c5aa993b 741 }
c906108c 742
c906108c
SS
743 /* Ok, we have an unknown number of bytes of data to be printed in
744 * decimal.
745 *
746 * Given a hex number (in nibbles) as XYZ, we start by taking X and
747 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
748 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
749 *
750 * The trick is that "digits" holds a base-10 number, but sometimes
751 * the individual digits are > 10.
752 *
753 * Outer loop is per nibble (hex digit) of input, from MSD end to
754 * LSD end.
755 */
c5aa993b 756 decimal_digits = 0; /* Number of decimal digits so far */
c906108c
SS
757 p = START_P;
758 flip = 0;
c5aa993b
JM
759 while (NOT_END_P)
760 {
c906108c
SS
761 /*
762 * Multiply current base-ten number by 16 in place.
763 * Each digit was between 0 and 9, now is between
764 * 0 and 144.
765 */
c5aa993b
JM
766 for (j = 0; j < decimal_digits; j++)
767 {
768 digits[j] = SHIFT (digits[j]);
769 }
770
c906108c
SS
771 /* Take the next nibble off the input and add it to what
772 * we've got in the LSB position. Bottom 'digit' is now
773 * between 0 and 159.
774 *
775 * "flip" is used to run this loop twice for each byte.
776 */
c5aa993b
JM
777 if (flip == 0)
778 {
779 /* Take top nibble.
780 */
781 digits[0] += HIGH_NIBBLE (*p);
782 flip = 1;
783 }
784 else
785 {
786 /* Take low nibble and bump our pointer "p".
787 */
788 digits[0] += LOW_NIBBLE (*p);
789 NEXT_P;
790 flip = 0;
791 }
c906108c
SS
792
793 /* Re-decimalize. We have to do this often enough
794 * that we don't overflow, but once per nibble is
795 * overkill. Easier this way, though. Note that the
796 * carry is often larger than 10 (e.g. max initial
797 * carry out of lowest nibble is 15, could bubble all
798 * the way up greater than 10). So we have to do
799 * the carrying beyond the last current digit.
800 */
801 carry = 0;
c5aa993b
JM
802 for (j = 0; j < decimal_len - 1; j++)
803 {
804 digits[j] += carry;
805
806 /* "/" won't handle an unsigned char with
807 * a value that if signed would be negative.
808 * So extend to longword int via "dummy".
809 */
810 dummy = digits[j];
811 carry = CARRY_OUT (dummy);
812 digits[j] = CARRY_LEFT (dummy);
813
814 if (j >= decimal_digits && carry == 0)
815 {
816 /*
817 * All higher digits are 0 and we
818 * no longer have a carry.
819 *
820 * Note: "j" is 0-based, "decimal_digits" is
821 * 1-based.
822 */
823 decimal_digits = j + 1;
824 break;
825 }
826 }
827 }
c906108c
SS
828
829 /* Ok, now "digits" is the decimal representation, with
830 * the "decimal_digits" actual digits. Print!
831 */
c5aa993b
JM
832 for (i = decimal_digits - 1; i >= 0; i--)
833 {
834 fprintf_filtered (stream, "%1d", digits[i]);
835 }
b8c9b27d 836 xfree (digits);
c906108c
SS
837}
838
839/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
840
6b9acc27 841void
fc1a4b47 842print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
6c403953 843 unsigned len)
c906108c 844{
fc1a4b47 845 const gdb_byte *p;
c906108c
SS
846
847 /* FIXME: We should be not printing leading zeroes in most cases. */
848
bb599908 849 fputs_filtered ("0x", stream);
d7449b42 850 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
851 {
852 for (p = valaddr;
853 p < valaddr + len;
854 p++)
855 {
856 fprintf_filtered (stream, "%02x", *p);
857 }
858 }
859 else
860 {
861 for (p = valaddr + len - 1;
862 p >= valaddr;
863 p--)
864 {
865 fprintf_filtered (stream, "%02x", *p);
866 }
867 }
c906108c
SS
868}
869
6b9acc27
JJ
870/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
871 Omit any leading zero chars. */
872
873void
fc1a4b47 874print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
6c403953 875 unsigned len)
6b9acc27 876{
fc1a4b47 877 const gdb_byte *p;
6b9acc27
JJ
878
879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
880 {
881 p = valaddr;
882 while (p < valaddr + len - 1 && *p == 0)
883 ++p;
884
885 while (p < valaddr + len)
886 {
887 LA_EMIT_CHAR (*p, stream, '\'');
888 ++p;
889 }
890 }
891 else
892 {
893 p = valaddr + len - 1;
894 while (p > valaddr && *p == 0)
895 --p;
896
897 while (p >= valaddr)
898 {
899 LA_EMIT_CHAR (*p, stream, '\'');
900 --p;
901 }
902 }
903}
904
e79af960
JB
905/* Return non-zero if the debugger should print the index of each element
906 when printing array values. */
907
908int
909print_array_indexes_p (void)
910{
911 return print_array_indexes;
912}
913
914/* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
915 Save it into LOW_BOUND if not NULL.
916
917 Return 1 if the operation was successful. Return zero otherwise,
918 in which case the value of LOW_BOUND is unmodified.
919
920 Computing the array lower bound is pretty easy, but this function
921 does some additional verifications before returning the low bound.
922 If something incorrect is detected, it is better to return a status
923 rather than throwing an error, making it easier for the caller to
924 implement an error-recovery plan. For instance, it may decide to
925 warn the user that the bound was not found and then use a default
926 value instead. */
927
928int
929get_array_low_bound (struct type *type, long *low_bound)
930{
931 struct type *index = TYPE_INDEX_TYPE (type);
932 long low = 0;
933
934 if (index == NULL)
935 return 0;
936
937 if (TYPE_CODE (index) != TYPE_CODE_RANGE
938 && TYPE_CODE (index) != TYPE_CODE_ENUM)
939 return 0;
940
941 low = TYPE_LOW_BOUND (index);
942 if (low > TYPE_HIGH_BOUND (index))
943 return 0;
944
945 if (low_bound)
946 *low_bound = low;
947
948 return 1;
949}
950
951/* Print on STREAM using the given FORMAT the index for the element
952 at INDEX of an array whose index type is INDEX_TYPE. */
953
954void
955maybe_print_array_index (struct type *index_type, LONGEST index,
956 struct ui_file *stream, int format,
957 enum val_prettyprint pretty)
958{
959 struct value *index_value;
960
961 if (!print_array_indexes)
962 return;
963
964 index_value = value_from_longest (index_type, index);
965
966 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
967}
968
c906108c 969/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 970 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 971
c5aa993b
JM
972 (FIXME?) Assumes array element separator is a comma, which is correct
973 for all languages currently handled.
974 (FIXME?) Some languages have a notation for repeated array elements,
975 perhaps we should try to use that notation when appropriate.
976 */
c906108c
SS
977
978void
fc1a4b47 979val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd
AC
980 CORE_ADDR address, struct ui_file *stream,
981 int format, int deref_ref,
fba45db2
KB
982 int recurse, enum val_prettyprint pretty,
983 unsigned int i)
c906108c
SS
984{
985 unsigned int things_printed = 0;
986 unsigned len;
e79af960 987 struct type *elttype, *index_type;
c906108c
SS
988 unsigned eltlen;
989 /* Position of the array element we are examining to see
990 whether it is repeated. */
991 unsigned int rep1;
992 /* Number of repetitions we have detected so far. */
993 unsigned int reps;
168de233 994 long low_bound_index = 0;
c5aa993b 995
c906108c
SS
996 elttype = TYPE_TARGET_TYPE (type);
997 eltlen = TYPE_LENGTH (check_typedef (elttype));
998 len = TYPE_LENGTH (type) / eltlen;
e79af960 999 index_type = TYPE_INDEX_TYPE (type);
c906108c 1000
168de233
JB
1001 /* Get the array low bound. This only makes sense if the array
1002 has one or more element in it. */
1003 if (len > 0 && !get_array_low_bound (type, &low_bound_index))
1004 {
1005 warning ("unable to get low bound of array, using zero as default");
1006 low_bound_index = 0;
1007 }
1008
c906108c
SS
1009 annotate_array_section_begin (i, elttype);
1010
1011 for (; i < len && things_printed < print_max; i++)
1012 {
1013 if (i != 0)
1014 {
1015 if (prettyprint_arrays)
1016 {
1017 fprintf_filtered (stream, ",\n");
1018 print_spaces_filtered (2 + 2 * recurse, stream);
1019 }
1020 else
1021 {
1022 fprintf_filtered (stream, ", ");
1023 }
1024 }
1025 wrap_here (n_spaces (2 + 2 * recurse));
e79af960
JB
1026 maybe_print_array_index (index_type, i + low_bound_index,
1027 stream, format, pretty);
c906108c
SS
1028
1029 rep1 = i + 1;
1030 reps = 1;
c5aa993b 1031 while ((rep1 < len) &&
c906108c
SS
1032 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1033 {
1034 ++reps;
1035 ++rep1;
1036 }
1037
1038 if (reps > repeat_count_threshold)
1039 {
1040 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1041 deref_ref, recurse + 1, pretty);
1042 annotate_elt_rep (reps);
1043 fprintf_filtered (stream, " <repeats %u times>", reps);
1044 annotate_elt_rep_end ();
1045
1046 i = rep1 - 1;
1047 things_printed += repeat_count_threshold;
1048 }
1049 else
1050 {
1051 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1052 deref_ref, recurse + 1, pretty);
1053 annotate_elt ();
1054 things_printed++;
1055 }
1056 }
1057 annotate_array_section_end ();
1058 if (i < len)
1059 {
1060 fprintf_filtered (stream, "...");
1061 }
1062}
1063
917317f4
JM
1064/* Read LEN bytes of target memory at address MEMADDR, placing the
1065 results in GDB's memory at MYADDR. Returns a count of the bytes
1066 actually read, and optionally an errno value in the location
1067 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1068
1069/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1070 function be eliminated. */
1071
1072static int
777ea8f1 1073partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1074{
1075 int nread; /* Number of bytes actually read. */
1076 int errcode; /* Error from last read. */
1077
1078 /* First try a complete read. */
1079 errcode = target_read_memory (memaddr, myaddr, len);
1080 if (errcode == 0)
1081 {
1082 /* Got it all. */
1083 nread = len;
1084 }
1085 else
1086 {
1087 /* Loop, reading one byte at a time until we get as much as we can. */
1088 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1089 {
1090 errcode = target_read_memory (memaddr++, myaddr++, 1);
1091 }
1092 /* If an error, the last read was unsuccessful, so adjust count. */
1093 if (errcode != 0)
1094 {
1095 nread--;
1096 }
1097 }
1098 if (errnoptr != NULL)
1099 {
1100 *errnoptr = errcode;
1101 }
1102 return (nread);
1103}
1104
c906108c 1105/* Print a string from the inferior, starting at ADDR and printing up to LEN
c5aa993b
JM
1106 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1107 stops at the first null byte, otherwise printing proceeds (including null
1108 bytes) until either print_max or LEN characters have been printed,
1109 whichever is smaller. */
c906108c
SS
1110
1111/* FIXME: Use target_read_string. */
1112
1113int
fba45db2 1114val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
c906108c
SS
1115{
1116 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1117 int errcode; /* Errno returned from bad reads. */
1118 unsigned int fetchlimit; /* Maximum number of chars to print. */
1119 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1120 unsigned int chunksize; /* Size of each fetch, in chars. */
777ea8f1
DJ
1121 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1122 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1123 gdb_byte *limit; /* First location past end of fetch buffer. */
c5aa993b 1124 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
c906108c
SS
1125 int found_nul; /* Non-zero if we found the nul char */
1126
1127 /* First we need to figure out the limit on the number of characters we are
1128 going to attempt to fetch and print. This is actually pretty simple. If
1129 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1130 LEN is -1, then the limit is print_max. This is true regardless of
1131 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1132 because finding the null byte (or available memory) is what actually
1133 limits the fetch. */
1134
1135 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1136
1137 /* Now decide how large of chunks to try to read in one operation. This
1138 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1139 so we might as well read them all in one operation. If LEN is -1, we
1140 are looking for a null terminator to end the fetching, so we might as
1141 well read in blocks that are large enough to be efficient, but not so
1142 large as to be slow if fetchlimit happens to be large. So we choose the
1143 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1144 200 is way too big for remote debugging over a serial line. */
1145
1146 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1147
1148 /* Loop until we either have all the characters to print, or we encounter
1149 some error, such as bumping into the end of the address space. */
1150
1151 found_nul = 0;
1152 old_chain = make_cleanup (null_cleanup, 0);
1153
1154 if (len > 0)
1155 {
777ea8f1 1156 buffer = (gdb_byte *) xmalloc (len * width);
c906108c 1157 bufptr = buffer;
b8c9b27d 1158 old_chain = make_cleanup (xfree, buffer);
c906108c 1159
917317f4 1160 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1161 / width;
1162 addr += nfetch * width;
1163 bufptr += nfetch * width;
1164 }
1165 else if (len == -1)
1166 {
1167 unsigned long bufsize = 0;
1168 do
1169 {
1170 QUIT;
1171 nfetch = min (chunksize, fetchlimit - bufsize);
1172
1173 if (buffer == NULL)
777ea8f1 1174 buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c
SS
1175 else
1176 {
1177 discard_cleanups (old_chain);
777ea8f1 1178 buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width);
c906108c
SS
1179 }
1180
b8c9b27d 1181 old_chain = make_cleanup (xfree, buffer);
c906108c
SS
1182 bufptr = buffer + bufsize * width;
1183 bufsize += nfetch;
1184
1185 /* Read as much as we can. */
917317f4 1186 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
c5aa993b 1187 / width;
c906108c
SS
1188
1189 /* Scan this chunk for the null byte that terminates the string
1190 to print. If found, we don't need to fetch any more. Note
1191 that bufptr is explicitly left pointing at the next character
1192 after the null byte, or at the next character after the end of
1193 the buffer. */
1194
1195 limit = bufptr + nfetch * width;
1196 while (bufptr < limit)
1197 {
1198 unsigned long c;
1199
1200 c = extract_unsigned_integer (bufptr, width);
1201 addr += width;
1202 bufptr += width;
1203 if (c == 0)
1204 {
1205 /* We don't care about any error which happened after
1206 the NULL terminator. */
1207 errcode = 0;
1208 found_nul = 1;
1209 break;
1210 }
1211 }
1212 }
c5aa993b
JM
1213 while (errcode == 0 /* no error */
1214 && bufptr - buffer < fetchlimit * width /* no overrun */
1215 && !found_nul); /* haven't found nul yet */
c906108c
SS
1216 }
1217 else
1218 { /* length of string is really 0! */
1219 buffer = bufptr = NULL;
1220 errcode = 0;
1221 }
1222
1223 /* bufptr and addr now point immediately beyond the last byte which we
1224 consider part of the string (including a '\0' which ends the string). */
1225
1226 /* We now have either successfully filled the buffer to fetchlimit, or
1227 terminated early due to an error or finding a null char when LEN is -1. */
1228
1229 if (len == -1 && !found_nul)
1230 {
777ea8f1 1231 gdb_byte *peekbuf;
c906108c
SS
1232
1233 /* We didn't find a null terminator we were looking for. Attempt
c5aa993b
JM
1234 to peek at the next character. If not successful, or it is not
1235 a null byte, then force ellipsis to be printed. */
c906108c 1236
777ea8f1 1237 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1238
1239 if (target_read_memory (addr, peekbuf, width) == 0
1240 && extract_unsigned_integer (peekbuf, width) != 0)
1241 force_ellipsis = 1;
1242 }
c5aa993b 1243 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
c906108c
SS
1244 {
1245 /* Getting an error when we have a requested length, or fetching less
c5aa993b
JM
1246 than the number of characters actually requested, always make us
1247 print ellipsis. */
c906108c
SS
1248 force_ellipsis = 1;
1249 }
1250
1251 QUIT;
1252
1253 /* If we get an error before fetching anything, don't print a string.
1254 But if we fetch something and then get an error, print the string
1255 and then the error message. */
1256 if (errcode == 0 || bufptr > buffer)
1257 {
1258 if (addressprint)
1259 {
1260 fputs_filtered (" ", stream);
1261 }
c5aa993b 1262 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
c906108c
SS
1263 }
1264
1265 if (errcode != 0)
1266 {
1267 if (errcode == EIO)
1268 {
1269 fprintf_filtered (stream, " <Address ");
66bf4b3a 1270 deprecated_print_address_numeric (addr, 1, stream);
c906108c
SS
1271 fprintf_filtered (stream, " out of bounds>");
1272 }
1273 else
1274 {
1275 fprintf_filtered (stream, " <Error reading address ");
66bf4b3a 1276 deprecated_print_address_numeric (addr, 1, stream);
c906108c
SS
1277 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1278 }
1279 }
1280 gdb_flush (stream);
1281 do_cleanups (old_chain);
c5aa993b 1282 return ((bufptr - buffer) / width);
c906108c 1283}
c906108c 1284\f
c5aa993b 1285
c906108c
SS
1286/* Validate an input or output radix setting, and make sure the user
1287 knows what they really did here. Radix setting is confusing, e.g.
1288 setting the input radix to "10" never changes it! */
1289
c906108c 1290static void
fba45db2 1291set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1292{
f66c9f11 1293 set_input_radix_1 (from_tty, input_radix);
c906108c
SS
1294}
1295
c906108c 1296static void
fba45db2 1297set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1298{
1299 /* We don't currently disallow any input radix except 0 or 1, which don't
1300 make any mathematical sense. In theory, we can deal with any input
1301 radix greater than 1, even if we don't have unique digits for every
1302 value from 0 to radix-1, but in practice we lose on large radix values.
1303 We should either fix the lossage or restrict the radix range more.
1304 (FIXME). */
1305
1306 if (radix < 2)
1307 {
f66c9f11
AC
1308 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1309 value. */
8a3fe4f8 1310 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1311 radix);
1312 }
1313 input_radix = radix;
1314 if (from_tty)
1315 {
a3f17187 1316 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1317 radix, radix, radix);
1318 }
1319}
1320
c906108c 1321static void
fba45db2 1322set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1323{
f66c9f11 1324 set_output_radix_1 (from_tty, output_radix);
c906108c
SS
1325}
1326
1327static void
fba45db2 1328set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1329{
1330 /* Validate the radix and disallow ones that we aren't prepared to
1331 handle correctly, leaving the radix unchanged. */
1332 switch (radix)
1333 {
1334 case 16:
c5aa993b 1335 output_format = 'x'; /* hex */
c906108c
SS
1336 break;
1337 case 10:
c5aa993b 1338 output_format = 0; /* decimal */
c906108c
SS
1339 break;
1340 case 8:
c5aa993b 1341 output_format = 'o'; /* octal */
c906108c
SS
1342 break;
1343 default:
f66c9f11
AC
1344 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1345 value. */
8a3fe4f8 1346 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1347 radix);
1348 }
1349 output_radix = radix;
1350 if (from_tty)
1351 {
a3f17187 1352 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1353 radix, radix, radix);
1354 }
1355}
1356
1357/* Set both the input and output radix at once. Try to set the output radix
1358 first, since it has the most restrictive range. An radix that is valid as
1359 an output radix is also valid as an input radix.
1360
1361 It may be useful to have an unusual input radix. If the user wishes to
1362 set an input radix that is not valid as an output radix, he needs to use
1363 the 'set input-radix' command. */
1364
1365static void
fba45db2 1366set_radix (char *arg, int from_tty)
c906108c
SS
1367{
1368 unsigned radix;
1369
bb518678 1370 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1371 set_output_radix_1 (0, radix);
1372 set_input_radix_1 (0, radix);
1373 if (from_tty)
1374 {
a3f17187 1375 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1376 radix, radix, radix);
1377 }
1378}
1379
1380/* Show both the input and output radices. */
1381
c906108c 1382static void
fba45db2 1383show_radix (char *arg, int from_tty)
c906108c
SS
1384{
1385 if (from_tty)
1386 {
1387 if (input_radix == output_radix)
1388 {
a3f17187 1389 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1390 input_radix, input_radix, input_radix);
1391 }
1392 else
1393 {
a3f17187 1394 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1395 input_radix, input_radix, input_radix);
a3f17187 1396 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1397 output_radix, output_radix, output_radix);
1398 }
1399 }
1400}
c906108c 1401\f
c5aa993b 1402
c906108c 1403static void
fba45db2 1404set_print (char *arg, int from_tty)
c906108c
SS
1405{
1406 printf_unfiltered (
c5aa993b 1407 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1408 help_list (setprintlist, "set print ", -1, gdb_stdout);
1409}
1410
c906108c 1411static void
fba45db2 1412show_print (char *args, int from_tty)
c906108c
SS
1413{
1414 cmd_show_list (showprintlist, from_tty, "");
1415}
1416\f
1417void
fba45db2 1418_initialize_valprint (void)
c906108c
SS
1419{
1420 struct cmd_list_element *c;
1421
1422 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1423 _("Generic command for setting how things print."),
c906108c 1424 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1425 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1426 /* prefer set print to set prompt */
c906108c
SS
1427 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1428
1429 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1430 _("Generic command for showing print settings."),
c906108c 1431 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1432 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1433 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1434
35096d9d
AC
1435 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1436Set limit on string chars or array elements to print."), _("\
1437Show limit on string chars or array elements to print."), _("\
1438\"set print elements 0\" causes there to be no limit."),
1439 NULL,
920d2a44 1440 show_print_max,
35096d9d 1441 &setprintlist, &showprintlist);
c906108c 1442
5bf193a2
AC
1443 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1444Set printing of char arrays to stop at first null char."), _("\
1445Show printing of char arrays to stop at first null char."), NULL,
1446 NULL,
920d2a44 1447 show_stop_print_at_null,
5bf193a2 1448 &setprintlist, &showprintlist);
c906108c 1449
35096d9d
AC
1450 add_setshow_uinteger_cmd ("repeats", no_class,
1451 &repeat_count_threshold, _("\
1452Set threshold for repeated print elements."), _("\
1453Show threshold for repeated print elements."), _("\
1454\"set print repeats 0\" causes all elements to be individually printed."),
1455 NULL,
920d2a44 1456 show_repeat_count_threshold,
35096d9d 1457 &setprintlist, &showprintlist);
c906108c 1458
5bf193a2
AC
1459 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1460Set prettyprinting of structures."), _("\
1461Show prettyprinting of structures."), NULL,
1462 NULL,
920d2a44 1463 show_prettyprint_structs,
5bf193a2
AC
1464 &setprintlist, &showprintlist);
1465
1466 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1467Set printing of unions interior to structures."), _("\
1468Show printing of unions interior to structures."), NULL,
1469 NULL,
920d2a44 1470 show_unionprint,
5bf193a2
AC
1471 &setprintlist, &showprintlist);
1472
1473 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1474Set prettyprinting of arrays."), _("\
1475Show prettyprinting of arrays."), NULL,
1476 NULL,
920d2a44 1477 show_prettyprint_arrays,
5bf193a2
AC
1478 &setprintlist, &showprintlist);
1479
1480 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1481Set printing of addresses."), _("\
1482Show printing of addresses."), NULL,
1483 NULL,
920d2a44 1484 show_addressprint,
5bf193a2 1485 &setprintlist, &showprintlist);
c906108c 1486
35096d9d
AC
1487 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1488Set default input radix for entering numbers."), _("\
1489Show default input radix for entering numbers."), NULL,
1490 set_input_radix,
920d2a44 1491 show_input_radix,
35096d9d
AC
1492 &setlist, &showlist);
1493
1494 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1495Set default output radix for printing of values."), _("\
1496Show default output radix for printing of values."), NULL,
1497 set_output_radix,
920d2a44 1498 show_output_radix,
35096d9d 1499 &setlist, &showlist);
c906108c 1500
cb1a6d5f
AC
1501 /* The "set radix" and "show radix" commands are special in that
1502 they are like normal set and show commands but allow two normally
1503 independent variables to be either set or shown with a single
b66df561 1504 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1505 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1506 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1507 longer true - show can display anything. */
1a966eab
AC
1508 add_cmd ("radix", class_support, set_radix, _("\
1509Set default input and output number radices.\n\
c906108c 1510Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1511Without an argument, sets both radices back to the default value of 10."),
c906108c 1512 &setlist);
1a966eab
AC
1513 add_cmd ("radix", class_support, show_radix, _("\
1514Show the default input and output number radices.\n\
1515Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1516 &showlist);
1517
e79af960
JB
1518 add_setshow_boolean_cmd ("array-indexes", class_support,
1519 &print_array_indexes, _("\
1520Set printing of array indexes."), _("\
1521Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1522 &setprintlist, &showprintlist);
1523
c906108c
SS
1524 /* Give people the defaults which they are used to. */
1525 prettyprint_structs = 0;
1526 prettyprint_arrays = 0;
1527 unionprint = 1;
1528 addressprint = 1;
1529 print_max = PRINT_MAX_DEFAULT;
1530}
This page took 0.755784 seconds and 4 git commands to generate.