Factor out array printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
37#include <ctype.h>
c906108c 38
0d63ecda
KS
39/* Maximum number of wchars returned from wchar_iterate. */
40#define MAX_WCHARS 4
41
42/* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46/* Character buffer size saved while iterating over wchars. */
47#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49/* A structure to encapsulate state information from iterated
50 character conversions. */
51struct converted_character
52{
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70};
71
72typedef struct converted_character converted_character_d;
73DEF_VEC_O (converted_character_d);
74
e7045703
DE
75/* Command lists for set/show print raw. */
76struct cmd_list_element *setprintrawlist;
77struct cmd_list_element *showprintrawlist;
0d63ecda 78
c906108c
SS
79/* Prototypes for local functions */
80
777ea8f1 81static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 82 int len, int *errptr);
917317f4 83
a14ed312 84static void show_print (char *, int);
c906108c 85
a14ed312 86static void set_print (char *, int);
c906108c 87
a14ed312 88static void set_radix (char *, int);
c906108c 89
a14ed312 90static void show_radix (char *, int);
c906108c 91
a14ed312 92static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 93
a14ed312 94static void set_input_radix_1 (int, unsigned);
c906108c 95
a14ed312 96static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_output_radix_1 (int, unsigned);
c906108c 99
a14ed312 100void _initialize_valprint (void);
c906108c 101
581e13c1 102#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
103
104struct value_print_options user_print_options =
105{
2a998fc0
DE
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
79a45b7d
TT
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
79a45b7d
TT
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
a6bac58e
TT
121 1, /* pascal_static_field_print */
122 0, /* raw */
9cb709b6
TT
123 0, /* summary */
124 1 /* symbol_print */
79a45b7d
TT
125};
126
127/* Initialize *OPTS to be a copy of the user print options. */
128void
129get_user_print_options (struct value_print_options *opts)
130{
131 *opts = user_print_options;
132}
133
134/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 135 pretty-formatting disabled. */
79a45b7d 136void
2a998fc0 137get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
138{
139 *opts = user_print_options;
2a998fc0 140 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
141}
142
143/* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145void
146get_formatted_print_options (struct value_print_options *opts,
147 char format)
148{
149 *opts = user_print_options;
150 opts->format = format;
151}
152
920d2a44
AC
153static void
154show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
3e43a32a
MS
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
920d2a44
AC
160 value);
161}
162
c906108c
SS
163
164/* Default input and output radixes, and output format letter. */
165
166unsigned input_radix = 10;
920d2a44
AC
167static void
168show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
3e43a32a
MS
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
173 value);
174}
175
c906108c 176unsigned output_radix = 10;
920d2a44
AC
177static void
178show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
3e43a32a
MS
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
183 value);
184}
c906108c 185
e79af960
JB
186/* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
e79af960
JB
189static void
190show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194}
195
c906108c
SS
196/* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
581e13c1 198 print routines. */
c906108c 199
920d2a44
AC
200static void
201show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203{
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206}
c906108c 207
581e13c1 208/* If nonzero, stops printing of char arrays at first null. */
c906108c 209
920d2a44
AC
210static void
211show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
3e43a32a
MS
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
920d2a44
AC
217 value);
218}
c906108c 219
581e13c1 220/* Controls pretty printing of structures. */
c906108c 221
920d2a44 222static void
2a998fc0 223show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
224 struct cmd_list_element *c, const char *value)
225{
2a998fc0 226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 227}
c906108c
SS
228
229/* Controls pretty printing of arrays. */
230
920d2a44 231static void
2a998fc0 232show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
233 struct cmd_list_element *c, const char *value)
234{
2a998fc0 235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 236}
c906108c
SS
237
238/* If nonzero, causes unions inside structures or other unions to be
581e13c1 239 printed. */
c906108c 240
920d2a44
AC
241static void
242show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
3e43a32a
MS
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
247 value);
248}
c906108c 249
581e13c1 250/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 251
920d2a44
AC
252static void
253show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255{
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257}
9cb709b6
TT
258
259static void
260show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266}
267
c906108c 268\f
c5aa993b 269
a6bac58e
TT
270/* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
6211c335
YQ
274int
275val_print_scalar_type_p (struct type *type)
a6bac58e 276{
f168693b 277 type = check_typedef (type);
a6bac58e
TT
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
f168693b 281 type = check_typedef (type);
a6bac58e
TT
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
a6bac58e
TT
290 return 0;
291 default:
292 return 1;
293 }
294}
295
a72c8f6a 296/* See its definition in value.h. */
0e03807e 297
a72c8f6a 298int
0e03807e
TT
299valprint_check_validity (struct ui_file *stream,
300 struct type *type,
4e07d55f 301 int embedded_offset,
0e03807e
TT
302 const struct value *val)
303{
f168693b 304 type = check_typedef (type);
0e03807e
TT
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
9a0dc9e3
PA
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 313 {
901461f8 314 val_print_optimized_out (val, stream);
0e03807e
TT
315 return 0;
316 }
8cf6f0b1 317
4e07d55f 318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
4e07d55f
PA
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
0e03807e
TT
330 }
331
332 return 1;
333}
334
585fdaa1 335void
901461f8 336val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 337{
901461f8 338 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 339 val_print_not_saved (stream);
901461f8
PA
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
342}
343
782d47df
PA
344void
345val_print_not_saved (struct ui_file *stream)
346{
347 fprintf_filtered (stream, _("<not saved>"));
348}
349
4e07d55f
PA
350void
351val_print_unavailable (struct ui_file *stream)
352{
353 fprintf_filtered (stream, _("<unavailable>"));
354}
355
8af8e3bc
PA
356void
357val_print_invalid_address (struct ui_file *stream)
358{
359 fprintf_filtered (stream, _("<invalid address>"));
360}
361
9f436164
SM
362/* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369static void
370print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373{
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387}
388
557dbe8a
SM
389/* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391static void
392generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397{
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426}
427
e88acd96
TT
428/* A generic val_print that is suitable for use by language
429 implementations of the la_val_print method. This function can
430 handle most type codes, though not all, notably exception
431 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
432 the caller.
433
434 Most arguments are as to val_print.
435
436 The additional DECORATIONS argument can be used to customize the
437 output in some small, language-specific ways. */
438
439void
440generic_val_print (struct type *type, const gdb_byte *valaddr,
441 int embedded_offset, CORE_ADDR address,
442 struct ui_file *stream, int recurse,
443 const struct value *original_value,
444 const struct value_print_options *options,
445 const struct generic_val_print_decorations *decorations)
446{
447 struct gdbarch *gdbarch = get_type_arch (type);
e88acd96
TT
448 unsigned int i = 0; /* Number of characters printed. */
449 unsigned len;
450 struct type *elttype, *unresolved_elttype;
451 struct type *unresolved_type = type;
e88acd96
TT
452 LONGEST val;
453 CORE_ADDR addr;
454
f168693b 455 type = check_typedef (type);
e88acd96
TT
456 switch (TYPE_CODE (type))
457 {
458 case TYPE_CODE_ARRAY:
557dbe8a
SM
459 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
460 recurse, original_value, options);
9f436164 461 break;
e88acd96
TT
462
463 case TYPE_CODE_MEMBERPTR:
464 val_print_scalar_formatted (type, valaddr, embedded_offset,
465 original_value, options, 0, stream);
466 break;
467
468 case TYPE_CODE_PTR:
469 if (options->format && options->format != 's')
470 {
471 val_print_scalar_formatted (type, valaddr, embedded_offset,
472 original_value, options, 0, stream);
473 break;
474 }
475 unresolved_elttype = TYPE_TARGET_TYPE (type);
476 elttype = check_typedef (unresolved_elttype);
9f436164
SM
477 addr = unpack_pointer (type, valaddr + embedded_offset);
478 print_unpacked_pointer (type, elttype, addr, stream, options);
e88acd96
TT
479 break;
480
481 case TYPE_CODE_REF:
482 elttype = check_typedef (TYPE_TARGET_TYPE (type));
483 if (options->addressprint)
484 {
485 CORE_ADDR addr
486 = extract_typed_address (valaddr + embedded_offset, type);
487
488 fprintf_filtered (stream, "@");
489 fputs_filtered (paddress (gdbarch, addr), stream);
490 if (options->deref_ref)
491 fputs_filtered (": ", stream);
492 }
493 /* De-reference the reference. */
494 if (options->deref_ref)
495 {
496 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
497 {
498 struct value *deref_val;
499
500 deref_val = coerce_ref_if_computed (original_value);
501 if (deref_val != NULL)
502 {
503 /* More complicated computed references are not supported. */
504 gdb_assert (embedded_offset == 0);
505 }
506 else
507 deref_val = value_at (TYPE_TARGET_TYPE (type),
508 unpack_pointer (type,
509 (valaddr
510 + embedded_offset)));
511
512 common_val_print (deref_val, stream, recurse, options,
513 current_language);
514 }
515 else
516 fputs_filtered ("???", stream);
517 }
518 break;
519
520 case TYPE_CODE_ENUM:
521 if (options->format)
522 {
523 val_print_scalar_formatted (type, valaddr, embedded_offset,
524 original_value, options, 0, stream);
525 break;
526 }
527 len = TYPE_NFIELDS (type);
528 val = unpack_long (type, valaddr + embedded_offset);
529 for (i = 0; i < len; i++)
530 {
531 QUIT;
14e75d8e 532 if (val == TYPE_FIELD_ENUMVAL (type, i))
e88acd96
TT
533 {
534 break;
535 }
536 }
537 if (i < len)
538 {
539 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
540 }
541 else if (TYPE_FLAG_ENUM (type))
542 {
543 int first = 1;
544
545 /* We have a "flag" enum, so we try to decompose it into
546 pieces as appropriate. A flag enum has disjoint
547 constants by definition. */
548 fputs_filtered ("(", stream);
549 for (i = 0; i < len; ++i)
550 {
551 QUIT;
552
14e75d8e 553 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
e88acd96
TT
554 {
555 if (!first)
556 fputs_filtered (" | ", stream);
557 first = 0;
558
14e75d8e 559 val &= ~TYPE_FIELD_ENUMVAL (type, i);
e88acd96
TT
560 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
561 }
562 }
563
564 if (first || val != 0)
565 {
566 if (!first)
567 fputs_filtered (" | ", stream);
568 fputs_filtered ("unknown: ", stream);
569 print_longest (stream, 'd', 0, val);
570 }
571
572 fputs_filtered (")", stream);
573 }
574 else
575 print_longest (stream, 'd', 0, val);
576 break;
577
578 case TYPE_CODE_FLAGS:
579 if (options->format)
580 val_print_scalar_formatted (type, valaddr, embedded_offset,
581 original_value, options, 0, stream);
582 else
583 val_print_type_code_flags (type, valaddr + embedded_offset,
584 stream);
585 break;
586
587 case TYPE_CODE_FUNC:
588 case TYPE_CODE_METHOD:
589 if (options->format)
590 {
591 val_print_scalar_formatted (type, valaddr, embedded_offset,
592 original_value, options, 0, stream);
593 break;
594 }
595 /* FIXME, we should consider, at least for ANSI C language,
596 eliminating the distinction made between FUNCs and POINTERs
597 to FUNCs. */
598 fprintf_filtered (stream, "{");
599 type_print (type, "", stream, -1);
600 fprintf_filtered (stream, "} ");
601 /* Try to print what function it points to, and its address. */
edf0c1b7 602 print_address_demangle (options, gdbarch, address, stream, demangle);
e88acd96
TT
603 break;
604
605 case TYPE_CODE_BOOL:
606 if (options->format || options->output_format)
607 {
608 struct value_print_options opts = *options;
609 opts.format = (options->format ? options->format
610 : options->output_format);
611 val_print_scalar_formatted (type, valaddr, embedded_offset,
612 original_value, &opts, 0, stream);
613 }
614 else
615 {
616 val = unpack_long (type, valaddr + embedded_offset);
617 if (val == 0)
618 fputs_filtered (decorations->false_name, stream);
619 else if (val == 1)
620 fputs_filtered (decorations->true_name, stream);
621 else
622 print_longest (stream, 'd', 0, val);
623 }
624 break;
625
626 case TYPE_CODE_RANGE:
0c9c3474 627 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
628 range type (I think it probably should copy it from the
629 target type), so we won't print values which are too large to
630 fit in a signed integer correctly. */
631 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
632 print with the target type, though, because the size of our
633 type and the target type might differ). */
634
635 /* FALLTHROUGH */
636
637 case TYPE_CODE_INT:
638 if (options->format || options->output_format)
639 {
640 struct value_print_options opts = *options;
641
642 opts.format = (options->format ? options->format
643 : options->output_format);
644 val_print_scalar_formatted (type, valaddr, embedded_offset,
645 original_value, &opts, 0, stream);
646 }
647 else
648 val_print_type_code_int (type, valaddr + embedded_offset, stream);
649 break;
650
651 case TYPE_CODE_CHAR:
652 if (options->format || options->output_format)
653 {
654 struct value_print_options opts = *options;
655
656 opts.format = (options->format ? options->format
657 : options->output_format);
658 val_print_scalar_formatted (type, valaddr, embedded_offset,
659 original_value, &opts, 0, stream);
660 }
661 else
662 {
663 val = unpack_long (type, valaddr + embedded_offset);
664 if (TYPE_UNSIGNED (type))
665 fprintf_filtered (stream, "%u", (unsigned int) val);
666 else
667 fprintf_filtered (stream, "%d", (int) val);
668 fputs_filtered (" ", stream);
669 LA_PRINT_CHAR (val, unresolved_type, stream);
670 }
671 break;
672
673 case TYPE_CODE_FLT:
674 if (options->format)
675 {
676 val_print_scalar_formatted (type, valaddr, embedded_offset,
677 original_value, options, 0, stream);
678 }
679 else
680 {
681 print_floating (valaddr + embedded_offset, type, stream);
682 }
683 break;
684
685 case TYPE_CODE_DECFLOAT:
686 if (options->format)
687 val_print_scalar_formatted (type, valaddr, embedded_offset,
688 original_value, options, 0, stream);
689 else
690 print_decimal_floating (valaddr + embedded_offset,
691 type, stream);
692 break;
693
694 case TYPE_CODE_VOID:
695 fputs_filtered (decorations->void_name, stream);
696 break;
697
698 case TYPE_CODE_ERROR:
699 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
700 break;
701
702 case TYPE_CODE_UNDEF:
703 /* This happens (without TYPE_FLAG_STUB set) on systems which
704 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
705 "struct foo *bar" and no complete type for struct foo in that
706 file. */
707 fprintf_filtered (stream, _("<incomplete type>"));
708 break;
709
710 case TYPE_CODE_COMPLEX:
711 fprintf_filtered (stream, "%s", decorations->complex_prefix);
712 if (options->format)
713 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
714 valaddr, embedded_offset,
715 original_value, options, 0, stream);
716 else
717 print_floating (valaddr + embedded_offset,
718 TYPE_TARGET_TYPE (type),
719 stream);
720 fprintf_filtered (stream, "%s", decorations->complex_infix);
721 if (options->format)
722 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
723 valaddr,
724 embedded_offset
725 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
726 original_value,
727 options, 0, stream);
728 else
729 print_floating (valaddr + embedded_offset
730 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
731 TYPE_TARGET_TYPE (type),
732 stream);
733 fprintf_filtered (stream, "%s", decorations->complex_suffix);
734 break;
735
736 case TYPE_CODE_UNION:
737 case TYPE_CODE_STRUCT:
738 case TYPE_CODE_METHODPTR:
739 default:
740 error (_("Unhandled type code %d in symbol table."),
741 TYPE_CODE (type));
742 }
743 gdb_flush (stream);
744}
745
32b72a42
PA
746/* Print using the given LANGUAGE the data of type TYPE located at
747 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
748 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
749 STREAM according to OPTIONS. VAL is the whole object that came
750 from ADDRESS. VALADDR must point to the head of VAL's contents
751 buffer.
752
753 The language printers will pass down an adjusted EMBEDDED_OFFSET to
754 further helper subroutines as subfields of TYPE are printed. In
755 such cases, VALADDR is passed down unadjusted, as well as VAL, so
756 that VAL can be queried for metadata about the contents data being
757 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
758 buffer. For example: "has this field been optimized out", or "I'm
759 printing an object while inspecting a traceframe; has this
760 particular piece of data been collected?".
761
762 RECURSE indicates the amount of indentation to supply before
763 continuation lines; this amount is roughly twice the value of
35c0084b 764 RECURSE. */
32b72a42 765
35c0084b 766void
fc1a4b47 767val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 768 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 769 const struct value *val,
79a45b7d 770 const struct value_print_options *options,
d8ca156b 771 const struct language_defn *language)
c906108c 772{
19ca80ba 773 int ret = 0;
79a45b7d 774 struct value_print_options local_opts = *options;
c906108c 775 struct type *real_type = check_typedef (type);
79a45b7d 776
2a998fc0
DE
777 if (local_opts.prettyformat == Val_prettyformat_default)
778 local_opts.prettyformat = (local_opts.prettyformat_structs
779 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 780
c906108c
SS
781 QUIT;
782
783 /* Ensure that the type is complete and not just a stub. If the type is
784 only a stub and we can't find and substitute its complete type, then
785 print appropriate string and return. */
786
74a9bb82 787 if (TYPE_STUB (real_type))
c906108c 788 {
0e03807e 789 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 790 gdb_flush (stream);
35c0084b 791 return;
c906108c 792 }
c5aa993b 793
0e03807e 794 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 795 return;
0e03807e 796
a6bac58e
TT
797 if (!options->raw)
798 {
6dddc817
DE
799 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
800 address, stream, recurse,
801 val, options, language);
a6bac58e 802 if (ret)
35c0084b 803 return;
a6bac58e
TT
804 }
805
806 /* Handle summary mode. If the value is a scalar, print it;
807 otherwise, print an ellipsis. */
6211c335 808 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
809 {
810 fprintf_filtered (stream, "...");
35c0084b 811 return;
a6bac58e
TT
812 }
813
492d29ea 814 TRY
19ca80ba 815 {
d3eab38a
TT
816 language->la_val_print (type, valaddr, embedded_offset, address,
817 stream, recurse, val,
818 &local_opts);
19ca80ba 819 }
492d29ea
PA
820 CATCH (except, RETURN_MASK_ERROR)
821 {
822 fprintf_filtered (stream, _("<error reading variable>"));
823 }
824 END_CATCH
c906108c
SS
825}
826
806048c6 827/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
828 return 0 and print an appropriate error message to STREAM according to
829 OPTIONS if it is not. */
c906108c 830
806048c6 831static int
6501578c
YQ
832value_check_printable (struct value *val, struct ui_file *stream,
833 const struct value_print_options *options)
c906108c
SS
834{
835 if (val == 0)
836 {
806048c6 837 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
838 return 0;
839 }
806048c6 840
0e03807e 841 if (value_entirely_optimized_out (val))
c906108c 842 {
6211c335 843 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
844 fprintf_filtered (stream, "...");
845 else
901461f8 846 val_print_optimized_out (val, stream);
c906108c
SS
847 return 0;
848 }
806048c6 849
eebc056c
AB
850 if (value_entirely_unavailable (val))
851 {
852 if (options->summary && !val_print_scalar_type_p (value_type (val)))
853 fprintf_filtered (stream, "...");
854 else
855 val_print_unavailable (stream);
856 return 0;
857 }
858
bc3b79fd
TJB
859 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
860 {
861 fprintf_filtered (stream, _("<internal function %s>"),
862 value_internal_function_name (val));
863 return 0;
864 }
865
806048c6
DJ
866 return 1;
867}
868
d8ca156b 869/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 870 to OPTIONS.
806048c6 871
806048c6
DJ
872 This is a preferable interface to val_print, above, because it uses
873 GDB's value mechanism. */
874
a1f5dd1b 875void
79a45b7d
TT
876common_val_print (struct value *val, struct ui_file *stream, int recurse,
877 const struct value_print_options *options,
d8ca156b 878 const struct language_defn *language)
806048c6 879{
6501578c 880 if (!value_check_printable (val, stream, options))
a1f5dd1b 881 return;
806048c6 882
0c3acc09
JB
883 if (language->la_language == language_ada)
884 /* The value might have a dynamic type, which would cause trouble
885 below when trying to extract the value contents (since the value
886 size is determined from the type size which is unknown). So
887 get a fixed representation of our value. */
888 val = ada_to_fixed_value (val);
889
a1f5dd1b
TT
890 val_print (value_type (val), value_contents_for_printing (val),
891 value_embedded_offset (val), value_address (val),
892 stream, recurse,
893 val, options, language);
806048c6
DJ
894}
895
7348c5e1 896/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 897 is printed using the current_language syntax. */
7348c5e1 898
8e069a98 899void
79a45b7d
TT
900value_print (struct value *val, struct ui_file *stream,
901 const struct value_print_options *options)
806048c6 902{
6501578c 903 if (!value_check_printable (val, stream, options))
8e069a98 904 return;
806048c6 905
a6bac58e
TT
906 if (!options->raw)
907 {
6dddc817
DE
908 int r
909 = apply_ext_lang_val_pretty_printer (value_type (val),
910 value_contents_for_printing (val),
911 value_embedded_offset (val),
912 value_address (val),
913 stream, 0,
914 val, options, current_language);
a109c7c1 915
a6bac58e 916 if (r)
8e069a98 917 return;
a6bac58e
TT
918 }
919
8e069a98 920 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
921}
922
923/* Called by various <lang>_val_print routines to print
924 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
925 value. STREAM is where to print the value. */
926
927void
fc1a4b47 928val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 929 struct ui_file *stream)
c906108c 930{
50810684 931 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 932
c906108c
SS
933 if (TYPE_LENGTH (type) > sizeof (LONGEST))
934 {
935 LONGEST val;
936
937 if (TYPE_UNSIGNED (type)
938 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 939 byte_order, &val))
c906108c
SS
940 {
941 print_longest (stream, 'u', 0, val);
942 }
943 else
944 {
945 /* Signed, or we couldn't turn an unsigned value into a
946 LONGEST. For signed values, one could assume two's
947 complement (a reasonable assumption, I think) and do
948 better than this. */
949 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 950 TYPE_LENGTH (type), byte_order);
c906108c
SS
951 }
952 }
953 else
954 {
c906108c
SS
955 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
956 unpack_long (type, valaddr));
c906108c
SS
957 }
958}
959
4f2aea11
MK
960void
961val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
962 struct ui_file *stream)
963{
befae759 964 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
965 int bitpos, nfields = TYPE_NFIELDS (type);
966
967 fputs_filtered ("[ ", stream);
968 for (bitpos = 0; bitpos < nfields; bitpos++)
969 {
316703b9
MK
970 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
971 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
972 {
973 if (TYPE_FIELD_NAME (type, bitpos))
974 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
975 else
976 fprintf_filtered (stream, "#%d ", bitpos);
977 }
978 }
979 fputs_filtered ("]", stream);
19c37f24 980}
ab2188aa
PA
981
982/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
983 according to OPTIONS and SIZE on STREAM. Format i is not supported
984 at this level.
985
986 This is how the elements of an array or structure are printed
987 with a format. */
ab2188aa
PA
988
989void
990val_print_scalar_formatted (struct type *type,
991 const gdb_byte *valaddr, int embedded_offset,
992 const struct value *val,
993 const struct value_print_options *options,
994 int size,
995 struct ui_file *stream)
996{
997 gdb_assert (val != NULL);
998 gdb_assert (valaddr == value_contents_for_printing_const (val));
999
1000 /* If we get here with a string format, try again without it. Go
1001 all the way back to the language printers, which may call us
1002 again. */
1003 if (options->format == 's')
1004 {
1005 struct value_print_options opts = *options;
1006 opts.format = 0;
1007 opts.deref_ref = 0;
1008 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1009 current_language);
1010 return;
1011 }
1012
1013 /* A scalar object that does not have all bits available can't be
1014 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1015 if (value_bits_any_optimized_out (val,
1016 TARGET_CHAR_BIT * embedded_offset,
1017 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1018 val_print_optimized_out (val, stream);
4e07d55f
PA
1019 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1020 val_print_unavailable (stream);
ab2188aa
PA
1021 else
1022 print_scalar_formatted (valaddr + embedded_offset, type,
1023 options, size, stream);
4f2aea11
MK
1024}
1025
c906108c
SS
1026/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1027 The raison d'etre of this function is to consolidate printing of
581e13c1 1028 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1029 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1030 format.
bb599908
PH
1031
1032 USE_C_FORMAT means to use C format in all cases. Without it,
1033 'o' and 'x' format do not include the standard C radix prefix
1034 (leading 0 or 0x).
1035
1036 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1037 and was intended to request formating according to the current
1038 language and would be used for most integers that GDB prints. The
1039 exceptional cases were things like protocols where the format of
1040 the integer is a protocol thing, not a user-visible thing). The
1041 parameter remains to preserve the information of what things might
1042 be printed with language-specific format, should we ever resurrect
581e13c1 1043 that capability. */
c906108c
SS
1044
1045void
bb599908 1046print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1047 LONGEST val_long)
c906108c 1048{
2bfb72ee
AC
1049 const char *val;
1050
c906108c
SS
1051 switch (format)
1052 {
1053 case 'd':
bb599908 1054 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1055 case 'u':
bb599908 1056 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1057 case 'x':
bb599908 1058 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1059 case 'b':
bb599908 1060 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1061 case 'h':
bb599908 1062 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1063 case 'w':
bb599908 1064 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1065 case 'g':
bb599908 1066 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1067 break;
1068 case 'o':
bb599908 1069 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1070 default:
3e43a32a
MS
1071 internal_error (__FILE__, __LINE__,
1072 _("failed internal consistency check"));
bb599908 1073 }
2bfb72ee 1074 fputs_filtered (val, stream);
c906108c
SS
1075}
1076
c906108c
SS
1077/* This used to be a macro, but I don't think it is called often enough
1078 to merit such treatment. */
1079/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1080 arguments to a function, number in a value history, register number, etc.)
1081 where the value must not be larger than can fit in an int. */
1082
1083int
fba45db2 1084longest_to_int (LONGEST arg)
c906108c 1085{
581e13c1 1086 /* Let the compiler do the work. */
c906108c
SS
1087 int rtnval = (int) arg;
1088
581e13c1 1089 /* Check for overflows or underflows. */
c906108c
SS
1090 if (sizeof (LONGEST) > sizeof (int))
1091 {
1092 if (rtnval != arg)
1093 {
8a3fe4f8 1094 error (_("Value out of range."));
c906108c
SS
1095 }
1096 }
1097 return (rtnval);
1098}
1099
a73c86fb
AC
1100/* Print a floating point value of type TYPE (not always a
1101 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1102
1103void
fc1a4b47 1104print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1105 struct ui_file *stream)
c906108c
SS
1106{
1107 DOUBLEST doub;
1108 int inv;
a73c86fb 1109 const struct floatformat *fmt = NULL;
c906108c 1110 unsigned len = TYPE_LENGTH (type);
20389057 1111 enum float_kind kind;
c5aa993b 1112
a73c86fb
AC
1113 /* If it is a floating-point, check for obvious problems. */
1114 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1115 fmt = floatformat_from_type (type);
20389057 1116 if (fmt != NULL)
39424bef 1117 {
20389057
DJ
1118 kind = floatformat_classify (fmt, valaddr);
1119 if (kind == float_nan)
1120 {
1121 if (floatformat_is_negative (fmt, valaddr))
1122 fprintf_filtered (stream, "-");
1123 fprintf_filtered (stream, "nan(");
1124 fputs_filtered ("0x", stream);
1125 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1126 fprintf_filtered (stream, ")");
1127 return;
1128 }
1129 else if (kind == float_infinite)
1130 {
1131 if (floatformat_is_negative (fmt, valaddr))
1132 fputs_filtered ("-", stream);
1133 fputs_filtered ("inf", stream);
1134 return;
1135 }
7355ddba 1136 }
c906108c 1137
a73c86fb
AC
1138 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1139 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1140 needs to be used as that takes care of any necessary type
1141 conversions. Such conversions are of course direct to DOUBLEST
1142 and disregard any possible target floating point limitations.
1143 For instance, a u64 would be converted and displayed exactly on a
1144 host with 80 bit DOUBLEST but with loss of information on a host
1145 with 64 bit DOUBLEST. */
c2f05ac9 1146
c906108c
SS
1147 doub = unpack_double (type, valaddr, &inv);
1148 if (inv)
1149 {
1150 fprintf_filtered (stream, "<invalid float value>");
1151 return;
1152 }
1153
39424bef
MK
1154 /* FIXME: kettenis/2001-01-20: The following code makes too much
1155 assumptions about the host and target floating point format. */
1156
a73c86fb 1157 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1158 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1159 instead uses the type's length to determine the precision of the
1160 floating-point value being printed. */
c2f05ac9 1161
c906108c 1162 if (len < sizeof (double))
c5aa993b 1163 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1164 else if (len == sizeof (double))
c5aa993b 1165 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1166 else
1167#ifdef PRINTF_HAS_LONG_DOUBLE
1168 fprintf_filtered (stream, "%.35Lg", doub);
1169#else
39424bef
MK
1170 /* This at least wins with values that are representable as
1171 doubles. */
c906108c
SS
1172 fprintf_filtered (stream, "%.17g", (double) doub);
1173#endif
1174}
1175
7678ef8f
TJB
1176void
1177print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1178 struct ui_file *stream)
1179{
e17a4113 1180 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1181 char decstr[MAX_DECIMAL_STRING];
1182 unsigned len = TYPE_LENGTH (type);
1183
e17a4113 1184 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1185 fputs_filtered (decstr, stream);
1186 return;
1187}
1188
c5aa993b 1189void
fc1a4b47 1190print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1191 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1192{
1193
1194#define BITS_IN_BYTES 8
1195
fc1a4b47 1196 const gdb_byte *p;
745b8ca0 1197 unsigned int i;
c5aa993b 1198 int b;
c906108c
SS
1199
1200 /* Declared "int" so it will be signed.
581e13c1
MS
1201 This ensures that right shift will shift in zeros. */
1202
c5aa993b 1203 const int mask = 0x080;
c906108c
SS
1204
1205 /* FIXME: We should be not printing leading zeroes in most cases. */
1206
d44e8473 1207 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1208 {
1209 for (p = valaddr;
1210 p < valaddr + len;
1211 p++)
1212 {
c5aa993b 1213 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1214 and print from the MSB end. */
1215
c5aa993b
JM
1216 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1217 {
1218 if (*p & (mask >> i))
1219 b = 1;
1220 else
1221 b = 0;
1222
1223 fprintf_filtered (stream, "%1d", b);
1224 }
c906108c
SS
1225 }
1226 }
1227 else
1228 {
1229 for (p = valaddr + len - 1;
1230 p >= valaddr;
1231 p--)
1232 {
c5aa993b
JM
1233 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1234 {
1235 if (*p & (mask >> i))
1236 b = 1;
1237 else
1238 b = 0;
1239
1240 fprintf_filtered (stream, "%1d", b);
1241 }
c906108c
SS
1242 }
1243 }
c906108c
SS
1244}
1245
1246/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1247 Print it in octal on stream or format it in buf. */
1248
c906108c 1249void
fc1a4b47 1250print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1251 unsigned len, enum bfd_endian byte_order)
c906108c 1252{
fc1a4b47 1253 const gdb_byte *p;
c906108c 1254 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1255 int cycle;
1256
c906108c
SS
1257 /* FIXME: We should be not printing leading zeroes in most cases. */
1258
1259
1260 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1261 * the extra bits, which cycle every three bytes:
1262 *
1263 * Byte side: 0 1 2 3
1264 * | | | |
1265 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1266 *
1267 * Octal side: 0 1 carry 3 4 carry ...
1268 *
1269 * Cycle number: 0 1 2
1270 *
1271 * But of course we are printing from the high side, so we have to
1272 * figure out where in the cycle we are so that we end up with no
1273 * left over bits at the end.
1274 */
1275#define BITS_IN_OCTAL 3
1276#define HIGH_ZERO 0340
1277#define LOW_ZERO 0016
1278#define CARRY_ZERO 0003
1279#define HIGH_ONE 0200
1280#define MID_ONE 0160
1281#define LOW_ONE 0016
1282#define CARRY_ONE 0001
1283#define HIGH_TWO 0300
1284#define MID_TWO 0070
1285#define LOW_TWO 0007
1286
1287 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1288 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1289
c906108c
SS
1290 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1291 carry = 0;
c5aa993b 1292
bb599908 1293 fputs_filtered ("0", stream);
d44e8473 1294 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1295 {
1296 for (p = valaddr;
1297 p < valaddr + len;
1298 p++)
1299 {
c5aa993b
JM
1300 switch (cycle)
1301 {
1302 case 0:
581e13c1
MS
1303 /* No carry in, carry out two bits. */
1304
c5aa993b
JM
1305 octa1 = (HIGH_ZERO & *p) >> 5;
1306 octa2 = (LOW_ZERO & *p) >> 2;
1307 carry = (CARRY_ZERO & *p);
1308 fprintf_filtered (stream, "%o", octa1);
1309 fprintf_filtered (stream, "%o", octa2);
1310 break;
1311
1312 case 1:
581e13c1
MS
1313 /* Carry in two bits, carry out one bit. */
1314
c5aa993b
JM
1315 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1316 octa2 = (MID_ONE & *p) >> 4;
1317 octa3 = (LOW_ONE & *p) >> 1;
1318 carry = (CARRY_ONE & *p);
1319 fprintf_filtered (stream, "%o", octa1);
1320 fprintf_filtered (stream, "%o", octa2);
1321 fprintf_filtered (stream, "%o", octa3);
1322 break;
1323
1324 case 2:
581e13c1
MS
1325 /* Carry in one bit, no carry out. */
1326
c5aa993b
JM
1327 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1328 octa2 = (MID_TWO & *p) >> 3;
1329 octa3 = (LOW_TWO & *p);
1330 carry = 0;
1331 fprintf_filtered (stream, "%o", octa1);
1332 fprintf_filtered (stream, "%o", octa2);
1333 fprintf_filtered (stream, "%o", octa3);
1334 break;
1335
1336 default:
8a3fe4f8 1337 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1338 }
1339
1340 cycle++;
1341 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1342 }
1343 }
1344 else
1345 {
1346 for (p = valaddr + len - 1;
1347 p >= valaddr;
1348 p--)
1349 {
c5aa993b
JM
1350 switch (cycle)
1351 {
1352 case 0:
1353 /* Carry out, no carry in */
581e13c1 1354
c5aa993b
JM
1355 octa1 = (HIGH_ZERO & *p) >> 5;
1356 octa2 = (LOW_ZERO & *p) >> 2;
1357 carry = (CARRY_ZERO & *p);
1358 fprintf_filtered (stream, "%o", octa1);
1359 fprintf_filtered (stream, "%o", octa2);
1360 break;
1361
1362 case 1:
1363 /* Carry in, carry out */
581e13c1 1364
c5aa993b
JM
1365 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1366 octa2 = (MID_ONE & *p) >> 4;
1367 octa3 = (LOW_ONE & *p) >> 1;
1368 carry = (CARRY_ONE & *p);
1369 fprintf_filtered (stream, "%o", octa1);
1370 fprintf_filtered (stream, "%o", octa2);
1371 fprintf_filtered (stream, "%o", octa3);
1372 break;
1373
1374 case 2:
1375 /* Carry in, no carry out */
581e13c1 1376
c5aa993b
JM
1377 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1378 octa2 = (MID_TWO & *p) >> 3;
1379 octa3 = (LOW_TWO & *p);
1380 carry = 0;
1381 fprintf_filtered (stream, "%o", octa1);
1382 fprintf_filtered (stream, "%o", octa2);
1383 fprintf_filtered (stream, "%o", octa3);
1384 break;
1385
1386 default:
8a3fe4f8 1387 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1388 }
1389
1390 cycle++;
1391 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1392 }
1393 }
1394
c906108c
SS
1395}
1396
1397/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1398 Print it in decimal on stream or format it in buf. */
1399
c906108c 1400void
fc1a4b47 1401print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1402 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1403{
1404#define TEN 10
c5aa993b 1405#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1406#define CARRY_LEFT( x ) ((x) % TEN)
1407#define SHIFT( x ) ((x) << 4)
c906108c
SS
1408#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1409#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1410
fc1a4b47 1411 const gdb_byte *p;
c906108c 1412 unsigned char *digits;
c5aa993b
JM
1413 int carry;
1414 int decimal_len;
1415 int i, j, decimal_digits;
1416 int dummy;
1417 int flip;
1418
c906108c 1419 /* Base-ten number is less than twice as many digits
581e13c1
MS
1420 as the base 16 number, which is 2 digits per byte. */
1421
c906108c 1422 decimal_len = len * 2 * 2;
3c37485b 1423 digits = xmalloc (decimal_len);
c906108c 1424
c5aa993b
JM
1425 for (i = 0; i < decimal_len; i++)
1426 {
c906108c 1427 digits[i] = 0;
c5aa993b 1428 }
c906108c 1429
c906108c
SS
1430 /* Ok, we have an unknown number of bytes of data to be printed in
1431 * decimal.
1432 *
1433 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1434 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1435 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1436 *
1437 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1438 * the individual digits are > 10.
c906108c
SS
1439 *
1440 * Outer loop is per nibble (hex digit) of input, from MSD end to
1441 * LSD end.
1442 */
c5aa993b 1443 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1444 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1445 flip = 0;
d44e8473 1446 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1447 {
c906108c
SS
1448 /*
1449 * Multiply current base-ten number by 16 in place.
1450 * Each digit was between 0 and 9, now is between
1451 * 0 and 144.
1452 */
c5aa993b
JM
1453 for (j = 0; j < decimal_digits; j++)
1454 {
1455 digits[j] = SHIFT (digits[j]);
1456 }
1457
c906108c
SS
1458 /* Take the next nibble off the input and add it to what
1459 * we've got in the LSB position. Bottom 'digit' is now
1460 * between 0 and 159.
1461 *
1462 * "flip" is used to run this loop twice for each byte.
1463 */
c5aa993b
JM
1464 if (flip == 0)
1465 {
581e13c1
MS
1466 /* Take top nibble. */
1467
c5aa993b
JM
1468 digits[0] += HIGH_NIBBLE (*p);
1469 flip = 1;
1470 }
1471 else
1472 {
581e13c1
MS
1473 /* Take low nibble and bump our pointer "p". */
1474
c5aa993b 1475 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1476 if (byte_order == BFD_ENDIAN_BIG)
1477 p++;
1478 else
1479 p--;
c5aa993b
JM
1480 flip = 0;
1481 }
c906108c
SS
1482
1483 /* Re-decimalize. We have to do this often enough
1484 * that we don't overflow, but once per nibble is
1485 * overkill. Easier this way, though. Note that the
1486 * carry is often larger than 10 (e.g. max initial
1487 * carry out of lowest nibble is 15, could bubble all
1488 * the way up greater than 10). So we have to do
1489 * the carrying beyond the last current digit.
1490 */
1491 carry = 0;
c5aa993b
JM
1492 for (j = 0; j < decimal_len - 1; j++)
1493 {
1494 digits[j] += carry;
1495
1496 /* "/" won't handle an unsigned char with
1497 * a value that if signed would be negative.
1498 * So extend to longword int via "dummy".
1499 */
1500 dummy = digits[j];
1501 carry = CARRY_OUT (dummy);
1502 digits[j] = CARRY_LEFT (dummy);
1503
1504 if (j >= decimal_digits && carry == 0)
1505 {
1506 /*
1507 * All higher digits are 0 and we
1508 * no longer have a carry.
1509 *
1510 * Note: "j" is 0-based, "decimal_digits" is
1511 * 1-based.
1512 */
1513 decimal_digits = j + 1;
1514 break;
1515 }
1516 }
1517 }
c906108c
SS
1518
1519 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1520 the "decimal_digits" actual digits. Print! */
1521
c5aa993b
JM
1522 for (i = decimal_digits - 1; i >= 0; i--)
1523 {
1524 fprintf_filtered (stream, "%1d", digits[i]);
1525 }
b8c9b27d 1526 xfree (digits);
c906108c
SS
1527}
1528
1529/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1530
6b9acc27 1531void
fc1a4b47 1532print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1533 unsigned len, enum bfd_endian byte_order)
c906108c 1534{
fc1a4b47 1535 const gdb_byte *p;
c906108c
SS
1536
1537 /* FIXME: We should be not printing leading zeroes in most cases. */
1538
bb599908 1539 fputs_filtered ("0x", stream);
d44e8473 1540 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1541 {
1542 for (p = valaddr;
1543 p < valaddr + len;
1544 p++)
1545 {
1546 fprintf_filtered (stream, "%02x", *p);
1547 }
1548 }
1549 else
1550 {
1551 for (p = valaddr + len - 1;
1552 p >= valaddr;
1553 p--)
1554 {
1555 fprintf_filtered (stream, "%02x", *p);
1556 }
1557 }
c906108c
SS
1558}
1559
3e43a32a 1560/* VALADDR points to a char integer of LEN bytes.
581e13c1 1561 Print it out in appropriate language form on stream.
6b9acc27
JJ
1562 Omit any leading zero chars. */
1563
1564void
6c7a06a3
TT
1565print_char_chars (struct ui_file *stream, struct type *type,
1566 const gdb_byte *valaddr,
d44e8473 1567 unsigned len, enum bfd_endian byte_order)
6b9acc27 1568{
fc1a4b47 1569 const gdb_byte *p;
6b9acc27 1570
d44e8473 1571 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1572 {
1573 p = valaddr;
1574 while (p < valaddr + len - 1 && *p == 0)
1575 ++p;
1576
1577 while (p < valaddr + len)
1578 {
6c7a06a3 1579 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1580 ++p;
1581 }
1582 }
1583 else
1584 {
1585 p = valaddr + len - 1;
1586 while (p > valaddr && *p == 0)
1587 --p;
1588
1589 while (p >= valaddr)
1590 {
6c7a06a3 1591 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1592 --p;
1593 }
1594 }
1595}
1596
132c57b4
TT
1597/* Print function pointer with inferior address ADDRESS onto stdio
1598 stream STREAM. */
1599
1600void
edf0c1b7
TT
1601print_function_pointer_address (const struct value_print_options *options,
1602 struct gdbarch *gdbarch,
132c57b4 1603 CORE_ADDR address,
edf0c1b7 1604 struct ui_file *stream)
132c57b4
TT
1605{
1606 CORE_ADDR func_addr
1607 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1608 &current_target);
1609
1610 /* If the function pointer is represented by a description, print
1611 the address of the description. */
edf0c1b7 1612 if (options->addressprint && func_addr != address)
132c57b4
TT
1613 {
1614 fputs_filtered ("@", stream);
1615 fputs_filtered (paddress (gdbarch, address), stream);
1616 fputs_filtered (": ", stream);
1617 }
edf0c1b7 1618 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1619}
1620
1621
79a45b7d 1622/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1623 at INDEX of an array whose index type is INDEX_TYPE. */
1624
1625void
1626maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1627 struct ui_file *stream,
1628 const struct value_print_options *options)
e79af960
JB
1629{
1630 struct value *index_value;
1631
79a45b7d 1632 if (!options->print_array_indexes)
e79af960
JB
1633 return;
1634
1635 index_value = value_from_longest (index_type, index);
1636
79a45b7d
TT
1637 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1638}
e79af960 1639
c906108c 1640/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1641 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1642
c5aa993b
JM
1643 (FIXME?) Assumes array element separator is a comma, which is correct
1644 for all languages currently handled.
1645 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1646 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1647
1648void
490f124f
PA
1649val_print_array_elements (struct type *type,
1650 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1651 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1652 int recurse,
0e03807e 1653 const struct value *val,
79a45b7d 1654 const struct value_print_options *options,
fba45db2 1655 unsigned int i)
c906108c
SS
1656{
1657 unsigned int things_printed = 0;
1658 unsigned len;
aa715135 1659 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
1660 unsigned eltlen;
1661 /* Position of the array element we are examining to see
1662 whether it is repeated. */
1663 unsigned int rep1;
1664 /* Number of repetitions we have detected so far. */
1665 unsigned int reps;
dbc98a8b 1666 LONGEST low_bound, high_bound;
aa715135 1667 LONGEST low_pos, high_pos;
c5aa993b 1668
c906108c
SS
1669 elttype = TYPE_TARGET_TYPE (type);
1670 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1671 index_type = TYPE_INDEX_TYPE (type);
c906108c 1672
dbc98a8b 1673 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 1674 {
aa715135
JG
1675 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1676 base_index_type = TYPE_TARGET_TYPE (index_type);
1677 else
1678 base_index_type = index_type;
1679
1680 /* Non-contiguous enumerations types can by used as index types
1681 in some languages (e.g. Ada). In this case, the array length
1682 shall be computed from the positions of the first and last
1683 literal in the enumeration type, and not from the values
1684 of these literals. */
1685 if (!discrete_position (base_index_type, low_bound, &low_pos)
1686 || !discrete_position (base_index_type, high_bound, &high_pos))
1687 {
1688 warning (_("unable to get positions in array, use bounds instead"));
1689 low_pos = low_bound;
1690 high_pos = high_bound;
1691 }
1692
1693 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 1694 But we have to be a little extra careful, because some languages
aa715135 1695 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
1696 empty arrays. In that situation, the array length is just zero,
1697 not negative! */
aa715135 1698 if (low_pos > high_pos)
75be741b
JB
1699 len = 0;
1700 else
aa715135 1701 len = high_pos - low_pos + 1;
75be741b 1702 }
e936309c
JB
1703 else
1704 {
dbc98a8b
KW
1705 warning (_("unable to get bounds of array, assuming null array"));
1706 low_bound = 0;
1707 len = 0;
168de233
JB
1708 }
1709
c906108c
SS
1710 annotate_array_section_begin (i, elttype);
1711
79a45b7d 1712 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1713 {
1714 if (i != 0)
1715 {
2a998fc0 1716 if (options->prettyformat_arrays)
c906108c
SS
1717 {
1718 fprintf_filtered (stream, ",\n");
1719 print_spaces_filtered (2 + 2 * recurse, stream);
1720 }
1721 else
1722 {
1723 fprintf_filtered (stream, ", ");
1724 }
1725 }
1726 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1727 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1728 stream, options);
c906108c
SS
1729
1730 rep1 = i + 1;
1731 reps = 1;
35bef4fd
TT
1732 /* Only check for reps if repeat_count_threshold is not set to
1733 UINT_MAX (unlimited). */
1734 if (options->repeat_count_threshold < UINT_MAX)
c906108c 1735 {
35bef4fd 1736 while (rep1 < len
9a0dc9e3
PA
1737 && value_contents_eq (val,
1738 embedded_offset + i * eltlen,
1739 val,
1740 (embedded_offset
1741 + rep1 * eltlen),
1742 eltlen))
35bef4fd
TT
1743 {
1744 ++reps;
1745 ++rep1;
1746 }
c906108c
SS
1747 }
1748
79a45b7d 1749 if (reps > options->repeat_count_threshold)
c906108c 1750 {
490f124f
PA
1751 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1752 address, stream, recurse + 1, val, options,
1753 current_language);
c906108c
SS
1754 annotate_elt_rep (reps);
1755 fprintf_filtered (stream, " <repeats %u times>", reps);
1756 annotate_elt_rep_end ();
1757
1758 i = rep1 - 1;
79a45b7d 1759 things_printed += options->repeat_count_threshold;
c906108c
SS
1760 }
1761 else
1762 {
490f124f
PA
1763 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1764 address,
0e03807e 1765 stream, recurse + 1, val, options, current_language);
c906108c
SS
1766 annotate_elt ();
1767 things_printed++;
1768 }
1769 }
1770 annotate_array_section_end ();
1771 if (i < len)
1772 {
1773 fprintf_filtered (stream, "...");
1774 }
1775}
1776
917317f4
JM
1777/* Read LEN bytes of target memory at address MEMADDR, placing the
1778 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 1779 actually read, and optionally a target_xfer_status value in the
578d3588 1780 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
1781
1782/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1783 function be eliminated. */
1784
1785static int
3e43a32a 1786partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 1787 int len, int *errptr)
917317f4 1788{
581e13c1
MS
1789 int nread; /* Number of bytes actually read. */
1790 int errcode; /* Error from last read. */
917317f4 1791
581e13c1 1792 /* First try a complete read. */
917317f4
JM
1793 errcode = target_read_memory (memaddr, myaddr, len);
1794 if (errcode == 0)
1795 {
581e13c1 1796 /* Got it all. */
917317f4
JM
1797 nread = len;
1798 }
1799 else
1800 {
581e13c1 1801 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1802 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1803 {
1804 errcode = target_read_memory (memaddr++, myaddr++, 1);
1805 }
581e13c1 1806 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1807 if (errcode != 0)
1808 {
1809 nread--;
1810 }
1811 }
578d3588 1812 if (errptr != NULL)
917317f4 1813 {
578d3588 1814 *errptr = errcode;
917317f4
JM
1815 }
1816 return (nread);
1817}
1818
ae6a3a4c
TJB
1819/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1820 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1821 allocated buffer containing the string, which the caller is responsible to
1822 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 1823 success, or a target_xfer_status on failure.
ae6a3a4c 1824
f380848e
SA
1825 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1826 (including eventual NULs in the middle or end of the string).
1827
1828 If LEN is -1, stops at the first null character (not necessarily
1829 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1830 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1831 the string.
ae6a3a4c
TJB
1832
1833 Unless an exception is thrown, BUFFER will always be allocated, even on
1834 failure. In this case, some characters might have been read before the
1835 failure happened. Check BYTES_READ to recognize this situation.
1836
1837 Note: There was a FIXME asking to make this code use target_read_string,
1838 but this function is more general (can read past null characters, up to
581e13c1 1839 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1840 so it is more tested. Perhaps callers of target_read_string should use
1841 this function instead? */
c906108c
SS
1842
1843int
ae6a3a4c 1844read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1845 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1846{
ae6a3a4c
TJB
1847 int errcode; /* Errno returned from bad reads. */
1848 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
1849 gdb_byte *bufptr; /* Pointer to next available byte in
1850 buffer. */
ae6a3a4c
TJB
1851 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1852
ae6a3a4c
TJB
1853 /* Loop until we either have all the characters, or we encounter
1854 some error, such as bumping into the end of the address space. */
c906108c 1855
b5096abe
PM
1856 *buffer = NULL;
1857
1858 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1859
1860 if (len > 0)
1861 {
88db67ef
YQ
1862 /* We want fetchlimit chars, so we might as well read them all in
1863 one operation. */
f380848e
SA
1864 unsigned int fetchlen = min (len, fetchlimit);
1865
1866 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 1867 bufptr = *buffer;
c906108c 1868
f380848e 1869 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
1870 / width;
1871 addr += nfetch * width;
1872 bufptr += nfetch * width;
1873 }
1874 else if (len == -1)
1875 {
1876 unsigned long bufsize = 0;
88db67ef
YQ
1877 unsigned int chunksize; /* Size of each fetch, in chars. */
1878 int found_nul; /* Non-zero if we found the nul char. */
1879 gdb_byte *limit; /* First location past end of fetch buffer. */
1880
1881 found_nul = 0;
1882 /* We are looking for a NUL terminator to end the fetching, so we
1883 might as well read in blocks that are large enough to be efficient,
1884 but not so large as to be slow if fetchlimit happens to be large.
1885 So we choose the minimum of 8 and fetchlimit. We used to use 200
1886 instead of 8 but 200 is way too big for remote debugging over a
1887 serial line. */
1888 chunksize = min (8, fetchlimit);
ae6a3a4c 1889
c906108c
SS
1890 do
1891 {
1892 QUIT;
1893 nfetch = min (chunksize, fetchlimit - bufsize);
1894
ae6a3a4c
TJB
1895 if (*buffer == NULL)
1896 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1897 else
b5096abe
PM
1898 *buffer = (gdb_byte *) xrealloc (*buffer,
1899 (nfetch + bufsize) * width);
c906108c 1900
ae6a3a4c 1901 bufptr = *buffer + bufsize * width;
c906108c
SS
1902 bufsize += nfetch;
1903
ae6a3a4c 1904 /* Read as much as we can. */
917317f4 1905 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1906 / width;
c906108c 1907
ae6a3a4c 1908 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1909 to print. If found, we don't need to fetch any more. Note
1910 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1911 after the null character, or at the next character after the end
1912 of the buffer. */
c906108c
SS
1913
1914 limit = bufptr + nfetch * width;
1915 while (bufptr < limit)
1916 {
1917 unsigned long c;
1918
e17a4113 1919 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1920 addr += width;
1921 bufptr += width;
1922 if (c == 0)
1923 {
1924 /* We don't care about any error which happened after
ae6a3a4c 1925 the NUL terminator. */
c906108c
SS
1926 errcode = 0;
1927 found_nul = 1;
1928 break;
1929 }
1930 }
1931 }
c5aa993b 1932 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1933 && bufptr - *buffer < fetchlimit * width /* no overrun */
1934 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1935 }
1936 else
ae6a3a4c
TJB
1937 { /* Length of string is really 0! */
1938 /* We always allocate *buffer. */
1939 *buffer = bufptr = xmalloc (1);
c906108c
SS
1940 errcode = 0;
1941 }
1942
1943 /* bufptr and addr now point immediately beyond the last byte which we
1944 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1945 *bytes_read = bufptr - *buffer;
1946
1947 QUIT;
1948
1949 discard_cleanups (old_chain);
1950
1951 return errcode;
1952}
1953
3b2b8fea
TT
1954/* Return true if print_wchar can display W without resorting to a
1955 numeric escape, false otherwise. */
1956
1957static int
1958wchar_printable (gdb_wchar_t w)
1959{
1960 return (gdb_iswprint (w)
1961 || w == LCST ('\a') || w == LCST ('\b')
1962 || w == LCST ('\f') || w == LCST ('\n')
1963 || w == LCST ('\r') || w == LCST ('\t')
1964 || w == LCST ('\v'));
1965}
1966
1967/* A helper function that converts the contents of STRING to wide
1968 characters and then appends them to OUTPUT. */
1969
1970static void
1971append_string_as_wide (const char *string,
1972 struct obstack *output)
1973{
1974 for (; *string; ++string)
1975 {
1976 gdb_wchar_t w = gdb_btowc (*string);
1977 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1978 }
1979}
1980
1981/* Print a wide character W to OUTPUT. ORIG is a pointer to the
1982 original (target) bytes representing the character, ORIG_LEN is the
1983 number of valid bytes. WIDTH is the number of bytes in a base
1984 characters of the type. OUTPUT is an obstack to which wide
1985 characters are emitted. QUOTER is a (narrow) character indicating
1986 the style of quotes surrounding the character to be printed.
1987 NEED_ESCAPE is an in/out flag which is used to track numeric
1988 escapes across calls. */
1989
1990static void
1991print_wchar (gdb_wint_t w, const gdb_byte *orig,
1992 int orig_len, int width,
1993 enum bfd_endian byte_order,
1994 struct obstack *output,
1995 int quoter, int *need_escapep)
1996{
1997 int need_escape = *need_escapep;
1998
1999 *need_escapep = 0;
3b2b8fea 2000
95c64f92
YQ
2001 /* iswprint implementation on Windows returns 1 for tab character.
2002 In order to avoid different printout on this host, we explicitly
2003 use wchar_printable function. */
2004 switch (w)
3b2b8fea 2005 {
95c64f92
YQ
2006 case LCST ('\a'):
2007 obstack_grow_wstr (output, LCST ("\\a"));
2008 break;
2009 case LCST ('\b'):
2010 obstack_grow_wstr (output, LCST ("\\b"));
2011 break;
2012 case LCST ('\f'):
2013 obstack_grow_wstr (output, LCST ("\\f"));
2014 break;
2015 case LCST ('\n'):
2016 obstack_grow_wstr (output, LCST ("\\n"));
2017 break;
2018 case LCST ('\r'):
2019 obstack_grow_wstr (output, LCST ("\\r"));
2020 break;
2021 case LCST ('\t'):
2022 obstack_grow_wstr (output, LCST ("\\t"));
2023 break;
2024 case LCST ('\v'):
2025 obstack_grow_wstr (output, LCST ("\\v"));
2026 break;
2027 default:
3b2b8fea 2028 {
95c64f92
YQ
2029 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2030 && w != LCST ('8')
2031 && w != LCST ('9'))))
2032 {
2033 gdb_wchar_t wchar = w;
3b2b8fea 2034
95c64f92
YQ
2035 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2036 obstack_grow_wstr (output, LCST ("\\"));
2037 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2038 }
2039 else
2040 {
2041 int i;
3b2b8fea 2042
95c64f92
YQ
2043 for (i = 0; i + width <= orig_len; i += width)
2044 {
2045 char octal[30];
2046 ULONGEST value;
2047
2048 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2049 byte_order);
95c64f92
YQ
2050 /* If the value fits in 3 octal digits, print it that
2051 way. Otherwise, print it as a hex escape. */
2052 if (value <= 0777)
2053 xsnprintf (octal, sizeof (octal), "\\%.3o",
2054 (int) (value & 0777));
2055 else
2056 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2057 append_string_as_wide (octal, output);
2058 }
2059 /* If we somehow have extra bytes, print them now. */
2060 while (i < orig_len)
2061 {
2062 char octal[5];
2063
2064 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2065 append_string_as_wide (octal, output);
2066 ++i;
2067 }
2068
2069 *need_escapep = 1;
2070 }
3b2b8fea
TT
2071 break;
2072 }
2073 }
2074}
2075
2076/* Print the character C on STREAM as part of the contents of a
2077 literal string whose delimiter is QUOTER. ENCODING names the
2078 encoding of C. */
2079
2080void
2081generic_emit_char (int c, struct type *type, struct ui_file *stream,
2082 int quoter, const char *encoding)
2083{
2084 enum bfd_endian byte_order
2085 = gdbarch_byte_order (get_type_arch (type));
2086 struct obstack wchar_buf, output;
2087 struct cleanup *cleanups;
2088 gdb_byte *buf;
2089 struct wchar_iterator *iter;
2090 int need_escape = 0;
2091
2092 buf = alloca (TYPE_LENGTH (type));
2093 pack_long (buf, type, c);
2094
2095 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2096 encoding, TYPE_LENGTH (type));
2097 cleanups = make_cleanup_wchar_iterator (iter);
2098
2099 /* This holds the printable form of the wchar_t data. */
2100 obstack_init (&wchar_buf);
2101 make_cleanup_obstack_free (&wchar_buf);
2102
2103 while (1)
2104 {
2105 int num_chars;
2106 gdb_wchar_t *chars;
2107 const gdb_byte *buf;
2108 size_t buflen;
2109 int print_escape = 1;
2110 enum wchar_iterate_result result;
2111
2112 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2113 if (num_chars < 0)
2114 break;
2115 if (num_chars > 0)
2116 {
2117 /* If all characters are printable, print them. Otherwise,
2118 we're going to have to print an escape sequence. We
2119 check all characters because we want to print the target
2120 bytes in the escape sequence, and we don't know character
2121 boundaries there. */
2122 int i;
2123
2124 print_escape = 0;
2125 for (i = 0; i < num_chars; ++i)
2126 if (!wchar_printable (chars[i]))
2127 {
2128 print_escape = 1;
2129 break;
2130 }
2131
2132 if (!print_escape)
2133 {
2134 for (i = 0; i < num_chars; ++i)
2135 print_wchar (chars[i], buf, buflen,
2136 TYPE_LENGTH (type), byte_order,
2137 &wchar_buf, quoter, &need_escape);
2138 }
2139 }
2140
2141 /* This handles the NUM_CHARS == 0 case as well. */
2142 if (print_escape)
2143 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2144 byte_order, &wchar_buf, quoter, &need_escape);
2145 }
2146
2147 /* The output in the host encoding. */
2148 obstack_init (&output);
2149 make_cleanup_obstack_free (&output);
2150
2151 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2152 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2153 obstack_object_size (&wchar_buf),
fff10684 2154 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2155 obstack_1grow (&output, '\0');
2156
2157 fputs_filtered (obstack_base (&output), stream);
2158
2159 do_cleanups (cleanups);
2160}
2161
0d63ecda
KS
2162/* Return the repeat count of the next character/byte in ITER,
2163 storing the result in VEC. */
2164
2165static int
2166count_next_character (struct wchar_iterator *iter,
2167 VEC (converted_character_d) **vec)
2168{
2169 struct converted_character *current;
2170
2171 if (VEC_empty (converted_character_d, *vec))
2172 {
2173 struct converted_character tmp;
2174 gdb_wchar_t *chars;
2175
2176 tmp.num_chars
2177 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2178 if (tmp.num_chars > 0)
2179 {
2180 gdb_assert (tmp.num_chars < MAX_WCHARS);
2181 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2182 }
2183 VEC_safe_push (converted_character_d, *vec, &tmp);
2184 }
2185
2186 current = VEC_last (converted_character_d, *vec);
2187
2188 /* Count repeated characters or bytes. */
2189 current->repeat_count = 1;
2190 if (current->num_chars == -1)
2191 {
2192 /* EOF */
2193 return -1;
2194 }
2195 else
2196 {
2197 gdb_wchar_t *chars;
2198 struct converted_character d;
2199 int repeat;
2200
2201 d.repeat_count = 0;
2202
2203 while (1)
2204 {
2205 /* Get the next character. */
2206 d.num_chars
2207 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2208
2209 /* If a character was successfully converted, save the character
2210 into the converted character. */
2211 if (d.num_chars > 0)
2212 {
2213 gdb_assert (d.num_chars < MAX_WCHARS);
2214 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2215 }
2216
2217 /* Determine if the current character is the same as this
2218 new character. */
2219 if (d.num_chars == current->num_chars && d.result == current->result)
2220 {
2221 /* There are two cases to consider:
2222
2223 1) Equality of converted character (num_chars > 0)
2224 2) Equality of non-converted character (num_chars == 0) */
2225 if ((current->num_chars > 0
2226 && memcmp (current->chars, d.chars,
2227 WCHAR_BUFLEN (current->num_chars)) == 0)
2228 || (current->num_chars == 0
2229 && current->buflen == d.buflen
2230 && memcmp (current->buf, d.buf, current->buflen) == 0))
2231 ++current->repeat_count;
2232 else
2233 break;
2234 }
2235 else
2236 break;
2237 }
2238
2239 /* Push this next converted character onto the result vector. */
2240 repeat = current->repeat_count;
2241 VEC_safe_push (converted_character_d, *vec, &d);
2242 return repeat;
2243 }
2244}
2245
2246/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2247 character to use with string output. WIDTH is the size of the output
2248 character type. BYTE_ORDER is the the target byte order. OPTIONS
2249 is the user's print options. */
2250
2251static void
2252print_converted_chars_to_obstack (struct obstack *obstack,
2253 VEC (converted_character_d) *chars,
2254 int quote_char, int width,
2255 enum bfd_endian byte_order,
2256 const struct value_print_options *options)
2257{
2258 unsigned int idx;
2259 struct converted_character *elem;
2260 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2261 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2262 int need_escape = 0;
2263
2264 /* Set the start state. */
2265 idx = 0;
2266 last = state = START;
2267 elem = NULL;
2268
2269 while (1)
2270 {
2271 switch (state)
2272 {
2273 case START:
2274 /* Nothing to do. */
2275 break;
2276
2277 case SINGLE:
2278 {
2279 int j;
2280
2281 /* We are outputting a single character
2282 (< options->repeat_count_threshold). */
2283
2284 if (last != SINGLE)
2285 {
2286 /* We were outputting some other type of content, so we
2287 must output and a comma and a quote. */
2288 if (last != START)
2289 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2290 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2291 }
2292 /* Output the character. */
2293 for (j = 0; j < elem->repeat_count; ++j)
2294 {
2295 if (elem->result == wchar_iterate_ok)
2296 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2297 byte_order, obstack, quote_char, &need_escape);
2298 else
2299 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2300 byte_order, obstack, quote_char, &need_escape);
2301 }
2302 }
2303 break;
2304
2305 case REPEAT:
2306 {
2307 int j;
2308 char *s;
2309
2310 /* We are outputting a character with a repeat count
2311 greater than options->repeat_count_threshold. */
2312
2313 if (last == SINGLE)
2314 {
2315 /* We were outputting a single string. Terminate the
2316 string. */
0d63ecda
KS
2317 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2318 }
2319 if (last != START)
2320 obstack_grow_wstr (obstack, LCST (", "));
2321
2322 /* Output the character and repeat string. */
2323 obstack_grow_wstr (obstack, LCST ("'"));
2324 if (elem->result == wchar_iterate_ok)
2325 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2326 byte_order, obstack, quote_char, &need_escape);
2327 else
2328 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2329 byte_order, obstack, quote_char, &need_escape);
2330 obstack_grow_wstr (obstack, LCST ("'"));
2331 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2332 for (j = 0; s[j]; ++j)
2333 {
2334 gdb_wchar_t w = gdb_btowc (s[j]);
2335 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2336 }
2337 xfree (s);
2338 }
2339 break;
2340
2341 case INCOMPLETE:
2342 /* We are outputting an incomplete sequence. */
2343 if (last == SINGLE)
2344 {
2345 /* If we were outputting a string of SINGLE characters,
2346 terminate the quote. */
0d63ecda
KS
2347 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2348 }
2349 if (last != START)
2350 obstack_grow_wstr (obstack, LCST (", "));
2351
2352 /* Output the incomplete sequence string. */
2353 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2354 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2355 obstack, 0, &need_escape);
2356 obstack_grow_wstr (obstack, LCST (">"));
2357
2358 /* We do not attempt to outupt anything after this. */
2359 state = FINISH;
2360 break;
2361
2362 case FINISH:
2363 /* All done. If we were outputting a string of SINGLE
2364 characters, the string must be terminated. Otherwise,
2365 REPEAT and INCOMPLETE are always left properly terminated. */
2366 if (last == SINGLE)
e93a8774 2367 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2368
2369 return;
2370 }
2371
2372 /* Get the next element and state. */
2373 last = state;
2374 if (state != FINISH)
2375 {
2376 elem = VEC_index (converted_character_d, chars, idx++);
2377 switch (elem->result)
2378 {
2379 case wchar_iterate_ok:
2380 case wchar_iterate_invalid:
2381 if (elem->repeat_count > options->repeat_count_threshold)
2382 state = REPEAT;
2383 else
2384 state = SINGLE;
2385 break;
2386
2387 case wchar_iterate_incomplete:
2388 state = INCOMPLETE;
2389 break;
2390
2391 case wchar_iterate_eof:
2392 state = FINISH;
2393 break;
2394 }
2395 }
2396 }
2397}
2398
3b2b8fea
TT
2399/* Print the character string STRING, printing at most LENGTH
2400 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2401 the type of each character. OPTIONS holds the printing options;
2402 printing stops early if the number hits print_max; repeat counts
2403 are printed as appropriate. Print ellipses at the end if we had to
2404 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2405 QUOTE_CHAR is the character to print at each end of the string. If
2406 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2407 omitted. */
2408
2409void
2410generic_printstr (struct ui_file *stream, struct type *type,
2411 const gdb_byte *string, unsigned int length,
2412 const char *encoding, int force_ellipses,
2413 int quote_char, int c_style_terminator,
2414 const struct value_print_options *options)
2415{
2416 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2417 unsigned int i;
3b2b8fea
TT
2418 int width = TYPE_LENGTH (type);
2419 struct obstack wchar_buf, output;
2420 struct cleanup *cleanup;
2421 struct wchar_iterator *iter;
2422 int finished = 0;
0d63ecda
KS
2423 struct converted_character *last;
2424 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2425
2426 if (length == -1)
2427 {
2428 unsigned long current_char = 1;
2429
2430 for (i = 0; current_char; ++i)
2431 {
2432 QUIT;
2433 current_char = extract_unsigned_integer (string + i * width,
2434 width, byte_order);
2435 }
2436 length = i;
2437 }
2438
2439 /* If the string was not truncated due to `set print elements', and
2440 the last byte of it is a null, we don't print that, in
2441 traditional C style. */
2442 if (c_style_terminator
2443 && !force_ellipses
2444 && length > 0
2445 && (extract_unsigned_integer (string + (length - 1) * width,
2446 width, byte_order) == 0))
2447 length--;
2448
2449 if (length == 0)
2450 {
2451 fputs_filtered ("\"\"", stream);
2452 return;
2453 }
2454
2455 /* Arrange to iterate over the characters, in wchar_t form. */
2456 iter = make_wchar_iterator (string, length * width, encoding, width);
2457 cleanup = make_cleanup_wchar_iterator (iter);
0d63ecda
KS
2458 converted_chars = NULL;
2459 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
3b2b8fea 2460
0d63ecda
KS
2461 /* Convert characters until the string is over or the maximum
2462 number of printed characters has been reached. */
2463 i = 0;
2464 while (i < options->print_max)
3b2b8fea 2465 {
0d63ecda 2466 int r;
3b2b8fea
TT
2467
2468 QUIT;
2469
0d63ecda
KS
2470 /* Grab the next character and repeat count. */
2471 r = count_next_character (iter, &converted_chars);
3b2b8fea 2472
0d63ecda
KS
2473 /* If less than zero, the end of the input string was reached. */
2474 if (r < 0)
2475 break;
3b2b8fea 2476
0d63ecda
KS
2477 /* Otherwise, add the count to the total print count and get
2478 the next character. */
2479 i += r;
2480 }
3b2b8fea 2481
0d63ecda
KS
2482 /* Get the last element and determine if the entire string was
2483 processed. */
2484 last = VEC_last (converted_character_d, converted_chars);
2485 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2486
0d63ecda
KS
2487 /* Ensure that CONVERTED_CHARS is terminated. */
2488 last->result = wchar_iterate_eof;
3b2b8fea 2489
0d63ecda
KS
2490 /* WCHAR_BUF is the obstack we use to represent the string in
2491 wchar_t form. */
2492 obstack_init (&wchar_buf);
2493 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2494
0d63ecda
KS
2495 /* Print the output string to the obstack. */
2496 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2497 width, byte_order, options);
3b2b8fea
TT
2498
2499 if (force_ellipses || !finished)
2500 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2501
2502 /* OUTPUT is where we collect `char's for printing. */
2503 obstack_init (&output);
2504 make_cleanup_obstack_free (&output);
2505
2506 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2507 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2508 obstack_object_size (&wchar_buf),
fff10684 2509 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2510 obstack_1grow (&output, '\0');
2511
2512 fputs_filtered (obstack_base (&output), stream);
2513
2514 do_cleanups (cleanup);
2515}
2516
ae6a3a4c
TJB
2517/* Print a string from the inferior, starting at ADDR and printing up to LEN
2518 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2519 stops at the first null byte, otherwise printing proceeds (including null
2520 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2521 whichever is smaller. ENCODING is the name of the string's
2522 encoding. It can be NULL, in which case the target encoding is
2523 assumed. */
ae6a3a4c
TJB
2524
2525int
09ca9e2e
TT
2526val_print_string (struct type *elttype, const char *encoding,
2527 CORE_ADDR addr, int len,
6c7a06a3 2528 struct ui_file *stream,
ae6a3a4c
TJB
2529 const struct value_print_options *options)
2530{
2531 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2532 int errcode; /* Errno returned from bad reads. */
581e13c1 2533 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2534 unsigned int fetchlimit; /* Maximum number of chars to print. */
2535 int bytes_read;
2536 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2537 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2538 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2540 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2541
2542 /* First we need to figure out the limit on the number of characters we are
2543 going to attempt to fetch and print. This is actually pretty simple. If
2544 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2545 LEN is -1, then the limit is print_max. This is true regardless of
2546 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2547 because finding the null byte (or available memory) is what actually
2548 limits the fetch. */
2549
3e43a32a
MS
2550 fetchlimit = (len == -1 ? options->print_max : min (len,
2551 options->print_max));
ae6a3a4c 2552
e17a4113
UW
2553 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2554 &buffer, &bytes_read);
ae6a3a4c
TJB
2555 old_chain = make_cleanup (xfree, buffer);
2556
2557 addr += bytes_read;
c906108c 2558
3e43a32a
MS
2559 /* We now have either successfully filled the buffer to fetchlimit,
2560 or terminated early due to an error or finding a null char when
2561 LEN is -1. */
ae6a3a4c
TJB
2562
2563 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2564 found_nul = 0;
2565 if (bytes_read >= width)
2566 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2567 byte_order) == 0;
c906108c
SS
2568 if (len == -1 && !found_nul)
2569 {
777ea8f1 2570 gdb_byte *peekbuf;
c906108c 2571
ae6a3a4c 2572 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2573 to peek at the next character. If not successful, or it is not
2574 a null byte, then force ellipsis to be printed. */
c906108c 2575
777ea8f1 2576 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2577
2578 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2579 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2580 force_ellipsis = 1;
2581 }
ae6a3a4c 2582 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
2583 {
2584 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2585 than the number of characters actually requested, always make us
ae6a3a4c 2586 print ellipsis. */
c906108c
SS
2587 force_ellipsis = 1;
2588 }
2589
c906108c
SS
2590 /* If we get an error before fetching anything, don't print a string.
2591 But if we fetch something and then get an error, print the string
2592 and then the error message. */
ae6a3a4c 2593 if (errcode == 0 || bytes_read > 0)
c906108c 2594 {
be759fcf 2595 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2596 encoding, force_ellipsis, options);
c906108c
SS
2597 }
2598
2599 if (errcode != 0)
2600 {
578d3588
PA
2601 char *str;
2602
2603 str = memory_error_message (errcode, gdbarch, addr);
2604 make_cleanup (xfree, str);
2605
2606 fprintf_filtered (stream, "<error: ");
2607 fputs_filtered (str, stream);
2608 fprintf_filtered (stream, ">");
c906108c 2609 }
ae6a3a4c 2610
c906108c
SS
2611 gdb_flush (stream);
2612 do_cleanups (old_chain);
ae6a3a4c
TJB
2613
2614 return (bytes_read / width);
c906108c 2615}
c906108c 2616\f
c5aa993b 2617
09e6485f
PA
2618/* The 'set input-radix' command writes to this auxiliary variable.
2619 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2620 it is left unchanged. */
2621
2622static unsigned input_radix_1 = 10;
2623
c906108c
SS
2624/* Validate an input or output radix setting, and make sure the user
2625 knows what they really did here. Radix setting is confusing, e.g.
2626 setting the input radix to "10" never changes it! */
2627
c906108c 2628static void
fba45db2 2629set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2630{
09e6485f 2631 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2632}
2633
c906108c 2634static void
fba45db2 2635set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2636{
2637 /* We don't currently disallow any input radix except 0 or 1, which don't
2638 make any mathematical sense. In theory, we can deal with any input
2639 radix greater than 1, even if we don't have unique digits for every
2640 value from 0 to radix-1, but in practice we lose on large radix values.
2641 We should either fix the lossage or restrict the radix range more.
581e13c1 2642 (FIXME). */
c906108c
SS
2643
2644 if (radix < 2)
2645 {
09e6485f 2646 input_radix_1 = input_radix;
8a3fe4f8 2647 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2648 radix);
2649 }
09e6485f 2650 input_radix_1 = input_radix = radix;
c906108c
SS
2651 if (from_tty)
2652 {
3e43a32a
MS
2653 printf_filtered (_("Input radix now set to "
2654 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2655 radix, radix, radix);
2656 }
2657}
2658
09e6485f
PA
2659/* The 'set output-radix' command writes to this auxiliary variable.
2660 If the requested radix is valid, OUTPUT_RADIX is updated,
2661 otherwise, it is left unchanged. */
2662
2663static unsigned output_radix_1 = 10;
2664
c906108c 2665static void
fba45db2 2666set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2667{
09e6485f 2668 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
2669}
2670
2671static void
fba45db2 2672set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2673{
2674 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 2675 handle correctly, leaving the radix unchanged. */
c906108c
SS
2676 switch (radix)
2677 {
2678 case 16:
79a45b7d 2679 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
2680 break;
2681 case 10:
79a45b7d 2682 user_print_options.output_format = 0; /* decimal */
c906108c
SS
2683 break;
2684 case 8:
79a45b7d 2685 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
2686 break;
2687 default:
09e6485f 2688 output_radix_1 = output_radix;
3e43a32a
MS
2689 error (_("Unsupported output radix ``decimal %u''; "
2690 "output radix unchanged."),
c906108c
SS
2691 radix);
2692 }
09e6485f 2693 output_radix_1 = output_radix = radix;
c906108c
SS
2694 if (from_tty)
2695 {
3e43a32a
MS
2696 printf_filtered (_("Output radix now set to "
2697 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2698 radix, radix, radix);
2699 }
2700}
2701
2702/* Set both the input and output radix at once. Try to set the output radix
2703 first, since it has the most restrictive range. An radix that is valid as
2704 an output radix is also valid as an input radix.
2705
2706 It may be useful to have an unusual input radix. If the user wishes to
2707 set an input radix that is not valid as an output radix, he needs to use
581e13c1 2708 the 'set input-radix' command. */
c906108c
SS
2709
2710static void
fba45db2 2711set_radix (char *arg, int from_tty)
c906108c
SS
2712{
2713 unsigned radix;
2714
bb518678 2715 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
2716 set_output_radix_1 (0, radix);
2717 set_input_radix_1 (0, radix);
2718 if (from_tty)
2719 {
3e43a32a
MS
2720 printf_filtered (_("Input and output radices now set to "
2721 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2722 radix, radix, radix);
2723 }
2724}
2725
581e13c1 2726/* Show both the input and output radices. */
c906108c 2727
c906108c 2728static void
fba45db2 2729show_radix (char *arg, int from_tty)
c906108c
SS
2730{
2731 if (from_tty)
2732 {
2733 if (input_radix == output_radix)
2734 {
3e43a32a
MS
2735 printf_filtered (_("Input and output radices set to "
2736 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2737 input_radix, input_radix, input_radix);
2738 }
2739 else
2740 {
3e43a32a
MS
2741 printf_filtered (_("Input radix set to decimal "
2742 "%u, hex %x, octal %o.\n"),
c906108c 2743 input_radix, input_radix, input_radix);
3e43a32a
MS
2744 printf_filtered (_("Output radix set to decimal "
2745 "%u, hex %x, octal %o.\n"),
c906108c
SS
2746 output_radix, output_radix, output_radix);
2747 }
2748 }
2749}
c906108c 2750\f
c5aa993b 2751
c906108c 2752static void
fba45db2 2753set_print (char *arg, int from_tty)
c906108c
SS
2754{
2755 printf_unfiltered (
c5aa993b 2756 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 2757 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
2758}
2759
c906108c 2760static void
fba45db2 2761show_print (char *args, int from_tty)
c906108c
SS
2762{
2763 cmd_show_list (showprintlist, from_tty, "");
2764}
e7045703
DE
2765
2766static void
2767set_print_raw (char *arg, int from_tty)
2768{
2769 printf_unfiltered (
2770 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 2771 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
2772}
2773
2774static void
2775show_print_raw (char *args, int from_tty)
2776{
2777 cmd_show_list (showprintrawlist, from_tty, "");
2778}
2779
c906108c
SS
2780\f
2781void
fba45db2 2782_initialize_valprint (void)
c906108c 2783{
c906108c 2784 add_prefix_cmd ("print", no_class, set_print,
1bedd215 2785 _("Generic command for setting how things print."),
c906108c 2786 &setprintlist, "set print ", 0, &setlist);
c5aa993b 2787 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 2788 /* Prefer set print to set prompt. */
c906108c
SS
2789 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2790
2791 add_prefix_cmd ("print", no_class, show_print,
1bedd215 2792 _("Generic command for showing print settings."),
c906108c 2793 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
2794 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2795 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 2796
e7045703
DE
2797 add_prefix_cmd ("raw", no_class, set_print_raw,
2798 _("\
2799Generic command for setting what things to print in \"raw\" mode."),
2800 &setprintrawlist, "set print raw ", 0, &setprintlist);
2801 add_prefix_cmd ("raw", no_class, show_print_raw,
2802 _("Generic command for showing \"print raw\" settings."),
2803 &showprintrawlist, "show print raw ", 0, &showprintlist);
2804
79a45b7d
TT
2805 add_setshow_uinteger_cmd ("elements", no_class,
2806 &user_print_options.print_max, _("\
35096d9d
AC
2807Set limit on string chars or array elements to print."), _("\
2808Show limit on string chars or array elements to print."), _("\
f81d1120 2809\"set print elements unlimited\" causes there to be no limit."),
35096d9d 2810 NULL,
920d2a44 2811 show_print_max,
35096d9d 2812 &setprintlist, &showprintlist);
c906108c 2813
79a45b7d
TT
2814 add_setshow_boolean_cmd ("null-stop", no_class,
2815 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
2816Set printing of char arrays to stop at first null char."), _("\
2817Show printing of char arrays to stop at first null char."), NULL,
2818 NULL,
920d2a44 2819 show_stop_print_at_null,
5bf193a2 2820 &setprintlist, &showprintlist);
c906108c 2821
35096d9d 2822 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 2823 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
2824Set threshold for repeated print elements."), _("\
2825Show threshold for repeated print elements."), _("\
f81d1120 2826\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 2827 NULL,
920d2a44 2828 show_repeat_count_threshold,
35096d9d 2829 &setprintlist, &showprintlist);
c906108c 2830
79a45b7d 2831 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
2832 &user_print_options.prettyformat_structs, _("\
2833Set pretty formatting of structures."), _("\
2834Show pretty formatting of structures."), NULL,
5bf193a2 2835 NULL,
2a998fc0 2836 show_prettyformat_structs,
5bf193a2
AC
2837 &setprintlist, &showprintlist);
2838
79a45b7d
TT
2839 add_setshow_boolean_cmd ("union", class_support,
2840 &user_print_options.unionprint, _("\
5bf193a2
AC
2841Set printing of unions interior to structures."), _("\
2842Show printing of unions interior to structures."), NULL,
2843 NULL,
920d2a44 2844 show_unionprint,
5bf193a2
AC
2845 &setprintlist, &showprintlist);
2846
79a45b7d 2847 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
2848 &user_print_options.prettyformat_arrays, _("\
2849Set pretty formatting of arrays."), _("\
2850Show pretty formatting of arrays."), NULL,
5bf193a2 2851 NULL,
2a998fc0 2852 show_prettyformat_arrays,
5bf193a2
AC
2853 &setprintlist, &showprintlist);
2854
79a45b7d
TT
2855 add_setshow_boolean_cmd ("address", class_support,
2856 &user_print_options.addressprint, _("\
5bf193a2
AC
2857Set printing of addresses."), _("\
2858Show printing of addresses."), NULL,
2859 NULL,
920d2a44 2860 show_addressprint,
5bf193a2 2861 &setprintlist, &showprintlist);
c906108c 2862
9cb709b6
TT
2863 add_setshow_boolean_cmd ("symbol", class_support,
2864 &user_print_options.symbol_print, _("\
2865Set printing of symbol names when printing pointers."), _("\
2866Show printing of symbol names when printing pointers."),
2867 NULL, NULL,
2868 show_symbol_print,
2869 &setprintlist, &showprintlist);
2870
1e8fb976
PA
2871 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2872 _("\
35096d9d
AC
2873Set default input radix for entering numbers."), _("\
2874Show default input radix for entering numbers."), NULL,
1e8fb976
PA
2875 set_input_radix,
2876 show_input_radix,
2877 &setlist, &showlist);
35096d9d 2878
1e8fb976
PA
2879 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2880 _("\
35096d9d
AC
2881Set default output radix for printing of values."), _("\
2882Show default output radix for printing of values."), NULL,
1e8fb976
PA
2883 set_output_radix,
2884 show_output_radix,
2885 &setlist, &showlist);
c906108c 2886
cb1a6d5f
AC
2887 /* The "set radix" and "show radix" commands are special in that
2888 they are like normal set and show commands but allow two normally
2889 independent variables to be either set or shown with a single
b66df561 2890 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 2891 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
2892 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2893 longer true - show can display anything. */
1a966eab
AC
2894 add_cmd ("radix", class_support, set_radix, _("\
2895Set default input and output number radices.\n\
c906108c 2896Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 2897Without an argument, sets both radices back to the default value of 10."),
c906108c 2898 &setlist);
1a966eab
AC
2899 add_cmd ("radix", class_support, show_radix, _("\
2900Show the default input and output number radices.\n\
2901Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
2902 &showlist);
2903
e79af960 2904 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 2905 &user_print_options.print_array_indexes, _("\
e79af960
JB
2906Set printing of array indexes."), _("\
2907Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2908 &setprintlist, &showprintlist);
c906108c 2909}
This page took 2.013072 seconds and 4 git commands to generate.