2010-05-17 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
0c3acc09 38#include "ada-lang.h"
c906108c
SS
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
777ea8f1 44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
45 int len, int *errnoptr);
46
a14ed312 47static void show_print (char *, int);
c906108c 48
a14ed312 49static void set_print (char *, int);
c906108c 50
a14ed312 51static void set_radix (char *, int);
c906108c 52
a14ed312 53static void show_radix (char *, int);
c906108c 54
a14ed312 55static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 56
a14ed312 57static void set_input_radix_1 (int, unsigned);
c906108c 58
a14ed312 59static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 60
a14ed312 61static void set_output_radix_1 (int, unsigned);
c906108c 62
a14ed312 63void _initialize_valprint (void);
c906108c 64
c906108c 65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
a6bac58e
TT
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
79a45b7d
TT
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
920d2a44
AC
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("\
121Limit on string chars or array elements to print is %s.\n"),
122 value);
123}
124
c906108c
SS
125
126/* Default input and output radixes, and output format letter. */
127
128unsigned input_radix = 10;
920d2a44
AC
129static void
130show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
133 fprintf_filtered (file, _("\
134Default input radix for entering numbers is %s.\n"),
135 value);
136}
137
c906108c 138unsigned output_radix = 10;
920d2a44
AC
139static void
140show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("\
144Default output radix for printing of values is %s.\n"),
145 value);
146}
c906108c 147
e79af960
JB
148/* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
e79af960
JB
151static void
152show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156}
157
c906108c
SS
158/* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
920d2a44
AC
162static void
163show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165{
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168}
c906108c
SS
169
170/* If nonzero, stops printing of char arrays at first null. */
171
920d2a44
AC
172static void
173show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("\
177Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179}
c906108c
SS
180
181/* Controls pretty printing of structures. */
182
920d2a44
AC
183static void
184show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188}
c906108c
SS
189
190/* Controls pretty printing of arrays. */
191
920d2a44
AC
192static void
193show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197}
c906108c
SS
198
199/* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
920d2a44
AC
202static void
203show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205{
206 fprintf_filtered (file, _("\
207Printing of unions interior to structures is %s.\n"),
208 value);
209}
c906108c
SS
210
211/* If nonzero, causes machine addresses to be printed in certain contexts. */
212
920d2a44
AC
213static void
214show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216{
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218}
c906108c 219\f
c5aa993b 220
a6bac58e
TT
221/* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225static int
226scalar_type_p (struct type *type)
227{
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246}
247
d8ca156b
JB
248/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
249 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 250 stdio stream STREAM according to OPTIONS.
c906108c
SS
251
252 If the data are a string pointer, returns the number of string characters
253 printed.
254
255 FIXME: The data at VALADDR is in target byte order. If gdb is ever
256 enhanced to be able to debug more than the single target it was compiled
257 for (specific CPU type and thus specific target byte ordering), then
258 either the print routines are going to have to take this into account,
259 or the data is going to have to be passed into here already converted
260 to the host byte ordering, whichever is more convenient. */
261
262
263int
fc1a4b47 264val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d
TT
265 CORE_ADDR address, struct ui_file *stream, int recurse,
266 const struct value_print_options *options,
d8ca156b 267 const struct language_defn *language)
c906108c 268{
19ca80ba
DJ
269 volatile struct gdb_exception except;
270 int ret = 0;
79a45b7d 271 struct value_print_options local_opts = *options;
c906108c 272 struct type *real_type = check_typedef (type);
79a45b7d
TT
273
274 if (local_opts.pretty == Val_pretty_default)
275 local_opts.pretty = (local_opts.prettyprint_structs
276 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 277
c906108c
SS
278 QUIT;
279
280 /* Ensure that the type is complete and not just a stub. If the type is
281 only a stub and we can't find and substitute its complete type, then
282 print appropriate string and return. */
283
74a9bb82 284 if (TYPE_STUB (real_type))
c906108c
SS
285 {
286 fprintf_filtered (stream, "<incomplete type>");
287 gdb_flush (stream);
288 return (0);
289 }
c5aa993b 290
a6bac58e
TT
291 if (!options->raw)
292 {
293 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
294 address, stream, recurse, options,
295 language);
296 if (ret)
297 return ret;
298 }
299
300 /* Handle summary mode. If the value is a scalar, print it;
301 otherwise, print an ellipsis. */
302 if (options->summary && !scalar_type_p (type))
303 {
304 fprintf_filtered (stream, "...");
305 return 0;
306 }
307
19ca80ba
DJ
308 TRY_CATCH (except, RETURN_MASK_ERROR)
309 {
d8ca156b 310 ret = language->la_val_print (type, valaddr, embedded_offset, address,
79a45b7d 311 stream, recurse, &local_opts);
19ca80ba
DJ
312 }
313 if (except.reason < 0)
314 fprintf_filtered (stream, _("<error reading variable>"));
315
316 return ret;
c906108c
SS
317}
318
806048c6
DJ
319/* Check whether the value VAL is printable. Return 1 if it is;
320 return 0 and print an appropriate error message to STREAM if it
321 is not. */
c906108c 322
806048c6
DJ
323static int
324value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
325{
326 if (val == 0)
327 {
806048c6 328 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
329 return 0;
330 }
806048c6 331
feb13ab0 332 if (value_optimized_out (val))
c906108c 333 {
806048c6 334 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
335 return 0;
336 }
806048c6 337
bc3b79fd
TJB
338 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
339 {
340 fprintf_filtered (stream, _("<internal function %s>"),
341 value_internal_function_name (val));
342 return 0;
343 }
344
806048c6
DJ
345 return 1;
346}
347
d8ca156b 348/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 349 to OPTIONS.
806048c6
DJ
350
351 If the data are a string pointer, returns the number of string characters
352 printed.
353
354 This is a preferable interface to val_print, above, because it uses
355 GDB's value mechanism. */
356
357int
79a45b7d
TT
358common_val_print (struct value *val, struct ui_file *stream, int recurse,
359 const struct value_print_options *options,
d8ca156b 360 const struct language_defn *language)
806048c6
DJ
361{
362 if (!value_check_printable (val, stream))
363 return 0;
364
0c3acc09
JB
365 if (language->la_language == language_ada)
366 /* The value might have a dynamic type, which would cause trouble
367 below when trying to extract the value contents (since the value
368 size is determined from the type size which is unknown). So
369 get a fixed representation of our value. */
370 val = ada_to_fixed_value (val);
371
806048c6 372 return val_print (value_type (val), value_contents_all (val),
42ae5230 373 value_embedded_offset (val), value_address (val),
79a45b7d 374 stream, recurse, options, language);
806048c6
DJ
375}
376
7348c5e1
JB
377/* Print on stream STREAM the value VAL according to OPTIONS. The value
378 is printed using the current_language syntax.
379
380 If the object printed is a string pointer, return the number of string
381 bytes printed. */
806048c6
DJ
382
383int
79a45b7d
TT
384value_print (struct value *val, struct ui_file *stream,
385 const struct value_print_options *options)
806048c6
DJ
386{
387 if (!value_check_printable (val, stream))
388 return 0;
389
a6bac58e
TT
390 if (!options->raw)
391 {
392 int r = apply_val_pretty_printer (value_type (val),
393 value_contents_all (val),
394 value_embedded_offset (val),
395 value_address (val),
396 stream, 0, options,
397 current_language);
a109c7c1 398
a6bac58e
TT
399 if (r)
400 return r;
401 }
402
79a45b7d 403 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
404}
405
406/* Called by various <lang>_val_print routines to print
407 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
408 value. STREAM is where to print the value. */
409
410void
fc1a4b47 411val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 412 struct ui_file *stream)
c906108c 413{
50810684 414 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 415
c906108c
SS
416 if (TYPE_LENGTH (type) > sizeof (LONGEST))
417 {
418 LONGEST val;
419
420 if (TYPE_UNSIGNED (type)
421 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 422 byte_order, &val))
c906108c
SS
423 {
424 print_longest (stream, 'u', 0, val);
425 }
426 else
427 {
428 /* Signed, or we couldn't turn an unsigned value into a
429 LONGEST. For signed values, one could assume two's
430 complement (a reasonable assumption, I think) and do
431 better than this. */
432 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 433 TYPE_LENGTH (type), byte_order);
c906108c
SS
434 }
435 }
436 else
437 {
c906108c
SS
438 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
439 unpack_long (type, valaddr));
c906108c
SS
440 }
441}
442
4f2aea11
MK
443void
444val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
445 struct ui_file *stream)
446{
befae759 447 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
448 int bitpos, nfields = TYPE_NFIELDS (type);
449
450 fputs_filtered ("[ ", stream);
451 for (bitpos = 0; bitpos < nfields; bitpos++)
452 {
316703b9
MK
453 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
454 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
455 {
456 if (TYPE_FIELD_NAME (type, bitpos))
457 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
458 else
459 fprintf_filtered (stream, "#%d ", bitpos);
460 }
461 }
462 fputs_filtered ("]", stream);
463}
464
c906108c
SS
465/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
466 The raison d'etre of this function is to consolidate printing of
bb599908
PH
467 LONG_LONG's into this one function. The format chars b,h,w,g are
468 from print_scalar_formatted(). Numbers are printed using C
469 format.
470
471 USE_C_FORMAT means to use C format in all cases. Without it,
472 'o' and 'x' format do not include the standard C radix prefix
473 (leading 0 or 0x).
474
475 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
476 and was intended to request formating according to the current
477 language and would be used for most integers that GDB prints. The
478 exceptional cases were things like protocols where the format of
479 the integer is a protocol thing, not a user-visible thing). The
480 parameter remains to preserve the information of what things might
481 be printed with language-specific format, should we ever resurrect
482 that capability. */
c906108c
SS
483
484void
bb599908 485print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 486 LONGEST val_long)
c906108c 487{
2bfb72ee
AC
488 const char *val;
489
c906108c
SS
490 switch (format)
491 {
492 case 'd':
bb599908 493 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 494 case 'u':
bb599908 495 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 496 case 'x':
bb599908 497 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 498 case 'b':
bb599908 499 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 500 case 'h':
bb599908 501 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 502 case 'w':
bb599908 503 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 504 case 'g':
bb599908 505 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
506 break;
507 case 'o':
bb599908 508 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 509 default:
e2e0b3e5 510 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 511 }
2bfb72ee 512 fputs_filtered (val, stream);
c906108c
SS
513}
514
c906108c
SS
515/* This used to be a macro, but I don't think it is called often enough
516 to merit such treatment. */
517/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
518 arguments to a function, number in a value history, register number, etc.)
519 where the value must not be larger than can fit in an int. */
520
521int
fba45db2 522longest_to_int (LONGEST arg)
c906108c
SS
523{
524 /* Let the compiler do the work */
525 int rtnval = (int) arg;
526
527 /* Check for overflows or underflows */
528 if (sizeof (LONGEST) > sizeof (int))
529 {
530 if (rtnval != arg)
531 {
8a3fe4f8 532 error (_("Value out of range."));
c906108c
SS
533 }
534 }
535 return (rtnval);
536}
537
a73c86fb
AC
538/* Print a floating point value of type TYPE (not always a
539 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
540
541void
fc1a4b47 542print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 543 struct ui_file *stream)
c906108c
SS
544{
545 DOUBLEST doub;
546 int inv;
a73c86fb 547 const struct floatformat *fmt = NULL;
c906108c 548 unsigned len = TYPE_LENGTH (type);
20389057 549 enum float_kind kind;
c5aa993b 550
a73c86fb
AC
551 /* If it is a floating-point, check for obvious problems. */
552 if (TYPE_CODE (type) == TYPE_CODE_FLT)
553 fmt = floatformat_from_type (type);
20389057 554 if (fmt != NULL)
39424bef 555 {
20389057
DJ
556 kind = floatformat_classify (fmt, valaddr);
557 if (kind == float_nan)
558 {
559 if (floatformat_is_negative (fmt, valaddr))
560 fprintf_filtered (stream, "-");
561 fprintf_filtered (stream, "nan(");
562 fputs_filtered ("0x", stream);
563 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
564 fprintf_filtered (stream, ")");
565 return;
566 }
567 else if (kind == float_infinite)
568 {
569 if (floatformat_is_negative (fmt, valaddr))
570 fputs_filtered ("-", stream);
571 fputs_filtered ("inf", stream);
572 return;
573 }
7355ddba 574 }
c906108c 575
a73c86fb
AC
576 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
577 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
578 needs to be used as that takes care of any necessary type
579 conversions. Such conversions are of course direct to DOUBLEST
580 and disregard any possible target floating point limitations.
581 For instance, a u64 would be converted and displayed exactly on a
582 host with 80 bit DOUBLEST but with loss of information on a host
583 with 64 bit DOUBLEST. */
c2f05ac9 584
c906108c
SS
585 doub = unpack_double (type, valaddr, &inv);
586 if (inv)
587 {
588 fprintf_filtered (stream, "<invalid float value>");
589 return;
590 }
591
39424bef
MK
592 /* FIXME: kettenis/2001-01-20: The following code makes too much
593 assumptions about the host and target floating point format. */
594
a73c86fb 595 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 596 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
597 instead uses the type's length to determine the precision of the
598 floating-point value being printed. */
c2f05ac9 599
c906108c 600 if (len < sizeof (double))
c5aa993b 601 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 602 else if (len == sizeof (double))
c5aa993b 603 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
604 else
605#ifdef PRINTF_HAS_LONG_DOUBLE
606 fprintf_filtered (stream, "%.35Lg", doub);
607#else
39424bef
MK
608 /* This at least wins with values that are representable as
609 doubles. */
c906108c
SS
610 fprintf_filtered (stream, "%.17g", (double) doub);
611#endif
612}
613
7678ef8f
TJB
614void
615print_decimal_floating (const gdb_byte *valaddr, struct type *type,
616 struct ui_file *stream)
617{
e17a4113 618 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
619 char decstr[MAX_DECIMAL_STRING];
620 unsigned len = TYPE_LENGTH (type);
621
e17a4113 622 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
623 fputs_filtered (decstr, stream);
624 return;
625}
626
c5aa993b 627void
fc1a4b47 628print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 629 unsigned len, enum bfd_endian byte_order)
c906108c
SS
630{
631
632#define BITS_IN_BYTES 8
633
fc1a4b47 634 const gdb_byte *p;
745b8ca0 635 unsigned int i;
c5aa993b 636 int b;
c906108c
SS
637
638 /* Declared "int" so it will be signed.
639 * This ensures that right shift will shift in zeros.
640 */
c5aa993b 641 const int mask = 0x080;
c906108c
SS
642
643 /* FIXME: We should be not printing leading zeroes in most cases. */
644
d44e8473 645 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
646 {
647 for (p = valaddr;
648 p < valaddr + len;
649 p++)
650 {
c5aa993b
JM
651 /* Every byte has 8 binary characters; peel off
652 * and print from the MSB end.
653 */
654 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
655 {
656 if (*p & (mask >> i))
657 b = 1;
658 else
659 b = 0;
660
661 fprintf_filtered (stream, "%1d", b);
662 }
c906108c
SS
663 }
664 }
665 else
666 {
667 for (p = valaddr + len - 1;
668 p >= valaddr;
669 p--)
670 {
c5aa993b
JM
671 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
672 {
673 if (*p & (mask >> i))
674 b = 1;
675 else
676 b = 0;
677
678 fprintf_filtered (stream, "%1d", b);
679 }
c906108c
SS
680 }
681 }
c906108c
SS
682}
683
684/* VALADDR points to an integer of LEN bytes.
685 * Print it in octal on stream or format it in buf.
686 */
687void
fc1a4b47 688print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 689 unsigned len, enum bfd_endian byte_order)
c906108c 690{
fc1a4b47 691 const gdb_byte *p;
c906108c 692 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
693 int cycle;
694
c906108c
SS
695 /* FIXME: We should be not printing leading zeroes in most cases. */
696
697
698 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
699 * the extra bits, which cycle every three bytes:
700 *
701 * Byte side: 0 1 2 3
702 * | | | |
703 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
704 *
705 * Octal side: 0 1 carry 3 4 carry ...
706 *
707 * Cycle number: 0 1 2
708 *
709 * But of course we are printing from the high side, so we have to
710 * figure out where in the cycle we are so that we end up with no
711 * left over bits at the end.
712 */
713#define BITS_IN_OCTAL 3
714#define HIGH_ZERO 0340
715#define LOW_ZERO 0016
716#define CARRY_ZERO 0003
717#define HIGH_ONE 0200
718#define MID_ONE 0160
719#define LOW_ONE 0016
720#define CARRY_ONE 0001
721#define HIGH_TWO 0300
722#define MID_TWO 0070
723#define LOW_TWO 0007
724
725 /* For 32 we start in cycle 2, with two bits and one bit carry;
726 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
727 */
728 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
729 carry = 0;
c5aa993b 730
bb599908 731 fputs_filtered ("0", stream);
d44e8473 732 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
733 {
734 for (p = valaddr;
735 p < valaddr + len;
736 p++)
737 {
c5aa993b
JM
738 switch (cycle)
739 {
740 case 0:
741 /* No carry in, carry out two bits.
742 */
743 octa1 = (HIGH_ZERO & *p) >> 5;
744 octa2 = (LOW_ZERO & *p) >> 2;
745 carry = (CARRY_ZERO & *p);
746 fprintf_filtered (stream, "%o", octa1);
747 fprintf_filtered (stream, "%o", octa2);
748 break;
749
750 case 1:
751 /* Carry in two bits, carry out one bit.
752 */
753 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
754 octa2 = (MID_ONE & *p) >> 4;
755 octa3 = (LOW_ONE & *p) >> 1;
756 carry = (CARRY_ONE & *p);
757 fprintf_filtered (stream, "%o", octa1);
758 fprintf_filtered (stream, "%o", octa2);
759 fprintf_filtered (stream, "%o", octa3);
760 break;
761
762 case 2:
763 /* Carry in one bit, no carry out.
764 */
765 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
766 octa2 = (MID_TWO & *p) >> 3;
767 octa3 = (LOW_TWO & *p);
768 carry = 0;
769 fprintf_filtered (stream, "%o", octa1);
770 fprintf_filtered (stream, "%o", octa2);
771 fprintf_filtered (stream, "%o", octa3);
772 break;
773
774 default:
8a3fe4f8 775 error (_("Internal error in octal conversion;"));
c5aa993b
JM
776 }
777
778 cycle++;
779 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
780 }
781 }
782 else
783 {
784 for (p = valaddr + len - 1;
785 p >= valaddr;
786 p--)
787 {
c5aa993b
JM
788 switch (cycle)
789 {
790 case 0:
791 /* Carry out, no carry in */
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in, carry out */
801 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
802 octa2 = (MID_ONE & *p) >> 4;
803 octa3 = (LOW_ONE & *p) >> 1;
804 carry = (CARRY_ONE & *p);
805 fprintf_filtered (stream, "%o", octa1);
806 fprintf_filtered (stream, "%o", octa2);
807 fprintf_filtered (stream, "%o", octa3);
808 break;
809
810 case 2:
811 /* Carry in, no carry out */
812 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
813 octa2 = (MID_TWO & *p) >> 3;
814 octa3 = (LOW_TWO & *p);
815 carry = 0;
816 fprintf_filtered (stream, "%o", octa1);
817 fprintf_filtered (stream, "%o", octa2);
818 fprintf_filtered (stream, "%o", octa3);
819 break;
820
821 default:
8a3fe4f8 822 error (_("Internal error in octal conversion;"));
c5aa993b
JM
823 }
824
825 cycle++;
826 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
827 }
828 }
829
c906108c
SS
830}
831
832/* VALADDR points to an integer of LEN bytes.
833 * Print it in decimal on stream or format it in buf.
834 */
835void
fc1a4b47 836print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 837 unsigned len, enum bfd_endian byte_order)
c906108c
SS
838{
839#define TEN 10
c5aa993b 840#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
841#define CARRY_LEFT( x ) ((x) % TEN)
842#define SHIFT( x ) ((x) << 4)
c906108c
SS
843#define LOW_NIBBLE( x ) ( (x) & 0x00F)
844#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
845
fc1a4b47 846 const gdb_byte *p;
c906108c 847 unsigned char *digits;
c5aa993b
JM
848 int carry;
849 int decimal_len;
850 int i, j, decimal_digits;
851 int dummy;
852 int flip;
853
c906108c
SS
854 /* Base-ten number is less than twice as many digits
855 * as the base 16 number, which is 2 digits per byte.
856 */
857 decimal_len = len * 2 * 2;
3c37485b 858 digits = xmalloc (decimal_len);
c906108c 859
c5aa993b
JM
860 for (i = 0; i < decimal_len; i++)
861 {
c906108c 862 digits[i] = 0;
c5aa993b 863 }
c906108c 864
c906108c
SS
865 /* Ok, we have an unknown number of bytes of data to be printed in
866 * decimal.
867 *
868 * Given a hex number (in nibbles) as XYZ, we start by taking X and
869 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
870 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
871 *
872 * The trick is that "digits" holds a base-10 number, but sometimes
873 * the individual digits are > 10.
874 *
875 * Outer loop is per nibble (hex digit) of input, from MSD end to
876 * LSD end.
877 */
c5aa993b 878 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 879 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 880 flip = 0;
d44e8473 881 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 882 {
c906108c
SS
883 /*
884 * Multiply current base-ten number by 16 in place.
885 * Each digit was between 0 and 9, now is between
886 * 0 and 144.
887 */
c5aa993b
JM
888 for (j = 0; j < decimal_digits; j++)
889 {
890 digits[j] = SHIFT (digits[j]);
891 }
892
c906108c
SS
893 /* Take the next nibble off the input and add it to what
894 * we've got in the LSB position. Bottom 'digit' is now
895 * between 0 and 159.
896 *
897 * "flip" is used to run this loop twice for each byte.
898 */
c5aa993b
JM
899 if (flip == 0)
900 {
901 /* Take top nibble.
902 */
903 digits[0] += HIGH_NIBBLE (*p);
904 flip = 1;
905 }
906 else
907 {
908 /* Take low nibble and bump our pointer "p".
909 */
910 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
911 if (byte_order == BFD_ENDIAN_BIG)
912 p++;
913 else
914 p--;
c5aa993b
JM
915 flip = 0;
916 }
c906108c
SS
917
918 /* Re-decimalize. We have to do this often enough
919 * that we don't overflow, but once per nibble is
920 * overkill. Easier this way, though. Note that the
921 * carry is often larger than 10 (e.g. max initial
922 * carry out of lowest nibble is 15, could bubble all
923 * the way up greater than 10). So we have to do
924 * the carrying beyond the last current digit.
925 */
926 carry = 0;
c5aa993b
JM
927 for (j = 0; j < decimal_len - 1; j++)
928 {
929 digits[j] += carry;
930
931 /* "/" won't handle an unsigned char with
932 * a value that if signed would be negative.
933 * So extend to longword int via "dummy".
934 */
935 dummy = digits[j];
936 carry = CARRY_OUT (dummy);
937 digits[j] = CARRY_LEFT (dummy);
938
939 if (j >= decimal_digits && carry == 0)
940 {
941 /*
942 * All higher digits are 0 and we
943 * no longer have a carry.
944 *
945 * Note: "j" is 0-based, "decimal_digits" is
946 * 1-based.
947 */
948 decimal_digits = j + 1;
949 break;
950 }
951 }
952 }
c906108c
SS
953
954 /* Ok, now "digits" is the decimal representation, with
955 * the "decimal_digits" actual digits. Print!
956 */
c5aa993b
JM
957 for (i = decimal_digits - 1; i >= 0; i--)
958 {
959 fprintf_filtered (stream, "%1d", digits[i]);
960 }
b8c9b27d 961 xfree (digits);
c906108c
SS
962}
963
964/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
965
6b9acc27 966void
fc1a4b47 967print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 968 unsigned len, enum bfd_endian byte_order)
c906108c 969{
fc1a4b47 970 const gdb_byte *p;
c906108c
SS
971
972 /* FIXME: We should be not printing leading zeroes in most cases. */
973
bb599908 974 fputs_filtered ("0x", stream);
d44e8473 975 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
976 {
977 for (p = valaddr;
978 p < valaddr + len;
979 p++)
980 {
981 fprintf_filtered (stream, "%02x", *p);
982 }
983 }
984 else
985 {
986 for (p = valaddr + len - 1;
987 p >= valaddr;
988 p--)
989 {
990 fprintf_filtered (stream, "%02x", *p);
991 }
992 }
c906108c
SS
993}
994
6b9acc27
JJ
995/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
996 Omit any leading zero chars. */
997
998void
6c7a06a3
TT
999print_char_chars (struct ui_file *stream, struct type *type,
1000 const gdb_byte *valaddr,
d44e8473 1001 unsigned len, enum bfd_endian byte_order)
6b9acc27 1002{
fc1a4b47 1003 const gdb_byte *p;
6b9acc27 1004
d44e8473 1005 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1006 {
1007 p = valaddr;
1008 while (p < valaddr + len - 1 && *p == 0)
1009 ++p;
1010
1011 while (p < valaddr + len)
1012 {
6c7a06a3 1013 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1014 ++p;
1015 }
1016 }
1017 else
1018 {
1019 p = valaddr + len - 1;
1020 while (p > valaddr && *p == 0)
1021 --p;
1022
1023 while (p >= valaddr)
1024 {
6c7a06a3 1025 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1026 --p;
1027 }
1028 }
1029}
1030
e936309c
JB
1031/* Assuming TYPE is a simple, non-empty array type, compute its upper
1032 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1033 Save the high bound into HIGH_BOUND if not NULL.
e79af960
JB
1034
1035 Return 1 if the operation was successful. Return zero otherwise,
e936309c 1036 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
e79af960 1037
e936309c
JB
1038 Computing the array upper and lower bounds is pretty easy, but this
1039 function does some additional verifications before returning them.
e79af960
JB
1040 If something incorrect is detected, it is better to return a status
1041 rather than throwing an error, making it easier for the caller to
1042 implement an error-recovery plan. For instance, it may decide to
e936309c
JB
1043 warn the user that the bounds were not found and then use some
1044 default values instead. */
e79af960
JB
1045
1046int
e936309c 1047get_array_bounds (struct type *type, long *low_bound, long *high_bound)
e79af960
JB
1048{
1049 struct type *index = TYPE_INDEX_TYPE (type);
1050 long low = 0;
e936309c 1051 long high = 0;
e79af960
JB
1052
1053 if (index == NULL)
1054 return 0;
1055
e936309c
JB
1056 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1057 {
1058 low = TYPE_LOW_BOUND (index);
1059 high = TYPE_HIGH_BOUND (index);
1060 }
1061 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1062 {
1063 const int n_enums = TYPE_NFIELDS (index);
1064
1065 low = TYPE_FIELD_BITPOS (index, 0);
1066 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1067 }
1068 else
e79af960
JB
1069 return 0;
1070
e936309c
JB
1071 /* Abort if the lower bound is greater than the higher bound, except
1072 when low = high + 1. This is a very common idiom used in Ada when
1073 defining empty ranges (for instance "range 1 .. 0"). */
1074 if (low > high + 1)
e79af960
JB
1075 return 0;
1076
1077 if (low_bound)
1078 *low_bound = low;
1079
e936309c
JB
1080 if (high_bound)
1081 *high_bound = high;
1082
e79af960
JB
1083 return 1;
1084}
e936309c 1085
79a45b7d 1086/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1087 at INDEX of an array whose index type is INDEX_TYPE. */
1088
1089void
1090maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1091 struct ui_file *stream,
1092 const struct value_print_options *options)
e79af960
JB
1093{
1094 struct value *index_value;
1095
79a45b7d 1096 if (!options->print_array_indexes)
e79af960
JB
1097 return;
1098
1099 index_value = value_from_longest (index_type, index);
1100
79a45b7d
TT
1101 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1102}
e79af960 1103
c906108c 1104/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1105 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1106
c5aa993b
JM
1107 (FIXME?) Assumes array element separator is a comma, which is correct
1108 for all languages currently handled.
1109 (FIXME?) Some languages have a notation for repeated array elements,
1110 perhaps we should try to use that notation when appropriate.
1111 */
c906108c
SS
1112
1113void
fc1a4b47 1114val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1115 CORE_ADDR address, struct ui_file *stream,
79a45b7d
TT
1116 int recurse,
1117 const struct value_print_options *options,
fba45db2 1118 unsigned int i)
c906108c
SS
1119{
1120 unsigned int things_printed = 0;
1121 unsigned len;
e79af960 1122 struct type *elttype, *index_type;
c906108c
SS
1123 unsigned eltlen;
1124 /* Position of the array element we are examining to see
1125 whether it is repeated. */
1126 unsigned int rep1;
1127 /* Number of repetitions we have detected so far. */
1128 unsigned int reps;
168de233 1129 long low_bound_index = 0;
c5aa993b 1130
c906108c
SS
1131 elttype = TYPE_TARGET_TYPE (type);
1132 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1133 index_type = TYPE_INDEX_TYPE (type);
c906108c 1134
e936309c
JB
1135 /* Compute the number of elements in the array. On most arrays,
1136 the size of its elements is not zero, and so the number of elements
1137 is simply the size of the array divided by the size of the elements.
1138 But for arrays of elements whose size is zero, we need to look at
1139 the bounds. */
1140 if (eltlen != 0)
1141 len = TYPE_LENGTH (type) / eltlen;
1142 else
1143 {
1144 long low, hi;
a109c7c1 1145
e936309c
JB
1146 if (get_array_bounds (type, &low, &hi))
1147 len = hi - low + 1;
1148 else
1149 {
1150 warning (_("unable to get bounds of array, assuming null array"));
1151 len = 0;
1152 }
1153 }
1154
168de233
JB
1155 /* Get the array low bound. This only makes sense if the array
1156 has one or more element in it. */
e936309c 1157 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
168de233 1158 {
e936309c 1159 warning (_("unable to get low bound of array, using zero as default"));
168de233
JB
1160 low_bound_index = 0;
1161 }
1162
c906108c
SS
1163 annotate_array_section_begin (i, elttype);
1164
79a45b7d 1165 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1166 {
1167 if (i != 0)
1168 {
79a45b7d 1169 if (options->prettyprint_arrays)
c906108c
SS
1170 {
1171 fprintf_filtered (stream, ",\n");
1172 print_spaces_filtered (2 + 2 * recurse, stream);
1173 }
1174 else
1175 {
1176 fprintf_filtered (stream, ", ");
1177 }
1178 }
1179 wrap_here (n_spaces (2 + 2 * recurse));
e79af960 1180 maybe_print_array_index (index_type, i + low_bound_index,
79a45b7d 1181 stream, options);
c906108c
SS
1182
1183 rep1 = i + 1;
1184 reps = 1;
c5aa993b 1185 while ((rep1 < len) &&
c906108c
SS
1186 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1187 {
1188 ++reps;
1189 ++rep1;
1190 }
1191
79a45b7d 1192 if (reps > options->repeat_count_threshold)
c906108c 1193 {
f9e31323
TT
1194 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1195 stream, recurse + 1, options, current_language);
c906108c
SS
1196 annotate_elt_rep (reps);
1197 fprintf_filtered (stream, " <repeats %u times>", reps);
1198 annotate_elt_rep_end ();
1199
1200 i = rep1 - 1;
79a45b7d 1201 things_printed += options->repeat_count_threshold;
c906108c
SS
1202 }
1203 else
1204 {
f9e31323
TT
1205 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1206 stream, recurse + 1, options, current_language);
c906108c
SS
1207 annotate_elt ();
1208 things_printed++;
1209 }
1210 }
1211 annotate_array_section_end ();
1212 if (i < len)
1213 {
1214 fprintf_filtered (stream, "...");
1215 }
1216}
1217
917317f4
JM
1218/* Read LEN bytes of target memory at address MEMADDR, placing the
1219 results in GDB's memory at MYADDR. Returns a count of the bytes
1220 actually read, and optionally an errno value in the location
1221 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1222
1223/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1224 function be eliminated. */
1225
1226static int
777ea8f1 1227partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1228{
1229 int nread; /* Number of bytes actually read. */
1230 int errcode; /* Error from last read. */
1231
1232 /* First try a complete read. */
1233 errcode = target_read_memory (memaddr, myaddr, len);
1234 if (errcode == 0)
1235 {
1236 /* Got it all. */
1237 nread = len;
1238 }
1239 else
1240 {
1241 /* Loop, reading one byte at a time until we get as much as we can. */
1242 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1243 {
1244 errcode = target_read_memory (memaddr++, myaddr++, 1);
1245 }
1246 /* If an error, the last read was unsuccessful, so adjust count. */
1247 if (errcode != 0)
1248 {
1249 nread--;
1250 }
1251 }
1252 if (errnoptr != NULL)
1253 {
1254 *errnoptr = errcode;
1255 }
1256 return (nread);
1257}
1258
ae6a3a4c
TJB
1259/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1260 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1261 allocated buffer containing the string, which the caller is responsible to
1262 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1263 success, or errno on failure.
1264
1265 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1266 the middle or end of the string). If LEN is -1, stops at the first
1267 null character (not necessarily the first null byte) up to a maximum
1268 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1269 characters as possible from the string.
1270
1271 Unless an exception is thrown, BUFFER will always be allocated, even on
1272 failure. In this case, some characters might have been read before the
1273 failure happened. Check BYTES_READ to recognize this situation.
1274
1275 Note: There was a FIXME asking to make this code use target_read_string,
1276 but this function is more general (can read past null characters, up to
1277 given LEN). Besides, it is used much more often than target_read_string
1278 so it is more tested. Perhaps callers of target_read_string should use
1279 this function instead? */
c906108c
SS
1280
1281int
ae6a3a4c 1282read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1283 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1284{
ae6a3a4c
TJB
1285 int found_nul; /* Non-zero if we found the nul char. */
1286 int errcode; /* Errno returned from bad reads. */
1287 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1288 unsigned int chunksize; /* Size of each fetch, in chars. */
1289 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1290 gdb_byte *limit; /* First location past end of fetch buffer. */
1291 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1292
1293 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1294 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1295 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1296 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1297 well read in blocks that are large enough to be efficient, but not so
1298 large as to be slow if fetchlimit happens to be large. So we choose the
1299 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1300 200 is way too big for remote debugging over a serial line. */
1301
1302 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1303
ae6a3a4c
TJB
1304 /* Loop until we either have all the characters, or we encounter
1305 some error, such as bumping into the end of the address space. */
c906108c
SS
1306
1307 found_nul = 0;
b5096abe
PM
1308 *buffer = NULL;
1309
1310 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1311
1312 if (len > 0)
1313 {
ae6a3a4c
TJB
1314 *buffer = (gdb_byte *) xmalloc (len * width);
1315 bufptr = *buffer;
c906108c 1316
917317f4 1317 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1318 / width;
1319 addr += nfetch * width;
1320 bufptr += nfetch * width;
1321 }
1322 else if (len == -1)
1323 {
1324 unsigned long bufsize = 0;
ae6a3a4c 1325
c906108c
SS
1326 do
1327 {
1328 QUIT;
1329 nfetch = min (chunksize, fetchlimit - bufsize);
1330
ae6a3a4c
TJB
1331 if (*buffer == NULL)
1332 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1333 else
b5096abe
PM
1334 *buffer = (gdb_byte *) xrealloc (*buffer,
1335 (nfetch + bufsize) * width);
c906108c 1336
ae6a3a4c 1337 bufptr = *buffer + bufsize * width;
c906108c
SS
1338 bufsize += nfetch;
1339
ae6a3a4c 1340 /* Read as much as we can. */
917317f4 1341 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1342 / width;
c906108c 1343
ae6a3a4c 1344 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1345 to print. If found, we don't need to fetch any more. Note
1346 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1347 after the null character, or at the next character after the end
1348 of the buffer. */
c906108c
SS
1349
1350 limit = bufptr + nfetch * width;
1351 while (bufptr < limit)
1352 {
1353 unsigned long c;
1354
e17a4113 1355 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1356 addr += width;
1357 bufptr += width;
1358 if (c == 0)
1359 {
1360 /* We don't care about any error which happened after
ae6a3a4c 1361 the NUL terminator. */
c906108c
SS
1362 errcode = 0;
1363 found_nul = 1;
1364 break;
1365 }
1366 }
1367 }
c5aa993b 1368 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1369 && bufptr - *buffer < fetchlimit * width /* no overrun */
1370 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1371 }
1372 else
ae6a3a4c
TJB
1373 { /* Length of string is really 0! */
1374 /* We always allocate *buffer. */
1375 *buffer = bufptr = xmalloc (1);
c906108c
SS
1376 errcode = 0;
1377 }
1378
1379 /* bufptr and addr now point immediately beyond the last byte which we
1380 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1381 *bytes_read = bufptr - *buffer;
1382
1383 QUIT;
1384
1385 discard_cleanups (old_chain);
1386
1387 return errcode;
1388}
1389
1390/* Print a string from the inferior, starting at ADDR and printing up to LEN
1391 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1392 stops at the first null byte, otherwise printing proceeds (including null
1393 bytes) until either print_max or LEN characters have been printed,
1394 whichever is smaller. */
1395
1396int
6c7a06a3
TT
1397val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1398 struct ui_file *stream,
ae6a3a4c
TJB
1399 const struct value_print_options *options)
1400{
1401 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1402 int errcode; /* Errno returned from bad reads. */
1403 int found_nul; /* Non-zero if we found the nul char */
1404 unsigned int fetchlimit; /* Maximum number of chars to print. */
1405 int bytes_read;
1406 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1407 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1408 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1410 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1411
1412 /* First we need to figure out the limit on the number of characters we are
1413 going to attempt to fetch and print. This is actually pretty simple. If
1414 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1415 LEN is -1, then the limit is print_max. This is true regardless of
1416 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1417 because finding the null byte (or available memory) is what actually
1418 limits the fetch. */
1419
1420 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1421
e17a4113
UW
1422 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1423 &buffer, &bytes_read);
ae6a3a4c
TJB
1424 old_chain = make_cleanup (xfree, buffer);
1425
1426 addr += bytes_read;
c906108c
SS
1427
1428 /* We now have either successfully filled the buffer to fetchlimit, or
ae6a3a4c
TJB
1429 terminated early due to an error or finding a null char when LEN is -1. */
1430
1431 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1432 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1433 byte_order) == 0;
c906108c
SS
1434 if (len == -1 && !found_nul)
1435 {
777ea8f1 1436 gdb_byte *peekbuf;
c906108c 1437
ae6a3a4c 1438 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1439 to peek at the next character. If not successful, or it is not
1440 a null byte, then force ellipsis to be printed. */
c906108c 1441
777ea8f1 1442 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1443
1444 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1445 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1446 force_ellipsis = 1;
1447 }
ae6a3a4c 1448 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1449 {
1450 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1451 than the number of characters actually requested, always make us
ae6a3a4c 1452 print ellipsis. */
c906108c
SS
1453 force_ellipsis = 1;
1454 }
1455
c906108c
SS
1456 /* If we get an error before fetching anything, don't print a string.
1457 But if we fetch something and then get an error, print the string
1458 and then the error message. */
ae6a3a4c 1459 if (errcode == 0 || bytes_read > 0)
c906108c 1460 {
79a45b7d 1461 if (options->addressprint)
c906108c
SS
1462 {
1463 fputs_filtered (" ", stream);
1464 }
be759fcf
PM
1465 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1466 NULL, force_ellipsis, options);
c906108c
SS
1467 }
1468
1469 if (errcode != 0)
1470 {
1471 if (errcode == EIO)
1472 {
1473 fprintf_filtered (stream, " <Address ");
5af949e3 1474 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1475 fprintf_filtered (stream, " out of bounds>");
1476 }
1477 else
1478 {
1479 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1480 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1481 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1482 }
1483 }
ae6a3a4c 1484
c906108c
SS
1485 gdb_flush (stream);
1486 do_cleanups (old_chain);
ae6a3a4c
TJB
1487
1488 return (bytes_read / width);
c906108c 1489}
c906108c 1490\f
c5aa993b 1491
09e6485f
PA
1492/* The 'set input-radix' command writes to this auxiliary variable.
1493 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1494 it is left unchanged. */
1495
1496static unsigned input_radix_1 = 10;
1497
c906108c
SS
1498/* Validate an input or output radix setting, and make sure the user
1499 knows what they really did here. Radix setting is confusing, e.g.
1500 setting the input radix to "10" never changes it! */
1501
c906108c 1502static void
fba45db2 1503set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1504{
09e6485f 1505 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1506}
1507
c906108c 1508static void
fba45db2 1509set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1510{
1511 /* We don't currently disallow any input radix except 0 or 1, which don't
1512 make any mathematical sense. In theory, we can deal with any input
1513 radix greater than 1, even if we don't have unique digits for every
1514 value from 0 to radix-1, but in practice we lose on large radix values.
1515 We should either fix the lossage or restrict the radix range more.
1516 (FIXME). */
1517
1518 if (radix < 2)
1519 {
09e6485f 1520 input_radix_1 = input_radix;
8a3fe4f8 1521 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1522 radix);
1523 }
09e6485f 1524 input_radix_1 = input_radix = radix;
c906108c
SS
1525 if (from_tty)
1526 {
a3f17187 1527 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1528 radix, radix, radix);
1529 }
1530}
1531
09e6485f
PA
1532/* The 'set output-radix' command writes to this auxiliary variable.
1533 If the requested radix is valid, OUTPUT_RADIX is updated,
1534 otherwise, it is left unchanged. */
1535
1536static unsigned output_radix_1 = 10;
1537
c906108c 1538static void
fba45db2 1539set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1540{
09e6485f 1541 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1542}
1543
1544static void
fba45db2 1545set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1546{
1547 /* Validate the radix and disallow ones that we aren't prepared to
1548 handle correctly, leaving the radix unchanged. */
1549 switch (radix)
1550 {
1551 case 16:
79a45b7d 1552 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1553 break;
1554 case 10:
79a45b7d 1555 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1556 break;
1557 case 8:
79a45b7d 1558 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1559 break;
1560 default:
09e6485f 1561 output_radix_1 = output_radix;
8a3fe4f8 1562 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1563 radix);
1564 }
09e6485f 1565 output_radix_1 = output_radix = radix;
c906108c
SS
1566 if (from_tty)
1567 {
a3f17187 1568 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1569 radix, radix, radix);
1570 }
1571}
1572
1573/* Set both the input and output radix at once. Try to set the output radix
1574 first, since it has the most restrictive range. An radix that is valid as
1575 an output radix is also valid as an input radix.
1576
1577 It may be useful to have an unusual input radix. If the user wishes to
1578 set an input radix that is not valid as an output radix, he needs to use
1579 the 'set input-radix' command. */
1580
1581static void
fba45db2 1582set_radix (char *arg, int from_tty)
c906108c
SS
1583{
1584 unsigned radix;
1585
bb518678 1586 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1587 set_output_radix_1 (0, radix);
1588 set_input_radix_1 (0, radix);
1589 if (from_tty)
1590 {
a3f17187 1591 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1592 radix, radix, radix);
1593 }
1594}
1595
1596/* Show both the input and output radices. */
1597
c906108c 1598static void
fba45db2 1599show_radix (char *arg, int from_tty)
c906108c
SS
1600{
1601 if (from_tty)
1602 {
1603 if (input_radix == output_radix)
1604 {
a3f17187 1605 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1606 input_radix, input_radix, input_radix);
1607 }
1608 else
1609 {
a3f17187 1610 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1611 input_radix, input_radix, input_radix);
a3f17187 1612 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1613 output_radix, output_radix, output_radix);
1614 }
1615 }
1616}
c906108c 1617\f
c5aa993b 1618
c906108c 1619static void
fba45db2 1620set_print (char *arg, int from_tty)
c906108c
SS
1621{
1622 printf_unfiltered (
c5aa993b 1623 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1624 help_list (setprintlist, "set print ", -1, gdb_stdout);
1625}
1626
c906108c 1627static void
fba45db2 1628show_print (char *args, int from_tty)
c906108c
SS
1629{
1630 cmd_show_list (showprintlist, from_tty, "");
1631}
1632\f
1633void
fba45db2 1634_initialize_valprint (void)
c906108c 1635{
c906108c 1636 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1637 _("Generic command for setting how things print."),
c906108c 1638 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1639 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1640 /* prefer set print to set prompt */
c906108c
SS
1641 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1642
1643 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1644 _("Generic command for showing print settings."),
c906108c 1645 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1646 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1647 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1648
79a45b7d
TT
1649 add_setshow_uinteger_cmd ("elements", no_class,
1650 &user_print_options.print_max, _("\
35096d9d
AC
1651Set limit on string chars or array elements to print."), _("\
1652Show limit on string chars or array elements to print."), _("\
1653\"set print elements 0\" causes there to be no limit."),
1654 NULL,
920d2a44 1655 show_print_max,
35096d9d 1656 &setprintlist, &showprintlist);
c906108c 1657
79a45b7d
TT
1658 add_setshow_boolean_cmd ("null-stop", no_class,
1659 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1660Set printing of char arrays to stop at first null char."), _("\
1661Show printing of char arrays to stop at first null char."), NULL,
1662 NULL,
920d2a44 1663 show_stop_print_at_null,
5bf193a2 1664 &setprintlist, &showprintlist);
c906108c 1665
35096d9d 1666 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1667 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1668Set threshold for repeated print elements."), _("\
1669Show threshold for repeated print elements."), _("\
1670\"set print repeats 0\" causes all elements to be individually printed."),
1671 NULL,
920d2a44 1672 show_repeat_count_threshold,
35096d9d 1673 &setprintlist, &showprintlist);
c906108c 1674
79a45b7d
TT
1675 add_setshow_boolean_cmd ("pretty", class_support,
1676 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1677Set prettyprinting of structures."), _("\
1678Show prettyprinting of structures."), NULL,
1679 NULL,
920d2a44 1680 show_prettyprint_structs,
5bf193a2
AC
1681 &setprintlist, &showprintlist);
1682
79a45b7d
TT
1683 add_setshow_boolean_cmd ("union", class_support,
1684 &user_print_options.unionprint, _("\
5bf193a2
AC
1685Set printing of unions interior to structures."), _("\
1686Show printing of unions interior to structures."), NULL,
1687 NULL,
920d2a44 1688 show_unionprint,
5bf193a2
AC
1689 &setprintlist, &showprintlist);
1690
79a45b7d
TT
1691 add_setshow_boolean_cmd ("array", class_support,
1692 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1693Set prettyprinting of arrays."), _("\
1694Show prettyprinting of arrays."), NULL,
1695 NULL,
920d2a44 1696 show_prettyprint_arrays,
5bf193a2
AC
1697 &setprintlist, &showprintlist);
1698
79a45b7d
TT
1699 add_setshow_boolean_cmd ("address", class_support,
1700 &user_print_options.addressprint, _("\
5bf193a2
AC
1701Set printing of addresses."), _("\
1702Show printing of addresses."), NULL,
1703 NULL,
920d2a44 1704 show_addressprint,
5bf193a2 1705 &setprintlist, &showprintlist);
c906108c 1706
1e8fb976
PA
1707 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1708 _("\
35096d9d
AC
1709Set default input radix for entering numbers."), _("\
1710Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1711 set_input_radix,
1712 show_input_radix,
1713 &setlist, &showlist);
35096d9d 1714
1e8fb976
PA
1715 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1716 _("\
35096d9d
AC
1717Set default output radix for printing of values."), _("\
1718Show default output radix for printing of values."), NULL,
1e8fb976
PA
1719 set_output_radix,
1720 show_output_radix,
1721 &setlist, &showlist);
c906108c 1722
cb1a6d5f
AC
1723 /* The "set radix" and "show radix" commands are special in that
1724 they are like normal set and show commands but allow two normally
1725 independent variables to be either set or shown with a single
b66df561 1726 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1727 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1728 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1729 longer true - show can display anything. */
1a966eab
AC
1730 add_cmd ("radix", class_support, set_radix, _("\
1731Set default input and output number radices.\n\
c906108c 1732Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1733Without an argument, sets both radices back to the default value of 10."),
c906108c 1734 &setlist);
1a966eab
AC
1735 add_cmd ("radix", class_support, show_radix, _("\
1736Show the default input and output number radices.\n\
1737Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1738 &showlist);
1739
e79af960 1740 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1741 &user_print_options.print_array_indexes, _("\
e79af960
JB
1742Set printing of array indexes."), _("\
1743Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1744 &setprintlist, &showprintlist);
c906108c 1745}
This page took 1.131097 seconds and 4 git commands to generate.