* valprint.c (val_print): Add new language parameter and use it
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
9b254dd1 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
777ea8f1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
c906108c
SS
37
38#include <errno.h>
39
40/* Prototypes for local functions */
41
777ea8f1 42static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
43 int len, int *errnoptr);
44
a14ed312 45static void show_print (char *, int);
c906108c 46
a14ed312 47static void set_print (char *, int);
c906108c 48
a14ed312 49static void set_radix (char *, int);
c906108c 50
a14ed312 51static void show_radix (char *, int);
c906108c 52
a14ed312 53static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 54
a14ed312 55static void set_input_radix_1 (int, unsigned);
c906108c 56
a14ed312 57static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 58
a14ed312 59static void set_output_radix_1 (int, unsigned);
c906108c 60
a14ed312 61void _initialize_valprint (void);
c906108c
SS
62
63/* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68unsigned int print_max;
69#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
920d2a44
AC
70static void
71show_print_max (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73{
74 fprintf_filtered (file, _("\
75Limit on string chars or array elements to print is %s.\n"),
76 value);
77}
78
c906108c
SS
79
80/* Default input and output radixes, and output format letter. */
81
82unsigned input_radix = 10;
920d2a44
AC
83static void
84show_input_radix (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86{
87 fprintf_filtered (file, _("\
88Default input radix for entering numbers is %s.\n"),
89 value);
90}
91
c906108c 92unsigned output_radix = 10;
920d2a44
AC
93static void
94show_output_radix (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96{
97 fprintf_filtered (file, _("\
98Default output radix for printing of values is %s.\n"),
99 value);
100}
c906108c
SS
101int output_format = 0;
102
e79af960
JB
103/* By default we print arrays without printing the index of each element in
104 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
105
106static int print_array_indexes = 0;
107static void
108show_print_array_indexes (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
112}
113
c906108c
SS
114/* Print repeat counts if there are more than this many repetitions of an
115 element in an array. Referenced by the low level language dependent
116 print routines. */
117
118unsigned int repeat_count_threshold = 10;
920d2a44
AC
119static void
120show_repeat_count_threshold (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
124 value);
125}
c906108c
SS
126
127/* If nonzero, stops printing of char arrays at first null. */
128
129int stop_print_at_null;
920d2a44
AC
130static void
131show_stop_print_at_null (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133{
134 fprintf_filtered (file, _("\
135Printing of char arrays to stop at first null char is %s.\n"),
136 value);
137}
c906108c
SS
138
139/* Controls pretty printing of structures. */
140
141int prettyprint_structs;
920d2a44
AC
142static void
143show_prettyprint_structs (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
147}
c906108c
SS
148
149/* Controls pretty printing of arrays. */
150
151int prettyprint_arrays;
920d2a44
AC
152static void
153show_prettyprint_arrays (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
157}
c906108c
SS
158
159/* If nonzero, causes unions inside structures or other unions to be
160 printed. */
161
162int unionprint; /* Controls printing of nested unions. */
920d2a44
AC
163static void
164show_unionprint (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("\
168Printing of unions interior to structures is %s.\n"),
169 value);
170}
c906108c
SS
171
172/* If nonzero, causes machine addresses to be printed in certain contexts. */
173
174int addressprint; /* Controls printing of machine addresses */
920d2a44
AC
175static void
176show_addressprint (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
180}
c906108c 181\f
c5aa993b 182
d8ca156b
JB
183/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
184 (within GDB), which came from the inferior at address ADDRESS, onto
185 stdio stream STREAM according to FORMAT (a letter, or 0 for natural
186 format using TYPE).
c906108c
SS
187
188 If DEREF_REF is nonzero, then dereference references, otherwise just print
189 them like pointers.
190
191 The PRETTY parameter controls prettyprinting.
192
193 If the data are a string pointer, returns the number of string characters
194 printed.
195
196 FIXME: The data at VALADDR is in target byte order. If gdb is ever
197 enhanced to be able to debug more than the single target it was compiled
198 for (specific CPU type and thus specific target byte ordering), then
199 either the print routines are going to have to take this into account,
200 or the data is going to have to be passed into here already converted
201 to the host byte ordering, whichever is more convenient. */
202
203
204int
fc1a4b47 205val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 206 CORE_ADDR address, struct ui_file *stream, int format,
d8ca156b
JB
207 int deref_ref, int recurse, enum val_prettyprint pretty,
208 const struct language_defn *language)
c906108c 209{
19ca80ba 210 volatile struct gdb_exception except;
d5d6fca5 211 volatile enum val_prettyprint real_pretty = pretty;
19ca80ba
DJ
212 int ret = 0;
213
c906108c
SS
214 struct type *real_type = check_typedef (type);
215 if (pretty == Val_pretty_default)
d5d6fca5 216 real_pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
c5aa993b 217
c906108c
SS
218 QUIT;
219
220 /* Ensure that the type is complete and not just a stub. If the type is
221 only a stub and we can't find and substitute its complete type, then
222 print appropriate string and return. */
223
74a9bb82 224 if (TYPE_STUB (real_type))
c906108c
SS
225 {
226 fprintf_filtered (stream, "<incomplete type>");
227 gdb_flush (stream);
228 return (0);
229 }
c5aa993b 230
19ca80ba
DJ
231 TRY_CATCH (except, RETURN_MASK_ERROR)
232 {
d8ca156b
JB
233 ret = language->la_val_print (type, valaddr, embedded_offset, address,
234 stream, format, deref_ref, recurse,
235 real_pretty);
19ca80ba
DJ
236 }
237 if (except.reason < 0)
238 fprintf_filtered (stream, _("<error reading variable>"));
239
240 return ret;
c906108c
SS
241}
242
806048c6
DJ
243/* Check whether the value VAL is printable. Return 1 if it is;
244 return 0 and print an appropriate error message to STREAM if it
245 is not. */
c906108c 246
806048c6
DJ
247static int
248value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
249{
250 if (val == 0)
251 {
806048c6 252 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
253 return 0;
254 }
806048c6 255
feb13ab0 256 if (value_optimized_out (val))
c906108c 257 {
806048c6 258 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
259 return 0;
260 }
806048c6
DJ
261
262 return 1;
263}
264
d8ca156b
JB
265/* Print using the given LANGUAGE the value VAL onto stream STREAM according
266 to FORMAT (a letter, or 0 for natural format using TYPE).
806048c6
DJ
267
268 If DEREF_REF is nonzero, then dereference references, otherwise just print
269 them like pointers.
270
271 The PRETTY parameter controls prettyprinting.
272
273 If the data are a string pointer, returns the number of string characters
274 printed.
275
276 This is a preferable interface to val_print, above, because it uses
277 GDB's value mechanism. */
278
279int
280common_val_print (struct value *val, struct ui_file *stream, int format,
d8ca156b
JB
281 int deref_ref, int recurse, enum val_prettyprint pretty,
282 const struct language_defn *language)
806048c6
DJ
283{
284 if (!value_check_printable (val, stream))
285 return 0;
286
287 return val_print (value_type (val), value_contents_all (val),
288 value_embedded_offset (val), VALUE_ADDRESS (val),
d8ca156b
JB
289 stream, format, deref_ref, recurse, pretty,
290 language);
806048c6
DJ
291}
292
293/* Print the value VAL in C-ish syntax on stream STREAM.
294 FORMAT is a format-letter, or 0 for print in natural format of data type.
295 If the object printed is a string pointer, returns
296 the number of string bytes printed. */
297
298int
299value_print (struct value *val, struct ui_file *stream, int format,
300 enum val_prettyprint pretty)
301{
302 if (!value_check_printable (val, stream))
303 return 0;
304
c906108c
SS
305 return LA_VALUE_PRINT (val, stream, format, pretty);
306}
307
308/* Called by various <lang>_val_print routines to print
309 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
310 value. STREAM is where to print the value. */
311
312void
fc1a4b47 313val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 314 struct ui_file *stream)
c906108c
SS
315{
316 if (TYPE_LENGTH (type) > sizeof (LONGEST))
317 {
318 LONGEST val;
319
320 if (TYPE_UNSIGNED (type)
321 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
322 &val))
323 {
324 print_longest (stream, 'u', 0, val);
325 }
326 else
327 {
328 /* Signed, or we couldn't turn an unsigned value into a
329 LONGEST. For signed values, one could assume two's
330 complement (a reasonable assumption, I think) and do
331 better than this. */
332 print_hex_chars (stream, (unsigned char *) valaddr,
333 TYPE_LENGTH (type));
334 }
335 }
336 else
337 {
c906108c
SS
338 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
339 unpack_long (type, valaddr));
c906108c
SS
340 }
341}
342
4f2aea11
MK
343void
344val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
345 struct ui_file *stream)
346{
befae759 347 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
348 int bitpos, nfields = TYPE_NFIELDS (type);
349
350 fputs_filtered ("[ ", stream);
351 for (bitpos = 0; bitpos < nfields; bitpos++)
352 {
316703b9
MK
353 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
354 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
355 {
356 if (TYPE_FIELD_NAME (type, bitpos))
357 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
358 else
359 fprintf_filtered (stream, "#%d ", bitpos);
360 }
361 }
362 fputs_filtered ("]", stream);
363}
364
c906108c
SS
365/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
366 The raison d'etre of this function is to consolidate printing of
bb599908
PH
367 LONG_LONG's into this one function. The format chars b,h,w,g are
368 from print_scalar_formatted(). Numbers are printed using C
369 format.
370
371 USE_C_FORMAT means to use C format in all cases. Without it,
372 'o' and 'x' format do not include the standard C radix prefix
373 (leading 0 or 0x).
374
375 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
376 and was intended to request formating according to the current
377 language and would be used for most integers that GDB prints. The
378 exceptional cases were things like protocols where the format of
379 the integer is a protocol thing, not a user-visible thing). The
380 parameter remains to preserve the information of what things might
381 be printed with language-specific format, should we ever resurrect
382 that capability. */
c906108c
SS
383
384void
bb599908 385print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 386 LONGEST val_long)
c906108c 387{
2bfb72ee
AC
388 const char *val;
389
c906108c
SS
390 switch (format)
391 {
392 case 'd':
bb599908 393 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 394 case 'u':
bb599908 395 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 396 case 'x':
bb599908 397 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 398 case 'b':
bb599908 399 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 400 case 'h':
bb599908 401 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 402 case 'w':
bb599908 403 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 404 case 'g':
bb599908 405 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
406 break;
407 case 'o':
bb599908 408 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 409 default:
e2e0b3e5 410 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 411 }
2bfb72ee 412 fputs_filtered (val, stream);
c906108c
SS
413}
414
c906108c
SS
415/* This used to be a macro, but I don't think it is called often enough
416 to merit such treatment. */
417/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
418 arguments to a function, number in a value history, register number, etc.)
419 where the value must not be larger than can fit in an int. */
420
421int
fba45db2 422longest_to_int (LONGEST arg)
c906108c
SS
423{
424 /* Let the compiler do the work */
425 int rtnval = (int) arg;
426
427 /* Check for overflows or underflows */
428 if (sizeof (LONGEST) > sizeof (int))
429 {
430 if (rtnval != arg)
431 {
8a3fe4f8 432 error (_("Value out of range."));
c906108c
SS
433 }
434 }
435 return (rtnval);
436}
437
a73c86fb
AC
438/* Print a floating point value of type TYPE (not always a
439 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
440
441void
fc1a4b47 442print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 443 struct ui_file *stream)
c906108c
SS
444{
445 DOUBLEST doub;
446 int inv;
a73c86fb 447 const struct floatformat *fmt = NULL;
c906108c 448 unsigned len = TYPE_LENGTH (type);
20389057 449 enum float_kind kind;
c5aa993b 450
a73c86fb
AC
451 /* If it is a floating-point, check for obvious problems. */
452 if (TYPE_CODE (type) == TYPE_CODE_FLT)
453 fmt = floatformat_from_type (type);
20389057 454 if (fmt != NULL)
39424bef 455 {
20389057
DJ
456 kind = floatformat_classify (fmt, valaddr);
457 if (kind == float_nan)
458 {
459 if (floatformat_is_negative (fmt, valaddr))
460 fprintf_filtered (stream, "-");
461 fprintf_filtered (stream, "nan(");
462 fputs_filtered ("0x", stream);
463 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
464 fprintf_filtered (stream, ")");
465 return;
466 }
467 else if (kind == float_infinite)
468 {
469 if (floatformat_is_negative (fmt, valaddr))
470 fputs_filtered ("-", stream);
471 fputs_filtered ("inf", stream);
472 return;
473 }
7355ddba 474 }
c906108c 475
a73c86fb
AC
476 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
477 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
478 needs to be used as that takes care of any necessary type
479 conversions. Such conversions are of course direct to DOUBLEST
480 and disregard any possible target floating point limitations.
481 For instance, a u64 would be converted and displayed exactly on a
482 host with 80 bit DOUBLEST but with loss of information on a host
483 with 64 bit DOUBLEST. */
c2f05ac9 484
c906108c
SS
485 doub = unpack_double (type, valaddr, &inv);
486 if (inv)
487 {
488 fprintf_filtered (stream, "<invalid float value>");
489 return;
490 }
491
39424bef
MK
492 /* FIXME: kettenis/2001-01-20: The following code makes too much
493 assumptions about the host and target floating point format. */
494
a73c86fb 495 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 496 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
497 instead uses the type's length to determine the precision of the
498 floating-point value being printed. */
c2f05ac9 499
c906108c 500 if (len < sizeof (double))
c5aa993b 501 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 502 else if (len == sizeof (double))
c5aa993b 503 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
504 else
505#ifdef PRINTF_HAS_LONG_DOUBLE
506 fprintf_filtered (stream, "%.35Lg", doub);
507#else
39424bef
MK
508 /* This at least wins with values that are representable as
509 doubles. */
c906108c
SS
510 fprintf_filtered (stream, "%.17g", (double) doub);
511#endif
512}
513
7678ef8f
TJB
514void
515print_decimal_floating (const gdb_byte *valaddr, struct type *type,
516 struct ui_file *stream)
517{
518 char decstr[MAX_DECIMAL_STRING];
519 unsigned len = TYPE_LENGTH (type);
520
521 decimal_to_string (valaddr, len, decstr);
522 fputs_filtered (decstr, stream);
523 return;
524}
525
c5aa993b 526void
fc1a4b47 527print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
fba45db2 528 unsigned len)
c906108c
SS
529{
530
531#define BITS_IN_BYTES 8
532
fc1a4b47 533 const gdb_byte *p;
745b8ca0 534 unsigned int i;
c5aa993b 535 int b;
c906108c
SS
536
537 /* Declared "int" so it will be signed.
538 * This ensures that right shift will shift in zeros.
539 */
c5aa993b 540 const int mask = 0x080;
c906108c
SS
541
542 /* FIXME: We should be not printing leading zeroes in most cases. */
543
0d20ae72 544 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
545 {
546 for (p = valaddr;
547 p < valaddr + len;
548 p++)
549 {
c5aa993b
JM
550 /* Every byte has 8 binary characters; peel off
551 * and print from the MSB end.
552 */
553 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
554 {
555 if (*p & (mask >> i))
556 b = 1;
557 else
558 b = 0;
559
560 fprintf_filtered (stream, "%1d", b);
561 }
c906108c
SS
562 }
563 }
564 else
565 {
566 for (p = valaddr + len - 1;
567 p >= valaddr;
568 p--)
569 {
c5aa993b
JM
570 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
571 {
572 if (*p & (mask >> i))
573 b = 1;
574 else
575 b = 0;
576
577 fprintf_filtered (stream, "%1d", b);
578 }
c906108c
SS
579 }
580 }
c906108c
SS
581}
582
583/* VALADDR points to an integer of LEN bytes.
584 * Print it in octal on stream or format it in buf.
585 */
586void
fc1a4b47 587print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
6c403953 588 unsigned len)
c906108c 589{
fc1a4b47 590 const gdb_byte *p;
c906108c 591 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
592 int cycle;
593
c906108c
SS
594 /* FIXME: We should be not printing leading zeroes in most cases. */
595
596
597 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
598 * the extra bits, which cycle every three bytes:
599 *
600 * Byte side: 0 1 2 3
601 * | | | |
602 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
603 *
604 * Octal side: 0 1 carry 3 4 carry ...
605 *
606 * Cycle number: 0 1 2
607 *
608 * But of course we are printing from the high side, so we have to
609 * figure out where in the cycle we are so that we end up with no
610 * left over bits at the end.
611 */
612#define BITS_IN_OCTAL 3
613#define HIGH_ZERO 0340
614#define LOW_ZERO 0016
615#define CARRY_ZERO 0003
616#define HIGH_ONE 0200
617#define MID_ONE 0160
618#define LOW_ONE 0016
619#define CARRY_ONE 0001
620#define HIGH_TWO 0300
621#define MID_TWO 0070
622#define LOW_TWO 0007
623
624 /* For 32 we start in cycle 2, with two bits and one bit carry;
625 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
626 */
627 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
628 carry = 0;
c5aa993b 629
bb599908 630 fputs_filtered ("0", stream);
0d20ae72 631 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
632 {
633 for (p = valaddr;
634 p < valaddr + len;
635 p++)
636 {
c5aa993b
JM
637 switch (cycle)
638 {
639 case 0:
640 /* No carry in, carry out two bits.
641 */
642 octa1 = (HIGH_ZERO & *p) >> 5;
643 octa2 = (LOW_ZERO & *p) >> 2;
644 carry = (CARRY_ZERO & *p);
645 fprintf_filtered (stream, "%o", octa1);
646 fprintf_filtered (stream, "%o", octa2);
647 break;
648
649 case 1:
650 /* Carry in two bits, carry out one bit.
651 */
652 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
653 octa2 = (MID_ONE & *p) >> 4;
654 octa3 = (LOW_ONE & *p) >> 1;
655 carry = (CARRY_ONE & *p);
656 fprintf_filtered (stream, "%o", octa1);
657 fprintf_filtered (stream, "%o", octa2);
658 fprintf_filtered (stream, "%o", octa3);
659 break;
660
661 case 2:
662 /* Carry in one bit, no carry out.
663 */
664 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
665 octa2 = (MID_TWO & *p) >> 3;
666 octa3 = (LOW_TWO & *p);
667 carry = 0;
668 fprintf_filtered (stream, "%o", octa1);
669 fprintf_filtered (stream, "%o", octa2);
670 fprintf_filtered (stream, "%o", octa3);
671 break;
672
673 default:
8a3fe4f8 674 error (_("Internal error in octal conversion;"));
c5aa993b
JM
675 }
676
677 cycle++;
678 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
679 }
680 }
681 else
682 {
683 for (p = valaddr + len - 1;
684 p >= valaddr;
685 p--)
686 {
c5aa993b
JM
687 switch (cycle)
688 {
689 case 0:
690 /* Carry out, no carry in */
691 octa1 = (HIGH_ZERO & *p) >> 5;
692 octa2 = (LOW_ZERO & *p) >> 2;
693 carry = (CARRY_ZERO & *p);
694 fprintf_filtered (stream, "%o", octa1);
695 fprintf_filtered (stream, "%o", octa2);
696 break;
697
698 case 1:
699 /* Carry in, carry out */
700 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
701 octa2 = (MID_ONE & *p) >> 4;
702 octa3 = (LOW_ONE & *p) >> 1;
703 carry = (CARRY_ONE & *p);
704 fprintf_filtered (stream, "%o", octa1);
705 fprintf_filtered (stream, "%o", octa2);
706 fprintf_filtered (stream, "%o", octa3);
707 break;
708
709 case 2:
710 /* Carry in, no carry out */
711 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
712 octa2 = (MID_TWO & *p) >> 3;
713 octa3 = (LOW_TWO & *p);
714 carry = 0;
715 fprintf_filtered (stream, "%o", octa1);
716 fprintf_filtered (stream, "%o", octa2);
717 fprintf_filtered (stream, "%o", octa3);
718 break;
719
720 default:
8a3fe4f8 721 error (_("Internal error in octal conversion;"));
c5aa993b
JM
722 }
723
724 cycle++;
725 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
726 }
727 }
728
c906108c
SS
729}
730
731/* VALADDR points to an integer of LEN bytes.
732 * Print it in decimal on stream or format it in buf.
733 */
734void
fc1a4b47 735print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
fba45db2 736 unsigned len)
c906108c
SS
737{
738#define TEN 10
739#define TWO_TO_FOURTH 16
c5aa993b 740#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
741#define CARRY_LEFT( x ) ((x) % TEN)
742#define SHIFT( x ) ((x) << 4)
743#define START_P \
0d20ae72 744 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
c906108c 745#define NOT_END_P \
0d20ae72 746 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c906108c 747#define NEXT_P \
0d20ae72 748 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? p++ : p-- )
c906108c
SS
749#define LOW_NIBBLE( x ) ( (x) & 0x00F)
750#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
751
fc1a4b47 752 const gdb_byte *p;
c906108c 753 unsigned char *digits;
c5aa993b
JM
754 int carry;
755 int decimal_len;
756 int i, j, decimal_digits;
757 int dummy;
758 int flip;
759
c906108c
SS
760 /* Base-ten number is less than twice as many digits
761 * as the base 16 number, which is 2 digits per byte.
762 */
763 decimal_len = len * 2 * 2;
3c37485b 764 digits = xmalloc (decimal_len);
c906108c 765
c5aa993b
JM
766 for (i = 0; i < decimal_len; i++)
767 {
c906108c 768 digits[i] = 0;
c5aa993b 769 }
c906108c 770
c906108c
SS
771 /* Ok, we have an unknown number of bytes of data to be printed in
772 * decimal.
773 *
774 * Given a hex number (in nibbles) as XYZ, we start by taking X and
775 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
776 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
777 *
778 * The trick is that "digits" holds a base-10 number, but sometimes
779 * the individual digits are > 10.
780 *
781 * Outer loop is per nibble (hex digit) of input, from MSD end to
782 * LSD end.
783 */
c5aa993b 784 decimal_digits = 0; /* Number of decimal digits so far */
c906108c
SS
785 p = START_P;
786 flip = 0;
c5aa993b
JM
787 while (NOT_END_P)
788 {
c906108c
SS
789 /*
790 * Multiply current base-ten number by 16 in place.
791 * Each digit was between 0 and 9, now is between
792 * 0 and 144.
793 */
c5aa993b
JM
794 for (j = 0; j < decimal_digits; j++)
795 {
796 digits[j] = SHIFT (digits[j]);
797 }
798
c906108c
SS
799 /* Take the next nibble off the input and add it to what
800 * we've got in the LSB position. Bottom 'digit' is now
801 * between 0 and 159.
802 *
803 * "flip" is used to run this loop twice for each byte.
804 */
c5aa993b
JM
805 if (flip == 0)
806 {
807 /* Take top nibble.
808 */
809 digits[0] += HIGH_NIBBLE (*p);
810 flip = 1;
811 }
812 else
813 {
814 /* Take low nibble and bump our pointer "p".
815 */
816 digits[0] += LOW_NIBBLE (*p);
817 NEXT_P;
818 flip = 0;
819 }
c906108c
SS
820
821 /* Re-decimalize. We have to do this often enough
822 * that we don't overflow, but once per nibble is
823 * overkill. Easier this way, though. Note that the
824 * carry is often larger than 10 (e.g. max initial
825 * carry out of lowest nibble is 15, could bubble all
826 * the way up greater than 10). So we have to do
827 * the carrying beyond the last current digit.
828 */
829 carry = 0;
c5aa993b
JM
830 for (j = 0; j < decimal_len - 1; j++)
831 {
832 digits[j] += carry;
833
834 /* "/" won't handle an unsigned char with
835 * a value that if signed would be negative.
836 * So extend to longword int via "dummy".
837 */
838 dummy = digits[j];
839 carry = CARRY_OUT (dummy);
840 digits[j] = CARRY_LEFT (dummy);
841
842 if (j >= decimal_digits && carry == 0)
843 {
844 /*
845 * All higher digits are 0 and we
846 * no longer have a carry.
847 *
848 * Note: "j" is 0-based, "decimal_digits" is
849 * 1-based.
850 */
851 decimal_digits = j + 1;
852 break;
853 }
854 }
855 }
c906108c
SS
856
857 /* Ok, now "digits" is the decimal representation, with
858 * the "decimal_digits" actual digits. Print!
859 */
c5aa993b
JM
860 for (i = decimal_digits - 1; i >= 0; i--)
861 {
862 fprintf_filtered (stream, "%1d", digits[i]);
863 }
b8c9b27d 864 xfree (digits);
c906108c
SS
865}
866
867/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
868
6b9acc27 869void
fc1a4b47 870print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
6c403953 871 unsigned len)
c906108c 872{
fc1a4b47 873 const gdb_byte *p;
c906108c
SS
874
875 /* FIXME: We should be not printing leading zeroes in most cases. */
876
bb599908 877 fputs_filtered ("0x", stream);
0d20ae72 878 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
879 {
880 for (p = valaddr;
881 p < valaddr + len;
882 p++)
883 {
884 fprintf_filtered (stream, "%02x", *p);
885 }
886 }
887 else
888 {
889 for (p = valaddr + len - 1;
890 p >= valaddr;
891 p--)
892 {
893 fprintf_filtered (stream, "%02x", *p);
894 }
895 }
c906108c
SS
896}
897
6b9acc27
JJ
898/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
899 Omit any leading zero chars. */
900
901void
fc1a4b47 902print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
6c403953 903 unsigned len)
6b9acc27 904{
fc1a4b47 905 const gdb_byte *p;
6b9acc27 906
0d20ae72 907 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6b9acc27
JJ
908 {
909 p = valaddr;
910 while (p < valaddr + len - 1 && *p == 0)
911 ++p;
912
913 while (p < valaddr + len)
914 {
915 LA_EMIT_CHAR (*p, stream, '\'');
916 ++p;
917 }
918 }
919 else
920 {
921 p = valaddr + len - 1;
922 while (p > valaddr && *p == 0)
923 --p;
924
925 while (p >= valaddr)
926 {
927 LA_EMIT_CHAR (*p, stream, '\'');
928 --p;
929 }
930 }
931}
932
e79af960
JB
933/* Return non-zero if the debugger should print the index of each element
934 when printing array values. */
935
936int
937print_array_indexes_p (void)
938{
939 return print_array_indexes;
940}
941
942/* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
943 Save it into LOW_BOUND if not NULL.
944
945 Return 1 if the operation was successful. Return zero otherwise,
946 in which case the value of LOW_BOUND is unmodified.
947
948 Computing the array lower bound is pretty easy, but this function
949 does some additional verifications before returning the low bound.
950 If something incorrect is detected, it is better to return a status
951 rather than throwing an error, making it easier for the caller to
952 implement an error-recovery plan. For instance, it may decide to
953 warn the user that the bound was not found and then use a default
954 value instead. */
955
956int
957get_array_low_bound (struct type *type, long *low_bound)
958{
959 struct type *index = TYPE_INDEX_TYPE (type);
960 long low = 0;
961
962 if (index == NULL)
963 return 0;
964
965 if (TYPE_CODE (index) != TYPE_CODE_RANGE
966 && TYPE_CODE (index) != TYPE_CODE_ENUM)
967 return 0;
968
969 low = TYPE_LOW_BOUND (index);
970 if (low > TYPE_HIGH_BOUND (index))
971 return 0;
972
973 if (low_bound)
974 *low_bound = low;
975
976 return 1;
977}
978
979/* Print on STREAM using the given FORMAT the index for the element
980 at INDEX of an array whose index type is INDEX_TYPE. */
981
982void
983maybe_print_array_index (struct type *index_type, LONGEST index,
984 struct ui_file *stream, int format,
985 enum val_prettyprint pretty)
986{
987 struct value *index_value;
988
989 if (!print_array_indexes)
990 return;
991
992 index_value = value_from_longest (index_type, index);
993
994 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
995}
996
c906108c 997/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 998 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 999
c5aa993b
JM
1000 (FIXME?) Assumes array element separator is a comma, which is correct
1001 for all languages currently handled.
1002 (FIXME?) Some languages have a notation for repeated array elements,
1003 perhaps we should try to use that notation when appropriate.
1004 */
c906108c
SS
1005
1006void
fc1a4b47 1007val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd
AC
1008 CORE_ADDR address, struct ui_file *stream,
1009 int format, int deref_ref,
fba45db2
KB
1010 int recurse, enum val_prettyprint pretty,
1011 unsigned int i)
c906108c
SS
1012{
1013 unsigned int things_printed = 0;
1014 unsigned len;
e79af960 1015 struct type *elttype, *index_type;
c906108c
SS
1016 unsigned eltlen;
1017 /* Position of the array element we are examining to see
1018 whether it is repeated. */
1019 unsigned int rep1;
1020 /* Number of repetitions we have detected so far. */
1021 unsigned int reps;
168de233 1022 long low_bound_index = 0;
c5aa993b 1023
c906108c
SS
1024 elttype = TYPE_TARGET_TYPE (type);
1025 eltlen = TYPE_LENGTH (check_typedef (elttype));
1026 len = TYPE_LENGTH (type) / eltlen;
e79af960 1027 index_type = TYPE_INDEX_TYPE (type);
c906108c 1028
168de233
JB
1029 /* Get the array low bound. This only makes sense if the array
1030 has one or more element in it. */
1031 if (len > 0 && !get_array_low_bound (type, &low_bound_index))
1032 {
1033 warning ("unable to get low bound of array, using zero as default");
1034 low_bound_index = 0;
1035 }
1036
c906108c
SS
1037 annotate_array_section_begin (i, elttype);
1038
1039 for (; i < len && things_printed < print_max; i++)
1040 {
1041 if (i != 0)
1042 {
1043 if (prettyprint_arrays)
1044 {
1045 fprintf_filtered (stream, ",\n");
1046 print_spaces_filtered (2 + 2 * recurse, stream);
1047 }
1048 else
1049 {
1050 fprintf_filtered (stream, ", ");
1051 }
1052 }
1053 wrap_here (n_spaces (2 + 2 * recurse));
e79af960
JB
1054 maybe_print_array_index (index_type, i + low_bound_index,
1055 stream, format, pretty);
c906108c
SS
1056
1057 rep1 = i + 1;
1058 reps = 1;
c5aa993b 1059 while ((rep1 < len) &&
c906108c
SS
1060 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1061 {
1062 ++reps;
1063 ++rep1;
1064 }
1065
1066 if (reps > repeat_count_threshold)
1067 {
1068 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
d8ca156b 1069 deref_ref, recurse + 1, pretty, current_language);
c906108c
SS
1070 annotate_elt_rep (reps);
1071 fprintf_filtered (stream, " <repeats %u times>", reps);
1072 annotate_elt_rep_end ();
1073
1074 i = rep1 - 1;
1075 things_printed += repeat_count_threshold;
1076 }
1077 else
1078 {
1079 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
d8ca156b 1080 deref_ref, recurse + 1, pretty, current_language);
c906108c
SS
1081 annotate_elt ();
1082 things_printed++;
1083 }
1084 }
1085 annotate_array_section_end ();
1086 if (i < len)
1087 {
1088 fprintf_filtered (stream, "...");
1089 }
1090}
1091
917317f4
JM
1092/* Read LEN bytes of target memory at address MEMADDR, placing the
1093 results in GDB's memory at MYADDR. Returns a count of the bytes
1094 actually read, and optionally an errno value in the location
1095 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1096
1097/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1098 function be eliminated. */
1099
1100static int
777ea8f1 1101partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1102{
1103 int nread; /* Number of bytes actually read. */
1104 int errcode; /* Error from last read. */
1105
1106 /* First try a complete read. */
1107 errcode = target_read_memory (memaddr, myaddr, len);
1108 if (errcode == 0)
1109 {
1110 /* Got it all. */
1111 nread = len;
1112 }
1113 else
1114 {
1115 /* Loop, reading one byte at a time until we get as much as we can. */
1116 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1117 {
1118 errcode = target_read_memory (memaddr++, myaddr++, 1);
1119 }
1120 /* If an error, the last read was unsuccessful, so adjust count. */
1121 if (errcode != 0)
1122 {
1123 nread--;
1124 }
1125 }
1126 if (errnoptr != NULL)
1127 {
1128 *errnoptr = errcode;
1129 }
1130 return (nread);
1131}
1132
c906108c 1133/* Print a string from the inferior, starting at ADDR and printing up to LEN
c5aa993b
JM
1134 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1135 stops at the first null byte, otherwise printing proceeds (including null
1136 bytes) until either print_max or LEN characters have been printed,
1137 whichever is smaller. */
c906108c
SS
1138
1139/* FIXME: Use target_read_string. */
1140
1141int
fba45db2 1142val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
c906108c
SS
1143{
1144 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1145 int errcode; /* Errno returned from bad reads. */
1146 unsigned int fetchlimit; /* Maximum number of chars to print. */
1147 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1148 unsigned int chunksize; /* Size of each fetch, in chars. */
777ea8f1
DJ
1149 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1150 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1151 gdb_byte *limit; /* First location past end of fetch buffer. */
c5aa993b 1152 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
c906108c
SS
1153 int found_nul; /* Non-zero if we found the nul char */
1154
1155 /* First we need to figure out the limit on the number of characters we are
1156 going to attempt to fetch and print. This is actually pretty simple. If
1157 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1158 LEN is -1, then the limit is print_max. This is true regardless of
1159 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1160 because finding the null byte (or available memory) is what actually
1161 limits the fetch. */
1162
1163 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1164
1165 /* Now decide how large of chunks to try to read in one operation. This
1166 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1167 so we might as well read them all in one operation. If LEN is -1, we
1168 are looking for a null terminator to end the fetching, so we might as
1169 well read in blocks that are large enough to be efficient, but not so
1170 large as to be slow if fetchlimit happens to be large. So we choose the
1171 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1172 200 is way too big for remote debugging over a serial line. */
1173
1174 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1175
1176 /* Loop until we either have all the characters to print, or we encounter
1177 some error, such as bumping into the end of the address space. */
1178
1179 found_nul = 0;
1180 old_chain = make_cleanup (null_cleanup, 0);
1181
1182 if (len > 0)
1183 {
777ea8f1 1184 buffer = (gdb_byte *) xmalloc (len * width);
c906108c 1185 bufptr = buffer;
b8c9b27d 1186 old_chain = make_cleanup (xfree, buffer);
c906108c 1187
917317f4 1188 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1189 / width;
1190 addr += nfetch * width;
1191 bufptr += nfetch * width;
1192 }
1193 else if (len == -1)
1194 {
1195 unsigned long bufsize = 0;
1196 do
1197 {
1198 QUIT;
1199 nfetch = min (chunksize, fetchlimit - bufsize);
1200
1201 if (buffer == NULL)
777ea8f1 1202 buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c
SS
1203 else
1204 {
1205 discard_cleanups (old_chain);
777ea8f1 1206 buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width);
c906108c
SS
1207 }
1208
b8c9b27d 1209 old_chain = make_cleanup (xfree, buffer);
c906108c
SS
1210 bufptr = buffer + bufsize * width;
1211 bufsize += nfetch;
1212
1213 /* Read as much as we can. */
917317f4 1214 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
c5aa993b 1215 / width;
c906108c
SS
1216
1217 /* Scan this chunk for the null byte that terminates the string
1218 to print. If found, we don't need to fetch any more. Note
1219 that bufptr is explicitly left pointing at the next character
1220 after the null byte, or at the next character after the end of
1221 the buffer. */
1222
1223 limit = bufptr + nfetch * width;
1224 while (bufptr < limit)
1225 {
1226 unsigned long c;
1227
1228 c = extract_unsigned_integer (bufptr, width);
1229 addr += width;
1230 bufptr += width;
1231 if (c == 0)
1232 {
1233 /* We don't care about any error which happened after
1234 the NULL terminator. */
1235 errcode = 0;
1236 found_nul = 1;
1237 break;
1238 }
1239 }
1240 }
c5aa993b
JM
1241 while (errcode == 0 /* no error */
1242 && bufptr - buffer < fetchlimit * width /* no overrun */
1243 && !found_nul); /* haven't found nul yet */
c906108c
SS
1244 }
1245 else
1246 { /* length of string is really 0! */
1247 buffer = bufptr = NULL;
1248 errcode = 0;
1249 }
1250
1251 /* bufptr and addr now point immediately beyond the last byte which we
1252 consider part of the string (including a '\0' which ends the string). */
1253
1254 /* We now have either successfully filled the buffer to fetchlimit, or
1255 terminated early due to an error or finding a null char when LEN is -1. */
1256
1257 if (len == -1 && !found_nul)
1258 {
777ea8f1 1259 gdb_byte *peekbuf;
c906108c
SS
1260
1261 /* We didn't find a null terminator we were looking for. Attempt
c5aa993b
JM
1262 to peek at the next character. If not successful, or it is not
1263 a null byte, then force ellipsis to be printed. */
c906108c 1264
777ea8f1 1265 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1266
1267 if (target_read_memory (addr, peekbuf, width) == 0
1268 && extract_unsigned_integer (peekbuf, width) != 0)
1269 force_ellipsis = 1;
1270 }
c5aa993b 1271 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
c906108c
SS
1272 {
1273 /* Getting an error when we have a requested length, or fetching less
c5aa993b
JM
1274 than the number of characters actually requested, always make us
1275 print ellipsis. */
c906108c
SS
1276 force_ellipsis = 1;
1277 }
1278
1279 QUIT;
1280
1281 /* If we get an error before fetching anything, don't print a string.
1282 But if we fetch something and then get an error, print the string
1283 and then the error message. */
1284 if (errcode == 0 || bufptr > buffer)
1285 {
1286 if (addressprint)
1287 {
1288 fputs_filtered (" ", stream);
1289 }
c5aa993b 1290 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
c906108c
SS
1291 }
1292
1293 if (errcode != 0)
1294 {
1295 if (errcode == EIO)
1296 {
1297 fprintf_filtered (stream, " <Address ");
ed49a04f 1298 fputs_filtered (paddress (addr), stream);
c906108c
SS
1299 fprintf_filtered (stream, " out of bounds>");
1300 }
1301 else
1302 {
1303 fprintf_filtered (stream, " <Error reading address ");
ed49a04f 1304 fputs_filtered (paddress (addr), stream);
c906108c
SS
1305 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1306 }
1307 }
1308 gdb_flush (stream);
1309 do_cleanups (old_chain);
c5aa993b 1310 return ((bufptr - buffer) / width);
c906108c 1311}
c906108c 1312\f
c5aa993b 1313
c906108c
SS
1314/* Validate an input or output radix setting, and make sure the user
1315 knows what they really did here. Radix setting is confusing, e.g.
1316 setting the input radix to "10" never changes it! */
1317
c906108c 1318static void
fba45db2 1319set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1320{
f66c9f11 1321 set_input_radix_1 (from_tty, input_radix);
c906108c
SS
1322}
1323
c906108c 1324static void
fba45db2 1325set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1326{
1327 /* We don't currently disallow any input radix except 0 or 1, which don't
1328 make any mathematical sense. In theory, we can deal with any input
1329 radix greater than 1, even if we don't have unique digits for every
1330 value from 0 to radix-1, but in practice we lose on large radix values.
1331 We should either fix the lossage or restrict the radix range more.
1332 (FIXME). */
1333
1334 if (radix < 2)
1335 {
f66c9f11
AC
1336 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1337 value. */
8a3fe4f8 1338 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1339 radix);
1340 }
1341 input_radix = radix;
1342 if (from_tty)
1343 {
a3f17187 1344 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1345 radix, radix, radix);
1346 }
1347}
1348
c906108c 1349static void
fba45db2 1350set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1351{
f66c9f11 1352 set_output_radix_1 (from_tty, output_radix);
c906108c
SS
1353}
1354
1355static void
fba45db2 1356set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1357{
1358 /* Validate the radix and disallow ones that we aren't prepared to
1359 handle correctly, leaving the radix unchanged. */
1360 switch (radix)
1361 {
1362 case 16:
c5aa993b 1363 output_format = 'x'; /* hex */
c906108c
SS
1364 break;
1365 case 10:
c5aa993b 1366 output_format = 0; /* decimal */
c906108c
SS
1367 break;
1368 case 8:
c5aa993b 1369 output_format = 'o'; /* octal */
c906108c
SS
1370 break;
1371 default:
f66c9f11
AC
1372 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1373 value. */
8a3fe4f8 1374 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1375 radix);
1376 }
1377 output_radix = radix;
1378 if (from_tty)
1379 {
a3f17187 1380 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1381 radix, radix, radix);
1382 }
1383}
1384
1385/* Set both the input and output radix at once. Try to set the output radix
1386 first, since it has the most restrictive range. An radix that is valid as
1387 an output radix is also valid as an input radix.
1388
1389 It may be useful to have an unusual input radix. If the user wishes to
1390 set an input radix that is not valid as an output radix, he needs to use
1391 the 'set input-radix' command. */
1392
1393static void
fba45db2 1394set_radix (char *arg, int from_tty)
c906108c
SS
1395{
1396 unsigned radix;
1397
bb518678 1398 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1399 set_output_radix_1 (0, radix);
1400 set_input_radix_1 (0, radix);
1401 if (from_tty)
1402 {
a3f17187 1403 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1404 radix, radix, radix);
1405 }
1406}
1407
1408/* Show both the input and output radices. */
1409
c906108c 1410static void
fba45db2 1411show_radix (char *arg, int from_tty)
c906108c
SS
1412{
1413 if (from_tty)
1414 {
1415 if (input_radix == output_radix)
1416 {
a3f17187 1417 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1418 input_radix, input_radix, input_radix);
1419 }
1420 else
1421 {
a3f17187 1422 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1423 input_radix, input_radix, input_radix);
a3f17187 1424 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1425 output_radix, output_radix, output_radix);
1426 }
1427 }
1428}
c906108c 1429\f
c5aa993b 1430
c906108c 1431static void
fba45db2 1432set_print (char *arg, int from_tty)
c906108c
SS
1433{
1434 printf_unfiltered (
c5aa993b 1435 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1436 help_list (setprintlist, "set print ", -1, gdb_stdout);
1437}
1438
c906108c 1439static void
fba45db2 1440show_print (char *args, int from_tty)
c906108c
SS
1441{
1442 cmd_show_list (showprintlist, from_tty, "");
1443}
1444\f
1445void
fba45db2 1446_initialize_valprint (void)
c906108c
SS
1447{
1448 struct cmd_list_element *c;
1449
1450 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1451 _("Generic command for setting how things print."),
c906108c 1452 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1453 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1454 /* prefer set print to set prompt */
c906108c
SS
1455 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1456
1457 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1458 _("Generic command for showing print settings."),
c906108c 1459 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1460 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1461 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1462
35096d9d
AC
1463 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1464Set limit on string chars or array elements to print."), _("\
1465Show limit on string chars or array elements to print."), _("\
1466\"set print elements 0\" causes there to be no limit."),
1467 NULL,
920d2a44 1468 show_print_max,
35096d9d 1469 &setprintlist, &showprintlist);
c906108c 1470
5bf193a2
AC
1471 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1472Set printing of char arrays to stop at first null char."), _("\
1473Show printing of char arrays to stop at first null char."), NULL,
1474 NULL,
920d2a44 1475 show_stop_print_at_null,
5bf193a2 1476 &setprintlist, &showprintlist);
c906108c 1477
35096d9d
AC
1478 add_setshow_uinteger_cmd ("repeats", no_class,
1479 &repeat_count_threshold, _("\
1480Set threshold for repeated print elements."), _("\
1481Show threshold for repeated print elements."), _("\
1482\"set print repeats 0\" causes all elements to be individually printed."),
1483 NULL,
920d2a44 1484 show_repeat_count_threshold,
35096d9d 1485 &setprintlist, &showprintlist);
c906108c 1486
5bf193a2
AC
1487 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1488Set prettyprinting of structures."), _("\
1489Show prettyprinting of structures."), NULL,
1490 NULL,
920d2a44 1491 show_prettyprint_structs,
5bf193a2
AC
1492 &setprintlist, &showprintlist);
1493
1494 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1495Set printing of unions interior to structures."), _("\
1496Show printing of unions interior to structures."), NULL,
1497 NULL,
920d2a44 1498 show_unionprint,
5bf193a2
AC
1499 &setprintlist, &showprintlist);
1500
1501 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1502Set prettyprinting of arrays."), _("\
1503Show prettyprinting of arrays."), NULL,
1504 NULL,
920d2a44 1505 show_prettyprint_arrays,
5bf193a2
AC
1506 &setprintlist, &showprintlist);
1507
1508 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1509Set printing of addresses."), _("\
1510Show printing of addresses."), NULL,
1511 NULL,
920d2a44 1512 show_addressprint,
5bf193a2 1513 &setprintlist, &showprintlist);
c906108c 1514
35096d9d
AC
1515 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1516Set default input radix for entering numbers."), _("\
1517Show default input radix for entering numbers."), NULL,
1518 set_input_radix,
920d2a44 1519 show_input_radix,
35096d9d
AC
1520 &setlist, &showlist);
1521
1522 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1523Set default output radix for printing of values."), _("\
1524Show default output radix for printing of values."), NULL,
1525 set_output_radix,
920d2a44 1526 show_output_radix,
35096d9d 1527 &setlist, &showlist);
c906108c 1528
cb1a6d5f
AC
1529 /* The "set radix" and "show radix" commands are special in that
1530 they are like normal set and show commands but allow two normally
1531 independent variables to be either set or shown with a single
b66df561 1532 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1533 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1534 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1535 longer true - show can display anything. */
1a966eab
AC
1536 add_cmd ("radix", class_support, set_radix, _("\
1537Set default input and output number radices.\n\
c906108c 1538Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1539Without an argument, sets both radices back to the default value of 10."),
c906108c 1540 &setlist);
1a966eab
AC
1541 add_cmd ("radix", class_support, show_radix, _("\
1542Show the default input and output number radices.\n\
1543Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1544 &showlist);
1545
e79af960
JB
1546 add_setshow_boolean_cmd ("array-indexes", class_support,
1547 &print_array_indexes, _("\
1548Set printing of array indexes."), _("\
1549Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1550 &setprintlist, &showprintlist);
1551
c906108c
SS
1552 /* Give people the defaults which they are used to. */
1553 prettyprint_structs = 0;
1554 prettyprint_arrays = 0;
1555 unionprint = 1;
1556 addressprint = 1;
1557 print_max = PRINT_MAX_DEFAULT;
1558}
This page took 0.889878 seconds and 4 git commands to generate.