Factor out flags printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
37#include <ctype.h>
c906108c 38
0d63ecda
KS
39/* Maximum number of wchars returned from wchar_iterate. */
40#define MAX_WCHARS 4
41
42/* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46/* Character buffer size saved while iterating over wchars. */
47#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49/* A structure to encapsulate state information from iterated
50 character conversions. */
51struct converted_character
52{
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70};
71
72typedef struct converted_character converted_character_d;
73DEF_VEC_O (converted_character_d);
74
e7045703
DE
75/* Command lists for set/show print raw. */
76struct cmd_list_element *setprintrawlist;
77struct cmd_list_element *showprintrawlist;
0d63ecda 78
c906108c
SS
79/* Prototypes for local functions */
80
777ea8f1 81static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 82 int len, int *errptr);
917317f4 83
a14ed312 84static void show_print (char *, int);
c906108c 85
a14ed312 86static void set_print (char *, int);
c906108c 87
a14ed312 88static void set_radix (char *, int);
c906108c 89
a14ed312 90static void show_radix (char *, int);
c906108c 91
a14ed312 92static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 93
a14ed312 94static void set_input_radix_1 (int, unsigned);
c906108c 95
a14ed312 96static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_output_radix_1 (int, unsigned);
c906108c 99
a14ed312 100void _initialize_valprint (void);
c906108c 101
581e13c1 102#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
103
104struct value_print_options user_print_options =
105{
2a998fc0
DE
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
79a45b7d
TT
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
79a45b7d
TT
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
a6bac58e
TT
121 1, /* pascal_static_field_print */
122 0, /* raw */
9cb709b6
TT
123 0, /* summary */
124 1 /* symbol_print */
79a45b7d
TT
125};
126
127/* Initialize *OPTS to be a copy of the user print options. */
128void
129get_user_print_options (struct value_print_options *opts)
130{
131 *opts = user_print_options;
132}
133
134/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 135 pretty-formatting disabled. */
79a45b7d 136void
2a998fc0 137get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
138{
139 *opts = user_print_options;
2a998fc0 140 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
141}
142
143/* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145void
146get_formatted_print_options (struct value_print_options *opts,
147 char format)
148{
149 *opts = user_print_options;
150 opts->format = format;
151}
152
920d2a44
AC
153static void
154show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
3e43a32a
MS
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
920d2a44
AC
160 value);
161}
162
c906108c
SS
163
164/* Default input and output radixes, and output format letter. */
165
166unsigned input_radix = 10;
920d2a44
AC
167static void
168show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
3e43a32a
MS
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
173 value);
174}
175
c906108c 176unsigned output_radix = 10;
920d2a44
AC
177static void
178show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
3e43a32a
MS
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
183 value);
184}
c906108c 185
e79af960
JB
186/* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
e79af960
JB
189static void
190show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194}
195
c906108c
SS
196/* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
581e13c1 198 print routines. */
c906108c 199
920d2a44
AC
200static void
201show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203{
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206}
c906108c 207
581e13c1 208/* If nonzero, stops printing of char arrays at first null. */
c906108c 209
920d2a44
AC
210static void
211show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
3e43a32a
MS
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
920d2a44
AC
217 value);
218}
c906108c 219
581e13c1 220/* Controls pretty printing of structures. */
c906108c 221
920d2a44 222static void
2a998fc0 223show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
224 struct cmd_list_element *c, const char *value)
225{
2a998fc0 226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 227}
c906108c
SS
228
229/* Controls pretty printing of arrays. */
230
920d2a44 231static void
2a998fc0 232show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
233 struct cmd_list_element *c, const char *value)
234{
2a998fc0 235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 236}
c906108c
SS
237
238/* If nonzero, causes unions inside structures or other unions to be
581e13c1 239 printed. */
c906108c 240
920d2a44
AC
241static void
242show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
3e43a32a
MS
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
247 value);
248}
c906108c 249
581e13c1 250/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 251
920d2a44
AC
252static void
253show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255{
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257}
9cb709b6
TT
258
259static void
260show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266}
267
c906108c 268\f
c5aa993b 269
a6bac58e
TT
270/* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
6211c335
YQ
274int
275val_print_scalar_type_p (struct type *type)
a6bac58e 276{
f168693b 277 type = check_typedef (type);
a6bac58e
TT
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
f168693b 281 type = check_typedef (type);
a6bac58e
TT
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
a6bac58e
TT
290 return 0;
291 default:
292 return 1;
293 }
294}
295
a72c8f6a 296/* See its definition in value.h. */
0e03807e 297
a72c8f6a 298int
0e03807e
TT
299valprint_check_validity (struct ui_file *stream,
300 struct type *type,
4e07d55f 301 int embedded_offset,
0e03807e
TT
302 const struct value *val)
303{
f168693b 304 type = check_typedef (type);
0e03807e
TT
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
9a0dc9e3
PA
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 313 {
901461f8 314 val_print_optimized_out (val, stream);
0e03807e
TT
315 return 0;
316 }
8cf6f0b1 317
4e07d55f 318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
4e07d55f
PA
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
0e03807e
TT
330 }
331
332 return 1;
333}
334
585fdaa1 335void
901461f8 336val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 337{
901461f8 338 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 339 val_print_not_saved (stream);
901461f8
PA
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
342}
343
782d47df
PA
344void
345val_print_not_saved (struct ui_file *stream)
346{
347 fprintf_filtered (stream, _("<not saved>"));
348}
349
4e07d55f
PA
350void
351val_print_unavailable (struct ui_file *stream)
352{
353 fprintf_filtered (stream, _("<unavailable>"));
354}
355
8af8e3bc
PA
356void
357val_print_invalid_address (struct ui_file *stream)
358{
359 fprintf_filtered (stream, _("<invalid address>"));
360}
361
9f436164
SM
362/* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369static void
370print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373{
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387}
388
557dbe8a
SM
389/* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391static void
392generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397{
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426}
427
81eb921a
SM
428/* generic_val_print helper for TYPE_CODE_PTR. */
429
430static void
431generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435{
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449}
450
45000ea2
SM
451
452/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454static void
455generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459{
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462}
463
fe43fede
SM
464/* generic_val_print helper for TYPE_CODE_REF. */
465
466static void
467generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471{
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510}
511
ef0bc0dd
SM
512/* generic_val_print helper for TYPE_CODE_ENUM. */
513
514static void
515generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519{
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579}
580
d93880bd
SM
581/* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583static void
584generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589{
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595}
596
e88acd96
TT
597/* A generic val_print that is suitable for use by language
598 implementations of the la_val_print method. This function can
599 handle most type codes, though not all, notably exception
600 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
601 the caller.
602
603 Most arguments are as to val_print.
604
605 The additional DECORATIONS argument can be used to customize the
606 output in some small, language-specific ways. */
607
608void
609generic_val_print (struct type *type, const gdb_byte *valaddr,
610 int embedded_offset, CORE_ADDR address,
611 struct ui_file *stream, int recurse,
612 const struct value *original_value,
613 const struct value_print_options *options,
614 const struct generic_val_print_decorations *decorations)
615{
616 struct gdbarch *gdbarch = get_type_arch (type);
e88acd96 617 struct type *unresolved_type = type;
e88acd96 618 LONGEST val;
e88acd96 619
f168693b 620 type = check_typedef (type);
e88acd96
TT
621 switch (TYPE_CODE (type))
622 {
623 case TYPE_CODE_ARRAY:
557dbe8a
SM
624 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
625 recurse, original_value, options);
9f436164 626 break;
e88acd96
TT
627
628 case TYPE_CODE_MEMBERPTR:
45000ea2
SM
629 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
630 original_value, options);
e88acd96
TT
631 break;
632
633 case TYPE_CODE_PTR:
81eb921a
SM
634 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
635 original_value, options);
e88acd96
TT
636 break;
637
638 case TYPE_CODE_REF:
fe43fede
SM
639 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
640 original_value, options);
e88acd96
TT
641 break;
642
643 case TYPE_CODE_ENUM:
ef0bc0dd
SM
644 generic_val_print_enum (type, valaddr, embedded_offset, stream,
645 original_value, options);
e88acd96
TT
646 break;
647
648 case TYPE_CODE_FLAGS:
d93880bd
SM
649 generic_val_print_flags (type, valaddr, embedded_offset, stream,
650 original_value, options);
e88acd96
TT
651 break;
652
653 case TYPE_CODE_FUNC:
654 case TYPE_CODE_METHOD:
655 if (options->format)
656 {
657 val_print_scalar_formatted (type, valaddr, embedded_offset,
658 original_value, options, 0, stream);
659 break;
660 }
661 /* FIXME, we should consider, at least for ANSI C language,
662 eliminating the distinction made between FUNCs and POINTERs
663 to FUNCs. */
664 fprintf_filtered (stream, "{");
665 type_print (type, "", stream, -1);
666 fprintf_filtered (stream, "} ");
667 /* Try to print what function it points to, and its address. */
edf0c1b7 668 print_address_demangle (options, gdbarch, address, stream, demangle);
e88acd96
TT
669 break;
670
671 case TYPE_CODE_BOOL:
672 if (options->format || options->output_format)
673 {
674 struct value_print_options opts = *options;
675 opts.format = (options->format ? options->format
676 : options->output_format);
677 val_print_scalar_formatted (type, valaddr, embedded_offset,
678 original_value, &opts, 0, stream);
679 }
680 else
681 {
682 val = unpack_long (type, valaddr + embedded_offset);
683 if (val == 0)
684 fputs_filtered (decorations->false_name, stream);
685 else if (val == 1)
686 fputs_filtered (decorations->true_name, stream);
687 else
688 print_longest (stream, 'd', 0, val);
689 }
690 break;
691
692 case TYPE_CODE_RANGE:
0c9c3474 693 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
694 range type (I think it probably should copy it from the
695 target type), so we won't print values which are too large to
696 fit in a signed integer correctly. */
697 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
698 print with the target type, though, because the size of our
699 type and the target type might differ). */
700
701 /* FALLTHROUGH */
702
703 case TYPE_CODE_INT:
704 if (options->format || options->output_format)
705 {
706 struct value_print_options opts = *options;
707
708 opts.format = (options->format ? options->format
709 : options->output_format);
710 val_print_scalar_formatted (type, valaddr, embedded_offset,
711 original_value, &opts, 0, stream);
712 }
713 else
714 val_print_type_code_int (type, valaddr + embedded_offset, stream);
715 break;
716
717 case TYPE_CODE_CHAR:
718 if (options->format || options->output_format)
719 {
720 struct value_print_options opts = *options;
721
722 opts.format = (options->format ? options->format
723 : options->output_format);
724 val_print_scalar_formatted (type, valaddr, embedded_offset,
725 original_value, &opts, 0, stream);
726 }
727 else
728 {
729 val = unpack_long (type, valaddr + embedded_offset);
730 if (TYPE_UNSIGNED (type))
731 fprintf_filtered (stream, "%u", (unsigned int) val);
732 else
733 fprintf_filtered (stream, "%d", (int) val);
734 fputs_filtered (" ", stream);
735 LA_PRINT_CHAR (val, unresolved_type, stream);
736 }
737 break;
738
739 case TYPE_CODE_FLT:
740 if (options->format)
741 {
742 val_print_scalar_formatted (type, valaddr, embedded_offset,
743 original_value, options, 0, stream);
744 }
745 else
746 {
747 print_floating (valaddr + embedded_offset, type, stream);
748 }
749 break;
750
751 case TYPE_CODE_DECFLOAT:
752 if (options->format)
753 val_print_scalar_formatted (type, valaddr, embedded_offset,
754 original_value, options, 0, stream);
755 else
756 print_decimal_floating (valaddr + embedded_offset,
757 type, stream);
758 break;
759
760 case TYPE_CODE_VOID:
761 fputs_filtered (decorations->void_name, stream);
762 break;
763
764 case TYPE_CODE_ERROR:
765 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
766 break;
767
768 case TYPE_CODE_UNDEF:
769 /* This happens (without TYPE_FLAG_STUB set) on systems which
770 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
771 "struct foo *bar" and no complete type for struct foo in that
772 file. */
773 fprintf_filtered (stream, _("<incomplete type>"));
774 break;
775
776 case TYPE_CODE_COMPLEX:
777 fprintf_filtered (stream, "%s", decorations->complex_prefix);
778 if (options->format)
779 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
780 valaddr, embedded_offset,
781 original_value, options, 0, stream);
782 else
783 print_floating (valaddr + embedded_offset,
784 TYPE_TARGET_TYPE (type),
785 stream);
786 fprintf_filtered (stream, "%s", decorations->complex_infix);
787 if (options->format)
788 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
789 valaddr,
790 embedded_offset
791 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
792 original_value,
793 options, 0, stream);
794 else
795 print_floating (valaddr + embedded_offset
796 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
797 TYPE_TARGET_TYPE (type),
798 stream);
799 fprintf_filtered (stream, "%s", decorations->complex_suffix);
800 break;
801
802 case TYPE_CODE_UNION:
803 case TYPE_CODE_STRUCT:
804 case TYPE_CODE_METHODPTR:
805 default:
806 error (_("Unhandled type code %d in symbol table."),
807 TYPE_CODE (type));
808 }
809 gdb_flush (stream);
810}
811
32b72a42
PA
812/* Print using the given LANGUAGE the data of type TYPE located at
813 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
814 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
815 STREAM according to OPTIONS. VAL is the whole object that came
816 from ADDRESS. VALADDR must point to the head of VAL's contents
817 buffer.
818
819 The language printers will pass down an adjusted EMBEDDED_OFFSET to
820 further helper subroutines as subfields of TYPE are printed. In
821 such cases, VALADDR is passed down unadjusted, as well as VAL, so
822 that VAL can be queried for metadata about the contents data being
823 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
824 buffer. For example: "has this field been optimized out", or "I'm
825 printing an object while inspecting a traceframe; has this
826 particular piece of data been collected?".
827
828 RECURSE indicates the amount of indentation to supply before
829 continuation lines; this amount is roughly twice the value of
35c0084b 830 RECURSE. */
32b72a42 831
35c0084b 832void
fc1a4b47 833val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 834 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 835 const struct value *val,
79a45b7d 836 const struct value_print_options *options,
d8ca156b 837 const struct language_defn *language)
c906108c 838{
19ca80ba 839 int ret = 0;
79a45b7d 840 struct value_print_options local_opts = *options;
c906108c 841 struct type *real_type = check_typedef (type);
79a45b7d 842
2a998fc0
DE
843 if (local_opts.prettyformat == Val_prettyformat_default)
844 local_opts.prettyformat = (local_opts.prettyformat_structs
845 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 846
c906108c
SS
847 QUIT;
848
849 /* Ensure that the type is complete and not just a stub. If the type is
850 only a stub and we can't find and substitute its complete type, then
851 print appropriate string and return. */
852
74a9bb82 853 if (TYPE_STUB (real_type))
c906108c 854 {
0e03807e 855 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 856 gdb_flush (stream);
35c0084b 857 return;
c906108c 858 }
c5aa993b 859
0e03807e 860 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 861 return;
0e03807e 862
a6bac58e
TT
863 if (!options->raw)
864 {
6dddc817
DE
865 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
866 address, stream, recurse,
867 val, options, language);
a6bac58e 868 if (ret)
35c0084b 869 return;
a6bac58e
TT
870 }
871
872 /* Handle summary mode. If the value is a scalar, print it;
873 otherwise, print an ellipsis. */
6211c335 874 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
875 {
876 fprintf_filtered (stream, "...");
35c0084b 877 return;
a6bac58e
TT
878 }
879
492d29ea 880 TRY
19ca80ba 881 {
d3eab38a
TT
882 language->la_val_print (type, valaddr, embedded_offset, address,
883 stream, recurse, val,
884 &local_opts);
19ca80ba 885 }
492d29ea
PA
886 CATCH (except, RETURN_MASK_ERROR)
887 {
888 fprintf_filtered (stream, _("<error reading variable>"));
889 }
890 END_CATCH
c906108c
SS
891}
892
806048c6 893/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
894 return 0 and print an appropriate error message to STREAM according to
895 OPTIONS if it is not. */
c906108c 896
806048c6 897static int
6501578c
YQ
898value_check_printable (struct value *val, struct ui_file *stream,
899 const struct value_print_options *options)
c906108c
SS
900{
901 if (val == 0)
902 {
806048c6 903 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
904 return 0;
905 }
806048c6 906
0e03807e 907 if (value_entirely_optimized_out (val))
c906108c 908 {
6211c335 909 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
910 fprintf_filtered (stream, "...");
911 else
901461f8 912 val_print_optimized_out (val, stream);
c906108c
SS
913 return 0;
914 }
806048c6 915
eebc056c
AB
916 if (value_entirely_unavailable (val))
917 {
918 if (options->summary && !val_print_scalar_type_p (value_type (val)))
919 fprintf_filtered (stream, "...");
920 else
921 val_print_unavailable (stream);
922 return 0;
923 }
924
bc3b79fd
TJB
925 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
926 {
927 fprintf_filtered (stream, _("<internal function %s>"),
928 value_internal_function_name (val));
929 return 0;
930 }
931
806048c6
DJ
932 return 1;
933}
934
d8ca156b 935/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 936 to OPTIONS.
806048c6 937
806048c6
DJ
938 This is a preferable interface to val_print, above, because it uses
939 GDB's value mechanism. */
940
a1f5dd1b 941void
79a45b7d
TT
942common_val_print (struct value *val, struct ui_file *stream, int recurse,
943 const struct value_print_options *options,
d8ca156b 944 const struct language_defn *language)
806048c6 945{
6501578c 946 if (!value_check_printable (val, stream, options))
a1f5dd1b 947 return;
806048c6 948
0c3acc09
JB
949 if (language->la_language == language_ada)
950 /* The value might have a dynamic type, which would cause trouble
951 below when trying to extract the value contents (since the value
952 size is determined from the type size which is unknown). So
953 get a fixed representation of our value. */
954 val = ada_to_fixed_value (val);
955
a1f5dd1b
TT
956 val_print (value_type (val), value_contents_for_printing (val),
957 value_embedded_offset (val), value_address (val),
958 stream, recurse,
959 val, options, language);
806048c6
DJ
960}
961
7348c5e1 962/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 963 is printed using the current_language syntax. */
7348c5e1 964
8e069a98 965void
79a45b7d
TT
966value_print (struct value *val, struct ui_file *stream,
967 const struct value_print_options *options)
806048c6 968{
6501578c 969 if (!value_check_printable (val, stream, options))
8e069a98 970 return;
806048c6 971
a6bac58e
TT
972 if (!options->raw)
973 {
6dddc817
DE
974 int r
975 = apply_ext_lang_val_pretty_printer (value_type (val),
976 value_contents_for_printing (val),
977 value_embedded_offset (val),
978 value_address (val),
979 stream, 0,
980 val, options, current_language);
a109c7c1 981
a6bac58e 982 if (r)
8e069a98 983 return;
a6bac58e
TT
984 }
985
8e069a98 986 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
987}
988
989/* Called by various <lang>_val_print routines to print
990 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
991 value. STREAM is where to print the value. */
992
993void
fc1a4b47 994val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 995 struct ui_file *stream)
c906108c 996{
50810684 997 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 998
c906108c
SS
999 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1000 {
1001 LONGEST val;
1002
1003 if (TYPE_UNSIGNED (type)
1004 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 1005 byte_order, &val))
c906108c
SS
1006 {
1007 print_longest (stream, 'u', 0, val);
1008 }
1009 else
1010 {
1011 /* Signed, or we couldn't turn an unsigned value into a
1012 LONGEST. For signed values, one could assume two's
1013 complement (a reasonable assumption, I think) and do
1014 better than this. */
1015 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 1016 TYPE_LENGTH (type), byte_order);
c906108c
SS
1017 }
1018 }
1019 else
1020 {
c906108c
SS
1021 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1022 unpack_long (type, valaddr));
c906108c
SS
1023 }
1024}
1025
4f2aea11
MK
1026void
1027val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1028 struct ui_file *stream)
1029{
befae759 1030 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
1031 int bitpos, nfields = TYPE_NFIELDS (type);
1032
1033 fputs_filtered ("[ ", stream);
1034 for (bitpos = 0; bitpos < nfields; bitpos++)
1035 {
316703b9
MK
1036 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1037 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
1038 {
1039 if (TYPE_FIELD_NAME (type, bitpos))
1040 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1041 else
1042 fprintf_filtered (stream, "#%d ", bitpos);
1043 }
1044 }
1045 fputs_filtered ("]", stream);
19c37f24 1046}
ab2188aa
PA
1047
1048/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1049 according to OPTIONS and SIZE on STREAM. Format i is not supported
1050 at this level.
1051
1052 This is how the elements of an array or structure are printed
1053 with a format. */
ab2188aa
PA
1054
1055void
1056val_print_scalar_formatted (struct type *type,
1057 const gdb_byte *valaddr, int embedded_offset,
1058 const struct value *val,
1059 const struct value_print_options *options,
1060 int size,
1061 struct ui_file *stream)
1062{
1063 gdb_assert (val != NULL);
1064 gdb_assert (valaddr == value_contents_for_printing_const (val));
1065
1066 /* If we get here with a string format, try again without it. Go
1067 all the way back to the language printers, which may call us
1068 again. */
1069 if (options->format == 's')
1070 {
1071 struct value_print_options opts = *options;
1072 opts.format = 0;
1073 opts.deref_ref = 0;
1074 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1075 current_language);
1076 return;
1077 }
1078
1079 /* A scalar object that does not have all bits available can't be
1080 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1081 if (value_bits_any_optimized_out (val,
1082 TARGET_CHAR_BIT * embedded_offset,
1083 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1084 val_print_optimized_out (val, stream);
4e07d55f
PA
1085 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1086 val_print_unavailable (stream);
ab2188aa
PA
1087 else
1088 print_scalar_formatted (valaddr + embedded_offset, type,
1089 options, size, stream);
4f2aea11
MK
1090}
1091
c906108c
SS
1092/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1093 The raison d'etre of this function is to consolidate printing of
581e13c1 1094 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1095 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1096 format.
bb599908
PH
1097
1098 USE_C_FORMAT means to use C format in all cases. Without it,
1099 'o' and 'x' format do not include the standard C radix prefix
1100 (leading 0 or 0x).
1101
1102 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1103 and was intended to request formating according to the current
1104 language and would be used for most integers that GDB prints. The
1105 exceptional cases were things like protocols where the format of
1106 the integer is a protocol thing, not a user-visible thing). The
1107 parameter remains to preserve the information of what things might
1108 be printed with language-specific format, should we ever resurrect
581e13c1 1109 that capability. */
c906108c
SS
1110
1111void
bb599908 1112print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1113 LONGEST val_long)
c906108c 1114{
2bfb72ee
AC
1115 const char *val;
1116
c906108c
SS
1117 switch (format)
1118 {
1119 case 'd':
bb599908 1120 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1121 case 'u':
bb599908 1122 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1123 case 'x':
bb599908 1124 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1125 case 'b':
bb599908 1126 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1127 case 'h':
bb599908 1128 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1129 case 'w':
bb599908 1130 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1131 case 'g':
bb599908 1132 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1133 break;
1134 case 'o':
bb599908 1135 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1136 default:
3e43a32a
MS
1137 internal_error (__FILE__, __LINE__,
1138 _("failed internal consistency check"));
bb599908 1139 }
2bfb72ee 1140 fputs_filtered (val, stream);
c906108c
SS
1141}
1142
c906108c
SS
1143/* This used to be a macro, but I don't think it is called often enough
1144 to merit such treatment. */
1145/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1146 arguments to a function, number in a value history, register number, etc.)
1147 where the value must not be larger than can fit in an int. */
1148
1149int
fba45db2 1150longest_to_int (LONGEST arg)
c906108c 1151{
581e13c1 1152 /* Let the compiler do the work. */
c906108c
SS
1153 int rtnval = (int) arg;
1154
581e13c1 1155 /* Check for overflows or underflows. */
c906108c
SS
1156 if (sizeof (LONGEST) > sizeof (int))
1157 {
1158 if (rtnval != arg)
1159 {
8a3fe4f8 1160 error (_("Value out of range."));
c906108c
SS
1161 }
1162 }
1163 return (rtnval);
1164}
1165
a73c86fb
AC
1166/* Print a floating point value of type TYPE (not always a
1167 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1168
1169void
fc1a4b47 1170print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1171 struct ui_file *stream)
c906108c
SS
1172{
1173 DOUBLEST doub;
1174 int inv;
a73c86fb 1175 const struct floatformat *fmt = NULL;
c906108c 1176 unsigned len = TYPE_LENGTH (type);
20389057 1177 enum float_kind kind;
c5aa993b 1178
a73c86fb
AC
1179 /* If it is a floating-point, check for obvious problems. */
1180 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1181 fmt = floatformat_from_type (type);
20389057 1182 if (fmt != NULL)
39424bef 1183 {
20389057
DJ
1184 kind = floatformat_classify (fmt, valaddr);
1185 if (kind == float_nan)
1186 {
1187 if (floatformat_is_negative (fmt, valaddr))
1188 fprintf_filtered (stream, "-");
1189 fprintf_filtered (stream, "nan(");
1190 fputs_filtered ("0x", stream);
1191 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1192 fprintf_filtered (stream, ")");
1193 return;
1194 }
1195 else if (kind == float_infinite)
1196 {
1197 if (floatformat_is_negative (fmt, valaddr))
1198 fputs_filtered ("-", stream);
1199 fputs_filtered ("inf", stream);
1200 return;
1201 }
7355ddba 1202 }
c906108c 1203
a73c86fb
AC
1204 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1205 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1206 needs to be used as that takes care of any necessary type
1207 conversions. Such conversions are of course direct to DOUBLEST
1208 and disregard any possible target floating point limitations.
1209 For instance, a u64 would be converted and displayed exactly on a
1210 host with 80 bit DOUBLEST but with loss of information on a host
1211 with 64 bit DOUBLEST. */
c2f05ac9 1212
c906108c
SS
1213 doub = unpack_double (type, valaddr, &inv);
1214 if (inv)
1215 {
1216 fprintf_filtered (stream, "<invalid float value>");
1217 return;
1218 }
1219
39424bef
MK
1220 /* FIXME: kettenis/2001-01-20: The following code makes too much
1221 assumptions about the host and target floating point format. */
1222
a73c86fb 1223 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1224 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1225 instead uses the type's length to determine the precision of the
1226 floating-point value being printed. */
c2f05ac9 1227
c906108c 1228 if (len < sizeof (double))
c5aa993b 1229 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1230 else if (len == sizeof (double))
c5aa993b 1231 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1232 else
1233#ifdef PRINTF_HAS_LONG_DOUBLE
1234 fprintf_filtered (stream, "%.35Lg", doub);
1235#else
39424bef
MK
1236 /* This at least wins with values that are representable as
1237 doubles. */
c906108c
SS
1238 fprintf_filtered (stream, "%.17g", (double) doub);
1239#endif
1240}
1241
7678ef8f
TJB
1242void
1243print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1244 struct ui_file *stream)
1245{
e17a4113 1246 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1247 char decstr[MAX_DECIMAL_STRING];
1248 unsigned len = TYPE_LENGTH (type);
1249
e17a4113 1250 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1251 fputs_filtered (decstr, stream);
1252 return;
1253}
1254
c5aa993b 1255void
fc1a4b47 1256print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1257 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1258{
1259
1260#define BITS_IN_BYTES 8
1261
fc1a4b47 1262 const gdb_byte *p;
745b8ca0 1263 unsigned int i;
c5aa993b 1264 int b;
c906108c
SS
1265
1266 /* Declared "int" so it will be signed.
581e13c1
MS
1267 This ensures that right shift will shift in zeros. */
1268
c5aa993b 1269 const int mask = 0x080;
c906108c
SS
1270
1271 /* FIXME: We should be not printing leading zeroes in most cases. */
1272
d44e8473 1273 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1274 {
1275 for (p = valaddr;
1276 p < valaddr + len;
1277 p++)
1278 {
c5aa993b 1279 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1280 and print from the MSB end. */
1281
c5aa993b
JM
1282 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1283 {
1284 if (*p & (mask >> i))
1285 b = 1;
1286 else
1287 b = 0;
1288
1289 fprintf_filtered (stream, "%1d", b);
1290 }
c906108c
SS
1291 }
1292 }
1293 else
1294 {
1295 for (p = valaddr + len - 1;
1296 p >= valaddr;
1297 p--)
1298 {
c5aa993b
JM
1299 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1300 {
1301 if (*p & (mask >> i))
1302 b = 1;
1303 else
1304 b = 0;
1305
1306 fprintf_filtered (stream, "%1d", b);
1307 }
c906108c
SS
1308 }
1309 }
c906108c
SS
1310}
1311
1312/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1313 Print it in octal on stream or format it in buf. */
1314
c906108c 1315void
fc1a4b47 1316print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1317 unsigned len, enum bfd_endian byte_order)
c906108c 1318{
fc1a4b47 1319 const gdb_byte *p;
c906108c 1320 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1321 int cycle;
1322
c906108c
SS
1323 /* FIXME: We should be not printing leading zeroes in most cases. */
1324
1325
1326 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1327 * the extra bits, which cycle every three bytes:
1328 *
1329 * Byte side: 0 1 2 3
1330 * | | | |
1331 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1332 *
1333 * Octal side: 0 1 carry 3 4 carry ...
1334 *
1335 * Cycle number: 0 1 2
1336 *
1337 * But of course we are printing from the high side, so we have to
1338 * figure out where in the cycle we are so that we end up with no
1339 * left over bits at the end.
1340 */
1341#define BITS_IN_OCTAL 3
1342#define HIGH_ZERO 0340
1343#define LOW_ZERO 0016
1344#define CARRY_ZERO 0003
1345#define HIGH_ONE 0200
1346#define MID_ONE 0160
1347#define LOW_ONE 0016
1348#define CARRY_ONE 0001
1349#define HIGH_TWO 0300
1350#define MID_TWO 0070
1351#define LOW_TWO 0007
1352
1353 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1354 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1355
c906108c
SS
1356 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1357 carry = 0;
c5aa993b 1358
bb599908 1359 fputs_filtered ("0", stream);
d44e8473 1360 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1361 {
1362 for (p = valaddr;
1363 p < valaddr + len;
1364 p++)
1365 {
c5aa993b
JM
1366 switch (cycle)
1367 {
1368 case 0:
581e13c1
MS
1369 /* No carry in, carry out two bits. */
1370
c5aa993b
JM
1371 octa1 = (HIGH_ZERO & *p) >> 5;
1372 octa2 = (LOW_ZERO & *p) >> 2;
1373 carry = (CARRY_ZERO & *p);
1374 fprintf_filtered (stream, "%o", octa1);
1375 fprintf_filtered (stream, "%o", octa2);
1376 break;
1377
1378 case 1:
581e13c1
MS
1379 /* Carry in two bits, carry out one bit. */
1380
c5aa993b
JM
1381 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1382 octa2 = (MID_ONE & *p) >> 4;
1383 octa3 = (LOW_ONE & *p) >> 1;
1384 carry = (CARRY_ONE & *p);
1385 fprintf_filtered (stream, "%o", octa1);
1386 fprintf_filtered (stream, "%o", octa2);
1387 fprintf_filtered (stream, "%o", octa3);
1388 break;
1389
1390 case 2:
581e13c1
MS
1391 /* Carry in one bit, no carry out. */
1392
c5aa993b
JM
1393 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1394 octa2 = (MID_TWO & *p) >> 3;
1395 octa3 = (LOW_TWO & *p);
1396 carry = 0;
1397 fprintf_filtered (stream, "%o", octa1);
1398 fprintf_filtered (stream, "%o", octa2);
1399 fprintf_filtered (stream, "%o", octa3);
1400 break;
1401
1402 default:
8a3fe4f8 1403 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1404 }
1405
1406 cycle++;
1407 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1408 }
1409 }
1410 else
1411 {
1412 for (p = valaddr + len - 1;
1413 p >= valaddr;
1414 p--)
1415 {
c5aa993b
JM
1416 switch (cycle)
1417 {
1418 case 0:
1419 /* Carry out, no carry in */
581e13c1 1420
c5aa993b
JM
1421 octa1 = (HIGH_ZERO & *p) >> 5;
1422 octa2 = (LOW_ZERO & *p) >> 2;
1423 carry = (CARRY_ZERO & *p);
1424 fprintf_filtered (stream, "%o", octa1);
1425 fprintf_filtered (stream, "%o", octa2);
1426 break;
1427
1428 case 1:
1429 /* Carry in, carry out */
581e13c1 1430
c5aa993b
JM
1431 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1432 octa2 = (MID_ONE & *p) >> 4;
1433 octa3 = (LOW_ONE & *p) >> 1;
1434 carry = (CARRY_ONE & *p);
1435 fprintf_filtered (stream, "%o", octa1);
1436 fprintf_filtered (stream, "%o", octa2);
1437 fprintf_filtered (stream, "%o", octa3);
1438 break;
1439
1440 case 2:
1441 /* Carry in, no carry out */
581e13c1 1442
c5aa993b
JM
1443 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1444 octa2 = (MID_TWO & *p) >> 3;
1445 octa3 = (LOW_TWO & *p);
1446 carry = 0;
1447 fprintf_filtered (stream, "%o", octa1);
1448 fprintf_filtered (stream, "%o", octa2);
1449 fprintf_filtered (stream, "%o", octa3);
1450 break;
1451
1452 default:
8a3fe4f8 1453 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1454 }
1455
1456 cycle++;
1457 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1458 }
1459 }
1460
c906108c
SS
1461}
1462
1463/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1464 Print it in decimal on stream or format it in buf. */
1465
c906108c 1466void
fc1a4b47 1467print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1468 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1469{
1470#define TEN 10
c5aa993b 1471#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1472#define CARRY_LEFT( x ) ((x) % TEN)
1473#define SHIFT( x ) ((x) << 4)
c906108c
SS
1474#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1475#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1476
fc1a4b47 1477 const gdb_byte *p;
c906108c 1478 unsigned char *digits;
c5aa993b
JM
1479 int carry;
1480 int decimal_len;
1481 int i, j, decimal_digits;
1482 int dummy;
1483 int flip;
1484
c906108c 1485 /* Base-ten number is less than twice as many digits
581e13c1
MS
1486 as the base 16 number, which is 2 digits per byte. */
1487
c906108c 1488 decimal_len = len * 2 * 2;
3c37485b 1489 digits = xmalloc (decimal_len);
c906108c 1490
c5aa993b
JM
1491 for (i = 0; i < decimal_len; i++)
1492 {
c906108c 1493 digits[i] = 0;
c5aa993b 1494 }
c906108c 1495
c906108c
SS
1496 /* Ok, we have an unknown number of bytes of data to be printed in
1497 * decimal.
1498 *
1499 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1500 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1501 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1502 *
1503 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1504 * the individual digits are > 10.
c906108c
SS
1505 *
1506 * Outer loop is per nibble (hex digit) of input, from MSD end to
1507 * LSD end.
1508 */
c5aa993b 1509 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1510 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1511 flip = 0;
d44e8473 1512 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1513 {
c906108c
SS
1514 /*
1515 * Multiply current base-ten number by 16 in place.
1516 * Each digit was between 0 and 9, now is between
1517 * 0 and 144.
1518 */
c5aa993b
JM
1519 for (j = 0; j < decimal_digits; j++)
1520 {
1521 digits[j] = SHIFT (digits[j]);
1522 }
1523
c906108c
SS
1524 /* Take the next nibble off the input and add it to what
1525 * we've got in the LSB position. Bottom 'digit' is now
1526 * between 0 and 159.
1527 *
1528 * "flip" is used to run this loop twice for each byte.
1529 */
c5aa993b
JM
1530 if (flip == 0)
1531 {
581e13c1
MS
1532 /* Take top nibble. */
1533
c5aa993b
JM
1534 digits[0] += HIGH_NIBBLE (*p);
1535 flip = 1;
1536 }
1537 else
1538 {
581e13c1
MS
1539 /* Take low nibble and bump our pointer "p". */
1540
c5aa993b 1541 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1542 if (byte_order == BFD_ENDIAN_BIG)
1543 p++;
1544 else
1545 p--;
c5aa993b
JM
1546 flip = 0;
1547 }
c906108c
SS
1548
1549 /* Re-decimalize. We have to do this often enough
1550 * that we don't overflow, but once per nibble is
1551 * overkill. Easier this way, though. Note that the
1552 * carry is often larger than 10 (e.g. max initial
1553 * carry out of lowest nibble is 15, could bubble all
1554 * the way up greater than 10). So we have to do
1555 * the carrying beyond the last current digit.
1556 */
1557 carry = 0;
c5aa993b
JM
1558 for (j = 0; j < decimal_len - 1; j++)
1559 {
1560 digits[j] += carry;
1561
1562 /* "/" won't handle an unsigned char with
1563 * a value that if signed would be negative.
1564 * So extend to longword int via "dummy".
1565 */
1566 dummy = digits[j];
1567 carry = CARRY_OUT (dummy);
1568 digits[j] = CARRY_LEFT (dummy);
1569
1570 if (j >= decimal_digits && carry == 0)
1571 {
1572 /*
1573 * All higher digits are 0 and we
1574 * no longer have a carry.
1575 *
1576 * Note: "j" is 0-based, "decimal_digits" is
1577 * 1-based.
1578 */
1579 decimal_digits = j + 1;
1580 break;
1581 }
1582 }
1583 }
c906108c
SS
1584
1585 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1586 the "decimal_digits" actual digits. Print! */
1587
c5aa993b
JM
1588 for (i = decimal_digits - 1; i >= 0; i--)
1589 {
1590 fprintf_filtered (stream, "%1d", digits[i]);
1591 }
b8c9b27d 1592 xfree (digits);
c906108c
SS
1593}
1594
1595/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1596
6b9acc27 1597void
fc1a4b47 1598print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1599 unsigned len, enum bfd_endian byte_order)
c906108c 1600{
fc1a4b47 1601 const gdb_byte *p;
c906108c
SS
1602
1603 /* FIXME: We should be not printing leading zeroes in most cases. */
1604
bb599908 1605 fputs_filtered ("0x", stream);
d44e8473 1606 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1607 {
1608 for (p = valaddr;
1609 p < valaddr + len;
1610 p++)
1611 {
1612 fprintf_filtered (stream, "%02x", *p);
1613 }
1614 }
1615 else
1616 {
1617 for (p = valaddr + len - 1;
1618 p >= valaddr;
1619 p--)
1620 {
1621 fprintf_filtered (stream, "%02x", *p);
1622 }
1623 }
c906108c
SS
1624}
1625
3e43a32a 1626/* VALADDR points to a char integer of LEN bytes.
581e13c1 1627 Print it out in appropriate language form on stream.
6b9acc27
JJ
1628 Omit any leading zero chars. */
1629
1630void
6c7a06a3
TT
1631print_char_chars (struct ui_file *stream, struct type *type,
1632 const gdb_byte *valaddr,
d44e8473 1633 unsigned len, enum bfd_endian byte_order)
6b9acc27 1634{
fc1a4b47 1635 const gdb_byte *p;
6b9acc27 1636
d44e8473 1637 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1638 {
1639 p = valaddr;
1640 while (p < valaddr + len - 1 && *p == 0)
1641 ++p;
1642
1643 while (p < valaddr + len)
1644 {
6c7a06a3 1645 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1646 ++p;
1647 }
1648 }
1649 else
1650 {
1651 p = valaddr + len - 1;
1652 while (p > valaddr && *p == 0)
1653 --p;
1654
1655 while (p >= valaddr)
1656 {
6c7a06a3 1657 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1658 --p;
1659 }
1660 }
1661}
1662
132c57b4
TT
1663/* Print function pointer with inferior address ADDRESS onto stdio
1664 stream STREAM. */
1665
1666void
edf0c1b7
TT
1667print_function_pointer_address (const struct value_print_options *options,
1668 struct gdbarch *gdbarch,
132c57b4 1669 CORE_ADDR address,
edf0c1b7 1670 struct ui_file *stream)
132c57b4
TT
1671{
1672 CORE_ADDR func_addr
1673 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1674 &current_target);
1675
1676 /* If the function pointer is represented by a description, print
1677 the address of the description. */
edf0c1b7 1678 if (options->addressprint && func_addr != address)
132c57b4
TT
1679 {
1680 fputs_filtered ("@", stream);
1681 fputs_filtered (paddress (gdbarch, address), stream);
1682 fputs_filtered (": ", stream);
1683 }
edf0c1b7 1684 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1685}
1686
1687
79a45b7d 1688/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1689 at INDEX of an array whose index type is INDEX_TYPE. */
1690
1691void
1692maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1693 struct ui_file *stream,
1694 const struct value_print_options *options)
e79af960
JB
1695{
1696 struct value *index_value;
1697
79a45b7d 1698 if (!options->print_array_indexes)
e79af960
JB
1699 return;
1700
1701 index_value = value_from_longest (index_type, index);
1702
79a45b7d
TT
1703 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1704}
e79af960 1705
c906108c 1706/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1707 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1708
c5aa993b
JM
1709 (FIXME?) Assumes array element separator is a comma, which is correct
1710 for all languages currently handled.
1711 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1712 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1713
1714void
490f124f
PA
1715val_print_array_elements (struct type *type,
1716 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1717 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1718 int recurse,
0e03807e 1719 const struct value *val,
79a45b7d 1720 const struct value_print_options *options,
fba45db2 1721 unsigned int i)
c906108c
SS
1722{
1723 unsigned int things_printed = 0;
1724 unsigned len;
aa715135 1725 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
1726 unsigned eltlen;
1727 /* Position of the array element we are examining to see
1728 whether it is repeated. */
1729 unsigned int rep1;
1730 /* Number of repetitions we have detected so far. */
1731 unsigned int reps;
dbc98a8b 1732 LONGEST low_bound, high_bound;
aa715135 1733 LONGEST low_pos, high_pos;
c5aa993b 1734
c906108c
SS
1735 elttype = TYPE_TARGET_TYPE (type);
1736 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1737 index_type = TYPE_INDEX_TYPE (type);
c906108c 1738
dbc98a8b 1739 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 1740 {
aa715135
JG
1741 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1742 base_index_type = TYPE_TARGET_TYPE (index_type);
1743 else
1744 base_index_type = index_type;
1745
1746 /* Non-contiguous enumerations types can by used as index types
1747 in some languages (e.g. Ada). In this case, the array length
1748 shall be computed from the positions of the first and last
1749 literal in the enumeration type, and not from the values
1750 of these literals. */
1751 if (!discrete_position (base_index_type, low_bound, &low_pos)
1752 || !discrete_position (base_index_type, high_bound, &high_pos))
1753 {
1754 warning (_("unable to get positions in array, use bounds instead"));
1755 low_pos = low_bound;
1756 high_pos = high_bound;
1757 }
1758
1759 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 1760 But we have to be a little extra careful, because some languages
aa715135 1761 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
1762 empty arrays. In that situation, the array length is just zero,
1763 not negative! */
aa715135 1764 if (low_pos > high_pos)
75be741b
JB
1765 len = 0;
1766 else
aa715135 1767 len = high_pos - low_pos + 1;
75be741b 1768 }
e936309c
JB
1769 else
1770 {
dbc98a8b
KW
1771 warning (_("unable to get bounds of array, assuming null array"));
1772 low_bound = 0;
1773 len = 0;
168de233
JB
1774 }
1775
c906108c
SS
1776 annotate_array_section_begin (i, elttype);
1777
79a45b7d 1778 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1779 {
1780 if (i != 0)
1781 {
2a998fc0 1782 if (options->prettyformat_arrays)
c906108c
SS
1783 {
1784 fprintf_filtered (stream, ",\n");
1785 print_spaces_filtered (2 + 2 * recurse, stream);
1786 }
1787 else
1788 {
1789 fprintf_filtered (stream, ", ");
1790 }
1791 }
1792 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1793 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1794 stream, options);
c906108c
SS
1795
1796 rep1 = i + 1;
1797 reps = 1;
35bef4fd
TT
1798 /* Only check for reps if repeat_count_threshold is not set to
1799 UINT_MAX (unlimited). */
1800 if (options->repeat_count_threshold < UINT_MAX)
c906108c 1801 {
35bef4fd 1802 while (rep1 < len
9a0dc9e3
PA
1803 && value_contents_eq (val,
1804 embedded_offset + i * eltlen,
1805 val,
1806 (embedded_offset
1807 + rep1 * eltlen),
1808 eltlen))
35bef4fd
TT
1809 {
1810 ++reps;
1811 ++rep1;
1812 }
c906108c
SS
1813 }
1814
79a45b7d 1815 if (reps > options->repeat_count_threshold)
c906108c 1816 {
490f124f
PA
1817 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1818 address, stream, recurse + 1, val, options,
1819 current_language);
c906108c
SS
1820 annotate_elt_rep (reps);
1821 fprintf_filtered (stream, " <repeats %u times>", reps);
1822 annotate_elt_rep_end ();
1823
1824 i = rep1 - 1;
79a45b7d 1825 things_printed += options->repeat_count_threshold;
c906108c
SS
1826 }
1827 else
1828 {
490f124f
PA
1829 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1830 address,
0e03807e 1831 stream, recurse + 1, val, options, current_language);
c906108c
SS
1832 annotate_elt ();
1833 things_printed++;
1834 }
1835 }
1836 annotate_array_section_end ();
1837 if (i < len)
1838 {
1839 fprintf_filtered (stream, "...");
1840 }
1841}
1842
917317f4
JM
1843/* Read LEN bytes of target memory at address MEMADDR, placing the
1844 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 1845 actually read, and optionally a target_xfer_status value in the
578d3588 1846 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
1847
1848/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1849 function be eliminated. */
1850
1851static int
3e43a32a 1852partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 1853 int len, int *errptr)
917317f4 1854{
581e13c1
MS
1855 int nread; /* Number of bytes actually read. */
1856 int errcode; /* Error from last read. */
917317f4 1857
581e13c1 1858 /* First try a complete read. */
917317f4
JM
1859 errcode = target_read_memory (memaddr, myaddr, len);
1860 if (errcode == 0)
1861 {
581e13c1 1862 /* Got it all. */
917317f4
JM
1863 nread = len;
1864 }
1865 else
1866 {
581e13c1 1867 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1868 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1869 {
1870 errcode = target_read_memory (memaddr++, myaddr++, 1);
1871 }
581e13c1 1872 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1873 if (errcode != 0)
1874 {
1875 nread--;
1876 }
1877 }
578d3588 1878 if (errptr != NULL)
917317f4 1879 {
578d3588 1880 *errptr = errcode;
917317f4
JM
1881 }
1882 return (nread);
1883}
1884
ae6a3a4c
TJB
1885/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1886 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1887 allocated buffer containing the string, which the caller is responsible to
1888 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 1889 success, or a target_xfer_status on failure.
ae6a3a4c 1890
f380848e
SA
1891 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1892 (including eventual NULs in the middle or end of the string).
1893
1894 If LEN is -1, stops at the first null character (not necessarily
1895 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1896 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1897 the string.
ae6a3a4c
TJB
1898
1899 Unless an exception is thrown, BUFFER will always be allocated, even on
1900 failure. In this case, some characters might have been read before the
1901 failure happened. Check BYTES_READ to recognize this situation.
1902
1903 Note: There was a FIXME asking to make this code use target_read_string,
1904 but this function is more general (can read past null characters, up to
581e13c1 1905 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1906 so it is more tested. Perhaps callers of target_read_string should use
1907 this function instead? */
c906108c
SS
1908
1909int
ae6a3a4c 1910read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1911 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1912{
ae6a3a4c
TJB
1913 int errcode; /* Errno returned from bad reads. */
1914 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
1915 gdb_byte *bufptr; /* Pointer to next available byte in
1916 buffer. */
ae6a3a4c
TJB
1917 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1918
ae6a3a4c
TJB
1919 /* Loop until we either have all the characters, or we encounter
1920 some error, such as bumping into the end of the address space. */
c906108c 1921
b5096abe
PM
1922 *buffer = NULL;
1923
1924 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1925
1926 if (len > 0)
1927 {
88db67ef
YQ
1928 /* We want fetchlimit chars, so we might as well read them all in
1929 one operation. */
f380848e
SA
1930 unsigned int fetchlen = min (len, fetchlimit);
1931
1932 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 1933 bufptr = *buffer;
c906108c 1934
f380848e 1935 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
1936 / width;
1937 addr += nfetch * width;
1938 bufptr += nfetch * width;
1939 }
1940 else if (len == -1)
1941 {
1942 unsigned long bufsize = 0;
88db67ef
YQ
1943 unsigned int chunksize; /* Size of each fetch, in chars. */
1944 int found_nul; /* Non-zero if we found the nul char. */
1945 gdb_byte *limit; /* First location past end of fetch buffer. */
1946
1947 found_nul = 0;
1948 /* We are looking for a NUL terminator to end the fetching, so we
1949 might as well read in blocks that are large enough to be efficient,
1950 but not so large as to be slow if fetchlimit happens to be large.
1951 So we choose the minimum of 8 and fetchlimit. We used to use 200
1952 instead of 8 but 200 is way too big for remote debugging over a
1953 serial line. */
1954 chunksize = min (8, fetchlimit);
ae6a3a4c 1955
c906108c
SS
1956 do
1957 {
1958 QUIT;
1959 nfetch = min (chunksize, fetchlimit - bufsize);
1960
ae6a3a4c
TJB
1961 if (*buffer == NULL)
1962 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1963 else
b5096abe
PM
1964 *buffer = (gdb_byte *) xrealloc (*buffer,
1965 (nfetch + bufsize) * width);
c906108c 1966
ae6a3a4c 1967 bufptr = *buffer + bufsize * width;
c906108c
SS
1968 bufsize += nfetch;
1969
ae6a3a4c 1970 /* Read as much as we can. */
917317f4 1971 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1972 / width;
c906108c 1973
ae6a3a4c 1974 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1975 to print. If found, we don't need to fetch any more. Note
1976 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1977 after the null character, or at the next character after the end
1978 of the buffer. */
c906108c
SS
1979
1980 limit = bufptr + nfetch * width;
1981 while (bufptr < limit)
1982 {
1983 unsigned long c;
1984
e17a4113 1985 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1986 addr += width;
1987 bufptr += width;
1988 if (c == 0)
1989 {
1990 /* We don't care about any error which happened after
ae6a3a4c 1991 the NUL terminator. */
c906108c
SS
1992 errcode = 0;
1993 found_nul = 1;
1994 break;
1995 }
1996 }
1997 }
c5aa993b 1998 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1999 && bufptr - *buffer < fetchlimit * width /* no overrun */
2000 && !found_nul); /* haven't found NUL yet */
c906108c
SS
2001 }
2002 else
ae6a3a4c
TJB
2003 { /* Length of string is really 0! */
2004 /* We always allocate *buffer. */
2005 *buffer = bufptr = xmalloc (1);
c906108c
SS
2006 errcode = 0;
2007 }
2008
2009 /* bufptr and addr now point immediately beyond the last byte which we
2010 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
2011 *bytes_read = bufptr - *buffer;
2012
2013 QUIT;
2014
2015 discard_cleanups (old_chain);
2016
2017 return errcode;
2018}
2019
3b2b8fea
TT
2020/* Return true if print_wchar can display W without resorting to a
2021 numeric escape, false otherwise. */
2022
2023static int
2024wchar_printable (gdb_wchar_t w)
2025{
2026 return (gdb_iswprint (w)
2027 || w == LCST ('\a') || w == LCST ('\b')
2028 || w == LCST ('\f') || w == LCST ('\n')
2029 || w == LCST ('\r') || w == LCST ('\t')
2030 || w == LCST ('\v'));
2031}
2032
2033/* A helper function that converts the contents of STRING to wide
2034 characters and then appends them to OUTPUT. */
2035
2036static void
2037append_string_as_wide (const char *string,
2038 struct obstack *output)
2039{
2040 for (; *string; ++string)
2041 {
2042 gdb_wchar_t w = gdb_btowc (*string);
2043 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2044 }
2045}
2046
2047/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2048 original (target) bytes representing the character, ORIG_LEN is the
2049 number of valid bytes. WIDTH is the number of bytes in a base
2050 characters of the type. OUTPUT is an obstack to which wide
2051 characters are emitted. QUOTER is a (narrow) character indicating
2052 the style of quotes surrounding the character to be printed.
2053 NEED_ESCAPE is an in/out flag which is used to track numeric
2054 escapes across calls. */
2055
2056static void
2057print_wchar (gdb_wint_t w, const gdb_byte *orig,
2058 int orig_len, int width,
2059 enum bfd_endian byte_order,
2060 struct obstack *output,
2061 int quoter, int *need_escapep)
2062{
2063 int need_escape = *need_escapep;
2064
2065 *need_escapep = 0;
3b2b8fea 2066
95c64f92
YQ
2067 /* iswprint implementation on Windows returns 1 for tab character.
2068 In order to avoid different printout on this host, we explicitly
2069 use wchar_printable function. */
2070 switch (w)
3b2b8fea 2071 {
95c64f92
YQ
2072 case LCST ('\a'):
2073 obstack_grow_wstr (output, LCST ("\\a"));
2074 break;
2075 case LCST ('\b'):
2076 obstack_grow_wstr (output, LCST ("\\b"));
2077 break;
2078 case LCST ('\f'):
2079 obstack_grow_wstr (output, LCST ("\\f"));
2080 break;
2081 case LCST ('\n'):
2082 obstack_grow_wstr (output, LCST ("\\n"));
2083 break;
2084 case LCST ('\r'):
2085 obstack_grow_wstr (output, LCST ("\\r"));
2086 break;
2087 case LCST ('\t'):
2088 obstack_grow_wstr (output, LCST ("\\t"));
2089 break;
2090 case LCST ('\v'):
2091 obstack_grow_wstr (output, LCST ("\\v"));
2092 break;
2093 default:
3b2b8fea 2094 {
95c64f92
YQ
2095 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2096 && w != LCST ('8')
2097 && w != LCST ('9'))))
2098 {
2099 gdb_wchar_t wchar = w;
3b2b8fea 2100
95c64f92
YQ
2101 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2102 obstack_grow_wstr (output, LCST ("\\"));
2103 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2104 }
2105 else
2106 {
2107 int i;
3b2b8fea 2108
95c64f92
YQ
2109 for (i = 0; i + width <= orig_len; i += width)
2110 {
2111 char octal[30];
2112 ULONGEST value;
2113
2114 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2115 byte_order);
95c64f92
YQ
2116 /* If the value fits in 3 octal digits, print it that
2117 way. Otherwise, print it as a hex escape. */
2118 if (value <= 0777)
2119 xsnprintf (octal, sizeof (octal), "\\%.3o",
2120 (int) (value & 0777));
2121 else
2122 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2123 append_string_as_wide (octal, output);
2124 }
2125 /* If we somehow have extra bytes, print them now. */
2126 while (i < orig_len)
2127 {
2128 char octal[5];
2129
2130 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2131 append_string_as_wide (octal, output);
2132 ++i;
2133 }
2134
2135 *need_escapep = 1;
2136 }
3b2b8fea
TT
2137 break;
2138 }
2139 }
2140}
2141
2142/* Print the character C on STREAM as part of the contents of a
2143 literal string whose delimiter is QUOTER. ENCODING names the
2144 encoding of C. */
2145
2146void
2147generic_emit_char (int c, struct type *type, struct ui_file *stream,
2148 int quoter, const char *encoding)
2149{
2150 enum bfd_endian byte_order
2151 = gdbarch_byte_order (get_type_arch (type));
2152 struct obstack wchar_buf, output;
2153 struct cleanup *cleanups;
2154 gdb_byte *buf;
2155 struct wchar_iterator *iter;
2156 int need_escape = 0;
2157
2158 buf = alloca (TYPE_LENGTH (type));
2159 pack_long (buf, type, c);
2160
2161 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2162 encoding, TYPE_LENGTH (type));
2163 cleanups = make_cleanup_wchar_iterator (iter);
2164
2165 /* This holds the printable form of the wchar_t data. */
2166 obstack_init (&wchar_buf);
2167 make_cleanup_obstack_free (&wchar_buf);
2168
2169 while (1)
2170 {
2171 int num_chars;
2172 gdb_wchar_t *chars;
2173 const gdb_byte *buf;
2174 size_t buflen;
2175 int print_escape = 1;
2176 enum wchar_iterate_result result;
2177
2178 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2179 if (num_chars < 0)
2180 break;
2181 if (num_chars > 0)
2182 {
2183 /* If all characters are printable, print them. Otherwise,
2184 we're going to have to print an escape sequence. We
2185 check all characters because we want to print the target
2186 bytes in the escape sequence, and we don't know character
2187 boundaries there. */
2188 int i;
2189
2190 print_escape = 0;
2191 for (i = 0; i < num_chars; ++i)
2192 if (!wchar_printable (chars[i]))
2193 {
2194 print_escape = 1;
2195 break;
2196 }
2197
2198 if (!print_escape)
2199 {
2200 for (i = 0; i < num_chars; ++i)
2201 print_wchar (chars[i], buf, buflen,
2202 TYPE_LENGTH (type), byte_order,
2203 &wchar_buf, quoter, &need_escape);
2204 }
2205 }
2206
2207 /* This handles the NUM_CHARS == 0 case as well. */
2208 if (print_escape)
2209 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2210 byte_order, &wchar_buf, quoter, &need_escape);
2211 }
2212
2213 /* The output in the host encoding. */
2214 obstack_init (&output);
2215 make_cleanup_obstack_free (&output);
2216
2217 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2218 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2219 obstack_object_size (&wchar_buf),
fff10684 2220 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2221 obstack_1grow (&output, '\0');
2222
2223 fputs_filtered (obstack_base (&output), stream);
2224
2225 do_cleanups (cleanups);
2226}
2227
0d63ecda
KS
2228/* Return the repeat count of the next character/byte in ITER,
2229 storing the result in VEC. */
2230
2231static int
2232count_next_character (struct wchar_iterator *iter,
2233 VEC (converted_character_d) **vec)
2234{
2235 struct converted_character *current;
2236
2237 if (VEC_empty (converted_character_d, *vec))
2238 {
2239 struct converted_character tmp;
2240 gdb_wchar_t *chars;
2241
2242 tmp.num_chars
2243 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2244 if (tmp.num_chars > 0)
2245 {
2246 gdb_assert (tmp.num_chars < MAX_WCHARS);
2247 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2248 }
2249 VEC_safe_push (converted_character_d, *vec, &tmp);
2250 }
2251
2252 current = VEC_last (converted_character_d, *vec);
2253
2254 /* Count repeated characters or bytes. */
2255 current->repeat_count = 1;
2256 if (current->num_chars == -1)
2257 {
2258 /* EOF */
2259 return -1;
2260 }
2261 else
2262 {
2263 gdb_wchar_t *chars;
2264 struct converted_character d;
2265 int repeat;
2266
2267 d.repeat_count = 0;
2268
2269 while (1)
2270 {
2271 /* Get the next character. */
2272 d.num_chars
2273 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2274
2275 /* If a character was successfully converted, save the character
2276 into the converted character. */
2277 if (d.num_chars > 0)
2278 {
2279 gdb_assert (d.num_chars < MAX_WCHARS);
2280 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2281 }
2282
2283 /* Determine if the current character is the same as this
2284 new character. */
2285 if (d.num_chars == current->num_chars && d.result == current->result)
2286 {
2287 /* There are two cases to consider:
2288
2289 1) Equality of converted character (num_chars > 0)
2290 2) Equality of non-converted character (num_chars == 0) */
2291 if ((current->num_chars > 0
2292 && memcmp (current->chars, d.chars,
2293 WCHAR_BUFLEN (current->num_chars)) == 0)
2294 || (current->num_chars == 0
2295 && current->buflen == d.buflen
2296 && memcmp (current->buf, d.buf, current->buflen) == 0))
2297 ++current->repeat_count;
2298 else
2299 break;
2300 }
2301 else
2302 break;
2303 }
2304
2305 /* Push this next converted character onto the result vector. */
2306 repeat = current->repeat_count;
2307 VEC_safe_push (converted_character_d, *vec, &d);
2308 return repeat;
2309 }
2310}
2311
2312/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2313 character to use with string output. WIDTH is the size of the output
2314 character type. BYTE_ORDER is the the target byte order. OPTIONS
2315 is the user's print options. */
2316
2317static void
2318print_converted_chars_to_obstack (struct obstack *obstack,
2319 VEC (converted_character_d) *chars,
2320 int quote_char, int width,
2321 enum bfd_endian byte_order,
2322 const struct value_print_options *options)
2323{
2324 unsigned int idx;
2325 struct converted_character *elem;
2326 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2327 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2328 int need_escape = 0;
2329
2330 /* Set the start state. */
2331 idx = 0;
2332 last = state = START;
2333 elem = NULL;
2334
2335 while (1)
2336 {
2337 switch (state)
2338 {
2339 case START:
2340 /* Nothing to do. */
2341 break;
2342
2343 case SINGLE:
2344 {
2345 int j;
2346
2347 /* We are outputting a single character
2348 (< options->repeat_count_threshold). */
2349
2350 if (last != SINGLE)
2351 {
2352 /* We were outputting some other type of content, so we
2353 must output and a comma and a quote. */
2354 if (last != START)
2355 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2356 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2357 }
2358 /* Output the character. */
2359 for (j = 0; j < elem->repeat_count; ++j)
2360 {
2361 if (elem->result == wchar_iterate_ok)
2362 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2363 byte_order, obstack, quote_char, &need_escape);
2364 else
2365 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2366 byte_order, obstack, quote_char, &need_escape);
2367 }
2368 }
2369 break;
2370
2371 case REPEAT:
2372 {
2373 int j;
2374 char *s;
2375
2376 /* We are outputting a character with a repeat count
2377 greater than options->repeat_count_threshold. */
2378
2379 if (last == SINGLE)
2380 {
2381 /* We were outputting a single string. Terminate the
2382 string. */
0d63ecda
KS
2383 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2384 }
2385 if (last != START)
2386 obstack_grow_wstr (obstack, LCST (", "));
2387
2388 /* Output the character and repeat string. */
2389 obstack_grow_wstr (obstack, LCST ("'"));
2390 if (elem->result == wchar_iterate_ok)
2391 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2392 byte_order, obstack, quote_char, &need_escape);
2393 else
2394 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2395 byte_order, obstack, quote_char, &need_escape);
2396 obstack_grow_wstr (obstack, LCST ("'"));
2397 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2398 for (j = 0; s[j]; ++j)
2399 {
2400 gdb_wchar_t w = gdb_btowc (s[j]);
2401 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2402 }
2403 xfree (s);
2404 }
2405 break;
2406
2407 case INCOMPLETE:
2408 /* We are outputting an incomplete sequence. */
2409 if (last == SINGLE)
2410 {
2411 /* If we were outputting a string of SINGLE characters,
2412 terminate the quote. */
0d63ecda
KS
2413 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2414 }
2415 if (last != START)
2416 obstack_grow_wstr (obstack, LCST (", "));
2417
2418 /* Output the incomplete sequence string. */
2419 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2420 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2421 obstack, 0, &need_escape);
2422 obstack_grow_wstr (obstack, LCST (">"));
2423
2424 /* We do not attempt to outupt anything after this. */
2425 state = FINISH;
2426 break;
2427
2428 case FINISH:
2429 /* All done. If we were outputting a string of SINGLE
2430 characters, the string must be terminated. Otherwise,
2431 REPEAT and INCOMPLETE are always left properly terminated. */
2432 if (last == SINGLE)
e93a8774 2433 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2434
2435 return;
2436 }
2437
2438 /* Get the next element and state. */
2439 last = state;
2440 if (state != FINISH)
2441 {
2442 elem = VEC_index (converted_character_d, chars, idx++);
2443 switch (elem->result)
2444 {
2445 case wchar_iterate_ok:
2446 case wchar_iterate_invalid:
2447 if (elem->repeat_count > options->repeat_count_threshold)
2448 state = REPEAT;
2449 else
2450 state = SINGLE;
2451 break;
2452
2453 case wchar_iterate_incomplete:
2454 state = INCOMPLETE;
2455 break;
2456
2457 case wchar_iterate_eof:
2458 state = FINISH;
2459 break;
2460 }
2461 }
2462 }
2463}
2464
3b2b8fea
TT
2465/* Print the character string STRING, printing at most LENGTH
2466 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2467 the type of each character. OPTIONS holds the printing options;
2468 printing stops early if the number hits print_max; repeat counts
2469 are printed as appropriate. Print ellipses at the end if we had to
2470 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2471 QUOTE_CHAR is the character to print at each end of the string. If
2472 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2473 omitted. */
2474
2475void
2476generic_printstr (struct ui_file *stream, struct type *type,
2477 const gdb_byte *string, unsigned int length,
2478 const char *encoding, int force_ellipses,
2479 int quote_char, int c_style_terminator,
2480 const struct value_print_options *options)
2481{
2482 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2483 unsigned int i;
3b2b8fea
TT
2484 int width = TYPE_LENGTH (type);
2485 struct obstack wchar_buf, output;
2486 struct cleanup *cleanup;
2487 struct wchar_iterator *iter;
2488 int finished = 0;
0d63ecda
KS
2489 struct converted_character *last;
2490 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2491
2492 if (length == -1)
2493 {
2494 unsigned long current_char = 1;
2495
2496 for (i = 0; current_char; ++i)
2497 {
2498 QUIT;
2499 current_char = extract_unsigned_integer (string + i * width,
2500 width, byte_order);
2501 }
2502 length = i;
2503 }
2504
2505 /* If the string was not truncated due to `set print elements', and
2506 the last byte of it is a null, we don't print that, in
2507 traditional C style. */
2508 if (c_style_terminator
2509 && !force_ellipses
2510 && length > 0
2511 && (extract_unsigned_integer (string + (length - 1) * width,
2512 width, byte_order) == 0))
2513 length--;
2514
2515 if (length == 0)
2516 {
2517 fputs_filtered ("\"\"", stream);
2518 return;
2519 }
2520
2521 /* Arrange to iterate over the characters, in wchar_t form. */
2522 iter = make_wchar_iterator (string, length * width, encoding, width);
2523 cleanup = make_cleanup_wchar_iterator (iter);
0d63ecda
KS
2524 converted_chars = NULL;
2525 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
3b2b8fea 2526
0d63ecda
KS
2527 /* Convert characters until the string is over or the maximum
2528 number of printed characters has been reached. */
2529 i = 0;
2530 while (i < options->print_max)
3b2b8fea 2531 {
0d63ecda 2532 int r;
3b2b8fea
TT
2533
2534 QUIT;
2535
0d63ecda
KS
2536 /* Grab the next character and repeat count. */
2537 r = count_next_character (iter, &converted_chars);
3b2b8fea 2538
0d63ecda
KS
2539 /* If less than zero, the end of the input string was reached. */
2540 if (r < 0)
2541 break;
3b2b8fea 2542
0d63ecda
KS
2543 /* Otherwise, add the count to the total print count and get
2544 the next character. */
2545 i += r;
2546 }
3b2b8fea 2547
0d63ecda
KS
2548 /* Get the last element and determine if the entire string was
2549 processed. */
2550 last = VEC_last (converted_character_d, converted_chars);
2551 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2552
0d63ecda
KS
2553 /* Ensure that CONVERTED_CHARS is terminated. */
2554 last->result = wchar_iterate_eof;
3b2b8fea 2555
0d63ecda
KS
2556 /* WCHAR_BUF is the obstack we use to represent the string in
2557 wchar_t form. */
2558 obstack_init (&wchar_buf);
2559 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2560
0d63ecda
KS
2561 /* Print the output string to the obstack. */
2562 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2563 width, byte_order, options);
3b2b8fea
TT
2564
2565 if (force_ellipses || !finished)
2566 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2567
2568 /* OUTPUT is where we collect `char's for printing. */
2569 obstack_init (&output);
2570 make_cleanup_obstack_free (&output);
2571
2572 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2573 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2574 obstack_object_size (&wchar_buf),
fff10684 2575 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2576 obstack_1grow (&output, '\0');
2577
2578 fputs_filtered (obstack_base (&output), stream);
2579
2580 do_cleanups (cleanup);
2581}
2582
ae6a3a4c
TJB
2583/* Print a string from the inferior, starting at ADDR and printing up to LEN
2584 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2585 stops at the first null byte, otherwise printing proceeds (including null
2586 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2587 whichever is smaller. ENCODING is the name of the string's
2588 encoding. It can be NULL, in which case the target encoding is
2589 assumed. */
ae6a3a4c
TJB
2590
2591int
09ca9e2e
TT
2592val_print_string (struct type *elttype, const char *encoding,
2593 CORE_ADDR addr, int len,
6c7a06a3 2594 struct ui_file *stream,
ae6a3a4c
TJB
2595 const struct value_print_options *options)
2596{
2597 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2598 int errcode; /* Errno returned from bad reads. */
581e13c1 2599 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2600 unsigned int fetchlimit; /* Maximum number of chars to print. */
2601 int bytes_read;
2602 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2603 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2604 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2606 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2607
2608 /* First we need to figure out the limit on the number of characters we are
2609 going to attempt to fetch and print. This is actually pretty simple. If
2610 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2611 LEN is -1, then the limit is print_max. This is true regardless of
2612 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2613 because finding the null byte (or available memory) is what actually
2614 limits the fetch. */
2615
3e43a32a
MS
2616 fetchlimit = (len == -1 ? options->print_max : min (len,
2617 options->print_max));
ae6a3a4c 2618
e17a4113
UW
2619 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2620 &buffer, &bytes_read);
ae6a3a4c
TJB
2621 old_chain = make_cleanup (xfree, buffer);
2622
2623 addr += bytes_read;
c906108c 2624
3e43a32a
MS
2625 /* We now have either successfully filled the buffer to fetchlimit,
2626 or terminated early due to an error or finding a null char when
2627 LEN is -1. */
ae6a3a4c
TJB
2628
2629 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2630 found_nul = 0;
2631 if (bytes_read >= width)
2632 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2633 byte_order) == 0;
c906108c
SS
2634 if (len == -1 && !found_nul)
2635 {
777ea8f1 2636 gdb_byte *peekbuf;
c906108c 2637
ae6a3a4c 2638 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2639 to peek at the next character. If not successful, or it is not
2640 a null byte, then force ellipsis to be printed. */
c906108c 2641
777ea8f1 2642 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2643
2644 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2645 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2646 force_ellipsis = 1;
2647 }
ae6a3a4c 2648 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
2649 {
2650 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2651 than the number of characters actually requested, always make us
ae6a3a4c 2652 print ellipsis. */
c906108c
SS
2653 force_ellipsis = 1;
2654 }
2655
c906108c
SS
2656 /* If we get an error before fetching anything, don't print a string.
2657 But if we fetch something and then get an error, print the string
2658 and then the error message. */
ae6a3a4c 2659 if (errcode == 0 || bytes_read > 0)
c906108c 2660 {
be759fcf 2661 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2662 encoding, force_ellipsis, options);
c906108c
SS
2663 }
2664
2665 if (errcode != 0)
2666 {
578d3588
PA
2667 char *str;
2668
2669 str = memory_error_message (errcode, gdbarch, addr);
2670 make_cleanup (xfree, str);
2671
2672 fprintf_filtered (stream, "<error: ");
2673 fputs_filtered (str, stream);
2674 fprintf_filtered (stream, ">");
c906108c 2675 }
ae6a3a4c 2676
c906108c
SS
2677 gdb_flush (stream);
2678 do_cleanups (old_chain);
ae6a3a4c
TJB
2679
2680 return (bytes_read / width);
c906108c 2681}
c906108c 2682\f
c5aa993b 2683
09e6485f
PA
2684/* The 'set input-radix' command writes to this auxiliary variable.
2685 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2686 it is left unchanged. */
2687
2688static unsigned input_radix_1 = 10;
2689
c906108c
SS
2690/* Validate an input or output radix setting, and make sure the user
2691 knows what they really did here. Radix setting is confusing, e.g.
2692 setting the input radix to "10" never changes it! */
2693
c906108c 2694static void
fba45db2 2695set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2696{
09e6485f 2697 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2698}
2699
c906108c 2700static void
fba45db2 2701set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2702{
2703 /* We don't currently disallow any input radix except 0 or 1, which don't
2704 make any mathematical sense. In theory, we can deal with any input
2705 radix greater than 1, even if we don't have unique digits for every
2706 value from 0 to radix-1, but in practice we lose on large radix values.
2707 We should either fix the lossage or restrict the radix range more.
581e13c1 2708 (FIXME). */
c906108c
SS
2709
2710 if (radix < 2)
2711 {
09e6485f 2712 input_radix_1 = input_radix;
8a3fe4f8 2713 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2714 radix);
2715 }
09e6485f 2716 input_radix_1 = input_radix = radix;
c906108c
SS
2717 if (from_tty)
2718 {
3e43a32a
MS
2719 printf_filtered (_("Input radix now set to "
2720 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2721 radix, radix, radix);
2722 }
2723}
2724
09e6485f
PA
2725/* The 'set output-radix' command writes to this auxiliary variable.
2726 If the requested radix is valid, OUTPUT_RADIX is updated,
2727 otherwise, it is left unchanged. */
2728
2729static unsigned output_radix_1 = 10;
2730
c906108c 2731static void
fba45db2 2732set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2733{
09e6485f 2734 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
2735}
2736
2737static void
fba45db2 2738set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2739{
2740 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 2741 handle correctly, leaving the radix unchanged. */
c906108c
SS
2742 switch (radix)
2743 {
2744 case 16:
79a45b7d 2745 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
2746 break;
2747 case 10:
79a45b7d 2748 user_print_options.output_format = 0; /* decimal */
c906108c
SS
2749 break;
2750 case 8:
79a45b7d 2751 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
2752 break;
2753 default:
09e6485f 2754 output_radix_1 = output_radix;
3e43a32a
MS
2755 error (_("Unsupported output radix ``decimal %u''; "
2756 "output radix unchanged."),
c906108c
SS
2757 radix);
2758 }
09e6485f 2759 output_radix_1 = output_radix = radix;
c906108c
SS
2760 if (from_tty)
2761 {
3e43a32a
MS
2762 printf_filtered (_("Output radix now set to "
2763 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2764 radix, radix, radix);
2765 }
2766}
2767
2768/* Set both the input and output radix at once. Try to set the output radix
2769 first, since it has the most restrictive range. An radix that is valid as
2770 an output radix is also valid as an input radix.
2771
2772 It may be useful to have an unusual input radix. If the user wishes to
2773 set an input radix that is not valid as an output radix, he needs to use
581e13c1 2774 the 'set input-radix' command. */
c906108c
SS
2775
2776static void
fba45db2 2777set_radix (char *arg, int from_tty)
c906108c
SS
2778{
2779 unsigned radix;
2780
bb518678 2781 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
2782 set_output_radix_1 (0, radix);
2783 set_input_radix_1 (0, radix);
2784 if (from_tty)
2785 {
3e43a32a
MS
2786 printf_filtered (_("Input and output radices now set to "
2787 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2788 radix, radix, radix);
2789 }
2790}
2791
581e13c1 2792/* Show both the input and output radices. */
c906108c 2793
c906108c 2794static void
fba45db2 2795show_radix (char *arg, int from_tty)
c906108c
SS
2796{
2797 if (from_tty)
2798 {
2799 if (input_radix == output_radix)
2800 {
3e43a32a
MS
2801 printf_filtered (_("Input and output radices set to "
2802 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2803 input_radix, input_radix, input_radix);
2804 }
2805 else
2806 {
3e43a32a
MS
2807 printf_filtered (_("Input radix set to decimal "
2808 "%u, hex %x, octal %o.\n"),
c906108c 2809 input_radix, input_radix, input_radix);
3e43a32a
MS
2810 printf_filtered (_("Output radix set to decimal "
2811 "%u, hex %x, octal %o.\n"),
c906108c
SS
2812 output_radix, output_radix, output_radix);
2813 }
2814 }
2815}
c906108c 2816\f
c5aa993b 2817
c906108c 2818static void
fba45db2 2819set_print (char *arg, int from_tty)
c906108c
SS
2820{
2821 printf_unfiltered (
c5aa993b 2822 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 2823 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
2824}
2825
c906108c 2826static void
fba45db2 2827show_print (char *args, int from_tty)
c906108c
SS
2828{
2829 cmd_show_list (showprintlist, from_tty, "");
2830}
e7045703
DE
2831
2832static void
2833set_print_raw (char *arg, int from_tty)
2834{
2835 printf_unfiltered (
2836 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 2837 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
2838}
2839
2840static void
2841show_print_raw (char *args, int from_tty)
2842{
2843 cmd_show_list (showprintrawlist, from_tty, "");
2844}
2845
c906108c
SS
2846\f
2847void
fba45db2 2848_initialize_valprint (void)
c906108c 2849{
c906108c 2850 add_prefix_cmd ("print", no_class, set_print,
1bedd215 2851 _("Generic command for setting how things print."),
c906108c 2852 &setprintlist, "set print ", 0, &setlist);
c5aa993b 2853 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 2854 /* Prefer set print to set prompt. */
c906108c
SS
2855 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2856
2857 add_prefix_cmd ("print", no_class, show_print,
1bedd215 2858 _("Generic command for showing print settings."),
c906108c 2859 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
2860 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2861 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 2862
e7045703
DE
2863 add_prefix_cmd ("raw", no_class, set_print_raw,
2864 _("\
2865Generic command for setting what things to print in \"raw\" mode."),
2866 &setprintrawlist, "set print raw ", 0, &setprintlist);
2867 add_prefix_cmd ("raw", no_class, show_print_raw,
2868 _("Generic command for showing \"print raw\" settings."),
2869 &showprintrawlist, "show print raw ", 0, &showprintlist);
2870
79a45b7d
TT
2871 add_setshow_uinteger_cmd ("elements", no_class,
2872 &user_print_options.print_max, _("\
35096d9d
AC
2873Set limit on string chars or array elements to print."), _("\
2874Show limit on string chars or array elements to print."), _("\
f81d1120 2875\"set print elements unlimited\" causes there to be no limit."),
35096d9d 2876 NULL,
920d2a44 2877 show_print_max,
35096d9d 2878 &setprintlist, &showprintlist);
c906108c 2879
79a45b7d
TT
2880 add_setshow_boolean_cmd ("null-stop", no_class,
2881 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
2882Set printing of char arrays to stop at first null char."), _("\
2883Show printing of char arrays to stop at first null char."), NULL,
2884 NULL,
920d2a44 2885 show_stop_print_at_null,
5bf193a2 2886 &setprintlist, &showprintlist);
c906108c 2887
35096d9d 2888 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 2889 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
2890Set threshold for repeated print elements."), _("\
2891Show threshold for repeated print elements."), _("\
f81d1120 2892\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 2893 NULL,
920d2a44 2894 show_repeat_count_threshold,
35096d9d 2895 &setprintlist, &showprintlist);
c906108c 2896
79a45b7d 2897 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
2898 &user_print_options.prettyformat_structs, _("\
2899Set pretty formatting of structures."), _("\
2900Show pretty formatting of structures."), NULL,
5bf193a2 2901 NULL,
2a998fc0 2902 show_prettyformat_structs,
5bf193a2
AC
2903 &setprintlist, &showprintlist);
2904
79a45b7d
TT
2905 add_setshow_boolean_cmd ("union", class_support,
2906 &user_print_options.unionprint, _("\
5bf193a2
AC
2907Set printing of unions interior to structures."), _("\
2908Show printing of unions interior to structures."), NULL,
2909 NULL,
920d2a44 2910 show_unionprint,
5bf193a2
AC
2911 &setprintlist, &showprintlist);
2912
79a45b7d 2913 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
2914 &user_print_options.prettyformat_arrays, _("\
2915Set pretty formatting of arrays."), _("\
2916Show pretty formatting of arrays."), NULL,
5bf193a2 2917 NULL,
2a998fc0 2918 show_prettyformat_arrays,
5bf193a2
AC
2919 &setprintlist, &showprintlist);
2920
79a45b7d
TT
2921 add_setshow_boolean_cmd ("address", class_support,
2922 &user_print_options.addressprint, _("\
5bf193a2
AC
2923Set printing of addresses."), _("\
2924Show printing of addresses."), NULL,
2925 NULL,
920d2a44 2926 show_addressprint,
5bf193a2 2927 &setprintlist, &showprintlist);
c906108c 2928
9cb709b6
TT
2929 add_setshow_boolean_cmd ("symbol", class_support,
2930 &user_print_options.symbol_print, _("\
2931Set printing of symbol names when printing pointers."), _("\
2932Show printing of symbol names when printing pointers."),
2933 NULL, NULL,
2934 show_symbol_print,
2935 &setprintlist, &showprintlist);
2936
1e8fb976
PA
2937 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2938 _("\
35096d9d
AC
2939Set default input radix for entering numbers."), _("\
2940Show default input radix for entering numbers."), NULL,
1e8fb976
PA
2941 set_input_radix,
2942 show_input_radix,
2943 &setlist, &showlist);
35096d9d 2944
1e8fb976
PA
2945 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2946 _("\
35096d9d
AC
2947Set default output radix for printing of values."), _("\
2948Show default output radix for printing of values."), NULL,
1e8fb976
PA
2949 set_output_radix,
2950 show_output_radix,
2951 &setlist, &showlist);
c906108c 2952
cb1a6d5f
AC
2953 /* The "set radix" and "show radix" commands are special in that
2954 they are like normal set and show commands but allow two normally
2955 independent variables to be either set or shown with a single
b66df561 2956 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 2957 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
2958 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2959 longer true - show can display anything. */
1a966eab
AC
2960 add_cmd ("radix", class_support, set_radix, _("\
2961Set default input and output number radices.\n\
c906108c 2962Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 2963Without an argument, sets both radices back to the default value of 10."),
c906108c 2964 &setlist);
1a966eab
AC
2965 add_cmd ("radix", class_support, show_radix, _("\
2966Show the default input and output number radices.\n\
2967Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
2968 &showlist);
2969
e79af960 2970 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 2971 &user_print_options.print_array_indexes, _("\
e79af960
JB
2972Set printing of array indexes."), _("\
2973Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2974 &setprintlist, &showprintlist);
c906108c 2975}
This page took 3.080292 seconds and 4 git commands to generate.