Factor out enum printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
37#include <ctype.h>
c906108c 38
0d63ecda
KS
39/* Maximum number of wchars returned from wchar_iterate. */
40#define MAX_WCHARS 4
41
42/* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46/* Character buffer size saved while iterating over wchars. */
47#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49/* A structure to encapsulate state information from iterated
50 character conversions. */
51struct converted_character
52{
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70};
71
72typedef struct converted_character converted_character_d;
73DEF_VEC_O (converted_character_d);
74
e7045703
DE
75/* Command lists for set/show print raw. */
76struct cmd_list_element *setprintrawlist;
77struct cmd_list_element *showprintrawlist;
0d63ecda 78
c906108c
SS
79/* Prototypes for local functions */
80
777ea8f1 81static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 82 int len, int *errptr);
917317f4 83
a14ed312 84static void show_print (char *, int);
c906108c 85
a14ed312 86static void set_print (char *, int);
c906108c 87
a14ed312 88static void set_radix (char *, int);
c906108c 89
a14ed312 90static void show_radix (char *, int);
c906108c 91
a14ed312 92static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 93
a14ed312 94static void set_input_radix_1 (int, unsigned);
c906108c 95
a14ed312 96static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_output_radix_1 (int, unsigned);
c906108c 99
a14ed312 100void _initialize_valprint (void);
c906108c 101
581e13c1 102#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
103
104struct value_print_options user_print_options =
105{
2a998fc0
DE
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
79a45b7d
TT
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
79a45b7d
TT
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
a6bac58e
TT
121 1, /* pascal_static_field_print */
122 0, /* raw */
9cb709b6
TT
123 0, /* summary */
124 1 /* symbol_print */
79a45b7d
TT
125};
126
127/* Initialize *OPTS to be a copy of the user print options. */
128void
129get_user_print_options (struct value_print_options *opts)
130{
131 *opts = user_print_options;
132}
133
134/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 135 pretty-formatting disabled. */
79a45b7d 136void
2a998fc0 137get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
138{
139 *opts = user_print_options;
2a998fc0 140 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
141}
142
143/* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145void
146get_formatted_print_options (struct value_print_options *opts,
147 char format)
148{
149 *opts = user_print_options;
150 opts->format = format;
151}
152
920d2a44
AC
153static void
154show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
3e43a32a
MS
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
920d2a44
AC
160 value);
161}
162
c906108c
SS
163
164/* Default input and output radixes, and output format letter. */
165
166unsigned input_radix = 10;
920d2a44
AC
167static void
168show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
3e43a32a
MS
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
173 value);
174}
175
c906108c 176unsigned output_radix = 10;
920d2a44
AC
177static void
178show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
3e43a32a
MS
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
183 value);
184}
c906108c 185
e79af960
JB
186/* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
e79af960
JB
189static void
190show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194}
195
c906108c
SS
196/* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
581e13c1 198 print routines. */
c906108c 199
920d2a44
AC
200static void
201show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203{
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206}
c906108c 207
581e13c1 208/* If nonzero, stops printing of char arrays at first null. */
c906108c 209
920d2a44
AC
210static void
211show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
3e43a32a
MS
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
920d2a44
AC
217 value);
218}
c906108c 219
581e13c1 220/* Controls pretty printing of structures. */
c906108c 221
920d2a44 222static void
2a998fc0 223show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
224 struct cmd_list_element *c, const char *value)
225{
2a998fc0 226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 227}
c906108c
SS
228
229/* Controls pretty printing of arrays. */
230
920d2a44 231static void
2a998fc0 232show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
233 struct cmd_list_element *c, const char *value)
234{
2a998fc0 235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 236}
c906108c
SS
237
238/* If nonzero, causes unions inside structures or other unions to be
581e13c1 239 printed. */
c906108c 240
920d2a44
AC
241static void
242show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
3e43a32a
MS
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
247 value);
248}
c906108c 249
581e13c1 250/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 251
920d2a44
AC
252static void
253show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255{
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257}
9cb709b6
TT
258
259static void
260show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266}
267
c906108c 268\f
c5aa993b 269
a6bac58e
TT
270/* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
6211c335
YQ
274int
275val_print_scalar_type_p (struct type *type)
a6bac58e 276{
f168693b 277 type = check_typedef (type);
a6bac58e
TT
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
f168693b 281 type = check_typedef (type);
a6bac58e
TT
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
a6bac58e
TT
290 return 0;
291 default:
292 return 1;
293 }
294}
295
a72c8f6a 296/* See its definition in value.h. */
0e03807e 297
a72c8f6a 298int
0e03807e
TT
299valprint_check_validity (struct ui_file *stream,
300 struct type *type,
4e07d55f 301 int embedded_offset,
0e03807e
TT
302 const struct value *val)
303{
f168693b 304 type = check_typedef (type);
0e03807e
TT
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
9a0dc9e3
PA
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 313 {
901461f8 314 val_print_optimized_out (val, stream);
0e03807e
TT
315 return 0;
316 }
8cf6f0b1 317
4e07d55f 318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
4e07d55f
PA
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
0e03807e
TT
330 }
331
332 return 1;
333}
334
585fdaa1 335void
901461f8 336val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 337{
901461f8 338 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 339 val_print_not_saved (stream);
901461f8
PA
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
342}
343
782d47df
PA
344void
345val_print_not_saved (struct ui_file *stream)
346{
347 fprintf_filtered (stream, _("<not saved>"));
348}
349
4e07d55f
PA
350void
351val_print_unavailable (struct ui_file *stream)
352{
353 fprintf_filtered (stream, _("<unavailable>"));
354}
355
8af8e3bc
PA
356void
357val_print_invalid_address (struct ui_file *stream)
358{
359 fprintf_filtered (stream, _("<invalid address>"));
360}
361
9f436164
SM
362/* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369static void
370print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373{
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387}
388
557dbe8a
SM
389/* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391static void
392generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397{
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426}
427
81eb921a
SM
428/* generic_val_print helper for TYPE_CODE_PTR. */
429
430static void
431generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435{
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449}
450
45000ea2
SM
451
452/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454static void
455generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459{
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462}
463
fe43fede
SM
464/* generic_val_print helper for TYPE_CODE_REF. */
465
466static void
467generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471{
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510}
511
ef0bc0dd
SM
512/* generic_val_print helper for TYPE_CODE_ENUM. */
513
514static void
515generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519{
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579}
580
e88acd96
TT
581/* A generic val_print that is suitable for use by language
582 implementations of the la_val_print method. This function can
583 handle most type codes, though not all, notably exception
584 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
585 the caller.
586
587 Most arguments are as to val_print.
588
589 The additional DECORATIONS argument can be used to customize the
590 output in some small, language-specific ways. */
591
592void
593generic_val_print (struct type *type, const gdb_byte *valaddr,
594 int embedded_offset, CORE_ADDR address,
595 struct ui_file *stream, int recurse,
596 const struct value *original_value,
597 const struct value_print_options *options,
598 const struct generic_val_print_decorations *decorations)
599{
600 struct gdbarch *gdbarch = get_type_arch (type);
e88acd96 601 struct type *unresolved_type = type;
e88acd96 602 LONGEST val;
e88acd96 603
f168693b 604 type = check_typedef (type);
e88acd96
TT
605 switch (TYPE_CODE (type))
606 {
607 case TYPE_CODE_ARRAY:
557dbe8a
SM
608 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
609 recurse, original_value, options);
9f436164 610 break;
e88acd96
TT
611
612 case TYPE_CODE_MEMBERPTR:
45000ea2
SM
613 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
614 original_value, options);
e88acd96
TT
615 break;
616
617 case TYPE_CODE_PTR:
81eb921a
SM
618 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
619 original_value, options);
e88acd96
TT
620 break;
621
622 case TYPE_CODE_REF:
fe43fede
SM
623 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
624 original_value, options);
e88acd96
TT
625 break;
626
627 case TYPE_CODE_ENUM:
ef0bc0dd
SM
628 generic_val_print_enum (type, valaddr, embedded_offset, stream,
629 original_value, options);
e88acd96
TT
630 break;
631
632 case TYPE_CODE_FLAGS:
633 if (options->format)
634 val_print_scalar_formatted (type, valaddr, embedded_offset,
635 original_value, options, 0, stream);
636 else
637 val_print_type_code_flags (type, valaddr + embedded_offset,
638 stream);
639 break;
640
641 case TYPE_CODE_FUNC:
642 case TYPE_CODE_METHOD:
643 if (options->format)
644 {
645 val_print_scalar_formatted (type, valaddr, embedded_offset,
646 original_value, options, 0, stream);
647 break;
648 }
649 /* FIXME, we should consider, at least for ANSI C language,
650 eliminating the distinction made between FUNCs and POINTERs
651 to FUNCs. */
652 fprintf_filtered (stream, "{");
653 type_print (type, "", stream, -1);
654 fprintf_filtered (stream, "} ");
655 /* Try to print what function it points to, and its address. */
edf0c1b7 656 print_address_demangle (options, gdbarch, address, stream, demangle);
e88acd96
TT
657 break;
658
659 case TYPE_CODE_BOOL:
660 if (options->format || options->output_format)
661 {
662 struct value_print_options opts = *options;
663 opts.format = (options->format ? options->format
664 : options->output_format);
665 val_print_scalar_formatted (type, valaddr, embedded_offset,
666 original_value, &opts, 0, stream);
667 }
668 else
669 {
670 val = unpack_long (type, valaddr + embedded_offset);
671 if (val == 0)
672 fputs_filtered (decorations->false_name, stream);
673 else if (val == 1)
674 fputs_filtered (decorations->true_name, stream);
675 else
676 print_longest (stream, 'd', 0, val);
677 }
678 break;
679
680 case TYPE_CODE_RANGE:
0c9c3474 681 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
682 range type (I think it probably should copy it from the
683 target type), so we won't print values which are too large to
684 fit in a signed integer correctly. */
685 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
686 print with the target type, though, because the size of our
687 type and the target type might differ). */
688
689 /* FALLTHROUGH */
690
691 case TYPE_CODE_INT:
692 if (options->format || options->output_format)
693 {
694 struct value_print_options opts = *options;
695
696 opts.format = (options->format ? options->format
697 : options->output_format);
698 val_print_scalar_formatted (type, valaddr, embedded_offset,
699 original_value, &opts, 0, stream);
700 }
701 else
702 val_print_type_code_int (type, valaddr + embedded_offset, stream);
703 break;
704
705 case TYPE_CODE_CHAR:
706 if (options->format || options->output_format)
707 {
708 struct value_print_options opts = *options;
709
710 opts.format = (options->format ? options->format
711 : options->output_format);
712 val_print_scalar_formatted (type, valaddr, embedded_offset,
713 original_value, &opts, 0, stream);
714 }
715 else
716 {
717 val = unpack_long (type, valaddr + embedded_offset);
718 if (TYPE_UNSIGNED (type))
719 fprintf_filtered (stream, "%u", (unsigned int) val);
720 else
721 fprintf_filtered (stream, "%d", (int) val);
722 fputs_filtered (" ", stream);
723 LA_PRINT_CHAR (val, unresolved_type, stream);
724 }
725 break;
726
727 case TYPE_CODE_FLT:
728 if (options->format)
729 {
730 val_print_scalar_formatted (type, valaddr, embedded_offset,
731 original_value, options, 0, stream);
732 }
733 else
734 {
735 print_floating (valaddr + embedded_offset, type, stream);
736 }
737 break;
738
739 case TYPE_CODE_DECFLOAT:
740 if (options->format)
741 val_print_scalar_formatted (type, valaddr, embedded_offset,
742 original_value, options, 0, stream);
743 else
744 print_decimal_floating (valaddr + embedded_offset,
745 type, stream);
746 break;
747
748 case TYPE_CODE_VOID:
749 fputs_filtered (decorations->void_name, stream);
750 break;
751
752 case TYPE_CODE_ERROR:
753 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
754 break;
755
756 case TYPE_CODE_UNDEF:
757 /* This happens (without TYPE_FLAG_STUB set) on systems which
758 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
759 "struct foo *bar" and no complete type for struct foo in that
760 file. */
761 fprintf_filtered (stream, _("<incomplete type>"));
762 break;
763
764 case TYPE_CODE_COMPLEX:
765 fprintf_filtered (stream, "%s", decorations->complex_prefix);
766 if (options->format)
767 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
768 valaddr, embedded_offset,
769 original_value, options, 0, stream);
770 else
771 print_floating (valaddr + embedded_offset,
772 TYPE_TARGET_TYPE (type),
773 stream);
774 fprintf_filtered (stream, "%s", decorations->complex_infix);
775 if (options->format)
776 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
777 valaddr,
778 embedded_offset
779 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
780 original_value,
781 options, 0, stream);
782 else
783 print_floating (valaddr + embedded_offset
784 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
785 TYPE_TARGET_TYPE (type),
786 stream);
787 fprintf_filtered (stream, "%s", decorations->complex_suffix);
788 break;
789
790 case TYPE_CODE_UNION:
791 case TYPE_CODE_STRUCT:
792 case TYPE_CODE_METHODPTR:
793 default:
794 error (_("Unhandled type code %d in symbol table."),
795 TYPE_CODE (type));
796 }
797 gdb_flush (stream);
798}
799
32b72a42
PA
800/* Print using the given LANGUAGE the data of type TYPE located at
801 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
802 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
803 STREAM according to OPTIONS. VAL is the whole object that came
804 from ADDRESS. VALADDR must point to the head of VAL's contents
805 buffer.
806
807 The language printers will pass down an adjusted EMBEDDED_OFFSET to
808 further helper subroutines as subfields of TYPE are printed. In
809 such cases, VALADDR is passed down unadjusted, as well as VAL, so
810 that VAL can be queried for metadata about the contents data being
811 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
812 buffer. For example: "has this field been optimized out", or "I'm
813 printing an object while inspecting a traceframe; has this
814 particular piece of data been collected?".
815
816 RECURSE indicates the amount of indentation to supply before
817 continuation lines; this amount is roughly twice the value of
35c0084b 818 RECURSE. */
32b72a42 819
35c0084b 820void
fc1a4b47 821val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 822 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 823 const struct value *val,
79a45b7d 824 const struct value_print_options *options,
d8ca156b 825 const struct language_defn *language)
c906108c 826{
19ca80ba 827 int ret = 0;
79a45b7d 828 struct value_print_options local_opts = *options;
c906108c 829 struct type *real_type = check_typedef (type);
79a45b7d 830
2a998fc0
DE
831 if (local_opts.prettyformat == Val_prettyformat_default)
832 local_opts.prettyformat = (local_opts.prettyformat_structs
833 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 834
c906108c
SS
835 QUIT;
836
837 /* Ensure that the type is complete and not just a stub. If the type is
838 only a stub and we can't find and substitute its complete type, then
839 print appropriate string and return. */
840
74a9bb82 841 if (TYPE_STUB (real_type))
c906108c 842 {
0e03807e 843 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 844 gdb_flush (stream);
35c0084b 845 return;
c906108c 846 }
c5aa993b 847
0e03807e 848 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 849 return;
0e03807e 850
a6bac58e
TT
851 if (!options->raw)
852 {
6dddc817
DE
853 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
854 address, stream, recurse,
855 val, options, language);
a6bac58e 856 if (ret)
35c0084b 857 return;
a6bac58e
TT
858 }
859
860 /* Handle summary mode. If the value is a scalar, print it;
861 otherwise, print an ellipsis. */
6211c335 862 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
863 {
864 fprintf_filtered (stream, "...");
35c0084b 865 return;
a6bac58e
TT
866 }
867
492d29ea 868 TRY
19ca80ba 869 {
d3eab38a
TT
870 language->la_val_print (type, valaddr, embedded_offset, address,
871 stream, recurse, val,
872 &local_opts);
19ca80ba 873 }
492d29ea
PA
874 CATCH (except, RETURN_MASK_ERROR)
875 {
876 fprintf_filtered (stream, _("<error reading variable>"));
877 }
878 END_CATCH
c906108c
SS
879}
880
806048c6 881/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
882 return 0 and print an appropriate error message to STREAM according to
883 OPTIONS if it is not. */
c906108c 884
806048c6 885static int
6501578c
YQ
886value_check_printable (struct value *val, struct ui_file *stream,
887 const struct value_print_options *options)
c906108c
SS
888{
889 if (val == 0)
890 {
806048c6 891 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
892 return 0;
893 }
806048c6 894
0e03807e 895 if (value_entirely_optimized_out (val))
c906108c 896 {
6211c335 897 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
898 fprintf_filtered (stream, "...");
899 else
901461f8 900 val_print_optimized_out (val, stream);
c906108c
SS
901 return 0;
902 }
806048c6 903
eebc056c
AB
904 if (value_entirely_unavailable (val))
905 {
906 if (options->summary && !val_print_scalar_type_p (value_type (val)))
907 fprintf_filtered (stream, "...");
908 else
909 val_print_unavailable (stream);
910 return 0;
911 }
912
bc3b79fd
TJB
913 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
914 {
915 fprintf_filtered (stream, _("<internal function %s>"),
916 value_internal_function_name (val));
917 return 0;
918 }
919
806048c6
DJ
920 return 1;
921}
922
d8ca156b 923/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 924 to OPTIONS.
806048c6 925
806048c6
DJ
926 This is a preferable interface to val_print, above, because it uses
927 GDB's value mechanism. */
928
a1f5dd1b 929void
79a45b7d
TT
930common_val_print (struct value *val, struct ui_file *stream, int recurse,
931 const struct value_print_options *options,
d8ca156b 932 const struct language_defn *language)
806048c6 933{
6501578c 934 if (!value_check_printable (val, stream, options))
a1f5dd1b 935 return;
806048c6 936
0c3acc09
JB
937 if (language->la_language == language_ada)
938 /* The value might have a dynamic type, which would cause trouble
939 below when trying to extract the value contents (since the value
940 size is determined from the type size which is unknown). So
941 get a fixed representation of our value. */
942 val = ada_to_fixed_value (val);
943
a1f5dd1b
TT
944 val_print (value_type (val), value_contents_for_printing (val),
945 value_embedded_offset (val), value_address (val),
946 stream, recurse,
947 val, options, language);
806048c6
DJ
948}
949
7348c5e1 950/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 951 is printed using the current_language syntax. */
7348c5e1 952
8e069a98 953void
79a45b7d
TT
954value_print (struct value *val, struct ui_file *stream,
955 const struct value_print_options *options)
806048c6 956{
6501578c 957 if (!value_check_printable (val, stream, options))
8e069a98 958 return;
806048c6 959
a6bac58e
TT
960 if (!options->raw)
961 {
6dddc817
DE
962 int r
963 = apply_ext_lang_val_pretty_printer (value_type (val),
964 value_contents_for_printing (val),
965 value_embedded_offset (val),
966 value_address (val),
967 stream, 0,
968 val, options, current_language);
a109c7c1 969
a6bac58e 970 if (r)
8e069a98 971 return;
a6bac58e
TT
972 }
973
8e069a98 974 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
975}
976
977/* Called by various <lang>_val_print routines to print
978 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
979 value. STREAM is where to print the value. */
980
981void
fc1a4b47 982val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 983 struct ui_file *stream)
c906108c 984{
50810684 985 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 986
c906108c
SS
987 if (TYPE_LENGTH (type) > sizeof (LONGEST))
988 {
989 LONGEST val;
990
991 if (TYPE_UNSIGNED (type)
992 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 993 byte_order, &val))
c906108c
SS
994 {
995 print_longest (stream, 'u', 0, val);
996 }
997 else
998 {
999 /* Signed, or we couldn't turn an unsigned value into a
1000 LONGEST. For signed values, one could assume two's
1001 complement (a reasonable assumption, I think) and do
1002 better than this. */
1003 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 1004 TYPE_LENGTH (type), byte_order);
c906108c
SS
1005 }
1006 }
1007 else
1008 {
c906108c
SS
1009 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1010 unpack_long (type, valaddr));
c906108c
SS
1011 }
1012}
1013
4f2aea11
MK
1014void
1015val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1016 struct ui_file *stream)
1017{
befae759 1018 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
1019 int bitpos, nfields = TYPE_NFIELDS (type);
1020
1021 fputs_filtered ("[ ", stream);
1022 for (bitpos = 0; bitpos < nfields; bitpos++)
1023 {
316703b9
MK
1024 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1025 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
1026 {
1027 if (TYPE_FIELD_NAME (type, bitpos))
1028 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1029 else
1030 fprintf_filtered (stream, "#%d ", bitpos);
1031 }
1032 }
1033 fputs_filtered ("]", stream);
19c37f24 1034}
ab2188aa
PA
1035
1036/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1037 according to OPTIONS and SIZE on STREAM. Format i is not supported
1038 at this level.
1039
1040 This is how the elements of an array or structure are printed
1041 with a format. */
ab2188aa
PA
1042
1043void
1044val_print_scalar_formatted (struct type *type,
1045 const gdb_byte *valaddr, int embedded_offset,
1046 const struct value *val,
1047 const struct value_print_options *options,
1048 int size,
1049 struct ui_file *stream)
1050{
1051 gdb_assert (val != NULL);
1052 gdb_assert (valaddr == value_contents_for_printing_const (val));
1053
1054 /* If we get here with a string format, try again without it. Go
1055 all the way back to the language printers, which may call us
1056 again. */
1057 if (options->format == 's')
1058 {
1059 struct value_print_options opts = *options;
1060 opts.format = 0;
1061 opts.deref_ref = 0;
1062 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1063 current_language);
1064 return;
1065 }
1066
1067 /* A scalar object that does not have all bits available can't be
1068 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1069 if (value_bits_any_optimized_out (val,
1070 TARGET_CHAR_BIT * embedded_offset,
1071 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1072 val_print_optimized_out (val, stream);
4e07d55f
PA
1073 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1074 val_print_unavailable (stream);
ab2188aa
PA
1075 else
1076 print_scalar_formatted (valaddr + embedded_offset, type,
1077 options, size, stream);
4f2aea11
MK
1078}
1079
c906108c
SS
1080/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1081 The raison d'etre of this function is to consolidate printing of
581e13c1 1082 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1083 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1084 format.
bb599908
PH
1085
1086 USE_C_FORMAT means to use C format in all cases. Without it,
1087 'o' and 'x' format do not include the standard C radix prefix
1088 (leading 0 or 0x).
1089
1090 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1091 and was intended to request formating according to the current
1092 language and would be used for most integers that GDB prints. The
1093 exceptional cases were things like protocols where the format of
1094 the integer is a protocol thing, not a user-visible thing). The
1095 parameter remains to preserve the information of what things might
1096 be printed with language-specific format, should we ever resurrect
581e13c1 1097 that capability. */
c906108c
SS
1098
1099void
bb599908 1100print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1101 LONGEST val_long)
c906108c 1102{
2bfb72ee
AC
1103 const char *val;
1104
c906108c
SS
1105 switch (format)
1106 {
1107 case 'd':
bb599908 1108 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1109 case 'u':
bb599908 1110 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1111 case 'x':
bb599908 1112 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1113 case 'b':
bb599908 1114 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1115 case 'h':
bb599908 1116 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1117 case 'w':
bb599908 1118 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1119 case 'g':
bb599908 1120 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1121 break;
1122 case 'o':
bb599908 1123 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1124 default:
3e43a32a
MS
1125 internal_error (__FILE__, __LINE__,
1126 _("failed internal consistency check"));
bb599908 1127 }
2bfb72ee 1128 fputs_filtered (val, stream);
c906108c
SS
1129}
1130
c906108c
SS
1131/* This used to be a macro, but I don't think it is called often enough
1132 to merit such treatment. */
1133/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1134 arguments to a function, number in a value history, register number, etc.)
1135 where the value must not be larger than can fit in an int. */
1136
1137int
fba45db2 1138longest_to_int (LONGEST arg)
c906108c 1139{
581e13c1 1140 /* Let the compiler do the work. */
c906108c
SS
1141 int rtnval = (int) arg;
1142
581e13c1 1143 /* Check for overflows or underflows. */
c906108c
SS
1144 if (sizeof (LONGEST) > sizeof (int))
1145 {
1146 if (rtnval != arg)
1147 {
8a3fe4f8 1148 error (_("Value out of range."));
c906108c
SS
1149 }
1150 }
1151 return (rtnval);
1152}
1153
a73c86fb
AC
1154/* Print a floating point value of type TYPE (not always a
1155 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1156
1157void
fc1a4b47 1158print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1159 struct ui_file *stream)
c906108c
SS
1160{
1161 DOUBLEST doub;
1162 int inv;
a73c86fb 1163 const struct floatformat *fmt = NULL;
c906108c 1164 unsigned len = TYPE_LENGTH (type);
20389057 1165 enum float_kind kind;
c5aa993b 1166
a73c86fb
AC
1167 /* If it is a floating-point, check for obvious problems. */
1168 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1169 fmt = floatformat_from_type (type);
20389057 1170 if (fmt != NULL)
39424bef 1171 {
20389057
DJ
1172 kind = floatformat_classify (fmt, valaddr);
1173 if (kind == float_nan)
1174 {
1175 if (floatformat_is_negative (fmt, valaddr))
1176 fprintf_filtered (stream, "-");
1177 fprintf_filtered (stream, "nan(");
1178 fputs_filtered ("0x", stream);
1179 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1180 fprintf_filtered (stream, ")");
1181 return;
1182 }
1183 else if (kind == float_infinite)
1184 {
1185 if (floatformat_is_negative (fmt, valaddr))
1186 fputs_filtered ("-", stream);
1187 fputs_filtered ("inf", stream);
1188 return;
1189 }
7355ddba 1190 }
c906108c 1191
a73c86fb
AC
1192 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1193 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1194 needs to be used as that takes care of any necessary type
1195 conversions. Such conversions are of course direct to DOUBLEST
1196 and disregard any possible target floating point limitations.
1197 For instance, a u64 would be converted and displayed exactly on a
1198 host with 80 bit DOUBLEST but with loss of information on a host
1199 with 64 bit DOUBLEST. */
c2f05ac9 1200
c906108c
SS
1201 doub = unpack_double (type, valaddr, &inv);
1202 if (inv)
1203 {
1204 fprintf_filtered (stream, "<invalid float value>");
1205 return;
1206 }
1207
39424bef
MK
1208 /* FIXME: kettenis/2001-01-20: The following code makes too much
1209 assumptions about the host and target floating point format. */
1210
a73c86fb 1211 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1212 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1213 instead uses the type's length to determine the precision of the
1214 floating-point value being printed. */
c2f05ac9 1215
c906108c 1216 if (len < sizeof (double))
c5aa993b 1217 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1218 else if (len == sizeof (double))
c5aa993b 1219 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1220 else
1221#ifdef PRINTF_HAS_LONG_DOUBLE
1222 fprintf_filtered (stream, "%.35Lg", doub);
1223#else
39424bef
MK
1224 /* This at least wins with values that are representable as
1225 doubles. */
c906108c
SS
1226 fprintf_filtered (stream, "%.17g", (double) doub);
1227#endif
1228}
1229
7678ef8f
TJB
1230void
1231print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1232 struct ui_file *stream)
1233{
e17a4113 1234 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1235 char decstr[MAX_DECIMAL_STRING];
1236 unsigned len = TYPE_LENGTH (type);
1237
e17a4113 1238 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1239 fputs_filtered (decstr, stream);
1240 return;
1241}
1242
c5aa993b 1243void
fc1a4b47 1244print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1245 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1246{
1247
1248#define BITS_IN_BYTES 8
1249
fc1a4b47 1250 const gdb_byte *p;
745b8ca0 1251 unsigned int i;
c5aa993b 1252 int b;
c906108c
SS
1253
1254 /* Declared "int" so it will be signed.
581e13c1
MS
1255 This ensures that right shift will shift in zeros. */
1256
c5aa993b 1257 const int mask = 0x080;
c906108c
SS
1258
1259 /* FIXME: We should be not printing leading zeroes in most cases. */
1260
d44e8473 1261 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1262 {
1263 for (p = valaddr;
1264 p < valaddr + len;
1265 p++)
1266 {
c5aa993b 1267 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1268 and print from the MSB end. */
1269
c5aa993b
JM
1270 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1271 {
1272 if (*p & (mask >> i))
1273 b = 1;
1274 else
1275 b = 0;
1276
1277 fprintf_filtered (stream, "%1d", b);
1278 }
c906108c
SS
1279 }
1280 }
1281 else
1282 {
1283 for (p = valaddr + len - 1;
1284 p >= valaddr;
1285 p--)
1286 {
c5aa993b
JM
1287 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1288 {
1289 if (*p & (mask >> i))
1290 b = 1;
1291 else
1292 b = 0;
1293
1294 fprintf_filtered (stream, "%1d", b);
1295 }
c906108c
SS
1296 }
1297 }
c906108c
SS
1298}
1299
1300/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1301 Print it in octal on stream or format it in buf. */
1302
c906108c 1303void
fc1a4b47 1304print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1305 unsigned len, enum bfd_endian byte_order)
c906108c 1306{
fc1a4b47 1307 const gdb_byte *p;
c906108c 1308 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1309 int cycle;
1310
c906108c
SS
1311 /* FIXME: We should be not printing leading zeroes in most cases. */
1312
1313
1314 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1315 * the extra bits, which cycle every three bytes:
1316 *
1317 * Byte side: 0 1 2 3
1318 * | | | |
1319 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1320 *
1321 * Octal side: 0 1 carry 3 4 carry ...
1322 *
1323 * Cycle number: 0 1 2
1324 *
1325 * But of course we are printing from the high side, so we have to
1326 * figure out where in the cycle we are so that we end up with no
1327 * left over bits at the end.
1328 */
1329#define BITS_IN_OCTAL 3
1330#define HIGH_ZERO 0340
1331#define LOW_ZERO 0016
1332#define CARRY_ZERO 0003
1333#define HIGH_ONE 0200
1334#define MID_ONE 0160
1335#define LOW_ONE 0016
1336#define CARRY_ONE 0001
1337#define HIGH_TWO 0300
1338#define MID_TWO 0070
1339#define LOW_TWO 0007
1340
1341 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1342 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1343
c906108c
SS
1344 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1345 carry = 0;
c5aa993b 1346
bb599908 1347 fputs_filtered ("0", stream);
d44e8473 1348 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1349 {
1350 for (p = valaddr;
1351 p < valaddr + len;
1352 p++)
1353 {
c5aa993b
JM
1354 switch (cycle)
1355 {
1356 case 0:
581e13c1
MS
1357 /* No carry in, carry out two bits. */
1358
c5aa993b
JM
1359 octa1 = (HIGH_ZERO & *p) >> 5;
1360 octa2 = (LOW_ZERO & *p) >> 2;
1361 carry = (CARRY_ZERO & *p);
1362 fprintf_filtered (stream, "%o", octa1);
1363 fprintf_filtered (stream, "%o", octa2);
1364 break;
1365
1366 case 1:
581e13c1
MS
1367 /* Carry in two bits, carry out one bit. */
1368
c5aa993b
JM
1369 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1370 octa2 = (MID_ONE & *p) >> 4;
1371 octa3 = (LOW_ONE & *p) >> 1;
1372 carry = (CARRY_ONE & *p);
1373 fprintf_filtered (stream, "%o", octa1);
1374 fprintf_filtered (stream, "%o", octa2);
1375 fprintf_filtered (stream, "%o", octa3);
1376 break;
1377
1378 case 2:
581e13c1
MS
1379 /* Carry in one bit, no carry out. */
1380
c5aa993b
JM
1381 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1382 octa2 = (MID_TWO & *p) >> 3;
1383 octa3 = (LOW_TWO & *p);
1384 carry = 0;
1385 fprintf_filtered (stream, "%o", octa1);
1386 fprintf_filtered (stream, "%o", octa2);
1387 fprintf_filtered (stream, "%o", octa3);
1388 break;
1389
1390 default:
8a3fe4f8 1391 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1392 }
1393
1394 cycle++;
1395 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1396 }
1397 }
1398 else
1399 {
1400 for (p = valaddr + len - 1;
1401 p >= valaddr;
1402 p--)
1403 {
c5aa993b
JM
1404 switch (cycle)
1405 {
1406 case 0:
1407 /* Carry out, no carry in */
581e13c1 1408
c5aa993b
JM
1409 octa1 = (HIGH_ZERO & *p) >> 5;
1410 octa2 = (LOW_ZERO & *p) >> 2;
1411 carry = (CARRY_ZERO & *p);
1412 fprintf_filtered (stream, "%o", octa1);
1413 fprintf_filtered (stream, "%o", octa2);
1414 break;
1415
1416 case 1:
1417 /* Carry in, carry out */
581e13c1 1418
c5aa993b
JM
1419 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1420 octa2 = (MID_ONE & *p) >> 4;
1421 octa3 = (LOW_ONE & *p) >> 1;
1422 carry = (CARRY_ONE & *p);
1423 fprintf_filtered (stream, "%o", octa1);
1424 fprintf_filtered (stream, "%o", octa2);
1425 fprintf_filtered (stream, "%o", octa3);
1426 break;
1427
1428 case 2:
1429 /* Carry in, no carry out */
581e13c1 1430
c5aa993b
JM
1431 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1432 octa2 = (MID_TWO & *p) >> 3;
1433 octa3 = (LOW_TWO & *p);
1434 carry = 0;
1435 fprintf_filtered (stream, "%o", octa1);
1436 fprintf_filtered (stream, "%o", octa2);
1437 fprintf_filtered (stream, "%o", octa3);
1438 break;
1439
1440 default:
8a3fe4f8 1441 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1442 }
1443
1444 cycle++;
1445 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1446 }
1447 }
1448
c906108c
SS
1449}
1450
1451/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1452 Print it in decimal on stream or format it in buf. */
1453
c906108c 1454void
fc1a4b47 1455print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1456 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1457{
1458#define TEN 10
c5aa993b 1459#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1460#define CARRY_LEFT( x ) ((x) % TEN)
1461#define SHIFT( x ) ((x) << 4)
c906108c
SS
1462#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1463#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1464
fc1a4b47 1465 const gdb_byte *p;
c906108c 1466 unsigned char *digits;
c5aa993b
JM
1467 int carry;
1468 int decimal_len;
1469 int i, j, decimal_digits;
1470 int dummy;
1471 int flip;
1472
c906108c 1473 /* Base-ten number is less than twice as many digits
581e13c1
MS
1474 as the base 16 number, which is 2 digits per byte. */
1475
c906108c 1476 decimal_len = len * 2 * 2;
3c37485b 1477 digits = xmalloc (decimal_len);
c906108c 1478
c5aa993b
JM
1479 for (i = 0; i < decimal_len; i++)
1480 {
c906108c 1481 digits[i] = 0;
c5aa993b 1482 }
c906108c 1483
c906108c
SS
1484 /* Ok, we have an unknown number of bytes of data to be printed in
1485 * decimal.
1486 *
1487 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1488 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1489 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1490 *
1491 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1492 * the individual digits are > 10.
c906108c
SS
1493 *
1494 * Outer loop is per nibble (hex digit) of input, from MSD end to
1495 * LSD end.
1496 */
c5aa993b 1497 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1498 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1499 flip = 0;
d44e8473 1500 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1501 {
c906108c
SS
1502 /*
1503 * Multiply current base-ten number by 16 in place.
1504 * Each digit was between 0 and 9, now is between
1505 * 0 and 144.
1506 */
c5aa993b
JM
1507 for (j = 0; j < decimal_digits; j++)
1508 {
1509 digits[j] = SHIFT (digits[j]);
1510 }
1511
c906108c
SS
1512 /* Take the next nibble off the input and add it to what
1513 * we've got in the LSB position. Bottom 'digit' is now
1514 * between 0 and 159.
1515 *
1516 * "flip" is used to run this loop twice for each byte.
1517 */
c5aa993b
JM
1518 if (flip == 0)
1519 {
581e13c1
MS
1520 /* Take top nibble. */
1521
c5aa993b
JM
1522 digits[0] += HIGH_NIBBLE (*p);
1523 flip = 1;
1524 }
1525 else
1526 {
581e13c1
MS
1527 /* Take low nibble and bump our pointer "p". */
1528
c5aa993b 1529 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1530 if (byte_order == BFD_ENDIAN_BIG)
1531 p++;
1532 else
1533 p--;
c5aa993b
JM
1534 flip = 0;
1535 }
c906108c
SS
1536
1537 /* Re-decimalize. We have to do this often enough
1538 * that we don't overflow, but once per nibble is
1539 * overkill. Easier this way, though. Note that the
1540 * carry is often larger than 10 (e.g. max initial
1541 * carry out of lowest nibble is 15, could bubble all
1542 * the way up greater than 10). So we have to do
1543 * the carrying beyond the last current digit.
1544 */
1545 carry = 0;
c5aa993b
JM
1546 for (j = 0; j < decimal_len - 1; j++)
1547 {
1548 digits[j] += carry;
1549
1550 /* "/" won't handle an unsigned char with
1551 * a value that if signed would be negative.
1552 * So extend to longword int via "dummy".
1553 */
1554 dummy = digits[j];
1555 carry = CARRY_OUT (dummy);
1556 digits[j] = CARRY_LEFT (dummy);
1557
1558 if (j >= decimal_digits && carry == 0)
1559 {
1560 /*
1561 * All higher digits are 0 and we
1562 * no longer have a carry.
1563 *
1564 * Note: "j" is 0-based, "decimal_digits" is
1565 * 1-based.
1566 */
1567 decimal_digits = j + 1;
1568 break;
1569 }
1570 }
1571 }
c906108c
SS
1572
1573 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1574 the "decimal_digits" actual digits. Print! */
1575
c5aa993b
JM
1576 for (i = decimal_digits - 1; i >= 0; i--)
1577 {
1578 fprintf_filtered (stream, "%1d", digits[i]);
1579 }
b8c9b27d 1580 xfree (digits);
c906108c
SS
1581}
1582
1583/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1584
6b9acc27 1585void
fc1a4b47 1586print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1587 unsigned len, enum bfd_endian byte_order)
c906108c 1588{
fc1a4b47 1589 const gdb_byte *p;
c906108c
SS
1590
1591 /* FIXME: We should be not printing leading zeroes in most cases. */
1592
bb599908 1593 fputs_filtered ("0x", stream);
d44e8473 1594 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1595 {
1596 for (p = valaddr;
1597 p < valaddr + len;
1598 p++)
1599 {
1600 fprintf_filtered (stream, "%02x", *p);
1601 }
1602 }
1603 else
1604 {
1605 for (p = valaddr + len - 1;
1606 p >= valaddr;
1607 p--)
1608 {
1609 fprintf_filtered (stream, "%02x", *p);
1610 }
1611 }
c906108c
SS
1612}
1613
3e43a32a 1614/* VALADDR points to a char integer of LEN bytes.
581e13c1 1615 Print it out in appropriate language form on stream.
6b9acc27
JJ
1616 Omit any leading zero chars. */
1617
1618void
6c7a06a3
TT
1619print_char_chars (struct ui_file *stream, struct type *type,
1620 const gdb_byte *valaddr,
d44e8473 1621 unsigned len, enum bfd_endian byte_order)
6b9acc27 1622{
fc1a4b47 1623 const gdb_byte *p;
6b9acc27 1624
d44e8473 1625 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1626 {
1627 p = valaddr;
1628 while (p < valaddr + len - 1 && *p == 0)
1629 ++p;
1630
1631 while (p < valaddr + len)
1632 {
6c7a06a3 1633 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1634 ++p;
1635 }
1636 }
1637 else
1638 {
1639 p = valaddr + len - 1;
1640 while (p > valaddr && *p == 0)
1641 --p;
1642
1643 while (p >= valaddr)
1644 {
6c7a06a3 1645 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1646 --p;
1647 }
1648 }
1649}
1650
132c57b4
TT
1651/* Print function pointer with inferior address ADDRESS onto stdio
1652 stream STREAM. */
1653
1654void
edf0c1b7
TT
1655print_function_pointer_address (const struct value_print_options *options,
1656 struct gdbarch *gdbarch,
132c57b4 1657 CORE_ADDR address,
edf0c1b7 1658 struct ui_file *stream)
132c57b4
TT
1659{
1660 CORE_ADDR func_addr
1661 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1662 &current_target);
1663
1664 /* If the function pointer is represented by a description, print
1665 the address of the description. */
edf0c1b7 1666 if (options->addressprint && func_addr != address)
132c57b4
TT
1667 {
1668 fputs_filtered ("@", stream);
1669 fputs_filtered (paddress (gdbarch, address), stream);
1670 fputs_filtered (": ", stream);
1671 }
edf0c1b7 1672 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1673}
1674
1675
79a45b7d 1676/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1677 at INDEX of an array whose index type is INDEX_TYPE. */
1678
1679void
1680maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1681 struct ui_file *stream,
1682 const struct value_print_options *options)
e79af960
JB
1683{
1684 struct value *index_value;
1685
79a45b7d 1686 if (!options->print_array_indexes)
e79af960
JB
1687 return;
1688
1689 index_value = value_from_longest (index_type, index);
1690
79a45b7d
TT
1691 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1692}
e79af960 1693
c906108c 1694/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1695 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1696
c5aa993b
JM
1697 (FIXME?) Assumes array element separator is a comma, which is correct
1698 for all languages currently handled.
1699 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1700 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1701
1702void
490f124f
PA
1703val_print_array_elements (struct type *type,
1704 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1705 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1706 int recurse,
0e03807e 1707 const struct value *val,
79a45b7d 1708 const struct value_print_options *options,
fba45db2 1709 unsigned int i)
c906108c
SS
1710{
1711 unsigned int things_printed = 0;
1712 unsigned len;
aa715135 1713 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
1714 unsigned eltlen;
1715 /* Position of the array element we are examining to see
1716 whether it is repeated. */
1717 unsigned int rep1;
1718 /* Number of repetitions we have detected so far. */
1719 unsigned int reps;
dbc98a8b 1720 LONGEST low_bound, high_bound;
aa715135 1721 LONGEST low_pos, high_pos;
c5aa993b 1722
c906108c
SS
1723 elttype = TYPE_TARGET_TYPE (type);
1724 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1725 index_type = TYPE_INDEX_TYPE (type);
c906108c 1726
dbc98a8b 1727 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 1728 {
aa715135
JG
1729 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1730 base_index_type = TYPE_TARGET_TYPE (index_type);
1731 else
1732 base_index_type = index_type;
1733
1734 /* Non-contiguous enumerations types can by used as index types
1735 in some languages (e.g. Ada). In this case, the array length
1736 shall be computed from the positions of the first and last
1737 literal in the enumeration type, and not from the values
1738 of these literals. */
1739 if (!discrete_position (base_index_type, low_bound, &low_pos)
1740 || !discrete_position (base_index_type, high_bound, &high_pos))
1741 {
1742 warning (_("unable to get positions in array, use bounds instead"));
1743 low_pos = low_bound;
1744 high_pos = high_bound;
1745 }
1746
1747 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 1748 But we have to be a little extra careful, because some languages
aa715135 1749 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
1750 empty arrays. In that situation, the array length is just zero,
1751 not negative! */
aa715135 1752 if (low_pos > high_pos)
75be741b
JB
1753 len = 0;
1754 else
aa715135 1755 len = high_pos - low_pos + 1;
75be741b 1756 }
e936309c
JB
1757 else
1758 {
dbc98a8b
KW
1759 warning (_("unable to get bounds of array, assuming null array"));
1760 low_bound = 0;
1761 len = 0;
168de233
JB
1762 }
1763
c906108c
SS
1764 annotate_array_section_begin (i, elttype);
1765
79a45b7d 1766 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1767 {
1768 if (i != 0)
1769 {
2a998fc0 1770 if (options->prettyformat_arrays)
c906108c
SS
1771 {
1772 fprintf_filtered (stream, ",\n");
1773 print_spaces_filtered (2 + 2 * recurse, stream);
1774 }
1775 else
1776 {
1777 fprintf_filtered (stream, ", ");
1778 }
1779 }
1780 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1781 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1782 stream, options);
c906108c
SS
1783
1784 rep1 = i + 1;
1785 reps = 1;
35bef4fd
TT
1786 /* Only check for reps if repeat_count_threshold is not set to
1787 UINT_MAX (unlimited). */
1788 if (options->repeat_count_threshold < UINT_MAX)
c906108c 1789 {
35bef4fd 1790 while (rep1 < len
9a0dc9e3
PA
1791 && value_contents_eq (val,
1792 embedded_offset + i * eltlen,
1793 val,
1794 (embedded_offset
1795 + rep1 * eltlen),
1796 eltlen))
35bef4fd
TT
1797 {
1798 ++reps;
1799 ++rep1;
1800 }
c906108c
SS
1801 }
1802
79a45b7d 1803 if (reps > options->repeat_count_threshold)
c906108c 1804 {
490f124f
PA
1805 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1806 address, stream, recurse + 1, val, options,
1807 current_language);
c906108c
SS
1808 annotate_elt_rep (reps);
1809 fprintf_filtered (stream, " <repeats %u times>", reps);
1810 annotate_elt_rep_end ();
1811
1812 i = rep1 - 1;
79a45b7d 1813 things_printed += options->repeat_count_threshold;
c906108c
SS
1814 }
1815 else
1816 {
490f124f
PA
1817 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1818 address,
0e03807e 1819 stream, recurse + 1, val, options, current_language);
c906108c
SS
1820 annotate_elt ();
1821 things_printed++;
1822 }
1823 }
1824 annotate_array_section_end ();
1825 if (i < len)
1826 {
1827 fprintf_filtered (stream, "...");
1828 }
1829}
1830
917317f4
JM
1831/* Read LEN bytes of target memory at address MEMADDR, placing the
1832 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 1833 actually read, and optionally a target_xfer_status value in the
578d3588 1834 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
1835
1836/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1837 function be eliminated. */
1838
1839static int
3e43a32a 1840partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 1841 int len, int *errptr)
917317f4 1842{
581e13c1
MS
1843 int nread; /* Number of bytes actually read. */
1844 int errcode; /* Error from last read. */
917317f4 1845
581e13c1 1846 /* First try a complete read. */
917317f4
JM
1847 errcode = target_read_memory (memaddr, myaddr, len);
1848 if (errcode == 0)
1849 {
581e13c1 1850 /* Got it all. */
917317f4
JM
1851 nread = len;
1852 }
1853 else
1854 {
581e13c1 1855 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1856 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1857 {
1858 errcode = target_read_memory (memaddr++, myaddr++, 1);
1859 }
581e13c1 1860 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1861 if (errcode != 0)
1862 {
1863 nread--;
1864 }
1865 }
578d3588 1866 if (errptr != NULL)
917317f4 1867 {
578d3588 1868 *errptr = errcode;
917317f4
JM
1869 }
1870 return (nread);
1871}
1872
ae6a3a4c
TJB
1873/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1874 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1875 allocated buffer containing the string, which the caller is responsible to
1876 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 1877 success, or a target_xfer_status on failure.
ae6a3a4c 1878
f380848e
SA
1879 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1880 (including eventual NULs in the middle or end of the string).
1881
1882 If LEN is -1, stops at the first null character (not necessarily
1883 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1884 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1885 the string.
ae6a3a4c
TJB
1886
1887 Unless an exception is thrown, BUFFER will always be allocated, even on
1888 failure. In this case, some characters might have been read before the
1889 failure happened. Check BYTES_READ to recognize this situation.
1890
1891 Note: There was a FIXME asking to make this code use target_read_string,
1892 but this function is more general (can read past null characters, up to
581e13c1 1893 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1894 so it is more tested. Perhaps callers of target_read_string should use
1895 this function instead? */
c906108c
SS
1896
1897int
ae6a3a4c 1898read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1899 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1900{
ae6a3a4c
TJB
1901 int errcode; /* Errno returned from bad reads. */
1902 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
1903 gdb_byte *bufptr; /* Pointer to next available byte in
1904 buffer. */
ae6a3a4c
TJB
1905 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1906
ae6a3a4c
TJB
1907 /* Loop until we either have all the characters, or we encounter
1908 some error, such as bumping into the end of the address space. */
c906108c 1909
b5096abe
PM
1910 *buffer = NULL;
1911
1912 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1913
1914 if (len > 0)
1915 {
88db67ef
YQ
1916 /* We want fetchlimit chars, so we might as well read them all in
1917 one operation. */
f380848e
SA
1918 unsigned int fetchlen = min (len, fetchlimit);
1919
1920 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 1921 bufptr = *buffer;
c906108c 1922
f380848e 1923 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
1924 / width;
1925 addr += nfetch * width;
1926 bufptr += nfetch * width;
1927 }
1928 else if (len == -1)
1929 {
1930 unsigned long bufsize = 0;
88db67ef
YQ
1931 unsigned int chunksize; /* Size of each fetch, in chars. */
1932 int found_nul; /* Non-zero if we found the nul char. */
1933 gdb_byte *limit; /* First location past end of fetch buffer. */
1934
1935 found_nul = 0;
1936 /* We are looking for a NUL terminator to end the fetching, so we
1937 might as well read in blocks that are large enough to be efficient,
1938 but not so large as to be slow if fetchlimit happens to be large.
1939 So we choose the minimum of 8 and fetchlimit. We used to use 200
1940 instead of 8 but 200 is way too big for remote debugging over a
1941 serial line. */
1942 chunksize = min (8, fetchlimit);
ae6a3a4c 1943
c906108c
SS
1944 do
1945 {
1946 QUIT;
1947 nfetch = min (chunksize, fetchlimit - bufsize);
1948
ae6a3a4c
TJB
1949 if (*buffer == NULL)
1950 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1951 else
b5096abe
PM
1952 *buffer = (gdb_byte *) xrealloc (*buffer,
1953 (nfetch + bufsize) * width);
c906108c 1954
ae6a3a4c 1955 bufptr = *buffer + bufsize * width;
c906108c
SS
1956 bufsize += nfetch;
1957
ae6a3a4c 1958 /* Read as much as we can. */
917317f4 1959 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1960 / width;
c906108c 1961
ae6a3a4c 1962 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1963 to print. If found, we don't need to fetch any more. Note
1964 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1965 after the null character, or at the next character after the end
1966 of the buffer. */
c906108c
SS
1967
1968 limit = bufptr + nfetch * width;
1969 while (bufptr < limit)
1970 {
1971 unsigned long c;
1972
e17a4113 1973 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1974 addr += width;
1975 bufptr += width;
1976 if (c == 0)
1977 {
1978 /* We don't care about any error which happened after
ae6a3a4c 1979 the NUL terminator. */
c906108c
SS
1980 errcode = 0;
1981 found_nul = 1;
1982 break;
1983 }
1984 }
1985 }
c5aa993b 1986 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1987 && bufptr - *buffer < fetchlimit * width /* no overrun */
1988 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1989 }
1990 else
ae6a3a4c
TJB
1991 { /* Length of string is really 0! */
1992 /* We always allocate *buffer. */
1993 *buffer = bufptr = xmalloc (1);
c906108c
SS
1994 errcode = 0;
1995 }
1996
1997 /* bufptr and addr now point immediately beyond the last byte which we
1998 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1999 *bytes_read = bufptr - *buffer;
2000
2001 QUIT;
2002
2003 discard_cleanups (old_chain);
2004
2005 return errcode;
2006}
2007
3b2b8fea
TT
2008/* Return true if print_wchar can display W without resorting to a
2009 numeric escape, false otherwise. */
2010
2011static int
2012wchar_printable (gdb_wchar_t w)
2013{
2014 return (gdb_iswprint (w)
2015 || w == LCST ('\a') || w == LCST ('\b')
2016 || w == LCST ('\f') || w == LCST ('\n')
2017 || w == LCST ('\r') || w == LCST ('\t')
2018 || w == LCST ('\v'));
2019}
2020
2021/* A helper function that converts the contents of STRING to wide
2022 characters and then appends them to OUTPUT. */
2023
2024static void
2025append_string_as_wide (const char *string,
2026 struct obstack *output)
2027{
2028 for (; *string; ++string)
2029 {
2030 gdb_wchar_t w = gdb_btowc (*string);
2031 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2032 }
2033}
2034
2035/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2036 original (target) bytes representing the character, ORIG_LEN is the
2037 number of valid bytes. WIDTH is the number of bytes in a base
2038 characters of the type. OUTPUT is an obstack to which wide
2039 characters are emitted. QUOTER is a (narrow) character indicating
2040 the style of quotes surrounding the character to be printed.
2041 NEED_ESCAPE is an in/out flag which is used to track numeric
2042 escapes across calls. */
2043
2044static void
2045print_wchar (gdb_wint_t w, const gdb_byte *orig,
2046 int orig_len, int width,
2047 enum bfd_endian byte_order,
2048 struct obstack *output,
2049 int quoter, int *need_escapep)
2050{
2051 int need_escape = *need_escapep;
2052
2053 *need_escapep = 0;
3b2b8fea 2054
95c64f92
YQ
2055 /* iswprint implementation on Windows returns 1 for tab character.
2056 In order to avoid different printout on this host, we explicitly
2057 use wchar_printable function. */
2058 switch (w)
3b2b8fea 2059 {
95c64f92
YQ
2060 case LCST ('\a'):
2061 obstack_grow_wstr (output, LCST ("\\a"));
2062 break;
2063 case LCST ('\b'):
2064 obstack_grow_wstr (output, LCST ("\\b"));
2065 break;
2066 case LCST ('\f'):
2067 obstack_grow_wstr (output, LCST ("\\f"));
2068 break;
2069 case LCST ('\n'):
2070 obstack_grow_wstr (output, LCST ("\\n"));
2071 break;
2072 case LCST ('\r'):
2073 obstack_grow_wstr (output, LCST ("\\r"));
2074 break;
2075 case LCST ('\t'):
2076 obstack_grow_wstr (output, LCST ("\\t"));
2077 break;
2078 case LCST ('\v'):
2079 obstack_grow_wstr (output, LCST ("\\v"));
2080 break;
2081 default:
3b2b8fea 2082 {
95c64f92
YQ
2083 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2084 && w != LCST ('8')
2085 && w != LCST ('9'))))
2086 {
2087 gdb_wchar_t wchar = w;
3b2b8fea 2088
95c64f92
YQ
2089 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2090 obstack_grow_wstr (output, LCST ("\\"));
2091 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2092 }
2093 else
2094 {
2095 int i;
3b2b8fea 2096
95c64f92
YQ
2097 for (i = 0; i + width <= orig_len; i += width)
2098 {
2099 char octal[30];
2100 ULONGEST value;
2101
2102 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2103 byte_order);
95c64f92
YQ
2104 /* If the value fits in 3 octal digits, print it that
2105 way. Otherwise, print it as a hex escape. */
2106 if (value <= 0777)
2107 xsnprintf (octal, sizeof (octal), "\\%.3o",
2108 (int) (value & 0777));
2109 else
2110 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2111 append_string_as_wide (octal, output);
2112 }
2113 /* If we somehow have extra bytes, print them now. */
2114 while (i < orig_len)
2115 {
2116 char octal[5];
2117
2118 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2119 append_string_as_wide (octal, output);
2120 ++i;
2121 }
2122
2123 *need_escapep = 1;
2124 }
3b2b8fea
TT
2125 break;
2126 }
2127 }
2128}
2129
2130/* Print the character C on STREAM as part of the contents of a
2131 literal string whose delimiter is QUOTER. ENCODING names the
2132 encoding of C. */
2133
2134void
2135generic_emit_char (int c, struct type *type, struct ui_file *stream,
2136 int quoter, const char *encoding)
2137{
2138 enum bfd_endian byte_order
2139 = gdbarch_byte_order (get_type_arch (type));
2140 struct obstack wchar_buf, output;
2141 struct cleanup *cleanups;
2142 gdb_byte *buf;
2143 struct wchar_iterator *iter;
2144 int need_escape = 0;
2145
2146 buf = alloca (TYPE_LENGTH (type));
2147 pack_long (buf, type, c);
2148
2149 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2150 encoding, TYPE_LENGTH (type));
2151 cleanups = make_cleanup_wchar_iterator (iter);
2152
2153 /* This holds the printable form of the wchar_t data. */
2154 obstack_init (&wchar_buf);
2155 make_cleanup_obstack_free (&wchar_buf);
2156
2157 while (1)
2158 {
2159 int num_chars;
2160 gdb_wchar_t *chars;
2161 const gdb_byte *buf;
2162 size_t buflen;
2163 int print_escape = 1;
2164 enum wchar_iterate_result result;
2165
2166 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2167 if (num_chars < 0)
2168 break;
2169 if (num_chars > 0)
2170 {
2171 /* If all characters are printable, print them. Otherwise,
2172 we're going to have to print an escape sequence. We
2173 check all characters because we want to print the target
2174 bytes in the escape sequence, and we don't know character
2175 boundaries there. */
2176 int i;
2177
2178 print_escape = 0;
2179 for (i = 0; i < num_chars; ++i)
2180 if (!wchar_printable (chars[i]))
2181 {
2182 print_escape = 1;
2183 break;
2184 }
2185
2186 if (!print_escape)
2187 {
2188 for (i = 0; i < num_chars; ++i)
2189 print_wchar (chars[i], buf, buflen,
2190 TYPE_LENGTH (type), byte_order,
2191 &wchar_buf, quoter, &need_escape);
2192 }
2193 }
2194
2195 /* This handles the NUM_CHARS == 0 case as well. */
2196 if (print_escape)
2197 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2198 byte_order, &wchar_buf, quoter, &need_escape);
2199 }
2200
2201 /* The output in the host encoding. */
2202 obstack_init (&output);
2203 make_cleanup_obstack_free (&output);
2204
2205 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2206 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2207 obstack_object_size (&wchar_buf),
fff10684 2208 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2209 obstack_1grow (&output, '\0');
2210
2211 fputs_filtered (obstack_base (&output), stream);
2212
2213 do_cleanups (cleanups);
2214}
2215
0d63ecda
KS
2216/* Return the repeat count of the next character/byte in ITER,
2217 storing the result in VEC. */
2218
2219static int
2220count_next_character (struct wchar_iterator *iter,
2221 VEC (converted_character_d) **vec)
2222{
2223 struct converted_character *current;
2224
2225 if (VEC_empty (converted_character_d, *vec))
2226 {
2227 struct converted_character tmp;
2228 gdb_wchar_t *chars;
2229
2230 tmp.num_chars
2231 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2232 if (tmp.num_chars > 0)
2233 {
2234 gdb_assert (tmp.num_chars < MAX_WCHARS);
2235 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2236 }
2237 VEC_safe_push (converted_character_d, *vec, &tmp);
2238 }
2239
2240 current = VEC_last (converted_character_d, *vec);
2241
2242 /* Count repeated characters or bytes. */
2243 current->repeat_count = 1;
2244 if (current->num_chars == -1)
2245 {
2246 /* EOF */
2247 return -1;
2248 }
2249 else
2250 {
2251 gdb_wchar_t *chars;
2252 struct converted_character d;
2253 int repeat;
2254
2255 d.repeat_count = 0;
2256
2257 while (1)
2258 {
2259 /* Get the next character. */
2260 d.num_chars
2261 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2262
2263 /* If a character was successfully converted, save the character
2264 into the converted character. */
2265 if (d.num_chars > 0)
2266 {
2267 gdb_assert (d.num_chars < MAX_WCHARS);
2268 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2269 }
2270
2271 /* Determine if the current character is the same as this
2272 new character. */
2273 if (d.num_chars == current->num_chars && d.result == current->result)
2274 {
2275 /* There are two cases to consider:
2276
2277 1) Equality of converted character (num_chars > 0)
2278 2) Equality of non-converted character (num_chars == 0) */
2279 if ((current->num_chars > 0
2280 && memcmp (current->chars, d.chars,
2281 WCHAR_BUFLEN (current->num_chars)) == 0)
2282 || (current->num_chars == 0
2283 && current->buflen == d.buflen
2284 && memcmp (current->buf, d.buf, current->buflen) == 0))
2285 ++current->repeat_count;
2286 else
2287 break;
2288 }
2289 else
2290 break;
2291 }
2292
2293 /* Push this next converted character onto the result vector. */
2294 repeat = current->repeat_count;
2295 VEC_safe_push (converted_character_d, *vec, &d);
2296 return repeat;
2297 }
2298}
2299
2300/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2301 character to use with string output. WIDTH is the size of the output
2302 character type. BYTE_ORDER is the the target byte order. OPTIONS
2303 is the user's print options. */
2304
2305static void
2306print_converted_chars_to_obstack (struct obstack *obstack,
2307 VEC (converted_character_d) *chars,
2308 int quote_char, int width,
2309 enum bfd_endian byte_order,
2310 const struct value_print_options *options)
2311{
2312 unsigned int idx;
2313 struct converted_character *elem;
2314 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2315 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2316 int need_escape = 0;
2317
2318 /* Set the start state. */
2319 idx = 0;
2320 last = state = START;
2321 elem = NULL;
2322
2323 while (1)
2324 {
2325 switch (state)
2326 {
2327 case START:
2328 /* Nothing to do. */
2329 break;
2330
2331 case SINGLE:
2332 {
2333 int j;
2334
2335 /* We are outputting a single character
2336 (< options->repeat_count_threshold). */
2337
2338 if (last != SINGLE)
2339 {
2340 /* We were outputting some other type of content, so we
2341 must output and a comma and a quote. */
2342 if (last != START)
2343 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2344 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2345 }
2346 /* Output the character. */
2347 for (j = 0; j < elem->repeat_count; ++j)
2348 {
2349 if (elem->result == wchar_iterate_ok)
2350 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2351 byte_order, obstack, quote_char, &need_escape);
2352 else
2353 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2354 byte_order, obstack, quote_char, &need_escape);
2355 }
2356 }
2357 break;
2358
2359 case REPEAT:
2360 {
2361 int j;
2362 char *s;
2363
2364 /* We are outputting a character with a repeat count
2365 greater than options->repeat_count_threshold. */
2366
2367 if (last == SINGLE)
2368 {
2369 /* We were outputting a single string. Terminate the
2370 string. */
0d63ecda
KS
2371 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2372 }
2373 if (last != START)
2374 obstack_grow_wstr (obstack, LCST (", "));
2375
2376 /* Output the character and repeat string. */
2377 obstack_grow_wstr (obstack, LCST ("'"));
2378 if (elem->result == wchar_iterate_ok)
2379 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2380 byte_order, obstack, quote_char, &need_escape);
2381 else
2382 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2383 byte_order, obstack, quote_char, &need_escape);
2384 obstack_grow_wstr (obstack, LCST ("'"));
2385 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2386 for (j = 0; s[j]; ++j)
2387 {
2388 gdb_wchar_t w = gdb_btowc (s[j]);
2389 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2390 }
2391 xfree (s);
2392 }
2393 break;
2394
2395 case INCOMPLETE:
2396 /* We are outputting an incomplete sequence. */
2397 if (last == SINGLE)
2398 {
2399 /* If we were outputting a string of SINGLE characters,
2400 terminate the quote. */
0d63ecda
KS
2401 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2402 }
2403 if (last != START)
2404 obstack_grow_wstr (obstack, LCST (", "));
2405
2406 /* Output the incomplete sequence string. */
2407 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2408 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2409 obstack, 0, &need_escape);
2410 obstack_grow_wstr (obstack, LCST (">"));
2411
2412 /* We do not attempt to outupt anything after this. */
2413 state = FINISH;
2414 break;
2415
2416 case FINISH:
2417 /* All done. If we were outputting a string of SINGLE
2418 characters, the string must be terminated. Otherwise,
2419 REPEAT and INCOMPLETE are always left properly terminated. */
2420 if (last == SINGLE)
e93a8774 2421 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2422
2423 return;
2424 }
2425
2426 /* Get the next element and state. */
2427 last = state;
2428 if (state != FINISH)
2429 {
2430 elem = VEC_index (converted_character_d, chars, idx++);
2431 switch (elem->result)
2432 {
2433 case wchar_iterate_ok:
2434 case wchar_iterate_invalid:
2435 if (elem->repeat_count > options->repeat_count_threshold)
2436 state = REPEAT;
2437 else
2438 state = SINGLE;
2439 break;
2440
2441 case wchar_iterate_incomplete:
2442 state = INCOMPLETE;
2443 break;
2444
2445 case wchar_iterate_eof:
2446 state = FINISH;
2447 break;
2448 }
2449 }
2450 }
2451}
2452
3b2b8fea
TT
2453/* Print the character string STRING, printing at most LENGTH
2454 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2455 the type of each character. OPTIONS holds the printing options;
2456 printing stops early if the number hits print_max; repeat counts
2457 are printed as appropriate. Print ellipses at the end if we had to
2458 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2459 QUOTE_CHAR is the character to print at each end of the string. If
2460 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2461 omitted. */
2462
2463void
2464generic_printstr (struct ui_file *stream, struct type *type,
2465 const gdb_byte *string, unsigned int length,
2466 const char *encoding, int force_ellipses,
2467 int quote_char, int c_style_terminator,
2468 const struct value_print_options *options)
2469{
2470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2471 unsigned int i;
3b2b8fea
TT
2472 int width = TYPE_LENGTH (type);
2473 struct obstack wchar_buf, output;
2474 struct cleanup *cleanup;
2475 struct wchar_iterator *iter;
2476 int finished = 0;
0d63ecda
KS
2477 struct converted_character *last;
2478 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2479
2480 if (length == -1)
2481 {
2482 unsigned long current_char = 1;
2483
2484 for (i = 0; current_char; ++i)
2485 {
2486 QUIT;
2487 current_char = extract_unsigned_integer (string + i * width,
2488 width, byte_order);
2489 }
2490 length = i;
2491 }
2492
2493 /* If the string was not truncated due to `set print elements', and
2494 the last byte of it is a null, we don't print that, in
2495 traditional C style. */
2496 if (c_style_terminator
2497 && !force_ellipses
2498 && length > 0
2499 && (extract_unsigned_integer (string + (length - 1) * width,
2500 width, byte_order) == 0))
2501 length--;
2502
2503 if (length == 0)
2504 {
2505 fputs_filtered ("\"\"", stream);
2506 return;
2507 }
2508
2509 /* Arrange to iterate over the characters, in wchar_t form. */
2510 iter = make_wchar_iterator (string, length * width, encoding, width);
2511 cleanup = make_cleanup_wchar_iterator (iter);
0d63ecda
KS
2512 converted_chars = NULL;
2513 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
3b2b8fea 2514
0d63ecda
KS
2515 /* Convert characters until the string is over or the maximum
2516 number of printed characters has been reached. */
2517 i = 0;
2518 while (i < options->print_max)
3b2b8fea 2519 {
0d63ecda 2520 int r;
3b2b8fea
TT
2521
2522 QUIT;
2523
0d63ecda
KS
2524 /* Grab the next character and repeat count. */
2525 r = count_next_character (iter, &converted_chars);
3b2b8fea 2526
0d63ecda
KS
2527 /* If less than zero, the end of the input string was reached. */
2528 if (r < 0)
2529 break;
3b2b8fea 2530
0d63ecda
KS
2531 /* Otherwise, add the count to the total print count and get
2532 the next character. */
2533 i += r;
2534 }
3b2b8fea 2535
0d63ecda
KS
2536 /* Get the last element and determine if the entire string was
2537 processed. */
2538 last = VEC_last (converted_character_d, converted_chars);
2539 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2540
0d63ecda
KS
2541 /* Ensure that CONVERTED_CHARS is terminated. */
2542 last->result = wchar_iterate_eof;
3b2b8fea 2543
0d63ecda
KS
2544 /* WCHAR_BUF is the obstack we use to represent the string in
2545 wchar_t form. */
2546 obstack_init (&wchar_buf);
2547 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2548
0d63ecda
KS
2549 /* Print the output string to the obstack. */
2550 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2551 width, byte_order, options);
3b2b8fea
TT
2552
2553 if (force_ellipses || !finished)
2554 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2555
2556 /* OUTPUT is where we collect `char's for printing. */
2557 obstack_init (&output);
2558 make_cleanup_obstack_free (&output);
2559
2560 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2561 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2562 obstack_object_size (&wchar_buf),
fff10684 2563 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2564 obstack_1grow (&output, '\0');
2565
2566 fputs_filtered (obstack_base (&output), stream);
2567
2568 do_cleanups (cleanup);
2569}
2570
ae6a3a4c
TJB
2571/* Print a string from the inferior, starting at ADDR and printing up to LEN
2572 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2573 stops at the first null byte, otherwise printing proceeds (including null
2574 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2575 whichever is smaller. ENCODING is the name of the string's
2576 encoding. It can be NULL, in which case the target encoding is
2577 assumed. */
ae6a3a4c
TJB
2578
2579int
09ca9e2e
TT
2580val_print_string (struct type *elttype, const char *encoding,
2581 CORE_ADDR addr, int len,
6c7a06a3 2582 struct ui_file *stream,
ae6a3a4c
TJB
2583 const struct value_print_options *options)
2584{
2585 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2586 int errcode; /* Errno returned from bad reads. */
581e13c1 2587 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2588 unsigned int fetchlimit; /* Maximum number of chars to print. */
2589 int bytes_read;
2590 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2591 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2592 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2594 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2595
2596 /* First we need to figure out the limit on the number of characters we are
2597 going to attempt to fetch and print. This is actually pretty simple. If
2598 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2599 LEN is -1, then the limit is print_max. This is true regardless of
2600 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2601 because finding the null byte (or available memory) is what actually
2602 limits the fetch. */
2603
3e43a32a
MS
2604 fetchlimit = (len == -1 ? options->print_max : min (len,
2605 options->print_max));
ae6a3a4c 2606
e17a4113
UW
2607 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2608 &buffer, &bytes_read);
ae6a3a4c
TJB
2609 old_chain = make_cleanup (xfree, buffer);
2610
2611 addr += bytes_read;
c906108c 2612
3e43a32a
MS
2613 /* We now have either successfully filled the buffer to fetchlimit,
2614 or terminated early due to an error or finding a null char when
2615 LEN is -1. */
ae6a3a4c
TJB
2616
2617 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2618 found_nul = 0;
2619 if (bytes_read >= width)
2620 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2621 byte_order) == 0;
c906108c
SS
2622 if (len == -1 && !found_nul)
2623 {
777ea8f1 2624 gdb_byte *peekbuf;
c906108c 2625
ae6a3a4c 2626 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2627 to peek at the next character. If not successful, or it is not
2628 a null byte, then force ellipsis to be printed. */
c906108c 2629
777ea8f1 2630 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2631
2632 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2633 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2634 force_ellipsis = 1;
2635 }
ae6a3a4c 2636 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
2637 {
2638 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2639 than the number of characters actually requested, always make us
ae6a3a4c 2640 print ellipsis. */
c906108c
SS
2641 force_ellipsis = 1;
2642 }
2643
c906108c
SS
2644 /* If we get an error before fetching anything, don't print a string.
2645 But if we fetch something and then get an error, print the string
2646 and then the error message. */
ae6a3a4c 2647 if (errcode == 0 || bytes_read > 0)
c906108c 2648 {
be759fcf 2649 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2650 encoding, force_ellipsis, options);
c906108c
SS
2651 }
2652
2653 if (errcode != 0)
2654 {
578d3588
PA
2655 char *str;
2656
2657 str = memory_error_message (errcode, gdbarch, addr);
2658 make_cleanup (xfree, str);
2659
2660 fprintf_filtered (stream, "<error: ");
2661 fputs_filtered (str, stream);
2662 fprintf_filtered (stream, ">");
c906108c 2663 }
ae6a3a4c 2664
c906108c
SS
2665 gdb_flush (stream);
2666 do_cleanups (old_chain);
ae6a3a4c
TJB
2667
2668 return (bytes_read / width);
c906108c 2669}
c906108c 2670\f
c5aa993b 2671
09e6485f
PA
2672/* The 'set input-radix' command writes to this auxiliary variable.
2673 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2674 it is left unchanged. */
2675
2676static unsigned input_radix_1 = 10;
2677
c906108c
SS
2678/* Validate an input or output radix setting, and make sure the user
2679 knows what they really did here. Radix setting is confusing, e.g.
2680 setting the input radix to "10" never changes it! */
2681
c906108c 2682static void
fba45db2 2683set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2684{
09e6485f 2685 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2686}
2687
c906108c 2688static void
fba45db2 2689set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2690{
2691 /* We don't currently disallow any input radix except 0 or 1, which don't
2692 make any mathematical sense. In theory, we can deal with any input
2693 radix greater than 1, even if we don't have unique digits for every
2694 value from 0 to radix-1, but in practice we lose on large radix values.
2695 We should either fix the lossage or restrict the radix range more.
581e13c1 2696 (FIXME). */
c906108c
SS
2697
2698 if (radix < 2)
2699 {
09e6485f 2700 input_radix_1 = input_radix;
8a3fe4f8 2701 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2702 radix);
2703 }
09e6485f 2704 input_radix_1 = input_radix = radix;
c906108c
SS
2705 if (from_tty)
2706 {
3e43a32a
MS
2707 printf_filtered (_("Input radix now set to "
2708 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2709 radix, radix, radix);
2710 }
2711}
2712
09e6485f
PA
2713/* The 'set output-radix' command writes to this auxiliary variable.
2714 If the requested radix is valid, OUTPUT_RADIX is updated,
2715 otherwise, it is left unchanged. */
2716
2717static unsigned output_radix_1 = 10;
2718
c906108c 2719static void
fba45db2 2720set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2721{
09e6485f 2722 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
2723}
2724
2725static void
fba45db2 2726set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2727{
2728 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 2729 handle correctly, leaving the radix unchanged. */
c906108c
SS
2730 switch (radix)
2731 {
2732 case 16:
79a45b7d 2733 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
2734 break;
2735 case 10:
79a45b7d 2736 user_print_options.output_format = 0; /* decimal */
c906108c
SS
2737 break;
2738 case 8:
79a45b7d 2739 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
2740 break;
2741 default:
09e6485f 2742 output_radix_1 = output_radix;
3e43a32a
MS
2743 error (_("Unsupported output radix ``decimal %u''; "
2744 "output radix unchanged."),
c906108c
SS
2745 radix);
2746 }
09e6485f 2747 output_radix_1 = output_radix = radix;
c906108c
SS
2748 if (from_tty)
2749 {
3e43a32a
MS
2750 printf_filtered (_("Output radix now set to "
2751 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2752 radix, radix, radix);
2753 }
2754}
2755
2756/* Set both the input and output radix at once. Try to set the output radix
2757 first, since it has the most restrictive range. An radix that is valid as
2758 an output radix is also valid as an input radix.
2759
2760 It may be useful to have an unusual input radix. If the user wishes to
2761 set an input radix that is not valid as an output radix, he needs to use
581e13c1 2762 the 'set input-radix' command. */
c906108c
SS
2763
2764static void
fba45db2 2765set_radix (char *arg, int from_tty)
c906108c
SS
2766{
2767 unsigned radix;
2768
bb518678 2769 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
2770 set_output_radix_1 (0, radix);
2771 set_input_radix_1 (0, radix);
2772 if (from_tty)
2773 {
3e43a32a
MS
2774 printf_filtered (_("Input and output radices now set to "
2775 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2776 radix, radix, radix);
2777 }
2778}
2779
581e13c1 2780/* Show both the input and output radices. */
c906108c 2781
c906108c 2782static void
fba45db2 2783show_radix (char *arg, int from_tty)
c906108c
SS
2784{
2785 if (from_tty)
2786 {
2787 if (input_radix == output_radix)
2788 {
3e43a32a
MS
2789 printf_filtered (_("Input and output radices set to "
2790 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2791 input_radix, input_radix, input_radix);
2792 }
2793 else
2794 {
3e43a32a
MS
2795 printf_filtered (_("Input radix set to decimal "
2796 "%u, hex %x, octal %o.\n"),
c906108c 2797 input_radix, input_radix, input_radix);
3e43a32a
MS
2798 printf_filtered (_("Output radix set to decimal "
2799 "%u, hex %x, octal %o.\n"),
c906108c
SS
2800 output_radix, output_radix, output_radix);
2801 }
2802 }
2803}
c906108c 2804\f
c5aa993b 2805
c906108c 2806static void
fba45db2 2807set_print (char *arg, int from_tty)
c906108c
SS
2808{
2809 printf_unfiltered (
c5aa993b 2810 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 2811 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
2812}
2813
c906108c 2814static void
fba45db2 2815show_print (char *args, int from_tty)
c906108c
SS
2816{
2817 cmd_show_list (showprintlist, from_tty, "");
2818}
e7045703
DE
2819
2820static void
2821set_print_raw (char *arg, int from_tty)
2822{
2823 printf_unfiltered (
2824 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 2825 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
2826}
2827
2828static void
2829show_print_raw (char *args, int from_tty)
2830{
2831 cmd_show_list (showprintrawlist, from_tty, "");
2832}
2833
c906108c
SS
2834\f
2835void
fba45db2 2836_initialize_valprint (void)
c906108c 2837{
c906108c 2838 add_prefix_cmd ("print", no_class, set_print,
1bedd215 2839 _("Generic command for setting how things print."),
c906108c 2840 &setprintlist, "set print ", 0, &setlist);
c5aa993b 2841 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 2842 /* Prefer set print to set prompt. */
c906108c
SS
2843 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2844
2845 add_prefix_cmd ("print", no_class, show_print,
1bedd215 2846 _("Generic command for showing print settings."),
c906108c 2847 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
2848 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2849 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 2850
e7045703
DE
2851 add_prefix_cmd ("raw", no_class, set_print_raw,
2852 _("\
2853Generic command for setting what things to print in \"raw\" mode."),
2854 &setprintrawlist, "set print raw ", 0, &setprintlist);
2855 add_prefix_cmd ("raw", no_class, show_print_raw,
2856 _("Generic command for showing \"print raw\" settings."),
2857 &showprintrawlist, "show print raw ", 0, &showprintlist);
2858
79a45b7d
TT
2859 add_setshow_uinteger_cmd ("elements", no_class,
2860 &user_print_options.print_max, _("\
35096d9d
AC
2861Set limit on string chars or array elements to print."), _("\
2862Show limit on string chars or array elements to print."), _("\
f81d1120 2863\"set print elements unlimited\" causes there to be no limit."),
35096d9d 2864 NULL,
920d2a44 2865 show_print_max,
35096d9d 2866 &setprintlist, &showprintlist);
c906108c 2867
79a45b7d
TT
2868 add_setshow_boolean_cmd ("null-stop", no_class,
2869 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
2870Set printing of char arrays to stop at first null char."), _("\
2871Show printing of char arrays to stop at first null char."), NULL,
2872 NULL,
920d2a44 2873 show_stop_print_at_null,
5bf193a2 2874 &setprintlist, &showprintlist);
c906108c 2875
35096d9d 2876 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 2877 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
2878Set threshold for repeated print elements."), _("\
2879Show threshold for repeated print elements."), _("\
f81d1120 2880\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 2881 NULL,
920d2a44 2882 show_repeat_count_threshold,
35096d9d 2883 &setprintlist, &showprintlist);
c906108c 2884
79a45b7d 2885 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
2886 &user_print_options.prettyformat_structs, _("\
2887Set pretty formatting of structures."), _("\
2888Show pretty formatting of structures."), NULL,
5bf193a2 2889 NULL,
2a998fc0 2890 show_prettyformat_structs,
5bf193a2
AC
2891 &setprintlist, &showprintlist);
2892
79a45b7d
TT
2893 add_setshow_boolean_cmd ("union", class_support,
2894 &user_print_options.unionprint, _("\
5bf193a2
AC
2895Set printing of unions interior to structures."), _("\
2896Show printing of unions interior to structures."), NULL,
2897 NULL,
920d2a44 2898 show_unionprint,
5bf193a2
AC
2899 &setprintlist, &showprintlist);
2900
79a45b7d 2901 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
2902 &user_print_options.prettyformat_arrays, _("\
2903Set pretty formatting of arrays."), _("\
2904Show pretty formatting of arrays."), NULL,
5bf193a2 2905 NULL,
2a998fc0 2906 show_prettyformat_arrays,
5bf193a2
AC
2907 &setprintlist, &showprintlist);
2908
79a45b7d
TT
2909 add_setshow_boolean_cmd ("address", class_support,
2910 &user_print_options.addressprint, _("\
5bf193a2
AC
2911Set printing of addresses."), _("\
2912Show printing of addresses."), NULL,
2913 NULL,
920d2a44 2914 show_addressprint,
5bf193a2 2915 &setprintlist, &showprintlist);
c906108c 2916
9cb709b6
TT
2917 add_setshow_boolean_cmd ("symbol", class_support,
2918 &user_print_options.symbol_print, _("\
2919Set printing of symbol names when printing pointers."), _("\
2920Show printing of symbol names when printing pointers."),
2921 NULL, NULL,
2922 show_symbol_print,
2923 &setprintlist, &showprintlist);
2924
1e8fb976
PA
2925 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2926 _("\
35096d9d
AC
2927Set default input radix for entering numbers."), _("\
2928Show default input radix for entering numbers."), NULL,
1e8fb976
PA
2929 set_input_radix,
2930 show_input_radix,
2931 &setlist, &showlist);
35096d9d 2932
1e8fb976
PA
2933 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2934 _("\
35096d9d
AC
2935Set default output radix for printing of values."), _("\
2936Show default output radix for printing of values."), NULL,
1e8fb976
PA
2937 set_output_radix,
2938 show_output_radix,
2939 &setlist, &showlist);
c906108c 2940
cb1a6d5f
AC
2941 /* The "set radix" and "show radix" commands are special in that
2942 they are like normal set and show commands but allow two normally
2943 independent variables to be either set or shown with a single
b66df561 2944 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 2945 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
2946 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2947 longer true - show can display anything. */
1a966eab
AC
2948 add_cmd ("radix", class_support, set_radix, _("\
2949Set default input and output number radices.\n\
c906108c 2950Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 2951Without an argument, sets both radices back to the default value of 10."),
c906108c 2952 &setlist);
1a966eab
AC
2953 add_cmd ("radix", class_support, show_radix, _("\
2954Show the default input and output number radices.\n\
2955Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
2956 &showlist);
2957
e79af960 2958 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 2959 &user_print_options.print_array_indexes, _("\
e79af960
JB
2960Set printing of array indexes."), _("\
2961Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2962 &setprintlist, &showprintlist);
c906108c 2963}
This page took 1.856014 seconds and 4 git commands to generate.