Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
9b254dd1 | 4 | 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
4f2aea11 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
c906108c SS |
28 | #include "command.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
31 | #include "language.h" | |
c906108c | 32 | #include "demangle.h" |
d16aafd8 | 33 | #include "doublest.h" |
5ae326fa | 34 | #include "gdb_assert.h" |
36160dc4 | 35 | #include "regcache.h" |
fe898f56 | 36 | #include "block.h" |
27bc4d80 | 37 | #include "dfp.h" |
c906108c SS |
38 | |
39 | /* Prototypes for exported functions. */ | |
40 | ||
a14ed312 | 41 | void _initialize_values (void); |
c906108c | 42 | |
91294c83 AC |
43 | struct value |
44 | { | |
45 | /* Type of value; either not an lval, or one of the various | |
46 | different possible kinds of lval. */ | |
47 | enum lval_type lval; | |
48 | ||
49 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
50 | int modifiable; | |
51 | ||
52 | /* Location of value (if lval). */ | |
53 | union | |
54 | { | |
55 | /* If lval == lval_memory, this is the address in the inferior. | |
56 | If lval == lval_register, this is the byte offset into the | |
57 | registers structure. */ | |
58 | CORE_ADDR address; | |
59 | ||
60 | /* Pointer to internal variable. */ | |
61 | struct internalvar *internalvar; | |
62 | } location; | |
63 | ||
64 | /* Describes offset of a value within lval of a structure in bytes. | |
65 | If lval == lval_memory, this is an offset to the address. If | |
66 | lval == lval_register, this is a further offset from | |
67 | location.address within the registers structure. Note also the | |
68 | member embedded_offset below. */ | |
69 | int offset; | |
70 | ||
71 | /* Only used for bitfields; number of bits contained in them. */ | |
72 | int bitsize; | |
73 | ||
74 | /* Only used for bitfields; position of start of field. For | |
75 | BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For | |
76 | BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */ | |
77 | int bitpos; | |
78 | ||
79 | /* Frame register value is relative to. This will be described in | |
80 | the lval enum above as "lval_register". */ | |
81 | struct frame_id frame_id; | |
82 | ||
83 | /* Type of the value. */ | |
84 | struct type *type; | |
85 | ||
86 | /* If a value represents a C++ object, then the `type' field gives | |
87 | the object's compile-time type. If the object actually belongs | |
88 | to some class derived from `type', perhaps with other base | |
89 | classes and additional members, then `type' is just a subobject | |
90 | of the real thing, and the full object is probably larger than | |
91 | `type' would suggest. | |
92 | ||
93 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
94 | can actually determine the object's run-time type by looking at | |
95 | the run-time type information in the vtable. When this | |
96 | information is available, we may elect to read in the entire | |
97 | object, for several reasons: | |
98 | ||
99 | - When printing the value, the user would probably rather see the | |
100 | full object, not just the limited portion apparent from the | |
101 | compile-time type. | |
102 | ||
103 | - If `type' has virtual base classes, then even printing `type' | |
104 | alone may require reaching outside the `type' portion of the | |
105 | object to wherever the virtual base class has been stored. | |
106 | ||
107 | When we store the entire object, `enclosing_type' is the run-time | |
108 | type -- the complete object -- and `embedded_offset' is the | |
109 | offset of `type' within that larger type, in bytes. The | |
110 | value_contents() macro takes `embedded_offset' into account, so | |
111 | most GDB code continues to see the `type' portion of the value, | |
112 | just as the inferior would. | |
113 | ||
114 | If `type' is a pointer to an object, then `enclosing_type' is a | |
115 | pointer to the object's run-time type, and `pointed_to_offset' is | |
116 | the offset in bytes from the full object to the pointed-to object | |
117 | -- that is, the value `embedded_offset' would have if we followed | |
118 | the pointer and fetched the complete object. (I don't really see | |
119 | the point. Why not just determine the run-time type when you | |
120 | indirect, and avoid the special case? The contents don't matter | |
121 | until you indirect anyway.) | |
122 | ||
123 | If we're not doing anything fancy, `enclosing_type' is equal to | |
124 | `type', and `embedded_offset' is zero, so everything works | |
125 | normally. */ | |
126 | struct type *enclosing_type; | |
127 | int embedded_offset; | |
128 | int pointed_to_offset; | |
129 | ||
130 | /* Values are stored in a chain, so that they can be deleted easily | |
131 | over calls to the inferior. Values assigned to internal | |
132 | variables or put into the value history are taken off this | |
133 | list. */ | |
134 | struct value *next; | |
135 | ||
136 | /* Register number if the value is from a register. */ | |
137 | short regnum; | |
138 | ||
139 | /* If zero, contents of this value are in the contents field. If | |
140 | nonzero, contents are in inferior memory at address in the | |
141 | location.address field plus the offset field (and the lval field | |
142 | should be lval_memory). | |
143 | ||
144 | WARNING: This field is used by the code which handles watchpoints | |
145 | (see breakpoint.c) to decide whether a particular value can be | |
146 | watched by hardware watchpoints. If the lazy flag is set for | |
147 | some member of a value chain, it is assumed that this member of | |
148 | the chain doesn't need to be watched as part of watching the | |
149 | value itself. This is how GDB avoids watching the entire struct | |
150 | or array when the user wants to watch a single struct member or | |
151 | array element. If you ever change the way lazy flag is set and | |
152 | reset, be sure to consider this use as well! */ | |
153 | char lazy; | |
154 | ||
155 | /* If nonzero, this is the value of a variable which does not | |
156 | actually exist in the program. */ | |
157 | char optimized_out; | |
158 | ||
42be36b3 CT |
159 | /* If value is a variable, is it initialized or not. */ |
160 | int initialized; | |
161 | ||
91294c83 AC |
162 | /* Actual contents of the value. For use of this value; setting it |
163 | uses the stuff above. Not valid if lazy is nonzero. Target | |
164 | byte-order. We force it to be aligned properly for any possible | |
165 | value. Note that a value therefore extends beyond what is | |
166 | declared here. */ | |
167 | union | |
168 | { | |
fc1a4b47 | 169 | gdb_byte contents[1]; |
91294c83 AC |
170 | DOUBLEST force_doublest_align; |
171 | LONGEST force_longest_align; | |
172 | CORE_ADDR force_core_addr_align; | |
173 | void *force_pointer_align; | |
174 | } aligner; | |
175 | /* Do not add any new members here -- contents above will trash | |
176 | them. */ | |
177 | }; | |
178 | ||
c906108c SS |
179 | /* Prototypes for local functions. */ |
180 | ||
a14ed312 | 181 | static void show_values (char *, int); |
c906108c | 182 | |
a14ed312 | 183 | static void show_convenience (char *, int); |
c906108c | 184 | |
c906108c SS |
185 | |
186 | /* The value-history records all the values printed | |
187 | by print commands during this session. Each chunk | |
188 | records 60 consecutive values. The first chunk on | |
189 | the chain records the most recent values. | |
190 | The total number of values is in value_history_count. */ | |
191 | ||
192 | #define VALUE_HISTORY_CHUNK 60 | |
193 | ||
194 | struct value_history_chunk | |
c5aa993b JM |
195 | { |
196 | struct value_history_chunk *next; | |
f23631e4 | 197 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 198 | }; |
c906108c SS |
199 | |
200 | /* Chain of chunks now in use. */ | |
201 | ||
202 | static struct value_history_chunk *value_history_chain; | |
203 | ||
204 | static int value_history_count; /* Abs number of last entry stored */ | |
205 | \f | |
206 | /* List of all value objects currently allocated | |
207 | (except for those released by calls to release_value) | |
208 | This is so they can be freed after each command. */ | |
209 | ||
f23631e4 | 210 | static struct value *all_values; |
c906108c SS |
211 | |
212 | /* Allocate a value that has the correct length for type TYPE. */ | |
213 | ||
f23631e4 | 214 | struct value * |
fba45db2 | 215 | allocate_value (struct type *type) |
c906108c | 216 | { |
f23631e4 | 217 | struct value *val; |
c906108c SS |
218 | struct type *atype = check_typedef (type); |
219 | ||
5b90c7b5 | 220 | val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype)); |
df407dfe | 221 | val->next = all_values; |
c906108c | 222 | all_values = val; |
df407dfe | 223 | val->type = type; |
4754a64e | 224 | val->enclosing_type = type; |
c906108c SS |
225 | VALUE_LVAL (val) = not_lval; |
226 | VALUE_ADDRESS (val) = 0; | |
1df6926e | 227 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
228 | val->offset = 0; |
229 | val->bitpos = 0; | |
230 | val->bitsize = 0; | |
9ee8fc9d | 231 | VALUE_REGNUM (val) = -1; |
d69fe07e | 232 | val->lazy = 0; |
feb13ab0 | 233 | val->optimized_out = 0; |
13c3b5f5 | 234 | val->embedded_offset = 0; |
b44d461b | 235 | val->pointed_to_offset = 0; |
c906108c | 236 | val->modifiable = 1; |
42be36b3 | 237 | val->initialized = 1; /* Default to initialized. */ |
c906108c SS |
238 | return val; |
239 | } | |
240 | ||
241 | /* Allocate a value that has the correct length | |
242 | for COUNT repetitions type TYPE. */ | |
243 | ||
f23631e4 | 244 | struct value * |
fba45db2 | 245 | allocate_repeat_value (struct type *type, int count) |
c906108c | 246 | { |
c5aa993b | 247 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
248 | /* FIXME-type-allocation: need a way to free this type when we are |
249 | done with it. */ | |
250 | struct type *range_type | |
c5aa993b JM |
251 | = create_range_type ((struct type *) NULL, builtin_type_int, |
252 | low_bound, count + low_bound - 1); | |
c906108c SS |
253 | /* FIXME-type-allocation: need a way to free this type when we are |
254 | done with it. */ | |
255 | return allocate_value (create_array_type ((struct type *) NULL, | |
256 | type, range_type)); | |
257 | } | |
258 | ||
df407dfe AC |
259 | /* Accessor methods. */ |
260 | ||
17cf0ecd AC |
261 | struct value * |
262 | value_next (struct value *value) | |
263 | { | |
264 | return value->next; | |
265 | } | |
266 | ||
df407dfe AC |
267 | struct type * |
268 | value_type (struct value *value) | |
269 | { | |
270 | return value->type; | |
271 | } | |
04624583 AC |
272 | void |
273 | deprecated_set_value_type (struct value *value, struct type *type) | |
274 | { | |
275 | value->type = type; | |
276 | } | |
df407dfe AC |
277 | |
278 | int | |
279 | value_offset (struct value *value) | |
280 | { | |
281 | return value->offset; | |
282 | } | |
f5cf64a7 AC |
283 | void |
284 | set_value_offset (struct value *value, int offset) | |
285 | { | |
286 | value->offset = offset; | |
287 | } | |
df407dfe AC |
288 | |
289 | int | |
290 | value_bitpos (struct value *value) | |
291 | { | |
292 | return value->bitpos; | |
293 | } | |
9bbda503 AC |
294 | void |
295 | set_value_bitpos (struct value *value, int bit) | |
296 | { | |
297 | value->bitpos = bit; | |
298 | } | |
df407dfe AC |
299 | |
300 | int | |
301 | value_bitsize (struct value *value) | |
302 | { | |
303 | return value->bitsize; | |
304 | } | |
9bbda503 AC |
305 | void |
306 | set_value_bitsize (struct value *value, int bit) | |
307 | { | |
308 | value->bitsize = bit; | |
309 | } | |
df407dfe | 310 | |
fc1a4b47 | 311 | gdb_byte * |
990a07ab AC |
312 | value_contents_raw (struct value *value) |
313 | { | |
314 | return value->aligner.contents + value->embedded_offset; | |
315 | } | |
316 | ||
fc1a4b47 | 317 | gdb_byte * |
990a07ab AC |
318 | value_contents_all_raw (struct value *value) |
319 | { | |
320 | return value->aligner.contents; | |
321 | } | |
322 | ||
4754a64e AC |
323 | struct type * |
324 | value_enclosing_type (struct value *value) | |
325 | { | |
326 | return value->enclosing_type; | |
327 | } | |
328 | ||
fc1a4b47 | 329 | const gdb_byte * |
46615f07 AC |
330 | value_contents_all (struct value *value) |
331 | { | |
332 | if (value->lazy) | |
333 | value_fetch_lazy (value); | |
334 | return value->aligner.contents; | |
335 | } | |
336 | ||
d69fe07e AC |
337 | int |
338 | value_lazy (struct value *value) | |
339 | { | |
340 | return value->lazy; | |
341 | } | |
342 | ||
dfa52d88 AC |
343 | void |
344 | set_value_lazy (struct value *value, int val) | |
345 | { | |
346 | value->lazy = val; | |
347 | } | |
348 | ||
fc1a4b47 | 349 | const gdb_byte * |
0fd88904 AC |
350 | value_contents (struct value *value) |
351 | { | |
352 | return value_contents_writeable (value); | |
353 | } | |
354 | ||
fc1a4b47 | 355 | gdb_byte * |
0fd88904 AC |
356 | value_contents_writeable (struct value *value) |
357 | { | |
358 | if (value->lazy) | |
359 | value_fetch_lazy (value); | |
fc0c53a0 | 360 | return value_contents_raw (value); |
0fd88904 AC |
361 | } |
362 | ||
a6c442d8 MK |
363 | /* Return non-zero if VAL1 and VAL2 have the same contents. Note that |
364 | this function is different from value_equal; in C the operator == | |
365 | can return 0 even if the two values being compared are equal. */ | |
366 | ||
367 | int | |
368 | value_contents_equal (struct value *val1, struct value *val2) | |
369 | { | |
370 | struct type *type1; | |
371 | struct type *type2; | |
372 | int len; | |
373 | ||
374 | type1 = check_typedef (value_type (val1)); | |
375 | type2 = check_typedef (value_type (val2)); | |
376 | len = TYPE_LENGTH (type1); | |
377 | if (len != TYPE_LENGTH (type2)) | |
378 | return 0; | |
379 | ||
380 | return (memcmp (value_contents (val1), value_contents (val2), len) == 0); | |
381 | } | |
382 | ||
feb13ab0 AC |
383 | int |
384 | value_optimized_out (struct value *value) | |
385 | { | |
386 | return value->optimized_out; | |
387 | } | |
388 | ||
389 | void | |
390 | set_value_optimized_out (struct value *value, int val) | |
391 | { | |
392 | value->optimized_out = val; | |
393 | } | |
13c3b5f5 AC |
394 | |
395 | int | |
396 | value_embedded_offset (struct value *value) | |
397 | { | |
398 | return value->embedded_offset; | |
399 | } | |
400 | ||
401 | void | |
402 | set_value_embedded_offset (struct value *value, int val) | |
403 | { | |
404 | value->embedded_offset = val; | |
405 | } | |
b44d461b AC |
406 | |
407 | int | |
408 | value_pointed_to_offset (struct value *value) | |
409 | { | |
410 | return value->pointed_to_offset; | |
411 | } | |
412 | ||
413 | void | |
414 | set_value_pointed_to_offset (struct value *value, int val) | |
415 | { | |
416 | value->pointed_to_offset = val; | |
417 | } | |
13bb5560 AC |
418 | |
419 | enum lval_type * | |
420 | deprecated_value_lval_hack (struct value *value) | |
421 | { | |
422 | return &value->lval; | |
423 | } | |
424 | ||
425 | CORE_ADDR * | |
426 | deprecated_value_address_hack (struct value *value) | |
427 | { | |
428 | return &value->location.address; | |
429 | } | |
430 | ||
431 | struct internalvar ** | |
432 | deprecated_value_internalvar_hack (struct value *value) | |
433 | { | |
434 | return &value->location.internalvar; | |
435 | } | |
436 | ||
437 | struct frame_id * | |
438 | deprecated_value_frame_id_hack (struct value *value) | |
439 | { | |
440 | return &value->frame_id; | |
441 | } | |
442 | ||
443 | short * | |
444 | deprecated_value_regnum_hack (struct value *value) | |
445 | { | |
446 | return &value->regnum; | |
447 | } | |
88e3b34b AC |
448 | |
449 | int | |
450 | deprecated_value_modifiable (struct value *value) | |
451 | { | |
452 | return value->modifiable; | |
453 | } | |
454 | void | |
455 | deprecated_set_value_modifiable (struct value *value, int modifiable) | |
456 | { | |
457 | value->modifiable = modifiable; | |
458 | } | |
990a07ab | 459 | \f |
c906108c SS |
460 | /* Return a mark in the value chain. All values allocated after the |
461 | mark is obtained (except for those released) are subject to being freed | |
462 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 463 | struct value * |
fba45db2 | 464 | value_mark (void) |
c906108c SS |
465 | { |
466 | return all_values; | |
467 | } | |
468 | ||
469 | /* Free all values allocated since MARK was obtained by value_mark | |
470 | (except for those released). */ | |
471 | void | |
f23631e4 | 472 | value_free_to_mark (struct value *mark) |
c906108c | 473 | { |
f23631e4 AC |
474 | struct value *val; |
475 | struct value *next; | |
c906108c SS |
476 | |
477 | for (val = all_values; val && val != mark; val = next) | |
478 | { | |
df407dfe | 479 | next = val->next; |
c906108c SS |
480 | value_free (val); |
481 | } | |
482 | all_values = val; | |
483 | } | |
484 | ||
485 | /* Free all the values that have been allocated (except for those released). | |
486 | Called after each command, successful or not. */ | |
487 | ||
488 | void | |
fba45db2 | 489 | free_all_values (void) |
c906108c | 490 | { |
f23631e4 AC |
491 | struct value *val; |
492 | struct value *next; | |
c906108c SS |
493 | |
494 | for (val = all_values; val; val = next) | |
495 | { | |
df407dfe | 496 | next = val->next; |
c906108c SS |
497 | value_free (val); |
498 | } | |
499 | ||
500 | all_values = 0; | |
501 | } | |
502 | ||
503 | /* Remove VAL from the chain all_values | |
504 | so it will not be freed automatically. */ | |
505 | ||
506 | void | |
f23631e4 | 507 | release_value (struct value *val) |
c906108c | 508 | { |
f23631e4 | 509 | struct value *v; |
c906108c SS |
510 | |
511 | if (all_values == val) | |
512 | { | |
513 | all_values = val->next; | |
514 | return; | |
515 | } | |
516 | ||
517 | for (v = all_values; v; v = v->next) | |
518 | { | |
519 | if (v->next == val) | |
520 | { | |
521 | v->next = val->next; | |
522 | break; | |
523 | } | |
524 | } | |
525 | } | |
526 | ||
527 | /* Release all values up to mark */ | |
f23631e4 AC |
528 | struct value * |
529 | value_release_to_mark (struct value *mark) | |
c906108c | 530 | { |
f23631e4 AC |
531 | struct value *val; |
532 | struct value *next; | |
c906108c | 533 | |
df407dfe AC |
534 | for (val = next = all_values; next; next = next->next) |
535 | if (next->next == mark) | |
c906108c | 536 | { |
df407dfe AC |
537 | all_values = next->next; |
538 | next->next = NULL; | |
c906108c SS |
539 | return val; |
540 | } | |
541 | all_values = 0; | |
542 | return val; | |
543 | } | |
544 | ||
545 | /* Return a copy of the value ARG. | |
546 | It contains the same contents, for same memory address, | |
547 | but it's a different block of storage. */ | |
548 | ||
f23631e4 AC |
549 | struct value * |
550 | value_copy (struct value *arg) | |
c906108c | 551 | { |
4754a64e | 552 | struct type *encl_type = value_enclosing_type (arg); |
f23631e4 | 553 | struct value *val = allocate_value (encl_type); |
df407dfe | 554 | val->type = arg->type; |
c906108c | 555 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 556 | val->location = arg->location; |
df407dfe AC |
557 | val->offset = arg->offset; |
558 | val->bitpos = arg->bitpos; | |
559 | val->bitsize = arg->bitsize; | |
1df6926e | 560 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 561 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 562 | val->lazy = arg->lazy; |
feb13ab0 | 563 | val->optimized_out = arg->optimized_out; |
13c3b5f5 | 564 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 565 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 566 | val->modifiable = arg->modifiable; |
d69fe07e | 567 | if (!value_lazy (val)) |
c906108c | 568 | { |
990a07ab | 569 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 570 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
571 | |
572 | } | |
573 | return val; | |
574 | } | |
575 | \f | |
576 | /* Access to the value history. */ | |
577 | ||
578 | /* Record a new value in the value history. | |
579 | Returns the absolute history index of the entry. | |
580 | Result of -1 indicates the value was not saved; otherwise it is the | |
581 | value history index of this new item. */ | |
582 | ||
583 | int | |
f23631e4 | 584 | record_latest_value (struct value *val) |
c906108c SS |
585 | { |
586 | int i; | |
587 | ||
588 | /* We don't want this value to have anything to do with the inferior anymore. | |
589 | In particular, "set $1 = 50" should not affect the variable from which | |
590 | the value was taken, and fast watchpoints should be able to assume that | |
591 | a value on the value history never changes. */ | |
d69fe07e | 592 | if (value_lazy (val)) |
c906108c SS |
593 | value_fetch_lazy (val); |
594 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
595 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
596 | but the current contents of that location. c'est la vie... */ | |
597 | val->modifiable = 0; | |
598 | release_value (val); | |
599 | ||
600 | /* Here we treat value_history_count as origin-zero | |
601 | and applying to the value being stored now. */ | |
602 | ||
603 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
604 | if (i == 0) | |
605 | { | |
f23631e4 | 606 | struct value_history_chunk *new |
c5aa993b JM |
607 | = (struct value_history_chunk *) |
608 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
609 | memset (new->values, 0, sizeof new->values); |
610 | new->next = value_history_chain; | |
611 | value_history_chain = new; | |
612 | } | |
613 | ||
614 | value_history_chain->values[i] = val; | |
615 | ||
616 | /* Now we regard value_history_count as origin-one | |
617 | and applying to the value just stored. */ | |
618 | ||
619 | return ++value_history_count; | |
620 | } | |
621 | ||
622 | /* Return a copy of the value in the history with sequence number NUM. */ | |
623 | ||
f23631e4 | 624 | struct value * |
fba45db2 | 625 | access_value_history (int num) |
c906108c | 626 | { |
f23631e4 | 627 | struct value_history_chunk *chunk; |
52f0bd74 AC |
628 | int i; |
629 | int absnum = num; | |
c906108c SS |
630 | |
631 | if (absnum <= 0) | |
632 | absnum += value_history_count; | |
633 | ||
634 | if (absnum <= 0) | |
635 | { | |
636 | if (num == 0) | |
8a3fe4f8 | 637 | error (_("The history is empty.")); |
c906108c | 638 | else if (num == 1) |
8a3fe4f8 | 639 | error (_("There is only one value in the history.")); |
c906108c | 640 | else |
8a3fe4f8 | 641 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
642 | } |
643 | if (absnum > value_history_count) | |
8a3fe4f8 | 644 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
645 | |
646 | absnum--; | |
647 | ||
648 | /* Now absnum is always absolute and origin zero. */ | |
649 | ||
650 | chunk = value_history_chain; | |
651 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
652 | i > 0; i--) | |
653 | chunk = chunk->next; | |
654 | ||
655 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
656 | } | |
657 | ||
c906108c | 658 | static void |
fba45db2 | 659 | show_values (char *num_exp, int from_tty) |
c906108c | 660 | { |
52f0bd74 | 661 | int i; |
f23631e4 | 662 | struct value *val; |
c906108c SS |
663 | static int num = 1; |
664 | ||
665 | if (num_exp) | |
666 | { | |
c5aa993b JM |
667 | /* "info history +" should print from the stored position. |
668 | "info history <exp>" should print around value number <exp>. */ | |
c906108c | 669 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 670 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
671 | } |
672 | else | |
673 | { | |
674 | /* "info history" means print the last 10 values. */ | |
675 | num = value_history_count - 9; | |
676 | } | |
677 | ||
678 | if (num <= 0) | |
679 | num = 1; | |
680 | ||
681 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
682 | { | |
683 | val = access_value_history (i); | |
a3f17187 | 684 | printf_filtered (("$%d = "), i); |
c906108c | 685 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
a3f17187 | 686 | printf_filtered (("\n")); |
c906108c SS |
687 | } |
688 | ||
689 | /* The next "info history +" should start after what we just printed. */ | |
690 | num += 10; | |
691 | ||
692 | /* Hitting just return after this command should do the same thing as | |
693 | "info history +". If num_exp is null, this is unnecessary, since | |
694 | "info history +" is not useful after "info history". */ | |
695 | if (from_tty && num_exp) | |
696 | { | |
697 | num_exp[0] = '+'; | |
698 | num_exp[1] = '\0'; | |
699 | } | |
700 | } | |
701 | \f | |
702 | /* Internal variables. These are variables within the debugger | |
703 | that hold values assigned by debugger commands. | |
704 | The user refers to them with a '$' prefix | |
705 | that does not appear in the variable names stored internally. */ | |
706 | ||
707 | static struct internalvar *internalvars; | |
708 | ||
53e5f3cf AS |
709 | /* If the variable does not already exist create it and give it the value given. |
710 | If no value is given then the default is zero. */ | |
711 | static void | |
712 | init_if_undefined_command (char* args, int from_tty) | |
713 | { | |
714 | struct internalvar* intvar; | |
715 | ||
716 | /* Parse the expression - this is taken from set_command(). */ | |
717 | struct expression *expr = parse_expression (args); | |
718 | register struct cleanup *old_chain = | |
719 | make_cleanup (free_current_contents, &expr); | |
720 | ||
721 | /* Validate the expression. | |
722 | Was the expression an assignment? | |
723 | Or even an expression at all? */ | |
724 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
725 | error (_("Init-if-undefined requires an assignment expression.")); | |
726 | ||
727 | /* Extract the variable from the parsed expression. | |
728 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
729 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
730 | error (_("The first parameter to init-if-undefined should be a GDB variable.")); | |
731 | intvar = expr->elts[2].internalvar; | |
732 | ||
733 | /* Only evaluate the expression if the lvalue is void. | |
734 | This may still fail if the expresssion is invalid. */ | |
735 | if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID) | |
736 | evaluate_expression (expr); | |
737 | ||
738 | do_cleanups (old_chain); | |
739 | } | |
740 | ||
741 | ||
c906108c SS |
742 | /* Look up an internal variable with name NAME. NAME should not |
743 | normally include a dollar sign. | |
744 | ||
745 | If the specified internal variable does not exist, | |
c4a3d09a | 746 | the return value is NULL. */ |
c906108c SS |
747 | |
748 | struct internalvar * | |
c4a3d09a | 749 | lookup_only_internalvar (char *name) |
c906108c | 750 | { |
52f0bd74 | 751 | struct internalvar *var; |
c906108c SS |
752 | |
753 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 754 | if (strcmp (var->name, name) == 0) |
c906108c SS |
755 | return var; |
756 | ||
c4a3d09a MF |
757 | return NULL; |
758 | } | |
759 | ||
760 | ||
761 | /* Create an internal variable with name NAME and with a void value. | |
762 | NAME should not normally include a dollar sign. */ | |
763 | ||
764 | struct internalvar * | |
765 | create_internalvar (char *name) | |
766 | { | |
767 | struct internalvar *var; | |
c906108c | 768 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); |
1754f103 | 769 | var->name = concat (name, (char *)NULL); |
c906108c | 770 | var->value = allocate_value (builtin_type_void); |
0d20ae72 | 771 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
772 | release_value (var->value); |
773 | var->next = internalvars; | |
774 | internalvars = var; | |
775 | return var; | |
776 | } | |
777 | ||
c4a3d09a MF |
778 | |
779 | /* Look up an internal variable with name NAME. NAME should not | |
780 | normally include a dollar sign. | |
781 | ||
782 | If the specified internal variable does not exist, | |
783 | one is created, with a void value. */ | |
784 | ||
785 | struct internalvar * | |
786 | lookup_internalvar (char *name) | |
787 | { | |
788 | struct internalvar *var; | |
789 | ||
790 | var = lookup_only_internalvar (name); | |
791 | if (var) | |
792 | return var; | |
793 | ||
794 | return create_internalvar (name); | |
795 | } | |
796 | ||
f23631e4 | 797 | struct value * |
fba45db2 | 798 | value_of_internalvar (struct internalvar *var) |
c906108c | 799 | { |
f23631e4 | 800 | struct value *val; |
d3c139e9 AS |
801 | int i, j; |
802 | gdb_byte temp; | |
c906108c | 803 | |
c906108c | 804 | val = value_copy (var->value); |
d69fe07e | 805 | if (value_lazy (val)) |
c906108c SS |
806 | value_fetch_lazy (val); |
807 | VALUE_LVAL (val) = lval_internalvar; | |
808 | VALUE_INTERNALVAR (val) = var; | |
d3c139e9 AS |
809 | |
810 | /* Values are always stored in the target's byte order. When connected to a | |
811 | target this will most likely always be correct, so there's normally no | |
812 | need to worry about it. | |
813 | ||
814 | However, internal variables can be set up before the target endian is | |
815 | known and so may become out of date. Fix it up before anybody sees. | |
816 | ||
817 | Internal variables usually hold simple scalar values, and we can | |
818 | correct those. More complex values (e.g. structures and floating | |
819 | point types) are left alone, because they would be too complicated | |
820 | to correct. */ | |
821 | ||
0d20ae72 | 822 | if (var->endian != gdbarch_byte_order (current_gdbarch)) |
d3c139e9 AS |
823 | { |
824 | gdb_byte *array = value_contents_raw (val); | |
825 | struct type *type = check_typedef (value_enclosing_type (val)); | |
826 | switch (TYPE_CODE (type)) | |
827 | { | |
828 | case TYPE_CODE_INT: | |
829 | case TYPE_CODE_PTR: | |
830 | /* Reverse the bytes. */ | |
831 | for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--) | |
832 | { | |
833 | temp = array[j]; | |
834 | array[j] = array[i]; | |
835 | array[i] = temp; | |
836 | } | |
837 | break; | |
838 | } | |
839 | } | |
840 | ||
c906108c SS |
841 | return val; |
842 | } | |
843 | ||
844 | void | |
fba45db2 | 845 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 846 | int bitsize, struct value *newval) |
c906108c | 847 | { |
fc1a4b47 | 848 | gdb_byte *addr = value_contents_writeable (var->value) + offset; |
c906108c | 849 | |
c906108c SS |
850 | if (bitsize) |
851 | modify_field (addr, value_as_long (newval), | |
852 | bitpos, bitsize); | |
853 | else | |
0fd88904 | 854 | memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval))); |
c906108c SS |
855 | } |
856 | ||
857 | void | |
f23631e4 | 858 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 859 | { |
f23631e4 | 860 | struct value *newval; |
c906108c | 861 | |
c906108c SS |
862 | newval = value_copy (val); |
863 | newval->modifiable = 1; | |
864 | ||
865 | /* Force the value to be fetched from the target now, to avoid problems | |
866 | later when this internalvar is referenced and the target is gone or | |
867 | has changed. */ | |
d69fe07e | 868 | if (value_lazy (newval)) |
c906108c SS |
869 | value_fetch_lazy (newval); |
870 | ||
871 | /* Begin code which must not call error(). If var->value points to | |
872 | something free'd, an error() obviously leaves a dangling pointer. | |
873 | But we also get a danling pointer if var->value points to | |
874 | something in the value chain (i.e., before release_value is | |
875 | called), because after the error free_all_values will get called before | |
876 | long. */ | |
b8c9b27d | 877 | xfree (var->value); |
c906108c | 878 | var->value = newval; |
0d20ae72 | 879 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
880 | release_value (newval); |
881 | /* End code which must not call error(). */ | |
882 | } | |
883 | ||
884 | char * | |
fba45db2 | 885 | internalvar_name (struct internalvar *var) |
c906108c SS |
886 | { |
887 | return var->name; | |
888 | } | |
889 | ||
ae5a43e0 DJ |
890 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
891 | prevent cycles / duplicates. */ | |
892 | ||
893 | static void | |
894 | preserve_one_value (struct value *value, struct objfile *objfile, | |
895 | htab_t copied_types) | |
896 | { | |
897 | if (TYPE_OBJFILE (value->type) == objfile) | |
898 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
899 | ||
900 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
901 | value->enclosing_type = copy_type_recursive (objfile, | |
902 | value->enclosing_type, | |
903 | copied_types); | |
904 | } | |
905 | ||
906 | /* Update the internal variables and value history when OBJFILE is | |
907 | discarded; we must copy the types out of the objfile. New global types | |
908 | will be created for every convenience variable which currently points to | |
909 | this objfile's types, and the convenience variables will be adjusted to | |
910 | use the new global types. */ | |
c906108c SS |
911 | |
912 | void | |
ae5a43e0 | 913 | preserve_values (struct objfile *objfile) |
c906108c | 914 | { |
ae5a43e0 DJ |
915 | htab_t copied_types; |
916 | struct value_history_chunk *cur; | |
52f0bd74 | 917 | struct internalvar *var; |
ae5a43e0 | 918 | int i; |
c906108c | 919 | |
ae5a43e0 DJ |
920 | /* Create the hash table. We allocate on the objfile's obstack, since |
921 | it is soon to be deleted. */ | |
922 | copied_types = create_copied_types_hash (objfile); | |
923 | ||
924 | for (cur = value_history_chain; cur; cur = cur->next) | |
925 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
926 | if (cur->values[i]) | |
927 | preserve_one_value (cur->values[i], objfile, copied_types); | |
928 | ||
929 | for (var = internalvars; var; var = var->next) | |
930 | preserve_one_value (var->value, objfile, copied_types); | |
931 | ||
932 | htab_delete (copied_types); | |
c906108c SS |
933 | } |
934 | ||
935 | static void | |
fba45db2 | 936 | show_convenience (char *ignore, int from_tty) |
c906108c | 937 | { |
52f0bd74 | 938 | struct internalvar *var; |
c906108c SS |
939 | int varseen = 0; |
940 | ||
941 | for (var = internalvars; var; var = var->next) | |
942 | { | |
c906108c SS |
943 | if (!varseen) |
944 | { | |
945 | varseen = 1; | |
946 | } | |
a3f17187 | 947 | printf_filtered (("$%s = "), var->name); |
d3c139e9 AS |
948 | value_print (value_of_internalvar (var), gdb_stdout, |
949 | 0, Val_pretty_default); | |
a3f17187 | 950 | printf_filtered (("\n")); |
c906108c SS |
951 | } |
952 | if (!varseen) | |
a3f17187 AC |
953 | printf_unfiltered (_("\ |
954 | No debugger convenience variables now defined.\n\ | |
c906108c | 955 | Convenience variables have names starting with \"$\";\n\ |
a3f17187 | 956 | use \"set\" as in \"set $foo = 5\" to define them.\n")); |
c906108c SS |
957 | } |
958 | \f | |
959 | /* Extract a value as a C number (either long or double). | |
960 | Knows how to convert fixed values to double, or | |
961 | floating values to long. | |
962 | Does not deallocate the value. */ | |
963 | ||
964 | LONGEST | |
f23631e4 | 965 | value_as_long (struct value *val) |
c906108c SS |
966 | { |
967 | /* This coerces arrays and functions, which is necessary (e.g. | |
968 | in disassemble_command). It also dereferences references, which | |
969 | I suspect is the most logical thing to do. */ | |
994b9211 | 970 | val = coerce_array (val); |
0fd88904 | 971 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
972 | } |
973 | ||
974 | DOUBLEST | |
f23631e4 | 975 | value_as_double (struct value *val) |
c906108c SS |
976 | { |
977 | DOUBLEST foo; | |
978 | int inv; | |
c5aa993b | 979 | |
0fd88904 | 980 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 981 | if (inv) |
8a3fe4f8 | 982 | error (_("Invalid floating value found in program.")); |
c906108c SS |
983 | return foo; |
984 | } | |
4ef30785 | 985 | |
4478b372 JB |
986 | /* Extract a value as a C pointer. Does not deallocate the value. |
987 | Note that val's type may not actually be a pointer; value_as_long | |
988 | handles all the cases. */ | |
c906108c | 989 | CORE_ADDR |
f23631e4 | 990 | value_as_address (struct value *val) |
c906108c SS |
991 | { |
992 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
993 | whether we want this to be true eventually. */ | |
994 | #if 0 | |
bf6ae464 | 995 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
996 | non-address (e.g. argument to "signal", "info break", etc.), or |
997 | for pointers to char, in which the low bits *are* significant. */ | |
bf6ae464 | 998 | return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val)); |
c906108c | 999 | #else |
f312f057 JB |
1000 | |
1001 | /* There are several targets (IA-64, PowerPC, and others) which | |
1002 | don't represent pointers to functions as simply the address of | |
1003 | the function's entry point. For example, on the IA-64, a | |
1004 | function pointer points to a two-word descriptor, generated by | |
1005 | the linker, which contains the function's entry point, and the | |
1006 | value the IA-64 "global pointer" register should have --- to | |
1007 | support position-independent code. The linker generates | |
1008 | descriptors only for those functions whose addresses are taken. | |
1009 | ||
1010 | On such targets, it's difficult for GDB to convert an arbitrary | |
1011 | function address into a function pointer; it has to either find | |
1012 | an existing descriptor for that function, or call malloc and | |
1013 | build its own. On some targets, it is impossible for GDB to | |
1014 | build a descriptor at all: the descriptor must contain a jump | |
1015 | instruction; data memory cannot be executed; and code memory | |
1016 | cannot be modified. | |
1017 | ||
1018 | Upon entry to this function, if VAL is a value of type `function' | |
1019 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
1020 | VALUE_ADDRESS (val) is the address of the function. This is what | |
1021 | you'll get if you evaluate an expression like `main'. The call | |
1022 | to COERCE_ARRAY below actually does all the usual unary | |
1023 | conversions, which includes converting values of type `function' | |
1024 | to `pointer to function'. This is the challenging conversion | |
1025 | discussed above. Then, `unpack_long' will convert that pointer | |
1026 | back into an address. | |
1027 | ||
1028 | So, suppose the user types `disassemble foo' on an architecture | |
1029 | with a strange function pointer representation, on which GDB | |
1030 | cannot build its own descriptors, and suppose further that `foo' | |
1031 | has no linker-built descriptor. The address->pointer conversion | |
1032 | will signal an error and prevent the command from running, even | |
1033 | though the next step would have been to convert the pointer | |
1034 | directly back into the same address. | |
1035 | ||
1036 | The following shortcut avoids this whole mess. If VAL is a | |
1037 | function, just return its address directly. */ | |
df407dfe AC |
1038 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
1039 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
f312f057 JB |
1040 | return VALUE_ADDRESS (val); |
1041 | ||
994b9211 | 1042 | val = coerce_array (val); |
fc0c74b1 AC |
1043 | |
1044 | /* Some architectures (e.g. Harvard), map instruction and data | |
1045 | addresses onto a single large unified address space. For | |
1046 | instance: An architecture may consider a large integer in the | |
1047 | range 0x10000000 .. 0x1000ffff to already represent a data | |
1048 | addresses (hence not need a pointer to address conversion) while | |
1049 | a small integer would still need to be converted integer to | |
1050 | pointer to address. Just assume such architectures handle all | |
1051 | integer conversions in a single function. */ | |
1052 | ||
1053 | /* JimB writes: | |
1054 | ||
1055 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
1056 | must admonish GDB hackers to make sure its behavior matches the | |
1057 | compiler's, whenever possible. | |
1058 | ||
1059 | In general, I think GDB should evaluate expressions the same way | |
1060 | the compiler does. When the user copies an expression out of | |
1061 | their source code and hands it to a `print' command, they should | |
1062 | get the same value the compiler would have computed. Any | |
1063 | deviation from this rule can cause major confusion and annoyance, | |
1064 | and needs to be justified carefully. In other words, GDB doesn't | |
1065 | really have the freedom to do these conversions in clever and | |
1066 | useful ways. | |
1067 | ||
1068 | AndrewC pointed out that users aren't complaining about how GDB | |
1069 | casts integers to pointers; they are complaining that they can't | |
1070 | take an address from a disassembly listing and give it to `x/i'. | |
1071 | This is certainly important. | |
1072 | ||
79dd2d24 | 1073 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
1074 | makes it possible for GDB to "get it right" in all circumstances |
1075 | --- the target has complete control over how things get done, so | |
1076 | people can Do The Right Thing for their target without breaking | |
1077 | anyone else. The standard doesn't specify how integers get | |
1078 | converted to pointers; usually, the ABI doesn't either, but | |
1079 | ABI-specific code is a more reasonable place to handle it. */ | |
1080 | ||
df407dfe AC |
1081 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
1082 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
79dd2d24 AC |
1083 | && gdbarch_integer_to_address_p (current_gdbarch)) |
1084 | return gdbarch_integer_to_address (current_gdbarch, value_type (val), | |
0fd88904 | 1085 | value_contents (val)); |
fc0c74b1 | 1086 | |
0fd88904 | 1087 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1088 | #endif |
1089 | } | |
1090 | \f | |
1091 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1092 | as a long, or as a double, assuming the raw data is described | |
1093 | by type TYPE. Knows how to convert different sizes of values | |
1094 | and can convert between fixed and floating point. We don't assume | |
1095 | any alignment for the raw data. Return value is in host byte order. | |
1096 | ||
1097 | If you want functions and arrays to be coerced to pointers, and | |
1098 | references to be dereferenced, call value_as_long() instead. | |
1099 | ||
1100 | C++: It is assumed that the front-end has taken care of | |
1101 | all matters concerning pointers to members. A pointer | |
1102 | to member which reaches here is considered to be equivalent | |
1103 | to an INT (or some size). After all, it is only an offset. */ | |
1104 | ||
1105 | LONGEST | |
fc1a4b47 | 1106 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 1107 | { |
52f0bd74 AC |
1108 | enum type_code code = TYPE_CODE (type); |
1109 | int len = TYPE_LENGTH (type); | |
1110 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 1111 | |
c906108c SS |
1112 | switch (code) |
1113 | { | |
1114 | case TYPE_CODE_TYPEDEF: | |
1115 | return unpack_long (check_typedef (type), valaddr); | |
1116 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1117 | case TYPE_CODE_FLAGS: |
c906108c SS |
1118 | case TYPE_CODE_BOOL: |
1119 | case TYPE_CODE_INT: | |
1120 | case TYPE_CODE_CHAR: | |
1121 | case TYPE_CODE_RANGE: | |
0d5de010 | 1122 | case TYPE_CODE_MEMBERPTR: |
c906108c SS |
1123 | if (nosign) |
1124 | return extract_unsigned_integer (valaddr, len); | |
1125 | else | |
1126 | return extract_signed_integer (valaddr, len); | |
1127 | ||
1128 | case TYPE_CODE_FLT: | |
96d2f608 | 1129 | return extract_typed_floating (valaddr, type); |
c906108c | 1130 | |
4ef30785 TJB |
1131 | case TYPE_CODE_DECFLOAT: |
1132 | /* libdecnumber has a function to convert from decimal to integer, but | |
1133 | it doesn't work when the decimal number has a fractional part. */ | |
ba759613 | 1134 | return decimal_to_doublest (valaddr, len); |
4ef30785 | 1135 | |
c906108c SS |
1136 | case TYPE_CODE_PTR: |
1137 | case TYPE_CODE_REF: | |
1138 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 1139 | whether we want this to be true eventually. */ |
4478b372 | 1140 | return extract_typed_address (valaddr, type); |
c906108c | 1141 | |
c906108c | 1142 | default: |
8a3fe4f8 | 1143 | error (_("Value can't be converted to integer.")); |
c906108c | 1144 | } |
c5aa993b | 1145 | return 0; /* Placate lint. */ |
c906108c SS |
1146 | } |
1147 | ||
1148 | /* Return a double value from the specified type and address. | |
1149 | INVP points to an int which is set to 0 for valid value, | |
1150 | 1 for invalid value (bad float format). In either case, | |
1151 | the returned double is OK to use. Argument is in target | |
1152 | format, result is in host format. */ | |
1153 | ||
1154 | DOUBLEST | |
fc1a4b47 | 1155 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c SS |
1156 | { |
1157 | enum type_code code; | |
1158 | int len; | |
1159 | int nosign; | |
1160 | ||
1161 | *invp = 0; /* Assume valid. */ | |
1162 | CHECK_TYPEDEF (type); | |
1163 | code = TYPE_CODE (type); | |
1164 | len = TYPE_LENGTH (type); | |
1165 | nosign = TYPE_UNSIGNED (type); | |
1166 | if (code == TYPE_CODE_FLT) | |
1167 | { | |
75bc7ddf AC |
1168 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
1169 | floating-point value was valid (using the macro | |
1170 | INVALID_FLOAT). That test/macro have been removed. | |
1171 | ||
1172 | It turns out that only the VAX defined this macro and then | |
1173 | only in a non-portable way. Fixing the portability problem | |
1174 | wouldn't help since the VAX floating-point code is also badly | |
1175 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 1176 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
1177 | exactly describe the target floating-point format. The |
1178 | problem here is that the corresponding floatformat_vax_f and | |
1179 | floatformat_vax_d values these methods should be set to are | |
1180 | also not defined either. Oops! | |
1181 | ||
1182 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
1183 | definitions and the new cases for floatformat_is_valid (). */ |
1184 | ||
1185 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
1186 | { | |
1187 | *invp = 1; | |
1188 | return 0.0; | |
1189 | } | |
1190 | ||
96d2f608 | 1191 | return extract_typed_floating (valaddr, type); |
c906108c | 1192 | } |
4ef30785 | 1193 | else if (code == TYPE_CODE_DECFLOAT) |
ba759613 | 1194 | return decimal_to_doublest (valaddr, len); |
c906108c SS |
1195 | else if (nosign) |
1196 | { | |
1197 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 1198 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
1199 | } |
1200 | else | |
1201 | { | |
1202 | /* Signed -- we are OK with unpack_long. */ | |
1203 | return unpack_long (type, valaddr); | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1208 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
1209 | We don't assume any alignment for the raw data. Return value is in | |
1210 | host byte order. | |
1211 | ||
1212 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 1213 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
1214 | |
1215 | C++: It is assumed that the front-end has taken care of | |
1216 | all matters concerning pointers to members. A pointer | |
1217 | to member which reaches here is considered to be equivalent | |
1218 | to an INT (or some size). After all, it is only an offset. */ | |
1219 | ||
1220 | CORE_ADDR | |
fc1a4b47 | 1221 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
1222 | { |
1223 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1224 | whether we want this to be true eventually. */ | |
1225 | return unpack_long (type, valaddr); | |
1226 | } | |
4478b372 | 1227 | |
c906108c | 1228 | \f |
2c2738a0 DC |
1229 | /* Get the value of the FIELDN'th field (which must be static) of |
1230 | TYPE. Return NULL if the field doesn't exist or has been | |
1231 | optimized out. */ | |
c906108c | 1232 | |
f23631e4 | 1233 | struct value * |
fba45db2 | 1234 | value_static_field (struct type *type, int fieldno) |
c906108c | 1235 | { |
948e66d9 DJ |
1236 | struct value *retval; |
1237 | ||
c906108c SS |
1238 | if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)) |
1239 | { | |
948e66d9 | 1240 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1241 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
1242 | } |
1243 | else | |
1244 | { | |
1245 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
176620f1 | 1246 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL); |
948e66d9 | 1247 | if (sym == NULL) |
c906108c SS |
1248 | { |
1249 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
1250 | as non-debuggable symbols */ |
1251 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
1252 | if (!msym) |
1253 | return NULL; | |
1254 | else | |
c5aa993b | 1255 | { |
948e66d9 | 1256 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1257 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
1258 | } |
1259 | } | |
1260 | else | |
1261 | { | |
948e66d9 DJ |
1262 | /* SYM should never have a SYMBOL_CLASS which will require |
1263 | read_var_value to use the FRAME parameter. */ | |
1264 | if (symbol_read_needs_frame (sym)) | |
8a3fe4f8 AC |
1265 | warning (_("static field's value depends on the current " |
1266 | "frame - bad debug info?")); | |
948e66d9 | 1267 | retval = read_var_value (sym, NULL); |
2b127877 | 1268 | } |
948e66d9 DJ |
1269 | if (retval && VALUE_LVAL (retval) == lval_memory) |
1270 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
1271 | VALUE_ADDRESS (retval)); | |
c906108c | 1272 | } |
948e66d9 | 1273 | return retval; |
c906108c SS |
1274 | } |
1275 | ||
2b127877 DB |
1276 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
1277 | You have to be careful here, since the size of the data area for the value | |
1278 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
1279 | than the old enclosing type, you have to allocate more space for the data. | |
1280 | The return value is a pointer to the new version of this value structure. */ | |
1281 | ||
f23631e4 AC |
1282 | struct value * |
1283 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 1284 | { |
4754a64e | 1285 | if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val))) |
2b127877 | 1286 | { |
4754a64e | 1287 | val->enclosing_type = new_encl_type; |
2b127877 DB |
1288 | return val; |
1289 | } | |
1290 | else | |
1291 | { | |
f23631e4 AC |
1292 | struct value *new_val; |
1293 | struct value *prev; | |
2b127877 | 1294 | |
f23631e4 | 1295 | new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)); |
cc303028 | 1296 | |
4754a64e | 1297 | new_val->enclosing_type = new_encl_type; |
cc303028 | 1298 | |
2b127877 DB |
1299 | /* We have to make sure this ends up in the same place in the value |
1300 | chain as the original copy, so it's clean-up behavior is the same. | |
1301 | If the value has been released, this is a waste of time, but there | |
1302 | is no way to tell that in advance, so... */ | |
1303 | ||
1304 | if (val != all_values) | |
1305 | { | |
1306 | for (prev = all_values; prev != NULL; prev = prev->next) | |
1307 | { | |
1308 | if (prev->next == val) | |
1309 | { | |
1310 | prev->next = new_val; | |
1311 | break; | |
1312 | } | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | return new_val; | |
1317 | } | |
1318 | } | |
1319 | ||
c906108c SS |
1320 | /* Given a value ARG1 (offset by OFFSET bytes) |
1321 | of a struct or union type ARG_TYPE, | |
1322 | extract and return the value of one of its (non-static) fields. | |
1323 | FIELDNO says which field. */ | |
1324 | ||
f23631e4 AC |
1325 | struct value * |
1326 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 1327 | int fieldno, struct type *arg_type) |
c906108c | 1328 | { |
f23631e4 | 1329 | struct value *v; |
52f0bd74 | 1330 | struct type *type; |
c906108c SS |
1331 | |
1332 | CHECK_TYPEDEF (arg_type); | |
1333 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
1334 | ||
1335 | /* Handle packed fields */ | |
1336 | ||
1337 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
1338 | { | |
1339 | v = value_from_longest (type, | |
1340 | unpack_field_as_long (arg_type, | |
0fd88904 | 1341 | value_contents (arg1) |
c5aa993b | 1342 | + offset, |
c906108c | 1343 | fieldno)); |
df407dfe AC |
1344 | v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; |
1345 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
1346 | v->offset = value_offset (arg1) + offset | |
2e70b7b9 | 1347 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
c906108c SS |
1348 | } |
1349 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
1350 | { | |
1351 | /* This field is actually a base subobject, so preserve the | |
1352 | entire object's contents for later references to virtual | |
1353 | bases, etc. */ | |
4754a64e | 1354 | v = allocate_value (value_enclosing_type (arg1)); |
df407dfe | 1355 | v->type = type; |
d69fe07e | 1356 | if (value_lazy (arg1)) |
dfa52d88 | 1357 | set_value_lazy (v, 1); |
c906108c | 1358 | else |
990a07ab | 1359 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), |
4754a64e | 1360 | TYPE_LENGTH (value_enclosing_type (arg1))); |
df407dfe | 1361 | v->offset = value_offset (arg1); |
13c3b5f5 AC |
1362 | v->embedded_offset = (offset + value_embedded_offset (arg1) |
1363 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8); | |
c906108c SS |
1364 | } |
1365 | else | |
1366 | { | |
1367 | /* Plain old data member */ | |
1368 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
1369 | v = allocate_value (type); | |
d69fe07e | 1370 | if (value_lazy (arg1)) |
dfa52d88 | 1371 | set_value_lazy (v, 1); |
c906108c | 1372 | else |
990a07ab AC |
1373 | memcpy (value_contents_raw (v), |
1374 | value_contents_raw (arg1) + offset, | |
c906108c | 1375 | TYPE_LENGTH (type)); |
df407dfe | 1376 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 1377 | + value_embedded_offset (arg1)); |
c906108c SS |
1378 | } |
1379 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
1380 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
1381 | VALUE_LVAL (v) = lval_internalvar_component; | |
7d85ee02 | 1382 | v->location = arg1->location; |
9ee8fc9d | 1383 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 1384 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c SS |
1385 | return v; |
1386 | } | |
1387 | ||
1388 | /* Given a value ARG1 of a struct or union type, | |
1389 | extract and return the value of one of its (non-static) fields. | |
1390 | FIELDNO says which field. */ | |
1391 | ||
f23631e4 | 1392 | struct value * |
aa1ee363 | 1393 | value_field (struct value *arg1, int fieldno) |
c906108c | 1394 | { |
df407dfe | 1395 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1396 | } |
1397 | ||
1398 | /* Return a non-virtual function as a value. | |
1399 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1400 | J is an index into F which provides the desired method. |
1401 | ||
1402 | We only use the symbol for its address, so be happy with either a | |
1403 | full symbol or a minimal symbol. | |
1404 | */ | |
c906108c | 1405 | |
f23631e4 AC |
1406 | struct value * |
1407 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1408 | int offset) |
c906108c | 1409 | { |
f23631e4 | 1410 | struct value *v; |
52f0bd74 | 1411 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1412 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1413 | struct symbol *sym; |
0478d61c | 1414 | struct minimal_symbol *msym; |
c906108c | 1415 | |
176620f1 | 1416 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL); |
5ae326fa | 1417 | if (sym != NULL) |
0478d61c | 1418 | { |
5ae326fa AC |
1419 | msym = NULL; |
1420 | } | |
1421 | else | |
1422 | { | |
1423 | gdb_assert (sym == NULL); | |
0478d61c | 1424 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1425 | if (msym == NULL) |
1426 | return NULL; | |
0478d61c FF |
1427 | } |
1428 | ||
c906108c | 1429 | v = allocate_value (ftype); |
0478d61c FF |
1430 | if (sym) |
1431 | { | |
1432 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1433 | } | |
1434 | else | |
1435 | { | |
1436 | VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym); | |
1437 | } | |
c906108c SS |
1438 | |
1439 | if (arg1p) | |
c5aa993b | 1440 | { |
df407dfe | 1441 | if (type != value_type (*arg1p)) |
c5aa993b JM |
1442 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
1443 | value_addr (*arg1p))); | |
1444 | ||
070ad9f0 | 1445 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
1446 | VALUE_OFFSET (*arg1p) += offset; |
1447 | */ | |
c906108c SS |
1448 | } |
1449 | ||
1450 | return v; | |
1451 | } | |
1452 | ||
c906108c SS |
1453 | \f |
1454 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1455 | VALADDR. | |
1456 | ||
1457 | Extracting bits depends on endianness of the machine. Compute the | |
1458 | number of least significant bits to discard. For big endian machines, | |
1459 | we compute the total number of bits in the anonymous object, subtract | |
1460 | off the bit count from the MSB of the object to the MSB of the | |
1461 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1462 | count. For little endian machines, the discard count is simply the | |
1463 | number of bits from the LSB of the anonymous object to the LSB of the | |
1464 | bitfield. | |
1465 | ||
1466 | If the field is signed, we also do sign extension. */ | |
1467 | ||
1468 | LONGEST | |
fc1a4b47 | 1469 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) |
c906108c SS |
1470 | { |
1471 | ULONGEST val; | |
1472 | ULONGEST valmask; | |
1473 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1474 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1475 | int lsbcount; | |
1476 | struct type *field_type; | |
1477 | ||
1478 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1479 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1480 | CHECK_TYPEDEF (field_type); | |
1481 | ||
1482 | /* Extract bits. See comment above. */ | |
1483 | ||
1484 | if (BITS_BIG_ENDIAN) | |
1485 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1486 | else | |
1487 | lsbcount = (bitpos % 8); | |
1488 | val >>= lsbcount; | |
1489 | ||
1490 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1491 | If the field is signed, and is negative, then sign extend. */ | |
1492 | ||
1493 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1494 | { | |
1495 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1496 | val &= valmask; | |
1497 | if (!TYPE_UNSIGNED (field_type)) | |
1498 | { | |
1499 | if (val & (valmask ^ (valmask >> 1))) | |
1500 | { | |
1501 | val |= ~valmask; | |
1502 | } | |
1503 | } | |
1504 | } | |
1505 | return (val); | |
1506 | } | |
1507 | ||
1508 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1509 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1510 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
1511 | indicate which bits (in target bit order) comprise the bitfield. |
1512 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
1513 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
1514 | |
1515 | void | |
fc1a4b47 | 1516 | modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize) |
c906108c | 1517 | { |
f4e88c8e PH |
1518 | ULONGEST oword; |
1519 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
1520 | |
1521 | /* If a negative fieldval fits in the field in question, chop | |
1522 | off the sign extension bits. */ | |
f4e88c8e PH |
1523 | if ((~fieldval & ~(mask >> 1)) == 0) |
1524 | fieldval &= mask; | |
c906108c SS |
1525 | |
1526 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 1527 | if (0 != (fieldval & ~mask)) |
c906108c SS |
1528 | { |
1529 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1530 | we don't have a sprintf_longest. */ |
8a3fe4f8 | 1531 | warning (_("Value does not fit in %d bits."), bitsize); |
c906108c SS |
1532 | |
1533 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 1534 | fieldval &= mask; |
c906108c SS |
1535 | } |
1536 | ||
f4e88c8e | 1537 | oword = extract_unsigned_integer (addr, sizeof oword); |
c906108c SS |
1538 | |
1539 | /* Shifting for bit field depends on endianness of the target machine. */ | |
1540 | if (BITS_BIG_ENDIAN) | |
1541 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
1542 | ||
f4e88c8e | 1543 | oword &= ~(mask << bitpos); |
c906108c SS |
1544 | oword |= fieldval << bitpos; |
1545 | ||
f4e88c8e | 1546 | store_unsigned_integer (addr, sizeof oword, oword); |
c906108c SS |
1547 | } |
1548 | \f | |
14d06750 | 1549 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 1550 | |
14d06750 DJ |
1551 | void |
1552 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 1553 | { |
52f0bd74 | 1554 | int len; |
14d06750 DJ |
1555 | |
1556 | type = check_typedef (type); | |
c906108c SS |
1557 | len = TYPE_LENGTH (type); |
1558 | ||
14d06750 | 1559 | switch (TYPE_CODE (type)) |
c906108c | 1560 | { |
c906108c SS |
1561 | case TYPE_CODE_INT: |
1562 | case TYPE_CODE_CHAR: | |
1563 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1564 | case TYPE_CODE_FLAGS: |
c906108c SS |
1565 | case TYPE_CODE_BOOL: |
1566 | case TYPE_CODE_RANGE: | |
0d5de010 | 1567 | case TYPE_CODE_MEMBERPTR: |
14d06750 | 1568 | store_signed_integer (buf, len, num); |
c906108c | 1569 | break; |
c5aa993b | 1570 | |
c906108c SS |
1571 | case TYPE_CODE_REF: |
1572 | case TYPE_CODE_PTR: | |
14d06750 | 1573 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 1574 | break; |
c5aa993b | 1575 | |
c906108c | 1576 | default: |
14d06750 DJ |
1577 | error (_("Unexpected type (%d) encountered for integer constant."), |
1578 | TYPE_CODE (type)); | |
c906108c | 1579 | } |
14d06750 DJ |
1580 | } |
1581 | ||
1582 | ||
1583 | /* Convert C numbers into newly allocated values. */ | |
1584 | ||
1585 | struct value * | |
1586 | value_from_longest (struct type *type, LONGEST num) | |
1587 | { | |
1588 | struct value *val = allocate_value (type); | |
1589 | ||
1590 | pack_long (value_contents_raw (val), type, num); | |
1591 | ||
c906108c SS |
1592 | return val; |
1593 | } | |
1594 | ||
4478b372 JB |
1595 | |
1596 | /* Create a value representing a pointer of type TYPE to the address | |
1597 | ADDR. */ | |
f23631e4 | 1598 | struct value * |
4478b372 JB |
1599 | value_from_pointer (struct type *type, CORE_ADDR addr) |
1600 | { | |
f23631e4 | 1601 | struct value *val = allocate_value (type); |
990a07ab | 1602 | store_typed_address (value_contents_raw (val), type, addr); |
4478b372 JB |
1603 | return val; |
1604 | } | |
1605 | ||
1606 | ||
0f71a2f6 | 1607 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1608 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1609 | This is analogous to value_from_longest, which also does not |
1610 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1611 | ||
f23631e4 | 1612 | struct value * |
fba45db2 | 1613 | value_from_string (char *ptr) |
0f71a2f6 | 1614 | { |
f23631e4 | 1615 | struct value *val; |
c5aa993b | 1616 | int len = strlen (ptr); |
0f71a2f6 | 1617 | int lowbound = current_language->string_lower_bound; |
f290d38e AC |
1618 | struct type *string_char_type; |
1619 | struct type *rangetype; | |
1620 | struct type *stringtype; | |
1621 | ||
1622 | rangetype = create_range_type ((struct type *) NULL, | |
1623 | builtin_type_int, | |
1624 | lowbound, len + lowbound - 1); | |
1625 | string_char_type = language_string_char_type (current_language, | |
1626 | current_gdbarch); | |
1627 | stringtype = create_array_type ((struct type *) NULL, | |
1628 | string_char_type, | |
1629 | rangetype); | |
0f71a2f6 | 1630 | val = allocate_value (stringtype); |
990a07ab | 1631 | memcpy (value_contents_raw (val), ptr, len); |
0f71a2f6 JM |
1632 | return val; |
1633 | } | |
1634 | ||
f23631e4 | 1635 | struct value * |
fba45db2 | 1636 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 1637 | { |
f23631e4 | 1638 | struct value *val = allocate_value (type); |
c906108c | 1639 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
1640 | enum type_code code = TYPE_CODE (base_type); |
1641 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
1642 | |
1643 | if (code == TYPE_CODE_FLT) | |
1644 | { | |
990a07ab | 1645 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
1646 | } |
1647 | else | |
8a3fe4f8 | 1648 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
1649 | |
1650 | return val; | |
1651 | } | |
994b9211 | 1652 | |
27bc4d80 | 1653 | struct value * |
4ef30785 | 1654 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
1655 | { |
1656 | struct value *val = allocate_value (type); | |
27bc4d80 | 1657 | |
4ef30785 | 1658 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 | 1659 | |
27bc4d80 TJB |
1660 | return val; |
1661 | } | |
1662 | ||
994b9211 AC |
1663 | struct value * |
1664 | coerce_ref (struct value *arg) | |
1665 | { | |
df407dfe | 1666 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
1667 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
1668 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 1669 | unpack_pointer (value_type (arg), |
0fd88904 | 1670 | value_contents (arg))); |
994b9211 AC |
1671 | return arg; |
1672 | } | |
1673 | ||
1674 | struct value * | |
1675 | coerce_array (struct value *arg) | |
1676 | { | |
1677 | arg = coerce_ref (arg); | |
1678 | if (current_language->c_style_arrays | |
df407dfe | 1679 | && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY) |
994b9211 | 1680 | arg = value_coerce_array (arg); |
df407dfe | 1681 | if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC) |
994b9211 AC |
1682 | arg = value_coerce_function (arg); |
1683 | return arg; | |
1684 | } | |
1685 | ||
1686 | struct value * | |
1687 | coerce_number (struct value *arg) | |
1688 | { | |
1689 | arg = coerce_array (arg); | |
1690 | arg = coerce_enum (arg); | |
1691 | return arg; | |
1692 | } | |
1693 | ||
1694 | struct value * | |
1695 | coerce_enum (struct value *arg) | |
1696 | { | |
df407dfe | 1697 | if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM) |
994b9211 AC |
1698 | arg = value_cast (builtin_type_unsigned_int, arg); |
1699 | return arg; | |
1700 | } | |
c906108c | 1701 | \f |
c906108c | 1702 | |
48436ce6 AC |
1703 | /* Return true if the function returning the specified type is using |
1704 | the convention of returning structures in memory (passing in the | |
82585c72 | 1705 | address as a hidden first parameter). */ |
c906108c SS |
1706 | |
1707 | int | |
82585c72 | 1708 | using_struct_return (struct type *value_type) |
c906108c | 1709 | { |
52f0bd74 | 1710 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
1711 | |
1712 | if (code == TYPE_CODE_ERROR) | |
8a3fe4f8 | 1713 | error (_("Function return type unknown.")); |
c906108c | 1714 | |
667e784f AC |
1715 | if (code == TYPE_CODE_VOID) |
1716 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 1717 | code in "print_return_value". */ |
667e784f AC |
1718 | return 0; |
1719 | ||
92ad9cd9 AC |
1720 | /* Probe the architecture for the return-value convention. */ |
1721 | return (gdbarch_return_value (current_gdbarch, value_type, | |
1722 | NULL, NULL, NULL) | |
31db7b6c | 1723 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
1724 | } |
1725 | ||
42be36b3 CT |
1726 | /* Set the initialized field in a value struct. */ |
1727 | ||
1728 | void | |
1729 | set_value_initialized (struct value *val, int status) | |
1730 | { | |
1731 | val->initialized = status; | |
1732 | } | |
1733 | ||
1734 | /* Return the initialized field in a value struct. */ | |
1735 | ||
1736 | int | |
1737 | value_initialized (struct value *val) | |
1738 | { | |
1739 | return val->initialized; | |
1740 | } | |
1741 | ||
c906108c | 1742 | void |
fba45db2 | 1743 | _initialize_values (void) |
c906108c | 1744 | { |
1a966eab AC |
1745 | add_cmd ("convenience", no_class, show_convenience, _("\ |
1746 | Debugger convenience (\"$foo\") variables.\n\ | |
c906108c | 1747 | These variables are created when you assign them values;\n\ |
1a966eab AC |
1748 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ |
1749 | \n\ | |
c906108c SS |
1750 | A few convenience variables are given values automatically:\n\ |
1751 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1a966eab | 1752 | \"$__\" holds the contents of the last address examined with \"x\"."), |
c906108c SS |
1753 | &showlist); |
1754 | ||
1755 | add_cmd ("values", no_class, show_values, | |
1a966eab | 1756 | _("Elements of value history around item number IDX (or last ten)."), |
c906108c | 1757 | &showlist); |
53e5f3cf AS |
1758 | |
1759 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
1760 | Initialize a convenience variable if necessary.\n\ | |
1761 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
1762 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
1763 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
1764 | VARIABLE is already initialized.")); | |
c906108c | 1765 | } |