Remove regcache_xmalloc
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
325fac50 43#include <algorithm>
eb3ff9a5 44#include "completer.h"
0914bcdb 45
bc3b79fd
TJB
46/* Definition of a user function. */
47struct internal_function
48{
49 /* The name of the function. It is a bit odd to have this in the
50 function itself -- the user might use a differently-named
51 convenience variable to hold the function. */
52 char *name;
53
54 /* The handler. */
55 internal_function_fn handler;
56
57 /* User data for the handler. */
58 void *cookie;
59};
60
4e07d55f
PA
61/* Defines an [OFFSET, OFFSET + LENGTH) range. */
62
63struct range
64{
65 /* Lowest offset in the range. */
6b850546 66 LONGEST offset;
4e07d55f
PA
67
68 /* Length of the range. */
6b850546 69 LONGEST length;
4e07d55f
PA
70};
71
72typedef struct range range_s;
73
74DEF_VEC_O(range_s);
75
76/* Returns true if the ranges defined by [offset1, offset1+len1) and
77 [offset2, offset2+len2) overlap. */
78
79static int
6b850546
DT
80ranges_overlap (LONGEST offset1, LONGEST len1,
81 LONGEST offset2, LONGEST len2)
4e07d55f
PA
82{
83 ULONGEST h, l;
84
325fac50
PA
85 l = std::max (offset1, offset2);
86 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
87 return (l < h);
88}
89
90/* Returns true if the first argument is strictly less than the
91 second, useful for VEC_lower_bound. We keep ranges sorted by
92 offset and coalesce overlapping and contiguous ranges, so this just
93 compares the starting offset. */
94
95static int
96range_lessthan (const range_s *r1, const range_s *r2)
97{
98 return r1->offset < r2->offset;
99}
100
101/* Returns true if RANGES contains any range that overlaps [OFFSET,
102 OFFSET+LENGTH). */
103
104static int
6b850546 105ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
106{
107 range_s what;
6b850546 108 LONGEST i;
4e07d55f
PA
109
110 what.offset = offset;
111 what.length = length;
112
113 /* We keep ranges sorted by offset and coalesce overlapping and
114 contiguous ranges, so to check if a range list contains a given
115 range, we can do a binary search for the position the given range
116 would be inserted if we only considered the starting OFFSET of
117 ranges. We call that position I. Since we also have LENGTH to
118 care for (this is a range afterall), we need to check if the
119 _previous_ range overlaps the I range. E.g.,
120
121 R
122 |---|
123 |---| |---| |------| ... |--|
124 0 1 2 N
125
126 I=1
127
128 In the case above, the binary search would return `I=1', meaning,
129 this OFFSET should be inserted at position 1, and the current
130 position 1 should be pushed further (and before 2). But, `0'
131 overlaps with R.
132
133 Then we need to check if the I range overlaps the I range itself.
134 E.g.,
135
136 R
137 |---|
138 |---| |---| |-------| ... |--|
139 0 1 2 N
140
141 I=1
142 */
143
144 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
145
146 if (i > 0)
147 {
148 struct range *bef = VEC_index (range_s, ranges, i - 1);
149
150 if (ranges_overlap (bef->offset, bef->length, offset, length))
151 return 1;
152 }
153
154 if (i < VEC_length (range_s, ranges))
155 {
156 struct range *r = VEC_index (range_s, ranges, i);
157
158 if (ranges_overlap (r->offset, r->length, offset, length))
159 return 1;
160 }
161
162 return 0;
163}
164
bc3b79fd
TJB
165static struct cmd_list_element *functionlist;
166
87784a47
TT
167/* Note that the fields in this structure are arranged to save a bit
168 of memory. */
169
91294c83
AC
170struct value
171{
172 /* Type of value; either not an lval, or one of the various
173 different possible kinds of lval. */
174 enum lval_type lval;
175
176 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
177 unsigned int modifiable : 1;
178
179 /* If zero, contents of this value are in the contents field. If
180 nonzero, contents are in inferior. If the lval field is lval_memory,
181 the contents are in inferior memory at location.address plus offset.
182 The lval field may also be lval_register.
183
184 WARNING: This field is used by the code which handles watchpoints
185 (see breakpoint.c) to decide whether a particular value can be
186 watched by hardware watchpoints. If the lazy flag is set for
187 some member of a value chain, it is assumed that this member of
188 the chain doesn't need to be watched as part of watching the
189 value itself. This is how GDB avoids watching the entire struct
190 or array when the user wants to watch a single struct member or
191 array element. If you ever change the way lazy flag is set and
192 reset, be sure to consider this use as well! */
193 unsigned int lazy : 1;
194
87784a47
TT
195 /* If value is a variable, is it initialized or not. */
196 unsigned int initialized : 1;
197
198 /* If value is from the stack. If this is set, read_stack will be
199 used instead of read_memory to enable extra caching. */
200 unsigned int stack : 1;
91294c83 201
e848a8a5
TT
202 /* If the value has been released. */
203 unsigned int released : 1;
204
91294c83
AC
205 /* Location of value (if lval). */
206 union
207 {
7dc54575 208 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
209 CORE_ADDR address;
210
7dc54575
YQ
211 /*If lval == lval_register, the value is from a register. */
212 struct
213 {
214 /* Register number. */
215 int regnum;
216 /* Frame ID of "next" frame to which a register value is relative.
217 If the register value is found relative to frame F, then the
218 frame id of F->next will be stored in next_frame_id. */
219 struct frame_id next_frame_id;
220 } reg;
221
91294c83
AC
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
5f5233d4 224
e81e7f5e
SC
225 /* Pointer to xmethod worker. */
226 struct xmethod_worker *xm_worker;
227
5f5233d4
PA
228 /* If lval == lval_computed, this is a set of function pointers
229 to use to access and describe the value, and a closure pointer
230 for them to use. */
231 struct
232 {
c8f2448a
JK
233 /* Functions to call. */
234 const struct lval_funcs *funcs;
235
236 /* Closure for those functions to use. */
237 void *closure;
5f5233d4 238 } computed;
91294c83
AC
239 } location;
240
3723fda8 241 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
242 addressable memory units. Note also the member embedded_offset
243 below. */
6b850546 244 LONGEST offset;
91294c83
AC
245
246 /* Only used for bitfields; number of bits contained in them. */
6b850546 247 LONGEST bitsize;
91294c83
AC
248
249 /* Only used for bitfields; position of start of field. For
32c9a795 250 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 251 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 252 LONGEST bitpos;
91294c83 253
87784a47
TT
254 /* The number of references to this value. When a value is created,
255 the value chain holds a reference, so REFERENCE_COUNT is 1. If
256 release_value is called, this value is removed from the chain but
257 the caller of release_value now has a reference to this value.
258 The caller must arrange for a call to value_free later. */
259 int reference_count;
260
4ea48cc1
DJ
261 /* Only used for bitfields; the containing value. This allows a
262 single read from the target when displaying multiple
263 bitfields. */
264 struct value *parent;
265
91294c83
AC
266 /* Type of the value. */
267 struct type *type;
268
269 /* If a value represents a C++ object, then the `type' field gives
270 the object's compile-time type. If the object actually belongs
271 to some class derived from `type', perhaps with other base
272 classes and additional members, then `type' is just a subobject
273 of the real thing, and the full object is probably larger than
274 `type' would suggest.
275
276 If `type' is a dynamic class (i.e. one with a vtable), then GDB
277 can actually determine the object's run-time type by looking at
278 the run-time type information in the vtable. When this
279 information is available, we may elect to read in the entire
280 object, for several reasons:
281
282 - When printing the value, the user would probably rather see the
283 full object, not just the limited portion apparent from the
284 compile-time type.
285
286 - If `type' has virtual base classes, then even printing `type'
287 alone may require reaching outside the `type' portion of the
288 object to wherever the virtual base class has been stored.
289
290 When we store the entire object, `enclosing_type' is the run-time
291 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
292 offset of `type' within that larger type, in target addressable memory
293 units. The value_contents() macro takes `embedded_offset' into account,
294 so most GDB code continues to see the `type' portion of the value, just
295 as the inferior would.
91294c83
AC
296
297 If `type' is a pointer to an object, then `enclosing_type' is a
298 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
299 the offset in target addressable memory units from the full object
300 to the pointed-to object -- that is, the value `embedded_offset' would
301 have if we followed the pointer and fetched the complete object.
302 (I don't really see the point. Why not just determine the
303 run-time type when you indirect, and avoid the special case? The
304 contents don't matter until you indirect anyway.)
91294c83
AC
305
306 If we're not doing anything fancy, `enclosing_type' is equal to
307 `type', and `embedded_offset' is zero, so everything works
308 normally. */
309 struct type *enclosing_type;
6b850546
DT
310 LONGEST embedded_offset;
311 LONGEST pointed_to_offset;
91294c83
AC
312
313 /* Values are stored in a chain, so that they can be deleted easily
314 over calls to the inferior. Values assigned to internal
a08702d6
TJB
315 variables, put into the value history or exposed to Python are
316 taken off this list. */
91294c83
AC
317 struct value *next;
318
3e3d7139
JG
319 /* Actual contents of the value. Target byte-order. NULL or not
320 valid if lazy is nonzero. */
321 gdb_byte *contents;
828d3400 322
4e07d55f
PA
323 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
324 rather than available, since the common and default case is for a
9a0dc9e3
PA
325 value to be available. This is filled in at value read time.
326 The unavailable ranges are tracked in bits. Note that a contents
327 bit that has been optimized out doesn't really exist in the
328 program, so it can't be marked unavailable either. */
4e07d55f 329 VEC(range_s) *unavailable;
9a0dc9e3
PA
330
331 /* Likewise, but for optimized out contents (a chunk of the value of
332 a variable that does not actually exist in the program). If LVAL
333 is lval_register, this is a register ($pc, $sp, etc., never a
334 program variable) that has not been saved in the frame. Not
335 saved registers and optimized-out program variables values are
336 treated pretty much the same, except not-saved registers have a
337 different string representation and related error strings. */
338 VEC(range_s) *optimized_out;
91294c83
AC
339};
340
e512cdbd
SM
341/* See value.h. */
342
343struct gdbarch *
344get_value_arch (const struct value *value)
345{
346 return get_type_arch (value_type (value));
347}
348
4e07d55f 349int
6b850546 350value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
351{
352 gdb_assert (!value->lazy);
353
354 return !ranges_contain (value->unavailable, offset, length);
355}
356
bdf22206 357int
6b850546
DT
358value_bytes_available (const struct value *value,
359 LONGEST offset, LONGEST length)
bdf22206
AB
360{
361 return value_bits_available (value,
362 offset * TARGET_CHAR_BIT,
363 length * TARGET_CHAR_BIT);
364}
365
9a0dc9e3
PA
366int
367value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
368{
369 gdb_assert (!value->lazy);
370
371 return ranges_contain (value->optimized_out, bit_offset, bit_length);
372}
373
ec0a52e1
PA
374int
375value_entirely_available (struct value *value)
376{
377 /* We can only tell whether the whole value is available when we try
378 to read it. */
379 if (value->lazy)
380 value_fetch_lazy (value);
381
382 if (VEC_empty (range_s, value->unavailable))
383 return 1;
384 return 0;
385}
386
9a0dc9e3
PA
387/* Returns true if VALUE is entirely covered by RANGES. If the value
388 is lazy, it'll be read now. Note that RANGE is a pointer to
389 pointer because reading the value might change *RANGE. */
390
391static int
392value_entirely_covered_by_range_vector (struct value *value,
393 VEC(range_s) **ranges)
6211c335 394{
9a0dc9e3
PA
395 /* We can only tell whether the whole value is optimized out /
396 unavailable when we try to read it. */
6211c335
YQ
397 if (value->lazy)
398 value_fetch_lazy (value);
399
9a0dc9e3 400 if (VEC_length (range_s, *ranges) == 1)
6211c335 401 {
9a0dc9e3 402 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
403
404 if (t->offset == 0
64c46ce4
JB
405 && t->length == (TARGET_CHAR_BIT
406 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
407 return 1;
408 }
409
410 return 0;
411}
412
9a0dc9e3
PA
413int
414value_entirely_unavailable (struct value *value)
415{
416 return value_entirely_covered_by_range_vector (value, &value->unavailable);
417}
418
419int
420value_entirely_optimized_out (struct value *value)
421{
422 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
423}
424
425/* Insert into the vector pointed to by VECTORP the bit range starting of
426 OFFSET bits, and extending for the next LENGTH bits. */
427
428static void
6b850546
DT
429insert_into_bit_range_vector (VEC(range_s) **vectorp,
430 LONGEST offset, LONGEST length)
4e07d55f
PA
431{
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
9a0dc9e3 521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
522 if (i > 0)
523 {
9a0dc9e3 524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
325fac50
PA
529 ULONGEST l = std::min (bef->offset, offset);
530 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
9a0dc9e3 545 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
546 }
547 }
548 else
549 {
550 /* #4 */
9a0dc9e3 551 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
9a0dc9e3 556 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
9a0dc9e3 564 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
565 removed = 0;
566
567 i = next;
9a0dc9e3 568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
325fac50
PA
573 l = std::min (t->offset, r->offset);
574 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
9a0dc9e3 590 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
591 }
592}
593
9a0dc9e3 594void
6b850546
DT
595mark_value_bits_unavailable (struct value *value,
596 LONGEST offset, LONGEST length)
9a0dc9e3
PA
597{
598 insert_into_bit_range_vector (&value->unavailable, offset, length);
599}
600
bdf22206 601void
6b850546
DT
602mark_value_bytes_unavailable (struct value *value,
603 LONGEST offset, LONGEST length)
bdf22206
AB
604{
605 mark_value_bits_unavailable (value,
606 offset * TARGET_CHAR_BIT,
607 length * TARGET_CHAR_BIT);
608}
609
c8c1c22f
PA
610/* Find the first range in RANGES that overlaps the range defined by
611 OFFSET and LENGTH, starting at element POS in the RANGES vector,
612 Returns the index into RANGES where such overlapping range was
613 found, or -1 if none was found. */
614
615static int
616find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 617 LONGEST offset, LONGEST length)
c8c1c22f
PA
618{
619 range_s *r;
620 int i;
621
622 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
623 if (ranges_overlap (r->offset, r->length, offset, length))
624 return i;
625
626 return -1;
627}
628
bdf22206
AB
629/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
630 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
631 return non-zero.
632
633 It must always be the case that:
634 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
635
636 It is assumed that memory can be accessed from:
637 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
638 to:
639 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
640 / TARGET_CHAR_BIT) */
641static int
642memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
643 const gdb_byte *ptr2, size_t offset2_bits,
644 size_t length_bits)
645{
646 gdb_assert (offset1_bits % TARGET_CHAR_BIT
647 == offset2_bits % TARGET_CHAR_BIT);
648
649 if (offset1_bits % TARGET_CHAR_BIT != 0)
650 {
651 size_t bits;
652 gdb_byte mask, b1, b2;
653
654 /* The offset from the base pointers PTR1 and PTR2 is not a complete
655 number of bytes. A number of bits up to either the next exact
656 byte boundary, or LENGTH_BITS (which ever is sooner) will be
657 compared. */
658 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
659 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
660 mask = (1 << bits) - 1;
661
662 if (length_bits < bits)
663 {
664 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
665 bits = length_bits;
666 }
667
668 /* Now load the two bytes and mask off the bits we care about. */
669 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
670 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
671
672 if (b1 != b2)
673 return 1;
674
675 /* Now update the length and offsets to take account of the bits
676 we've just compared. */
677 length_bits -= bits;
678 offset1_bits += bits;
679 offset2_bits += bits;
680 }
681
682 if (length_bits % TARGET_CHAR_BIT != 0)
683 {
684 size_t bits;
685 size_t o1, o2;
686 gdb_byte mask, b1, b2;
687
688 /* The length is not an exact number of bytes. After the previous
689 IF.. block then the offsets are byte aligned, or the
690 length is zero (in which case this code is not reached). Compare
691 a number of bits at the end of the region, starting from an exact
692 byte boundary. */
693 bits = length_bits % TARGET_CHAR_BIT;
694 o1 = offset1_bits + length_bits - bits;
695 o2 = offset2_bits + length_bits - bits;
696
697 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
698 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
699
700 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
701 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
702
703 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
704 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
705
706 if (b1 != b2)
707 return 1;
708
709 length_bits -= bits;
710 }
711
712 if (length_bits > 0)
713 {
714 /* We've now taken care of any stray "bits" at the start, or end of
715 the region to compare, the remainder can be covered with a simple
716 memcmp. */
717 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
719 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
720
721 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
722 ptr2 + offset2_bits / TARGET_CHAR_BIT,
723 length_bits / TARGET_CHAR_BIT);
724 }
725
726 /* Length is zero, regions match. */
727 return 0;
728}
729
9a0dc9e3
PA
730/* Helper struct for find_first_range_overlap_and_match and
731 value_contents_bits_eq. Keep track of which slot of a given ranges
732 vector have we last looked at. */
bdf22206 733
9a0dc9e3
PA
734struct ranges_and_idx
735{
736 /* The ranges. */
737 VEC(range_s) *ranges;
738
739 /* The range we've last found in RANGES. Given ranges are sorted,
740 we can start the next lookup here. */
741 int idx;
742};
743
744/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
745 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
746 ranges starting at OFFSET2 bits. Return true if the ranges match
747 and fill in *L and *H with the overlapping window relative to
748 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
749
750static int
9a0dc9e3
PA
751find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
752 struct ranges_and_idx *rp2,
6b850546
DT
753 LONGEST offset1, LONGEST offset2,
754 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 755{
9a0dc9e3
PA
756 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
757 offset1, length);
758 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
759 offset2, length);
c8c1c22f 760
9a0dc9e3
PA
761 if (rp1->idx == -1 && rp2->idx == -1)
762 {
763 *l = length;
764 *h = length;
765 return 1;
766 }
767 else if (rp1->idx == -1 || rp2->idx == -1)
768 return 0;
769 else
c8c1c22f
PA
770 {
771 range_s *r1, *r2;
772 ULONGEST l1, h1;
773 ULONGEST l2, h2;
774
9a0dc9e3
PA
775 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
776 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
777
778 /* Get the unavailable windows intersected by the incoming
779 ranges. The first and last ranges that overlap the argument
780 range may be wider than said incoming arguments ranges. */
325fac50
PA
781 l1 = std::max (offset1, r1->offset);
782 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 783
325fac50
PA
784 l2 = std::max (offset2, r2->offset);
785 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
786
787 /* Make them relative to the respective start offsets, so we can
788 compare them for equality. */
789 l1 -= offset1;
790 h1 -= offset1;
791
792 l2 -= offset2;
793 h2 -= offset2;
794
9a0dc9e3 795 /* Different ranges, no match. */
c8c1c22f
PA
796 if (l1 != l2 || h1 != h2)
797 return 0;
798
9a0dc9e3
PA
799 *h = h1;
800 *l = l1;
801 return 1;
802 }
803}
804
805/* Helper function for value_contents_eq. The only difference is that
806 this function is bit rather than byte based.
807
808 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
809 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
810 Return true if the available bits match. */
811
812static int
813value_contents_bits_eq (const struct value *val1, int offset1,
814 const struct value *val2, int offset2,
815 int length)
816{
817 /* Each array element corresponds to a ranges source (unavailable,
818 optimized out). '1' is for VAL1, '2' for VAL2. */
819 struct ranges_and_idx rp1[2], rp2[2];
820
821 /* See function description in value.h. */
822 gdb_assert (!val1->lazy && !val2->lazy);
823
824 /* We shouldn't be trying to compare past the end of the values. */
825 gdb_assert (offset1 + length
826 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
827 gdb_assert (offset2 + length
828 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
829
830 memset (&rp1, 0, sizeof (rp1));
831 memset (&rp2, 0, sizeof (rp2));
832 rp1[0].ranges = val1->unavailable;
833 rp2[0].ranges = val2->unavailable;
834 rp1[1].ranges = val1->optimized_out;
835 rp2[1].ranges = val2->optimized_out;
836
837 while (length > 0)
838 {
000339af 839 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
840 int i;
841
842 for (i = 0; i < 2; i++)
843 {
844 ULONGEST l_tmp, h_tmp;
845
846 /* The contents only match equal if the invalid/unavailable
847 contents ranges match as well. */
848 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
849 offset1, offset2, length,
850 &l_tmp, &h_tmp))
851 return 0;
852
853 /* We're interested in the lowest/first range found. */
854 if (i == 0 || l_tmp < l)
855 {
856 l = l_tmp;
857 h = h_tmp;
858 }
859 }
860
861 /* Compare the available/valid contents. */
bdf22206 862 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 863 val2->contents, offset2, l) != 0)
c8c1c22f
PA
864 return 0;
865
9a0dc9e3
PA
866 length -= h;
867 offset1 += h;
868 offset2 += h;
c8c1c22f
PA
869 }
870
871 return 1;
872}
873
bdf22206 874int
6b850546
DT
875value_contents_eq (const struct value *val1, LONGEST offset1,
876 const struct value *val2, LONGEST offset2,
877 LONGEST length)
bdf22206 878{
9a0dc9e3
PA
879 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
880 val2, offset2 * TARGET_CHAR_BIT,
881 length * TARGET_CHAR_BIT);
bdf22206
AB
882}
883
581e13c1 884/* Prototypes for local functions. */
c906108c 885
a14ed312 886static void show_values (char *, int);
c906108c 887
a14ed312 888static void show_convenience (char *, int);
c906108c 889
c906108c
SS
890
891/* The value-history records all the values printed
892 by print commands during this session. Each chunk
893 records 60 consecutive values. The first chunk on
894 the chain records the most recent values.
895 The total number of values is in value_history_count. */
896
897#define VALUE_HISTORY_CHUNK 60
898
899struct value_history_chunk
c5aa993b
JM
900 {
901 struct value_history_chunk *next;
f23631e4 902 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 903 };
c906108c
SS
904
905/* Chain of chunks now in use. */
906
907static struct value_history_chunk *value_history_chain;
908
581e13c1 909static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 910
c906108c
SS
911\f
912/* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
915
f23631e4 916static struct value *all_values;
c906108c 917
3e3d7139
JG
918/* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
c906108c 921
f23631e4 922struct value *
3e3d7139 923allocate_value_lazy (struct type *type)
c906108c 924{
f23631e4 925 struct value *val;
c54eabfa
JK
926
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
c906108c 934
8d749320 935 val = XCNEW (struct value);
3e3d7139 936 val->contents = NULL;
df407dfe 937 val->next = all_values;
c906108c 938 all_values = val;
df407dfe 939 val->type = type;
4754a64e 940 val->enclosing_type = type;
c906108c 941 VALUE_LVAL (val) = not_lval;
42ae5230 942 val->location.address = 0;
df407dfe
AC
943 val->offset = 0;
944 val->bitpos = 0;
945 val->bitsize = 0;
3e3d7139 946 val->lazy = 1;
13c3b5f5 947 val->embedded_offset = 0;
b44d461b 948 val->pointed_to_offset = 0;
c906108c 949 val->modifiable = 1;
42be36b3 950 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
951
952 /* Values start out on the all_values chain. */
953 val->reference_count = 1;
954
c906108c
SS
955 return val;
956}
957
5fdf6324
AB
958/* The maximum size, in bytes, that GDB will try to allocate for a value.
959 The initial value of 64k was not selected for any specific reason, it is
960 just a reasonable starting point. */
961
962static int max_value_size = 65536; /* 64k bytes */
963
964/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
965 LONGEST, otherwise GDB will not be able to parse integer values from the
966 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
967 be unable to parse "set max-value-size 2".
968
969 As we want a consistent GDB experience across hosts with different sizes
970 of LONGEST, this arbitrary minimum value was selected, so long as this
971 is bigger than LONGEST on all GDB supported hosts we're fine. */
972
973#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
974gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
975
976/* Implement the "set max-value-size" command. */
977
978static void
979set_max_value_size (char *args, int from_tty,
980 struct cmd_list_element *c)
981{
982 gdb_assert (max_value_size == -1 || max_value_size >= 0);
983
984 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
985 {
986 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
987 error (_("max-value-size set too low, increasing to %d bytes"),
988 max_value_size);
989 }
990}
991
992/* Implement the "show max-value-size" command. */
993
994static void
995show_max_value_size (struct ui_file *file, int from_tty,
996 struct cmd_list_element *c, const char *value)
997{
998 if (max_value_size == -1)
999 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1000 else
1001 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1002 max_value_size);
1003}
1004
1005/* Called before we attempt to allocate or reallocate a buffer for the
1006 contents of a value. TYPE is the type of the value for which we are
1007 allocating the buffer. If the buffer is too large (based on the user
1008 controllable setting) then throw an error. If this function returns
1009 then we should attempt to allocate the buffer. */
1010
1011static void
1012check_type_length_before_alloc (const struct type *type)
1013{
1014 unsigned int length = TYPE_LENGTH (type);
1015
1016 if (max_value_size > -1 && length > max_value_size)
1017 {
1018 if (TYPE_NAME (type) != NULL)
1019 error (_("value of type `%s' requires %u bytes, which is more "
1020 "than max-value-size"), TYPE_NAME (type), length);
1021 else
1022 error (_("value requires %u bytes, which is more than "
1023 "max-value-size"), length);
1024 }
1025}
1026
3e3d7139
JG
1027/* Allocate the contents of VAL if it has not been allocated yet. */
1028
548b762d 1029static void
3e3d7139
JG
1030allocate_value_contents (struct value *val)
1031{
1032 if (!val->contents)
5fdf6324
AB
1033 {
1034 check_type_length_before_alloc (val->enclosing_type);
1035 val->contents
1036 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1037 }
3e3d7139
JG
1038}
1039
1040/* Allocate a value and its contents for type TYPE. */
1041
1042struct value *
1043allocate_value (struct type *type)
1044{
1045 struct value *val = allocate_value_lazy (type);
a109c7c1 1046
3e3d7139
JG
1047 allocate_value_contents (val);
1048 val->lazy = 0;
1049 return val;
1050}
1051
c906108c 1052/* Allocate a value that has the correct length
938f5214 1053 for COUNT repetitions of type TYPE. */
c906108c 1054
f23631e4 1055struct value *
fba45db2 1056allocate_repeat_value (struct type *type, int count)
c906108c 1057{
c5aa993b 1058 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1059 /* FIXME-type-allocation: need a way to free this type when we are
1060 done with it. */
e3506a9f
UW
1061 struct type *array_type
1062 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1063
e3506a9f 1064 return allocate_value (array_type);
c906108c
SS
1065}
1066
5f5233d4
PA
1067struct value *
1068allocate_computed_value (struct type *type,
c8f2448a 1069 const struct lval_funcs *funcs,
5f5233d4
PA
1070 void *closure)
1071{
41e8491f 1072 struct value *v = allocate_value_lazy (type);
a109c7c1 1073
5f5233d4
PA
1074 VALUE_LVAL (v) = lval_computed;
1075 v->location.computed.funcs = funcs;
1076 v->location.computed.closure = closure;
5f5233d4
PA
1077
1078 return v;
1079}
1080
a7035dbb
JK
1081/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1082
1083struct value *
1084allocate_optimized_out_value (struct type *type)
1085{
1086 struct value *retval = allocate_value_lazy (type);
1087
9a0dc9e3
PA
1088 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1089 set_value_lazy (retval, 0);
a7035dbb
JK
1090 return retval;
1091}
1092
df407dfe
AC
1093/* Accessor methods. */
1094
17cf0ecd 1095struct value *
4bf7b526 1096value_next (const struct value *value)
17cf0ecd
AC
1097{
1098 return value->next;
1099}
1100
df407dfe 1101struct type *
0e03807e 1102value_type (const struct value *value)
df407dfe
AC
1103{
1104 return value->type;
1105}
04624583
AC
1106void
1107deprecated_set_value_type (struct value *value, struct type *type)
1108{
1109 value->type = type;
1110}
df407dfe 1111
6b850546 1112LONGEST
0e03807e 1113value_offset (const struct value *value)
df407dfe
AC
1114{
1115 return value->offset;
1116}
f5cf64a7 1117void
6b850546 1118set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1119{
1120 value->offset = offset;
1121}
df407dfe 1122
6b850546 1123LONGEST
0e03807e 1124value_bitpos (const struct value *value)
df407dfe
AC
1125{
1126 return value->bitpos;
1127}
9bbda503 1128void
6b850546 1129set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1130{
1131 value->bitpos = bit;
1132}
df407dfe 1133
6b850546 1134LONGEST
0e03807e 1135value_bitsize (const struct value *value)
df407dfe
AC
1136{
1137 return value->bitsize;
1138}
9bbda503 1139void
6b850546 1140set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1141{
1142 value->bitsize = bit;
1143}
df407dfe 1144
4ea48cc1 1145struct value *
4bf7b526 1146value_parent (const struct value *value)
4ea48cc1
DJ
1147{
1148 return value->parent;
1149}
1150
53ba8333
JB
1151/* See value.h. */
1152
1153void
1154set_value_parent (struct value *value, struct value *parent)
1155{
40501e00
TT
1156 struct value *old = value->parent;
1157
53ba8333 1158 value->parent = parent;
40501e00
TT
1159 if (parent != NULL)
1160 value_incref (parent);
1161 value_free (old);
53ba8333
JB
1162}
1163
fc1a4b47 1164gdb_byte *
990a07ab
AC
1165value_contents_raw (struct value *value)
1166{
3ae385af
SM
1167 struct gdbarch *arch = get_value_arch (value);
1168 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1169
3e3d7139 1170 allocate_value_contents (value);
3ae385af 1171 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1172}
1173
fc1a4b47 1174gdb_byte *
990a07ab
AC
1175value_contents_all_raw (struct value *value)
1176{
3e3d7139
JG
1177 allocate_value_contents (value);
1178 return value->contents;
990a07ab
AC
1179}
1180
4754a64e 1181struct type *
4bf7b526 1182value_enclosing_type (const struct value *value)
4754a64e
AC
1183{
1184 return value->enclosing_type;
1185}
1186
8264ba82
AG
1187/* Look at value.h for description. */
1188
1189struct type *
1190value_actual_type (struct value *value, int resolve_simple_types,
1191 int *real_type_found)
1192{
1193 struct value_print_options opts;
8264ba82
AG
1194 struct type *result;
1195
1196 get_user_print_options (&opts);
1197
1198 if (real_type_found)
1199 *real_type_found = 0;
1200 result = value_type (value);
1201 if (opts.objectprint)
1202 {
5e34c6c3
LM
1203 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1204 fetch its rtti type. */
aa006118 1205 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1206 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1207 == TYPE_CODE_STRUCT
1208 && !value_optimized_out (value))
8264ba82
AG
1209 {
1210 struct type *real_type;
1211
1212 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1213 if (real_type)
1214 {
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = real_type;
1218 }
1219 }
1220 else if (resolve_simple_types)
1221 {
1222 if (real_type_found)
1223 *real_type_found = 1;
1224 result = value_enclosing_type (value);
1225 }
1226 }
1227
1228 return result;
1229}
1230
901461f8
PA
1231void
1232error_value_optimized_out (void)
1233{
1234 error (_("value has been optimized out"));
1235}
1236
0e03807e 1237static void
4e07d55f 1238require_not_optimized_out (const struct value *value)
0e03807e 1239{
9a0dc9e3 1240 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1241 {
1242 if (value->lval == lval_register)
1243 error (_("register has not been saved in frame"));
1244 else
1245 error_value_optimized_out ();
1246 }
0e03807e
TT
1247}
1248
4e07d55f
PA
1249static void
1250require_available (const struct value *value)
1251{
1252 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1253 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1254}
1255
fc1a4b47 1256const gdb_byte *
0e03807e 1257value_contents_for_printing (struct value *value)
46615f07
AC
1258{
1259 if (value->lazy)
1260 value_fetch_lazy (value);
3e3d7139 1261 return value->contents;
46615f07
AC
1262}
1263
de4127a3
PA
1264const gdb_byte *
1265value_contents_for_printing_const (const struct value *value)
1266{
1267 gdb_assert (!value->lazy);
1268 return value->contents;
1269}
1270
0e03807e
TT
1271const gdb_byte *
1272value_contents_all (struct value *value)
1273{
1274 const gdb_byte *result = value_contents_for_printing (value);
1275 require_not_optimized_out (value);
4e07d55f 1276 require_available (value);
0e03807e
TT
1277 return result;
1278}
1279
9a0dc9e3
PA
1280/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1281 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1282
1283static void
1284ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1285 VEC (range_s) *src_range, int src_bit_offset,
1286 int bit_length)
1287{
1288 range_s *r;
1289 int i;
1290
1291 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1292 {
1293 ULONGEST h, l;
1294
325fac50
PA
1295 l = std::max (r->offset, (LONGEST) src_bit_offset);
1296 h = std::min (r->offset + r->length,
1297 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1298
1299 if (l < h)
1300 insert_into_bit_range_vector (dst_range,
1301 dst_bit_offset + (l - src_bit_offset),
1302 h - l);
1303 }
1304}
1305
4875ffdb
PA
1306/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1307 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1308
1309static void
1310value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1311 const struct value *src, int src_bit_offset,
1312 int bit_length)
1313{
1314 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1315 src->unavailable, src_bit_offset,
1316 bit_length);
1317 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1318 src->optimized_out, src_bit_offset,
1319 bit_length);
1320}
1321
3ae385af 1322/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1323 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1324 contents, starting at DST_OFFSET. If unavailable contents are
1325 being copied from SRC, the corresponding DST contents are marked
1326 unavailable accordingly. Neither DST nor SRC may be lazy
1327 values.
1328
1329 It is assumed the contents of DST in the [DST_OFFSET,
1330 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1331
1332void
6b850546
DT
1333value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1334 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1335{
6b850546 1336 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1337 struct gdbarch *arch = get_value_arch (src);
1338 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1339
1340 /* A lazy DST would make that this copy operation useless, since as
1341 soon as DST's contents were un-lazied (by a later value_contents
1342 call, say), the contents would be overwritten. A lazy SRC would
1343 mean we'd be copying garbage. */
1344 gdb_assert (!dst->lazy && !src->lazy);
1345
29976f3f
PA
1346 /* The overwritten DST range gets unavailability ORed in, not
1347 replaced. Make sure to remember to implement replacing if it
1348 turns out actually necessary. */
1349 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1350 gdb_assert (!value_bits_any_optimized_out (dst,
1351 TARGET_CHAR_BIT * dst_offset,
1352 TARGET_CHAR_BIT * length));
29976f3f 1353
39d37385 1354 /* Copy the data. */
3ae385af
SM
1355 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1356 value_contents_all_raw (src) + src_offset * unit_size,
1357 length * unit_size);
39d37385
PA
1358
1359 /* Copy the meta-data, adjusted. */
3ae385af
SM
1360 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1361 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1362 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1363
4875ffdb
PA
1364 value_ranges_copy_adjusted (dst, dst_bit_offset,
1365 src, src_bit_offset,
1366 bit_length);
39d37385
PA
1367}
1368
29976f3f
PA
1369/* Copy LENGTH bytes of SRC value's (all) contents
1370 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1371 (all) contents, starting at DST_OFFSET. If unavailable contents
1372 are being copied from SRC, the corresponding DST contents are
1373 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1374 lazy, it will be fetched now.
29976f3f
PA
1375
1376 It is assumed the contents of DST in the [DST_OFFSET,
1377 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1378
1379void
6b850546
DT
1380value_contents_copy (struct value *dst, LONGEST dst_offset,
1381 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1382{
39d37385
PA
1383 if (src->lazy)
1384 value_fetch_lazy (src);
1385
1386 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1387}
1388
d69fe07e 1389int
4bf7b526 1390value_lazy (const struct value *value)
d69fe07e
AC
1391{
1392 return value->lazy;
1393}
1394
dfa52d88
AC
1395void
1396set_value_lazy (struct value *value, int val)
1397{
1398 value->lazy = val;
1399}
1400
4e5d721f 1401int
4bf7b526 1402value_stack (const struct value *value)
4e5d721f
DE
1403{
1404 return value->stack;
1405}
1406
1407void
1408set_value_stack (struct value *value, int val)
1409{
1410 value->stack = val;
1411}
1412
fc1a4b47 1413const gdb_byte *
0fd88904
AC
1414value_contents (struct value *value)
1415{
0e03807e
TT
1416 const gdb_byte *result = value_contents_writeable (value);
1417 require_not_optimized_out (value);
4e07d55f 1418 require_available (value);
0e03807e 1419 return result;
0fd88904
AC
1420}
1421
fc1a4b47 1422gdb_byte *
0fd88904
AC
1423value_contents_writeable (struct value *value)
1424{
1425 if (value->lazy)
1426 value_fetch_lazy (value);
fc0c53a0 1427 return value_contents_raw (value);
0fd88904
AC
1428}
1429
feb13ab0
AC
1430int
1431value_optimized_out (struct value *value)
1432{
691a26f5
AB
1433 /* We can only know if a value is optimized out once we have tried to
1434 fetch it. */
9a0dc9e3 1435 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1436 {
1437 TRY
1438 {
1439 value_fetch_lazy (value);
1440 }
1441 CATCH (ex, RETURN_MASK_ERROR)
1442 {
1443 /* Fall back to checking value->optimized_out. */
1444 }
1445 END_CATCH
1446 }
691a26f5 1447
9a0dc9e3 1448 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1449}
1450
9a0dc9e3
PA
1451/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1452 the following LENGTH bytes. */
eca07816 1453
feb13ab0 1454void
9a0dc9e3 1455mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1456{
9a0dc9e3
PA
1457 mark_value_bits_optimized_out (value,
1458 offset * TARGET_CHAR_BIT,
1459 length * TARGET_CHAR_BIT);
feb13ab0 1460}
13c3b5f5 1461
9a0dc9e3 1462/* See value.h. */
0e03807e 1463
9a0dc9e3 1464void
6b850546
DT
1465mark_value_bits_optimized_out (struct value *value,
1466 LONGEST offset, LONGEST length)
0e03807e 1467{
9a0dc9e3 1468 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1469}
1470
8cf6f0b1
TT
1471int
1472value_bits_synthetic_pointer (const struct value *value,
6b850546 1473 LONGEST offset, LONGEST length)
8cf6f0b1 1474{
e7303042 1475 if (value->lval != lval_computed
8cf6f0b1
TT
1476 || !value->location.computed.funcs->check_synthetic_pointer)
1477 return 0;
1478 return value->location.computed.funcs->check_synthetic_pointer (value,
1479 offset,
1480 length);
1481}
1482
6b850546 1483LONGEST
4bf7b526 1484value_embedded_offset (const struct value *value)
13c3b5f5
AC
1485{
1486 return value->embedded_offset;
1487}
1488
1489void
6b850546 1490set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1491{
1492 value->embedded_offset = val;
1493}
b44d461b 1494
6b850546 1495LONGEST
4bf7b526 1496value_pointed_to_offset (const struct value *value)
b44d461b
AC
1497{
1498 return value->pointed_to_offset;
1499}
1500
1501void
6b850546 1502set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1503{
1504 value->pointed_to_offset = val;
1505}
13bb5560 1506
c8f2448a 1507const struct lval_funcs *
a471c594 1508value_computed_funcs (const struct value *v)
5f5233d4 1509{
a471c594 1510 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1511
1512 return v->location.computed.funcs;
1513}
1514
1515void *
0e03807e 1516value_computed_closure (const struct value *v)
5f5233d4 1517{
0e03807e 1518 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1519
1520 return v->location.computed.closure;
1521}
1522
13bb5560
AC
1523enum lval_type *
1524deprecated_value_lval_hack (struct value *value)
1525{
1526 return &value->lval;
1527}
1528
a471c594
JK
1529enum lval_type
1530value_lval_const (const struct value *value)
1531{
1532 return value->lval;
1533}
1534
42ae5230 1535CORE_ADDR
de4127a3 1536value_address (const struct value *value)
42ae5230 1537{
1a088441 1538 if (value->lval != lval_memory)
42ae5230 1539 return 0;
53ba8333
JB
1540 if (value->parent != NULL)
1541 return value_address (value->parent) + value->offset;
9920b434
BH
1542 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1543 {
1544 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1545 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1546 }
1547
1548 return value->location.address + value->offset;
42ae5230
TT
1549}
1550
1551CORE_ADDR
4bf7b526 1552value_raw_address (const struct value *value)
42ae5230 1553{
1a088441 1554 if (value->lval != lval_memory)
42ae5230
TT
1555 return 0;
1556 return value->location.address;
1557}
1558
1559void
1560set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1561{
1a088441 1562 gdb_assert (value->lval == lval_memory);
42ae5230 1563 value->location.address = addr;
13bb5560
AC
1564}
1565
1566struct internalvar **
1567deprecated_value_internalvar_hack (struct value *value)
1568{
1569 return &value->location.internalvar;
1570}
1571
1572struct frame_id *
41b56feb 1573deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1574{
7c2ba67e 1575 gdb_assert (value->lval == lval_register);
7dc54575 1576 return &value->location.reg.next_frame_id;
13bb5560
AC
1577}
1578
7dc54575 1579int *
13bb5560
AC
1580deprecated_value_regnum_hack (struct value *value)
1581{
7c2ba67e 1582 gdb_assert (value->lval == lval_register);
7dc54575 1583 return &value->location.reg.regnum;
13bb5560 1584}
88e3b34b
AC
1585
1586int
4bf7b526 1587deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1588{
1589 return value->modifiable;
1590}
990a07ab 1591\f
c906108c
SS
1592/* Return a mark in the value chain. All values allocated after the
1593 mark is obtained (except for those released) are subject to being freed
1594 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1595struct value *
fba45db2 1596value_mark (void)
c906108c
SS
1597{
1598 return all_values;
1599}
1600
828d3400
DJ
1601/* Take a reference to VAL. VAL will not be deallocated until all
1602 references are released. */
1603
1604void
1605value_incref (struct value *val)
1606{
1607 val->reference_count++;
1608}
1609
1610/* Release a reference to VAL, which was acquired with value_incref.
1611 This function is also called to deallocate values from the value
1612 chain. */
1613
3e3d7139
JG
1614void
1615value_free (struct value *val)
1616{
1617 if (val)
5f5233d4 1618 {
828d3400
DJ
1619 gdb_assert (val->reference_count > 0);
1620 val->reference_count--;
1621 if (val->reference_count > 0)
1622 return;
1623
4ea48cc1
DJ
1624 /* If there's an associated parent value, drop our reference to
1625 it. */
1626 if (val->parent != NULL)
1627 value_free (val->parent);
1628
5f5233d4
PA
1629 if (VALUE_LVAL (val) == lval_computed)
1630 {
c8f2448a 1631 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1632
1633 if (funcs->free_closure)
1634 funcs->free_closure (val);
1635 }
e81e7f5e
SC
1636 else if (VALUE_LVAL (val) == lval_xcallable)
1637 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1638
1639 xfree (val->contents);
4e07d55f 1640 VEC_free (range_s, val->unavailable);
5f5233d4 1641 }
3e3d7139
JG
1642 xfree (val);
1643}
1644
c906108c
SS
1645/* Free all values allocated since MARK was obtained by value_mark
1646 (except for those released). */
1647void
4bf7b526 1648value_free_to_mark (const struct value *mark)
c906108c 1649{
f23631e4
AC
1650 struct value *val;
1651 struct value *next;
c906108c
SS
1652
1653 for (val = all_values; val && val != mark; val = next)
1654 {
df407dfe 1655 next = val->next;
e848a8a5 1656 val->released = 1;
c906108c
SS
1657 value_free (val);
1658 }
1659 all_values = val;
1660}
1661
1662/* Free all the values that have been allocated (except for those released).
725e88af
DE
1663 Call after each command, successful or not.
1664 In practice this is called before each command, which is sufficient. */
c906108c
SS
1665
1666void
fba45db2 1667free_all_values (void)
c906108c 1668{
f23631e4
AC
1669 struct value *val;
1670 struct value *next;
c906108c
SS
1671
1672 for (val = all_values; val; val = next)
1673 {
df407dfe 1674 next = val->next;
e848a8a5 1675 val->released = 1;
c906108c
SS
1676 value_free (val);
1677 }
1678
1679 all_values = 0;
1680}
1681
0cf6dd15
TJB
1682/* Frees all the elements in a chain of values. */
1683
1684void
1685free_value_chain (struct value *v)
1686{
1687 struct value *next;
1688
1689 for (; v; v = next)
1690 {
1691 next = value_next (v);
1692 value_free (v);
1693 }
1694}
1695
c906108c
SS
1696/* Remove VAL from the chain all_values
1697 so it will not be freed automatically. */
1698
1699void
f23631e4 1700release_value (struct value *val)
c906108c 1701{
f23631e4 1702 struct value *v;
c906108c
SS
1703
1704 if (all_values == val)
1705 {
1706 all_values = val->next;
06a64a0b 1707 val->next = NULL;
e848a8a5 1708 val->released = 1;
c906108c
SS
1709 return;
1710 }
1711
1712 for (v = all_values; v; v = v->next)
1713 {
1714 if (v->next == val)
1715 {
1716 v->next = val->next;
06a64a0b 1717 val->next = NULL;
e848a8a5 1718 val->released = 1;
c906108c
SS
1719 break;
1720 }
1721 }
1722}
1723
e848a8a5
TT
1724/* If the value is not already released, release it.
1725 If the value is already released, increment its reference count.
1726 That is, this function ensures that the value is released from the
1727 value chain and that the caller owns a reference to it. */
1728
1729void
1730release_value_or_incref (struct value *val)
1731{
1732 if (val->released)
1733 value_incref (val);
1734 else
1735 release_value (val);
1736}
1737
c906108c 1738/* Release all values up to mark */
f23631e4 1739struct value *
4bf7b526 1740value_release_to_mark (const struct value *mark)
c906108c 1741{
f23631e4
AC
1742 struct value *val;
1743 struct value *next;
c906108c 1744
df407dfe 1745 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1746 {
1747 if (next->next == mark)
1748 {
1749 all_values = next->next;
1750 next->next = NULL;
1751 return val;
1752 }
1753 next->released = 1;
1754 }
c906108c
SS
1755 all_values = 0;
1756 return val;
1757}
1758
1759/* Return a copy of the value ARG.
1760 It contains the same contents, for same memory address,
1761 but it's a different block of storage. */
1762
f23631e4
AC
1763struct value *
1764value_copy (struct value *arg)
c906108c 1765{
4754a64e 1766 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1767 struct value *val;
1768
1769 if (value_lazy (arg))
1770 val = allocate_value_lazy (encl_type);
1771 else
1772 val = allocate_value (encl_type);
df407dfe 1773 val->type = arg->type;
c906108c 1774 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1775 val->location = arg->location;
df407dfe
AC
1776 val->offset = arg->offset;
1777 val->bitpos = arg->bitpos;
1778 val->bitsize = arg->bitsize;
d69fe07e 1779 val->lazy = arg->lazy;
13c3b5f5 1780 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1781 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1782 val->modifiable = arg->modifiable;
d69fe07e 1783 if (!value_lazy (val))
c906108c 1784 {
990a07ab 1785 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1786 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1787
1788 }
4e07d55f 1789 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1790 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1791 set_value_parent (val, arg->parent);
5f5233d4
PA
1792 if (VALUE_LVAL (val) == lval_computed)
1793 {
c8f2448a 1794 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1795
1796 if (funcs->copy_closure)
1797 val->location.computed.closure = funcs->copy_closure (val);
1798 }
c906108c
SS
1799 return val;
1800}
74bcbdf3 1801
4c082a81
SC
1802/* Return a "const" and/or "volatile" qualified version of the value V.
1803 If CNST is true, then the returned value will be qualified with
1804 "const".
1805 if VOLTL is true, then the returned value will be qualified with
1806 "volatile". */
1807
1808struct value *
1809make_cv_value (int cnst, int voltl, struct value *v)
1810{
1811 struct type *val_type = value_type (v);
1812 struct type *enclosing_type = value_enclosing_type (v);
1813 struct value *cv_val = value_copy (v);
1814
1815 deprecated_set_value_type (cv_val,
1816 make_cv_type (cnst, voltl, val_type, NULL));
1817 set_value_enclosing_type (cv_val,
1818 make_cv_type (cnst, voltl, enclosing_type, NULL));
1819
1820 return cv_val;
1821}
1822
c37f7098
KW
1823/* Return a version of ARG that is non-lvalue. */
1824
1825struct value *
1826value_non_lval (struct value *arg)
1827{
1828 if (VALUE_LVAL (arg) != not_lval)
1829 {
1830 struct type *enc_type = value_enclosing_type (arg);
1831 struct value *val = allocate_value (enc_type);
1832
1833 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1834 TYPE_LENGTH (enc_type));
1835 val->type = arg->type;
1836 set_value_embedded_offset (val, value_embedded_offset (arg));
1837 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1838 return val;
1839 }
1840 return arg;
1841}
1842
6c659fc2
SC
1843/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1844
1845void
1846value_force_lval (struct value *v, CORE_ADDR addr)
1847{
1848 gdb_assert (VALUE_LVAL (v) == not_lval);
1849
1850 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1851 v->lval = lval_memory;
1852 v->location.address = addr;
1853}
1854
74bcbdf3 1855void
0e03807e
TT
1856set_value_component_location (struct value *component,
1857 const struct value *whole)
74bcbdf3 1858{
9920b434
BH
1859 struct type *type;
1860
e81e7f5e
SC
1861 gdb_assert (whole->lval != lval_xcallable);
1862
0e03807e 1863 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1864 VALUE_LVAL (component) = lval_internalvar_component;
1865 else
0e03807e 1866 VALUE_LVAL (component) = whole->lval;
5f5233d4 1867
74bcbdf3 1868 component->location = whole->location;
0e03807e 1869 if (whole->lval == lval_computed)
5f5233d4 1870 {
c8f2448a 1871 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1872
1873 if (funcs->copy_closure)
1874 component->location.computed.closure = funcs->copy_closure (whole);
1875 }
9920b434
BH
1876
1877 /* If type has a dynamic resolved location property
1878 update it's value address. */
1879 type = value_type (whole);
1880 if (NULL != TYPE_DATA_LOCATION (type)
1881 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1882 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1883}
1884
c906108c
SS
1885/* Access to the value history. */
1886
1887/* Record a new value in the value history.
eddf0bae 1888 Returns the absolute history index of the entry. */
c906108c
SS
1889
1890int
f23631e4 1891record_latest_value (struct value *val)
c906108c
SS
1892{
1893 int i;
1894
1895 /* We don't want this value to have anything to do with the inferior anymore.
1896 In particular, "set $1 = 50" should not affect the variable from which
1897 the value was taken, and fast watchpoints should be able to assume that
1898 a value on the value history never changes. */
d69fe07e 1899 if (value_lazy (val))
c906108c
SS
1900 value_fetch_lazy (val);
1901 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1902 from. This is a bit dubious, because then *&$1 does not just return $1
1903 but the current contents of that location. c'est la vie... */
1904 val->modifiable = 0;
350e1a76
DE
1905
1906 /* The value may have already been released, in which case we're adding a
1907 new reference for its entry in the history. That is why we call
1908 release_value_or_incref here instead of release_value. */
1909 release_value_or_incref (val);
c906108c
SS
1910
1911 /* Here we treat value_history_count as origin-zero
1912 and applying to the value being stored now. */
1913
1914 i = value_history_count % VALUE_HISTORY_CHUNK;
1915 if (i == 0)
1916 {
8d749320 1917 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1918
fe978cb0
PA
1919 newobj->next = value_history_chain;
1920 value_history_chain = newobj;
c906108c
SS
1921 }
1922
1923 value_history_chain->values[i] = val;
1924
1925 /* Now we regard value_history_count as origin-one
1926 and applying to the value just stored. */
1927
1928 return ++value_history_count;
1929}
1930
1931/* Return a copy of the value in the history with sequence number NUM. */
1932
f23631e4 1933struct value *
fba45db2 1934access_value_history (int num)
c906108c 1935{
f23631e4 1936 struct value_history_chunk *chunk;
52f0bd74
AC
1937 int i;
1938 int absnum = num;
c906108c
SS
1939
1940 if (absnum <= 0)
1941 absnum += value_history_count;
1942
1943 if (absnum <= 0)
1944 {
1945 if (num == 0)
8a3fe4f8 1946 error (_("The history is empty."));
c906108c 1947 else if (num == 1)
8a3fe4f8 1948 error (_("There is only one value in the history."));
c906108c 1949 else
8a3fe4f8 1950 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1951 }
1952 if (absnum > value_history_count)
8a3fe4f8 1953 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1954
1955 absnum--;
1956
1957 /* Now absnum is always absolute and origin zero. */
1958
1959 chunk = value_history_chain;
3e43a32a
MS
1960 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1961 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1962 i > 0; i--)
1963 chunk = chunk->next;
1964
1965 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1966}
1967
c906108c 1968static void
fba45db2 1969show_values (char *num_exp, int from_tty)
c906108c 1970{
52f0bd74 1971 int i;
f23631e4 1972 struct value *val;
c906108c
SS
1973 static int num = 1;
1974
1975 if (num_exp)
1976 {
f132ba9d
TJB
1977 /* "show values +" should print from the stored position.
1978 "show values <exp>" should print around value number <exp>. */
c906108c 1979 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1980 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1981 }
1982 else
1983 {
f132ba9d 1984 /* "show values" means print the last 10 values. */
c906108c
SS
1985 num = value_history_count - 9;
1986 }
1987
1988 if (num <= 0)
1989 num = 1;
1990
1991 for (i = num; i < num + 10 && i <= value_history_count; i++)
1992 {
79a45b7d 1993 struct value_print_options opts;
a109c7c1 1994
c906108c 1995 val = access_value_history (i);
a3f17187 1996 printf_filtered (("$%d = "), i);
79a45b7d
TT
1997 get_user_print_options (&opts);
1998 value_print (val, gdb_stdout, &opts);
a3f17187 1999 printf_filtered (("\n"));
c906108c
SS
2000 }
2001
f132ba9d 2002 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2003 num += 10;
2004
2005 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2006 "show values +". If num_exp is null, this is unnecessary, since
2007 "show values +" is not useful after "show values". */
c906108c
SS
2008 if (from_tty && num_exp)
2009 {
2010 num_exp[0] = '+';
2011 num_exp[1] = '\0';
2012 }
2013}
2014\f
52059ffd
TT
2015enum internalvar_kind
2016{
2017 /* The internal variable is empty. */
2018 INTERNALVAR_VOID,
2019
2020 /* The value of the internal variable is provided directly as
2021 a GDB value object. */
2022 INTERNALVAR_VALUE,
2023
2024 /* A fresh value is computed via a call-back routine on every
2025 access to the internal variable. */
2026 INTERNALVAR_MAKE_VALUE,
2027
2028 /* The internal variable holds a GDB internal convenience function. */
2029 INTERNALVAR_FUNCTION,
2030
2031 /* The variable holds an integer value. */
2032 INTERNALVAR_INTEGER,
2033
2034 /* The variable holds a GDB-provided string. */
2035 INTERNALVAR_STRING,
2036};
2037
2038union internalvar_data
2039{
2040 /* A value object used with INTERNALVAR_VALUE. */
2041 struct value *value;
2042
2043 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2044 struct
2045 {
2046 /* The functions to call. */
2047 const struct internalvar_funcs *functions;
2048
2049 /* The function's user-data. */
2050 void *data;
2051 } make_value;
2052
2053 /* The internal function used with INTERNALVAR_FUNCTION. */
2054 struct
2055 {
2056 struct internal_function *function;
2057 /* True if this is the canonical name for the function. */
2058 int canonical;
2059 } fn;
2060
2061 /* An integer value used with INTERNALVAR_INTEGER. */
2062 struct
2063 {
2064 /* If type is non-NULL, it will be used as the type to generate
2065 a value for this internal variable. If type is NULL, a default
2066 integer type for the architecture is used. */
2067 struct type *type;
2068 LONGEST val;
2069 } integer;
2070
2071 /* A string value used with INTERNALVAR_STRING. */
2072 char *string;
2073};
2074
c906108c
SS
2075/* Internal variables. These are variables within the debugger
2076 that hold values assigned by debugger commands.
2077 The user refers to them with a '$' prefix
2078 that does not appear in the variable names stored internally. */
2079
4fa62494
UW
2080struct internalvar
2081{
2082 struct internalvar *next;
2083 char *name;
4fa62494 2084
78267919
UW
2085 /* We support various different kinds of content of an internal variable.
2086 enum internalvar_kind specifies the kind, and union internalvar_data
2087 provides the data associated with this particular kind. */
2088
52059ffd 2089 enum internalvar_kind kind;
4fa62494 2090
52059ffd 2091 union internalvar_data u;
4fa62494
UW
2092};
2093
c906108c
SS
2094static struct internalvar *internalvars;
2095
3e43a32a
MS
2096/* If the variable does not already exist create it and give it the
2097 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2098static void
2099init_if_undefined_command (char* args, int from_tty)
2100{
2101 struct internalvar* intvar;
2102
2103 /* Parse the expression - this is taken from set_command(). */
4d01a485 2104 expression_up expr = parse_expression (args);
53e5f3cf
AS
2105
2106 /* Validate the expression.
2107 Was the expression an assignment?
2108 Or even an expression at all? */
2109 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2110 error (_("Init-if-undefined requires an assignment expression."));
2111
2112 /* Extract the variable from the parsed expression.
2113 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2114 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2115 error (_("The first parameter to init-if-undefined "
2116 "should be a GDB variable."));
53e5f3cf
AS
2117 intvar = expr->elts[2].internalvar;
2118
2119 /* Only evaluate the expression if the lvalue is void.
2120 This may still fail if the expresssion is invalid. */
78267919 2121 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2122 evaluate_expression (expr.get ());
53e5f3cf
AS
2123}
2124
2125
c906108c
SS
2126/* Look up an internal variable with name NAME. NAME should not
2127 normally include a dollar sign.
2128
2129 If the specified internal variable does not exist,
c4a3d09a 2130 the return value is NULL. */
c906108c
SS
2131
2132struct internalvar *
bc3b79fd 2133lookup_only_internalvar (const char *name)
c906108c 2134{
52f0bd74 2135 struct internalvar *var;
c906108c
SS
2136
2137 for (var = internalvars; var; var = var->next)
5cb316ef 2138 if (strcmp (var->name, name) == 0)
c906108c
SS
2139 return var;
2140
c4a3d09a
MF
2141 return NULL;
2142}
2143
eb3ff9a5
PA
2144/* Complete NAME by comparing it to the names of internal
2145 variables. */
d55637df 2146
eb3ff9a5
PA
2147void
2148complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2149{
d55637df
TT
2150 struct internalvar *var;
2151 int len;
2152
2153 len = strlen (name);
2154
2155 for (var = internalvars; var; var = var->next)
2156 if (strncmp (var->name, name, len) == 0)
2157 {
eb3ff9a5 2158 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2159
eb3ff9a5 2160 tracker.add_completion (std::move (copy));
d55637df 2161 }
d55637df 2162}
c4a3d09a
MF
2163
2164/* Create an internal variable with name NAME and with a void value.
2165 NAME should not normally include a dollar sign. */
2166
2167struct internalvar *
bc3b79fd 2168create_internalvar (const char *name)
c4a3d09a 2169{
8d749320 2170 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2171
1754f103 2172 var->name = concat (name, (char *)NULL);
78267919 2173 var->kind = INTERNALVAR_VOID;
c906108c
SS
2174 var->next = internalvars;
2175 internalvars = var;
2176 return var;
2177}
2178
4aa995e1
PA
2179/* Create an internal variable with name NAME and register FUN as the
2180 function that value_of_internalvar uses to create a value whenever
2181 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2182 dollar sign. DATA is passed uninterpreted to FUN when it is
2183 called. CLEANUP, if not NULL, is called when the internal variable
2184 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2185
2186struct internalvar *
22d2b532
SDJ
2187create_internalvar_type_lazy (const char *name,
2188 const struct internalvar_funcs *funcs,
2189 void *data)
4aa995e1 2190{
4fa62494 2191 struct internalvar *var = create_internalvar (name);
a109c7c1 2192
78267919 2193 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2194 var->u.make_value.functions = funcs;
2195 var->u.make_value.data = data;
4aa995e1
PA
2196 return var;
2197}
c4a3d09a 2198
22d2b532
SDJ
2199/* See documentation in value.h. */
2200
2201int
2202compile_internalvar_to_ax (struct internalvar *var,
2203 struct agent_expr *expr,
2204 struct axs_value *value)
2205{
2206 if (var->kind != INTERNALVAR_MAKE_VALUE
2207 || var->u.make_value.functions->compile_to_ax == NULL)
2208 return 0;
2209
2210 var->u.make_value.functions->compile_to_ax (var, expr, value,
2211 var->u.make_value.data);
2212 return 1;
2213}
2214
c4a3d09a
MF
2215/* Look up an internal variable with name NAME. NAME should not
2216 normally include a dollar sign.
2217
2218 If the specified internal variable does not exist,
2219 one is created, with a void value. */
2220
2221struct internalvar *
bc3b79fd 2222lookup_internalvar (const char *name)
c4a3d09a
MF
2223{
2224 struct internalvar *var;
2225
2226 var = lookup_only_internalvar (name);
2227 if (var)
2228 return var;
2229
2230 return create_internalvar (name);
2231}
2232
78267919
UW
2233/* Return current value of internal variable VAR. For variables that
2234 are not inherently typed, use a value type appropriate for GDBARCH. */
2235
f23631e4 2236struct value *
78267919 2237value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2238{
f23631e4 2239 struct value *val;
0914bcdb
SS
2240 struct trace_state_variable *tsv;
2241
2242 /* If there is a trace state variable of the same name, assume that
2243 is what we really want to see. */
2244 tsv = find_trace_state_variable (var->name);
2245 if (tsv)
2246 {
2247 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2248 &(tsv->value));
2249 if (tsv->value_known)
2250 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2251 tsv->value);
2252 else
2253 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2254 return val;
2255 }
c906108c 2256
78267919 2257 switch (var->kind)
5f5233d4 2258 {
78267919
UW
2259 case INTERNALVAR_VOID:
2260 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2261 break;
4fa62494 2262
78267919
UW
2263 case INTERNALVAR_FUNCTION:
2264 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2265 break;
4fa62494 2266
cab0c772
UW
2267 case INTERNALVAR_INTEGER:
2268 if (!var->u.integer.type)
78267919 2269 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2270 var->u.integer.val);
78267919 2271 else
cab0c772
UW
2272 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2273 break;
2274
78267919
UW
2275 case INTERNALVAR_STRING:
2276 val = value_cstring (var->u.string, strlen (var->u.string),
2277 builtin_type (gdbarch)->builtin_char);
2278 break;
4fa62494 2279
78267919
UW
2280 case INTERNALVAR_VALUE:
2281 val = value_copy (var->u.value);
4aa995e1
PA
2282 if (value_lazy (val))
2283 value_fetch_lazy (val);
78267919 2284 break;
4aa995e1 2285
78267919 2286 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2287 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2288 var->u.make_value.data);
78267919
UW
2289 break;
2290
2291 default:
9b20d036 2292 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2293 }
2294
2295 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2296 on this value go back to affect the original internal variable.
2297
2298 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2299 no underlying modifyable state in the internal variable.
2300
2301 Likewise, if the variable's value is a computed lvalue, we want
2302 references to it to produce another computed lvalue, where
2303 references and assignments actually operate through the
2304 computed value's functions.
2305
2306 This means that internal variables with computed values
2307 behave a little differently from other internal variables:
2308 assignments to them don't just replace the previous value
2309 altogether. At the moment, this seems like the behavior we
2310 want. */
2311
2312 if (var->kind != INTERNALVAR_MAKE_VALUE
2313 && val->lval != lval_computed)
2314 {
2315 VALUE_LVAL (val) = lval_internalvar;
2316 VALUE_INTERNALVAR (val) = var;
5f5233d4 2317 }
d3c139e9 2318
4fa62494
UW
2319 return val;
2320}
d3c139e9 2321
4fa62494
UW
2322int
2323get_internalvar_integer (struct internalvar *var, LONGEST *result)
2324{
3158c6ed 2325 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2326 {
cab0c772
UW
2327 *result = var->u.integer.val;
2328 return 1;
3158c6ed 2329 }
d3c139e9 2330
3158c6ed
PA
2331 if (var->kind == INTERNALVAR_VALUE)
2332 {
2333 struct type *type = check_typedef (value_type (var->u.value));
2334
2335 if (TYPE_CODE (type) == TYPE_CODE_INT)
2336 {
2337 *result = value_as_long (var->u.value);
2338 return 1;
2339 }
4fa62494 2340 }
3158c6ed
PA
2341
2342 return 0;
4fa62494 2343}
d3c139e9 2344
4fa62494
UW
2345static int
2346get_internalvar_function (struct internalvar *var,
2347 struct internal_function **result)
2348{
78267919 2349 switch (var->kind)
d3c139e9 2350 {
78267919
UW
2351 case INTERNALVAR_FUNCTION:
2352 *result = var->u.fn.function;
4fa62494 2353 return 1;
d3c139e9 2354
4fa62494
UW
2355 default:
2356 return 0;
2357 }
c906108c
SS
2358}
2359
2360void
6b850546
DT
2361set_internalvar_component (struct internalvar *var,
2362 LONGEST offset, LONGEST bitpos,
2363 LONGEST bitsize, struct value *newval)
c906108c 2364{
4fa62494 2365 gdb_byte *addr;
3ae385af
SM
2366 struct gdbarch *arch;
2367 int unit_size;
c906108c 2368
78267919 2369 switch (var->kind)
4fa62494 2370 {
78267919
UW
2371 case INTERNALVAR_VALUE:
2372 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2373 arch = get_value_arch (var->u.value);
2374 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2375
2376 if (bitsize)
50810684 2377 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2378 value_as_long (newval), bitpos, bitsize);
2379 else
3ae385af 2380 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2381 TYPE_LENGTH (value_type (newval)));
2382 break;
78267919
UW
2383
2384 default:
2385 /* We can never get a component of any other kind. */
9b20d036 2386 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2387 }
c906108c
SS
2388}
2389
2390void
f23631e4 2391set_internalvar (struct internalvar *var, struct value *val)
c906108c 2392{
78267919 2393 enum internalvar_kind new_kind;
4fa62494 2394 union internalvar_data new_data = { 0 };
c906108c 2395
78267919 2396 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2397 error (_("Cannot overwrite convenience function %s"), var->name);
2398
4fa62494 2399 /* Prepare new contents. */
78267919 2400 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2401 {
2402 case TYPE_CODE_VOID:
78267919 2403 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2404 break;
2405
2406 case TYPE_CODE_INTERNAL_FUNCTION:
2407 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2408 new_kind = INTERNALVAR_FUNCTION;
2409 get_internalvar_function (VALUE_INTERNALVAR (val),
2410 &new_data.fn.function);
2411 /* Copies created here are never canonical. */
4fa62494
UW
2412 break;
2413
4fa62494 2414 default:
78267919
UW
2415 new_kind = INTERNALVAR_VALUE;
2416 new_data.value = value_copy (val);
2417 new_data.value->modifiable = 1;
4fa62494
UW
2418
2419 /* Force the value to be fetched from the target now, to avoid problems
2420 later when this internalvar is referenced and the target is gone or
2421 has changed. */
78267919
UW
2422 if (value_lazy (new_data.value))
2423 value_fetch_lazy (new_data.value);
4fa62494
UW
2424
2425 /* Release the value from the value chain to prevent it from being
2426 deleted by free_all_values. From here on this function should not
2427 call error () until new_data is installed into the var->u to avoid
2428 leaking memory. */
78267919 2429 release_value (new_data.value);
9920b434
BH
2430
2431 /* Internal variables which are created from values with a dynamic
2432 location don't need the location property of the origin anymore.
2433 The resolved dynamic location is used prior then any other address
2434 when accessing the value.
2435 If we keep it, we would still refer to the origin value.
2436 Remove the location property in case it exist. */
2437 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2438
4fa62494
UW
2439 break;
2440 }
2441
2442 /* Clean up old contents. */
2443 clear_internalvar (var);
2444
2445 /* Switch over. */
78267919 2446 var->kind = new_kind;
4fa62494 2447 var->u = new_data;
c906108c
SS
2448 /* End code which must not call error(). */
2449}
2450
4fa62494
UW
2451void
2452set_internalvar_integer (struct internalvar *var, LONGEST l)
2453{
2454 /* Clean up old contents. */
2455 clear_internalvar (var);
2456
cab0c772
UW
2457 var->kind = INTERNALVAR_INTEGER;
2458 var->u.integer.type = NULL;
2459 var->u.integer.val = l;
78267919
UW
2460}
2461
2462void
2463set_internalvar_string (struct internalvar *var, const char *string)
2464{
2465 /* Clean up old contents. */
2466 clear_internalvar (var);
2467
2468 var->kind = INTERNALVAR_STRING;
2469 var->u.string = xstrdup (string);
4fa62494
UW
2470}
2471
2472static void
2473set_internalvar_function (struct internalvar *var, struct internal_function *f)
2474{
2475 /* Clean up old contents. */
2476 clear_internalvar (var);
2477
78267919
UW
2478 var->kind = INTERNALVAR_FUNCTION;
2479 var->u.fn.function = f;
2480 var->u.fn.canonical = 1;
2481 /* Variables installed here are always the canonical version. */
4fa62494
UW
2482}
2483
2484void
2485clear_internalvar (struct internalvar *var)
2486{
2487 /* Clean up old contents. */
78267919 2488 switch (var->kind)
4fa62494 2489 {
78267919
UW
2490 case INTERNALVAR_VALUE:
2491 value_free (var->u.value);
2492 break;
2493
2494 case INTERNALVAR_STRING:
2495 xfree (var->u.string);
4fa62494
UW
2496 break;
2497
22d2b532
SDJ
2498 case INTERNALVAR_MAKE_VALUE:
2499 if (var->u.make_value.functions->destroy != NULL)
2500 var->u.make_value.functions->destroy (var->u.make_value.data);
2501 break;
2502
4fa62494 2503 default:
4fa62494
UW
2504 break;
2505 }
2506
78267919
UW
2507 /* Reset to void kind. */
2508 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2509}
2510
c906108c 2511char *
4bf7b526 2512internalvar_name (const struct internalvar *var)
c906108c
SS
2513{
2514 return var->name;
2515}
2516
4fa62494
UW
2517static struct internal_function *
2518create_internal_function (const char *name,
2519 internal_function_fn handler, void *cookie)
bc3b79fd 2520{
bc3b79fd 2521 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2522
bc3b79fd
TJB
2523 ifn->name = xstrdup (name);
2524 ifn->handler = handler;
2525 ifn->cookie = cookie;
4fa62494 2526 return ifn;
bc3b79fd
TJB
2527}
2528
2529char *
2530value_internal_function_name (struct value *val)
2531{
4fa62494
UW
2532 struct internal_function *ifn;
2533 int result;
2534
2535 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2536 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2537 gdb_assert (result);
2538
bc3b79fd
TJB
2539 return ifn->name;
2540}
2541
2542struct value *
d452c4bc
UW
2543call_internal_function (struct gdbarch *gdbarch,
2544 const struct language_defn *language,
2545 struct value *func, int argc, struct value **argv)
bc3b79fd 2546{
4fa62494
UW
2547 struct internal_function *ifn;
2548 int result;
2549
2550 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2551 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2552 gdb_assert (result);
2553
d452c4bc 2554 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2555}
2556
2557/* The 'function' command. This does nothing -- it is just a
2558 placeholder to let "help function NAME" work. This is also used as
2559 the implementation of the sub-command that is created when
2560 registering an internal function. */
2561static void
2562function_command (char *command, int from_tty)
2563{
2564 /* Do nothing. */
2565}
2566
2567/* Clean up if an internal function's command is destroyed. */
2568static void
2569function_destroyer (struct cmd_list_element *self, void *ignore)
2570{
6f937416 2571 xfree ((char *) self->name);
1947513d 2572 xfree ((char *) self->doc);
bc3b79fd
TJB
2573}
2574
2575/* Add a new internal function. NAME is the name of the function; DOC
2576 is a documentation string describing the function. HANDLER is
2577 called when the function is invoked. COOKIE is an arbitrary
2578 pointer which is passed to HANDLER and is intended for "user
2579 data". */
2580void
2581add_internal_function (const char *name, const char *doc,
2582 internal_function_fn handler, void *cookie)
2583{
2584 struct cmd_list_element *cmd;
4fa62494 2585 struct internal_function *ifn;
bc3b79fd 2586 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2587
2588 ifn = create_internal_function (name, handler, cookie);
2589 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2590
2591 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2592 &functionlist);
2593 cmd->destroyer = function_destroyer;
2594}
2595
ae5a43e0
DJ
2596/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2597 prevent cycles / duplicates. */
2598
4e7a5ef5 2599void
ae5a43e0
DJ
2600preserve_one_value (struct value *value, struct objfile *objfile,
2601 htab_t copied_types)
2602{
2603 if (TYPE_OBJFILE (value->type) == objfile)
2604 value->type = copy_type_recursive (objfile, value->type, copied_types);
2605
2606 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2607 value->enclosing_type = copy_type_recursive (objfile,
2608 value->enclosing_type,
2609 copied_types);
2610}
2611
78267919
UW
2612/* Likewise for internal variable VAR. */
2613
2614static void
2615preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2616 htab_t copied_types)
2617{
2618 switch (var->kind)
2619 {
cab0c772
UW
2620 case INTERNALVAR_INTEGER:
2621 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2622 var->u.integer.type
2623 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2624 break;
2625
78267919
UW
2626 case INTERNALVAR_VALUE:
2627 preserve_one_value (var->u.value, objfile, copied_types);
2628 break;
2629 }
2630}
2631
ae5a43e0
DJ
2632/* Update the internal variables and value history when OBJFILE is
2633 discarded; we must copy the types out of the objfile. New global types
2634 will be created for every convenience variable which currently points to
2635 this objfile's types, and the convenience variables will be adjusted to
2636 use the new global types. */
c906108c
SS
2637
2638void
ae5a43e0 2639preserve_values (struct objfile *objfile)
c906108c 2640{
ae5a43e0
DJ
2641 htab_t copied_types;
2642 struct value_history_chunk *cur;
52f0bd74 2643 struct internalvar *var;
ae5a43e0 2644 int i;
c906108c 2645
ae5a43e0
DJ
2646 /* Create the hash table. We allocate on the objfile's obstack, since
2647 it is soon to be deleted. */
2648 copied_types = create_copied_types_hash (objfile);
2649
2650 for (cur = value_history_chain; cur; cur = cur->next)
2651 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2652 if (cur->values[i])
2653 preserve_one_value (cur->values[i], objfile, copied_types);
2654
2655 for (var = internalvars; var; var = var->next)
78267919 2656 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2657
6dddc817 2658 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2659
ae5a43e0 2660 htab_delete (copied_types);
c906108c
SS
2661}
2662
2663static void
fba45db2 2664show_convenience (char *ignore, int from_tty)
c906108c 2665{
e17c207e 2666 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2667 struct internalvar *var;
c906108c 2668 int varseen = 0;
79a45b7d 2669 struct value_print_options opts;
c906108c 2670
79a45b7d 2671 get_user_print_options (&opts);
c906108c
SS
2672 for (var = internalvars; var; var = var->next)
2673 {
c709acd1 2674
c906108c
SS
2675 if (!varseen)
2676 {
2677 varseen = 1;
2678 }
a3f17187 2679 printf_filtered (("$%s = "), var->name);
c709acd1 2680
492d29ea 2681 TRY
c709acd1
PA
2682 {
2683 struct value *val;
2684
2685 val = value_of_internalvar (gdbarch, var);
2686 value_print (val, gdb_stdout, &opts);
2687 }
492d29ea
PA
2688 CATCH (ex, RETURN_MASK_ERROR)
2689 {
2690 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2691 }
2692 END_CATCH
2693
a3f17187 2694 printf_filtered (("\n"));
c906108c
SS
2695 }
2696 if (!varseen)
f47f77df
DE
2697 {
2698 /* This text does not mention convenience functions on purpose.
2699 The user can't create them except via Python, and if Python support
2700 is installed this message will never be printed ($_streq will
2701 exist). */
2702 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2703 "Convenience variables have "
2704 "names starting with \"$\";\n"
2705 "use \"set\" as in \"set "
2706 "$foo = 5\" to define them.\n"));
2707 }
c906108c
SS
2708}
2709\f
e81e7f5e
SC
2710/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2711
2712struct value *
2713value_of_xmethod (struct xmethod_worker *worker)
2714{
2715 if (worker->value == NULL)
2716 {
2717 struct value *v;
2718
2719 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2720 v->lval = lval_xcallable;
2721 v->location.xm_worker = worker;
2722 v->modifiable = 0;
2723 worker->value = v;
2724 }
2725
2726 return worker->value;
2727}
2728
2ce1cdbf
DE
2729/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2730
2731struct type *
2732result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2733{
2734 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2735 && method->lval == lval_xcallable && argc > 0);
2736
2737 return get_xmethod_result_type (method->location.xm_worker,
2738 argv[0], argv + 1, argc - 1);
2739}
2740
e81e7f5e
SC
2741/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2742
2743struct value *
2744call_xmethod (struct value *method, int argc, struct value **argv)
2745{
2746 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2747 && method->lval == lval_xcallable && argc > 0);
2748
2749 return invoke_xmethod (method->location.xm_worker,
2750 argv[0], argv + 1, argc - 1);
2751}
2752\f
c906108c
SS
2753/* Extract a value as a C number (either long or double).
2754 Knows how to convert fixed values to double, or
2755 floating values to long.
2756 Does not deallocate the value. */
2757
2758LONGEST
f23631e4 2759value_as_long (struct value *val)
c906108c
SS
2760{
2761 /* This coerces arrays and functions, which is necessary (e.g.
2762 in disassemble_command). It also dereferences references, which
2763 I suspect is the most logical thing to do. */
994b9211 2764 val = coerce_array (val);
0fd88904 2765 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2766}
2767
2768DOUBLEST
f23631e4 2769value_as_double (struct value *val)
c906108c
SS
2770{
2771 DOUBLEST foo;
2772 int inv;
c5aa993b 2773
0fd88904 2774 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2775 if (inv)
8a3fe4f8 2776 error (_("Invalid floating value found in program."));
c906108c
SS
2777 return foo;
2778}
4ef30785 2779
581e13c1 2780/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2781 Note that val's type may not actually be a pointer; value_as_long
2782 handles all the cases. */
c906108c 2783CORE_ADDR
f23631e4 2784value_as_address (struct value *val)
c906108c 2785{
50810684
UW
2786 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2787
c906108c
SS
2788 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2789 whether we want this to be true eventually. */
2790#if 0
bf6ae464 2791 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2792 non-address (e.g. argument to "signal", "info break", etc.), or
2793 for pointers to char, in which the low bits *are* significant. */
50810684 2794 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2795#else
f312f057
JB
2796
2797 /* There are several targets (IA-64, PowerPC, and others) which
2798 don't represent pointers to functions as simply the address of
2799 the function's entry point. For example, on the IA-64, a
2800 function pointer points to a two-word descriptor, generated by
2801 the linker, which contains the function's entry point, and the
2802 value the IA-64 "global pointer" register should have --- to
2803 support position-independent code. The linker generates
2804 descriptors only for those functions whose addresses are taken.
2805
2806 On such targets, it's difficult for GDB to convert an arbitrary
2807 function address into a function pointer; it has to either find
2808 an existing descriptor for that function, or call malloc and
2809 build its own. On some targets, it is impossible for GDB to
2810 build a descriptor at all: the descriptor must contain a jump
2811 instruction; data memory cannot be executed; and code memory
2812 cannot be modified.
2813
2814 Upon entry to this function, if VAL is a value of type `function'
2815 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2816 value_address (val) is the address of the function. This is what
f312f057
JB
2817 you'll get if you evaluate an expression like `main'. The call
2818 to COERCE_ARRAY below actually does all the usual unary
2819 conversions, which includes converting values of type `function'
2820 to `pointer to function'. This is the challenging conversion
2821 discussed above. Then, `unpack_long' will convert that pointer
2822 back into an address.
2823
2824 So, suppose the user types `disassemble foo' on an architecture
2825 with a strange function pointer representation, on which GDB
2826 cannot build its own descriptors, and suppose further that `foo'
2827 has no linker-built descriptor. The address->pointer conversion
2828 will signal an error and prevent the command from running, even
2829 though the next step would have been to convert the pointer
2830 directly back into the same address.
2831
2832 The following shortcut avoids this whole mess. If VAL is a
2833 function, just return its address directly. */
df407dfe
AC
2834 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2835 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2836 return value_address (val);
f312f057 2837
994b9211 2838 val = coerce_array (val);
fc0c74b1
AC
2839
2840 /* Some architectures (e.g. Harvard), map instruction and data
2841 addresses onto a single large unified address space. For
2842 instance: An architecture may consider a large integer in the
2843 range 0x10000000 .. 0x1000ffff to already represent a data
2844 addresses (hence not need a pointer to address conversion) while
2845 a small integer would still need to be converted integer to
2846 pointer to address. Just assume such architectures handle all
2847 integer conversions in a single function. */
2848
2849 /* JimB writes:
2850
2851 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2852 must admonish GDB hackers to make sure its behavior matches the
2853 compiler's, whenever possible.
2854
2855 In general, I think GDB should evaluate expressions the same way
2856 the compiler does. When the user copies an expression out of
2857 their source code and hands it to a `print' command, they should
2858 get the same value the compiler would have computed. Any
2859 deviation from this rule can cause major confusion and annoyance,
2860 and needs to be justified carefully. In other words, GDB doesn't
2861 really have the freedom to do these conversions in clever and
2862 useful ways.
2863
2864 AndrewC pointed out that users aren't complaining about how GDB
2865 casts integers to pointers; they are complaining that they can't
2866 take an address from a disassembly listing and give it to `x/i'.
2867 This is certainly important.
2868
79dd2d24 2869 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2870 makes it possible for GDB to "get it right" in all circumstances
2871 --- the target has complete control over how things get done, so
2872 people can Do The Right Thing for their target without breaking
2873 anyone else. The standard doesn't specify how integers get
2874 converted to pointers; usually, the ABI doesn't either, but
2875 ABI-specific code is a more reasonable place to handle it. */
2876
df407dfe 2877 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2878 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2879 && gdbarch_integer_to_address_p (gdbarch))
2880 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2881 value_contents (val));
fc0c74b1 2882
0fd88904 2883 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2884#endif
2885}
2886\f
2887/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2888 as a long, or as a double, assuming the raw data is described
2889 by type TYPE. Knows how to convert different sizes of values
2890 and can convert between fixed and floating point. We don't assume
2891 any alignment for the raw data. Return value is in host byte order.
2892
2893 If you want functions and arrays to be coerced to pointers, and
2894 references to be dereferenced, call value_as_long() instead.
2895
2896 C++: It is assumed that the front-end has taken care of
2897 all matters concerning pointers to members. A pointer
2898 to member which reaches here is considered to be equivalent
2899 to an INT (or some size). After all, it is only an offset. */
2900
2901LONGEST
fc1a4b47 2902unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2903{
e17a4113 2904 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2905 enum type_code code = TYPE_CODE (type);
2906 int len = TYPE_LENGTH (type);
2907 int nosign = TYPE_UNSIGNED (type);
c906108c 2908
c906108c
SS
2909 switch (code)
2910 {
2911 case TYPE_CODE_TYPEDEF:
2912 return unpack_long (check_typedef (type), valaddr);
2913 case TYPE_CODE_ENUM:
4f2aea11 2914 case TYPE_CODE_FLAGS:
c906108c
SS
2915 case TYPE_CODE_BOOL:
2916 case TYPE_CODE_INT:
2917 case TYPE_CODE_CHAR:
2918 case TYPE_CODE_RANGE:
0d5de010 2919 case TYPE_CODE_MEMBERPTR:
c906108c 2920 if (nosign)
e17a4113 2921 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2922 else
e17a4113 2923 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2924
2925 case TYPE_CODE_FLT:
aebf07fc 2926 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2927
4ef30785
TJB
2928 case TYPE_CODE_DECFLOAT:
2929 /* libdecnumber has a function to convert from decimal to integer, but
2930 it doesn't work when the decimal number has a fractional part. */
aebf07fc 2931 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2932
c906108c
SS
2933 case TYPE_CODE_PTR:
2934 case TYPE_CODE_REF:
aa006118 2935 case TYPE_CODE_RVALUE_REF:
c906108c 2936 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2937 whether we want this to be true eventually. */
4478b372 2938 return extract_typed_address (valaddr, type);
c906108c 2939
c906108c 2940 default:
8a3fe4f8 2941 error (_("Value can't be converted to integer."));
c906108c 2942 }
c5aa993b 2943 return 0; /* Placate lint. */
c906108c
SS
2944}
2945
2946/* Return a double value from the specified type and address.
2947 INVP points to an int which is set to 0 for valid value,
2948 1 for invalid value (bad float format). In either case,
2949 the returned double is OK to use. Argument is in target
2950 format, result is in host format. */
2951
2952DOUBLEST
fc1a4b47 2953unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2954{
e17a4113 2955 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2956 enum type_code code;
2957 int len;
2958 int nosign;
2959
581e13c1 2960 *invp = 0; /* Assume valid. */
f168693b 2961 type = check_typedef (type);
c906108c
SS
2962 code = TYPE_CODE (type);
2963 len = TYPE_LENGTH (type);
2964 nosign = TYPE_UNSIGNED (type);
2965 if (code == TYPE_CODE_FLT)
2966 {
75bc7ddf
AC
2967 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2968 floating-point value was valid (using the macro
2969 INVALID_FLOAT). That test/macro have been removed.
2970
2971 It turns out that only the VAX defined this macro and then
2972 only in a non-portable way. Fixing the portability problem
2973 wouldn't help since the VAX floating-point code is also badly
2974 bit-rotten. The target needs to add definitions for the
ea06eb3d 2975 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2976 exactly describe the target floating-point format. The
2977 problem here is that the corresponding floatformat_vax_f and
2978 floatformat_vax_d values these methods should be set to are
2979 also not defined either. Oops!
2980
2981 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2982 definitions and the new cases for floatformat_is_valid (). */
2983
2984 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2985 {
2986 *invp = 1;
2987 return 0.0;
2988 }
2989
96d2f608 2990 return extract_typed_floating (valaddr, type);
c906108c 2991 }
4ef30785 2992 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2993 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2994 else if (nosign)
2995 {
2996 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2997 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2998 }
2999 else
3000 {
3001 /* Signed -- we are OK with unpack_long. */
3002 return unpack_long (type, valaddr);
3003 }
3004}
3005
3006/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3007 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3008 We don't assume any alignment for the raw data. Return value is in
3009 host byte order.
3010
3011 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3012 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3013
3014 C++: It is assumed that the front-end has taken care of
3015 all matters concerning pointers to members. A pointer
3016 to member which reaches here is considered to be equivalent
3017 to an INT (or some size). After all, it is only an offset. */
3018
3019CORE_ADDR
fc1a4b47 3020unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3021{
3022 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3023 whether we want this to be true eventually. */
3024 return unpack_long (type, valaddr);
3025}
4478b372 3026
c906108c 3027\f
1596cb5d 3028/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3029 TYPE. */
c906108c 3030
f23631e4 3031struct value *
fba45db2 3032value_static_field (struct type *type, int fieldno)
c906108c 3033{
948e66d9
DJ
3034 struct value *retval;
3035
1596cb5d 3036 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3037 {
1596cb5d 3038 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3039 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3040 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3041 break;
3042 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3043 {
ff355380 3044 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3045 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3046 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3047
d12307c1 3048 if (sym.symbol == NULL)
c906108c 3049 {
a109c7c1 3050 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3051 reported as non-debuggable symbols. */
3b7344d5
TT
3052 struct bound_minimal_symbol msym
3053 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3054
3b7344d5 3055 if (!msym.minsym)
686d4def 3056 return allocate_optimized_out_value (type);
c906108c 3057 else
c5aa993b 3058 {
52e9fde8 3059 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3060 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3061 }
3062 }
3063 else
d12307c1 3064 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3065 break;
c906108c 3066 }
1596cb5d 3067 default:
f3574227 3068 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3069 }
3070
948e66d9 3071 return retval;
c906108c
SS
3072}
3073
4dfea560
DE
3074/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3075 You have to be careful here, since the size of the data area for the value
3076 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3077 than the old enclosing type, you have to allocate more space for the
3078 data. */
2b127877 3079
4dfea560
DE
3080void
3081set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3082{
5fdf6324
AB
3083 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3084 {
3085 check_type_length_before_alloc (new_encl_type);
3086 val->contents
3087 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3088 }
3e3d7139
JG
3089
3090 val->enclosing_type = new_encl_type;
2b127877
DB
3091}
3092
c906108c
SS
3093/* Given a value ARG1 (offset by OFFSET bytes)
3094 of a struct or union type ARG_TYPE,
3095 extract and return the value of one of its (non-static) fields.
581e13c1 3096 FIELDNO says which field. */
c906108c 3097
f23631e4 3098struct value *
6b850546 3099value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3100 int fieldno, struct type *arg_type)
c906108c 3101{
f23631e4 3102 struct value *v;
52f0bd74 3103 struct type *type;
3ae385af
SM
3104 struct gdbarch *arch = get_value_arch (arg1);
3105 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3106
f168693b 3107 arg_type = check_typedef (arg_type);
c906108c 3108 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3109
3110 /* Call check_typedef on our type to make sure that, if TYPE
3111 is a TYPE_CODE_TYPEDEF, its length is set to the length
3112 of the target type instead of zero. However, we do not
3113 replace the typedef type by the target type, because we want
3114 to keep the typedef in order to be able to print the type
3115 description correctly. */
3116 check_typedef (type);
c906108c 3117
691a26f5 3118 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3119 {
22c05d8a
JK
3120 /* Handle packed fields.
3121
3122 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3123 set. If possible, arrange offset and bitpos so that we can
3124 do a single aligned read of the size of the containing type.
3125 Otherwise, adjust offset to the byte containing the first
3126 bit. Assume that the address, offset, and embedded offset
3127 are sufficiently aligned. */
22c05d8a 3128
6b850546
DT
3129 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3130 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3131
9a0dc9e3
PA
3132 v = allocate_value_lazy (type);
3133 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3134 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3135 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3136 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3137 else
9a0dc9e3
PA
3138 v->bitpos = bitpos % 8;
3139 v->offset = (value_embedded_offset (arg1)
3140 + offset
3141 + (bitpos - v->bitpos) / 8);
3142 set_value_parent (v, arg1);
3143 if (!value_lazy (arg1))
3144 value_fetch_lazy (v);
c906108c
SS
3145 }
3146 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3147 {
3148 /* This field is actually a base subobject, so preserve the
39d37385
PA
3149 entire object's contents for later references to virtual
3150 bases, etc. */
6b850546 3151 LONGEST boffset;
a4e2ee12
DJ
3152
3153 /* Lazy register values with offsets are not supported. */
3154 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3155 value_fetch_lazy (arg1);
3156
9a0dc9e3
PA
3157 /* We special case virtual inheritance here because this
3158 requires access to the contents, which we would rather avoid
3159 for references to ordinary fields of unavailable values. */
3160 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3161 boffset = baseclass_offset (arg_type, fieldno,
3162 value_contents (arg1),
3163 value_embedded_offset (arg1),
3164 value_address (arg1),
3165 arg1);
c906108c 3166 else
9a0dc9e3 3167 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3168
9a0dc9e3
PA
3169 if (value_lazy (arg1))
3170 v = allocate_value_lazy (value_enclosing_type (arg1));
3171 else
3172 {
3173 v = allocate_value (value_enclosing_type (arg1));
3174 value_contents_copy_raw (v, 0, arg1, 0,
3175 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3176 }
9a0dc9e3
PA
3177 v->type = type;
3178 v->offset = value_offset (arg1);
3179 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3180 }
9920b434
BH
3181 else if (NULL != TYPE_DATA_LOCATION (type))
3182 {
3183 /* Field is a dynamic data member. */
3184
3185 gdb_assert (0 == offset);
3186 /* We expect an already resolved data location. */
3187 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3188 /* For dynamic data types defer memory allocation
3189 until we actual access the value. */
3190 v = allocate_value_lazy (type);
3191 }
c906108c
SS
3192 else
3193 {
3194 /* Plain old data member */
3ae385af
SM
3195 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3196 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3197
3198 /* Lazy register values with offsets are not supported. */
3199 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3200 value_fetch_lazy (arg1);
3201
9a0dc9e3 3202 if (value_lazy (arg1))
3e3d7139 3203 v = allocate_value_lazy (type);
c906108c 3204 else
3e3d7139
JG
3205 {
3206 v = allocate_value (type);
39d37385
PA
3207 value_contents_copy_raw (v, value_embedded_offset (v),
3208 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3209 type_length_units (type));
3e3d7139 3210 }
df407dfe 3211 v->offset = (value_offset (arg1) + offset
13c3b5f5 3212 + value_embedded_offset (arg1));
c906108c 3213 }
74bcbdf3 3214 set_value_component_location (v, arg1);
c906108c
SS
3215 return v;
3216}
3217
3218/* Given a value ARG1 of a struct or union type,
3219 extract and return the value of one of its (non-static) fields.
581e13c1 3220 FIELDNO says which field. */
c906108c 3221
f23631e4 3222struct value *
aa1ee363 3223value_field (struct value *arg1, int fieldno)
c906108c 3224{
df407dfe 3225 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3226}
3227
3228/* Return a non-virtual function as a value.
3229 F is the list of member functions which contains the desired method.
0478d61c
FF
3230 J is an index into F which provides the desired method.
3231
3232 We only use the symbol for its address, so be happy with either a
581e13c1 3233 full symbol or a minimal symbol. */
c906108c 3234
f23631e4 3235struct value *
3e43a32a
MS
3236value_fn_field (struct value **arg1p, struct fn_field *f,
3237 int j, struct type *type,
6b850546 3238 LONGEST offset)
c906108c 3239{
f23631e4 3240 struct value *v;
52f0bd74 3241 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3242 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3243 struct symbol *sym;
7c7b6655 3244 struct bound_minimal_symbol msym;
c906108c 3245
d12307c1 3246 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3247 if (sym != NULL)
0478d61c 3248 {
7c7b6655 3249 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3250 }
3251 else
3252 {
3253 gdb_assert (sym == NULL);
7c7b6655
TT
3254 msym = lookup_bound_minimal_symbol (physname);
3255 if (msym.minsym == NULL)
5ae326fa 3256 return NULL;
0478d61c
FF
3257 }
3258
c906108c 3259 v = allocate_value (ftype);
1a088441 3260 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3261 if (sym)
3262 {
42ae5230 3263 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3264 }
3265 else
3266 {
bccdca4a
UW
3267 /* The minimal symbol might point to a function descriptor;
3268 resolve it to the actual code address instead. */
7c7b6655 3269 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3271
42ae5230
TT
3272 set_value_address (v,
3273 gdbarch_convert_from_func_ptr_addr
77e371c0 3274 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3275 }
c906108c
SS
3276
3277 if (arg1p)
c5aa993b 3278 {
df407dfe 3279 if (type != value_type (*arg1p))
c5aa993b
JM
3280 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3281 value_addr (*arg1p)));
3282
070ad9f0 3283 /* Move the `this' pointer according to the offset.
581e13c1 3284 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3285 }
3286
3287 return v;
3288}
3289
c906108c 3290\f
c906108c 3291
4875ffdb
PA
3292/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3293 VALADDR, and store the result in *RESULT.
3294 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3295
4875ffdb
PA
3296 Extracting bits depends on endianness of the machine. Compute the
3297 number of least significant bits to discard. For big endian machines,
3298 we compute the total number of bits in the anonymous object, subtract
3299 off the bit count from the MSB of the object to the MSB of the
3300 bitfield, then the size of the bitfield, which leaves the LSB discard
3301 count. For little endian machines, the discard count is simply the
3302 number of bits from the LSB of the anonymous object to the LSB of the
3303 bitfield.
3304
3305 If the field is signed, we also do sign extension. */
3306
3307static LONGEST
3308unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3309 LONGEST bitpos, LONGEST bitsize)
c906108c 3310{
4ea48cc1 3311 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3312 ULONGEST val;
3313 ULONGEST valmask;
c906108c 3314 int lsbcount;
6b850546
DT
3315 LONGEST bytes_read;
3316 LONGEST read_offset;
c906108c 3317
4a76eae5
DJ
3318 /* Read the minimum number of bytes required; there may not be
3319 enough bytes to read an entire ULONGEST. */
f168693b 3320 field_type = check_typedef (field_type);
4a76eae5
DJ
3321 if (bitsize)
3322 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3323 else
3324 bytes_read = TYPE_LENGTH (field_type);
3325
5467c6c8
PA
3326 read_offset = bitpos / 8;
3327
4875ffdb 3328 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3329 bytes_read, byte_order);
c906108c 3330
581e13c1 3331 /* Extract bits. See comment above. */
c906108c 3332
4ea48cc1 3333 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3334 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3335 else
3336 lsbcount = (bitpos % 8);
3337 val >>= lsbcount;
3338
3339 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3340 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3341
3342 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3343 {
3344 valmask = (((ULONGEST) 1) << bitsize) - 1;
3345 val &= valmask;
3346 if (!TYPE_UNSIGNED (field_type))
3347 {
3348 if (val & (valmask ^ (valmask >> 1)))
3349 {
3350 val |= ~valmask;
3351 }
3352 }
3353 }
5467c6c8 3354
4875ffdb 3355 return val;
5467c6c8
PA
3356}
3357
3358/* Unpack a field FIELDNO of the specified TYPE, from the object at
3359 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3360 ORIGINAL_VALUE, which must not be NULL. See
3361 unpack_value_bits_as_long for more details. */
3362
3363int
3364unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3365 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3366 const struct value *val, LONGEST *result)
3367{
4875ffdb
PA
3368 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3369 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3370 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3371 int bit_offset;
3372
5467c6c8
PA
3373 gdb_assert (val != NULL);
3374
4875ffdb
PA
3375 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3376 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3377 || !value_bits_available (val, bit_offset, bitsize))
3378 return 0;
3379
3380 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3381 bitpos, bitsize);
3382 return 1;
5467c6c8
PA
3383}
3384
3385/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3386 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3387
3388LONGEST
3389unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3390{
4875ffdb
PA
3391 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3392 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3393 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3394
4875ffdb
PA
3395 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3396}
3397
3398/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3399 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3400 the contents in DEST_VAL, zero or sign extending if the type of
3401 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3402 VAL. If the VAL's contents required to extract the bitfield from
3403 are unavailable/optimized out, DEST_VAL is correspondingly
3404 marked unavailable/optimized out. */
3405
bb9d5f81 3406void
4875ffdb 3407unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3408 LONGEST bitpos, LONGEST bitsize,
3409 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3410 const struct value *val)
3411{
3412 enum bfd_endian byte_order;
3413 int src_bit_offset;
3414 int dst_bit_offset;
4875ffdb
PA
3415 struct type *field_type = value_type (dest_val);
3416
4875ffdb 3417 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3418
3419 /* First, unpack and sign extend the bitfield as if it was wholly
3420 valid. Optimized out/unavailable bits are read as zero, but
3421 that's OK, as they'll end up marked below. If the VAL is
3422 wholly-invalid we may have skipped allocating its contents,
3423 though. See allocate_optimized_out_value. */
3424 if (valaddr != NULL)
3425 {
3426 LONGEST num;
3427
3428 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3429 bitpos, bitsize);
3430 store_signed_integer (value_contents_raw (dest_val),
3431 TYPE_LENGTH (field_type), byte_order, num);
3432 }
4875ffdb
PA
3433
3434 /* Now copy the optimized out / unavailability ranges to the right
3435 bits. */
3436 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3437 if (byte_order == BFD_ENDIAN_BIG)
3438 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3439 else
3440 dst_bit_offset = 0;
3441 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3442 val, src_bit_offset, bitsize);
5467c6c8
PA
3443}
3444
3445/* Return a new value with type TYPE, which is FIELDNO field of the
3446 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3447 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3448 from are unavailable/optimized out, the new value is
3449 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3450
3451struct value *
3452value_field_bitfield (struct type *type, int fieldno,
3453 const gdb_byte *valaddr,
6b850546 3454 LONGEST embedded_offset, const struct value *val)
5467c6c8 3455{
4875ffdb
PA
3456 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3457 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3458 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3459
4875ffdb
PA
3460 unpack_value_bitfield (res_val, bitpos, bitsize,
3461 valaddr, embedded_offset, val);
3462
3463 return res_val;
4ea48cc1
DJ
3464}
3465
c906108c
SS
3466/* Modify the value of a bitfield. ADDR points to a block of memory in
3467 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3468 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3469 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3470 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3471 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3472
3473void
50810684 3474modify_field (struct type *type, gdb_byte *addr,
6b850546 3475 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3476{
e17a4113 3477 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3478 ULONGEST oword;
3479 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3480 LONGEST bytesize;
19f220c3
JK
3481
3482 /* Normalize BITPOS. */
3483 addr += bitpos / 8;
3484 bitpos %= 8;
c906108c
SS
3485
3486 /* If a negative fieldval fits in the field in question, chop
3487 off the sign extension bits. */
f4e88c8e
PH
3488 if ((~fieldval & ~(mask >> 1)) == 0)
3489 fieldval &= mask;
c906108c
SS
3490
3491 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3492 if (0 != (fieldval & ~mask))
c906108c
SS
3493 {
3494 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3495 we don't have a sprintf_longest. */
6b850546 3496 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3497
3498 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3499 fieldval &= mask;
c906108c
SS
3500 }
3501
19f220c3
JK
3502 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3503 false valgrind reports. */
3504
3505 bytesize = (bitpos + bitsize + 7) / 8;
3506 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3507
3508 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3509 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3510 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3511
f4e88c8e 3512 oword &= ~(mask << bitpos);
c906108c
SS
3513 oword |= fieldval << bitpos;
3514
19f220c3 3515 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3516}
3517\f
14d06750 3518/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3519
14d06750
DJ
3520void
3521pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3522{
e17a4113 3523 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3524 LONGEST len;
14d06750
DJ
3525
3526 type = check_typedef (type);
c906108c
SS
3527 len = TYPE_LENGTH (type);
3528
14d06750 3529 switch (TYPE_CODE (type))
c906108c 3530 {
c906108c
SS
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_CHAR:
3533 case TYPE_CODE_ENUM:
4f2aea11 3534 case TYPE_CODE_FLAGS:
c906108c
SS
3535 case TYPE_CODE_BOOL:
3536 case TYPE_CODE_RANGE:
0d5de010 3537 case TYPE_CODE_MEMBERPTR:
e17a4113 3538 store_signed_integer (buf, len, byte_order, num);
c906108c 3539 break;
c5aa993b 3540
c906108c 3541 case TYPE_CODE_REF:
aa006118 3542 case TYPE_CODE_RVALUE_REF:
c906108c 3543 case TYPE_CODE_PTR:
14d06750 3544 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3545 break;
c5aa993b 3546
c906108c 3547 default:
14d06750
DJ
3548 error (_("Unexpected type (%d) encountered for integer constant."),
3549 TYPE_CODE (type));
c906108c 3550 }
14d06750
DJ
3551}
3552
3553
595939de
PM
3554/* Pack NUM into BUF using a target format of TYPE. */
3555
70221824 3556static void
595939de
PM
3557pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3558{
6b850546 3559 LONGEST len;
595939de
PM
3560 enum bfd_endian byte_order;
3561
3562 type = check_typedef (type);
3563 len = TYPE_LENGTH (type);
3564 byte_order = gdbarch_byte_order (get_type_arch (type));
3565
3566 switch (TYPE_CODE (type))
3567 {
3568 case TYPE_CODE_INT:
3569 case TYPE_CODE_CHAR:
3570 case TYPE_CODE_ENUM:
3571 case TYPE_CODE_FLAGS:
3572 case TYPE_CODE_BOOL:
3573 case TYPE_CODE_RANGE:
3574 case TYPE_CODE_MEMBERPTR:
3575 store_unsigned_integer (buf, len, byte_order, num);
3576 break;
3577
3578 case TYPE_CODE_REF:
aa006118 3579 case TYPE_CODE_RVALUE_REF:
595939de
PM
3580 case TYPE_CODE_PTR:
3581 store_typed_address (buf, type, (CORE_ADDR) num);
3582 break;
3583
3584 default:
3e43a32a
MS
3585 error (_("Unexpected type (%d) encountered "
3586 "for unsigned integer constant."),
595939de
PM
3587 TYPE_CODE (type));
3588 }
3589}
3590
3591
14d06750
DJ
3592/* Convert C numbers into newly allocated values. */
3593
3594struct value *
3595value_from_longest (struct type *type, LONGEST num)
3596{
3597 struct value *val = allocate_value (type);
3598
3599 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3600 return val;
3601}
3602
4478b372 3603
595939de
PM
3604/* Convert C unsigned numbers into newly allocated values. */
3605
3606struct value *
3607value_from_ulongest (struct type *type, ULONGEST num)
3608{
3609 struct value *val = allocate_value (type);
3610
3611 pack_unsigned_long (value_contents_raw (val), type, num);
3612
3613 return val;
3614}
3615
3616
4478b372 3617/* Create a value representing a pointer of type TYPE to the address
cb417230 3618 ADDR. */
80180f79 3619
f23631e4 3620struct value *
4478b372
JB
3621value_from_pointer (struct type *type, CORE_ADDR addr)
3622{
cb417230 3623 struct value *val = allocate_value (type);
a109c7c1 3624
80180f79 3625 store_typed_address (value_contents_raw (val),
cb417230 3626 check_typedef (type), addr);
4478b372
JB
3627 return val;
3628}
3629
3630
012370f6
TT
3631/* Create a value of type TYPE whose contents come from VALADDR, if it
3632 is non-null, and whose memory address (in the inferior) is
3633 ADDRESS. The type of the created value may differ from the passed
3634 type TYPE. Make sure to retrieve values new type after this call.
3635 Note that TYPE is not passed through resolve_dynamic_type; this is
3636 a special API intended for use only by Ada. */
3637
3638struct value *
3639value_from_contents_and_address_unresolved (struct type *type,
3640 const gdb_byte *valaddr,
3641 CORE_ADDR address)
3642{
3643 struct value *v;
3644
3645 if (valaddr == NULL)
3646 v = allocate_value_lazy (type);
3647 else
3648 v = value_from_contents (type, valaddr);
012370f6 3649 VALUE_LVAL (v) = lval_memory;
1a088441 3650 set_value_address (v, address);
012370f6
TT
3651 return v;
3652}
3653
8acb6b92
TT
3654/* Create a value of type TYPE whose contents come from VALADDR, if it
3655 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3656 ADDRESS. The type of the created value may differ from the passed
3657 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3658
3659struct value *
3660value_from_contents_and_address (struct type *type,
3661 const gdb_byte *valaddr,
3662 CORE_ADDR address)
3663{
c3345124 3664 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3665 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3666 struct value *v;
a109c7c1 3667
8acb6b92 3668 if (valaddr == NULL)
80180f79 3669 v = allocate_value_lazy (resolved_type);
8acb6b92 3670 else
80180f79 3671 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3672 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3673 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3674 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3675 VALUE_LVAL (v) = lval_memory;
1a088441 3676 set_value_address (v, address);
8acb6b92
TT
3677 return v;
3678}
3679
8a9b8146
TT
3680/* Create a value of type TYPE holding the contents CONTENTS.
3681 The new value is `not_lval'. */
3682
3683struct value *
3684value_from_contents (struct type *type, const gdb_byte *contents)
3685{
3686 struct value *result;
3687
3688 result = allocate_value (type);
3689 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3690 return result;
3691}
3692
f23631e4 3693struct value *
fba45db2 3694value_from_double (struct type *type, DOUBLEST num)
c906108c 3695{
f23631e4 3696 struct value *val = allocate_value (type);
c906108c 3697 struct type *base_type = check_typedef (type);
52f0bd74 3698 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3699
3700 if (code == TYPE_CODE_FLT)
3701 {
990a07ab 3702 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3703 }
3704 else
8a3fe4f8 3705 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3706
3707 return val;
3708}
994b9211 3709
27bc4d80 3710struct value *
4ef30785 3711value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3712{
3713 struct value *val = allocate_value (type);
27bc4d80 3714
4ef30785 3715 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3716 return val;
3717}
3718
3bd0f5ef
MS
3719/* Extract a value from the history file. Input will be of the form
3720 $digits or $$digits. See block comment above 'write_dollar_variable'
3721 for details. */
3722
3723struct value *
e799154c 3724value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3725{
3726 int index, len;
3727
3728 if (h[0] == '$')
3729 len = 1;
3730 else
3731 return NULL;
3732
3733 if (h[1] == '$')
3734 len = 2;
3735
3736 /* Find length of numeral string. */
3737 for (; isdigit (h[len]); len++)
3738 ;
3739
3740 /* Make sure numeral string is not part of an identifier. */
3741 if (h[len] == '_' || isalpha (h[len]))
3742 return NULL;
3743
3744 /* Now collect the index value. */
3745 if (h[1] == '$')
3746 {
3747 if (len == 2)
3748 {
3749 /* For some bizarre reason, "$$" is equivalent to "$$1",
3750 rather than to "$$0" as it ought to be! */
3751 index = -1;
3752 *endp += len;
3753 }
3754 else
e799154c
TT
3755 {
3756 char *local_end;
3757
3758 index = -strtol (&h[2], &local_end, 10);
3759 *endp = local_end;
3760 }
3bd0f5ef
MS
3761 }
3762 else
3763 {
3764 if (len == 1)
3765 {
3766 /* "$" is equivalent to "$0". */
3767 index = 0;
3768 *endp += len;
3769 }
3770 else
e799154c
TT
3771 {
3772 char *local_end;
3773
3774 index = strtol (&h[1], &local_end, 10);
3775 *endp = local_end;
3776 }
3bd0f5ef
MS
3777 }
3778
3779 return access_value_history (index);
3780}
3781
3fff9862
YQ
3782/* Get the component value (offset by OFFSET bytes) of a struct or
3783 union WHOLE. Component's type is TYPE. */
3784
3785struct value *
3786value_from_component (struct value *whole, struct type *type, LONGEST offset)
3787{
3788 struct value *v;
3789
3790 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3791 v = allocate_value_lazy (type);
3792 else
3793 {
3794 v = allocate_value (type);
3795 value_contents_copy (v, value_embedded_offset (v),
3796 whole, value_embedded_offset (whole) + offset,
3797 type_length_units (type));
3798 }
3799 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3800 set_value_component_location (v, whole);
3fff9862
YQ
3801
3802 return v;
3803}
3804
a471c594
JK
3805struct value *
3806coerce_ref_if_computed (const struct value *arg)
3807{
3808 const struct lval_funcs *funcs;
3809
aa006118 3810 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3811 return NULL;
3812
3813 if (value_lval_const (arg) != lval_computed)
3814 return NULL;
3815
3816 funcs = value_computed_funcs (arg);
3817 if (funcs->coerce_ref == NULL)
3818 return NULL;
3819
3820 return funcs->coerce_ref (arg);
3821}
3822
dfcee124
AG
3823/* Look at value.h for description. */
3824
3825struct value *
3826readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3827 const struct type *original_type,
3828 const struct value *original_value)
dfcee124
AG
3829{
3830 /* Re-adjust type. */
3831 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3832
3833 /* Add embedding info. */
3834 set_value_enclosing_type (value, enc_type);
3835 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3836
3837 /* We may be pointing to an object of some derived type. */
3838 return value_full_object (value, NULL, 0, 0, 0);
3839}
3840
994b9211
AC
3841struct value *
3842coerce_ref (struct value *arg)
3843{
df407dfe 3844 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3845 struct value *retval;
dfcee124 3846 struct type *enc_type;
a109c7c1 3847
a471c594
JK
3848 retval = coerce_ref_if_computed (arg);
3849 if (retval)
3850 return retval;
3851
aa006118 3852 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3853 return arg;
3854
dfcee124
AG
3855 enc_type = check_typedef (value_enclosing_type (arg));
3856 enc_type = TYPE_TARGET_TYPE (enc_type);
3857
3858 retval = value_at_lazy (enc_type,
3859 unpack_pointer (value_type (arg),
3860 value_contents (arg)));
9f1f738a 3861 enc_type = value_type (retval);
dfcee124
AG
3862 return readjust_indirect_value_type (retval, enc_type,
3863 value_type_arg_tmp, arg);
994b9211
AC
3864}
3865
3866struct value *
3867coerce_array (struct value *arg)
3868{
f3134b88
TT
3869 struct type *type;
3870
994b9211 3871 arg = coerce_ref (arg);
f3134b88
TT
3872 type = check_typedef (value_type (arg));
3873
3874 switch (TYPE_CODE (type))
3875 {
3876 case TYPE_CODE_ARRAY:
7346b668 3877 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3878 arg = value_coerce_array (arg);
3879 break;
3880 case TYPE_CODE_FUNC:
3881 arg = value_coerce_function (arg);
3882 break;
3883 }
994b9211
AC
3884 return arg;
3885}
c906108c 3886\f
c906108c 3887
bbfdfe1c
DM
3888/* Return the return value convention that will be used for the
3889 specified type. */
3890
3891enum return_value_convention
3892struct_return_convention (struct gdbarch *gdbarch,
3893 struct value *function, struct type *value_type)
3894{
3895 enum type_code code = TYPE_CODE (value_type);
3896
3897 if (code == TYPE_CODE_ERROR)
3898 error (_("Function return type unknown."));
3899
3900 /* Probe the architecture for the return-value convention. */
3901 return gdbarch_return_value (gdbarch, function, value_type,
3902 NULL, NULL, NULL);
3903}
3904
48436ce6
AC
3905/* Return true if the function returning the specified type is using
3906 the convention of returning structures in memory (passing in the
82585c72 3907 address as a hidden first parameter). */
c906108c
SS
3908
3909int
d80b854b 3910using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3911 struct value *function, struct type *value_type)
c906108c 3912{
bbfdfe1c 3913 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3914 /* A void return value is never in memory. See also corresponding
44e5158b 3915 code in "print_return_value". */
667e784f
AC
3916 return 0;
3917
bbfdfe1c 3918 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3919 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3920}
3921
42be36b3
CT
3922/* Set the initialized field in a value struct. */
3923
3924void
3925set_value_initialized (struct value *val, int status)
3926{
3927 val->initialized = status;
3928}
3929
3930/* Return the initialized field in a value struct. */
3931
3932int
4bf7b526 3933value_initialized (const struct value *val)
42be36b3
CT
3934{
3935 return val->initialized;
3936}
3937
a844296a
SM
3938/* Load the actual content of a lazy value. Fetch the data from the
3939 user's process and clear the lazy flag to indicate that the data in
3940 the buffer is valid.
a58e2656
AB
3941
3942 If the value is zero-length, we avoid calling read_memory, which
3943 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3944 it. */
a58e2656 3945
a844296a 3946void
a58e2656
AB
3947value_fetch_lazy (struct value *val)
3948{
3949 gdb_assert (value_lazy (val));
3950 allocate_value_contents (val);
9a0dc9e3
PA
3951 /* A value is either lazy, or fully fetched. The
3952 availability/validity is only established as we try to fetch a
3953 value. */
3954 gdb_assert (VEC_empty (range_s, val->optimized_out));
3955 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3956 if (value_bitsize (val))
3957 {
3958 /* To read a lazy bitfield, read the entire enclosing value. This
3959 prevents reading the same block of (possibly volatile) memory once
3960 per bitfield. It would be even better to read only the containing
3961 word, but we have no way to record that just specific bits of a
3962 value have been fetched. */
3963 struct type *type = check_typedef (value_type (val));
a58e2656 3964 struct value *parent = value_parent (val);
a58e2656 3965
b0c54aa5
AB
3966 if (value_lazy (parent))
3967 value_fetch_lazy (parent);
3968
4875ffdb
PA
3969 unpack_value_bitfield (val,
3970 value_bitpos (val), value_bitsize (val),
3971 value_contents_for_printing (parent),
3972 value_offset (val), parent);
a58e2656
AB
3973 }
3974 else if (VALUE_LVAL (val) == lval_memory)
3975 {
3976 CORE_ADDR addr = value_address (val);
3977 struct type *type = check_typedef (value_enclosing_type (val));
3978
3979 if (TYPE_LENGTH (type))
3980 read_value_memory (val, 0, value_stack (val),
3981 addr, value_contents_all_raw (val),
3ae385af 3982 type_length_units (type));
a58e2656
AB
3983 }
3984 else if (VALUE_LVAL (val) == lval_register)
3985 {
41b56feb 3986 struct frame_info *next_frame;
a58e2656
AB
3987 int regnum;
3988 struct type *type = check_typedef (value_type (val));
3989 struct value *new_val = val, *mark = value_mark ();
3990
3991 /* Offsets are not supported here; lazy register values must
3992 refer to the entire register. */
3993 gdb_assert (value_offset (val) == 0);
3994
3995 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3996 {
41b56feb 3997 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3998
41b56feb 3999 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
4000 regnum = VALUE_REGNUM (new_val);
4001
41b56feb 4002 gdb_assert (next_frame != NULL);
a58e2656
AB
4003
4004 /* Convertible register routines are used for multi-register
4005 values and for interpretation in different types
4006 (e.g. float or int from a double register). Lazy
4007 register values should have the register's natural type,
4008 so they do not apply. */
41b56feb 4009 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
4010 regnum, type));
4011
41b56feb
KB
4012 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4013 Since a "->next" operation was performed when setting
4014 this field, we do not need to perform a "next" operation
4015 again when unwinding the register. That's why
4016 frame_unwind_register_value() is called here instead of
4017 get_frame_register_value(). */
4018 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
4019
4020 /* If we get another lazy lval_register value, it means the
41b56feb
KB
4021 register is found by reading it from NEXT_FRAME's next frame.
4022 frame_unwind_register_value should never return a value with
4023 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
4024 either have two consecutive frames with the same frame id
4025 in the frame chain, or some code is trying to unwind
4026 behind get_prev_frame's back (e.g., a frame unwind
4027 sniffer trying to unwind), bypassing its validations. In
4028 any case, it should always be an internal error to end up
4029 in this situation. */
4030 if (VALUE_LVAL (new_val) == lval_register
4031 && value_lazy (new_val)
41b56feb 4032 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
4033 internal_error (__FILE__, __LINE__,
4034 _("infinite loop while fetching a register"));
a58e2656
AB
4035 }
4036
4037 /* If it's still lazy (for instance, a saved register on the
4038 stack), fetch it. */
4039 if (value_lazy (new_val))
4040 value_fetch_lazy (new_val);
4041
9a0dc9e3
PA
4042 /* Copy the contents and the unavailability/optimized-out
4043 meta-data from NEW_VAL to VAL. */
4044 set_value_lazy (val, 0);
4045 value_contents_copy (val, value_embedded_offset (val),
4046 new_val, value_embedded_offset (new_val),
3ae385af 4047 type_length_units (type));
a58e2656
AB
4048
4049 if (frame_debug)
4050 {
4051 struct gdbarch *gdbarch;
41b56feb
KB
4052 struct frame_info *frame;
4053 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4054 so that the frame level will be shown correctly. */
a58e2656
AB
4055 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4056 regnum = VALUE_REGNUM (val);
4057 gdbarch = get_frame_arch (frame);
4058
4059 fprintf_unfiltered (gdb_stdlog,
4060 "{ value_fetch_lazy "
4061 "(frame=%d,regnum=%d(%s),...) ",
4062 frame_relative_level (frame), regnum,
4063 user_reg_map_regnum_to_name (gdbarch, regnum));
4064
4065 fprintf_unfiltered (gdb_stdlog, "->");
4066 if (value_optimized_out (new_val))
f6c01fc5
AB
4067 {
4068 fprintf_unfiltered (gdb_stdlog, " ");
4069 val_print_optimized_out (new_val, gdb_stdlog);
4070 }
a58e2656
AB
4071 else
4072 {
4073 int i;
4074 const gdb_byte *buf = value_contents (new_val);
4075
4076 if (VALUE_LVAL (new_val) == lval_register)
4077 fprintf_unfiltered (gdb_stdlog, " register=%d",
4078 VALUE_REGNUM (new_val));
4079 else if (VALUE_LVAL (new_val) == lval_memory)
4080 fprintf_unfiltered (gdb_stdlog, " address=%s",
4081 paddress (gdbarch,
4082 value_address (new_val)));
4083 else
4084 fprintf_unfiltered (gdb_stdlog, " computed");
4085
4086 fprintf_unfiltered (gdb_stdlog, " bytes=");
4087 fprintf_unfiltered (gdb_stdlog, "[");
4088 for (i = 0; i < register_size (gdbarch, regnum); i++)
4089 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4090 fprintf_unfiltered (gdb_stdlog, "]");
4091 }
4092
4093 fprintf_unfiltered (gdb_stdlog, " }\n");
4094 }
4095
4096 /* Dispose of the intermediate values. This prevents
4097 watchpoints from trying to watch the saved frame pointer. */
4098 value_free_to_mark (mark);
4099 }
4100 else if (VALUE_LVAL (val) == lval_computed
4101 && value_computed_funcs (val)->read != NULL)
4102 value_computed_funcs (val)->read (val);
a58e2656
AB
4103 else
4104 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4105
4106 set_value_lazy (val, 0);
a58e2656
AB
4107}
4108
a280dbd1
SDJ
4109/* Implementation of the convenience function $_isvoid. */
4110
4111static struct value *
4112isvoid_internal_fn (struct gdbarch *gdbarch,
4113 const struct language_defn *language,
4114 void *cookie, int argc, struct value **argv)
4115{
4116 int ret;
4117
4118 if (argc != 1)
6bc305f5 4119 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4120
4121 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4122
4123 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4124}
4125
c906108c 4126void
fba45db2 4127_initialize_values (void)
c906108c 4128{
1a966eab 4129 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4130Debugger convenience (\"$foo\") variables and functions.\n\
4131Convenience variables are created when you assign them values;\n\
4132thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4133\n\
c906108c
SS
4134A few convenience variables are given values automatically:\n\
4135\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4136\"$__\" holds the contents of the last address examined with \"x\"."
4137#ifdef HAVE_PYTHON
4138"\n\n\
4139Convenience functions are defined via the Python API."
4140#endif
4141 ), &showlist);
7e20dfcd 4142 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4143
db5f229b 4144 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4145Elements of value history around item number IDX (or last ten)."),
c906108c 4146 &showlist);
53e5f3cf
AS
4147
4148 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4149Initialize a convenience variable if necessary.\n\
4150init-if-undefined VARIABLE = EXPRESSION\n\
4151Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4152exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4153VARIABLE is already initialized."));
bc3b79fd
TJB
4154
4155 add_prefix_cmd ("function", no_class, function_command, _("\
4156Placeholder command for showing help on convenience functions."),
4157 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4158
4159 add_internal_function ("_isvoid", _("\
4160Check whether an expression is void.\n\
4161Usage: $_isvoid (expression)\n\
4162Return 1 if the expression is void, zero otherwise."),
4163 isvoid_internal_fn, NULL);
5fdf6324
AB
4164
4165 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4166 class_support, &max_value_size, _("\
4167Set maximum sized value gdb will load from the inferior."), _("\
4168Show maximum sized value gdb will load from the inferior."), _("\
4169Use this to control the maximum size, in bytes, of a value that gdb\n\
4170will load from the inferior. Setting this value to 'unlimited'\n\
4171disables checking.\n\
4172Setting this does not invalidate already allocated values, it only\n\
4173prevents future values, larger than this size, from being allocated."),
4174 set_max_value_size,
4175 show_max_value_size,
4176 &setlist, &showlist);
c906108c 4177}
This page took 2.016496 seconds and 4 git commands to generate.