* gdb.mi/gdb2549.exp (register_tests): Expect any decimal for
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
8acc9f48 3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "gdb_string.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
a08702d6 41#include "python/python.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
a58e2656 45#include "user-regs.h"
0914bcdb 46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
87784a47
TT
172/* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
91294c83
AC
175struct value
176{
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
203
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
206
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
91294c83 210
e848a8a5
TT
211 /* If the value has been released. */
212 unsigned int released : 1;
213
91294c83
AC
214 /* Location of value (if lval). */
215 union
216 {
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
220 CORE_ADDR address;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
5f5233d4
PA
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
c8f2448a
JK
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
5f5233d4 235 } computed;
91294c83
AC
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
251 int bitpos;
252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
a08702d6
TJB
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
91294c83
AC
320 struct value *next;
321
322 /* Register number if the value is from a register. */
323 short regnum;
324
3e3d7139
JG
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
327 gdb_byte *contents;
828d3400 328
4e07d55f
PA
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
91294c83
AC
333};
334
4e07d55f
PA
335int
336value_bytes_available (const struct value *value, int offset, int length)
337{
338 gdb_assert (!value->lazy);
339
340 return !ranges_contain (value->unavailable, offset, length);
341}
342
ec0a52e1
PA
343int
344value_entirely_available (struct value *value)
345{
346 /* We can only tell whether the whole value is available when we try
347 to read it. */
348 if (value->lazy)
349 value_fetch_lazy (value);
350
351 if (VEC_empty (range_s, value->unavailable))
352 return 1;
353 return 0;
354}
355
4e07d55f
PA
356void
357mark_value_bytes_unavailable (struct value *value, int offset, int length)
358{
359 range_s newr;
360 int i;
361
362 /* Insert the range sorted. If there's overlap or the new range
363 would be contiguous with an existing range, merge. */
364
365 newr.offset = offset;
366 newr.length = length;
367
368 /* Do a binary search for the position the given range would be
369 inserted if we only considered the starting OFFSET of ranges.
370 Call that position I. Since we also have LENGTH to care for
371 (this is a range afterall), we need to check if the _previous_
372 range overlaps the I range. E.g., calling R the new range:
373
374 #1 - overlaps with previous
375
376 R
377 |-...-|
378 |---| |---| |------| ... |--|
379 0 1 2 N
380
381 I=1
382
383 In the case #1 above, the binary search would return `I=1',
384 meaning, this OFFSET should be inserted at position 1, and the
385 current position 1 should be pushed further (and become 2). But,
386 note that `0' overlaps with R, so we want to merge them.
387
388 A similar consideration needs to be taken if the new range would
389 be contiguous with the previous range:
390
391 #2 - contiguous with previous
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=1
399
400 If there's no overlap with the previous range, as in:
401
402 #3 - not overlapping and not contiguous
403
404 R
405 |-...-|
406 |--| |---| |------| ... |--|
407 0 1 2 N
408
409 I=1
410
411 or if I is 0:
412
413 #4 - R is the range with lowest offset
414
415 R
416 |-...-|
417 |--| |---| |------| ... |--|
418 0 1 2 N
419
420 I=0
421
422 ... we just push the new range to I.
423
424 All the 4 cases above need to consider that the new range may
425 also overlap several of the ranges that follow, or that R may be
426 contiguous with the following range, and merge. E.g.,
427
428 #5 - overlapping following ranges
429
430 R
431 |------------------------|
432 |--| |---| |------| ... |--|
433 0 1 2 N
434
435 I=0
436
437 or:
438
439 R
440 |-------|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 */
447
448 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
449 if (i > 0)
450 {
6bfc80c7 451 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
452
453 if (ranges_overlap (bef->offset, bef->length, offset, length))
454 {
455 /* #1 */
456 ULONGEST l = min (bef->offset, offset);
457 ULONGEST h = max (bef->offset + bef->length, offset + length);
458
459 bef->offset = l;
460 bef->length = h - l;
461 i--;
462 }
463 else if (offset == bef->offset + bef->length)
464 {
465 /* #2 */
466 bef->length += length;
467 i--;
468 }
469 else
470 {
471 /* #3 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474 }
475 else
476 {
477 /* #4 */
478 VEC_safe_insert (range_s, value->unavailable, i, &newr);
479 }
480
481 /* Check whether the ranges following the one we've just added or
482 touched can be folded in (#5 above). */
483 if (i + 1 < VEC_length (range_s, value->unavailable))
484 {
485 struct range *t;
486 struct range *r;
487 int removed = 0;
488 int next = i + 1;
489
490 /* Get the range we just touched. */
491 t = VEC_index (range_s, value->unavailable, i);
492 removed = 0;
493
494 i = next;
495 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
496 if (r->offset <= t->offset + t->length)
497 {
498 ULONGEST l, h;
499
500 l = min (t->offset, r->offset);
501 h = max (t->offset + t->length, r->offset + r->length);
502
503 t->offset = l;
504 t->length = h - l;
505
506 removed++;
507 }
508 else
509 {
510 /* If we couldn't merge this one, we won't be able to
511 merge following ones either, since the ranges are
512 always sorted by OFFSET. */
513 break;
514 }
515
516 if (removed != 0)
517 VEC_block_remove (range_s, value->unavailable, next, removed);
518 }
519}
520
c8c1c22f
PA
521/* Find the first range in RANGES that overlaps the range defined by
522 OFFSET and LENGTH, starting at element POS in the RANGES vector,
523 Returns the index into RANGES where such overlapping range was
524 found, or -1 if none was found. */
525
526static int
527find_first_range_overlap (VEC(range_s) *ranges, int pos,
528 int offset, int length)
529{
530 range_s *r;
531 int i;
532
533 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
534 if (ranges_overlap (r->offset, r->length, offset, length))
535 return i;
536
537 return -1;
538}
539
540int
541value_available_contents_eq (const struct value *val1, int offset1,
542 const struct value *val2, int offset2,
543 int length)
544{
c8c1c22f 545 int idx1 = 0, idx2 = 0;
c8c1c22f 546
4eb59108 547 /* See function description in value.h. */
c8c1c22f
PA
548 gdb_assert (!val1->lazy && !val2->lazy);
549
c8c1c22f
PA
550 while (length > 0)
551 {
552 range_s *r1, *r2;
553 ULONGEST l1, h1;
554 ULONGEST l2, h2;
555
556 idx1 = find_first_range_overlap (val1->unavailable, idx1,
557 offset1, length);
558 idx2 = find_first_range_overlap (val2->unavailable, idx2,
559 offset2, length);
560
561 /* The usual case is for both values to be completely available. */
562 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
563 return (memcmp (val1->contents + offset1,
564 val2->contents + offset2,
565 length) == 0);
c8c1c22f
PA
566 /* The contents only match equal if the available set matches as
567 well. */
568 else if (idx1 == -1 || idx2 == -1)
569 return 0;
570
571 gdb_assert (idx1 != -1 && idx2 != -1);
572
573 r1 = VEC_index (range_s, val1->unavailable, idx1);
574 r2 = VEC_index (range_s, val2->unavailable, idx2);
575
576 /* Get the unavailable windows intersected by the incoming
577 ranges. The first and last ranges that overlap the argument
578 range may be wider than said incoming arguments ranges. */
579 l1 = max (offset1, r1->offset);
580 h1 = min (offset1 + length, r1->offset + r1->length);
581
582 l2 = max (offset2, r2->offset);
583 h2 = min (offset2 + length, r2->offset + r2->length);
584
585 /* Make them relative to the respective start offsets, so we can
586 compare them for equality. */
587 l1 -= offset1;
588 h1 -= offset1;
589
590 l2 -= offset2;
591 h2 -= offset2;
592
593 /* Different availability, no match. */
594 if (l1 != l2 || h1 != h2)
595 return 0;
596
597 /* Compare the _available_ contents. */
cd24cfaa
PA
598 if (memcmp (val1->contents + offset1,
599 val2->contents + offset2,
600 l1) != 0)
c8c1c22f
PA
601 return 0;
602
c8c1c22f
PA
603 length -= h1;
604 offset1 += h1;
605 offset2 += h1;
606 }
607
608 return 1;
609}
610
581e13c1 611/* Prototypes for local functions. */
c906108c 612
a14ed312 613static void show_values (char *, int);
c906108c 614
a14ed312 615static void show_convenience (char *, int);
c906108c 616
c906108c
SS
617
618/* The value-history records all the values printed
619 by print commands during this session. Each chunk
620 records 60 consecutive values. The first chunk on
621 the chain records the most recent values.
622 The total number of values is in value_history_count. */
623
624#define VALUE_HISTORY_CHUNK 60
625
626struct value_history_chunk
c5aa993b
JM
627 {
628 struct value_history_chunk *next;
f23631e4 629 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 630 };
c906108c
SS
631
632/* Chain of chunks now in use. */
633
634static struct value_history_chunk *value_history_chain;
635
581e13c1 636static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 637
c906108c
SS
638\f
639/* List of all value objects currently allocated
640 (except for those released by calls to release_value)
641 This is so they can be freed after each command. */
642
f23631e4 643static struct value *all_values;
c906108c 644
3e3d7139
JG
645/* Allocate a lazy value for type TYPE. Its actual content is
646 "lazily" allocated too: the content field of the return value is
647 NULL; it will be allocated when it is fetched from the target. */
c906108c 648
f23631e4 649struct value *
3e3d7139 650allocate_value_lazy (struct type *type)
c906108c 651{
f23631e4 652 struct value *val;
c54eabfa
JK
653
654 /* Call check_typedef on our type to make sure that, if TYPE
655 is a TYPE_CODE_TYPEDEF, its length is set to the length
656 of the target type instead of zero. However, we do not
657 replace the typedef type by the target type, because we want
658 to keep the typedef in order to be able to set the VAL's type
659 description correctly. */
660 check_typedef (type);
c906108c 661
3e3d7139
JG
662 val = (struct value *) xzalloc (sizeof (struct value));
663 val->contents = NULL;
df407dfe 664 val->next = all_values;
c906108c 665 all_values = val;
df407dfe 666 val->type = type;
4754a64e 667 val->enclosing_type = type;
c906108c 668 VALUE_LVAL (val) = not_lval;
42ae5230 669 val->location.address = 0;
1df6926e 670 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
671 val->offset = 0;
672 val->bitpos = 0;
673 val->bitsize = 0;
9ee8fc9d 674 VALUE_REGNUM (val) = -1;
3e3d7139 675 val->lazy = 1;
feb13ab0 676 val->optimized_out = 0;
13c3b5f5 677 val->embedded_offset = 0;
b44d461b 678 val->pointed_to_offset = 0;
c906108c 679 val->modifiable = 1;
42be36b3 680 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
681
682 /* Values start out on the all_values chain. */
683 val->reference_count = 1;
684
c906108c
SS
685 return val;
686}
687
3e3d7139
JG
688/* Allocate the contents of VAL if it has not been allocated yet. */
689
690void
691allocate_value_contents (struct value *val)
692{
693 if (!val->contents)
694 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
695}
696
697/* Allocate a value and its contents for type TYPE. */
698
699struct value *
700allocate_value (struct type *type)
701{
702 struct value *val = allocate_value_lazy (type);
a109c7c1 703
3e3d7139
JG
704 allocate_value_contents (val);
705 val->lazy = 0;
706 return val;
707}
708
c906108c 709/* Allocate a value that has the correct length
938f5214 710 for COUNT repetitions of type TYPE. */
c906108c 711
f23631e4 712struct value *
fba45db2 713allocate_repeat_value (struct type *type, int count)
c906108c 714{
c5aa993b 715 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
716 /* FIXME-type-allocation: need a way to free this type when we are
717 done with it. */
e3506a9f
UW
718 struct type *array_type
719 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 720
e3506a9f 721 return allocate_value (array_type);
c906108c
SS
722}
723
5f5233d4
PA
724struct value *
725allocate_computed_value (struct type *type,
c8f2448a 726 const struct lval_funcs *funcs,
5f5233d4
PA
727 void *closure)
728{
41e8491f 729 struct value *v = allocate_value_lazy (type);
a109c7c1 730
5f5233d4
PA
731 VALUE_LVAL (v) = lval_computed;
732 v->location.computed.funcs = funcs;
733 v->location.computed.closure = closure;
5f5233d4
PA
734
735 return v;
736}
737
a7035dbb
JK
738/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
739
740struct value *
741allocate_optimized_out_value (struct type *type)
742{
743 struct value *retval = allocate_value_lazy (type);
744
745 set_value_optimized_out (retval, 1);
746
747 return retval;
748}
749
df407dfe
AC
750/* Accessor methods. */
751
17cf0ecd
AC
752struct value *
753value_next (struct value *value)
754{
755 return value->next;
756}
757
df407dfe 758struct type *
0e03807e 759value_type (const struct value *value)
df407dfe
AC
760{
761 return value->type;
762}
04624583
AC
763void
764deprecated_set_value_type (struct value *value, struct type *type)
765{
766 value->type = type;
767}
df407dfe
AC
768
769int
0e03807e 770value_offset (const struct value *value)
df407dfe
AC
771{
772 return value->offset;
773}
f5cf64a7
AC
774void
775set_value_offset (struct value *value, int offset)
776{
777 value->offset = offset;
778}
df407dfe
AC
779
780int
0e03807e 781value_bitpos (const struct value *value)
df407dfe
AC
782{
783 return value->bitpos;
784}
9bbda503
AC
785void
786set_value_bitpos (struct value *value, int bit)
787{
788 value->bitpos = bit;
789}
df407dfe
AC
790
791int
0e03807e 792value_bitsize (const struct value *value)
df407dfe
AC
793{
794 return value->bitsize;
795}
9bbda503
AC
796void
797set_value_bitsize (struct value *value, int bit)
798{
799 value->bitsize = bit;
800}
df407dfe 801
4ea48cc1
DJ
802struct value *
803value_parent (struct value *value)
804{
805 return value->parent;
806}
807
53ba8333
JB
808/* See value.h. */
809
810void
811set_value_parent (struct value *value, struct value *parent)
812{
40501e00
TT
813 struct value *old = value->parent;
814
53ba8333 815 value->parent = parent;
40501e00
TT
816 if (parent != NULL)
817 value_incref (parent);
818 value_free (old);
53ba8333
JB
819}
820
fc1a4b47 821gdb_byte *
990a07ab
AC
822value_contents_raw (struct value *value)
823{
3e3d7139
JG
824 allocate_value_contents (value);
825 return value->contents + value->embedded_offset;
990a07ab
AC
826}
827
fc1a4b47 828gdb_byte *
990a07ab
AC
829value_contents_all_raw (struct value *value)
830{
3e3d7139
JG
831 allocate_value_contents (value);
832 return value->contents;
990a07ab
AC
833}
834
4754a64e
AC
835struct type *
836value_enclosing_type (struct value *value)
837{
838 return value->enclosing_type;
839}
840
8264ba82
AG
841/* Look at value.h for description. */
842
843struct type *
844value_actual_type (struct value *value, int resolve_simple_types,
845 int *real_type_found)
846{
847 struct value_print_options opts;
8264ba82
AG
848 struct type *result;
849
850 get_user_print_options (&opts);
851
852 if (real_type_found)
853 *real_type_found = 0;
854 result = value_type (value);
855 if (opts.objectprint)
856 {
5e34c6c3
LM
857 /* If result's target type is TYPE_CODE_STRUCT, proceed to
858 fetch its rtti type. */
859 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 860 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
861 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
862 == TYPE_CODE_STRUCT)
8264ba82
AG
863 {
864 struct type *real_type;
865
866 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
867 if (real_type)
868 {
869 if (real_type_found)
870 *real_type_found = 1;
871 result = real_type;
872 }
873 }
874 else if (resolve_simple_types)
875 {
876 if (real_type_found)
877 *real_type_found = 1;
878 result = value_enclosing_type (value);
879 }
880 }
881
882 return result;
883}
884
0e03807e 885static void
4e07d55f 886require_not_optimized_out (const struct value *value)
0e03807e
TT
887{
888 if (value->optimized_out)
889 error (_("value has been optimized out"));
890}
891
4e07d55f
PA
892static void
893require_available (const struct value *value)
894{
895 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 896 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
897}
898
fc1a4b47 899const gdb_byte *
0e03807e 900value_contents_for_printing (struct value *value)
46615f07
AC
901{
902 if (value->lazy)
903 value_fetch_lazy (value);
3e3d7139 904 return value->contents;
46615f07
AC
905}
906
de4127a3
PA
907const gdb_byte *
908value_contents_for_printing_const (const struct value *value)
909{
910 gdb_assert (!value->lazy);
911 return value->contents;
912}
913
0e03807e
TT
914const gdb_byte *
915value_contents_all (struct value *value)
916{
917 const gdb_byte *result = value_contents_for_printing (value);
918 require_not_optimized_out (value);
4e07d55f 919 require_available (value);
0e03807e
TT
920 return result;
921}
922
29976f3f
PA
923/* Copy LENGTH bytes of SRC value's (all) contents
924 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
925 contents, starting at DST_OFFSET. If unavailable contents are
926 being copied from SRC, the corresponding DST contents are marked
927 unavailable accordingly. Neither DST nor SRC may be lazy
928 values.
929
930 It is assumed the contents of DST in the [DST_OFFSET,
931 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
932
933void
934value_contents_copy_raw (struct value *dst, int dst_offset,
935 struct value *src, int src_offset, int length)
936{
937 range_s *r;
938 int i;
939
940 /* A lazy DST would make that this copy operation useless, since as
941 soon as DST's contents were un-lazied (by a later value_contents
942 call, say), the contents would be overwritten. A lazy SRC would
943 mean we'd be copying garbage. */
944 gdb_assert (!dst->lazy && !src->lazy);
945
29976f3f
PA
946 /* The overwritten DST range gets unavailability ORed in, not
947 replaced. Make sure to remember to implement replacing if it
948 turns out actually necessary. */
949 gdb_assert (value_bytes_available (dst, dst_offset, length));
950
39d37385
PA
951 /* Copy the data. */
952 memcpy (value_contents_all_raw (dst) + dst_offset,
953 value_contents_all_raw (src) + src_offset,
954 length);
955
956 /* Copy the meta-data, adjusted. */
957 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
958 {
959 ULONGEST h, l;
960
961 l = max (r->offset, src_offset);
962 h = min (r->offset + r->length, src_offset + length);
963
964 if (l < h)
965 mark_value_bytes_unavailable (dst,
966 dst_offset + (l - src_offset),
967 h - l);
968 }
969}
970
29976f3f
PA
971/* Copy LENGTH bytes of SRC value's (all) contents
972 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
973 (all) contents, starting at DST_OFFSET. If unavailable contents
974 are being copied from SRC, the corresponding DST contents are
975 marked unavailable accordingly. DST must not be lazy. If SRC is
976 lazy, it will be fetched now. If SRC is not valid (is optimized
977 out), an error is thrown.
978
979 It is assumed the contents of DST in the [DST_OFFSET,
980 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
981
982void
983value_contents_copy (struct value *dst, int dst_offset,
984 struct value *src, int src_offset, int length)
985{
986 require_not_optimized_out (src);
987
988 if (src->lazy)
989 value_fetch_lazy (src);
990
991 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
992}
993
d69fe07e
AC
994int
995value_lazy (struct value *value)
996{
997 return value->lazy;
998}
999
dfa52d88
AC
1000void
1001set_value_lazy (struct value *value, int val)
1002{
1003 value->lazy = val;
1004}
1005
4e5d721f
DE
1006int
1007value_stack (struct value *value)
1008{
1009 return value->stack;
1010}
1011
1012void
1013set_value_stack (struct value *value, int val)
1014{
1015 value->stack = val;
1016}
1017
fc1a4b47 1018const gdb_byte *
0fd88904
AC
1019value_contents (struct value *value)
1020{
0e03807e
TT
1021 const gdb_byte *result = value_contents_writeable (value);
1022 require_not_optimized_out (value);
4e07d55f 1023 require_available (value);
0e03807e 1024 return result;
0fd88904
AC
1025}
1026
fc1a4b47 1027gdb_byte *
0fd88904
AC
1028value_contents_writeable (struct value *value)
1029{
1030 if (value->lazy)
1031 value_fetch_lazy (value);
fc0c53a0 1032 return value_contents_raw (value);
0fd88904
AC
1033}
1034
a6c442d8
MK
1035/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1036 this function is different from value_equal; in C the operator ==
1037 can return 0 even if the two values being compared are equal. */
1038
1039int
1040value_contents_equal (struct value *val1, struct value *val2)
1041{
1042 struct type *type1;
1043 struct type *type2;
a6c442d8
MK
1044
1045 type1 = check_typedef (value_type (val1));
1046 type2 = check_typedef (value_type (val2));
744a8059 1047 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
a6c442d8
MK
1048 return 0;
1049
744a8059
SP
1050 return (memcmp (value_contents (val1), value_contents (val2),
1051 TYPE_LENGTH (type1)) == 0);
a6c442d8
MK
1052}
1053
feb13ab0
AC
1054int
1055value_optimized_out (struct value *value)
1056{
691a26f5
AB
1057 /* We can only know if a value is optimized out once we have tried to
1058 fetch it. */
1059 if (!value->optimized_out && value->lazy)
1060 value_fetch_lazy (value);
1061
feb13ab0
AC
1062 return value->optimized_out;
1063}
1064
1065void
1066set_value_optimized_out (struct value *value, int val)
1067{
1068 value->optimized_out = val;
1069}
13c3b5f5 1070
0e03807e
TT
1071int
1072value_entirely_optimized_out (const struct value *value)
1073{
1074 if (!value->optimized_out)
1075 return 0;
1076 if (value->lval != lval_computed
ba19bb4d 1077 || !value->location.computed.funcs->check_any_valid)
0e03807e 1078 return 1;
b65c7efe 1079 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1080}
1081
1082int
1083value_bits_valid (const struct value *value, int offset, int length)
1084{
e7303042 1085 if (!value->optimized_out)
0e03807e
TT
1086 return 1;
1087 if (value->lval != lval_computed
1088 || !value->location.computed.funcs->check_validity)
58722cac 1089 return 1;
0e03807e
TT
1090 return value->location.computed.funcs->check_validity (value, offset,
1091 length);
1092}
1093
8cf6f0b1
TT
1094int
1095value_bits_synthetic_pointer (const struct value *value,
1096 int offset, int length)
1097{
e7303042 1098 if (value->lval != lval_computed
8cf6f0b1
TT
1099 || !value->location.computed.funcs->check_synthetic_pointer)
1100 return 0;
1101 return value->location.computed.funcs->check_synthetic_pointer (value,
1102 offset,
1103 length);
1104}
1105
13c3b5f5
AC
1106int
1107value_embedded_offset (struct value *value)
1108{
1109 return value->embedded_offset;
1110}
1111
1112void
1113set_value_embedded_offset (struct value *value, int val)
1114{
1115 value->embedded_offset = val;
1116}
b44d461b
AC
1117
1118int
1119value_pointed_to_offset (struct value *value)
1120{
1121 return value->pointed_to_offset;
1122}
1123
1124void
1125set_value_pointed_to_offset (struct value *value, int val)
1126{
1127 value->pointed_to_offset = val;
1128}
13bb5560 1129
c8f2448a 1130const struct lval_funcs *
a471c594 1131value_computed_funcs (const struct value *v)
5f5233d4 1132{
a471c594 1133 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1134
1135 return v->location.computed.funcs;
1136}
1137
1138void *
0e03807e 1139value_computed_closure (const struct value *v)
5f5233d4 1140{
0e03807e 1141 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1142
1143 return v->location.computed.closure;
1144}
1145
13bb5560
AC
1146enum lval_type *
1147deprecated_value_lval_hack (struct value *value)
1148{
1149 return &value->lval;
1150}
1151
a471c594
JK
1152enum lval_type
1153value_lval_const (const struct value *value)
1154{
1155 return value->lval;
1156}
1157
42ae5230 1158CORE_ADDR
de4127a3 1159value_address (const struct value *value)
42ae5230
TT
1160{
1161 if (value->lval == lval_internalvar
1162 || value->lval == lval_internalvar_component)
1163 return 0;
53ba8333
JB
1164 if (value->parent != NULL)
1165 return value_address (value->parent) + value->offset;
1166 else
1167 return value->location.address + value->offset;
42ae5230
TT
1168}
1169
1170CORE_ADDR
1171value_raw_address (struct value *value)
1172{
1173 if (value->lval == lval_internalvar
1174 || value->lval == lval_internalvar_component)
1175 return 0;
1176 return value->location.address;
1177}
1178
1179void
1180set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1181{
42ae5230
TT
1182 gdb_assert (value->lval != lval_internalvar
1183 && value->lval != lval_internalvar_component);
1184 value->location.address = addr;
13bb5560
AC
1185}
1186
1187struct internalvar **
1188deprecated_value_internalvar_hack (struct value *value)
1189{
1190 return &value->location.internalvar;
1191}
1192
1193struct frame_id *
1194deprecated_value_frame_id_hack (struct value *value)
1195{
1196 return &value->frame_id;
1197}
1198
1199short *
1200deprecated_value_regnum_hack (struct value *value)
1201{
1202 return &value->regnum;
1203}
88e3b34b
AC
1204
1205int
1206deprecated_value_modifiable (struct value *value)
1207{
1208 return value->modifiable;
1209}
990a07ab 1210\f
c906108c
SS
1211/* Return a mark in the value chain. All values allocated after the
1212 mark is obtained (except for those released) are subject to being freed
1213 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1214struct value *
fba45db2 1215value_mark (void)
c906108c
SS
1216{
1217 return all_values;
1218}
1219
828d3400
DJ
1220/* Take a reference to VAL. VAL will not be deallocated until all
1221 references are released. */
1222
1223void
1224value_incref (struct value *val)
1225{
1226 val->reference_count++;
1227}
1228
1229/* Release a reference to VAL, which was acquired with value_incref.
1230 This function is also called to deallocate values from the value
1231 chain. */
1232
3e3d7139
JG
1233void
1234value_free (struct value *val)
1235{
1236 if (val)
5f5233d4 1237 {
828d3400
DJ
1238 gdb_assert (val->reference_count > 0);
1239 val->reference_count--;
1240 if (val->reference_count > 0)
1241 return;
1242
4ea48cc1
DJ
1243 /* If there's an associated parent value, drop our reference to
1244 it. */
1245 if (val->parent != NULL)
1246 value_free (val->parent);
1247
5f5233d4
PA
1248 if (VALUE_LVAL (val) == lval_computed)
1249 {
c8f2448a 1250 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1251
1252 if (funcs->free_closure)
1253 funcs->free_closure (val);
1254 }
1255
1256 xfree (val->contents);
4e07d55f 1257 VEC_free (range_s, val->unavailable);
5f5233d4 1258 }
3e3d7139
JG
1259 xfree (val);
1260}
1261
c906108c
SS
1262/* Free all values allocated since MARK was obtained by value_mark
1263 (except for those released). */
1264void
f23631e4 1265value_free_to_mark (struct value *mark)
c906108c 1266{
f23631e4
AC
1267 struct value *val;
1268 struct value *next;
c906108c
SS
1269
1270 for (val = all_values; val && val != mark; val = next)
1271 {
df407dfe 1272 next = val->next;
e848a8a5 1273 val->released = 1;
c906108c
SS
1274 value_free (val);
1275 }
1276 all_values = val;
1277}
1278
1279/* Free all the values that have been allocated (except for those released).
725e88af
DE
1280 Call after each command, successful or not.
1281 In practice this is called before each command, which is sufficient. */
c906108c
SS
1282
1283void
fba45db2 1284free_all_values (void)
c906108c 1285{
f23631e4
AC
1286 struct value *val;
1287 struct value *next;
c906108c
SS
1288
1289 for (val = all_values; val; val = next)
1290 {
df407dfe 1291 next = val->next;
e848a8a5 1292 val->released = 1;
c906108c
SS
1293 value_free (val);
1294 }
1295
1296 all_values = 0;
1297}
1298
0cf6dd15
TJB
1299/* Frees all the elements in a chain of values. */
1300
1301void
1302free_value_chain (struct value *v)
1303{
1304 struct value *next;
1305
1306 for (; v; v = next)
1307 {
1308 next = value_next (v);
1309 value_free (v);
1310 }
1311}
1312
c906108c
SS
1313/* Remove VAL from the chain all_values
1314 so it will not be freed automatically. */
1315
1316void
f23631e4 1317release_value (struct value *val)
c906108c 1318{
f23631e4 1319 struct value *v;
c906108c
SS
1320
1321 if (all_values == val)
1322 {
1323 all_values = val->next;
06a64a0b 1324 val->next = NULL;
e848a8a5 1325 val->released = 1;
c906108c
SS
1326 return;
1327 }
1328
1329 for (v = all_values; v; v = v->next)
1330 {
1331 if (v->next == val)
1332 {
1333 v->next = val->next;
06a64a0b 1334 val->next = NULL;
e848a8a5 1335 val->released = 1;
c906108c
SS
1336 break;
1337 }
1338 }
1339}
1340
e848a8a5
TT
1341/* If the value is not already released, release it.
1342 If the value is already released, increment its reference count.
1343 That is, this function ensures that the value is released from the
1344 value chain and that the caller owns a reference to it. */
1345
1346void
1347release_value_or_incref (struct value *val)
1348{
1349 if (val->released)
1350 value_incref (val);
1351 else
1352 release_value (val);
1353}
1354
c906108c 1355/* Release all values up to mark */
f23631e4
AC
1356struct value *
1357value_release_to_mark (struct value *mark)
c906108c 1358{
f23631e4
AC
1359 struct value *val;
1360 struct value *next;
c906108c 1361
df407dfe 1362 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1363 {
1364 if (next->next == mark)
1365 {
1366 all_values = next->next;
1367 next->next = NULL;
1368 return val;
1369 }
1370 next->released = 1;
1371 }
c906108c
SS
1372 all_values = 0;
1373 return val;
1374}
1375
1376/* Return a copy of the value ARG.
1377 It contains the same contents, for same memory address,
1378 but it's a different block of storage. */
1379
f23631e4
AC
1380struct value *
1381value_copy (struct value *arg)
c906108c 1382{
4754a64e 1383 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1384 struct value *val;
1385
1386 if (value_lazy (arg))
1387 val = allocate_value_lazy (encl_type);
1388 else
1389 val = allocate_value (encl_type);
df407dfe 1390 val->type = arg->type;
c906108c 1391 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1392 val->location = arg->location;
df407dfe
AC
1393 val->offset = arg->offset;
1394 val->bitpos = arg->bitpos;
1395 val->bitsize = arg->bitsize;
1df6926e 1396 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1397 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1398 val->lazy = arg->lazy;
feb13ab0 1399 val->optimized_out = arg->optimized_out;
13c3b5f5 1400 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1401 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1402 val->modifiable = arg->modifiable;
d69fe07e 1403 if (!value_lazy (val))
c906108c 1404 {
990a07ab 1405 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1406 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1407
1408 }
4e07d55f 1409 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1410 set_value_parent (val, arg->parent);
5f5233d4
PA
1411 if (VALUE_LVAL (val) == lval_computed)
1412 {
c8f2448a 1413 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1414
1415 if (funcs->copy_closure)
1416 val->location.computed.closure = funcs->copy_closure (val);
1417 }
c906108c
SS
1418 return val;
1419}
74bcbdf3 1420
c37f7098
KW
1421/* Return a version of ARG that is non-lvalue. */
1422
1423struct value *
1424value_non_lval (struct value *arg)
1425{
1426 if (VALUE_LVAL (arg) != not_lval)
1427 {
1428 struct type *enc_type = value_enclosing_type (arg);
1429 struct value *val = allocate_value (enc_type);
1430
1431 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1432 TYPE_LENGTH (enc_type));
1433 val->type = arg->type;
1434 set_value_embedded_offset (val, value_embedded_offset (arg));
1435 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1436 return val;
1437 }
1438 return arg;
1439}
1440
74bcbdf3 1441void
0e03807e
TT
1442set_value_component_location (struct value *component,
1443 const struct value *whole)
74bcbdf3 1444{
0e03807e 1445 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1446 VALUE_LVAL (component) = lval_internalvar_component;
1447 else
0e03807e 1448 VALUE_LVAL (component) = whole->lval;
5f5233d4 1449
74bcbdf3 1450 component->location = whole->location;
0e03807e 1451 if (whole->lval == lval_computed)
5f5233d4 1452 {
c8f2448a 1453 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1454
1455 if (funcs->copy_closure)
1456 component->location.computed.closure = funcs->copy_closure (whole);
1457 }
74bcbdf3
PA
1458}
1459
c906108c
SS
1460\f
1461/* Access to the value history. */
1462
1463/* Record a new value in the value history.
1464 Returns the absolute history index of the entry.
1465 Result of -1 indicates the value was not saved; otherwise it is the
1466 value history index of this new item. */
1467
1468int
f23631e4 1469record_latest_value (struct value *val)
c906108c
SS
1470{
1471 int i;
1472
1473 /* We don't want this value to have anything to do with the inferior anymore.
1474 In particular, "set $1 = 50" should not affect the variable from which
1475 the value was taken, and fast watchpoints should be able to assume that
1476 a value on the value history never changes. */
d69fe07e 1477 if (value_lazy (val))
c906108c
SS
1478 value_fetch_lazy (val);
1479 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1480 from. This is a bit dubious, because then *&$1 does not just return $1
1481 but the current contents of that location. c'est la vie... */
1482 val->modifiable = 0;
1483 release_value (val);
1484
1485 /* Here we treat value_history_count as origin-zero
1486 and applying to the value being stored now. */
1487
1488 i = value_history_count % VALUE_HISTORY_CHUNK;
1489 if (i == 0)
1490 {
f23631e4 1491 struct value_history_chunk *new
a109c7c1
MS
1492 = (struct value_history_chunk *)
1493
c5aa993b 1494 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1495 memset (new->values, 0, sizeof new->values);
1496 new->next = value_history_chain;
1497 value_history_chain = new;
1498 }
1499
1500 value_history_chain->values[i] = val;
1501
1502 /* Now we regard value_history_count as origin-one
1503 and applying to the value just stored. */
1504
1505 return ++value_history_count;
1506}
1507
1508/* Return a copy of the value in the history with sequence number NUM. */
1509
f23631e4 1510struct value *
fba45db2 1511access_value_history (int num)
c906108c 1512{
f23631e4 1513 struct value_history_chunk *chunk;
52f0bd74
AC
1514 int i;
1515 int absnum = num;
c906108c
SS
1516
1517 if (absnum <= 0)
1518 absnum += value_history_count;
1519
1520 if (absnum <= 0)
1521 {
1522 if (num == 0)
8a3fe4f8 1523 error (_("The history is empty."));
c906108c 1524 else if (num == 1)
8a3fe4f8 1525 error (_("There is only one value in the history."));
c906108c 1526 else
8a3fe4f8 1527 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1528 }
1529 if (absnum > value_history_count)
8a3fe4f8 1530 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1531
1532 absnum--;
1533
1534 /* Now absnum is always absolute and origin zero. */
1535
1536 chunk = value_history_chain;
3e43a32a
MS
1537 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1538 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1539 i > 0; i--)
1540 chunk = chunk->next;
1541
1542 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1543}
1544
c906108c 1545static void
fba45db2 1546show_values (char *num_exp, int from_tty)
c906108c 1547{
52f0bd74 1548 int i;
f23631e4 1549 struct value *val;
c906108c
SS
1550 static int num = 1;
1551
1552 if (num_exp)
1553 {
f132ba9d
TJB
1554 /* "show values +" should print from the stored position.
1555 "show values <exp>" should print around value number <exp>. */
c906108c 1556 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1557 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1558 }
1559 else
1560 {
f132ba9d 1561 /* "show values" means print the last 10 values. */
c906108c
SS
1562 num = value_history_count - 9;
1563 }
1564
1565 if (num <= 0)
1566 num = 1;
1567
1568 for (i = num; i < num + 10 && i <= value_history_count; i++)
1569 {
79a45b7d 1570 struct value_print_options opts;
a109c7c1 1571
c906108c 1572 val = access_value_history (i);
a3f17187 1573 printf_filtered (("$%d = "), i);
79a45b7d
TT
1574 get_user_print_options (&opts);
1575 value_print (val, gdb_stdout, &opts);
a3f17187 1576 printf_filtered (("\n"));
c906108c
SS
1577 }
1578
f132ba9d 1579 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1580 num += 10;
1581
1582 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1583 "show values +". If num_exp is null, this is unnecessary, since
1584 "show values +" is not useful after "show values". */
c906108c
SS
1585 if (from_tty && num_exp)
1586 {
1587 num_exp[0] = '+';
1588 num_exp[1] = '\0';
1589 }
1590}
1591\f
1592/* Internal variables. These are variables within the debugger
1593 that hold values assigned by debugger commands.
1594 The user refers to them with a '$' prefix
1595 that does not appear in the variable names stored internally. */
1596
4fa62494
UW
1597struct internalvar
1598{
1599 struct internalvar *next;
1600 char *name;
4fa62494 1601
78267919
UW
1602 /* We support various different kinds of content of an internal variable.
1603 enum internalvar_kind specifies the kind, and union internalvar_data
1604 provides the data associated with this particular kind. */
1605
1606 enum internalvar_kind
1607 {
1608 /* The internal variable is empty. */
1609 INTERNALVAR_VOID,
1610
1611 /* The value of the internal variable is provided directly as
1612 a GDB value object. */
1613 INTERNALVAR_VALUE,
1614
1615 /* A fresh value is computed via a call-back routine on every
1616 access to the internal variable. */
1617 INTERNALVAR_MAKE_VALUE,
4fa62494 1618
78267919
UW
1619 /* The internal variable holds a GDB internal convenience function. */
1620 INTERNALVAR_FUNCTION,
1621
cab0c772
UW
1622 /* The variable holds an integer value. */
1623 INTERNALVAR_INTEGER,
1624
78267919
UW
1625 /* The variable holds a GDB-provided string. */
1626 INTERNALVAR_STRING,
1627
1628 } kind;
4fa62494 1629
4fa62494
UW
1630 union internalvar_data
1631 {
78267919
UW
1632 /* A value object used with INTERNALVAR_VALUE. */
1633 struct value *value;
1634
1635 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1636 struct
1637 {
1638 /* The functions to call. */
1639 const struct internalvar_funcs *functions;
1640
1641 /* The function's user-data. */
1642 void *data;
1643 } make_value;
78267919
UW
1644
1645 /* The internal function used with INTERNALVAR_FUNCTION. */
1646 struct
1647 {
1648 struct internal_function *function;
1649 /* True if this is the canonical name for the function. */
1650 int canonical;
1651 } fn;
1652
cab0c772 1653 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1654 struct
1655 {
1656 /* If type is non-NULL, it will be used as the type to generate
1657 a value for this internal variable. If type is NULL, a default
1658 integer type for the architecture is used. */
1659 struct type *type;
cab0c772
UW
1660 LONGEST val;
1661 } integer;
1662
78267919
UW
1663 /* A string value used with INTERNALVAR_STRING. */
1664 char *string;
4fa62494
UW
1665 } u;
1666};
1667
c906108c
SS
1668static struct internalvar *internalvars;
1669
3e43a32a
MS
1670/* If the variable does not already exist create it and give it the
1671 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1672static void
1673init_if_undefined_command (char* args, int from_tty)
1674{
1675 struct internalvar* intvar;
1676
1677 /* Parse the expression - this is taken from set_command(). */
1678 struct expression *expr = parse_expression (args);
1679 register struct cleanup *old_chain =
1680 make_cleanup (free_current_contents, &expr);
1681
1682 /* Validate the expression.
1683 Was the expression an assignment?
1684 Or even an expression at all? */
1685 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1686 error (_("Init-if-undefined requires an assignment expression."));
1687
1688 /* Extract the variable from the parsed expression.
1689 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1690 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1691 error (_("The first parameter to init-if-undefined "
1692 "should be a GDB variable."));
53e5f3cf
AS
1693 intvar = expr->elts[2].internalvar;
1694
1695 /* Only evaluate the expression if the lvalue is void.
1696 This may still fail if the expresssion is invalid. */
78267919 1697 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1698 evaluate_expression (expr);
1699
1700 do_cleanups (old_chain);
1701}
1702
1703
c906108c
SS
1704/* Look up an internal variable with name NAME. NAME should not
1705 normally include a dollar sign.
1706
1707 If the specified internal variable does not exist,
c4a3d09a 1708 the return value is NULL. */
c906108c
SS
1709
1710struct internalvar *
bc3b79fd 1711lookup_only_internalvar (const char *name)
c906108c 1712{
52f0bd74 1713 struct internalvar *var;
c906108c
SS
1714
1715 for (var = internalvars; var; var = var->next)
5cb316ef 1716 if (strcmp (var->name, name) == 0)
c906108c
SS
1717 return var;
1718
c4a3d09a
MF
1719 return NULL;
1720}
1721
d55637df
TT
1722/* Complete NAME by comparing it to the names of internal variables.
1723 Returns a vector of newly allocated strings, or NULL if no matches
1724 were found. */
1725
1726VEC (char_ptr) *
1727complete_internalvar (const char *name)
1728{
1729 VEC (char_ptr) *result = NULL;
1730 struct internalvar *var;
1731 int len;
1732
1733 len = strlen (name);
1734
1735 for (var = internalvars; var; var = var->next)
1736 if (strncmp (var->name, name, len) == 0)
1737 {
1738 char *r = xstrdup (var->name);
1739
1740 VEC_safe_push (char_ptr, result, r);
1741 }
1742
1743 return result;
1744}
c4a3d09a
MF
1745
1746/* Create an internal variable with name NAME and with a void value.
1747 NAME should not normally include a dollar sign. */
1748
1749struct internalvar *
bc3b79fd 1750create_internalvar (const char *name)
c4a3d09a
MF
1751{
1752 struct internalvar *var;
a109c7c1 1753
c906108c 1754 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1755 var->name = concat (name, (char *)NULL);
78267919 1756 var->kind = INTERNALVAR_VOID;
c906108c
SS
1757 var->next = internalvars;
1758 internalvars = var;
1759 return var;
1760}
1761
4aa995e1
PA
1762/* Create an internal variable with name NAME and register FUN as the
1763 function that value_of_internalvar uses to create a value whenever
1764 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1765 dollar sign. DATA is passed uninterpreted to FUN when it is
1766 called. CLEANUP, if not NULL, is called when the internal variable
1767 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1768
1769struct internalvar *
22d2b532
SDJ
1770create_internalvar_type_lazy (const char *name,
1771 const struct internalvar_funcs *funcs,
1772 void *data)
4aa995e1 1773{
4fa62494 1774 struct internalvar *var = create_internalvar (name);
a109c7c1 1775
78267919 1776 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1777 var->u.make_value.functions = funcs;
1778 var->u.make_value.data = data;
4aa995e1
PA
1779 return var;
1780}
c4a3d09a 1781
22d2b532
SDJ
1782/* See documentation in value.h. */
1783
1784int
1785compile_internalvar_to_ax (struct internalvar *var,
1786 struct agent_expr *expr,
1787 struct axs_value *value)
1788{
1789 if (var->kind != INTERNALVAR_MAKE_VALUE
1790 || var->u.make_value.functions->compile_to_ax == NULL)
1791 return 0;
1792
1793 var->u.make_value.functions->compile_to_ax (var, expr, value,
1794 var->u.make_value.data);
1795 return 1;
1796}
1797
c4a3d09a
MF
1798/* Look up an internal variable with name NAME. NAME should not
1799 normally include a dollar sign.
1800
1801 If the specified internal variable does not exist,
1802 one is created, with a void value. */
1803
1804struct internalvar *
bc3b79fd 1805lookup_internalvar (const char *name)
c4a3d09a
MF
1806{
1807 struct internalvar *var;
1808
1809 var = lookup_only_internalvar (name);
1810 if (var)
1811 return var;
1812
1813 return create_internalvar (name);
1814}
1815
78267919
UW
1816/* Return current value of internal variable VAR. For variables that
1817 are not inherently typed, use a value type appropriate for GDBARCH. */
1818
f23631e4 1819struct value *
78267919 1820value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1821{
f23631e4 1822 struct value *val;
0914bcdb
SS
1823 struct trace_state_variable *tsv;
1824
1825 /* If there is a trace state variable of the same name, assume that
1826 is what we really want to see. */
1827 tsv = find_trace_state_variable (var->name);
1828 if (tsv)
1829 {
1830 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1831 &(tsv->value));
1832 if (tsv->value_known)
1833 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1834 tsv->value);
1835 else
1836 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1837 return val;
1838 }
c906108c 1839
78267919 1840 switch (var->kind)
5f5233d4 1841 {
78267919
UW
1842 case INTERNALVAR_VOID:
1843 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1844 break;
4fa62494 1845
78267919
UW
1846 case INTERNALVAR_FUNCTION:
1847 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1848 break;
4fa62494 1849
cab0c772
UW
1850 case INTERNALVAR_INTEGER:
1851 if (!var->u.integer.type)
78267919 1852 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1853 var->u.integer.val);
78267919 1854 else
cab0c772
UW
1855 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1856 break;
1857
78267919
UW
1858 case INTERNALVAR_STRING:
1859 val = value_cstring (var->u.string, strlen (var->u.string),
1860 builtin_type (gdbarch)->builtin_char);
1861 break;
4fa62494 1862
78267919
UW
1863 case INTERNALVAR_VALUE:
1864 val = value_copy (var->u.value);
4aa995e1
PA
1865 if (value_lazy (val))
1866 value_fetch_lazy (val);
78267919 1867 break;
4aa995e1 1868
78267919 1869 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
1870 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1871 var->u.make_value.data);
78267919
UW
1872 break;
1873
1874 default:
9b20d036 1875 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1876 }
1877
1878 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1879 on this value go back to affect the original internal variable.
1880
1881 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1882 no underlying modifyable state in the internal variable.
1883
1884 Likewise, if the variable's value is a computed lvalue, we want
1885 references to it to produce another computed lvalue, where
1886 references and assignments actually operate through the
1887 computed value's functions.
1888
1889 This means that internal variables with computed values
1890 behave a little differently from other internal variables:
1891 assignments to them don't just replace the previous value
1892 altogether. At the moment, this seems like the behavior we
1893 want. */
1894
1895 if (var->kind != INTERNALVAR_MAKE_VALUE
1896 && val->lval != lval_computed)
1897 {
1898 VALUE_LVAL (val) = lval_internalvar;
1899 VALUE_INTERNALVAR (val) = var;
5f5233d4 1900 }
d3c139e9 1901
4fa62494
UW
1902 return val;
1903}
d3c139e9 1904
4fa62494
UW
1905int
1906get_internalvar_integer (struct internalvar *var, LONGEST *result)
1907{
3158c6ed 1908 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1909 {
cab0c772
UW
1910 *result = var->u.integer.val;
1911 return 1;
3158c6ed 1912 }
d3c139e9 1913
3158c6ed
PA
1914 if (var->kind == INTERNALVAR_VALUE)
1915 {
1916 struct type *type = check_typedef (value_type (var->u.value));
1917
1918 if (TYPE_CODE (type) == TYPE_CODE_INT)
1919 {
1920 *result = value_as_long (var->u.value);
1921 return 1;
1922 }
4fa62494 1923 }
3158c6ed
PA
1924
1925 return 0;
4fa62494 1926}
d3c139e9 1927
4fa62494
UW
1928static int
1929get_internalvar_function (struct internalvar *var,
1930 struct internal_function **result)
1931{
78267919 1932 switch (var->kind)
d3c139e9 1933 {
78267919
UW
1934 case INTERNALVAR_FUNCTION:
1935 *result = var->u.fn.function;
4fa62494 1936 return 1;
d3c139e9 1937
4fa62494
UW
1938 default:
1939 return 0;
1940 }
c906108c
SS
1941}
1942
1943void
fba45db2 1944set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1945 int bitsize, struct value *newval)
c906108c 1946{
4fa62494 1947 gdb_byte *addr;
c906108c 1948
78267919 1949 switch (var->kind)
4fa62494 1950 {
78267919
UW
1951 case INTERNALVAR_VALUE:
1952 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1953
1954 if (bitsize)
50810684 1955 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1956 value_as_long (newval), bitpos, bitsize);
1957 else
1958 memcpy (addr + offset, value_contents (newval),
1959 TYPE_LENGTH (value_type (newval)));
1960 break;
78267919
UW
1961
1962 default:
1963 /* We can never get a component of any other kind. */
9b20d036 1964 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1965 }
c906108c
SS
1966}
1967
1968void
f23631e4 1969set_internalvar (struct internalvar *var, struct value *val)
c906108c 1970{
78267919 1971 enum internalvar_kind new_kind;
4fa62494 1972 union internalvar_data new_data = { 0 };
c906108c 1973
78267919 1974 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1975 error (_("Cannot overwrite convenience function %s"), var->name);
1976
4fa62494 1977 /* Prepare new contents. */
78267919 1978 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1979 {
1980 case TYPE_CODE_VOID:
78267919 1981 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1982 break;
1983
1984 case TYPE_CODE_INTERNAL_FUNCTION:
1985 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1986 new_kind = INTERNALVAR_FUNCTION;
1987 get_internalvar_function (VALUE_INTERNALVAR (val),
1988 &new_data.fn.function);
1989 /* Copies created here are never canonical. */
4fa62494
UW
1990 break;
1991
4fa62494 1992 default:
78267919
UW
1993 new_kind = INTERNALVAR_VALUE;
1994 new_data.value = value_copy (val);
1995 new_data.value->modifiable = 1;
4fa62494
UW
1996
1997 /* Force the value to be fetched from the target now, to avoid problems
1998 later when this internalvar is referenced and the target is gone or
1999 has changed. */
78267919
UW
2000 if (value_lazy (new_data.value))
2001 value_fetch_lazy (new_data.value);
4fa62494
UW
2002
2003 /* Release the value from the value chain to prevent it from being
2004 deleted by free_all_values. From here on this function should not
2005 call error () until new_data is installed into the var->u to avoid
2006 leaking memory. */
78267919 2007 release_value (new_data.value);
4fa62494
UW
2008 break;
2009 }
2010
2011 /* Clean up old contents. */
2012 clear_internalvar (var);
2013
2014 /* Switch over. */
78267919 2015 var->kind = new_kind;
4fa62494 2016 var->u = new_data;
c906108c
SS
2017 /* End code which must not call error(). */
2018}
2019
4fa62494
UW
2020void
2021set_internalvar_integer (struct internalvar *var, LONGEST l)
2022{
2023 /* Clean up old contents. */
2024 clear_internalvar (var);
2025
cab0c772
UW
2026 var->kind = INTERNALVAR_INTEGER;
2027 var->u.integer.type = NULL;
2028 var->u.integer.val = l;
78267919
UW
2029}
2030
2031void
2032set_internalvar_string (struct internalvar *var, const char *string)
2033{
2034 /* Clean up old contents. */
2035 clear_internalvar (var);
2036
2037 var->kind = INTERNALVAR_STRING;
2038 var->u.string = xstrdup (string);
4fa62494
UW
2039}
2040
2041static void
2042set_internalvar_function (struct internalvar *var, struct internal_function *f)
2043{
2044 /* Clean up old contents. */
2045 clear_internalvar (var);
2046
78267919
UW
2047 var->kind = INTERNALVAR_FUNCTION;
2048 var->u.fn.function = f;
2049 var->u.fn.canonical = 1;
2050 /* Variables installed here are always the canonical version. */
4fa62494
UW
2051}
2052
2053void
2054clear_internalvar (struct internalvar *var)
2055{
2056 /* Clean up old contents. */
78267919 2057 switch (var->kind)
4fa62494 2058 {
78267919
UW
2059 case INTERNALVAR_VALUE:
2060 value_free (var->u.value);
2061 break;
2062
2063 case INTERNALVAR_STRING:
2064 xfree (var->u.string);
4fa62494
UW
2065 break;
2066
22d2b532
SDJ
2067 case INTERNALVAR_MAKE_VALUE:
2068 if (var->u.make_value.functions->destroy != NULL)
2069 var->u.make_value.functions->destroy (var->u.make_value.data);
2070 break;
2071
4fa62494 2072 default:
4fa62494
UW
2073 break;
2074 }
2075
78267919
UW
2076 /* Reset to void kind. */
2077 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2078}
2079
c906108c 2080char *
fba45db2 2081internalvar_name (struct internalvar *var)
c906108c
SS
2082{
2083 return var->name;
2084}
2085
4fa62494
UW
2086static struct internal_function *
2087create_internal_function (const char *name,
2088 internal_function_fn handler, void *cookie)
bc3b79fd 2089{
bc3b79fd 2090 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2091
bc3b79fd
TJB
2092 ifn->name = xstrdup (name);
2093 ifn->handler = handler;
2094 ifn->cookie = cookie;
4fa62494 2095 return ifn;
bc3b79fd
TJB
2096}
2097
2098char *
2099value_internal_function_name (struct value *val)
2100{
4fa62494
UW
2101 struct internal_function *ifn;
2102 int result;
2103
2104 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2105 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2106 gdb_assert (result);
2107
bc3b79fd
TJB
2108 return ifn->name;
2109}
2110
2111struct value *
d452c4bc
UW
2112call_internal_function (struct gdbarch *gdbarch,
2113 const struct language_defn *language,
2114 struct value *func, int argc, struct value **argv)
bc3b79fd 2115{
4fa62494
UW
2116 struct internal_function *ifn;
2117 int result;
2118
2119 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2120 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2121 gdb_assert (result);
2122
d452c4bc 2123 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2124}
2125
2126/* The 'function' command. This does nothing -- it is just a
2127 placeholder to let "help function NAME" work. This is also used as
2128 the implementation of the sub-command that is created when
2129 registering an internal function. */
2130static void
2131function_command (char *command, int from_tty)
2132{
2133 /* Do nothing. */
2134}
2135
2136/* Clean up if an internal function's command is destroyed. */
2137static void
2138function_destroyer (struct cmd_list_element *self, void *ignore)
2139{
6f937416 2140 xfree ((char *) self->name);
bc3b79fd
TJB
2141 xfree (self->doc);
2142}
2143
2144/* Add a new internal function. NAME is the name of the function; DOC
2145 is a documentation string describing the function. HANDLER is
2146 called when the function is invoked. COOKIE is an arbitrary
2147 pointer which is passed to HANDLER and is intended for "user
2148 data". */
2149void
2150add_internal_function (const char *name, const char *doc,
2151 internal_function_fn handler, void *cookie)
2152{
2153 struct cmd_list_element *cmd;
4fa62494 2154 struct internal_function *ifn;
bc3b79fd 2155 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2156
2157 ifn = create_internal_function (name, handler, cookie);
2158 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2159
2160 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2161 &functionlist);
2162 cmd->destroyer = function_destroyer;
2163}
2164
ae5a43e0
DJ
2165/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2166 prevent cycles / duplicates. */
2167
4e7a5ef5 2168void
ae5a43e0
DJ
2169preserve_one_value (struct value *value, struct objfile *objfile,
2170 htab_t copied_types)
2171{
2172 if (TYPE_OBJFILE (value->type) == objfile)
2173 value->type = copy_type_recursive (objfile, value->type, copied_types);
2174
2175 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2176 value->enclosing_type = copy_type_recursive (objfile,
2177 value->enclosing_type,
2178 copied_types);
2179}
2180
78267919
UW
2181/* Likewise for internal variable VAR. */
2182
2183static void
2184preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2185 htab_t copied_types)
2186{
2187 switch (var->kind)
2188 {
cab0c772
UW
2189 case INTERNALVAR_INTEGER:
2190 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2191 var->u.integer.type
2192 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2193 break;
2194
78267919
UW
2195 case INTERNALVAR_VALUE:
2196 preserve_one_value (var->u.value, objfile, copied_types);
2197 break;
2198 }
2199}
2200
ae5a43e0
DJ
2201/* Update the internal variables and value history when OBJFILE is
2202 discarded; we must copy the types out of the objfile. New global types
2203 will be created for every convenience variable which currently points to
2204 this objfile's types, and the convenience variables will be adjusted to
2205 use the new global types. */
c906108c
SS
2206
2207void
ae5a43e0 2208preserve_values (struct objfile *objfile)
c906108c 2209{
ae5a43e0
DJ
2210 htab_t copied_types;
2211 struct value_history_chunk *cur;
52f0bd74 2212 struct internalvar *var;
ae5a43e0 2213 int i;
c906108c 2214
ae5a43e0
DJ
2215 /* Create the hash table. We allocate on the objfile's obstack, since
2216 it is soon to be deleted. */
2217 copied_types = create_copied_types_hash (objfile);
2218
2219 for (cur = value_history_chain; cur; cur = cur->next)
2220 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2221 if (cur->values[i])
2222 preserve_one_value (cur->values[i], objfile, copied_types);
2223
2224 for (var = internalvars; var; var = var->next)
78267919 2225 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2226
4e7a5ef5 2227 preserve_python_values (objfile, copied_types);
a08702d6 2228
ae5a43e0 2229 htab_delete (copied_types);
c906108c
SS
2230}
2231
2232static void
fba45db2 2233show_convenience (char *ignore, int from_tty)
c906108c 2234{
e17c207e 2235 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2236 struct internalvar *var;
c906108c 2237 int varseen = 0;
79a45b7d 2238 struct value_print_options opts;
c906108c 2239
79a45b7d 2240 get_user_print_options (&opts);
c906108c
SS
2241 for (var = internalvars; var; var = var->next)
2242 {
c709acd1
PA
2243 volatile struct gdb_exception ex;
2244
c906108c
SS
2245 if (!varseen)
2246 {
2247 varseen = 1;
2248 }
a3f17187 2249 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2250
2251 TRY_CATCH (ex, RETURN_MASK_ERROR)
2252 {
2253 struct value *val;
2254
2255 val = value_of_internalvar (gdbarch, var);
2256 value_print (val, gdb_stdout, &opts);
2257 }
2258 if (ex.reason < 0)
2259 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2260 printf_filtered (("\n"));
c906108c
SS
2261 }
2262 if (!varseen)
f47f77df
DE
2263 {
2264 /* This text does not mention convenience functions on purpose.
2265 The user can't create them except via Python, and if Python support
2266 is installed this message will never be printed ($_streq will
2267 exist). */
2268 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2269 "Convenience variables have "
2270 "names starting with \"$\";\n"
2271 "use \"set\" as in \"set "
2272 "$foo = 5\" to define them.\n"));
2273 }
c906108c
SS
2274}
2275\f
2276/* Extract a value as a C number (either long or double).
2277 Knows how to convert fixed values to double, or
2278 floating values to long.
2279 Does not deallocate the value. */
2280
2281LONGEST
f23631e4 2282value_as_long (struct value *val)
c906108c
SS
2283{
2284 /* This coerces arrays and functions, which is necessary (e.g.
2285 in disassemble_command). It also dereferences references, which
2286 I suspect is the most logical thing to do. */
994b9211 2287 val = coerce_array (val);
0fd88904 2288 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2289}
2290
2291DOUBLEST
f23631e4 2292value_as_double (struct value *val)
c906108c
SS
2293{
2294 DOUBLEST foo;
2295 int inv;
c5aa993b 2296
0fd88904 2297 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2298 if (inv)
8a3fe4f8 2299 error (_("Invalid floating value found in program."));
c906108c
SS
2300 return foo;
2301}
4ef30785 2302
581e13c1 2303/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2304 Note that val's type may not actually be a pointer; value_as_long
2305 handles all the cases. */
c906108c 2306CORE_ADDR
f23631e4 2307value_as_address (struct value *val)
c906108c 2308{
50810684
UW
2309 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2310
c906108c
SS
2311 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2312 whether we want this to be true eventually. */
2313#if 0
bf6ae464 2314 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2315 non-address (e.g. argument to "signal", "info break", etc.), or
2316 for pointers to char, in which the low bits *are* significant. */
50810684 2317 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2318#else
f312f057
JB
2319
2320 /* There are several targets (IA-64, PowerPC, and others) which
2321 don't represent pointers to functions as simply the address of
2322 the function's entry point. For example, on the IA-64, a
2323 function pointer points to a two-word descriptor, generated by
2324 the linker, which contains the function's entry point, and the
2325 value the IA-64 "global pointer" register should have --- to
2326 support position-independent code. The linker generates
2327 descriptors only for those functions whose addresses are taken.
2328
2329 On such targets, it's difficult for GDB to convert an arbitrary
2330 function address into a function pointer; it has to either find
2331 an existing descriptor for that function, or call malloc and
2332 build its own. On some targets, it is impossible for GDB to
2333 build a descriptor at all: the descriptor must contain a jump
2334 instruction; data memory cannot be executed; and code memory
2335 cannot be modified.
2336
2337 Upon entry to this function, if VAL is a value of type `function'
2338 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2339 value_address (val) is the address of the function. This is what
f312f057
JB
2340 you'll get if you evaluate an expression like `main'. The call
2341 to COERCE_ARRAY below actually does all the usual unary
2342 conversions, which includes converting values of type `function'
2343 to `pointer to function'. This is the challenging conversion
2344 discussed above. Then, `unpack_long' will convert that pointer
2345 back into an address.
2346
2347 So, suppose the user types `disassemble foo' on an architecture
2348 with a strange function pointer representation, on which GDB
2349 cannot build its own descriptors, and suppose further that `foo'
2350 has no linker-built descriptor. The address->pointer conversion
2351 will signal an error and prevent the command from running, even
2352 though the next step would have been to convert the pointer
2353 directly back into the same address.
2354
2355 The following shortcut avoids this whole mess. If VAL is a
2356 function, just return its address directly. */
df407dfe
AC
2357 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2358 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2359 return value_address (val);
f312f057 2360
994b9211 2361 val = coerce_array (val);
fc0c74b1
AC
2362
2363 /* Some architectures (e.g. Harvard), map instruction and data
2364 addresses onto a single large unified address space. For
2365 instance: An architecture may consider a large integer in the
2366 range 0x10000000 .. 0x1000ffff to already represent a data
2367 addresses (hence not need a pointer to address conversion) while
2368 a small integer would still need to be converted integer to
2369 pointer to address. Just assume such architectures handle all
2370 integer conversions in a single function. */
2371
2372 /* JimB writes:
2373
2374 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2375 must admonish GDB hackers to make sure its behavior matches the
2376 compiler's, whenever possible.
2377
2378 In general, I think GDB should evaluate expressions the same way
2379 the compiler does. When the user copies an expression out of
2380 their source code and hands it to a `print' command, they should
2381 get the same value the compiler would have computed. Any
2382 deviation from this rule can cause major confusion and annoyance,
2383 and needs to be justified carefully. In other words, GDB doesn't
2384 really have the freedom to do these conversions in clever and
2385 useful ways.
2386
2387 AndrewC pointed out that users aren't complaining about how GDB
2388 casts integers to pointers; they are complaining that they can't
2389 take an address from a disassembly listing and give it to `x/i'.
2390 This is certainly important.
2391
79dd2d24 2392 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2393 makes it possible for GDB to "get it right" in all circumstances
2394 --- the target has complete control over how things get done, so
2395 people can Do The Right Thing for their target without breaking
2396 anyone else. The standard doesn't specify how integers get
2397 converted to pointers; usually, the ABI doesn't either, but
2398 ABI-specific code is a more reasonable place to handle it. */
2399
df407dfe
AC
2400 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2401 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2402 && gdbarch_integer_to_address_p (gdbarch))
2403 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2404 value_contents (val));
fc0c74b1 2405
0fd88904 2406 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2407#endif
2408}
2409\f
2410/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2411 as a long, or as a double, assuming the raw data is described
2412 by type TYPE. Knows how to convert different sizes of values
2413 and can convert between fixed and floating point. We don't assume
2414 any alignment for the raw data. Return value is in host byte order.
2415
2416 If you want functions and arrays to be coerced to pointers, and
2417 references to be dereferenced, call value_as_long() instead.
2418
2419 C++: It is assumed that the front-end has taken care of
2420 all matters concerning pointers to members. A pointer
2421 to member which reaches here is considered to be equivalent
2422 to an INT (or some size). After all, it is only an offset. */
2423
2424LONGEST
fc1a4b47 2425unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2426{
e17a4113 2427 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2428 enum type_code code = TYPE_CODE (type);
2429 int len = TYPE_LENGTH (type);
2430 int nosign = TYPE_UNSIGNED (type);
c906108c 2431
c906108c
SS
2432 switch (code)
2433 {
2434 case TYPE_CODE_TYPEDEF:
2435 return unpack_long (check_typedef (type), valaddr);
2436 case TYPE_CODE_ENUM:
4f2aea11 2437 case TYPE_CODE_FLAGS:
c906108c
SS
2438 case TYPE_CODE_BOOL:
2439 case TYPE_CODE_INT:
2440 case TYPE_CODE_CHAR:
2441 case TYPE_CODE_RANGE:
0d5de010 2442 case TYPE_CODE_MEMBERPTR:
c906108c 2443 if (nosign)
e17a4113 2444 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2445 else
e17a4113 2446 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2447
2448 case TYPE_CODE_FLT:
96d2f608 2449 return extract_typed_floating (valaddr, type);
c906108c 2450
4ef30785
TJB
2451 case TYPE_CODE_DECFLOAT:
2452 /* libdecnumber has a function to convert from decimal to integer, but
2453 it doesn't work when the decimal number has a fractional part. */
e17a4113 2454 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2455
c906108c
SS
2456 case TYPE_CODE_PTR:
2457 case TYPE_CODE_REF:
2458 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2459 whether we want this to be true eventually. */
4478b372 2460 return extract_typed_address (valaddr, type);
c906108c 2461
c906108c 2462 default:
8a3fe4f8 2463 error (_("Value can't be converted to integer."));
c906108c 2464 }
c5aa993b 2465 return 0; /* Placate lint. */
c906108c
SS
2466}
2467
2468/* Return a double value from the specified type and address.
2469 INVP points to an int which is set to 0 for valid value,
2470 1 for invalid value (bad float format). In either case,
2471 the returned double is OK to use. Argument is in target
2472 format, result is in host format. */
2473
2474DOUBLEST
fc1a4b47 2475unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2476{
e17a4113 2477 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2478 enum type_code code;
2479 int len;
2480 int nosign;
2481
581e13c1 2482 *invp = 0; /* Assume valid. */
c906108c
SS
2483 CHECK_TYPEDEF (type);
2484 code = TYPE_CODE (type);
2485 len = TYPE_LENGTH (type);
2486 nosign = TYPE_UNSIGNED (type);
2487 if (code == TYPE_CODE_FLT)
2488 {
75bc7ddf
AC
2489 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2490 floating-point value was valid (using the macro
2491 INVALID_FLOAT). That test/macro have been removed.
2492
2493 It turns out that only the VAX defined this macro and then
2494 only in a non-portable way. Fixing the portability problem
2495 wouldn't help since the VAX floating-point code is also badly
2496 bit-rotten. The target needs to add definitions for the
ea06eb3d 2497 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2498 exactly describe the target floating-point format. The
2499 problem here is that the corresponding floatformat_vax_f and
2500 floatformat_vax_d values these methods should be set to are
2501 also not defined either. Oops!
2502
2503 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2504 definitions and the new cases for floatformat_is_valid (). */
2505
2506 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2507 {
2508 *invp = 1;
2509 return 0.0;
2510 }
2511
96d2f608 2512 return extract_typed_floating (valaddr, type);
c906108c 2513 }
4ef30785 2514 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2515 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2516 else if (nosign)
2517 {
2518 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2519 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2520 }
2521 else
2522 {
2523 /* Signed -- we are OK with unpack_long. */
2524 return unpack_long (type, valaddr);
2525 }
2526}
2527
2528/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2529 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2530 We don't assume any alignment for the raw data. Return value is in
2531 host byte order.
2532
2533 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2534 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2535
2536 C++: It is assumed that the front-end has taken care of
2537 all matters concerning pointers to members. A pointer
2538 to member which reaches here is considered to be equivalent
2539 to an INT (or some size). After all, it is only an offset. */
2540
2541CORE_ADDR
fc1a4b47 2542unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2543{
2544 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2545 whether we want this to be true eventually. */
2546 return unpack_long (type, valaddr);
2547}
4478b372 2548
c906108c 2549\f
1596cb5d 2550/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2551 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2552 optimized out. */
c906108c 2553
f23631e4 2554struct value *
fba45db2 2555value_static_field (struct type *type, int fieldno)
c906108c 2556{
948e66d9
DJ
2557 struct value *retval;
2558
1596cb5d 2559 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2560 {
1596cb5d 2561 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2562 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2563 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2564 break;
2565 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2566 {
ff355380 2567 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2568 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2569 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2570
948e66d9 2571 if (sym == NULL)
c906108c 2572 {
a109c7c1 2573 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2574 reported as non-debuggable symbols. */
a109c7c1
MS
2575 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2576 NULL, NULL);
2577
c906108c
SS
2578 if (!msym)
2579 return NULL;
2580 else
c5aa993b 2581 {
52e9fde8
SS
2582 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2583 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2584 }
2585 }
2586 else
515ed532 2587 retval = value_of_variable (sym, NULL);
1596cb5d 2588 break;
c906108c 2589 }
1596cb5d 2590 default:
f3574227 2591 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2592 }
2593
948e66d9 2594 return retval;
c906108c
SS
2595}
2596
4dfea560
DE
2597/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2598 You have to be careful here, since the size of the data area for the value
2599 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2600 than the old enclosing type, you have to allocate more space for the
2601 data. */
2b127877 2602
4dfea560
DE
2603void
2604set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2605{
3e3d7139
JG
2606 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2607 val->contents =
2608 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2609
2610 val->enclosing_type = new_encl_type;
2b127877
DB
2611}
2612
c906108c
SS
2613/* Given a value ARG1 (offset by OFFSET bytes)
2614 of a struct or union type ARG_TYPE,
2615 extract and return the value of one of its (non-static) fields.
581e13c1 2616 FIELDNO says which field. */
c906108c 2617
f23631e4
AC
2618struct value *
2619value_primitive_field (struct value *arg1, int offset,
aa1ee363 2620 int fieldno, struct type *arg_type)
c906108c 2621{
f23631e4 2622 struct value *v;
52f0bd74 2623 struct type *type;
c906108c
SS
2624
2625 CHECK_TYPEDEF (arg_type);
2626 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2627
2628 /* Call check_typedef on our type to make sure that, if TYPE
2629 is a TYPE_CODE_TYPEDEF, its length is set to the length
2630 of the target type instead of zero. However, we do not
2631 replace the typedef type by the target type, because we want
2632 to keep the typedef in order to be able to print the type
2633 description correctly. */
2634 check_typedef (type);
c906108c 2635
691a26f5 2636 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2637 {
22c05d8a
JK
2638 /* Handle packed fields.
2639
2640 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2641 set. If possible, arrange offset and bitpos so that we can
2642 do a single aligned read of the size of the containing type.
2643 Otherwise, adjust offset to the byte containing the first
2644 bit. Assume that the address, offset, and embedded offset
2645 are sufficiently aligned. */
22c05d8a 2646
4ea48cc1
DJ
2647 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2648 int container_bitsize = TYPE_LENGTH (type) * 8;
2649
691a26f5
AB
2650 if (arg1->optimized_out)
2651 v = allocate_optimized_out_value (type);
4ea48cc1 2652 else
691a26f5
AB
2653 {
2654 v = allocate_value_lazy (type);
2655 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2656 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2657 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2658 v->bitpos = bitpos % container_bitsize;
2659 else
2660 v->bitpos = bitpos % 8;
2661 v->offset = (value_embedded_offset (arg1)
2662 + offset
2663 + (bitpos - v->bitpos) / 8);
2664 set_value_parent (v, arg1);
2665 if (!value_lazy (arg1))
2666 value_fetch_lazy (v);
2667 }
c906108c
SS
2668 }
2669 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2670 {
2671 /* This field is actually a base subobject, so preserve the
39d37385
PA
2672 entire object's contents for later references to virtual
2673 bases, etc. */
be335936 2674 int boffset;
a4e2ee12
DJ
2675
2676 /* Lazy register values with offsets are not supported. */
2677 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2678 value_fetch_lazy (arg1);
2679
691a26f5
AB
2680 /* The optimized_out flag is only set correctly once a lazy value is
2681 loaded, having just loaded some lazy values we should check the
2682 optimized out case now. */
2683 if (arg1->optimized_out)
2684 v = allocate_optimized_out_value (type);
c906108c 2685 else
3e3d7139 2686 {
691a26f5
AB
2687 /* We special case virtual inheritance here because this
2688 requires access to the contents, which we would rather avoid
2689 for references to ordinary fields of unavailable values. */
2690 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2691 boffset = baseclass_offset (arg_type, fieldno,
2692 value_contents (arg1),
2693 value_embedded_offset (arg1),
2694 value_address (arg1),
2695 arg1);
2696 else
2697 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2698
2699 if (value_lazy (arg1))
2700 v = allocate_value_lazy (value_enclosing_type (arg1));
2701 else
2702 {
2703 v = allocate_value (value_enclosing_type (arg1));
2704 value_contents_copy_raw (v, 0, arg1, 0,
2705 TYPE_LENGTH (value_enclosing_type (arg1)));
2706 }
2707 v->type = type;
2708 v->offset = value_offset (arg1);
2709 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3e3d7139 2710 }
c906108c
SS
2711 }
2712 else
2713 {
2714 /* Plain old data member */
2715 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2716
2717 /* Lazy register values with offsets are not supported. */
2718 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2719 value_fetch_lazy (arg1);
2720
691a26f5
AB
2721 /* The optimized_out flag is only set correctly once a lazy value is
2722 loaded, having just loaded some lazy values we should check for
2723 the optimized out case now. */
2724 if (arg1->optimized_out)
2725 v = allocate_optimized_out_value (type);
2726 else if (value_lazy (arg1))
3e3d7139 2727 v = allocate_value_lazy (type);
c906108c 2728 else
3e3d7139
JG
2729 {
2730 v = allocate_value (type);
39d37385
PA
2731 value_contents_copy_raw (v, value_embedded_offset (v),
2732 arg1, value_embedded_offset (arg1) + offset,
2733 TYPE_LENGTH (type));
3e3d7139 2734 }
df407dfe 2735 v->offset = (value_offset (arg1) + offset
13c3b5f5 2736 + value_embedded_offset (arg1));
c906108c 2737 }
74bcbdf3 2738 set_value_component_location (v, arg1);
9ee8fc9d 2739 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2740 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2741 return v;
2742}
2743
2744/* Given a value ARG1 of a struct or union type,
2745 extract and return the value of one of its (non-static) fields.
581e13c1 2746 FIELDNO says which field. */
c906108c 2747
f23631e4 2748struct value *
aa1ee363 2749value_field (struct value *arg1, int fieldno)
c906108c 2750{
df407dfe 2751 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2752}
2753
2754/* Return a non-virtual function as a value.
2755 F is the list of member functions which contains the desired method.
0478d61c
FF
2756 J is an index into F which provides the desired method.
2757
2758 We only use the symbol for its address, so be happy with either a
581e13c1 2759 full symbol or a minimal symbol. */
c906108c 2760
f23631e4 2761struct value *
3e43a32a
MS
2762value_fn_field (struct value **arg1p, struct fn_field *f,
2763 int j, struct type *type,
fba45db2 2764 int offset)
c906108c 2765{
f23631e4 2766 struct value *v;
52f0bd74 2767 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2768 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2769 struct symbol *sym;
0478d61c 2770 struct minimal_symbol *msym;
c906108c 2771
2570f2b7 2772 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2773 if (sym != NULL)
0478d61c 2774 {
5ae326fa
AC
2775 msym = NULL;
2776 }
2777 else
2778 {
2779 gdb_assert (sym == NULL);
0478d61c 2780 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2781 if (msym == NULL)
2782 return NULL;
0478d61c
FF
2783 }
2784
c906108c 2785 v = allocate_value (ftype);
0478d61c
FF
2786 if (sym)
2787 {
42ae5230 2788 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2789 }
2790 else
2791 {
bccdca4a
UW
2792 /* The minimal symbol might point to a function descriptor;
2793 resolve it to the actual code address instead. */
2794 struct objfile *objfile = msymbol_objfile (msym);
2795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2796
42ae5230
TT
2797 set_value_address (v,
2798 gdbarch_convert_from_func_ptr_addr
2799 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2800 }
c906108c
SS
2801
2802 if (arg1p)
c5aa993b 2803 {
df407dfe 2804 if (type != value_type (*arg1p))
c5aa993b
JM
2805 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2806 value_addr (*arg1p)));
2807
070ad9f0 2808 /* Move the `this' pointer according to the offset.
581e13c1 2809 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2810 }
2811
2812 return v;
2813}
2814
c906108c 2815\f
c906108c 2816
5467c6c8
PA
2817/* Helper function for both unpack_value_bits_as_long and
2818 unpack_bits_as_long. See those functions for more details on the
2819 interface; the only difference is that this function accepts either
2820 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2821
5467c6c8
PA
2822static int
2823unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2824 int embedded_offset, int bitpos, int bitsize,
2825 const struct value *original_value,
2826 LONGEST *result)
c906108c 2827{
4ea48cc1 2828 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2829 ULONGEST val;
2830 ULONGEST valmask;
c906108c 2831 int lsbcount;
4a76eae5 2832 int bytes_read;
5467c6c8 2833 int read_offset;
c906108c 2834
4a76eae5
DJ
2835 /* Read the minimum number of bytes required; there may not be
2836 enough bytes to read an entire ULONGEST. */
c906108c 2837 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2838 if (bitsize)
2839 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2840 else
2841 bytes_read = TYPE_LENGTH (field_type);
2842
5467c6c8
PA
2843 read_offset = bitpos / 8;
2844
2845 if (original_value != NULL
2846 && !value_bytes_available (original_value, embedded_offset + read_offset,
2847 bytes_read))
2848 return 0;
2849
2850 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2851 bytes_read, byte_order);
c906108c 2852
581e13c1 2853 /* Extract bits. See comment above. */
c906108c 2854
4ea48cc1 2855 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2856 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2857 else
2858 lsbcount = (bitpos % 8);
2859 val >>= lsbcount;
2860
2861 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2862 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2863
2864 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2865 {
2866 valmask = (((ULONGEST) 1) << bitsize) - 1;
2867 val &= valmask;
2868 if (!TYPE_UNSIGNED (field_type))
2869 {
2870 if (val & (valmask ^ (valmask >> 1)))
2871 {
2872 val |= ~valmask;
2873 }
2874 }
2875 }
5467c6c8
PA
2876
2877 *result = val;
2878 return 1;
c906108c
SS
2879}
2880
5467c6c8
PA
2881/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2882 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2883 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2884 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2885 bits.
4ea48cc1 2886
5467c6c8
PA
2887 Returns false if the value contents are unavailable, otherwise
2888 returns true, indicating a valid value has been stored in *RESULT.
2889
2890 Extracting bits depends on endianness of the machine. Compute the
2891 number of least significant bits to discard. For big endian machines,
2892 we compute the total number of bits in the anonymous object, subtract
2893 off the bit count from the MSB of the object to the MSB of the
2894 bitfield, then the size of the bitfield, which leaves the LSB discard
2895 count. For little endian machines, the discard count is simply the
2896 number of bits from the LSB of the anonymous object to the LSB of the
2897 bitfield.
2898
2899 If the field is signed, we also do sign extension. */
2900
2901int
2902unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2903 int embedded_offset, int bitpos, int bitsize,
2904 const struct value *original_value,
2905 LONGEST *result)
2906{
2907 gdb_assert (original_value != NULL);
2908
2909 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2910 bitpos, bitsize, original_value, result);
2911
2912}
2913
2914/* Unpack a field FIELDNO of the specified TYPE, from the object at
2915 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2916 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2917 details. */
2918
2919static int
2920unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2921 int embedded_offset, int fieldno,
2922 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2923{
2924 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2925 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2926 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2927
5467c6c8
PA
2928 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2929 bitpos, bitsize, val,
2930 result);
2931}
2932
2933/* Unpack a field FIELDNO of the specified TYPE, from the object at
2934 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2935 ORIGINAL_VALUE, which must not be NULL. See
2936 unpack_value_bits_as_long for more details. */
2937
2938int
2939unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2940 int embedded_offset, int fieldno,
2941 const struct value *val, LONGEST *result)
2942{
2943 gdb_assert (val != NULL);
2944
2945 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2946 fieldno, val, result);
2947}
2948
2949/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2950 object at VALADDR. See unpack_value_bits_as_long for more details.
2951 This function differs from unpack_value_field_as_long in that it
2952 operates without a struct value object. */
2953
2954LONGEST
2955unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2956{
2957 LONGEST result;
2958
2959 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2960 return result;
2961}
2962
2963/* Return a new value with type TYPE, which is FIELDNO field of the
2964 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2965 of VAL. If the VAL's contents required to extract the bitfield
2966 from are unavailable, the new value is correspondingly marked as
2967 unavailable. */
2968
2969struct value *
2970value_field_bitfield (struct type *type, int fieldno,
2971 const gdb_byte *valaddr,
2972 int embedded_offset, const struct value *val)
2973{
2974 LONGEST l;
2975
2976 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2977 val, &l))
2978 {
2979 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2980 struct value *retval = allocate_value (field_type);
2981 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2982 return retval;
2983 }
2984 else
2985 {
2986 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2987 }
4ea48cc1
DJ
2988}
2989
c906108c
SS
2990/* Modify the value of a bitfield. ADDR points to a block of memory in
2991 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2992 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2993 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2994 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2995 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2996
2997void
50810684
UW
2998modify_field (struct type *type, gdb_byte *addr,
2999 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3000{
e17a4113 3001 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3002 ULONGEST oword;
3003 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3004 int bytesize;
3005
3006 /* Normalize BITPOS. */
3007 addr += bitpos / 8;
3008 bitpos %= 8;
c906108c
SS
3009
3010 /* If a negative fieldval fits in the field in question, chop
3011 off the sign extension bits. */
f4e88c8e
PH
3012 if ((~fieldval & ~(mask >> 1)) == 0)
3013 fieldval &= mask;
c906108c
SS
3014
3015 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3016 if (0 != (fieldval & ~mask))
c906108c
SS
3017 {
3018 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3019 we don't have a sprintf_longest. */
8a3fe4f8 3020 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3021
3022 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3023 fieldval &= mask;
c906108c
SS
3024 }
3025
19f220c3
JK
3026 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3027 false valgrind reports. */
3028
3029 bytesize = (bitpos + bitsize + 7) / 8;
3030 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3031
3032 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3033 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3034 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3035
f4e88c8e 3036 oword &= ~(mask << bitpos);
c906108c
SS
3037 oword |= fieldval << bitpos;
3038
19f220c3 3039 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3040}
3041\f
14d06750 3042/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3043
14d06750
DJ
3044void
3045pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3046{
e17a4113 3047 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3048 int len;
14d06750
DJ
3049
3050 type = check_typedef (type);
c906108c
SS
3051 len = TYPE_LENGTH (type);
3052
14d06750 3053 switch (TYPE_CODE (type))
c906108c 3054 {
c906108c
SS
3055 case TYPE_CODE_INT:
3056 case TYPE_CODE_CHAR:
3057 case TYPE_CODE_ENUM:
4f2aea11 3058 case TYPE_CODE_FLAGS:
c906108c
SS
3059 case TYPE_CODE_BOOL:
3060 case TYPE_CODE_RANGE:
0d5de010 3061 case TYPE_CODE_MEMBERPTR:
e17a4113 3062 store_signed_integer (buf, len, byte_order, num);
c906108c 3063 break;
c5aa993b 3064
c906108c
SS
3065 case TYPE_CODE_REF:
3066 case TYPE_CODE_PTR:
14d06750 3067 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3068 break;
c5aa993b 3069
c906108c 3070 default:
14d06750
DJ
3071 error (_("Unexpected type (%d) encountered for integer constant."),
3072 TYPE_CODE (type));
c906108c 3073 }
14d06750
DJ
3074}
3075
3076
595939de
PM
3077/* Pack NUM into BUF using a target format of TYPE. */
3078
70221824 3079static void
595939de
PM
3080pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3081{
3082 int len;
3083 enum bfd_endian byte_order;
3084
3085 type = check_typedef (type);
3086 len = TYPE_LENGTH (type);
3087 byte_order = gdbarch_byte_order (get_type_arch (type));
3088
3089 switch (TYPE_CODE (type))
3090 {
3091 case TYPE_CODE_INT:
3092 case TYPE_CODE_CHAR:
3093 case TYPE_CODE_ENUM:
3094 case TYPE_CODE_FLAGS:
3095 case TYPE_CODE_BOOL:
3096 case TYPE_CODE_RANGE:
3097 case TYPE_CODE_MEMBERPTR:
3098 store_unsigned_integer (buf, len, byte_order, num);
3099 break;
3100
3101 case TYPE_CODE_REF:
3102 case TYPE_CODE_PTR:
3103 store_typed_address (buf, type, (CORE_ADDR) num);
3104 break;
3105
3106 default:
3e43a32a
MS
3107 error (_("Unexpected type (%d) encountered "
3108 "for unsigned integer constant."),
595939de
PM
3109 TYPE_CODE (type));
3110 }
3111}
3112
3113
14d06750
DJ
3114/* Convert C numbers into newly allocated values. */
3115
3116struct value *
3117value_from_longest (struct type *type, LONGEST num)
3118{
3119 struct value *val = allocate_value (type);
3120
3121 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3122 return val;
3123}
3124
4478b372 3125
595939de
PM
3126/* Convert C unsigned numbers into newly allocated values. */
3127
3128struct value *
3129value_from_ulongest (struct type *type, ULONGEST num)
3130{
3131 struct value *val = allocate_value (type);
3132
3133 pack_unsigned_long (value_contents_raw (val), type, num);
3134
3135 return val;
3136}
3137
3138
4478b372
JB
3139/* Create a value representing a pointer of type TYPE to the address
3140 ADDR. */
f23631e4 3141struct value *
4478b372
JB
3142value_from_pointer (struct type *type, CORE_ADDR addr)
3143{
f23631e4 3144 struct value *val = allocate_value (type);
a109c7c1 3145
cab0c772 3146 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
3147 return val;
3148}
3149
3150
8acb6b92
TT
3151/* Create a value of type TYPE whose contents come from VALADDR, if it
3152 is non-null, and whose memory address (in the inferior) is
3153 ADDRESS. */
3154
3155struct value *
3156value_from_contents_and_address (struct type *type,
3157 const gdb_byte *valaddr,
3158 CORE_ADDR address)
3159{
41e8491f 3160 struct value *v;
a109c7c1 3161
8acb6b92 3162 if (valaddr == NULL)
41e8491f 3163 v = allocate_value_lazy (type);
8acb6b92 3164 else
41e8491f
JK
3165 {
3166 v = allocate_value (type);
3167 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3168 }
42ae5230 3169 set_value_address (v, address);
33d502b4 3170 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3171 return v;
3172}
3173
8a9b8146
TT
3174/* Create a value of type TYPE holding the contents CONTENTS.
3175 The new value is `not_lval'. */
3176
3177struct value *
3178value_from_contents (struct type *type, const gdb_byte *contents)
3179{
3180 struct value *result;
3181
3182 result = allocate_value (type);
3183 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3184 return result;
3185}
3186
f23631e4 3187struct value *
fba45db2 3188value_from_double (struct type *type, DOUBLEST num)
c906108c 3189{
f23631e4 3190 struct value *val = allocate_value (type);
c906108c 3191 struct type *base_type = check_typedef (type);
52f0bd74 3192 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3193
3194 if (code == TYPE_CODE_FLT)
3195 {
990a07ab 3196 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3197 }
3198 else
8a3fe4f8 3199 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3200
3201 return val;
3202}
994b9211 3203
27bc4d80 3204struct value *
4ef30785 3205value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3206{
3207 struct value *val = allocate_value (type);
27bc4d80 3208
4ef30785 3209 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3210 return val;
3211}
3212
3bd0f5ef
MS
3213/* Extract a value from the history file. Input will be of the form
3214 $digits or $$digits. See block comment above 'write_dollar_variable'
3215 for details. */
3216
3217struct value *
3218value_from_history_ref (char *h, char **endp)
3219{
3220 int index, len;
3221
3222 if (h[0] == '$')
3223 len = 1;
3224 else
3225 return NULL;
3226
3227 if (h[1] == '$')
3228 len = 2;
3229
3230 /* Find length of numeral string. */
3231 for (; isdigit (h[len]); len++)
3232 ;
3233
3234 /* Make sure numeral string is not part of an identifier. */
3235 if (h[len] == '_' || isalpha (h[len]))
3236 return NULL;
3237
3238 /* Now collect the index value. */
3239 if (h[1] == '$')
3240 {
3241 if (len == 2)
3242 {
3243 /* For some bizarre reason, "$$" is equivalent to "$$1",
3244 rather than to "$$0" as it ought to be! */
3245 index = -1;
3246 *endp += len;
3247 }
3248 else
3249 index = -strtol (&h[2], endp, 10);
3250 }
3251 else
3252 {
3253 if (len == 1)
3254 {
3255 /* "$" is equivalent to "$0". */
3256 index = 0;
3257 *endp += len;
3258 }
3259 else
3260 index = strtol (&h[1], endp, 10);
3261 }
3262
3263 return access_value_history (index);
3264}
3265
a471c594
JK
3266struct value *
3267coerce_ref_if_computed (const struct value *arg)
3268{
3269 const struct lval_funcs *funcs;
3270
3271 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3272 return NULL;
3273
3274 if (value_lval_const (arg) != lval_computed)
3275 return NULL;
3276
3277 funcs = value_computed_funcs (arg);
3278 if (funcs->coerce_ref == NULL)
3279 return NULL;
3280
3281 return funcs->coerce_ref (arg);
3282}
3283
dfcee124
AG
3284/* Look at value.h for description. */
3285
3286struct value *
3287readjust_indirect_value_type (struct value *value, struct type *enc_type,
3288 struct type *original_type,
3289 struct value *original_value)
3290{
3291 /* Re-adjust type. */
3292 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3293
3294 /* Add embedding info. */
3295 set_value_enclosing_type (value, enc_type);
3296 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3297
3298 /* We may be pointing to an object of some derived type. */
3299 return value_full_object (value, NULL, 0, 0, 0);
3300}
3301
994b9211
AC
3302struct value *
3303coerce_ref (struct value *arg)
3304{
df407dfe 3305 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3306 struct value *retval;
dfcee124 3307 struct type *enc_type;
a109c7c1 3308
a471c594
JK
3309 retval = coerce_ref_if_computed (arg);
3310 if (retval)
3311 return retval;
3312
3313 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3314 return arg;
3315
dfcee124
AG
3316 enc_type = check_typedef (value_enclosing_type (arg));
3317 enc_type = TYPE_TARGET_TYPE (enc_type);
3318
3319 retval = value_at_lazy (enc_type,
3320 unpack_pointer (value_type (arg),
3321 value_contents (arg)));
3322 return readjust_indirect_value_type (retval, enc_type,
3323 value_type_arg_tmp, arg);
994b9211
AC
3324}
3325
3326struct value *
3327coerce_array (struct value *arg)
3328{
f3134b88
TT
3329 struct type *type;
3330
994b9211 3331 arg = coerce_ref (arg);
f3134b88
TT
3332 type = check_typedef (value_type (arg));
3333
3334 switch (TYPE_CODE (type))
3335 {
3336 case TYPE_CODE_ARRAY:
7346b668 3337 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3338 arg = value_coerce_array (arg);
3339 break;
3340 case TYPE_CODE_FUNC:
3341 arg = value_coerce_function (arg);
3342 break;
3343 }
994b9211
AC
3344 return arg;
3345}
c906108c 3346\f
c906108c 3347
bbfdfe1c
DM
3348/* Return the return value convention that will be used for the
3349 specified type. */
3350
3351enum return_value_convention
3352struct_return_convention (struct gdbarch *gdbarch,
3353 struct value *function, struct type *value_type)
3354{
3355 enum type_code code = TYPE_CODE (value_type);
3356
3357 if (code == TYPE_CODE_ERROR)
3358 error (_("Function return type unknown."));
3359
3360 /* Probe the architecture for the return-value convention. */
3361 return gdbarch_return_value (gdbarch, function, value_type,
3362 NULL, NULL, NULL);
3363}
3364
48436ce6
AC
3365/* Return true if the function returning the specified type is using
3366 the convention of returning structures in memory (passing in the
82585c72 3367 address as a hidden first parameter). */
c906108c
SS
3368
3369int
d80b854b 3370using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3371 struct value *function, struct type *value_type)
c906108c 3372{
bbfdfe1c 3373 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3374 /* A void return value is never in memory. See also corresponding
44e5158b 3375 code in "print_return_value". */
667e784f
AC
3376 return 0;
3377
bbfdfe1c 3378 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3379 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3380}
3381
42be36b3
CT
3382/* Set the initialized field in a value struct. */
3383
3384void
3385set_value_initialized (struct value *val, int status)
3386{
3387 val->initialized = status;
3388}
3389
3390/* Return the initialized field in a value struct. */
3391
3392int
3393value_initialized (struct value *val)
3394{
3395 return val->initialized;
3396}
3397
a58e2656
AB
3398/* Called only from the value_contents and value_contents_all()
3399 macros, if the current data for a variable needs to be loaded into
3400 value_contents(VAL). Fetches the data from the user's process, and
3401 clears the lazy flag to indicate that the data in the buffer is
3402 valid.
3403
3404 If the value is zero-length, we avoid calling read_memory, which
3405 would abort. We mark the value as fetched anyway -- all 0 bytes of
3406 it.
3407
3408 This function returns a value because it is used in the
3409 value_contents macro as part of an expression, where a void would
3410 not work. The value is ignored. */
3411
3412int
3413value_fetch_lazy (struct value *val)
3414{
3415 gdb_assert (value_lazy (val));
3416 allocate_value_contents (val);
3417 if (value_bitsize (val))
3418 {
3419 /* To read a lazy bitfield, read the entire enclosing value. This
3420 prevents reading the same block of (possibly volatile) memory once
3421 per bitfield. It would be even better to read only the containing
3422 word, but we have no way to record that just specific bits of a
3423 value have been fetched. */
3424 struct type *type = check_typedef (value_type (val));
3425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3426 struct value *parent = value_parent (val);
3427 LONGEST offset = value_offset (val);
3428 LONGEST num;
3429
3430 if (!value_bits_valid (val,
3431 TARGET_CHAR_BIT * offset + value_bitpos (val),
3432 value_bitsize (val)))
3433 error (_("value has been optimized out"));
3434
3435 if (!unpack_value_bits_as_long (value_type (val),
3436 value_contents_for_printing (parent),
3437 offset,
3438 value_bitpos (val),
3439 value_bitsize (val), parent, &num))
3440 mark_value_bytes_unavailable (val,
3441 value_embedded_offset (val),
3442 TYPE_LENGTH (type));
3443 else
3444 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3445 byte_order, num);
3446 }
3447 else if (VALUE_LVAL (val) == lval_memory)
3448 {
3449 CORE_ADDR addr = value_address (val);
3450 struct type *type = check_typedef (value_enclosing_type (val));
3451
3452 if (TYPE_LENGTH (type))
3453 read_value_memory (val, 0, value_stack (val),
3454 addr, value_contents_all_raw (val),
3455 TYPE_LENGTH (type));
3456 }
3457 else if (VALUE_LVAL (val) == lval_register)
3458 {
3459 struct frame_info *frame;
3460 int regnum;
3461 struct type *type = check_typedef (value_type (val));
3462 struct value *new_val = val, *mark = value_mark ();
3463
3464 /* Offsets are not supported here; lazy register values must
3465 refer to the entire register. */
3466 gdb_assert (value_offset (val) == 0);
3467
3468 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3469 {
3470 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3471 regnum = VALUE_REGNUM (new_val);
3472
3473 gdb_assert (frame != NULL);
3474
3475 /* Convertible register routines are used for multi-register
3476 values and for interpretation in different types
3477 (e.g. float or int from a double register). Lazy
3478 register values should have the register's natural type,
3479 so they do not apply. */
3480 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3481 regnum, type));
3482
3483 new_val = get_frame_register_value (frame, regnum);
3484 }
3485
3486 /* If it's still lazy (for instance, a saved register on the
3487 stack), fetch it. */
3488 if (value_lazy (new_val))
3489 value_fetch_lazy (new_val);
3490
3491 /* If the register was not saved, mark it optimized out. */
3492 if (value_optimized_out (new_val))
3493 set_value_optimized_out (val, 1);
3494 else
3495 {
3496 set_value_lazy (val, 0);
3497 value_contents_copy (val, value_embedded_offset (val),
3498 new_val, value_embedded_offset (new_val),
3499 TYPE_LENGTH (type));
3500 }
3501
3502 if (frame_debug)
3503 {
3504 struct gdbarch *gdbarch;
3505 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3506 regnum = VALUE_REGNUM (val);
3507 gdbarch = get_frame_arch (frame);
3508
3509 fprintf_unfiltered (gdb_stdlog,
3510 "{ value_fetch_lazy "
3511 "(frame=%d,regnum=%d(%s),...) ",
3512 frame_relative_level (frame), regnum,
3513 user_reg_map_regnum_to_name (gdbarch, regnum));
3514
3515 fprintf_unfiltered (gdb_stdlog, "->");
3516 if (value_optimized_out (new_val))
3517 fprintf_unfiltered (gdb_stdlog, " optimized out");
3518 else
3519 {
3520 int i;
3521 const gdb_byte *buf = value_contents (new_val);
3522
3523 if (VALUE_LVAL (new_val) == lval_register)
3524 fprintf_unfiltered (gdb_stdlog, " register=%d",
3525 VALUE_REGNUM (new_val));
3526 else if (VALUE_LVAL (new_val) == lval_memory)
3527 fprintf_unfiltered (gdb_stdlog, " address=%s",
3528 paddress (gdbarch,
3529 value_address (new_val)));
3530 else
3531 fprintf_unfiltered (gdb_stdlog, " computed");
3532
3533 fprintf_unfiltered (gdb_stdlog, " bytes=");
3534 fprintf_unfiltered (gdb_stdlog, "[");
3535 for (i = 0; i < register_size (gdbarch, regnum); i++)
3536 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3537 fprintf_unfiltered (gdb_stdlog, "]");
3538 }
3539
3540 fprintf_unfiltered (gdb_stdlog, " }\n");
3541 }
3542
3543 /* Dispose of the intermediate values. This prevents
3544 watchpoints from trying to watch the saved frame pointer. */
3545 value_free_to_mark (mark);
3546 }
3547 else if (VALUE_LVAL (val) == lval_computed
3548 && value_computed_funcs (val)->read != NULL)
3549 value_computed_funcs (val)->read (val);
691a26f5
AB
3550 /* Don't call value_optimized_out on val, doing so would result in a
3551 recursive call back to value_fetch_lazy, instead check the
3552 optimized_out flag directly. */
3553 else if (val->optimized_out)
a58e2656
AB
3554 /* Keep it optimized out. */;
3555 else
3556 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3557
3558 set_value_lazy (val, 0);
3559 return 0;
3560}
3561
c906108c 3562void
fba45db2 3563_initialize_values (void)
c906108c 3564{
1a966eab 3565 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3566Debugger convenience (\"$foo\") variables and functions.\n\
3567Convenience variables are created when you assign them values;\n\
3568thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3569\n\
c906108c
SS
3570A few convenience variables are given values automatically:\n\
3571\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3572\"$__\" holds the contents of the last address examined with \"x\"."
3573#ifdef HAVE_PYTHON
3574"\n\n\
3575Convenience functions are defined via the Python API."
3576#endif
3577 ), &showlist);
7e20dfcd 3578 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3579
db5f229b 3580 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3581Elements of value history around item number IDX (or last ten)."),
c906108c 3582 &showlist);
53e5f3cf
AS
3583
3584 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3585Initialize a convenience variable if necessary.\n\
3586init-if-undefined VARIABLE = EXPRESSION\n\
3587Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3588exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3589VARIABLE is already initialized."));
bc3b79fd
TJB
3590
3591 add_prefix_cmd ("function", no_class, function_command, _("\
3592Placeholder command for showing help on convenience functions."),
3593 &functionlist, "function ", 0, &cmdlist);
c906108c 3594}
This page took 2.222787 seconds and 4 git commands to generate.