Handle UI's terminal closing
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
3723fda8
SM
237 /* Describes offset of a value within lval of a structure in target
238 addressable memory units. If lval == lval_memory, this is an offset to
239 the address. If lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the member
241 embedded_offset below. */
91294c83
AC
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
294 offset of `type' within that larger type, in target addressable memory
295 units. The value_contents() macro takes `embedded_offset' into account,
296 so most GDB code continues to see the `type' portion of the value, just
297 as the inferior would.
91294c83
AC
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
301 the offset in target addressable memory units from the full object
302 to the pointed-to object -- that is, the value `embedded_offset' would
303 have if we followed the pointer and fetched the complete object.
304 (I don't really see the point. Why not just determine the
305 run-time type when you indirect, and avoid the special case? The
306 contents don't matter until you indirect anyway.)
91294c83
AC
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
e512cdbd
SM
343/* See value.h. */
344
345struct gdbarch *
346get_value_arch (const struct value *value)
347{
348 return get_type_arch (value_type (value));
349}
350
4e07d55f 351int
bdf22206 352value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
353{
354 gdb_assert (!value->lazy);
355
356 return !ranges_contain (value->unavailable, offset, length);
357}
358
bdf22206
AB
359int
360value_bytes_available (const struct value *value, int offset, int length)
361{
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
365}
366
9a0dc9e3
PA
367int
368value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
369{
370 gdb_assert (!value->lazy);
371
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
373}
374
ec0a52e1
PA
375int
376value_entirely_available (struct value *value)
377{
378 /* We can only tell whether the whole value is available when we try
379 to read it. */
380 if (value->lazy)
381 value_fetch_lazy (value);
382
383 if (VEC_empty (range_s, value->unavailable))
384 return 1;
385 return 0;
386}
387
9a0dc9e3
PA
388/* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
391
392static int
393value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
6211c335 395{
9a0dc9e3
PA
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
6211c335
YQ
398 if (value->lazy)
399 value_fetch_lazy (value);
400
9a0dc9e3 401 if (VEC_length (range_s, *ranges) == 1)
6211c335 402 {
9a0dc9e3 403 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
404
405 if (t->offset == 0
64c46ce4
JB
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
408 return 1;
409 }
410
411 return 0;
412}
413
9a0dc9e3
PA
414int
415value_entirely_unavailable (struct value *value)
416{
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
418}
419
420int
421value_entirely_optimized_out (struct value *value)
422{
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424}
425
426/* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
428
429static void
430insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
431{
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
9a0dc9e3 521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
522 if (i > 0)
523 {
9a0dc9e3 524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
529 ULONGEST l = min (bef->offset, offset);
530 ULONGEST h = max (bef->offset + bef->length, offset + length);
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
9a0dc9e3 545 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
546 }
547 }
548 else
549 {
550 /* #4 */
9a0dc9e3 551 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
9a0dc9e3 556 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
9a0dc9e3 564 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
565 removed = 0;
566
567 i = next;
9a0dc9e3 568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
573 l = min (t->offset, r->offset);
574 h = max (t->offset + t->length, r->offset + r->length);
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
9a0dc9e3 590 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
591 }
592}
593
9a0dc9e3
PA
594void
595mark_value_bits_unavailable (struct value *value, int offset, int length)
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206
AB
600void
601mark_value_bytes_unavailable (struct value *value, int offset, int length)
602{
603 mark_value_bits_unavailable (value,
604 offset * TARGET_CHAR_BIT,
605 length * TARGET_CHAR_BIT);
606}
607
c8c1c22f
PA
608/* Find the first range in RANGES that overlaps the range defined by
609 OFFSET and LENGTH, starting at element POS in the RANGES vector,
610 Returns the index into RANGES where such overlapping range was
611 found, or -1 if none was found. */
612
613static int
614find_first_range_overlap (VEC(range_s) *ranges, int pos,
615 int offset, int length)
616{
617 range_s *r;
618 int i;
619
620 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
621 if (ranges_overlap (r->offset, r->length, offset, length))
622 return i;
623
624 return -1;
625}
626
bdf22206
AB
627/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
628 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
629 return non-zero.
630
631 It must always be the case that:
632 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
633
634 It is assumed that memory can be accessed from:
635 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
636 to:
637 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
638 / TARGET_CHAR_BIT) */
639static int
640memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
641 const gdb_byte *ptr2, size_t offset2_bits,
642 size_t length_bits)
643{
644 gdb_assert (offset1_bits % TARGET_CHAR_BIT
645 == offset2_bits % TARGET_CHAR_BIT);
646
647 if (offset1_bits % TARGET_CHAR_BIT != 0)
648 {
649 size_t bits;
650 gdb_byte mask, b1, b2;
651
652 /* The offset from the base pointers PTR1 and PTR2 is not a complete
653 number of bytes. A number of bits up to either the next exact
654 byte boundary, or LENGTH_BITS (which ever is sooner) will be
655 compared. */
656 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
657 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
658 mask = (1 << bits) - 1;
659
660 if (length_bits < bits)
661 {
662 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
663 bits = length_bits;
664 }
665
666 /* Now load the two bytes and mask off the bits we care about. */
667 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
668 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
669
670 if (b1 != b2)
671 return 1;
672
673 /* Now update the length and offsets to take account of the bits
674 we've just compared. */
675 length_bits -= bits;
676 offset1_bits += bits;
677 offset2_bits += bits;
678 }
679
680 if (length_bits % TARGET_CHAR_BIT != 0)
681 {
682 size_t bits;
683 size_t o1, o2;
684 gdb_byte mask, b1, b2;
685
686 /* The length is not an exact number of bytes. After the previous
687 IF.. block then the offsets are byte aligned, or the
688 length is zero (in which case this code is not reached). Compare
689 a number of bits at the end of the region, starting from an exact
690 byte boundary. */
691 bits = length_bits % TARGET_CHAR_BIT;
692 o1 = offset1_bits + length_bits - bits;
693 o2 = offset2_bits + length_bits - bits;
694
695 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
696 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
697
698 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
699 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
700
701 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
702 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
703
704 if (b1 != b2)
705 return 1;
706
707 length_bits -= bits;
708 }
709
710 if (length_bits > 0)
711 {
712 /* We've now taken care of any stray "bits" at the start, or end of
713 the region to compare, the remainder can be covered with a simple
714 memcmp. */
715 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
716 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
718
719 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
720 ptr2 + offset2_bits / TARGET_CHAR_BIT,
721 length_bits / TARGET_CHAR_BIT);
722 }
723
724 /* Length is zero, regions match. */
725 return 0;
726}
727
9a0dc9e3
PA
728/* Helper struct for find_first_range_overlap_and_match and
729 value_contents_bits_eq. Keep track of which slot of a given ranges
730 vector have we last looked at. */
bdf22206 731
9a0dc9e3
PA
732struct ranges_and_idx
733{
734 /* The ranges. */
735 VEC(range_s) *ranges;
736
737 /* The range we've last found in RANGES. Given ranges are sorted,
738 we can start the next lookup here. */
739 int idx;
740};
741
742/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
743 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
744 ranges starting at OFFSET2 bits. Return true if the ranges match
745 and fill in *L and *H with the overlapping window relative to
746 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
747
748static int
9a0dc9e3
PA
749find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
750 struct ranges_and_idx *rp2,
751 int offset1, int offset2,
752 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 753{
9a0dc9e3
PA
754 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
755 offset1, length);
756 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
757 offset2, length);
c8c1c22f 758
9a0dc9e3
PA
759 if (rp1->idx == -1 && rp2->idx == -1)
760 {
761 *l = length;
762 *h = length;
763 return 1;
764 }
765 else if (rp1->idx == -1 || rp2->idx == -1)
766 return 0;
767 else
c8c1c22f
PA
768 {
769 range_s *r1, *r2;
770 ULONGEST l1, h1;
771 ULONGEST l2, h2;
772
9a0dc9e3
PA
773 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
774 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
775
776 /* Get the unavailable windows intersected by the incoming
777 ranges. The first and last ranges that overlap the argument
778 range may be wider than said incoming arguments ranges. */
779 l1 = max (offset1, r1->offset);
780 h1 = min (offset1 + length, r1->offset + r1->length);
781
782 l2 = max (offset2, r2->offset);
9a0dc9e3 783 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
784
785 /* Make them relative to the respective start offsets, so we can
786 compare them for equality. */
787 l1 -= offset1;
788 h1 -= offset1;
789
790 l2 -= offset2;
791 h2 -= offset2;
792
9a0dc9e3 793 /* Different ranges, no match. */
c8c1c22f
PA
794 if (l1 != l2 || h1 != h2)
795 return 0;
796
9a0dc9e3
PA
797 *h = h1;
798 *l = l1;
799 return 1;
800 }
801}
802
803/* Helper function for value_contents_eq. The only difference is that
804 this function is bit rather than byte based.
805
806 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
807 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
808 Return true if the available bits match. */
809
810static int
811value_contents_bits_eq (const struct value *val1, int offset1,
812 const struct value *val2, int offset2,
813 int length)
814{
815 /* Each array element corresponds to a ranges source (unavailable,
816 optimized out). '1' is for VAL1, '2' for VAL2. */
817 struct ranges_and_idx rp1[2], rp2[2];
818
819 /* See function description in value.h. */
820 gdb_assert (!val1->lazy && !val2->lazy);
821
822 /* We shouldn't be trying to compare past the end of the values. */
823 gdb_assert (offset1 + length
824 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
825 gdb_assert (offset2 + length
826 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
827
828 memset (&rp1, 0, sizeof (rp1));
829 memset (&rp2, 0, sizeof (rp2));
830 rp1[0].ranges = val1->unavailable;
831 rp2[0].ranges = val2->unavailable;
832 rp1[1].ranges = val1->optimized_out;
833 rp2[1].ranges = val2->optimized_out;
834
835 while (length > 0)
836 {
000339af 837 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
838 int i;
839
840 for (i = 0; i < 2; i++)
841 {
842 ULONGEST l_tmp, h_tmp;
843
844 /* The contents only match equal if the invalid/unavailable
845 contents ranges match as well. */
846 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
847 offset1, offset2, length,
848 &l_tmp, &h_tmp))
849 return 0;
850
851 /* We're interested in the lowest/first range found. */
852 if (i == 0 || l_tmp < l)
853 {
854 l = l_tmp;
855 h = h_tmp;
856 }
857 }
858
859 /* Compare the available/valid contents. */
bdf22206 860 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 861 val2->contents, offset2, l) != 0)
c8c1c22f
PA
862 return 0;
863
9a0dc9e3
PA
864 length -= h;
865 offset1 += h;
866 offset2 += h;
c8c1c22f
PA
867 }
868
869 return 1;
870}
871
bdf22206 872int
9a0dc9e3
PA
873value_contents_eq (const struct value *val1, int offset1,
874 const struct value *val2, int offset2,
875 int length)
bdf22206 876{
9a0dc9e3
PA
877 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
878 val2, offset2 * TARGET_CHAR_BIT,
879 length * TARGET_CHAR_BIT);
bdf22206
AB
880}
881
581e13c1 882/* Prototypes for local functions. */
c906108c 883
a14ed312 884static void show_values (char *, int);
c906108c 885
a14ed312 886static void show_convenience (char *, int);
c906108c 887
c906108c
SS
888
889/* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895#define VALUE_HISTORY_CHUNK 60
896
897struct value_history_chunk
c5aa993b
JM
898 {
899 struct value_history_chunk *next;
f23631e4 900 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 901 };
c906108c
SS
902
903/* Chain of chunks now in use. */
904
905static struct value_history_chunk *value_history_chain;
906
581e13c1 907static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 908
c906108c
SS
909\f
910/* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
f23631e4 914static struct value *all_values;
c906108c 915
3e3d7139
JG
916/* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
c906108c 919
f23631e4 920struct value *
3e3d7139 921allocate_value_lazy (struct type *type)
c906108c 922{
f23631e4 923 struct value *val;
c54eabfa
JK
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
c906108c 932
8d749320 933 val = XCNEW (struct value);
3e3d7139 934 val->contents = NULL;
df407dfe 935 val->next = all_values;
c906108c 936 all_values = val;
df407dfe 937 val->type = type;
4754a64e 938 val->enclosing_type = type;
c906108c 939 VALUE_LVAL (val) = not_lval;
42ae5230 940 val->location.address = 0;
1df6926e 941 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
942 val->offset = 0;
943 val->bitpos = 0;
944 val->bitsize = 0;
9ee8fc9d 945 VALUE_REGNUM (val) = -1;
3e3d7139 946 val->lazy = 1;
13c3b5f5 947 val->embedded_offset = 0;
b44d461b 948 val->pointed_to_offset = 0;
c906108c 949 val->modifiable = 1;
42be36b3 950 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
951
952 /* Values start out on the all_values chain. */
953 val->reference_count = 1;
954
c906108c
SS
955 return val;
956}
957
5fdf6324
AB
958/* The maximum size, in bytes, that GDB will try to allocate for a value.
959 The initial value of 64k was not selected for any specific reason, it is
960 just a reasonable starting point. */
961
962static int max_value_size = 65536; /* 64k bytes */
963
964/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
965 LONGEST, otherwise GDB will not be able to parse integer values from the
966 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
967 be unable to parse "set max-value-size 2".
968
969 As we want a consistent GDB experience across hosts with different sizes
970 of LONGEST, this arbitrary minimum value was selected, so long as this
971 is bigger than LONGEST on all GDB supported hosts we're fine. */
972
973#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
974gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
975
976/* Implement the "set max-value-size" command. */
977
978static void
979set_max_value_size (char *args, int from_tty,
980 struct cmd_list_element *c)
981{
982 gdb_assert (max_value_size == -1 || max_value_size >= 0);
983
984 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
985 {
986 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
987 error (_("max-value-size set too low, increasing to %d bytes"),
988 max_value_size);
989 }
990}
991
992/* Implement the "show max-value-size" command. */
993
994static void
995show_max_value_size (struct ui_file *file, int from_tty,
996 struct cmd_list_element *c, const char *value)
997{
998 if (max_value_size == -1)
999 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1000 else
1001 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1002 max_value_size);
1003}
1004
1005/* Called before we attempt to allocate or reallocate a buffer for the
1006 contents of a value. TYPE is the type of the value for which we are
1007 allocating the buffer. If the buffer is too large (based on the user
1008 controllable setting) then throw an error. If this function returns
1009 then we should attempt to allocate the buffer. */
1010
1011static void
1012check_type_length_before_alloc (const struct type *type)
1013{
1014 unsigned int length = TYPE_LENGTH (type);
1015
1016 if (max_value_size > -1 && length > max_value_size)
1017 {
1018 if (TYPE_NAME (type) != NULL)
1019 error (_("value of type `%s' requires %u bytes, which is more "
1020 "than max-value-size"), TYPE_NAME (type), length);
1021 else
1022 error (_("value requires %u bytes, which is more than "
1023 "max-value-size"), length);
1024 }
1025}
1026
3e3d7139
JG
1027/* Allocate the contents of VAL if it has not been allocated yet. */
1028
548b762d 1029static void
3e3d7139
JG
1030allocate_value_contents (struct value *val)
1031{
1032 if (!val->contents)
5fdf6324
AB
1033 {
1034 check_type_length_before_alloc (val->enclosing_type);
1035 val->contents
1036 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1037 }
3e3d7139
JG
1038}
1039
1040/* Allocate a value and its contents for type TYPE. */
1041
1042struct value *
1043allocate_value (struct type *type)
1044{
1045 struct value *val = allocate_value_lazy (type);
a109c7c1 1046
3e3d7139
JG
1047 allocate_value_contents (val);
1048 val->lazy = 0;
1049 return val;
1050}
1051
c906108c 1052/* Allocate a value that has the correct length
938f5214 1053 for COUNT repetitions of type TYPE. */
c906108c 1054
f23631e4 1055struct value *
fba45db2 1056allocate_repeat_value (struct type *type, int count)
c906108c 1057{
c5aa993b 1058 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1059 /* FIXME-type-allocation: need a way to free this type when we are
1060 done with it. */
e3506a9f
UW
1061 struct type *array_type
1062 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1063
e3506a9f 1064 return allocate_value (array_type);
c906108c
SS
1065}
1066
5f5233d4
PA
1067struct value *
1068allocate_computed_value (struct type *type,
c8f2448a 1069 const struct lval_funcs *funcs,
5f5233d4
PA
1070 void *closure)
1071{
41e8491f 1072 struct value *v = allocate_value_lazy (type);
a109c7c1 1073
5f5233d4
PA
1074 VALUE_LVAL (v) = lval_computed;
1075 v->location.computed.funcs = funcs;
1076 v->location.computed.closure = closure;
5f5233d4
PA
1077
1078 return v;
1079}
1080
a7035dbb
JK
1081/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1082
1083struct value *
1084allocate_optimized_out_value (struct type *type)
1085{
1086 struct value *retval = allocate_value_lazy (type);
1087
9a0dc9e3
PA
1088 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1089 set_value_lazy (retval, 0);
a7035dbb
JK
1090 return retval;
1091}
1092
df407dfe
AC
1093/* Accessor methods. */
1094
17cf0ecd 1095struct value *
4bf7b526 1096value_next (const struct value *value)
17cf0ecd
AC
1097{
1098 return value->next;
1099}
1100
df407dfe 1101struct type *
0e03807e 1102value_type (const struct value *value)
df407dfe
AC
1103{
1104 return value->type;
1105}
04624583
AC
1106void
1107deprecated_set_value_type (struct value *value, struct type *type)
1108{
1109 value->type = type;
1110}
df407dfe
AC
1111
1112int
0e03807e 1113value_offset (const struct value *value)
df407dfe
AC
1114{
1115 return value->offset;
1116}
f5cf64a7
AC
1117void
1118set_value_offset (struct value *value, int offset)
1119{
1120 value->offset = offset;
1121}
df407dfe
AC
1122
1123int
0e03807e 1124value_bitpos (const struct value *value)
df407dfe
AC
1125{
1126 return value->bitpos;
1127}
9bbda503
AC
1128void
1129set_value_bitpos (struct value *value, int bit)
1130{
1131 value->bitpos = bit;
1132}
df407dfe
AC
1133
1134int
0e03807e 1135value_bitsize (const struct value *value)
df407dfe
AC
1136{
1137 return value->bitsize;
1138}
9bbda503
AC
1139void
1140set_value_bitsize (struct value *value, int bit)
1141{
1142 value->bitsize = bit;
1143}
df407dfe 1144
4ea48cc1 1145struct value *
4bf7b526 1146value_parent (const struct value *value)
4ea48cc1
DJ
1147{
1148 return value->parent;
1149}
1150
53ba8333
JB
1151/* See value.h. */
1152
1153void
1154set_value_parent (struct value *value, struct value *parent)
1155{
40501e00
TT
1156 struct value *old = value->parent;
1157
53ba8333 1158 value->parent = parent;
40501e00
TT
1159 if (parent != NULL)
1160 value_incref (parent);
1161 value_free (old);
53ba8333
JB
1162}
1163
fc1a4b47 1164gdb_byte *
990a07ab
AC
1165value_contents_raw (struct value *value)
1166{
3ae385af
SM
1167 struct gdbarch *arch = get_value_arch (value);
1168 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1169
3e3d7139 1170 allocate_value_contents (value);
3ae385af 1171 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1172}
1173
fc1a4b47 1174gdb_byte *
990a07ab
AC
1175value_contents_all_raw (struct value *value)
1176{
3e3d7139
JG
1177 allocate_value_contents (value);
1178 return value->contents;
990a07ab
AC
1179}
1180
4754a64e 1181struct type *
4bf7b526 1182value_enclosing_type (const struct value *value)
4754a64e
AC
1183{
1184 return value->enclosing_type;
1185}
1186
8264ba82
AG
1187/* Look at value.h for description. */
1188
1189struct type *
1190value_actual_type (struct value *value, int resolve_simple_types,
1191 int *real_type_found)
1192{
1193 struct value_print_options opts;
8264ba82
AG
1194 struct type *result;
1195
1196 get_user_print_options (&opts);
1197
1198 if (real_type_found)
1199 *real_type_found = 0;
1200 result = value_type (value);
1201 if (opts.objectprint)
1202 {
5e34c6c3
LM
1203 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1204 fetch its rtti type. */
1205 if ((TYPE_CODE (result) == TYPE_CODE_PTR
444bca65 1206 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3 1207 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1208 == TYPE_CODE_STRUCT
1209 && !value_optimized_out (value))
8264ba82
AG
1210 {
1211 struct type *real_type;
1212
1213 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1214 if (real_type)
1215 {
1216 if (real_type_found)
1217 *real_type_found = 1;
1218 result = real_type;
1219 }
1220 }
1221 else if (resolve_simple_types)
1222 {
1223 if (real_type_found)
1224 *real_type_found = 1;
1225 result = value_enclosing_type (value);
1226 }
1227 }
1228
1229 return result;
1230}
1231
901461f8
PA
1232void
1233error_value_optimized_out (void)
1234{
1235 error (_("value has been optimized out"));
1236}
1237
0e03807e 1238static void
4e07d55f 1239require_not_optimized_out (const struct value *value)
0e03807e 1240{
9a0dc9e3 1241 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1242 {
1243 if (value->lval == lval_register)
1244 error (_("register has not been saved in frame"));
1245 else
1246 error_value_optimized_out ();
1247 }
0e03807e
TT
1248}
1249
4e07d55f
PA
1250static void
1251require_available (const struct value *value)
1252{
1253 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1254 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1255}
1256
fc1a4b47 1257const gdb_byte *
0e03807e 1258value_contents_for_printing (struct value *value)
46615f07
AC
1259{
1260 if (value->lazy)
1261 value_fetch_lazy (value);
3e3d7139 1262 return value->contents;
46615f07
AC
1263}
1264
de4127a3
PA
1265const gdb_byte *
1266value_contents_for_printing_const (const struct value *value)
1267{
1268 gdb_assert (!value->lazy);
1269 return value->contents;
1270}
1271
0e03807e
TT
1272const gdb_byte *
1273value_contents_all (struct value *value)
1274{
1275 const gdb_byte *result = value_contents_for_printing (value);
1276 require_not_optimized_out (value);
4e07d55f 1277 require_available (value);
0e03807e
TT
1278 return result;
1279}
1280
9a0dc9e3
PA
1281/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1282 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1283
1284static void
1285ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1286 VEC (range_s) *src_range, int src_bit_offset,
1287 int bit_length)
1288{
1289 range_s *r;
1290 int i;
1291
1292 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1293 {
1294 ULONGEST h, l;
1295
1296 l = max (r->offset, src_bit_offset);
1297 h = min (r->offset + r->length, src_bit_offset + bit_length);
1298
1299 if (l < h)
1300 insert_into_bit_range_vector (dst_range,
1301 dst_bit_offset + (l - src_bit_offset),
1302 h - l);
1303 }
1304}
1305
4875ffdb
PA
1306/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1307 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1308
1309static void
1310value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1311 const struct value *src, int src_bit_offset,
1312 int bit_length)
1313{
1314 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1315 src->unavailable, src_bit_offset,
1316 bit_length);
1317 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1318 src->optimized_out, src_bit_offset,
1319 bit_length);
1320}
1321
3ae385af 1322/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1323 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1324 contents, starting at DST_OFFSET. If unavailable contents are
1325 being copied from SRC, the corresponding DST contents are marked
1326 unavailable accordingly. Neither DST nor SRC may be lazy
1327 values.
1328
1329 It is assumed the contents of DST in the [DST_OFFSET,
1330 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1331
1332void
1333value_contents_copy_raw (struct value *dst, int dst_offset,
1334 struct value *src, int src_offset, int length)
1335{
bdf22206 1336 int src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1337 struct gdbarch *arch = get_value_arch (src);
1338 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1339
1340 /* A lazy DST would make that this copy operation useless, since as
1341 soon as DST's contents were un-lazied (by a later value_contents
1342 call, say), the contents would be overwritten. A lazy SRC would
1343 mean we'd be copying garbage. */
1344 gdb_assert (!dst->lazy && !src->lazy);
1345
29976f3f
PA
1346 /* The overwritten DST range gets unavailability ORed in, not
1347 replaced. Make sure to remember to implement replacing if it
1348 turns out actually necessary. */
1349 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1350 gdb_assert (!value_bits_any_optimized_out (dst,
1351 TARGET_CHAR_BIT * dst_offset,
1352 TARGET_CHAR_BIT * length));
29976f3f 1353
39d37385 1354 /* Copy the data. */
3ae385af
SM
1355 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1356 value_contents_all_raw (src) + src_offset * unit_size,
1357 length * unit_size);
39d37385
PA
1358
1359 /* Copy the meta-data, adjusted. */
3ae385af
SM
1360 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1361 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1362 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1363
4875ffdb
PA
1364 value_ranges_copy_adjusted (dst, dst_bit_offset,
1365 src, src_bit_offset,
1366 bit_length);
39d37385
PA
1367}
1368
29976f3f
PA
1369/* Copy LENGTH bytes of SRC value's (all) contents
1370 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1371 (all) contents, starting at DST_OFFSET. If unavailable contents
1372 are being copied from SRC, the corresponding DST contents are
1373 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1374 lazy, it will be fetched now.
29976f3f
PA
1375
1376 It is assumed the contents of DST in the [DST_OFFSET,
1377 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1378
1379void
1380value_contents_copy (struct value *dst, int dst_offset,
1381 struct value *src, int src_offset, int length)
1382{
39d37385
PA
1383 if (src->lazy)
1384 value_fetch_lazy (src);
1385
1386 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1387}
1388
d69fe07e 1389int
4bf7b526 1390value_lazy (const struct value *value)
d69fe07e
AC
1391{
1392 return value->lazy;
1393}
1394
dfa52d88
AC
1395void
1396set_value_lazy (struct value *value, int val)
1397{
1398 value->lazy = val;
1399}
1400
4e5d721f 1401int
4bf7b526 1402value_stack (const struct value *value)
4e5d721f
DE
1403{
1404 return value->stack;
1405}
1406
1407void
1408set_value_stack (struct value *value, int val)
1409{
1410 value->stack = val;
1411}
1412
fc1a4b47 1413const gdb_byte *
0fd88904
AC
1414value_contents (struct value *value)
1415{
0e03807e
TT
1416 const gdb_byte *result = value_contents_writeable (value);
1417 require_not_optimized_out (value);
4e07d55f 1418 require_available (value);
0e03807e 1419 return result;
0fd88904
AC
1420}
1421
fc1a4b47 1422gdb_byte *
0fd88904
AC
1423value_contents_writeable (struct value *value)
1424{
1425 if (value->lazy)
1426 value_fetch_lazy (value);
fc0c53a0 1427 return value_contents_raw (value);
0fd88904
AC
1428}
1429
feb13ab0
AC
1430int
1431value_optimized_out (struct value *value)
1432{
691a26f5
AB
1433 /* We can only know if a value is optimized out once we have tried to
1434 fetch it. */
9a0dc9e3 1435 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1436 {
1437 TRY
1438 {
1439 value_fetch_lazy (value);
1440 }
1441 CATCH (ex, RETURN_MASK_ERROR)
1442 {
1443 /* Fall back to checking value->optimized_out. */
1444 }
1445 END_CATCH
1446 }
691a26f5 1447
9a0dc9e3 1448 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1449}
1450
9a0dc9e3
PA
1451/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1452 the following LENGTH bytes. */
eca07816 1453
feb13ab0 1454void
9a0dc9e3 1455mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1456{
9a0dc9e3
PA
1457 mark_value_bits_optimized_out (value,
1458 offset * TARGET_CHAR_BIT,
1459 length * TARGET_CHAR_BIT);
feb13ab0 1460}
13c3b5f5 1461
9a0dc9e3 1462/* See value.h. */
0e03807e 1463
9a0dc9e3
PA
1464void
1465mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1466{
9a0dc9e3 1467 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1468}
1469
8cf6f0b1
TT
1470int
1471value_bits_synthetic_pointer (const struct value *value,
1472 int offset, int length)
1473{
e7303042 1474 if (value->lval != lval_computed
8cf6f0b1
TT
1475 || !value->location.computed.funcs->check_synthetic_pointer)
1476 return 0;
1477 return value->location.computed.funcs->check_synthetic_pointer (value,
1478 offset,
1479 length);
1480}
1481
13c3b5f5 1482int
4bf7b526 1483value_embedded_offset (const struct value *value)
13c3b5f5
AC
1484{
1485 return value->embedded_offset;
1486}
1487
1488void
1489set_value_embedded_offset (struct value *value, int val)
1490{
1491 value->embedded_offset = val;
1492}
b44d461b
AC
1493
1494int
4bf7b526 1495value_pointed_to_offset (const struct value *value)
b44d461b
AC
1496{
1497 return value->pointed_to_offset;
1498}
1499
1500void
1501set_value_pointed_to_offset (struct value *value, int val)
1502{
1503 value->pointed_to_offset = val;
1504}
13bb5560 1505
c8f2448a 1506const struct lval_funcs *
a471c594 1507value_computed_funcs (const struct value *v)
5f5233d4 1508{
a471c594 1509 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1510
1511 return v->location.computed.funcs;
1512}
1513
1514void *
0e03807e 1515value_computed_closure (const struct value *v)
5f5233d4 1516{
0e03807e 1517 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1518
1519 return v->location.computed.closure;
1520}
1521
13bb5560
AC
1522enum lval_type *
1523deprecated_value_lval_hack (struct value *value)
1524{
1525 return &value->lval;
1526}
1527
a471c594
JK
1528enum lval_type
1529value_lval_const (const struct value *value)
1530{
1531 return value->lval;
1532}
1533
42ae5230 1534CORE_ADDR
de4127a3 1535value_address (const struct value *value)
42ae5230
TT
1536{
1537 if (value->lval == lval_internalvar
e81e7f5e
SC
1538 || value->lval == lval_internalvar_component
1539 || value->lval == lval_xcallable)
42ae5230 1540 return 0;
53ba8333
JB
1541 if (value->parent != NULL)
1542 return value_address (value->parent) + value->offset;
9920b434
BH
1543 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1544 {
1545 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1546 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1547 }
1548
1549 return value->location.address + value->offset;
42ae5230
TT
1550}
1551
1552CORE_ADDR
4bf7b526 1553value_raw_address (const struct value *value)
42ae5230
TT
1554{
1555 if (value->lval == lval_internalvar
e81e7f5e
SC
1556 || value->lval == lval_internalvar_component
1557 || value->lval == lval_xcallable)
42ae5230
TT
1558 return 0;
1559 return value->location.address;
1560}
1561
1562void
1563set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1564{
42ae5230 1565 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1566 && value->lval != lval_internalvar_component
1567 && value->lval != lval_xcallable);
42ae5230 1568 value->location.address = addr;
13bb5560
AC
1569}
1570
1571struct internalvar **
1572deprecated_value_internalvar_hack (struct value *value)
1573{
1574 return &value->location.internalvar;
1575}
1576
1577struct frame_id *
1578deprecated_value_frame_id_hack (struct value *value)
1579{
1580 return &value->frame_id;
1581}
1582
1583short *
1584deprecated_value_regnum_hack (struct value *value)
1585{
1586 return &value->regnum;
1587}
88e3b34b
AC
1588
1589int
4bf7b526 1590deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1591{
1592 return value->modifiable;
1593}
990a07ab 1594\f
c906108c
SS
1595/* Return a mark in the value chain. All values allocated after the
1596 mark is obtained (except for those released) are subject to being freed
1597 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1598struct value *
fba45db2 1599value_mark (void)
c906108c
SS
1600{
1601 return all_values;
1602}
1603
828d3400
DJ
1604/* Take a reference to VAL. VAL will not be deallocated until all
1605 references are released. */
1606
1607void
1608value_incref (struct value *val)
1609{
1610 val->reference_count++;
1611}
1612
1613/* Release a reference to VAL, which was acquired with value_incref.
1614 This function is also called to deallocate values from the value
1615 chain. */
1616
3e3d7139
JG
1617void
1618value_free (struct value *val)
1619{
1620 if (val)
5f5233d4 1621 {
828d3400
DJ
1622 gdb_assert (val->reference_count > 0);
1623 val->reference_count--;
1624 if (val->reference_count > 0)
1625 return;
1626
4ea48cc1
DJ
1627 /* If there's an associated parent value, drop our reference to
1628 it. */
1629 if (val->parent != NULL)
1630 value_free (val->parent);
1631
5f5233d4
PA
1632 if (VALUE_LVAL (val) == lval_computed)
1633 {
c8f2448a 1634 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1635
1636 if (funcs->free_closure)
1637 funcs->free_closure (val);
1638 }
e81e7f5e
SC
1639 else if (VALUE_LVAL (val) == lval_xcallable)
1640 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1641
1642 xfree (val->contents);
4e07d55f 1643 VEC_free (range_s, val->unavailable);
5f5233d4 1644 }
3e3d7139
JG
1645 xfree (val);
1646}
1647
c906108c
SS
1648/* Free all values allocated since MARK was obtained by value_mark
1649 (except for those released). */
1650void
4bf7b526 1651value_free_to_mark (const struct value *mark)
c906108c 1652{
f23631e4
AC
1653 struct value *val;
1654 struct value *next;
c906108c
SS
1655
1656 for (val = all_values; val && val != mark; val = next)
1657 {
df407dfe 1658 next = val->next;
e848a8a5 1659 val->released = 1;
c906108c
SS
1660 value_free (val);
1661 }
1662 all_values = val;
1663}
1664
1665/* Free all the values that have been allocated (except for those released).
725e88af
DE
1666 Call after each command, successful or not.
1667 In practice this is called before each command, which is sufficient. */
c906108c
SS
1668
1669void
fba45db2 1670free_all_values (void)
c906108c 1671{
f23631e4
AC
1672 struct value *val;
1673 struct value *next;
c906108c
SS
1674
1675 for (val = all_values; val; val = next)
1676 {
df407dfe 1677 next = val->next;
e848a8a5 1678 val->released = 1;
c906108c
SS
1679 value_free (val);
1680 }
1681
1682 all_values = 0;
1683}
1684
0cf6dd15
TJB
1685/* Frees all the elements in a chain of values. */
1686
1687void
1688free_value_chain (struct value *v)
1689{
1690 struct value *next;
1691
1692 for (; v; v = next)
1693 {
1694 next = value_next (v);
1695 value_free (v);
1696 }
1697}
1698
c906108c
SS
1699/* Remove VAL from the chain all_values
1700 so it will not be freed automatically. */
1701
1702void
f23631e4 1703release_value (struct value *val)
c906108c 1704{
f23631e4 1705 struct value *v;
c906108c
SS
1706
1707 if (all_values == val)
1708 {
1709 all_values = val->next;
06a64a0b 1710 val->next = NULL;
e848a8a5 1711 val->released = 1;
c906108c
SS
1712 return;
1713 }
1714
1715 for (v = all_values; v; v = v->next)
1716 {
1717 if (v->next == val)
1718 {
1719 v->next = val->next;
06a64a0b 1720 val->next = NULL;
e848a8a5 1721 val->released = 1;
c906108c
SS
1722 break;
1723 }
1724 }
1725}
1726
e848a8a5
TT
1727/* If the value is not already released, release it.
1728 If the value is already released, increment its reference count.
1729 That is, this function ensures that the value is released from the
1730 value chain and that the caller owns a reference to it. */
1731
1732void
1733release_value_or_incref (struct value *val)
1734{
1735 if (val->released)
1736 value_incref (val);
1737 else
1738 release_value (val);
1739}
1740
c906108c 1741/* Release all values up to mark */
f23631e4 1742struct value *
4bf7b526 1743value_release_to_mark (const struct value *mark)
c906108c 1744{
f23631e4
AC
1745 struct value *val;
1746 struct value *next;
c906108c 1747
df407dfe 1748 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1749 {
1750 if (next->next == mark)
1751 {
1752 all_values = next->next;
1753 next->next = NULL;
1754 return val;
1755 }
1756 next->released = 1;
1757 }
c906108c
SS
1758 all_values = 0;
1759 return val;
1760}
1761
1762/* Return a copy of the value ARG.
1763 It contains the same contents, for same memory address,
1764 but it's a different block of storage. */
1765
f23631e4
AC
1766struct value *
1767value_copy (struct value *arg)
c906108c 1768{
4754a64e 1769 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1770 struct value *val;
1771
1772 if (value_lazy (arg))
1773 val = allocate_value_lazy (encl_type);
1774 else
1775 val = allocate_value (encl_type);
df407dfe 1776 val->type = arg->type;
c906108c 1777 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1778 val->location = arg->location;
df407dfe
AC
1779 val->offset = arg->offset;
1780 val->bitpos = arg->bitpos;
1781 val->bitsize = arg->bitsize;
1df6926e 1782 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1783 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1784 val->lazy = arg->lazy;
13c3b5f5 1785 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1786 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1787 val->modifiable = arg->modifiable;
d69fe07e 1788 if (!value_lazy (val))
c906108c 1789 {
990a07ab 1790 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1791 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1792
1793 }
4e07d55f 1794 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1795 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1796 set_value_parent (val, arg->parent);
5f5233d4
PA
1797 if (VALUE_LVAL (val) == lval_computed)
1798 {
c8f2448a 1799 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1800
1801 if (funcs->copy_closure)
1802 val->location.computed.closure = funcs->copy_closure (val);
1803 }
c906108c
SS
1804 return val;
1805}
74bcbdf3 1806
4c082a81
SC
1807/* Return a "const" and/or "volatile" qualified version of the value V.
1808 If CNST is true, then the returned value will be qualified with
1809 "const".
1810 if VOLTL is true, then the returned value will be qualified with
1811 "volatile". */
1812
1813struct value *
1814make_cv_value (int cnst, int voltl, struct value *v)
1815{
1816 struct type *val_type = value_type (v);
1817 struct type *enclosing_type = value_enclosing_type (v);
1818 struct value *cv_val = value_copy (v);
1819
1820 deprecated_set_value_type (cv_val,
1821 make_cv_type (cnst, voltl, val_type, NULL));
1822 set_value_enclosing_type (cv_val,
1823 make_cv_type (cnst, voltl, enclosing_type, NULL));
1824
1825 return cv_val;
1826}
1827
c37f7098
KW
1828/* Return a version of ARG that is non-lvalue. */
1829
1830struct value *
1831value_non_lval (struct value *arg)
1832{
1833 if (VALUE_LVAL (arg) != not_lval)
1834 {
1835 struct type *enc_type = value_enclosing_type (arg);
1836 struct value *val = allocate_value (enc_type);
1837
1838 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1839 TYPE_LENGTH (enc_type));
1840 val->type = arg->type;
1841 set_value_embedded_offset (val, value_embedded_offset (arg));
1842 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1843 return val;
1844 }
1845 return arg;
1846}
1847
6c659fc2
SC
1848/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1849
1850void
1851value_force_lval (struct value *v, CORE_ADDR addr)
1852{
1853 gdb_assert (VALUE_LVAL (v) == not_lval);
1854
1855 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1856 v->lval = lval_memory;
1857 v->location.address = addr;
1858}
1859
74bcbdf3 1860void
0e03807e
TT
1861set_value_component_location (struct value *component,
1862 const struct value *whole)
74bcbdf3 1863{
9920b434
BH
1864 struct type *type;
1865
e81e7f5e
SC
1866 gdb_assert (whole->lval != lval_xcallable);
1867
0e03807e 1868 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1869 VALUE_LVAL (component) = lval_internalvar_component;
1870 else
0e03807e 1871 VALUE_LVAL (component) = whole->lval;
5f5233d4 1872
74bcbdf3 1873 component->location = whole->location;
0e03807e 1874 if (whole->lval == lval_computed)
5f5233d4 1875 {
c8f2448a 1876 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1877
1878 if (funcs->copy_closure)
1879 component->location.computed.closure = funcs->copy_closure (whole);
1880 }
9920b434
BH
1881
1882 /* If type has a dynamic resolved location property
1883 update it's value address. */
1884 type = value_type (whole);
1885 if (NULL != TYPE_DATA_LOCATION (type)
1886 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1887 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1888}
1889
c906108c
SS
1890/* Access to the value history. */
1891
1892/* Record a new value in the value history.
eddf0bae 1893 Returns the absolute history index of the entry. */
c906108c
SS
1894
1895int
f23631e4 1896record_latest_value (struct value *val)
c906108c
SS
1897{
1898 int i;
1899
1900 /* We don't want this value to have anything to do with the inferior anymore.
1901 In particular, "set $1 = 50" should not affect the variable from which
1902 the value was taken, and fast watchpoints should be able to assume that
1903 a value on the value history never changes. */
d69fe07e 1904 if (value_lazy (val))
c906108c
SS
1905 value_fetch_lazy (val);
1906 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1907 from. This is a bit dubious, because then *&$1 does not just return $1
1908 but the current contents of that location. c'est la vie... */
1909 val->modifiable = 0;
350e1a76
DE
1910
1911 /* The value may have already been released, in which case we're adding a
1912 new reference for its entry in the history. That is why we call
1913 release_value_or_incref here instead of release_value. */
1914 release_value_or_incref (val);
c906108c
SS
1915
1916 /* Here we treat value_history_count as origin-zero
1917 and applying to the value being stored now. */
1918
1919 i = value_history_count % VALUE_HISTORY_CHUNK;
1920 if (i == 0)
1921 {
8d749320 1922 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1923
fe978cb0
PA
1924 newobj->next = value_history_chain;
1925 value_history_chain = newobj;
c906108c
SS
1926 }
1927
1928 value_history_chain->values[i] = val;
1929
1930 /* Now we regard value_history_count as origin-one
1931 and applying to the value just stored. */
1932
1933 return ++value_history_count;
1934}
1935
1936/* Return a copy of the value in the history with sequence number NUM. */
1937
f23631e4 1938struct value *
fba45db2 1939access_value_history (int num)
c906108c 1940{
f23631e4 1941 struct value_history_chunk *chunk;
52f0bd74
AC
1942 int i;
1943 int absnum = num;
c906108c
SS
1944
1945 if (absnum <= 0)
1946 absnum += value_history_count;
1947
1948 if (absnum <= 0)
1949 {
1950 if (num == 0)
8a3fe4f8 1951 error (_("The history is empty."));
c906108c 1952 else if (num == 1)
8a3fe4f8 1953 error (_("There is only one value in the history."));
c906108c 1954 else
8a3fe4f8 1955 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1956 }
1957 if (absnum > value_history_count)
8a3fe4f8 1958 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1959
1960 absnum--;
1961
1962 /* Now absnum is always absolute and origin zero. */
1963
1964 chunk = value_history_chain;
3e43a32a
MS
1965 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1966 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1967 i > 0; i--)
1968 chunk = chunk->next;
1969
1970 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1971}
1972
c906108c 1973static void
fba45db2 1974show_values (char *num_exp, int from_tty)
c906108c 1975{
52f0bd74 1976 int i;
f23631e4 1977 struct value *val;
c906108c
SS
1978 static int num = 1;
1979
1980 if (num_exp)
1981 {
f132ba9d
TJB
1982 /* "show values +" should print from the stored position.
1983 "show values <exp>" should print around value number <exp>. */
c906108c 1984 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1985 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1986 }
1987 else
1988 {
f132ba9d 1989 /* "show values" means print the last 10 values. */
c906108c
SS
1990 num = value_history_count - 9;
1991 }
1992
1993 if (num <= 0)
1994 num = 1;
1995
1996 for (i = num; i < num + 10 && i <= value_history_count; i++)
1997 {
79a45b7d 1998 struct value_print_options opts;
a109c7c1 1999
c906108c 2000 val = access_value_history (i);
a3f17187 2001 printf_filtered (("$%d = "), i);
79a45b7d
TT
2002 get_user_print_options (&opts);
2003 value_print (val, gdb_stdout, &opts);
a3f17187 2004 printf_filtered (("\n"));
c906108c
SS
2005 }
2006
f132ba9d 2007 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2008 num += 10;
2009
2010 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2011 "show values +". If num_exp is null, this is unnecessary, since
2012 "show values +" is not useful after "show values". */
c906108c
SS
2013 if (from_tty && num_exp)
2014 {
2015 num_exp[0] = '+';
2016 num_exp[1] = '\0';
2017 }
2018}
2019\f
52059ffd
TT
2020enum internalvar_kind
2021{
2022 /* The internal variable is empty. */
2023 INTERNALVAR_VOID,
2024
2025 /* The value of the internal variable is provided directly as
2026 a GDB value object. */
2027 INTERNALVAR_VALUE,
2028
2029 /* A fresh value is computed via a call-back routine on every
2030 access to the internal variable. */
2031 INTERNALVAR_MAKE_VALUE,
2032
2033 /* The internal variable holds a GDB internal convenience function. */
2034 INTERNALVAR_FUNCTION,
2035
2036 /* The variable holds an integer value. */
2037 INTERNALVAR_INTEGER,
2038
2039 /* The variable holds a GDB-provided string. */
2040 INTERNALVAR_STRING,
2041};
2042
2043union internalvar_data
2044{
2045 /* A value object used with INTERNALVAR_VALUE. */
2046 struct value *value;
2047
2048 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2049 struct
2050 {
2051 /* The functions to call. */
2052 const struct internalvar_funcs *functions;
2053
2054 /* The function's user-data. */
2055 void *data;
2056 } make_value;
2057
2058 /* The internal function used with INTERNALVAR_FUNCTION. */
2059 struct
2060 {
2061 struct internal_function *function;
2062 /* True if this is the canonical name for the function. */
2063 int canonical;
2064 } fn;
2065
2066 /* An integer value used with INTERNALVAR_INTEGER. */
2067 struct
2068 {
2069 /* If type is non-NULL, it will be used as the type to generate
2070 a value for this internal variable. If type is NULL, a default
2071 integer type for the architecture is used. */
2072 struct type *type;
2073 LONGEST val;
2074 } integer;
2075
2076 /* A string value used with INTERNALVAR_STRING. */
2077 char *string;
2078};
2079
c906108c
SS
2080/* Internal variables. These are variables within the debugger
2081 that hold values assigned by debugger commands.
2082 The user refers to them with a '$' prefix
2083 that does not appear in the variable names stored internally. */
2084
4fa62494
UW
2085struct internalvar
2086{
2087 struct internalvar *next;
2088 char *name;
4fa62494 2089
78267919
UW
2090 /* We support various different kinds of content of an internal variable.
2091 enum internalvar_kind specifies the kind, and union internalvar_data
2092 provides the data associated with this particular kind. */
2093
52059ffd 2094 enum internalvar_kind kind;
4fa62494 2095
52059ffd 2096 union internalvar_data u;
4fa62494
UW
2097};
2098
c906108c
SS
2099static struct internalvar *internalvars;
2100
3e43a32a
MS
2101/* If the variable does not already exist create it and give it the
2102 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2103static void
2104init_if_undefined_command (char* args, int from_tty)
2105{
2106 struct internalvar* intvar;
2107
2108 /* Parse the expression - this is taken from set_command(). */
2109 struct expression *expr = parse_expression (args);
2110 register struct cleanup *old_chain =
2111 make_cleanup (free_current_contents, &expr);
2112
2113 /* Validate the expression.
2114 Was the expression an assignment?
2115 Or even an expression at all? */
2116 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2117 error (_("Init-if-undefined requires an assignment expression."));
2118
2119 /* Extract the variable from the parsed expression.
2120 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2121 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2122 error (_("The first parameter to init-if-undefined "
2123 "should be a GDB variable."));
53e5f3cf
AS
2124 intvar = expr->elts[2].internalvar;
2125
2126 /* Only evaluate the expression if the lvalue is void.
2127 This may still fail if the expresssion is invalid. */
78267919 2128 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2129 evaluate_expression (expr);
2130
2131 do_cleanups (old_chain);
2132}
2133
2134
c906108c
SS
2135/* Look up an internal variable with name NAME. NAME should not
2136 normally include a dollar sign.
2137
2138 If the specified internal variable does not exist,
c4a3d09a 2139 the return value is NULL. */
c906108c
SS
2140
2141struct internalvar *
bc3b79fd 2142lookup_only_internalvar (const char *name)
c906108c 2143{
52f0bd74 2144 struct internalvar *var;
c906108c
SS
2145
2146 for (var = internalvars; var; var = var->next)
5cb316ef 2147 if (strcmp (var->name, name) == 0)
c906108c
SS
2148 return var;
2149
c4a3d09a
MF
2150 return NULL;
2151}
2152
d55637df
TT
2153/* Complete NAME by comparing it to the names of internal variables.
2154 Returns a vector of newly allocated strings, or NULL if no matches
2155 were found. */
2156
2157VEC (char_ptr) *
2158complete_internalvar (const char *name)
2159{
2160 VEC (char_ptr) *result = NULL;
2161 struct internalvar *var;
2162 int len;
2163
2164 len = strlen (name);
2165
2166 for (var = internalvars; var; var = var->next)
2167 if (strncmp (var->name, name, len) == 0)
2168 {
2169 char *r = xstrdup (var->name);
2170
2171 VEC_safe_push (char_ptr, result, r);
2172 }
2173
2174 return result;
2175}
c4a3d09a
MF
2176
2177/* Create an internal variable with name NAME and with a void value.
2178 NAME should not normally include a dollar sign. */
2179
2180struct internalvar *
bc3b79fd 2181create_internalvar (const char *name)
c4a3d09a 2182{
8d749320 2183 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2184
1754f103 2185 var->name = concat (name, (char *)NULL);
78267919 2186 var->kind = INTERNALVAR_VOID;
c906108c
SS
2187 var->next = internalvars;
2188 internalvars = var;
2189 return var;
2190}
2191
4aa995e1
PA
2192/* Create an internal variable with name NAME and register FUN as the
2193 function that value_of_internalvar uses to create a value whenever
2194 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2195 dollar sign. DATA is passed uninterpreted to FUN when it is
2196 called. CLEANUP, if not NULL, is called when the internal variable
2197 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2198
2199struct internalvar *
22d2b532
SDJ
2200create_internalvar_type_lazy (const char *name,
2201 const struct internalvar_funcs *funcs,
2202 void *data)
4aa995e1 2203{
4fa62494 2204 struct internalvar *var = create_internalvar (name);
a109c7c1 2205
78267919 2206 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2207 var->u.make_value.functions = funcs;
2208 var->u.make_value.data = data;
4aa995e1
PA
2209 return var;
2210}
c4a3d09a 2211
22d2b532
SDJ
2212/* See documentation in value.h. */
2213
2214int
2215compile_internalvar_to_ax (struct internalvar *var,
2216 struct agent_expr *expr,
2217 struct axs_value *value)
2218{
2219 if (var->kind != INTERNALVAR_MAKE_VALUE
2220 || var->u.make_value.functions->compile_to_ax == NULL)
2221 return 0;
2222
2223 var->u.make_value.functions->compile_to_ax (var, expr, value,
2224 var->u.make_value.data);
2225 return 1;
2226}
2227
c4a3d09a
MF
2228/* Look up an internal variable with name NAME. NAME should not
2229 normally include a dollar sign.
2230
2231 If the specified internal variable does not exist,
2232 one is created, with a void value. */
2233
2234struct internalvar *
bc3b79fd 2235lookup_internalvar (const char *name)
c4a3d09a
MF
2236{
2237 struct internalvar *var;
2238
2239 var = lookup_only_internalvar (name);
2240 if (var)
2241 return var;
2242
2243 return create_internalvar (name);
2244}
2245
78267919
UW
2246/* Return current value of internal variable VAR. For variables that
2247 are not inherently typed, use a value type appropriate for GDBARCH. */
2248
f23631e4 2249struct value *
78267919 2250value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2251{
f23631e4 2252 struct value *val;
0914bcdb
SS
2253 struct trace_state_variable *tsv;
2254
2255 /* If there is a trace state variable of the same name, assume that
2256 is what we really want to see. */
2257 tsv = find_trace_state_variable (var->name);
2258 if (tsv)
2259 {
2260 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2261 &(tsv->value));
2262 if (tsv->value_known)
2263 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2264 tsv->value);
2265 else
2266 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2267 return val;
2268 }
c906108c 2269
78267919 2270 switch (var->kind)
5f5233d4 2271 {
78267919
UW
2272 case INTERNALVAR_VOID:
2273 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2274 break;
4fa62494 2275
78267919
UW
2276 case INTERNALVAR_FUNCTION:
2277 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2278 break;
4fa62494 2279
cab0c772
UW
2280 case INTERNALVAR_INTEGER:
2281 if (!var->u.integer.type)
78267919 2282 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2283 var->u.integer.val);
78267919 2284 else
cab0c772
UW
2285 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2286 break;
2287
78267919
UW
2288 case INTERNALVAR_STRING:
2289 val = value_cstring (var->u.string, strlen (var->u.string),
2290 builtin_type (gdbarch)->builtin_char);
2291 break;
4fa62494 2292
78267919
UW
2293 case INTERNALVAR_VALUE:
2294 val = value_copy (var->u.value);
4aa995e1
PA
2295 if (value_lazy (val))
2296 value_fetch_lazy (val);
78267919 2297 break;
4aa995e1 2298
78267919 2299 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2300 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2301 var->u.make_value.data);
78267919
UW
2302 break;
2303
2304 default:
9b20d036 2305 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2306 }
2307
2308 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2309 on this value go back to affect the original internal variable.
2310
2311 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2312 no underlying modifyable state in the internal variable.
2313
2314 Likewise, if the variable's value is a computed lvalue, we want
2315 references to it to produce another computed lvalue, where
2316 references and assignments actually operate through the
2317 computed value's functions.
2318
2319 This means that internal variables with computed values
2320 behave a little differently from other internal variables:
2321 assignments to them don't just replace the previous value
2322 altogether. At the moment, this seems like the behavior we
2323 want. */
2324
2325 if (var->kind != INTERNALVAR_MAKE_VALUE
2326 && val->lval != lval_computed)
2327 {
2328 VALUE_LVAL (val) = lval_internalvar;
2329 VALUE_INTERNALVAR (val) = var;
5f5233d4 2330 }
d3c139e9 2331
4fa62494
UW
2332 return val;
2333}
d3c139e9 2334
4fa62494
UW
2335int
2336get_internalvar_integer (struct internalvar *var, LONGEST *result)
2337{
3158c6ed 2338 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2339 {
cab0c772
UW
2340 *result = var->u.integer.val;
2341 return 1;
3158c6ed 2342 }
d3c139e9 2343
3158c6ed
PA
2344 if (var->kind == INTERNALVAR_VALUE)
2345 {
2346 struct type *type = check_typedef (value_type (var->u.value));
2347
2348 if (TYPE_CODE (type) == TYPE_CODE_INT)
2349 {
2350 *result = value_as_long (var->u.value);
2351 return 1;
2352 }
4fa62494 2353 }
3158c6ed
PA
2354
2355 return 0;
4fa62494 2356}
d3c139e9 2357
4fa62494
UW
2358static int
2359get_internalvar_function (struct internalvar *var,
2360 struct internal_function **result)
2361{
78267919 2362 switch (var->kind)
d3c139e9 2363 {
78267919
UW
2364 case INTERNALVAR_FUNCTION:
2365 *result = var->u.fn.function;
4fa62494 2366 return 1;
d3c139e9 2367
4fa62494
UW
2368 default:
2369 return 0;
2370 }
c906108c
SS
2371}
2372
2373void
fba45db2 2374set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2375 int bitsize, struct value *newval)
c906108c 2376{
4fa62494 2377 gdb_byte *addr;
3ae385af
SM
2378 struct gdbarch *arch;
2379 int unit_size;
c906108c 2380
78267919 2381 switch (var->kind)
4fa62494 2382 {
78267919
UW
2383 case INTERNALVAR_VALUE:
2384 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2385 arch = get_value_arch (var->u.value);
2386 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2387
2388 if (bitsize)
50810684 2389 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2390 value_as_long (newval), bitpos, bitsize);
2391 else
3ae385af 2392 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2393 TYPE_LENGTH (value_type (newval)));
2394 break;
78267919
UW
2395
2396 default:
2397 /* We can never get a component of any other kind. */
9b20d036 2398 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2399 }
c906108c
SS
2400}
2401
2402void
f23631e4 2403set_internalvar (struct internalvar *var, struct value *val)
c906108c 2404{
78267919 2405 enum internalvar_kind new_kind;
4fa62494 2406 union internalvar_data new_data = { 0 };
c906108c 2407
78267919 2408 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2409 error (_("Cannot overwrite convenience function %s"), var->name);
2410
4fa62494 2411 /* Prepare new contents. */
78267919 2412 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2413 {
2414 case TYPE_CODE_VOID:
78267919 2415 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2416 break;
2417
2418 case TYPE_CODE_INTERNAL_FUNCTION:
2419 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2420 new_kind = INTERNALVAR_FUNCTION;
2421 get_internalvar_function (VALUE_INTERNALVAR (val),
2422 &new_data.fn.function);
2423 /* Copies created here are never canonical. */
4fa62494
UW
2424 break;
2425
4fa62494 2426 default:
78267919
UW
2427 new_kind = INTERNALVAR_VALUE;
2428 new_data.value = value_copy (val);
2429 new_data.value->modifiable = 1;
4fa62494
UW
2430
2431 /* Force the value to be fetched from the target now, to avoid problems
2432 later when this internalvar is referenced and the target is gone or
2433 has changed. */
78267919
UW
2434 if (value_lazy (new_data.value))
2435 value_fetch_lazy (new_data.value);
4fa62494
UW
2436
2437 /* Release the value from the value chain to prevent it from being
2438 deleted by free_all_values. From here on this function should not
2439 call error () until new_data is installed into the var->u to avoid
2440 leaking memory. */
78267919 2441 release_value (new_data.value);
9920b434
BH
2442
2443 /* Internal variables which are created from values with a dynamic
2444 location don't need the location property of the origin anymore.
2445 The resolved dynamic location is used prior then any other address
2446 when accessing the value.
2447 If we keep it, we would still refer to the origin value.
2448 Remove the location property in case it exist. */
2449 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2450
4fa62494
UW
2451 break;
2452 }
2453
2454 /* Clean up old contents. */
2455 clear_internalvar (var);
2456
2457 /* Switch over. */
78267919 2458 var->kind = new_kind;
4fa62494 2459 var->u = new_data;
c906108c
SS
2460 /* End code which must not call error(). */
2461}
2462
4fa62494
UW
2463void
2464set_internalvar_integer (struct internalvar *var, LONGEST l)
2465{
2466 /* Clean up old contents. */
2467 clear_internalvar (var);
2468
cab0c772
UW
2469 var->kind = INTERNALVAR_INTEGER;
2470 var->u.integer.type = NULL;
2471 var->u.integer.val = l;
78267919
UW
2472}
2473
2474void
2475set_internalvar_string (struct internalvar *var, const char *string)
2476{
2477 /* Clean up old contents. */
2478 clear_internalvar (var);
2479
2480 var->kind = INTERNALVAR_STRING;
2481 var->u.string = xstrdup (string);
4fa62494
UW
2482}
2483
2484static void
2485set_internalvar_function (struct internalvar *var, struct internal_function *f)
2486{
2487 /* Clean up old contents. */
2488 clear_internalvar (var);
2489
78267919
UW
2490 var->kind = INTERNALVAR_FUNCTION;
2491 var->u.fn.function = f;
2492 var->u.fn.canonical = 1;
2493 /* Variables installed here are always the canonical version. */
4fa62494
UW
2494}
2495
2496void
2497clear_internalvar (struct internalvar *var)
2498{
2499 /* Clean up old contents. */
78267919 2500 switch (var->kind)
4fa62494 2501 {
78267919
UW
2502 case INTERNALVAR_VALUE:
2503 value_free (var->u.value);
2504 break;
2505
2506 case INTERNALVAR_STRING:
2507 xfree (var->u.string);
4fa62494
UW
2508 break;
2509
22d2b532
SDJ
2510 case INTERNALVAR_MAKE_VALUE:
2511 if (var->u.make_value.functions->destroy != NULL)
2512 var->u.make_value.functions->destroy (var->u.make_value.data);
2513 break;
2514
4fa62494 2515 default:
4fa62494
UW
2516 break;
2517 }
2518
78267919
UW
2519 /* Reset to void kind. */
2520 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2521}
2522
c906108c 2523char *
4bf7b526 2524internalvar_name (const struct internalvar *var)
c906108c
SS
2525{
2526 return var->name;
2527}
2528
4fa62494
UW
2529static struct internal_function *
2530create_internal_function (const char *name,
2531 internal_function_fn handler, void *cookie)
bc3b79fd 2532{
bc3b79fd 2533 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2534
bc3b79fd
TJB
2535 ifn->name = xstrdup (name);
2536 ifn->handler = handler;
2537 ifn->cookie = cookie;
4fa62494 2538 return ifn;
bc3b79fd
TJB
2539}
2540
2541char *
2542value_internal_function_name (struct value *val)
2543{
4fa62494
UW
2544 struct internal_function *ifn;
2545 int result;
2546
2547 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2548 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2549 gdb_assert (result);
2550
bc3b79fd
TJB
2551 return ifn->name;
2552}
2553
2554struct value *
d452c4bc
UW
2555call_internal_function (struct gdbarch *gdbarch,
2556 const struct language_defn *language,
2557 struct value *func, int argc, struct value **argv)
bc3b79fd 2558{
4fa62494
UW
2559 struct internal_function *ifn;
2560 int result;
2561
2562 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2563 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2564 gdb_assert (result);
2565
d452c4bc 2566 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2567}
2568
2569/* The 'function' command. This does nothing -- it is just a
2570 placeholder to let "help function NAME" work. This is also used as
2571 the implementation of the sub-command that is created when
2572 registering an internal function. */
2573static void
2574function_command (char *command, int from_tty)
2575{
2576 /* Do nothing. */
2577}
2578
2579/* Clean up if an internal function's command is destroyed. */
2580static void
2581function_destroyer (struct cmd_list_element *self, void *ignore)
2582{
6f937416 2583 xfree ((char *) self->name);
1947513d 2584 xfree ((char *) self->doc);
bc3b79fd
TJB
2585}
2586
2587/* Add a new internal function. NAME is the name of the function; DOC
2588 is a documentation string describing the function. HANDLER is
2589 called when the function is invoked. COOKIE is an arbitrary
2590 pointer which is passed to HANDLER and is intended for "user
2591 data". */
2592void
2593add_internal_function (const char *name, const char *doc,
2594 internal_function_fn handler, void *cookie)
2595{
2596 struct cmd_list_element *cmd;
4fa62494 2597 struct internal_function *ifn;
bc3b79fd 2598 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2599
2600 ifn = create_internal_function (name, handler, cookie);
2601 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2602
2603 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2604 &functionlist);
2605 cmd->destroyer = function_destroyer;
2606}
2607
ae5a43e0
DJ
2608/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2609 prevent cycles / duplicates. */
2610
4e7a5ef5 2611void
ae5a43e0
DJ
2612preserve_one_value (struct value *value, struct objfile *objfile,
2613 htab_t copied_types)
2614{
2615 if (TYPE_OBJFILE (value->type) == objfile)
2616 value->type = copy_type_recursive (objfile, value->type, copied_types);
2617
2618 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2619 value->enclosing_type = copy_type_recursive (objfile,
2620 value->enclosing_type,
2621 copied_types);
2622}
2623
78267919
UW
2624/* Likewise for internal variable VAR. */
2625
2626static void
2627preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2628 htab_t copied_types)
2629{
2630 switch (var->kind)
2631 {
cab0c772
UW
2632 case INTERNALVAR_INTEGER:
2633 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2634 var->u.integer.type
2635 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2636 break;
2637
78267919
UW
2638 case INTERNALVAR_VALUE:
2639 preserve_one_value (var->u.value, objfile, copied_types);
2640 break;
2641 }
2642}
2643
ae5a43e0
DJ
2644/* Update the internal variables and value history when OBJFILE is
2645 discarded; we must copy the types out of the objfile. New global types
2646 will be created for every convenience variable which currently points to
2647 this objfile's types, and the convenience variables will be adjusted to
2648 use the new global types. */
c906108c
SS
2649
2650void
ae5a43e0 2651preserve_values (struct objfile *objfile)
c906108c 2652{
ae5a43e0
DJ
2653 htab_t copied_types;
2654 struct value_history_chunk *cur;
52f0bd74 2655 struct internalvar *var;
ae5a43e0 2656 int i;
c906108c 2657
ae5a43e0
DJ
2658 /* Create the hash table. We allocate on the objfile's obstack, since
2659 it is soon to be deleted. */
2660 copied_types = create_copied_types_hash (objfile);
2661
2662 for (cur = value_history_chain; cur; cur = cur->next)
2663 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2664 if (cur->values[i])
2665 preserve_one_value (cur->values[i], objfile, copied_types);
2666
2667 for (var = internalvars; var; var = var->next)
78267919 2668 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2669
6dddc817 2670 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2671
ae5a43e0 2672 htab_delete (copied_types);
c906108c
SS
2673}
2674
2675static void
fba45db2 2676show_convenience (char *ignore, int from_tty)
c906108c 2677{
e17c207e 2678 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2679 struct internalvar *var;
c906108c 2680 int varseen = 0;
79a45b7d 2681 struct value_print_options opts;
c906108c 2682
79a45b7d 2683 get_user_print_options (&opts);
c906108c
SS
2684 for (var = internalvars; var; var = var->next)
2685 {
c709acd1 2686
c906108c
SS
2687 if (!varseen)
2688 {
2689 varseen = 1;
2690 }
a3f17187 2691 printf_filtered (("$%s = "), var->name);
c709acd1 2692
492d29ea 2693 TRY
c709acd1
PA
2694 {
2695 struct value *val;
2696
2697 val = value_of_internalvar (gdbarch, var);
2698 value_print (val, gdb_stdout, &opts);
2699 }
492d29ea
PA
2700 CATCH (ex, RETURN_MASK_ERROR)
2701 {
2702 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2703 }
2704 END_CATCH
2705
a3f17187 2706 printf_filtered (("\n"));
c906108c
SS
2707 }
2708 if (!varseen)
f47f77df
DE
2709 {
2710 /* This text does not mention convenience functions on purpose.
2711 The user can't create them except via Python, and if Python support
2712 is installed this message will never be printed ($_streq will
2713 exist). */
2714 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2715 "Convenience variables have "
2716 "names starting with \"$\";\n"
2717 "use \"set\" as in \"set "
2718 "$foo = 5\" to define them.\n"));
2719 }
c906108c
SS
2720}
2721\f
e81e7f5e
SC
2722/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2723
2724struct value *
2725value_of_xmethod (struct xmethod_worker *worker)
2726{
2727 if (worker->value == NULL)
2728 {
2729 struct value *v;
2730
2731 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2732 v->lval = lval_xcallable;
2733 v->location.xm_worker = worker;
2734 v->modifiable = 0;
2735 worker->value = v;
2736 }
2737
2738 return worker->value;
2739}
2740
2ce1cdbf
DE
2741/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2742
2743struct type *
2744result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2745{
2746 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2747 && method->lval == lval_xcallable && argc > 0);
2748
2749 return get_xmethod_result_type (method->location.xm_worker,
2750 argv[0], argv + 1, argc - 1);
2751}
2752
e81e7f5e
SC
2753/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2754
2755struct value *
2756call_xmethod (struct value *method, int argc, struct value **argv)
2757{
2758 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2759 && method->lval == lval_xcallable && argc > 0);
2760
2761 return invoke_xmethod (method->location.xm_worker,
2762 argv[0], argv + 1, argc - 1);
2763}
2764\f
c906108c
SS
2765/* Extract a value as a C number (either long or double).
2766 Knows how to convert fixed values to double, or
2767 floating values to long.
2768 Does not deallocate the value. */
2769
2770LONGEST
f23631e4 2771value_as_long (struct value *val)
c906108c
SS
2772{
2773 /* This coerces arrays and functions, which is necessary (e.g.
2774 in disassemble_command). It also dereferences references, which
2775 I suspect is the most logical thing to do. */
994b9211 2776 val = coerce_array (val);
0fd88904 2777 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2778}
2779
2780DOUBLEST
f23631e4 2781value_as_double (struct value *val)
c906108c
SS
2782{
2783 DOUBLEST foo;
2784 int inv;
c5aa993b 2785
0fd88904 2786 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2787 if (inv)
8a3fe4f8 2788 error (_("Invalid floating value found in program."));
c906108c
SS
2789 return foo;
2790}
4ef30785 2791
581e13c1 2792/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2793 Note that val's type may not actually be a pointer; value_as_long
2794 handles all the cases. */
c906108c 2795CORE_ADDR
f23631e4 2796value_as_address (struct value *val)
c906108c 2797{
50810684
UW
2798 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2799
c906108c
SS
2800 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2801 whether we want this to be true eventually. */
2802#if 0
bf6ae464 2803 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2804 non-address (e.g. argument to "signal", "info break", etc.), or
2805 for pointers to char, in which the low bits *are* significant. */
50810684 2806 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2807#else
f312f057
JB
2808
2809 /* There are several targets (IA-64, PowerPC, and others) which
2810 don't represent pointers to functions as simply the address of
2811 the function's entry point. For example, on the IA-64, a
2812 function pointer points to a two-word descriptor, generated by
2813 the linker, which contains the function's entry point, and the
2814 value the IA-64 "global pointer" register should have --- to
2815 support position-independent code. The linker generates
2816 descriptors only for those functions whose addresses are taken.
2817
2818 On such targets, it's difficult for GDB to convert an arbitrary
2819 function address into a function pointer; it has to either find
2820 an existing descriptor for that function, or call malloc and
2821 build its own. On some targets, it is impossible for GDB to
2822 build a descriptor at all: the descriptor must contain a jump
2823 instruction; data memory cannot be executed; and code memory
2824 cannot be modified.
2825
2826 Upon entry to this function, if VAL is a value of type `function'
2827 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2828 value_address (val) is the address of the function. This is what
f312f057
JB
2829 you'll get if you evaluate an expression like `main'. The call
2830 to COERCE_ARRAY below actually does all the usual unary
2831 conversions, which includes converting values of type `function'
2832 to `pointer to function'. This is the challenging conversion
2833 discussed above. Then, `unpack_long' will convert that pointer
2834 back into an address.
2835
2836 So, suppose the user types `disassemble foo' on an architecture
2837 with a strange function pointer representation, on which GDB
2838 cannot build its own descriptors, and suppose further that `foo'
2839 has no linker-built descriptor. The address->pointer conversion
2840 will signal an error and prevent the command from running, even
2841 though the next step would have been to convert the pointer
2842 directly back into the same address.
2843
2844 The following shortcut avoids this whole mess. If VAL is a
2845 function, just return its address directly. */
df407dfe
AC
2846 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2847 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2848 return value_address (val);
f312f057 2849
994b9211 2850 val = coerce_array (val);
fc0c74b1
AC
2851
2852 /* Some architectures (e.g. Harvard), map instruction and data
2853 addresses onto a single large unified address space. For
2854 instance: An architecture may consider a large integer in the
2855 range 0x10000000 .. 0x1000ffff to already represent a data
2856 addresses (hence not need a pointer to address conversion) while
2857 a small integer would still need to be converted integer to
2858 pointer to address. Just assume such architectures handle all
2859 integer conversions in a single function. */
2860
2861 /* JimB writes:
2862
2863 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2864 must admonish GDB hackers to make sure its behavior matches the
2865 compiler's, whenever possible.
2866
2867 In general, I think GDB should evaluate expressions the same way
2868 the compiler does. When the user copies an expression out of
2869 their source code and hands it to a `print' command, they should
2870 get the same value the compiler would have computed. Any
2871 deviation from this rule can cause major confusion and annoyance,
2872 and needs to be justified carefully. In other words, GDB doesn't
2873 really have the freedom to do these conversions in clever and
2874 useful ways.
2875
2876 AndrewC pointed out that users aren't complaining about how GDB
2877 casts integers to pointers; they are complaining that they can't
2878 take an address from a disassembly listing and give it to `x/i'.
2879 This is certainly important.
2880
79dd2d24 2881 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2882 makes it possible for GDB to "get it right" in all circumstances
2883 --- the target has complete control over how things get done, so
2884 people can Do The Right Thing for their target without breaking
2885 anyone else. The standard doesn't specify how integers get
2886 converted to pointers; usually, the ABI doesn't either, but
2887 ABI-specific code is a more reasonable place to handle it. */
2888
df407dfe
AC
2889 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2890 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2891 && gdbarch_integer_to_address_p (gdbarch))
2892 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2893 value_contents (val));
fc0c74b1 2894
0fd88904 2895 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2896#endif
2897}
2898\f
2899/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2900 as a long, or as a double, assuming the raw data is described
2901 by type TYPE. Knows how to convert different sizes of values
2902 and can convert between fixed and floating point. We don't assume
2903 any alignment for the raw data. Return value is in host byte order.
2904
2905 If you want functions and arrays to be coerced to pointers, and
2906 references to be dereferenced, call value_as_long() instead.
2907
2908 C++: It is assumed that the front-end has taken care of
2909 all matters concerning pointers to members. A pointer
2910 to member which reaches here is considered to be equivalent
2911 to an INT (or some size). After all, it is only an offset. */
2912
2913LONGEST
fc1a4b47 2914unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2915{
e17a4113 2916 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2917 enum type_code code = TYPE_CODE (type);
2918 int len = TYPE_LENGTH (type);
2919 int nosign = TYPE_UNSIGNED (type);
c906108c 2920
c906108c
SS
2921 switch (code)
2922 {
2923 case TYPE_CODE_TYPEDEF:
2924 return unpack_long (check_typedef (type), valaddr);
2925 case TYPE_CODE_ENUM:
4f2aea11 2926 case TYPE_CODE_FLAGS:
c906108c
SS
2927 case TYPE_CODE_BOOL:
2928 case TYPE_CODE_INT:
2929 case TYPE_CODE_CHAR:
2930 case TYPE_CODE_RANGE:
0d5de010 2931 case TYPE_CODE_MEMBERPTR:
c906108c 2932 if (nosign)
e17a4113 2933 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2934 else
e17a4113 2935 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2936
2937 case TYPE_CODE_FLT:
aebf07fc 2938 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2939
4ef30785
TJB
2940 case TYPE_CODE_DECFLOAT:
2941 /* libdecnumber has a function to convert from decimal to integer, but
2942 it doesn't work when the decimal number has a fractional part. */
aebf07fc 2943 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2944
c906108c
SS
2945 case TYPE_CODE_PTR:
2946 case TYPE_CODE_REF:
2947 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2948 whether we want this to be true eventually. */
4478b372 2949 return extract_typed_address (valaddr, type);
c906108c 2950
c906108c 2951 default:
8a3fe4f8 2952 error (_("Value can't be converted to integer."));
c906108c 2953 }
c5aa993b 2954 return 0; /* Placate lint. */
c906108c
SS
2955}
2956
2957/* Return a double value from the specified type and address.
2958 INVP points to an int which is set to 0 for valid value,
2959 1 for invalid value (bad float format). In either case,
2960 the returned double is OK to use. Argument is in target
2961 format, result is in host format. */
2962
2963DOUBLEST
fc1a4b47 2964unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2965{
e17a4113 2966 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2967 enum type_code code;
2968 int len;
2969 int nosign;
2970
581e13c1 2971 *invp = 0; /* Assume valid. */
f168693b 2972 type = check_typedef (type);
c906108c
SS
2973 code = TYPE_CODE (type);
2974 len = TYPE_LENGTH (type);
2975 nosign = TYPE_UNSIGNED (type);
2976 if (code == TYPE_CODE_FLT)
2977 {
75bc7ddf
AC
2978 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2979 floating-point value was valid (using the macro
2980 INVALID_FLOAT). That test/macro have been removed.
2981
2982 It turns out that only the VAX defined this macro and then
2983 only in a non-portable way. Fixing the portability problem
2984 wouldn't help since the VAX floating-point code is also badly
2985 bit-rotten. The target needs to add definitions for the
ea06eb3d 2986 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2987 exactly describe the target floating-point format. The
2988 problem here is that the corresponding floatformat_vax_f and
2989 floatformat_vax_d values these methods should be set to are
2990 also not defined either. Oops!
2991
2992 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2993 definitions and the new cases for floatformat_is_valid (). */
2994
2995 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2996 {
2997 *invp = 1;
2998 return 0.0;
2999 }
3000
96d2f608 3001 return extract_typed_floating (valaddr, type);
c906108c 3002 }
4ef30785 3003 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 3004 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
3005 else if (nosign)
3006 {
3007 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 3008 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
3009 }
3010 else
3011 {
3012 /* Signed -- we are OK with unpack_long. */
3013 return unpack_long (type, valaddr);
3014 }
3015}
3016
3017/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3018 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3019 We don't assume any alignment for the raw data. Return value is in
3020 host byte order.
3021
3022 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3023 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3024
3025 C++: It is assumed that the front-end has taken care of
3026 all matters concerning pointers to members. A pointer
3027 to member which reaches here is considered to be equivalent
3028 to an INT (or some size). After all, it is only an offset. */
3029
3030CORE_ADDR
fc1a4b47 3031unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3032{
3033 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3034 whether we want this to be true eventually. */
3035 return unpack_long (type, valaddr);
3036}
4478b372 3037
c906108c 3038\f
1596cb5d 3039/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3040 TYPE. */
c906108c 3041
f23631e4 3042struct value *
fba45db2 3043value_static_field (struct type *type, int fieldno)
c906108c 3044{
948e66d9
DJ
3045 struct value *retval;
3046
1596cb5d 3047 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3048 {
1596cb5d 3049 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3050 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3051 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3052 break;
3053 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3054 {
ff355380 3055 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3056 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3057 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3058
d12307c1 3059 if (sym.symbol == NULL)
c906108c 3060 {
a109c7c1 3061 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3062 reported as non-debuggable symbols. */
3b7344d5
TT
3063 struct bound_minimal_symbol msym
3064 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3065
3b7344d5 3066 if (!msym.minsym)
686d4def 3067 return allocate_optimized_out_value (type);
c906108c 3068 else
c5aa993b 3069 {
52e9fde8 3070 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3071 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3072 }
3073 }
3074 else
d12307c1 3075 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3076 break;
c906108c 3077 }
1596cb5d 3078 default:
f3574227 3079 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3080 }
3081
948e66d9 3082 return retval;
c906108c
SS
3083}
3084
4dfea560
DE
3085/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3086 You have to be careful here, since the size of the data area for the value
3087 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3088 than the old enclosing type, you have to allocate more space for the
3089 data. */
2b127877 3090
4dfea560
DE
3091void
3092set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3093{
5fdf6324
AB
3094 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3095 {
3096 check_type_length_before_alloc (new_encl_type);
3097 val->contents
3098 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3099 }
3e3d7139
JG
3100
3101 val->enclosing_type = new_encl_type;
2b127877
DB
3102}
3103
c906108c
SS
3104/* Given a value ARG1 (offset by OFFSET bytes)
3105 of a struct or union type ARG_TYPE,
3106 extract and return the value of one of its (non-static) fields.
581e13c1 3107 FIELDNO says which field. */
c906108c 3108
f23631e4
AC
3109struct value *
3110value_primitive_field (struct value *arg1, int offset,
aa1ee363 3111 int fieldno, struct type *arg_type)
c906108c 3112{
f23631e4 3113 struct value *v;
52f0bd74 3114 struct type *type;
3ae385af
SM
3115 struct gdbarch *arch = get_value_arch (arg1);
3116 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3117
f168693b 3118 arg_type = check_typedef (arg_type);
c906108c 3119 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3120
3121 /* Call check_typedef on our type to make sure that, if TYPE
3122 is a TYPE_CODE_TYPEDEF, its length is set to the length
3123 of the target type instead of zero. However, we do not
3124 replace the typedef type by the target type, because we want
3125 to keep the typedef in order to be able to print the type
3126 description correctly. */
3127 check_typedef (type);
c906108c 3128
691a26f5 3129 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3130 {
22c05d8a
JK
3131 /* Handle packed fields.
3132
3133 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3134 set. If possible, arrange offset and bitpos so that we can
3135 do a single aligned read of the size of the containing type.
3136 Otherwise, adjust offset to the byte containing the first
3137 bit. Assume that the address, offset, and embedded offset
3138 are sufficiently aligned. */
22c05d8a 3139
4ea48cc1
DJ
3140 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3141 int container_bitsize = TYPE_LENGTH (type) * 8;
3142
9a0dc9e3
PA
3143 v = allocate_value_lazy (type);
3144 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3145 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3146 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3147 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3148 else
9a0dc9e3
PA
3149 v->bitpos = bitpos % 8;
3150 v->offset = (value_embedded_offset (arg1)
3151 + offset
3152 + (bitpos - v->bitpos) / 8);
3153 set_value_parent (v, arg1);
3154 if (!value_lazy (arg1))
3155 value_fetch_lazy (v);
c906108c
SS
3156 }
3157 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3158 {
3159 /* This field is actually a base subobject, so preserve the
39d37385
PA
3160 entire object's contents for later references to virtual
3161 bases, etc. */
be335936 3162 int boffset;
a4e2ee12
DJ
3163
3164 /* Lazy register values with offsets are not supported. */
3165 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3166 value_fetch_lazy (arg1);
3167
9a0dc9e3
PA
3168 /* We special case virtual inheritance here because this
3169 requires access to the contents, which we would rather avoid
3170 for references to ordinary fields of unavailable values. */
3171 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3172 boffset = baseclass_offset (arg_type, fieldno,
3173 value_contents (arg1),
3174 value_embedded_offset (arg1),
3175 value_address (arg1),
3176 arg1);
c906108c 3177 else
9a0dc9e3 3178 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3179
9a0dc9e3
PA
3180 if (value_lazy (arg1))
3181 v = allocate_value_lazy (value_enclosing_type (arg1));
3182 else
3183 {
3184 v = allocate_value (value_enclosing_type (arg1));
3185 value_contents_copy_raw (v, 0, arg1, 0,
3186 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3187 }
9a0dc9e3
PA
3188 v->type = type;
3189 v->offset = value_offset (arg1);
3190 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3191 }
9920b434
BH
3192 else if (NULL != TYPE_DATA_LOCATION (type))
3193 {
3194 /* Field is a dynamic data member. */
3195
3196 gdb_assert (0 == offset);
3197 /* We expect an already resolved data location. */
3198 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3199 /* For dynamic data types defer memory allocation
3200 until we actual access the value. */
3201 v = allocate_value_lazy (type);
3202 }
c906108c
SS
3203 else
3204 {
3205 /* Plain old data member */
3ae385af
SM
3206 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3207 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3208
3209 /* Lazy register values with offsets are not supported. */
3210 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3211 value_fetch_lazy (arg1);
3212
9a0dc9e3 3213 if (value_lazy (arg1))
3e3d7139 3214 v = allocate_value_lazy (type);
c906108c 3215 else
3e3d7139
JG
3216 {
3217 v = allocate_value (type);
39d37385
PA
3218 value_contents_copy_raw (v, value_embedded_offset (v),
3219 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3220 type_length_units (type));
3e3d7139 3221 }
df407dfe 3222 v->offset = (value_offset (arg1) + offset
13c3b5f5 3223 + value_embedded_offset (arg1));
c906108c 3224 }
74bcbdf3 3225 set_value_component_location (v, arg1);
9ee8fc9d 3226 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3227 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3228 return v;
3229}
3230
3231/* Given a value ARG1 of a struct or union type,
3232 extract and return the value of one of its (non-static) fields.
581e13c1 3233 FIELDNO says which field. */
c906108c 3234
f23631e4 3235struct value *
aa1ee363 3236value_field (struct value *arg1, int fieldno)
c906108c 3237{
df407dfe 3238 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3239}
3240
3241/* Return a non-virtual function as a value.
3242 F is the list of member functions which contains the desired method.
0478d61c
FF
3243 J is an index into F which provides the desired method.
3244
3245 We only use the symbol for its address, so be happy with either a
581e13c1 3246 full symbol or a minimal symbol. */
c906108c 3247
f23631e4 3248struct value *
3e43a32a
MS
3249value_fn_field (struct value **arg1p, struct fn_field *f,
3250 int j, struct type *type,
fba45db2 3251 int offset)
c906108c 3252{
f23631e4 3253 struct value *v;
52f0bd74 3254 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3255 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3256 struct symbol *sym;
7c7b6655 3257 struct bound_minimal_symbol msym;
c906108c 3258
d12307c1 3259 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3260 if (sym != NULL)
0478d61c 3261 {
7c7b6655 3262 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3263 }
3264 else
3265 {
3266 gdb_assert (sym == NULL);
7c7b6655
TT
3267 msym = lookup_bound_minimal_symbol (physname);
3268 if (msym.minsym == NULL)
5ae326fa 3269 return NULL;
0478d61c
FF
3270 }
3271
c906108c 3272 v = allocate_value (ftype);
0478d61c
FF
3273 if (sym)
3274 {
42ae5230 3275 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3276 }
3277 else
3278 {
bccdca4a
UW
3279 /* The minimal symbol might point to a function descriptor;
3280 resolve it to the actual code address instead. */
7c7b6655 3281 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3282 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3283
42ae5230
TT
3284 set_value_address (v,
3285 gdbarch_convert_from_func_ptr_addr
77e371c0 3286 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3287 }
c906108c
SS
3288
3289 if (arg1p)
c5aa993b 3290 {
df407dfe 3291 if (type != value_type (*arg1p))
c5aa993b
JM
3292 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3293 value_addr (*arg1p)));
3294
070ad9f0 3295 /* Move the `this' pointer according to the offset.
581e13c1 3296 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3297 }
3298
3299 return v;
3300}
3301
c906108c 3302\f
c906108c 3303
4875ffdb
PA
3304/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3305 VALADDR, and store the result in *RESULT.
3306 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3307
4875ffdb
PA
3308 Extracting bits depends on endianness of the machine. Compute the
3309 number of least significant bits to discard. For big endian machines,
3310 we compute the total number of bits in the anonymous object, subtract
3311 off the bit count from the MSB of the object to the MSB of the
3312 bitfield, then the size of the bitfield, which leaves the LSB discard
3313 count. For little endian machines, the discard count is simply the
3314 number of bits from the LSB of the anonymous object to the LSB of the
3315 bitfield.
3316
3317 If the field is signed, we also do sign extension. */
3318
3319static LONGEST
3320unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3321 int bitpos, int bitsize)
c906108c 3322{
4ea48cc1 3323 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3324 ULONGEST val;
3325 ULONGEST valmask;
c906108c 3326 int lsbcount;
4a76eae5 3327 int bytes_read;
5467c6c8 3328 int read_offset;
c906108c 3329
4a76eae5
DJ
3330 /* Read the minimum number of bytes required; there may not be
3331 enough bytes to read an entire ULONGEST. */
f168693b 3332 field_type = check_typedef (field_type);
4a76eae5
DJ
3333 if (bitsize)
3334 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3335 else
3336 bytes_read = TYPE_LENGTH (field_type);
3337
5467c6c8
PA
3338 read_offset = bitpos / 8;
3339
4875ffdb 3340 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3341 bytes_read, byte_order);
c906108c 3342
581e13c1 3343 /* Extract bits. See comment above. */
c906108c 3344
4ea48cc1 3345 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3346 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3347 else
3348 lsbcount = (bitpos % 8);
3349 val >>= lsbcount;
3350
3351 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3352 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3353
3354 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3355 {
3356 valmask = (((ULONGEST) 1) << bitsize) - 1;
3357 val &= valmask;
3358 if (!TYPE_UNSIGNED (field_type))
3359 {
3360 if (val & (valmask ^ (valmask >> 1)))
3361 {
3362 val |= ~valmask;
3363 }
3364 }
3365 }
5467c6c8 3366
4875ffdb 3367 return val;
5467c6c8
PA
3368}
3369
3370/* Unpack a field FIELDNO of the specified TYPE, from the object at
3371 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3372 ORIGINAL_VALUE, which must not be NULL. See
3373 unpack_value_bits_as_long for more details. */
3374
3375int
3376unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3377 int embedded_offset, int fieldno,
3378 const struct value *val, LONGEST *result)
3379{
4875ffdb
PA
3380 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3381 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3382 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3383 int bit_offset;
3384
5467c6c8
PA
3385 gdb_assert (val != NULL);
3386
4875ffdb
PA
3387 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3388 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3389 || !value_bits_available (val, bit_offset, bitsize))
3390 return 0;
3391
3392 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3393 bitpos, bitsize);
3394 return 1;
5467c6c8
PA
3395}
3396
3397/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3398 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3399
3400LONGEST
3401unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3402{
4875ffdb
PA
3403 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3404 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3405 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3406
4875ffdb
PA
3407 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3408}
3409
3410/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3411 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3412 the contents in DEST_VAL, zero or sign extending if the type of
3413 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3414 VAL. If the VAL's contents required to extract the bitfield from
3415 are unavailable/optimized out, DEST_VAL is correspondingly
3416 marked unavailable/optimized out. */
3417
bb9d5f81 3418void
4875ffdb
PA
3419unpack_value_bitfield (struct value *dest_val,
3420 int bitpos, int bitsize,
3421 const gdb_byte *valaddr, int embedded_offset,
3422 const struct value *val)
3423{
3424 enum bfd_endian byte_order;
3425 int src_bit_offset;
3426 int dst_bit_offset;
3427 LONGEST num;
3428 struct type *field_type = value_type (dest_val);
3429
3430 /* First, unpack and sign extend the bitfield as if it was wholly
3431 available. Invalid/unavailable bits are read as zero, but that's
3432 OK, as they'll end up marked below. */
3433 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3434 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3435 bitpos, bitsize);
3436 store_signed_integer (value_contents_raw (dest_val),
3437 TYPE_LENGTH (field_type), byte_order, num);
3438
3439 /* Now copy the optimized out / unavailability ranges to the right
3440 bits. */
3441 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3442 if (byte_order == BFD_ENDIAN_BIG)
3443 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3444 else
3445 dst_bit_offset = 0;
3446 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3447 val, src_bit_offset, bitsize);
5467c6c8
PA
3448}
3449
3450/* Return a new value with type TYPE, which is FIELDNO field of the
3451 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3452 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3453 from are unavailable/optimized out, the new value is
3454 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3455
3456struct value *
3457value_field_bitfield (struct type *type, int fieldno,
3458 const gdb_byte *valaddr,
3459 int embedded_offset, const struct value *val)
3460{
4875ffdb
PA
3461 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3462 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3463 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3464
4875ffdb
PA
3465 unpack_value_bitfield (res_val, bitpos, bitsize,
3466 valaddr, embedded_offset, val);
3467
3468 return res_val;
4ea48cc1
DJ
3469}
3470
c906108c
SS
3471/* Modify the value of a bitfield. ADDR points to a block of memory in
3472 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3473 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3474 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3475 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3476 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3477
3478void
50810684
UW
3479modify_field (struct type *type, gdb_byte *addr,
3480 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3481{
e17a4113 3482 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3483 ULONGEST oword;
3484 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3485 int bytesize;
3486
3487 /* Normalize BITPOS. */
3488 addr += bitpos / 8;
3489 bitpos %= 8;
c906108c
SS
3490
3491 /* If a negative fieldval fits in the field in question, chop
3492 off the sign extension bits. */
f4e88c8e
PH
3493 if ((~fieldval & ~(mask >> 1)) == 0)
3494 fieldval &= mask;
c906108c
SS
3495
3496 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3497 if (0 != (fieldval & ~mask))
c906108c
SS
3498 {
3499 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3500 we don't have a sprintf_longest. */
8a3fe4f8 3501 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3502
3503 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3504 fieldval &= mask;
c906108c
SS
3505 }
3506
19f220c3
JK
3507 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3508 false valgrind reports. */
3509
3510 bytesize = (bitpos + bitsize + 7) / 8;
3511 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3512
3513 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3514 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3515 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3516
f4e88c8e 3517 oword &= ~(mask << bitpos);
c906108c
SS
3518 oword |= fieldval << bitpos;
3519
19f220c3 3520 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3521}
3522\f
14d06750 3523/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3524
14d06750
DJ
3525void
3526pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3527{
e17a4113 3528 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3529 int len;
14d06750
DJ
3530
3531 type = check_typedef (type);
c906108c
SS
3532 len = TYPE_LENGTH (type);
3533
14d06750 3534 switch (TYPE_CODE (type))
c906108c 3535 {
c906108c
SS
3536 case TYPE_CODE_INT:
3537 case TYPE_CODE_CHAR:
3538 case TYPE_CODE_ENUM:
4f2aea11 3539 case TYPE_CODE_FLAGS:
c906108c
SS
3540 case TYPE_CODE_BOOL:
3541 case TYPE_CODE_RANGE:
0d5de010 3542 case TYPE_CODE_MEMBERPTR:
e17a4113 3543 store_signed_integer (buf, len, byte_order, num);
c906108c 3544 break;
c5aa993b 3545
c906108c
SS
3546 case TYPE_CODE_REF:
3547 case TYPE_CODE_PTR:
14d06750 3548 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3549 break;
c5aa993b 3550
c906108c 3551 default:
14d06750
DJ
3552 error (_("Unexpected type (%d) encountered for integer constant."),
3553 TYPE_CODE (type));
c906108c 3554 }
14d06750
DJ
3555}
3556
3557
595939de
PM
3558/* Pack NUM into BUF using a target format of TYPE. */
3559
70221824 3560static void
595939de
PM
3561pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3562{
3563 int len;
3564 enum bfd_endian byte_order;
3565
3566 type = check_typedef (type);
3567 len = TYPE_LENGTH (type);
3568 byte_order = gdbarch_byte_order (get_type_arch (type));
3569
3570 switch (TYPE_CODE (type))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_CHAR:
3574 case TYPE_CODE_ENUM:
3575 case TYPE_CODE_FLAGS:
3576 case TYPE_CODE_BOOL:
3577 case TYPE_CODE_RANGE:
3578 case TYPE_CODE_MEMBERPTR:
3579 store_unsigned_integer (buf, len, byte_order, num);
3580 break;
3581
3582 case TYPE_CODE_REF:
3583 case TYPE_CODE_PTR:
3584 store_typed_address (buf, type, (CORE_ADDR) num);
3585 break;
3586
3587 default:
3e43a32a
MS
3588 error (_("Unexpected type (%d) encountered "
3589 "for unsigned integer constant."),
595939de
PM
3590 TYPE_CODE (type));
3591 }
3592}
3593
3594
14d06750
DJ
3595/* Convert C numbers into newly allocated values. */
3596
3597struct value *
3598value_from_longest (struct type *type, LONGEST num)
3599{
3600 struct value *val = allocate_value (type);
3601
3602 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3603 return val;
3604}
3605
4478b372 3606
595939de
PM
3607/* Convert C unsigned numbers into newly allocated values. */
3608
3609struct value *
3610value_from_ulongest (struct type *type, ULONGEST num)
3611{
3612 struct value *val = allocate_value (type);
3613
3614 pack_unsigned_long (value_contents_raw (val), type, num);
3615
3616 return val;
3617}
3618
3619
4478b372 3620/* Create a value representing a pointer of type TYPE to the address
cb417230 3621 ADDR. */
80180f79 3622
f23631e4 3623struct value *
4478b372
JB
3624value_from_pointer (struct type *type, CORE_ADDR addr)
3625{
cb417230 3626 struct value *val = allocate_value (type);
a109c7c1 3627
80180f79 3628 store_typed_address (value_contents_raw (val),
cb417230 3629 check_typedef (type), addr);
4478b372
JB
3630 return val;
3631}
3632
3633
012370f6
TT
3634/* Create a value of type TYPE whose contents come from VALADDR, if it
3635 is non-null, and whose memory address (in the inferior) is
3636 ADDRESS. The type of the created value may differ from the passed
3637 type TYPE. Make sure to retrieve values new type after this call.
3638 Note that TYPE is not passed through resolve_dynamic_type; this is
3639 a special API intended for use only by Ada. */
3640
3641struct value *
3642value_from_contents_and_address_unresolved (struct type *type,
3643 const gdb_byte *valaddr,
3644 CORE_ADDR address)
3645{
3646 struct value *v;
3647
3648 if (valaddr == NULL)
3649 v = allocate_value_lazy (type);
3650 else
3651 v = value_from_contents (type, valaddr);
3652 set_value_address (v, address);
3653 VALUE_LVAL (v) = lval_memory;
3654 return v;
3655}
3656
8acb6b92
TT
3657/* Create a value of type TYPE whose contents come from VALADDR, if it
3658 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3659 ADDRESS. The type of the created value may differ from the passed
3660 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3661
3662struct value *
3663value_from_contents_and_address (struct type *type,
3664 const gdb_byte *valaddr,
3665 CORE_ADDR address)
3666{
c3345124 3667 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3668 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3669 struct value *v;
a109c7c1 3670
8acb6b92 3671 if (valaddr == NULL)
80180f79 3672 v = allocate_value_lazy (resolved_type);
8acb6b92 3673 else
80180f79 3674 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3675 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3676 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3677 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3678 set_value_address (v, address);
33d502b4 3679 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3680 return v;
3681}
3682
8a9b8146
TT
3683/* Create a value of type TYPE holding the contents CONTENTS.
3684 The new value is `not_lval'. */
3685
3686struct value *
3687value_from_contents (struct type *type, const gdb_byte *contents)
3688{
3689 struct value *result;
3690
3691 result = allocate_value (type);
3692 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3693 return result;
3694}
3695
f23631e4 3696struct value *
fba45db2 3697value_from_double (struct type *type, DOUBLEST num)
c906108c 3698{
f23631e4 3699 struct value *val = allocate_value (type);
c906108c 3700 struct type *base_type = check_typedef (type);
52f0bd74 3701 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3702
3703 if (code == TYPE_CODE_FLT)
3704 {
990a07ab 3705 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3706 }
3707 else
8a3fe4f8 3708 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3709
3710 return val;
3711}
994b9211 3712
27bc4d80 3713struct value *
4ef30785 3714value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3715{
3716 struct value *val = allocate_value (type);
27bc4d80 3717
4ef30785 3718 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3719 return val;
3720}
3721
3bd0f5ef
MS
3722/* Extract a value from the history file. Input will be of the form
3723 $digits or $$digits. See block comment above 'write_dollar_variable'
3724 for details. */
3725
3726struct value *
e799154c 3727value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3728{
3729 int index, len;
3730
3731 if (h[0] == '$')
3732 len = 1;
3733 else
3734 return NULL;
3735
3736 if (h[1] == '$')
3737 len = 2;
3738
3739 /* Find length of numeral string. */
3740 for (; isdigit (h[len]); len++)
3741 ;
3742
3743 /* Make sure numeral string is not part of an identifier. */
3744 if (h[len] == '_' || isalpha (h[len]))
3745 return NULL;
3746
3747 /* Now collect the index value. */
3748 if (h[1] == '$')
3749 {
3750 if (len == 2)
3751 {
3752 /* For some bizarre reason, "$$" is equivalent to "$$1",
3753 rather than to "$$0" as it ought to be! */
3754 index = -1;
3755 *endp += len;
3756 }
3757 else
e799154c
TT
3758 {
3759 char *local_end;
3760
3761 index = -strtol (&h[2], &local_end, 10);
3762 *endp = local_end;
3763 }
3bd0f5ef
MS
3764 }
3765 else
3766 {
3767 if (len == 1)
3768 {
3769 /* "$" is equivalent to "$0". */
3770 index = 0;
3771 *endp += len;
3772 }
3773 else
e799154c
TT
3774 {
3775 char *local_end;
3776
3777 index = strtol (&h[1], &local_end, 10);
3778 *endp = local_end;
3779 }
3bd0f5ef
MS
3780 }
3781
3782 return access_value_history (index);
3783}
3784
a471c594
JK
3785struct value *
3786coerce_ref_if_computed (const struct value *arg)
3787{
3788 const struct lval_funcs *funcs;
3789
3790 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3791 return NULL;
3792
3793 if (value_lval_const (arg) != lval_computed)
3794 return NULL;
3795
3796 funcs = value_computed_funcs (arg);
3797 if (funcs->coerce_ref == NULL)
3798 return NULL;
3799
3800 return funcs->coerce_ref (arg);
3801}
3802
dfcee124
AG
3803/* Look at value.h for description. */
3804
3805struct value *
3806readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3807 const struct type *original_type,
3808 const struct value *original_value)
dfcee124
AG
3809{
3810 /* Re-adjust type. */
3811 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3812
3813 /* Add embedding info. */
3814 set_value_enclosing_type (value, enc_type);
3815 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3816
3817 /* We may be pointing to an object of some derived type. */
3818 return value_full_object (value, NULL, 0, 0, 0);
3819}
3820
994b9211
AC
3821struct value *
3822coerce_ref (struct value *arg)
3823{
df407dfe 3824 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3825 struct value *retval;
dfcee124 3826 struct type *enc_type;
a109c7c1 3827
a471c594
JK
3828 retval = coerce_ref_if_computed (arg);
3829 if (retval)
3830 return retval;
3831
3832 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3833 return arg;
3834
dfcee124
AG
3835 enc_type = check_typedef (value_enclosing_type (arg));
3836 enc_type = TYPE_TARGET_TYPE (enc_type);
3837
3838 retval = value_at_lazy (enc_type,
3839 unpack_pointer (value_type (arg),
3840 value_contents (arg)));
9f1f738a 3841 enc_type = value_type (retval);
dfcee124
AG
3842 return readjust_indirect_value_type (retval, enc_type,
3843 value_type_arg_tmp, arg);
994b9211
AC
3844}
3845
3846struct value *
3847coerce_array (struct value *arg)
3848{
f3134b88
TT
3849 struct type *type;
3850
994b9211 3851 arg = coerce_ref (arg);
f3134b88
TT
3852 type = check_typedef (value_type (arg));
3853
3854 switch (TYPE_CODE (type))
3855 {
3856 case TYPE_CODE_ARRAY:
7346b668 3857 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3858 arg = value_coerce_array (arg);
3859 break;
3860 case TYPE_CODE_FUNC:
3861 arg = value_coerce_function (arg);
3862 break;
3863 }
994b9211
AC
3864 return arg;
3865}
c906108c 3866\f
c906108c 3867
bbfdfe1c
DM
3868/* Return the return value convention that will be used for the
3869 specified type. */
3870
3871enum return_value_convention
3872struct_return_convention (struct gdbarch *gdbarch,
3873 struct value *function, struct type *value_type)
3874{
3875 enum type_code code = TYPE_CODE (value_type);
3876
3877 if (code == TYPE_CODE_ERROR)
3878 error (_("Function return type unknown."));
3879
3880 /* Probe the architecture for the return-value convention. */
3881 return gdbarch_return_value (gdbarch, function, value_type,
3882 NULL, NULL, NULL);
3883}
3884
48436ce6
AC
3885/* Return true if the function returning the specified type is using
3886 the convention of returning structures in memory (passing in the
82585c72 3887 address as a hidden first parameter). */
c906108c
SS
3888
3889int
d80b854b 3890using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3891 struct value *function, struct type *value_type)
c906108c 3892{
bbfdfe1c 3893 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3894 /* A void return value is never in memory. See also corresponding
44e5158b 3895 code in "print_return_value". */
667e784f
AC
3896 return 0;
3897
bbfdfe1c 3898 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3899 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3900}
3901
42be36b3
CT
3902/* Set the initialized field in a value struct. */
3903
3904void
3905set_value_initialized (struct value *val, int status)
3906{
3907 val->initialized = status;
3908}
3909
3910/* Return the initialized field in a value struct. */
3911
3912int
4bf7b526 3913value_initialized (const struct value *val)
42be36b3
CT
3914{
3915 return val->initialized;
3916}
3917
a844296a
SM
3918/* Load the actual content of a lazy value. Fetch the data from the
3919 user's process and clear the lazy flag to indicate that the data in
3920 the buffer is valid.
a58e2656
AB
3921
3922 If the value is zero-length, we avoid calling read_memory, which
3923 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3924 it. */
a58e2656 3925
a844296a 3926void
a58e2656
AB
3927value_fetch_lazy (struct value *val)
3928{
3929 gdb_assert (value_lazy (val));
3930 allocate_value_contents (val);
9a0dc9e3
PA
3931 /* A value is either lazy, or fully fetched. The
3932 availability/validity is only established as we try to fetch a
3933 value. */
3934 gdb_assert (VEC_empty (range_s, val->optimized_out));
3935 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3936 if (value_bitsize (val))
3937 {
3938 /* To read a lazy bitfield, read the entire enclosing value. This
3939 prevents reading the same block of (possibly volatile) memory once
3940 per bitfield. It would be even better to read only the containing
3941 word, but we have no way to record that just specific bits of a
3942 value have been fetched. */
3943 struct type *type = check_typedef (value_type (val));
a58e2656 3944 struct value *parent = value_parent (val);
a58e2656 3945
b0c54aa5
AB
3946 if (value_lazy (parent))
3947 value_fetch_lazy (parent);
3948
4875ffdb
PA
3949 unpack_value_bitfield (val,
3950 value_bitpos (val), value_bitsize (val),
3951 value_contents_for_printing (parent),
3952 value_offset (val), parent);
a58e2656
AB
3953 }
3954 else if (VALUE_LVAL (val) == lval_memory)
3955 {
3956 CORE_ADDR addr = value_address (val);
3957 struct type *type = check_typedef (value_enclosing_type (val));
3958
3959 if (TYPE_LENGTH (type))
3960 read_value_memory (val, 0, value_stack (val),
3961 addr, value_contents_all_raw (val),
3ae385af 3962 type_length_units (type));
a58e2656
AB
3963 }
3964 else if (VALUE_LVAL (val) == lval_register)
3965 {
3966 struct frame_info *frame;
3967 int regnum;
3968 struct type *type = check_typedef (value_type (val));
3969 struct value *new_val = val, *mark = value_mark ();
3970
3971 /* Offsets are not supported here; lazy register values must
3972 refer to the entire register. */
3973 gdb_assert (value_offset (val) == 0);
3974
3975 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3976 {
6eeee81c
TT
3977 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3978
3979 frame = frame_find_by_id (frame_id);
a58e2656
AB
3980 regnum = VALUE_REGNUM (new_val);
3981
3982 gdb_assert (frame != NULL);
3983
3984 /* Convertible register routines are used for multi-register
3985 values and for interpretation in different types
3986 (e.g. float or int from a double register). Lazy
3987 register values should have the register's natural type,
3988 so they do not apply. */
3989 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3990 regnum, type));
3991
3992 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3993
3994 /* If we get another lazy lval_register value, it means the
3995 register is found by reading it from the next frame.
3996 get_frame_register_value should never return a value with
3997 the frame id pointing to FRAME. If it does, it means we
3998 either have two consecutive frames with the same frame id
3999 in the frame chain, or some code is trying to unwind
4000 behind get_prev_frame's back (e.g., a frame unwind
4001 sniffer trying to unwind), bypassing its validations. In
4002 any case, it should always be an internal error to end up
4003 in this situation. */
4004 if (VALUE_LVAL (new_val) == lval_register
4005 && value_lazy (new_val)
4006 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
4007 internal_error (__FILE__, __LINE__,
4008 _("infinite loop while fetching a register"));
a58e2656
AB
4009 }
4010
4011 /* If it's still lazy (for instance, a saved register on the
4012 stack), fetch it. */
4013 if (value_lazy (new_val))
4014 value_fetch_lazy (new_val);
4015
9a0dc9e3
PA
4016 /* Copy the contents and the unavailability/optimized-out
4017 meta-data from NEW_VAL to VAL. */
4018 set_value_lazy (val, 0);
4019 value_contents_copy (val, value_embedded_offset (val),
4020 new_val, value_embedded_offset (new_val),
3ae385af 4021 type_length_units (type));
a58e2656
AB
4022
4023 if (frame_debug)
4024 {
4025 struct gdbarch *gdbarch;
4026 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4027 regnum = VALUE_REGNUM (val);
4028 gdbarch = get_frame_arch (frame);
4029
4030 fprintf_unfiltered (gdb_stdlog,
4031 "{ value_fetch_lazy "
4032 "(frame=%d,regnum=%d(%s),...) ",
4033 frame_relative_level (frame), regnum,
4034 user_reg_map_regnum_to_name (gdbarch, regnum));
4035
4036 fprintf_unfiltered (gdb_stdlog, "->");
4037 if (value_optimized_out (new_val))
f6c01fc5
AB
4038 {
4039 fprintf_unfiltered (gdb_stdlog, " ");
4040 val_print_optimized_out (new_val, gdb_stdlog);
4041 }
a58e2656
AB
4042 else
4043 {
4044 int i;
4045 const gdb_byte *buf = value_contents (new_val);
4046
4047 if (VALUE_LVAL (new_val) == lval_register)
4048 fprintf_unfiltered (gdb_stdlog, " register=%d",
4049 VALUE_REGNUM (new_val));
4050 else if (VALUE_LVAL (new_val) == lval_memory)
4051 fprintf_unfiltered (gdb_stdlog, " address=%s",
4052 paddress (gdbarch,
4053 value_address (new_val)));
4054 else
4055 fprintf_unfiltered (gdb_stdlog, " computed");
4056
4057 fprintf_unfiltered (gdb_stdlog, " bytes=");
4058 fprintf_unfiltered (gdb_stdlog, "[");
4059 for (i = 0; i < register_size (gdbarch, regnum); i++)
4060 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4061 fprintf_unfiltered (gdb_stdlog, "]");
4062 }
4063
4064 fprintf_unfiltered (gdb_stdlog, " }\n");
4065 }
4066
4067 /* Dispose of the intermediate values. This prevents
4068 watchpoints from trying to watch the saved frame pointer. */
4069 value_free_to_mark (mark);
4070 }
4071 else if (VALUE_LVAL (val) == lval_computed
4072 && value_computed_funcs (val)->read != NULL)
4073 value_computed_funcs (val)->read (val);
a58e2656
AB
4074 else
4075 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4076
4077 set_value_lazy (val, 0);
a58e2656
AB
4078}
4079
a280dbd1
SDJ
4080/* Implementation of the convenience function $_isvoid. */
4081
4082static struct value *
4083isvoid_internal_fn (struct gdbarch *gdbarch,
4084 const struct language_defn *language,
4085 void *cookie, int argc, struct value **argv)
4086{
4087 int ret;
4088
4089 if (argc != 1)
6bc305f5 4090 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4091
4092 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4093
4094 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4095}
4096
c906108c 4097void
fba45db2 4098_initialize_values (void)
c906108c 4099{
1a966eab 4100 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4101Debugger convenience (\"$foo\") variables and functions.\n\
4102Convenience variables are created when you assign them values;\n\
4103thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4104\n\
c906108c
SS
4105A few convenience variables are given values automatically:\n\
4106\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4107\"$__\" holds the contents of the last address examined with \"x\"."
4108#ifdef HAVE_PYTHON
4109"\n\n\
4110Convenience functions are defined via the Python API."
4111#endif
4112 ), &showlist);
7e20dfcd 4113 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4114
db5f229b 4115 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4116Elements of value history around item number IDX (or last ten)."),
c906108c 4117 &showlist);
53e5f3cf
AS
4118
4119 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4120Initialize a convenience variable if necessary.\n\
4121init-if-undefined VARIABLE = EXPRESSION\n\
4122Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4123exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4124VARIABLE is already initialized."));
bc3b79fd
TJB
4125
4126 add_prefix_cmd ("function", no_class, function_command, _("\
4127Placeholder command for showing help on convenience functions."),
4128 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4129
4130 add_internal_function ("_isvoid", _("\
4131Check whether an expression is void.\n\
4132Usage: $_isvoid (expression)\n\
4133Return 1 if the expression is void, zero otherwise."),
4134 isvoid_internal_fn, NULL);
5fdf6324
AB
4135
4136 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4137 class_support, &max_value_size, _("\
4138Set maximum sized value gdb will load from the inferior."), _("\
4139Show maximum sized value gdb will load from the inferior."), _("\
4140Use this to control the maximum size, in bytes, of a value that gdb\n\
4141will load from the inferior. Setting this value to 'unlimited'\n\
4142disables checking.\n\
4143Setting this does not invalidate already allocated values, it only\n\
4144prevents future values, larger than this size, from being allocated."),
4145 set_max_value_size,
4146 show_max_value_size,
4147 &setlist, &showlist);
c906108c 4148}
This page took 2.141972 seconds and 4 git commands to generate.